Sample records for external driving fields

  1. Fuel magnetization without external field coils (AutoMag)

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Jennings, Christopher; Awe, Thomas; Shipley, Gabe; Lamppa, Derek; McBride, Ryan

    2016-10-01

    Magnetized Liner Inertial Fusion (MagLIF) has produced fusion-relevant plasma conditions on the Z accelerator where the fuel was magnetized using external field coils. We present a novel concept that does not need external field coils. This concept (AutoMag) magnetizes the fuel during the early part of the drive current by using a composite liner with helical conduction paths separated by insulating material. The drive is designed so the current rises slowly enough to avoid electrical breakdown of the insulators until a sufficiently strong magnetic field is established. Then the current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path and implode the liner. Low inductance magnetically insulated power feeds can be used with AutoMag to increase the drive current without interfering with diagnostic access. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Inductively-Charged High-Temperature Superconductors And Methods Of Use

    DOEpatents

    Bromberg, Leslie

    2003-09-16

    The invention provides methods of charging superconducting materials and, in particular, methods of charging high-temperature superconducting materials. The methods generally involve cooling a superconducting material to a temperature below its critical temperature. Then, an external magnetic field is applied to charge the material at a nearly constant temperature. The external magnetic field first drives the superconducting material to a critical state and then penetrates into the material. When in the critical state, the superconducting material loses all the pinning ability and therefore is in the flux-flow regime. In some embodiments, a first magnetic field may be used to drive the superconducting material to the critical state and then a second magnetic field may be used to penetrate the superconducting material. When the external field or combination of external fields are removed, the magnetic field that has penetrated into the material remains trapped. The charged superconducting material may be used as solenoidal magnets, dipole magnets, or other higher order multipole magnets in many applications.

  3. Auto-magnetizing liners for magnetized inertial fusion

    DOE PAGES

    Slutz, S. A.; Jennings, C. A.; Awe, T. J.; ...

    2017-01-20

    Here, the MagLIF (Magnetized Liner Inertial Fusion) concept has demonstrated fusion-relevant plasma conditions on the Z accelerator using external field coils to magnetize the fuel before compression. We present a novel concept (AutoMag), which uses a composite liner with helical conduction paths separated by insulating material to provide fuel magnetization from the early part of the drive current, which by design rises slowly enough to avoid electrical breakdown of the insulators. Once the magnetization field is established, the drive current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path andmore » implode the liner in the conventional z-pinch manner. There are two important advantages to AutoMag over external field coils for the operation of MagLIF. Low inductance magnetically insulated power feeds can be used to increase the drive current, and AutoMag does not interfere with diagnostic access. Also, AutoMag enables a pathway to energy applications for MagLIF, since expensive field coils will not be damaged each shot. Finally, it should be possible to generate Field Reversed Configurations (FRC) by using both external field coils and AutoMag in opposite polarities. This would provide a means to studying FRC liner implosions on the 100 ns time scale.« less

  4. Information driving force and its application in agent-based modeling

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2018-04-01

    Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.

  5. Propulsion of Active Colloids by Self-Induced Field Gradients.

    PubMed

    Boymelgreen, Alicia; Yossifon, Gilad; Miloh, Touvia

    2016-09-20

    Previously, metallodielectric Janus particles have been shown to travel with their dielectric hemisphere forward under low frequency applied electric fields as a result of asymmetric induced-charge electroosmotic flow. Here, it is demonstrated that at high frequencies, well beyond the charge relaxation time of the electric double layer induced around the particle, rather than the velocity decaying to zero, the Janus particles reverse direction, traveling with their metallic hemisphere forward. It is proposed that such motion is the result of a surface force, arising from localized nonuniform electric field gradients, induced by the dual symmetry-breaking of an asymmetric particle adjacent to a wall, which act on the induced dipole of the particle to drive net motion even in a uniform AC field. Although the field is external, since the driving gradient is induced on the particle level, it may be considered an active colloid. We have thus termed this propulsion mechanism "self-dielectrophoresis", to distinguish from traditional dielectrophoresis where the driving nonuniform field is externally fixed and the particle direction is restricted. It is demonstrated theoretically and experimentally that the critical frequency at which the particle reverses direction can be characterized by a nondimensional parameter which is a function of electrolyte concentration and particle size.

  6. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.

    PubMed

    Yamamoto, Takahiko; Koshiji, Kohji; Homma, Akihiko; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2008-01-01

    Transcutaneous energy transmission (TET) that uses electromagnetic induction between the external and internal coils of a transformer is the most promising method to supply driving energy to a totally implantable artificial heart without invasion. Induction-heating (IH) cookers generate magnetic flux, and if a cooker is operated near a transcutaneous transformer, the magnetic flux generated will link with the external and internal coils of the transcutaneous transformer. This will affect the performance of the TET and the artificial heart system. Hence, it is necessary to improve the magnetic field immunity of the TET system. During operation of the system, if the transcutaneous transformer is in close proximity to an IH cooker, the electric power generated by the cooker and coupled to the transformer can drive the artificial heart system. To prevent this coupling, the external coil was shielded with a conductive shield that had a slit in it. This reduces the coupling between the transformer and the magnetic field generated by the induction cooker. However, the temperature of the shield increased due to heating by eddy currents. The temperature of the shield can be reduced by separating the IH cooker and the shield.

  7. TEMHD Effects on Solidification Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Kao, Andrew; Pericleous, Koulis

    2012-01-01

    An unexplored potential exists to control microstructure evolution through the use of external DC magnetic fields. Thermoelectric currents form during solidification and interact with this external field to drive microscopic fluid dynamics within the inter-dendritic region. The convective heat and mass transport can lead to profound changes on the dendritic structure. In this paper the effect of high magnetic fields is demonstrated through the use of both 3-dimensional and 2-dimensional numerical models. The results show that the application of a magnetic field causes significant disruption to the dendritic morphology. Investigation into the underlying mechanism gives initial indicators of how external magnetic fields can either lead to unexpected growth behaviour, or alternatively can be used to control the evolution of microstructure in undercooled melts as encountered in levitated droplet solidification.

  8. Design of Interactively Time-Pulsed Microfluidic Mixers in Microchips using Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Fu, Lung-Ming; Tsai, Chien-Hsiung

    2007-01-01

    In this paper, we propose a novel technique in which driving voltages are applied interactively to the respective inlet fluid flows of three configurations of a microfluidic device, namely T-shaped, double-T-shaped, and double-cross-shaped configurations, to induce electroosmotic flow (EOF) velocity variations in such a way as to develop a rapid mixing effect in the microchannel. In these configurations a microfluidic mixer apply only one electrokinetic driving force, which drives the sample fluids and simultaneously produces a periodic switching frequency. It requires no other external driving force to induce perturbations to the flow field. The effects of the main applied electric field, the interactive frequency, and the pullback electric field on the mixing performance are thoroughly examined numerically. The optimal interactive frequency range for a given set of micromixer parameters is identified for each type of control mode. The numerical results confirm that micromixers operating at an optimal interactive frequency are capable of delivering a significantly enhanced mixing performance. Furthermore, it is shown that the optimal interactive frequency depends upon the magnitude of the main applied electric field. The interactively pulsed mixers developed in this study have a strong potential for use in lab-on-a-chip systems. They involve a simpler fabrication process than either passive or active on-chip mixers and require less human intervention in operation than their bulky external counterparts.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying-Jie, E-mail: yingjiezhang@qfnu.edu.cn; Han, Wei; Xia, Yun-Jie, E-mail: yjxia@qfnu.edu.cn

    We propose a scheme of controlling entanglement dynamics of a quantum system by applying the external classical driving field for two atoms separately located in a single-mode photon cavity. It is shown that, with a judicious choice of the classical-driving strength and the atom–photon detuning, the effective atom–photon interaction Hamiltonian can be switched from Jaynes–Cummings model to anti-Jaynes–Cummings model. By tuning the controllable atom–photon interaction induced by the classical field, we illustrate that the evolution trajectory of the Bell-like entanglement states can be manipulated from entanglement-sudden-death to no-entanglement-sudden-death, from no-entanglement-invariant to entanglement-invariant. Furthermore, the robustness of the initial Bell-like entanglementmore » can be improved by the classical driving field in the leaky cavities. This classical-driving-assisted architecture can be easily extensible to multi-atom quantum system for scalability.« less

  10. Driving morphological changes in magnetic nanoparticle structures through the application of acoustic waves and magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Ann; Miansari, Morteza; Friend, James

    The growing interest in acoustic manipulation of particles in micro to nanofluidics using surface acoustic waves (SAW), together with the many applications of magnetic nanoparticles-whether individual or in arrays-underpins our discovery of how these forces can be used to rapidly, easily, and irreversibly form 1D chains and 2D films. These films and chains are currently difficult to produce yet offer many advantages over individual nanoparticles in suspension. Making use of the scale of the structures formed, 10-9 to 10-5 m, and by taking a balance of the relevant external and interparticle forces, the underlying mechanisms responsible for the phenomena become apparent. For 1D chains, the magnetic field alone is sufficient, though applying an acoustic field drives a topology change from loosely connected chains to loops of 10 -100 particles. Adding the acoustic field drives a transition from these looped structures to dense 2D arrays via interparticle Bjerknes forces. Inter-particle drainage of the surrounding fluid leaves these structures intact after removal of the externally applied forces. Clear morphology transitions are present and depend on the relative amplitude of the incident Brownian, Bjerknes, and magnetic forces. UCSD: Frontiers of Innovation Scholars Program (U-1024).

  11. Skyrmions Driven by Intrinsic Magnons

    NASA Astrophysics Data System (ADS)

    Psaroudaki, Christina; Loss, Daniel

    2018-06-01

    We study the dynamics of a Skyrmion in a magnetic insulating nanowire in the presence of time-dependent oscillating magnetic field gradients. These ac fields act as a net driving force on the Skyrmion via its own intrinsic magnetic excitations. In a microscopic quantum field theory approach, we include the unavoidable coupling of the external field to the magnons, which gives rise to time-dependent dissipation for the Skyrmion. We demonstrate that the magnetic ac field induces a super-Ohmic to Ohmic crossover behavior for the Skyrmion dissipation kernels with time-dependent Ohmic terms. The ac driving of the magnon bath at resonance results in a unidirectional helical propagation of the Skyrmion in addition to the otherwise periodic bounded motion.

  12. Chemical reactions induced by oscillating external fields in weak thermal environments

    NASA Astrophysics Data System (ADS)

    Craven, Galen T.; Bartsch, Thomas; Hernandez, Rigoberto

    2015-02-01

    Chemical reaction rates must increasingly be determined in systems that evolve under the control of external stimuli. In these systems, when a reactant population is induced to cross an energy barrier through forcing from a temporally varying external field, the transition state that the reaction must pass through during the transformation from reactant to product is no longer a fixed geometric structure, but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal driving, the stability of the time-varying transition state directly determines the reaction rate [G. T. Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between the rates predicted by stability analysis and rates obtained through numerical calculation of the reactive flux. We also show that the optimal dividing surface and the resulting reaction rate for a reactive system driven by weak thermal noise can be approximated well using the transition state geometry of the underlying deterministic system. This agreement persists as long as the thermal driving strength is less than the order of that of the periodic driving. The power of this result is its simplicity. The surprising accuracy of the time-dependent noise-free geometry for obtaining transition state theory rates in chemical reactions driven by periodic fields reveals the dynamics without requiring the cost of brute-force calculations.

  13. Magnetization-induced dynamics of a Josephson junction coupled to a nanomagnet

    NASA Astrophysics Data System (ADS)

    Ghosh, Roopayan; Maiti, Moitri; Shukrinov, Yury M.; Sengupta, K.

    2017-11-01

    We study the superconducting current of a Josephson junction (JJ) coupled to an external nanomagnet driven by a time-dependent magnetic field both without and in the presence of an external ac drive. We provide an analytic, albeit perturbative, solution for the Landau-Lifshitz (LL) equations governing the coupled JJ-nanomagnet system in the presence of a magnetic field with arbitrary time dependence oriented along the easy axis of the nanomagnet's magnetization and in the limit of weak dimensionless coupling ɛ0 between the JJ and the nanomagnet. We show the existence of Shapiro-type steps in the I -V characteristics of the JJ subjected to a voltage bias for a constant or periodically varying magnetic field and explore the effect of rotation of the magnetic field and the presence of an external ac drive on these steps. We support our analytic results with exact numerical solution of the LL equations. We also extend our results to dissipative nanomagnets by providing a perturbative solution to the Landau-Lifshitz-Gilbert (LLG) equations for weak dissipation. We study the fate of magnetization-induced Shapiro steps in the presence of dissipation both from our analytical results and via numerical solution of the coupled LLG equations. We discuss experiments which can test our theory.

  14. The Effect of External Magnetic Fields on the MRT Instability in MagLIF

    NASA Astrophysics Data System (ADS)

    Hess, Mark; Peterson, Kyle; Weis, Matthew; Lau, Yue Ying

    2014-10-01

    Recent experiments on MagLIF which incorporate an external B-field suggest that the MRT instability within the liner has a different behavior than without the B-field. Previous work by Chandrasekhar and Harris have illustrated how the MRT growth rate, assuming fixed liner density and fixed acceleration, can change due to the presence of an external B-field. In this work, we show how the growth rate of the MRT instability is dynamically affected by the rapidly varying acceleration, liner density, and surface magnetic field, which is composed of the external B-field and the drive B-field of the liner in the MagLIF experiments. In addition, we also examine the effects of finite liner resistivity on MRT growth, which gives rise to an additional time scale corresponding to magnetic diffusion. We discuss the implications of this result for future MagLIF designs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  15. Use of external magnetic fields in hohlraum plasmas to improve laser-coupling

    DOE PAGES

    Montgomery, D. S.; Albright, B. J.; Barnak, D. H.; ...

    2015-01-13

    Efficient coupling of laser energy into hohlraum targets is important for indirect drive ignition. Laser-plasma instabilities can reduce coupling, reduce symmetry, and cause preheat. We consider the effects of an external magnetic field on laser-energy coupling in hohlraum targets. Experiments were performed at the Omega Laser Facility using low-Z gas-filled hohlraum targets which were placed in a magnetic coil with B z ≤ 7.5-T. We found that an external field B z = 7.5-T aligned along the hohlraum axis results in up to a 50% increase in plasma temperature as measured by Thomson scattering. As a result, the experiments weremore » modeled using the 2-D magnetohydrodynamics package in HYDRA and were found to be in good agreement.« less

  16. Data-based Modeling of the Dynamical Inner Magnetosphere During Strong Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Tsyganenko, N.; Sitnov, M.

    2004-12-01

    This work builds on and extends our previous effort [Tsyganenko et al., 2003] to develop a dynamical model of the storm-time geomagnetic field in the inner magnetosphere, using space magnetometer data taken during 37 major events in 1996--2000 and concurrent observations of the solar wind and IMF. The essence of the approach is to derive from the data the temporal variation of all major current systems contributing to the geomagnetic field during the entire storm cycle, using a simple model of their growth and decay. Each principal source of the external magnetic field (magnetopause, cross-tail current sheet, axisymmetric and partial ring currents, Birkeland currents) is controlled by a separate driving variable that includes a combination of geoeffective parameters in the form Nλ Vβ Bsγ , where N, V, and Bs are the solar wind density, speed, and the magnitude of the southward component of the IMF, respectively. Each source was also assumed to have an individual relaxation timescale and residual quiet-time strength, so that its partial contribution to the total field was calculated for any moment as a time integral, taking into account the entire history of the external driving of the magnetosphere during each storm. In addition, the magnitudes of the principal field sources were assumed to saturate during extremely large storms with abnormally strong external driving. All the parameters of the model field sources, including their magnitudes, geometrical characteristics, solar wind/IMF driving functions, decay timescales, and saturation thresholds were treated as free variables, to be derived from the data by the least squares. The relaxation timescales of the individual magnetospheric field sources were found to largely differ between each other, from as large as ˜30 hours for the symmetrical ring current to only ˜50 min for the region~1 Birkeland current. The total magnitudes of the currents were also found to dramatically vary in the course of major storms, with the peak values as large as 5--8 MA for the symmetric ring current and region 1 field-aligned current. At the peak of the main phase, the total partial ring current can largely exceed the symmetric one, reaching ˜10 MA and even more, but it quickly subsides as the external solar wind driving disappears, with the relaxation time ≤2 hours. The tail current dramatically increases during the main phase and shifts earthward, so that the peak current concentrates at unusually close distances ˜4-6RE. This is accompanied by a significant thinning of the current sheet and enormous tailward stretching of the inner geomagnetic field lines. As an independent consistency test, we calculated the expected Dst-variation based on the model output at Earth's surface and compared it with the actual observed Dst. A good agreement (cumulative correlation coefficient R=0.92) was found, in spite of that ˜90% of the spacecraft data used in the fitting were taken at synchronous orbit and beyond, while only 3.7% of those data came from distances 2.5≤ R≤4 RE. The obtained results demonstrate the possibility to develop a dynamical model of the magnetic field, based on magnetospheric and interplanetary data and allowing one to reproduce and forecast the entire process of a geomagnetic storm, as it unfolds in time and space. Reference: N. A. Tsyganenko, H. J. Singer, J. C. Kasper, Storm-time distortion of the inner magnetosphere: How severe can it get ? J. Geophys. Res., v. 108(A5), 1209, 2003.

  17. Behind the Wheel and on the Map: Genetic and Environmental Associations between Drunk Driving and Other Externalizing Behaviors

    PubMed Central

    Quinn, Patrick D.; Harden, K. Paige

    2013-01-01

    Drunk driving, a major contributor to alcohol-related mortality, has been linked to a variety of other alcohol-related (e.g., Alcohol Dependence, early age at first drink) and non-alcohol-related externalizing behaviors. In a sample of 517 same-sex twin pairs from the National Longitudinal Study of Adolescent Health, we examined three conceptualizations of the etiology of drunk driving in relation to other externalizing behaviors. A series of behavioral-genetic models found consistent evidence for drunk driving as a manifestation of genetic vulnerabilities toward a spectrum of alcohol-related and non-alcohol-related externalizing behaviors. Most notably, multidimensional scaling analyses produced a genetic “map” with drunk driving located near its center, supporting the strength of drunk driving’s genetic relations with a broad range of externalizing behaviors. In contrast, non-shared environmental associations with drunk driving were weaker and more diffuse. Drunk driving may be a manifestation of genetic vulnerabilities toward a broad externalizing spectrum. PMID:24128260

  18. Memory effects for a stochastic fractional oscillator in a magnetic field

    NASA Astrophysics Data System (ADS)

    Mankin, Romi; Laas, Katrin; Laas, Tõnu; Paekivi, Sander

    2018-01-01

    The problem of random motion of harmonically trapped charged particles in a constant external magnetic field is studied. A generalized three-dimensional Langevin equation with a power-law memory kernel is used to model the interaction of Brownian particles with the complex structure of viscoelastic media (e.g., dusty plasmas). The influence of a fluctuating environment is modeled by an additive fractional Gaussian noise. In the long-time limit the exact expressions of the first-order and second-order moments of the fluctuating position for the Brownian particle subjected to an external periodic force in the plane perpendicular to the magnetic field have been calculated. Also, the particle's angular momentum is found. It is shown that an interplay of external periodic forcing, memory, and colored noise can generate a variety of cooperation effects, such as memory-induced sign reversals of the angular momentum, multiresonance versus Larmor frequency, and memory-induced particle confinement in the absence of an external trapping field. Particularly in the case without external trapping, if the memory exponent is lower than a critical value, we find a resonancelike behavior of the anisotropy in the particle position distribution versus the driving frequency, implying that it can be efficiently excited by an oscillating electric field. Similarities and differences between the behaviors of the models with internal and external noises are also discussed.

  19. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.

  20. Confinement of laser plasma expansion with strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  1. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  2. Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech

    2016-04-18

    We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.

  3. Equilibrium and magnetic properties of a rotating plasma annulus

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Si, Jiahe; Liu, Wei; Li, Hui

    2008-10-01

    Local linear analysis shows that magneto-rotational instability can be excited in laboratory rotating plasmas with a density of 1019m-3, a temperature on the order of 10eV, and a magnetic field on the order of 100G. A laboratory plasma annulus experiment with a dimension of ˜1m, and rotation at ˜0.5 sound speed is described. Correspondingly, magnetic Reynolds number of these plasmas is ˜1000, and magnetic Prandtl number ranges from about one to a few hundred. A radial equilibrium, ρUθ2/r =d(p+Bz2/2μ0)/dr=K0, with K0 being a nonzero constant, is proposed for the experimental data. Plasma rotation is observed to drive a quasisteady diamagnetic electrical current (rotational current drive) in a high-β plasma annulus. The rotational energy depends on the direction and the magnitude of the externally applied magnetic field. Radial current (Jr) is produced through biasing the center rod at a negative electric potential relative to the outer wall. Jr×Bz torque generates and sustains the plasma rotation. Rotational current drive can reverse the direction of vacuum magnetic field, satisfying a necessary condition for self-generated closed magnetic flux surfaces inside plasmas. The Hall term is found to be substantial and therefore needs to be included in the Ohm's law for the plasmas. Azimuthal magnetic field (Bθ) is found to be comparable with the externally applied vacuum magnetic field Bz, and mainly caused by the electric current flowing in the center cylinder; thus, Bθ∝r-1. Magnetic fluctuations are anisotropic, radial-dependent, and contain many Fourier modes below the ion cyclotron frequency. Further theoretical analysis reflecting these observations is needed to interpret the magnetic fluctuations.

  4. The nature of the laning transition in two dimensions

    NASA Astrophysics Data System (ADS)

    Glanz, T.; Löwen, H.

    2012-11-01

    If a binary colloidal mixture is oppositely driven by an external field, a transition towards a laned state occurs at sufficiently large drives, where particles driven alike form elongated structures (‘lanes’) characterized by a large correlation length ξ along the drive. Here we perform extensive Brownian dynamics computer simulations on a two-dimensional equimolar binary Yukawa system driven by a constant force that acts oppositely on the two species. We systematically address finite-size effects on lane formation by exploring large systems up to 262 144 particles under various boundary conditions. It is found that the correlation length ξ along the field depends exponentially on the driving force (or Peclet number). Conversely, in a finite system, ξ reaches a fraction of the system size at a driving force which is logarithmic in the system size, implying massive finite-size corrections. For a fixed finite drive, ξ does not diverge in the thermodynamic limit. Therefore, though laning has a signature as a sharp transition in a finite system, it is a smooth crossover in the thermodynamic limit.

  5. Synchronization of networked chaotic oscillators under external periodic driving.

    PubMed

    Yang, Wenchao; Lin, Weijie; Wang, Xingang; Huang, Liang

    2015-03-01

    The dynamical responses of a complex system to external perturbations are of both fundamental interest and practical significance. Here, by the model of networked chaotic oscillators, we investigate how the synchronization behavior of a complex network is influenced by an externally added periodic driving. Interestingly, it is found that by a slight change of the properties of the external driving, e.g., the frequency or phase lag between its intrinsic oscillation and external driving, the network synchronizability could be significantly modified. We demonstrate this phenomenon by different network models and, based on the method of master stability function, give an analysis on the underlying mechanisms. Our studies highlight the importance of external perturbations on the collective behaviors of complex networks, and also provide an alternate approach for controlling network synchronization.

  6. Manipulation of a neutral and nonpolar nanoparticle in water using a nonuniform electric field

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Wang, Chunlei; Sheng, Nan; Hu, Guohui; Zhou, Zhewei; Fang, Haiping

    2016-01-01

    The manipulation of nanoparticles in water is of essential importance in chemical physics, nanotechnology, medical technology, and biotechnology applications. Generally, a particle with net charges or charge polarity can be driven by an electric field. However, many practical particles only have weak and even negligible charge and polarity, which hinders the electric field to exert a force large enough to drive these nanoparticles directly. Here, we use molecular dynamics simulations to show that a neutral and nonpolar nanoparticle in liquid water can be driven directionally by an external electric field. The directed motion benefits from a nonuniform water environment produced by a nonuniform external electric field, since lower water energies exist under a higher intensity electric field. The nanoparticle spontaneously moves toward locations with a weaker electric field intensity to minimize the energy of the whole system. Considering that the distance between adjacent regions of nonuniform field intensity can reach the micrometer scale, this finding provides a new mechanism of manipulating nanoparticles from the nanoscale to the microscale.

  7. Critical Magnetic Field in CeCoIn5 Superconductor

    NASA Astrophysics Data System (ADS)

    Koo, Je Huan; Gill, Doh-Hyun; Cho, Guangsup

    We investigate the superconducting transition temperature, Tc in the presence of the magnetic field, H in CeCoIn5. It is shown that phonon-enhanced spin fluctuations drive this superconductivity once more as suggested by us (Phys. Rev. B61, 4289). We know the magnetic dependence of our transition temperature is in good correspondence with experimental data. It is elucidated that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting states are closely related to the temperature gradient contributed by the external magnetic field.

  8. Attosecond Optics and Technology: Progress to Date and Future Prospects [Invited

    DTIC Science & Technology

    2016-06-01

    1s electron in the hydrogen atom experiences is 5.14 × 109 V∕cm. In such a strong external field, an electron can be freed from an atom via tunneling ...been replaced by laser diodes , which leads to user-friendly products that deliver either single-longitudinal mode beams for pumping laser oscillators...steps. First, an electron is released by tunneling through the potential barrier formed by the atomic Coulomb field and the driving laser field. Then

  9. A magneto-electro-optical effect in a plasmonic nanowire material

    PubMed Central

    Valente, João; Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.

    2015-01-01

    Electro- and magneto-optical phenomena play key roles in photonic technology enabling light modulators, optical data storage, sensors and numerous spectroscopic techniques. Optical effects, linear and quadratic in external electric and magnetic field are widely known and comprehensively studied. However, optical phenomena that depend on the simultaneous application of external electric and magnetic fields in conventional media are barely detectable and technologically insignificant. Here we report that a large reciprocal magneto-electro-optical effect can be observed in metamaterials. In an artificial chevron nanowire structure fabricated on an elastic nano-membrane, the Lorentz force drives reversible transmission changes on application of a fraction of a volt when the structure is placed in a fraction-of-tesla magnetic field. We show that magneto-electro-optical modulation can be driven to hundreds of thousands of cycles per second promising applications in magneto-electro-optical modulators and field sensors at nano-tesla levels. PMID:25906761

  10. Pulsed dynamical decoupling for fast and robust two-qubit gates on trapped ions

    NASA Astrophysics Data System (ADS)

    Arrazola, I.; Casanova, J.; Pedernales, J. S.; Wang, Z.-Y.; Solano, E.; Plenio, M. B.

    2018-05-01

    We propose a pulsed dynamical decoupling protocol as the generator of tunable, fast, and robust quantum phase gates between two microwave-driven trapped-ion hyperfine qubits. The protocol consists of sequences of π pulses acting on ions that are oriented along an externally applied magnetic-field gradient. In contrast to existing approaches, in our design the two vibrational modes of the ion chain cooperate under the influence of the external microwave driving to achieve significantly increased gate speeds. Our scheme is robust against the dominant noise sources, which are errors on the magnetic-field and microwave pulse intensities, as well as motional heating, predicting two-qubit gates with fidelities above 99.9% in tens of microseconds.

  11. Localized and delocalized motion of colloidal particles on a magnetic bubble lattice.

    PubMed

    Tierno, Pietro; Johansen, Tom H; Fischer, Thomas M

    2007-07-20

    We study the motion of paramagnetic colloidal particles placed above magnetic bubble domains of a uniaxial garnet film and driven through the lattice by external magnetic field modulation. An external tunable precessing field propels the particles either in localized orbits around the bubbles or in superdiffusive or ballistic motion through the bubble array. This motion results from the interplay between the driving rotating signal, the viscous drag force and the periodic magnetic energy landscape. We explain the transition in terms of the incommensurability between the transit frequency of the particle through a unit cell and the modulation frequency. Ballistic motion dynamically breaks the symmetry of the array and the phase locked particles follow one of the six crystal directions.

  12. Nonlinear Fluid Model Of 3-D Field Effects In Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Beidler, M. T.

    2017-10-01

    Extended MHD codes (e.g., NIMROD, M3D-C1) are beginning to explore nonlinear effects of small 3-D magnetic fields on tokamak plasmas. To facilitate development of analogous physically understandable reduced models, a fluid-based dynamic nonlinear model of these added 3-D field effects in the base axisymmetric tokamak magnetic field geometry is being developed. The model incorporates kinetic-based closures within an extended MHD framework. Key 3-D field effects models that have been developed include: 1) a comprehensive modified Rutherford equation for the growth of a magnetic island that includes the classical tearing and NTM perturbed bootstrap current drives, externally applied magnetic field and current drives, and classical and neoclassical polarization current effects, and 2) dynamic nonlinear evolution of the plasma toroidal flow (radial electric field) in response to the 3-D fields. An application of this model to RMP ELM suppression precipitated by an ELM crash will be discussed. Supported by Office of Fusion Energy Sciences, Office of Science, Dept. of Energy Grants DE-FG02-86ER53218 and DE-FG02-92ER54139.

  13. Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets

    NASA Astrophysics Data System (ADS)

    Johansen, Øyvind; Brataas, Arne

    2017-06-01

    Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2,FeF2, and NiO. Near the spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin pumping is independent of the external magnetic field when the driving field has the optimal circular polarization. In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.

  14. Tunable terahertz optical properties of graphene in dc electric fields

    NASA Astrophysics Data System (ADS)

    Dong, H. M.; Huang, F.; Xu, W.

    2018-03-01

    We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.

  15. Interaction of rotating helical magnetic field with the HIST spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yusuke; Sugahara, Masato; Yamada, Satoshi; Yoshikawa, Tatsuya; Fukumoto, Naoyuki; Nagata, Masayoshi

    2006-10-01

    The physical mechanism of current drive by co-axial helicity injection (CHI) has been experimentally investigated on both spheromak and spherical torus (ST) configurations on the HIST device [1]. It has been observed that the n = 1 kink mode rotates toroidally with a frequency of 10-20 kHz in the ExB direction. It seems that the induced toroidal current by CHI strongly relates with the observed rotating kink mode. On the other hand, it is well known that MHD instabilities can be controlled or even suppressed by an externally applied helical magnetic field in tokamak devices. Therefore, we have started to install two sets of external helical coils in order to produce a rotating helical magnetic field on HIST. Mode structures of the generated rotating helical magnetic field and preliminary experimental results of the interaction of the rotating helical magnetic field with the HIST plasmas will be shown in the conference. [1] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003)

  16. Steady-State Solutions Originating from an Enhanced Nonlinear Feedback in a Hybrid Opto-mechanical System

    NASA Astrophysics Data System (ADS)

    Fan, Qiu-Bo; Wang, Yi-Ru; Chen, Jin; Pan, Yue-Wu; Han, Bai-Ping; Fu, Chang-Bao; Sun, Yan

    2017-06-01

    The steady-state properties of a hybrid system are investigated in this paper. Many cold atoms in the four-level tripod configuration are confined in an optical cavity with a movable end mirror. The confined cold atoms are driven with two external classical fields and an internal cavity field. The internal cavity field is excited by an external driving field and shows a radiation pressure upon the movable end mirror. The coupling of atom-light and opto-mechanical interactions is enhanced by embedding a four-level atomic system in a typical opto-mechanical cavity. And an enhanced nonlinear feedback mechanism is offered by the enhanced coupling, which permits the observation of five and three steady-state solutions for relevant variables near two-photon resonance. The enhanced nonlinear feedback mechanism also allows us to observe the obvious difference in the double-EIT phenomenon between the atom-assisted opto-mechanical system and usual atom-field system.

  17. Method of driving liquid flow at or near the free surface using magnetic microparticles

    DOEpatents

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Evanston, IL; Belkin, Maxim V [Woodridge, IL

    2011-10-11

    The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.

  18. Time-resolved measurement of global synchronization in the dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Williams, J. D.

    2014-10-01

    A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.

  19. Overview of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Jacobson, C. M.; Parada, C. A.; Forest, C. B.

    2006-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin-Madison's liquid-sodium facility. The experiment is designed to self-generate magnetic fields from flows of conducting metal. The apparatus consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium. Two 100 Hp motors drive impellers which generate the flow. The motors have been operated up to 1300 RPM (70% of design specification), achieving a magnetic Reynolds number of 130, based on impeller tip speed. Various polarizations of external magnetic fields have been applied to the sodium, and the induced magnetic field has been measured by both internal and external Hall probe arrays. The voltage induced across the sphere by the turbulent flow has been measured. Techniques for using ultrasound Doppler velocimetry have been explored in the water model of the experiment, including the use of high-pressure bubbles as seed particles.

  20. Calculation and manipulation of the chirp rates of high-order harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, M.; Mauritsson, J.; Schafer, K.J.

    2005-01-01

    We calculate the linear chirp rates of high-order harmonics in argon, generated by intense, 810 nm laser pulses, and explore the dependence of the chirp rate on harmonic order, driving laser intensity, and pulse duration. By using a time-frequency representation of the harmonic fields we can identify several different linear chirp contributions to the plateau harmonics. Our results, which are based on numerical integration of the time-dependent Schroedinger equation, are in good agreement with the adiabatic predictions of the strong field approximation for the chirp rates. Extending the theoretical analysis in the recent paper by Mauritsson et al. [Phys. Rev.more » A 70, 021801(R) (2004)], we also manipulate the chirp rates of the harmonics by adding a chirp to the driving pulse. We show that the chirp rate for harmonic q is given by the sum of the intrinsic chirp rate, which is determined by the new duration and peak intensity of the chirped driving pulse, and q times the external chirp rate.« less

  1. Do Magnetic Fields Drive High-Energy Explosive Transients?

    NASA Astrophysics Data System (ADS)

    Mundell, Carole

    2017-10-01

    I will review the current state-of-the-art in real-time, rapid response optical imaging and polarimetric followup of transient sources such as Gamma Ray Bursts. I will interpret current results within the context of the external shock model and present predictions for future mm- and cm-wave radio observatories. Recent observational results from new radio pilot studies will also be presented.

  2. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  3. Ion transferring in polyelectrolyte networks in electric fields

    NASA Astrophysics Data System (ADS)

    Li, Honghao; Erbas, Aykut; Zwanikken, Jos; Olvera de La Cruz, Monica

    Ion-conducting polyelectrolyte gels have drawn the attention of many researchers in the last few decades as they have wide applications not only in lithium batteries but also as stretchable, transparent ionic conductor or ionic cables devices. However, ion dynamics in polyelectrolyte gels has been much less studied analytically or computationally due to the complicated interplay of long-range electrostatic and short-range interactions. Here we propose a coarse-grained non-equilibrium molecular dynamics simulation to study the ion dynamics in polyelectrolyte gels under external electric fields. We found a nonlinear response region where the molar conductivity of polyelectrolyte gels increases with external fields. We propose counterion redistribution under electric fields as the driving mechanism. We also found the ionic conductivity to be modulated by changing polylelectrolyte network topology such as the chain length. Our discovery reveals the essential difference of ion dynamics between electrolytes and polyelectrolyte gels. These results will expand our understanding in charged polymeric systems and help in designing ion-conducting devices with higher conductivity.

  4. Quantum interference and control of the dynamic Franz-Keldysh effect: Generation and detection of terahertz space-charge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Rui; Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045; Jacobs, Paul

    2013-06-24

    The Dynamic Franz Keldysh Effect (DFKE) is produced and controlled in bulk gallium arsenide by quantum interference without the aid of externally applied fields and is spatially and temporally resolved using ellipsometric pump-probe techniques. The {approx}3 THz internal driving field for the DFKE is a transient space-charge field that is associated with a critically damped coherent plasma oscillation produced by oppositely traveling ballistic electron and hole currents that are injected by two-color quantum interference techniques. The relative phase and polarization of the two pump pulses can be used to control the DFKE.

  5. Quantum interference and control of the dynamic Franz-Keldysh effect: Generation and detection of terahertz space-charge fields

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Jacobs, Paul; Zhao, Hui; Smirl, Arthur L.

    2013-06-01

    The Dynamic Franz Keldysh Effect (DFKE) is produced and controlled in bulk gallium arsenide by quantum interference without the aid of externally applied fields and is spatially and temporally resolved using ellipsometric pump-probe techniques. The ˜3 THz internal driving field for the DFKE is a transient space-charge field that is associated with a critically damped coherent plasma oscillation produced by oppositely traveling ballistic electron and hole currents that are injected by two-color quantum interference techniques. The relative phase and polarization of the two pump pulses can be used to control the DFKE.

  6. Electromagnetic sounding of the moon using Apollo 16 and Lunokhod 2 surface magnetometer observations /preliminary results/

    NASA Technical Reports Server (NTRS)

    Vanian, L. L.; Vnutchokova, T. A.; Fainberg, E. B.; Eroschenko, E. A.; Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    A technique of deep electromagnetic sounding of the moon using simultaneous magnetic-field measurements at two lunar surface sites is described. The method, used with the assumption that deep electrical conductivity is a function only of lunar radius, has the advantage of allowing calculation of the external driving field from two surface-site measurements only and therefore does not require data from a lunar orbiting satellite. A transient-response calculation is presented for the example of a magnetic-field discontinuity, measured simultaneously by Apollo 16 and Lunokhod 2 surface magnetometers.

  7. Electromagnetic Sounding of the Moon Using Apollo 16 and Lunokhod 2 Surface Magnetometer Observations (Preliminary Results)

    NASA Technical Reports Server (NTRS)

    Vanyan, L. L.; Vnutchokova, T. A.; Fainberg, E. B.; Eroschenko, E. A.; Dyal, P.; Parkin, C. W.; Parkin, C. W.

    1977-01-01

    A new technique of deep electromagnetic sounding of the Moon using simultaneous magnetic field measurements at two lunar surface sites is described. The method, used with the assumption that deep electrical conductivity is a function only of lunar radius, has the advantage of allowing calculation of the external driving field from two surface site measurements only, and therefore does not require data from a lunar orbiting satellite. A transient response calculation is presented for the example of a magnetic field discontinuity of February 13, 1973, measured simultaneously by Apollo 16 and Lunokhod 2 surface magnetometers.

  8. Cell partition in two phase polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.

  9. Quantum Fisher Information as a function response to a weak external perturbation

    NASA Astrophysics Data System (ADS)

    Rojas, Fernando; Maytorena, Jesus A.

    The quantum fisher information (QFI) is known as a good indicator of entanglement in a multipartite systems. In this work we show that it can be treated as an induced response to an external field, in the same spirit of the usual linear response theory, with respect to a linear combination of observables of each subsystem. We derive an expression for a corresponding linear dynamical susceptibilitywhich contains relevant information about entanglement properties of a multipartite system. This approach is applied to investigate the hybrid entanglement in the driven Jaynes-Cummings model. The Fisher susceptibility response function is obtained and allows us to characterize the changes on quantum correlations between the qubit and photon states, in terms of the driving frequency, atom-field coupling, and temperature. We acknowledge financial support from DGAPA PAPPIT IN105717.

  10. Enhancing the absorption and energy transfer process via quantum entanglement

    NASA Astrophysics Data System (ADS)

    Zong, Xiao-Lan; Song, Wei; Zhou, Jian; Yang, Ming; Yu, Long-Bao; Cao, Zhuo-Liang

    2018-07-01

    The quantum network model is widely used to describe the dynamics of excitation energy transfer in photosynthesis complexes. Different from the previous schemes, we explore a specific network model, which includes both light-harvesting and energy transfer process. Here, we define a rescaled measure to manifest the energy transfer efficiency from external driving to the sink, and the external driving fields are used to simulate the energy absorption process. To study the role of initial state in the light-harvesting and energy transfer process, we assume the initial state of the donors to be two-qubit and three-qubit entangled states, respectively. In the two-qubit initial state case, we find that the initial entanglement between the donors can help to improve the absorption and energy transfer process for both the near-resonant and large-detuning cases. For the case of three-qubit initial state, we can see that the transfer efficiency will reach a larger value faster in the tripartite entanglement case compared to the bipartite entanglement case.

  11. Magnetless magnetic fusion

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.; Tajima, T.

    1994-02-01

    The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.

  12. A locomotion mechanism with external magnetic guidance for active capsule endoscope.

    PubMed

    Wang, Xiaona; Meng, Max Q H; Chen, Xijun

    2010-01-01

    Gastrointestinal (GI) disorder is one of the most common diseases in human body. The swallowable wireless capsule endoscopy has been proved to be a convenient, painless and effective way to examine the whole GI tract. However, lack of motion control makes the movement of the capsule substantially random, resulting in missing diagnosis. In this paper, a locomotion mechanism is developed for the next-generation active capsule endoscope. An internal actuator integrated on-board the capsule is designed to provide driving force and improve the dexterity. A small permanent magnet enclosed inside the capsule interacts with an external magnetic field to control the capsule's orientation and offer extra driving force. This mechanism avoids sophisticated and bulky control system and reduces power consumption inside the capsule. Ex-vivo experimental results showed that it can make a controllable movement inside the porcine large intestine. The mechanism also has the potential to be a platform for further development, such as devices of operations, spraying medicine, biopsy etc.

  13. High-Resolution Uitra Low Power, Intergrated Aftershock and Microzonation System

    NASA Astrophysics Data System (ADS)

    Passmore, P.; Zimakov, L. G.

    2012-12-01

    Rapid Aftershock Mobilization plays an essential role in the understanding of both focal mechanism and rupture propagation caused by strong earthquakes. A quick assessment of the data provides a unique opportunity to study the dynamics of the entire earthquake process in-situ. Aftershock study also provides practical information for local authorities regarding the post earthquake activity, which is very important in order to conduct the necessary actions for public safety in the area affected by the strong earthquake. Refraction Technology, Inc. has developed a self-contained, fully integrated Aftershock System, model 160-03, providing the customer simple and quick deployment during aftershock emergency mobilization and microzonation studies. The 160-03 has no external cables or peripheral equipment for command/control and operation in the field. The 160-03 contains three major components integrated in one case: a) 24-bit resolution state-of-the art low power ADC with CPU and Lid interconnect boards; b) power source; and c) three component 2 Hz sensors (two horizontals and one vertical), and built-in ±4g accelerometer. Optionally, the 1 Hz sensors can be built-in the 160-03 system at the customer's request. The self-contained rechargeable battery pack provides power autonomy up to 7 days during data acquisition at 200 sps on continuous three weak motion and triggered three strong motion recording channels. For longer power autonomy, the 160-03 Aftershock System battery pack can be charged from an external source (solar power system). The data in the field is recorded to a built-in swappable USB flash drive. The 160-03 configuration is fixed based on a configuration file stored on the system, so no external command/control interface is required for parameter setup in the field. For visual control of the system performance in the field, the 160-03 has a built-in LED display which indicates the systems recording status as well as a hot swappable USB drive and battery status. The detailed specifications and performance are presented and discussed.;

  14. Simulation study of enhancing laser-driven multi-keV line-radiation through application of external magnetic fields

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Koning, J. M.; Scott, H. A.; Marinak, M. M.

    2015-11-01

    Laser-driven, spectrally tailored, high-flux x-ray sources have been developed over the past decade for testing the radiation hardness of materials used in various civilian, space and military applications. The optimal electron temperatures for these x-ray sources occur around twice the desired photon energy. At the National Ignition Facility (NIF) laser, the available energy can produce plasmas with ~ 10keV electron temperatures which result in highly-efficient ~ 5keV radiation but less than optimal emission from the > 10keV sources. In this work, we present a possible venue for enhancing multi-keV x-ray emission on existing laser platforms through the application of an external magnetic field. Preliminary radiation-hydrodynamics calculations with Hydra suggest as much as 2 - 14 × increases in laser-to-x-ray conversion efficiency for 22 - 68keV K-shell sources are possible on the NIF laser - without any changes in laser-drive conditions - through the application of an external axial 50 T field. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  15. Spherical shells buckling to the sound of music

    NASA Astrophysics Data System (ADS)

    Lee, Anna; Marthelot, Joel; Reis, Pedro

    We study how the critical buckling load of spherical elastic shells can be modified by a fluctuating external pressure field. In our experiments, we employ thin elastomeric shells of nearly uniform thickness fabricated by the coating of a hemispherical mold with a polymer solution, which upon curing yields elastic structures. A shell is submerged in a water bath and loaded quasi-statically until buckling occurs by reducing its inner volume with a syringe pump. Simultaneously, a plunger connected to an electromagnetic shaker is placed above the shell and driven sinusoidally to create a fluctuating external pressure field that can excite dynamic vibration modes of the shell. These dynamic modes induce effective compressive stresses, in addition to those from the inner pressure loading, which can modify the critical conditions for the onset of buckling. We systematically quantify how the frequency and amplitude of the external driving affects the buckling strength of our shells. In specific regions of the parameter space, we find that pressure fluctuations can result in large reductions of the critical buckling pressure. This is analogous to the classic knock-down effect in shells due to intrinsic geometric imperfections, albeit now in a way that can be controlled externally.

  16. A TE-mode accelerator

    NASA Astrophysics Data System (ADS)

    Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.

    1987-04-01

    An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.

  17. Preparation of two-qubit steady entanglement through driving a single qubit.

    PubMed

    Shen, Li-Tuo; Chen, Rong-Xin; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao

    2014-10-15

    Inspired by a recent paper [J. Phys. B 47, 055502 (2014)], we propose a simplified scheme to generate and stabilize a Bell state of two qubits coupled to a resonator. In the scheme only one qubit is needed to be driven by external classical fields, and the entanglement dynamics is independent of the phases of these fields and insensitive to their amplitude fluctuations. This is a distinct advantage as compared with the previous ones that require each qubit to be addressed by well-controlled classical fields. Numerical simulation shows that the steady singlet state with high fidelity can be obtained with currently available techniques in circuit quantum electrodynamics.

  18. Cellular automata in photonic cavity arrays.

    PubMed

    Li, Jing; Liew, T C H

    2016-10-31

    We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.

  19. Two coupled, driven Ising spin systems working as an engine.

    PubMed

    Basu, Debarshi; Nandi, Joydip; Jayannavar, A M; Marathe, Rahul

    2017-05-01

    Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.

  20. Two coupled, driven Ising spin systems working as an engine

    NASA Astrophysics Data System (ADS)

    Basu, Debarshi; Nandi, Joydip; Jayannavar, A. M.; Marathe, Rahul

    2017-05-01

    Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.

  1. Induced charge electroosmosis micropumps using arrays of Janus micropillars.

    PubMed

    Paustian, Joel S; Pascall, Andrew J; Wilson, Neil M; Squires, Todd M

    2014-09-07

    We report on a microfluidic AC-driven electrokinetic pump that uses Induced Charge Electro-Osmosis (ICEO) to generate on-chip pressures. ICEO flows occur when a bulk electric field polarizes a metal object to induce double layer formation, then drives electroosmotic flow. A microfabricated array of metal-dielectric Janus micropillars breaks the symmetry of ICEO flow, so that an AC electric field applied across the array drives ICEO flow along the length of the pump. When pumping against an external load, a pressure gradient forms along the pump length. The design was analyzed theoretically with the reciprocal theorem. The analysis reveals a maximum pressure and flow rate that depend on the ICEO slip velocity and micropillar geometry. We then fabricate and test the pump, validating our design concept by demonstrating non-local pressure driven flow using local ICEO slip flows. We varied the voltage, frequency, and electrolyte composition, measuring pump pressures of 15-150 Pa. We use the pump to drive flows through a high-resistance microfluidic channel. We conclude by discussing optimization routes suggested by our theoretical analysis to enhance the pump pressure.

  2. Numerical magnetohydrodynamic simulations of expanding flux ropes: Influence of boundary driving

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tacke, Thomas; Dreher, Jürgen; Sydora, Richard D.

    2013-07-15

    The expansion dynamics of a magnetized, current-carrying plasma arch is studied by means of time-dependent ideal MHD simulations. Initial conditions model the setup used in recent laboratory experiments that in turn simulate coronal loops [J. Tenfelde et al., Phys. Plasmas 19, 072513 (2012); E. V. Stenson and P. M. Bellan, Plasma Phys. Controlled Fusion 54, 124017 (2012)]. Boundary conditions of the electric field at the “lower” boundary, intersected by the arch, are chosen such that poloidal magnetic flux is injected into the domain, either localized at the arch footpoints themselves or halfway between them. These conditions are motivated by themore » tangential electric field expected to exist in the laboratory experiments due to the external circuit that drives the plasma current. The boundary driving is found to systematically enhance the expansion velocity of the plasma arch. While perturbations at the arch footpoints also deform its legs and create characteristic elongated segments, a perturbation between the footpoints tends to push the entire structure upwards, retaining an ellipsoidal shape.« less

  3. Low density mesostructures of confined dipolar particles in an external field

    NASA Astrophysics Data System (ADS)

    Richardi, J.; Weis, J.-J.

    2011-09-01

    Mesostructures formed by dipolar particles confined between two parallel walls and subjected to an external field are studied by Monte Carlo simulations. The main focus of the work is the structural behavior of the Stockmayer fluid in the low density regime. The dependence of cluster thickness and ordering is estimated as a function of density and wall separation, the two most influential parameters, for large dipole moments and high field strengths. The great sensitivity of the structure to details of the short-range part of the interactions is pointed out. In particular, the attractive part of the Lennard-Jones potential is shown to play a major role in driving chain aggregation. The effect of confinement, evaluated by comparison with results for a bulk system, is most pronounced for a short range hard sphere potential. No evidence is found for a novel "gel-like" phase recently uncovered in low density dipolar colloidal suspensions [A. K. Agarwal and A. Yethiraj, Phys. Rev. Lett. 102, 198301 (2009), 10.1103/PhysRevLett.102.198301].

  4. Impact of External Cue Validity on Driving Performance in Parkinson's Disease

    PubMed Central

    Scally, Karen; Charlton, Judith L.; Iansek, Robert; Bradshaw, John L.; Moss, Simon; Georgiou-Karistianis, Nellie

    2011-01-01

    This study sought to investigate the impact of external cue validity on simulated driving performance in 19 Parkinson's disease (PD) patients and 19 healthy age-matched controls. Braking points and distance between deceleration point and braking point were analysed for red traffic signals preceded either by Valid Cues (correctly predicting signal), Invalid Cues (incorrectly predicting signal), and No Cues. Results showed that PD drivers braked significantly later and travelled significantly further between deceleration and braking points compared with controls for Invalid and No-Cue conditions. No significant group differences were observed for driving performance in response to Valid Cues. The benefit of Valid Cues relative to Invalid Cues and No Cues was significantly greater for PD drivers compared with controls. Trail Making Test (B-A) scores correlated with driving performance for PDs only. These results highlight the importance of external cues and higher cognitive functioning for driving performance in mild to moderate PD. PMID:21789275

  5. Active colloids as mobile microelectrodes for unified label-free selective cargo transport.

    PubMed

    Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad

    2018-02-22

    Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.

  6. Nonlinear optical modulation in a plasmonic Bi:YIG Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Firby, C. J.; Elezzabi, A. Y.

    2017-02-01

    In this work, we propose a magnetoplasmonic modulator for nonlinear radio-frequency (RF) modulation of an integrated optical signal. The modulator consists of a plasmonic Mach-Zehnder interferometer (MZI), constructed of the ferrimagnetic garnet, bismuth-substituted yttrium iron garnet (Bi:YIG). The transverse component of the Bi:YIG magnetization induces a nonreciprocal phase shift (NRPS) onto the guided optical mode, which can be actively modulated through external magnetic fields. In an MZI, the modulated phase shift in turn modulates the output optical intensity. Due to the highly nonlinear evolution of the Bi:YIG magnetization, we show that the spectrum of the output modulated intensity signal can contain harmonics of the driving RF field, frequency splitting around the driving frequency, down-conversion, or mixing of multiple RF signals. This device provides a unique mechanism of simultaneously generating a number of modulation frequencies within a single device.

  7. Generation of steady entanglement via unilateral qubit driving in bad cavities.

    PubMed

    Jin, Zhao; Su, Shi-Lei; Zhu, Ai-Dong; Wang, Hong-Fu; Shen, Li-Tuo; Zhang, Shou

    2017-12-15

    We propose a scheme for generating an entangled state for two atoms trapped in two separate cavities coupled to each other. The scheme is based on the competition between the unitary dynamics induced by the classical fields and the collective decays induced by the dissipation of two non-local bosonic modes. In this scheme, only one qubit is driven by external classical fields, whereas the other need not be manipulated via classical driving. This is meaningful for experimental implementation between separate nodes of a quantum network. The steady entanglement can be obtained regardless of the initial state, and the robustness of the scheme against parameter fluctuations is numerically demonstrated. We also give an analytical derivation of the stationary fidelity to enable a discussion of the validity of this regime. Furthermore, based on the dissipative entanglement preparation scheme, we construct a quantum state transfer setup with multiple nodes as a practical application.

  8. Probing topology by "heating": Quantized circular dichroism in ultracold atoms.

    PubMed

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G; Zoller, Peter; Goldman, Nathan

    2017-08-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system's chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This "differential integrated rate" is directly related to the strength of the driving field through the quantized coefficient η 0 = ν/ ℏ 2 , where h = 2π ℏ is Planck's constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter.

  9. A theoretical analysis of the electromagnetic environment of the AS330 super Puma helicopter external and internal coupling

    NASA Technical Reports Server (NTRS)

    Flourens, F.; Morel, T.; Gauthier, D.; Serafin, D.

    1991-01-01

    Numerical techniques such as Finite Difference Time Domain (FDTD) computer programs, which were first developed to analyze the external electromagnetic environment of an aircraft during a wave illumination, a lightning event, or any kind of current injection, are now very powerful investigative tools. The program called GORFF-VE, was extended to compute the inner electromagnetic fields that are generated by the penetration of the outer fields through large apertures made in the all metallic body. Then, the internal fields can drive the electrical response of a cable network. The coupling between the inside and the outside of the helicopter is implemented using Huygen's principle. Moreover, the spectacular increase of computer resources, as calculations speed and memory capacity, allows the modellization structures as complex as these of helicopters with accuracy. This numerical model was exploited, first, to analyze the electromagnetic environment of an in-flight helicopter for several injection configurations, and second, to design a coaxial return path to simulate the lightning aircraft interaction with a strong current injection. The E field and current mappings are the result of these calculations.

  10. Self-Consistent Large-Scale Magnetosphere-Ionosphere Coupling: Computational Aspects and Experiments

    NASA Technical Reports Server (NTRS)

    Newman, Timothy S.

    2003-01-01

    Both external and internal phenomena impact the terrestrial magnetosphere. For example, solar wind and particle precipitation effect the distribution of hot plasma in the magnetosphere. Numerous models exist to describe different aspects of magnetosphere characteristics. For example, Tsyganenko has developed a series of models (e.g., [TSYG89]) that describe the magnetic field, and Stern [STER75] and Volland [VOLL73] have developed an analytical model that describes the convection electric field. Over the past several years, NASA colleague Khazanov, working with Fok and others, has developed a large-scale coupled model that tracks particle flow to determine hot ion and electron phase space densities in the magnetosphere. This model utilizes external data such as solar wind densities and velocities and geomagnetic indices (e.g., Kp) to drive computational processes that evaluate magnetic, electric field, and plasma sheet models at any time point. These models are coupled such that energetic ion and electron fluxes are produced, with those fluxes capable of interacting with the electric field model. A diagrammatic representation of the coupled model is shown.

  11. Magnetic printing characteristics using master disk with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoto; Nishida, Yoichi; Ishioka, Toshihide; Sugita, Ryuji; Yasunaga, Tadashi

    With the increase in recording density and capacity of hard-disk drives (HDD), high speed, high precision and low cost servo writing method has become an issue in HDD industry. The magnetic printing was proposed as the ultimate solution for this issue [1-3]. There are two types of magnetic printing methods, which are 'Bit Printing (BP)' and 'Edge Printing (EP)'. BP method is conducted by applying external field whose direction is vertical to the plane of both master disk (Master) and perpendicular magnetic recording (PMR) media (Slave). On the other hand, EP method is conducted by applying external field toward down track direction of both master and slave. In BP for bit length shorter than 100 nm, the SNR of perpendicular anisotropic master was higher than isotropic master. And the SNR of EP for the bit length shorter than 50 nm was demonstrated.

  12. Resonant Formation and Control of m-Fold Symmetric V-States

    NASA Astrophysics Data System (ADS)

    Friedland, Lazar; Shagalov, Arkadi

    2000-10-01

    Magnetized, pure electron plasmas trapped in a Malmberg-Penning trap can be modeled (in the drift approximation) by two-dimensional Euler equations of ideal fluids. The plasma density in this approximation is analogous to vorticity, while the radial electric field potential to the stream function of the fluid velocity field. For instance, electron plasma cylinder aligned with the magnetic field is analogous to a circular vortex patch solution of an ideal fluid. We shall show that by starting in such a circular equilibrium one can drive an m-fold symmetric interface (vortex) waves in two dimensions (V-states, discovered by Deem and Zabusky [1] nearly 20 years ago)into a highly nonlinear excitation by applying a weak external oscillating potential of appropriate symmetry and slowly varying the frequency of these oscillations. The phenomenon is due to autoresonance [2,3] in the system as the excited plasma (vortex) boundary preserves its functional form despite the drive, but self-adjusts the aspect ratio to synchronize with the driving potential oscillations. A similar approach can be used in controlling interface dynamics subject to global constraints in many other fields of physics. Work supported by Israel Science Foundation grant 607-97 and INTAS grant 99-1068. [1] G. Deem and N. Zabusky, Phys. Rev. Lett. 40, 859 (1978). [2] L. Friedland, Phys. Rev. E, 4106 (1999). [3] J. Fajans, E. Gilson, and L. Friedland, Phys. Rev. Lett. 82, 4444 (1999).

  13. Topological Frequency Conversion in Strongly Driven Quantum Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ivar; Refael, Gil; Halperin, Bertrand

    When a physical system is subjected to a strong external multi-frequency drive, its dynamics can be conveniently represented in the multi-dimensional Floquet lattice. The number of the Floquet lattice dimensions equals the number of irrationally-related drive frequencies, and the evolution occurs in response to a built-in effective \\electric" field, whose components are proportional to the corresponding drive frequencies. The mapping allows to engineer and study temporal analogs of many real-space phenomena. Here we focus on the specifc example of a two-level system under two-frequency drive that induces topologically nontrivial band structure in the 2D Floquet space. The observable consequence ofmore » such construction is quantized pumping of energy between the sources with frequencies w 1 and w 2. Finally, when the system is initialized into a Floquet band with the Chern number C, the pumping occurs at the rate P 12 = – P 21 = ( C/2π)hw 1w 2, an exact counterpart of the transverse current in a conventional topological insulator.« less

  14. Topological Frequency Conversion in Strongly Driven Quantum Systems

    DOE PAGES

    Martin, Ivar; Refael, Gil; Halperin, Bertrand

    2017-10-16

    When a physical system is subjected to a strong external multi-frequency drive, its dynamics can be conveniently represented in the multi-dimensional Floquet lattice. The number of the Floquet lattice dimensions equals the number of irrationally-related drive frequencies, and the evolution occurs in response to a built-in effective \\electric" field, whose components are proportional to the corresponding drive frequencies. The mapping allows to engineer and study temporal analogs of many real-space phenomena. Here we focus on the specifc example of a two-level system under two-frequency drive that induces topologically nontrivial band structure in the 2D Floquet space. The observable consequence ofmore » such construction is quantized pumping of energy between the sources with frequencies w 1 and w 2. Finally, when the system is initialized into a Floquet band with the Chern number C, the pumping occurs at the rate P 12 = – P 21 = ( C/2π)hw 1w 2, an exact counterpart of the transverse current in a conventional topological insulator.« less

  15. Quantum resonant activation.

    PubMed

    Magazzù, Luca; Hänggi, Peter; Spagnolo, Bernardo; Valenti, Davide

    2017-04-01

    Quantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics. For the case of deterministic periodic driving, the first passage time probability density function (pdf) displays a complex, multipeaked behavior, which depends crucially on the details of initial phase, frequency, and strength of the driving. As an interesting feature we find that the mean first passage time enters the resonant activation regime at a critical frequency ν^{*} which depends very weakly on the strength of the driving. Moreover, we provide the relation between the first passage time pdf and the statistics of residence times.

  16. Quantum resonant activation

    NASA Astrophysics Data System (ADS)

    Magazzó, Luca; Hänggi, Peter; Spagnolo, Bernardo; Valenti, Davide

    2017-04-01

    Quantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics. For the case of deterministic periodic driving, the first passage time probability density function (pdf) displays a complex, multipeaked behavior, which depends crucially on the details of initial phase, frequency, and strength of the driving. As an interesting feature we find that the mean first passage time enters the resonant activation regime at a critical frequency ν* which depends very weakly on the strength of the driving. Moreover, we provide the relation between the first passage time pdf and the statistics of residence times.

  17. Electromechanical millimotor

    DOEpatents

    Garcia, E.J.; Christenson, T.R.; Polosky, M.A.

    1999-06-29

    A millimeter-sized machine, including electromagnetic circuits adapted to convert electromagnetic energy to mechanical energy, for engaging and operating external mechanical loads. A plurality of millimeter-sized magnetic actuators operate out of phase with each other to control a plurality of millimeter-sized structural elements to drive an external mechanical load. Each actuator is connected to a link. Each link, in turn, is connected to a drive pinion at another similar pivoting joint. When the magnetic actuators are energized, each drive pinion is then capable of driving a larger output gear in gear-like fashion to produce positive torque about the drive pinion center at all angular positions of the output gear. 29 figs.

  18. Electromechanical millimotor

    DOEpatents

    Garcia, Ernest J.; Christenson, Todd R.; Polosky, Marc A.

    1999-01-01

    A millimeter-sized machine, including electromagnetic circuits adapted to convert electromagnetic energy to mechanical energy, for engaging and operating external mechanical loads. A plurality of millimeter-sized magnetic actuators operate out of phase with each other to control a plurality of millimeter-sized structural elements to drive an external mechanical load. Each actuator is connected to a link. Each link, in turn, is connected to a drive pinion at another similar pivoting joint. When the magnetic actuators are energized, each drive pinion is then capable of driving a larger output gear in gear-like fashion to produce positive torque about the drive pinion center at all angular positions of the output gear.

  19. Observation of EHO in NSTX and Theoretical Study of its Active Control Using HHFW Antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.-K. Park, et. al.

    2013-01-14

    Two important topics in the tokamak ELM control, using the non-axisymmetric (3D) magnetic perturbations, are studied in NSTX and combined envisioning ELM control in the future NSTX-U operation: Experimental observations of the edge harmonic oscillation in NSTX (not necessarily the same as EHOs in DIII-D), and theoretical study of its external drive using the high harmonic fast wave (HHFW) antenna as a 3D field coil. Edge harmonic oscillations were observed particularly well in NSTX ELM-free operation with low n core modes, with various diagnostics confirming n = 4 ~ 6 edge-localized and coherent oscillations in 2 ~ 8kHz frequency range.more » These oscillations seem to have a favored operational window in rotational shear, similarly to EHOs in DIII-D QH modes . However, in NSTX, they are not observed to provide particle or impurity control, possibly due to their weak amplitudes, of a few mm displacements, as measured by reflectometry. The external drive of these modes has been proposed in NSTX, by utilizing audio-frequency currents in the HHFW antenna straps. Analysis shows that the HHFW straps can be optimized to maximize n = 4 ~ 6 while minimizing n = 1 ~ 3. Also, IPEC calculations show that the optimized configuration with only 1kAt current can produce comparable or larger displacements than the observed internal modes. If this optimized external drive can be constructively combined, or further resonated with the internal modes, the edge harmonic oscillations in NSTX may be able to produce sufficient particle control to modify ELMs.« less

  20. Self-organization of magnetic particles at fluid interfaces

    NASA Astrophysics Data System (ADS)

    Belkin, Maxim

    Understanding principles that govern emergent behavior in systems with complex interactions has puzzled scientists for many years. In my work I studied seemingly simple but highly non-trivial system of magnetic micro-particles suspended at fluid interface and energized by an external vertical AC magnetic field. It can be considered as a prototype for probing the interplay of individual interactions on the collective response of system to the external driving. The first part of this work is focused on experimental study of self-organization in this system. In a certain region of parameters formation of localized snake-like structures with accompanying large-scale symmetric surface flows is observed. Characteristics of the self-organized structure as well as flows strongly depend on parameters of the external driving. Increased driving leads to a spontaneous symmetry breaking of the surface flows which results in a self-propulsion of the "snake". This observation leads to an idea of controlled design of a self-propelled swimmer. Numerical calculations based on a phenomenological model proposed for the description of such system successfully reproduces self-organization of the snake-like structures, self-propulsion under spontaneous and artificial symmetry breaking. Increase in the number of the particles promotes a formation of multiple snakes which are in turn unstable with respect to self-induced flows and become mobile swimmers. Such ensemble effectively mixes the surface of liquid. Experimental study of such two-dimensional mixing is the focus of the second part of this work. Results of molecular-dynamics simulations based on proposed theoretical model are reported.

  1. From strings to coils: Rotational dynamics of DNA-linked colloidal chains

    NASA Astrophysics Data System (ADS)

    Kuei, Steve; Garza, Burke; Biswal, Sibani Lisa

    2017-10-01

    We investigate the dynamical behavior of deformable filaments experimentally using a tunable model system consisting of linked paramagnetic colloidal particles, where the persistence length lp, the contour length lc, and the strength and frequency of the external driving force are controlled. We find that upon forcing by an external magnetic field, a variety of structural and conformational regimes exist. Depending on the competition of forces and torques on the chain, we see classic rigid rotator behavior, as well as dynamically rich wagging, coiling, and folding behavior. Through a combination of experiments, computational models, and theoretical calculations, we are able to observe, classify, and predict these dynamics as a function of the dimensionless Mason and magnetoelastic numbers.

  2. Active stabilization of error field penetration via control field and bifurcation of its stable frequency range

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.

    2017-11-01

    An active stabilization effect of a rotating control field against an error field penetration is numerically studied. We have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’, which can simulate plasma responses to rotating/static external magnetic field. Adopting non-uniform flux coordinates system, the AEOLUS-IT simulation can employ high magnetic Reynolds number condition relevant to present tokamaks. By AEOLUS-IT, we successfully clarified the stabilization mechanism of the control field against the error field penetration. Physical processes of a plasma rotation drive via the control field are demonstrated by the nonlinear simulation, which reveals that the rotation amplitude at a resonant surface is not a monotonic function of the control field frequency, but has an extremum. Consequently, two ‘bifurcated’ frequency ranges of the control field are found for the stabilization of the error field penetration.

  3. Magnetostrophic balance in planetary dynamos - Predictions for Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Ness, N. F.

    1986-01-01

    With the purpose of estimating Neptune's magnetic field and its implications for nonthermal Neptune radio emissions, a new scaling law for planetary magnetic fields was developed in terms of externally observable parameters (the planet's mean density, radius, mass, rotation rate, and internal heat source luminosity). From a comparison of theory and observations by Voyager it was concluded that planetary dynamos are two-state systems with either zero intrinsic magnetic field (for planets with low internal heat source) or (for planets with the internal heat source sufficiently strong to drive convection) a magnetic field near the upper bound determined from magnetostrophic balance. It is noted that mass loading of the Neptune magnetosphere by Triton may play an important role in the generation of nonthermal radio emissions.

  4. Coupling measurements on intelligent missiles at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Braun, Ch.; Guidi, P.; Schmidt, H. U.

    1995-03-01

    This paper describes our low power microwave coupling measurements on terminally guided missiles in the frequency range between 100 and 8000 MHz. The plane wave excitation experiments have been carried out in our field coupling facility, which consists of an asymmetric triplate transmission line with maximum field levels of about 40 V/m in the working volume. As test objects we examined five (semi) autonomous guided missiles. Three of them, former experimental studies from the Diehl company (GE), are presented in this paper. The test objects were positioned in the simulator in three orthogonal orientation with respect to the external field and were not connected to a power supply (inactive condition). In order to be able to systematically analyze the interaction of the external electromagnetic fields with the avionics and its wiring, we had to divide the investigations into three independent phases, namely, external interaction with the fuselage, mode of penetration to the interior of the missile and excitation of the electrical systems and the cabling. The coupling paths depend very much on the design principles of the airframe. The main threat identified was back door coupling via those wings and fins, which are not attached galvanically to the outer surface of the hull. Because of flight guidance, these parts are fastened through slots to the bearings of the motor drives inside the missile. The dominant cable resonances sometimes can be traced back to the resonances of the wings and/or fins and the type of cabling. Another threat was coupling via the long slots required for the folding wings. These shafts penetrate the whole body and enable the external fields to couple into the interior. The peak amplitudes at the ends of the cables were found to be between 50 to 500 (micro A/(V/m)), depending on the test object.

  5. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field.

    PubMed

    Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G

    2011-01-01

    Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.

  6. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field

    PubMed Central

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2011-01-01

    Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636

  7. Externally-Driven Onset of Localized Magnetic Reconnection in a Magnetotail Configuration

    NASA Astrophysics Data System (ADS)

    Pritchett, P. L.; Lu, S.

    2017-12-01

    In observations of the nightside auroral arcs and ionospheric currents, the onset or breakup phase of a substorm is sharply defined in time and is highly localized in space. Attempts to understand this localization in terms of the onset of localized magnetic reconnection have generally been unsuccessful. Thus, a y-localized driving convection electric field Ey applied at the lobe boundaries spreads out before it reaches the equatorial plane and results only in 2-D reconnection. In this work, the response of a magnetotail equilibrium containing a dipole magnetic field and plasma sheet regions to the imposition of a longitudinally-limited, high-latitude driving electric field is investigated using 3-D particle-in-cell simulations. The initial response involves a reduction in the equatorial Bz field that is then followed by the development of a dawn-dusk asymmetric current sheet relative to the meridian plane of the driving field. The key feature is the presence of a dusk-side Hall electric field Ez that drives magnetic flux dawnward and thus further reduces the Bz field on the duskward side. The net result is that Bz is driven through zero in a localized region on the duskward side, leading to the onset of localized reconnection and the emergence of magnetic flux ropes. The cross-tail extent of the reconnection expands but remains limited to ˜30di, where di is the ion inertia length. The dissipation E' \\cdot J is peaked along the finite X line, with a load region (negative E' \\cdot J) forming tailward of this region. The particle energy spectra in the downtail region show shoulders for the ions in the energy range ˜3-8Eth (Eth is the initial thermal energy) and extended tails for the electrons in the range ˜10-20Eth. These results demonstrate the ability of a high-latitude disturbance that may be connected to dayside flow channels [Nishimura et al., 2014] to initiate localized magnetic reconnection in the magnetotail.

  8. Self-compassion in the face of shame and body image dissatisfaction: implications for eating disorders.

    PubMed

    Ferreira, Cláudia; Pinto-Gouveia, José; Duarte, Cristiana

    2013-04-01

    The current study examines the role of self-compassion in face of shame and body image dissatisfaction, in 102 female eating disorders' patients, and 123 women from general population. Self-compassion was negatively associated with external shame, general psychopathology, and eating disorders' symptomatology. In women from the general population increased external shame predicted drive for thinness partially through lower self-compassion; also, body image dissatisfaction directly predicted drive for thinness. However, in the patients' sample increased shame and body image dissatisfaction predicted increased drive for thinness through decreased self-compassion. These results highlight the importance of the affiliative emotion dimensions of self-compassion in face of external shame, body image dissatisfaction and drive for thinness, emphasising the relevance of cultivating a self-compassionate relationship in eating disorders' patients. Copyright © 2013. Published by Elsevier Ltd.

  9. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies

    PubMed Central

    Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A.; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A.; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A.; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-01-01

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars. PMID:27759033

  10. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies.

    PubMed

    Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-10-19

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars.

  11. External unit for a semi-implantable middle ear hearing device.

    PubMed

    Garverick, S L; Kane, M; Ko, W H; Maniglia, A J

    1997-06-01

    A miniaturized, low-power external unit has been developed for the clinical trials of a semi-implantable middle ear electromagnetic hearing device (SIMEHD) which uses radio-frequency telemetry to couple sound signals to the internal unit. The external unit is based on a commercial hearing aid which provides proven audio amplification and compression. Its receiver is replaced by an application-specific integrated circuit (ASIC) which: 1) adjusts the direct-current bias of the audio input according to its peak value; 2) converts the audio signal to a one-bit digital form using sigma-delta modulation; 3) modulates the sigma-delta output with a radio-frequency (RF) oscillator; and 4) drives the external RF coil and tuning capacitor using a field-effect transistor operated in class D. The external unit functions as expected and has been used to operate bench-top tests to the SIMEHD. Measured current consumption is 1.65-2.15 mA, which projects to a battery lifetime of about 15 days. Bandwidth is 6 kHz and harmonic distortion is about 2%.

  12. Electroosmotic Flow Driven by DC and AC Electric Fields in Curved Microchannels

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Kun; Luo, Win-Jet; Yang, Ruey-Jen

    2006-10-01

    The purpose of this study is to investigate electroosmotic flows driven by externally applied DC and AC electric fields in curved microchannels. For the DC electric driving field, the velocity distribution and secondary flow patterns are investigated in microchannels with various curvature ratios. We use the Dean number to describe the curvature effect of the flow field in DC electric field. The result implies that the effect of curvatures and the strength of the secondary flows become get stronger when the curvature ratio of C/A (where C is the radius of curvature of the microchannel and A is the half-height of rectangular curved tube.) is smaller. For the AC electric field, the velocity distribution and secondary flow patterns are investigated for driving frequencies in the range of 2.0 kHz (\\mathit{Wo}=0.71) to 11 kHz (\\mathit{Wo}=1.66). The numerical results reveal that the velocity at the center of the microchannel becomes lower at higher frequencies of the AC electric field and the strength of the secondary flow decreases. When the applied frequency exceeds 3.0 kHz (\\mathit{Wo}=0.87), vortices are no longer observed at the corners of the microchannel. Therefore, it can be concluded that the secondary flow induced at higher AC electric field frequencies has virtually no effect on the axial flow field in the microchannel.

  13. MAGNETIC FLUX CANCELATION AS THE TRIGGER OF SOLAR QUIET-REGION CORONAL JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament ). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jetmore » event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.« less

  14. 78 FR 23696 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... longitudinal main rotor actuator piston after shut-down of the external pump drive, during rigging of the main... rotor controls, of movement of the longitudinal main rotor actuator piston after shut-down of the external pump drive. Such movement could cause incorrect rigging results. The proposed actions are intended...

  15. Nonequilibrium Phase Transitions in Supercooled Water

    NASA Astrophysics Data System (ADS)

    Limmer, David; Chandler, David

    2012-02-01

    We present results of a simulation study of water driven out of equilibrium. Using transition path sampling, we can probe stationary path distributions parameterize by order parameters that are extensive in space and time. We find that by coupling external fields to these parameters, we can drive water through a first order dynamical phase transition into amorphous ice. By varying the initial equilibrium distributions we can probe pathways for the creation of amorphous ices of low and high densities.

  16. Present-day deformation across the Basin and Range Province, western United States

    USGS Publications Warehouse

    Thatcher, W.; Foulger, G.R.; Julian, B.R.; Svarc, J.; Quilty, E.; Bawden, G.W.

    1999-01-01

    The distribution of deformation within the Basin and Range province was determined from 1992, 1996, and 1998 surveys of a dense, 800-kilometer- aperture, Global Positioning System network, Internal deformation generally follows the pattern of Holocene fault distribution and is concentrated near the western extremity of the province, with lesser amounts focused near the eastern boundary. Little net deformation occurs across the central 500 kilometers of the network in western Utah and eastern Nevada. Concentration of deformation adjacent to the rigid Sierra Nevada block indicates that external plate-driving forces play an important role in driving deformation, modulating the extensional stress field generated by internal buoyancy forces that are due to lateral density gradients and topography near the province boundaries.

  17. Probing topology by “heating”: Quantized circular dichroism in ultracold atoms

    PubMed Central

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G.; Zoller, Peter; Goldman, Nathan

    2017-01-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system’s chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This “differential integrated rate” is directly related to the strength of the driving field through the quantized coefficient η0 = ν/ℏ2, where h = 2π ℏ is Planck’s constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter. PMID:28835930

  18. Magnetic control of magnetohydrodynamic instabilities in tokamaks

    DOE PAGES

    Strait, Edward J.

    2014-11-24

    Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB/B ~ 10 -3 to 10 -4) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic responsemore » of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode — a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields at low beta and resistive wall modes at high beta. Furthermore, these and other scientific advances, and their application to control of MHD instabilities, will be reviewed with emphasis on the most recent results and their applicability to ITER.« less

  19. An Electrolyte-Free Conducting Polymer Actuator that Displays Electrothermal Bending and Flapping Wing Motions under a Magnetic Field.

    PubMed

    Uh, Kyungchan; Yoon, Bora; Lee, Chan Woo; Kim, Jong-Man

    2016-01-20

    Electroactive materials that change shape in response to electrical stimulation can serve as actuators. Electroactive actuators of this type have great utility in a variety of technologies, including biomimetic artificial muscles, robotics, and sensors. Electroactive actuators developed to date often suffer from problems associated with the need to use electrolytes, slow response times, high driving voltages, and short cycle lifetimes. Herein, we report an electrolyte-free, single component, polymer electroactive actuator, which has a fast response time, high durability, and requires a low driving voltage (<5 V). The process employed for production of this material involves wet-spinning of a preorganized camphorsulfonic acid (CSA)-doped polyaniline (PANI) gel, which generates long, flexible, and conductive (∼270 S/cm) microfibers. Reversible bending motions take place upon application of an alternating current (AC) to the PANI polymer. This motion, promoted by a significantly low driving voltage (<0.5 V) in the presence of an external magnetic field, has a very large swinging speed (9000 swings/min) that lies in the range of those of flies and bees (1000-15000 swings/min) and is fatigue-resistant (>1000000 cycles).

  20. Microfluidic T-form mixer utilizing switching electroosmotic flow.

    PubMed

    Lin, Che-Hsin; Fu, Lung-Ming; Chien, Yu-Sheng

    2004-09-15

    This paper presents a microfluidic T-form mixer utilizing alternatively switching electroosmotic flow. The microfluidic device is fabricated on low-cost glass slides using a simple and reliable fabrication process. A switching DC field is used to generate an electroosmotic force which simultaneously drives and mixes the fluid samples. The proposed design eliminates the requirements for moving parts within the microfluidic device and delicate external control systems. Two operation modes, namely, a conventional switching mode and a novel pinched switching mode, are presented. Computer simulation is employed to predict the mixing performance attainable in both operation modes. The simulation results are then compared to those obtained experimentally. It is shown that a mixing performance as high as 97% can be achieved within a mixing distance of 1 mm downstream from the T-junction when a 60 V/cm driving voltage and a 2-Hz switching frequency are applied in the pinched switching operation mode. This study demonstrates how the driving voltage and switching frequency can be optimized to yield an enhanced mixing performance. The novel methods presented in this study provide a simple solution to mixing problems in the micro-total-analysis-systems field.

  1. Quantized transport for a skyrmion moving on a two-dimensional periodic substrate

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-03-01

    We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity components perpendicular ( ) and parallel ( ) to the external drive direction: / =n /m , where n and m are integers. The skyrmion passes through a series of directional locking phases in which the motion is locked to certain symmetry directions of the substrate for fixed intervals of the drive amplitude. Within a given directionally locked phase, the Hall angle remains constant and the skyrmion moves in an orderly fashion through the sample. Signatures of the transitions into and out of these locked phases take the form of pronounced cusps in the skyrmion velocity versus force curves, as well as regions of negative differential mobility in which the net skyrmion velocity decreases with increasing external driving force. The number of steps in the transport curve increases when the relative strength of the Magnus term is increased. We also observe an overshoot phenomena in the directional locking, where the skyrmion motion can lock to a Hall angle greater than the clean limit value and then jump back to the lower value at higher drives. The skyrmion-substrate interactions can also produce a skyrmion acceleration effect in which, due to the nondissipative dynamics, the skyrmion velocity exceeds the value expected to be produced by the external drive. We find that these effects are robust for different types of periodic substrates. Using a simple model for a skyrmion interacting with a single pinning site, we can capture the behavior of the change in the Hall angle with increasing external drive. When the skyrmion moves through the pinning site, its trajectory exhibits a side step phenomenon since the Magnus term induces a curvature in the skyrmion orbit. As the drive increases, this curvature is reduced and the side step effect is also reduced. Increasing the strength of the Magnus term reduces the range of impact parameters over which the skyrmion can be captured by a pinning site, which is one of the reasons that strong Magnus force effects reduce the pinning in skyrmion systems.

  2. Dependence of Brownian and Néel relaxation times on magnetic field strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deissler, Robert J., E-mail: rjd42@case.edu; Wu, Yong; Martens, Michael A.

    2014-01-15

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a stepmore » function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field. Conclusions: A simple treatment of Néel relaxation using the common zero-field relaxation time overestimates the relaxation time of the magnetization in situations relevant for MPI and MPS. For sinusoidally driven (or ramped) systems, whether or not a particular relaxation mechanism dominates or is even relevant depends on the magnetic field strength, the frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field.« less

  3. Coupled electric fields in photorefractive driven liquid crystal hybrid cells - theory and numerical simulation

    NASA Astrophysics Data System (ADS)

    Moszczyński, P.; Walczak, A.; Marciniak, P.

    2016-12-01

    In cyclic articles previously published we described and analysed self-organized light fibres inside a liquid crystalline (LC) cell contained photosensitive polymer (PP) layer. Such asymmetric LC cell we call a hybrid LC cell. Light fibre arises along a laser beam path directed in plane of an LC cell. It means that a laser beam is parallel to photosensitive layer. We observed the asymmetric LC cell response on an external driving field polarization. Observation has been done for an AC field first. It is the reason we decided to carry out a detailed research for a DC driving field to obtain an LC cell response step by step. The properly prepared LC cell has been built with an isolating layer and garbage ions deletion. We proved by means of a physical model, as well as a numerical simulation that LC asymmetric response strongly depends on junction barriers between PP and LC layers. New parametric model for a junction barrier on PP/LC boundary has been proposed. Such model is very useful because of lack of proper conductivity and charge carriers of band structure data on LC material.

  4. Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields

    DOE PAGES

    Kemp, G. E.; Colvin, J. D.; Blue, B. E.; ...

    2016-10-20

    Here, we present a path forward for enhancing laser driven, multi-keV line-radiation from mid- to high-Z, sub-quarter-critical density, non-equilibrium plasmas through inhibited thermal transport in the presence of an externally generated magnetic field. Preliminary simulations with Kr and Ag suggest that as much as 50%–100% increases in peak electron temperatures are possible—without any changes in laser drive conditions—with magnetized interactions. The increase in temperature results in ~2–3× enhancements in laser-to-x-ray conversion efficiency for K-shell emission with simultaneous ≲4× reduction in L-shell emission using current field generation capabilities on the Omega laser and near-term capabilities on the National Ignition Facility laser.more » Increased plasma temperatures and enhanced K-shell emission are observed to come at the cost of degraded volumetric heating. Such enhancements in high-photon-energy x-ray sources could expand the existing laser platforms for increasingly penetrating x-ray radiography.« less

  5. Modified Magnicon for High-Gradient Accelerator \\&

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovlev, V. P.; Hirshfield, J. L.; Jiang, Y.

    2012-05-01

    A self-consistent design is described of a modified 34.3 GHz magnicon amplifier with a TE311-mode output cavity, to replace the existing magnicon at Yale Beam Physics Lab Test Facility whose output cavity operates in the TM310 mode. The main g oal for the new design is to achieve robust reliable operation. This is expected since tube performance according to simulations is largely insensitive to the magnitude of external dc magnetic fields, including imperfections in magnetic field profile; small changes in gun voltage and current; changes in electron beam radial size; and even poorly matched external circuitry. The new tube, asmore » with its predecessor, is a third harmonic amplifier, with drive and deflection gain cavities near 11.424 GHz and output cavity at 34.272 GHz. The design calculations predict stable output of power of 20-27 MW at a 10 Hz repetition rate in pulses up to 1.3 microsec long, with a low probability of breakdown in the output cavity because of low electric fields (less tha n 650 kV/cm).« less

  6. Nonstationary time series prediction combined with slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, G.; Chen, X.

    2015-01-01

    Almost all climate time series have some degree of nonstationarity due to external driving forces perturbations of the observed system. Therefore, these external driving forces should be taken into account when reconstructing the climate dynamics. This paper presents a new technique of combining the driving force of a time series obtained using the Slow Feature Analysis (SFA) approach, then introducing the driving force into a predictive model to predict non-stationary time series. In essence, the main idea of the technique is to consider the driving forces as state variables and incorporate them into the prediction model. To test the method, experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted. The results showed improved and effective prediction skill.

  7. ULF Wave Activity in the Magnetosphere: Resolving Solar Wind Interdependencies to Identify Driving Mechanisms

    NASA Astrophysics Data System (ADS)

    Bentley, S. N.; Watt, C. E. J.; Owens, M. J.; Rae, I. J.

    2018-04-01

    Ultralow frequency (ULF) waves in the magnetosphere are involved in the energization and transport of radiation belt particles and are strongly driven by the external solar wind. However, the interdependency of solar wind parameters and the variety of solar wind-magnetosphere coupling processes make it difficult to distinguish the effect of individual processes and to predict magnetospheric wave power using solar wind properties. We examine 15 years of dayside ground-based measurements at a single representative frequency (2.5 mHz) and a single magnetic latitude (corresponding to L ˜ 6.6RE). We determine the relative contribution to ULF wave power from instantaneous nonderived solar wind parameters, accounting for their interdependencies. The most influential parameters for ground-based ULF wave power are solar wind speed vsw, southward interplanetary magnetic field component Bz<0, and summed power in number density perturbations δNp. Together, the subordinate parameters Bz and δNp still account for significant amounts of power. We suggest that these three parameters correspond to driving by the Kelvin-Helmholtz instability, formation, and/or propagation of flux transfer events and density perturbations from solar wind structures sweeping past the Earth. We anticipate that this new parameter reduction will aid comparisons of ULF generation mechanisms between magnetospheric sectors and will enable more sophisticated empirical models predicting magnetospheric ULF power using external solar wind driving parameters.

  8. Heat regenerative external combustion engine

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    It is an object of the invention to provide an external combustion expander-type engine having improved efficiency. It is another object of the invention to provide an external combustion engine in which afterburning in the exhaust channel is substantially prevented. Yet another object of the invention is to provide an external combustion engine which is less noisy than an external combustion engine of conventional design. These and other objects of the invention will become more apparent from the following description. The above objects of the invention are realized by providing a heat regenerative external combustion engine. The heat regenerative external combustion engine of the invention comprises a combustion chamber for combusting a monopropellant fuel in order to form an energized gas. The energized gas is then passed through a rotary valve to a cylinder having a reciprocating piston disposed therein. The gas is spent in moving the piston, thereby driving a drive shaft.

  9. Generalisation of Gilbert damping and magnetic inertia parameter as a series of higher-order relativistic terms

    NASA Astrophysics Data System (ADS)

    Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M.

    2018-07-01

    The phenomenological Landau–Lifshitz–Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy–Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.

  10. Generalisation of Gilbert damping and magnetic inertia parameter as a series of higher-order relativistic terms.

    PubMed

    Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M

    2018-05-17

    The phenomenological Landau-Lifshitz-Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy-Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morante, S., E-mail: morante@roma2.infn.it; Rossi, G.C., E-mail: rossig@roma2.infn.it; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  12. Acetylcholine molecular arrays enable quantum information processing

    NASA Astrophysics Data System (ADS)

    Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas

    2017-09-01

    We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.

  13. Nanoscale rotary motors driven by electron tunneling.

    PubMed

    Wang, Boyang; Vuković, Lela; Král, Petr

    2008-10-31

    We examine by semiclassical molecular dynamics simulations the possibility of driving nanoscale rotary motors by electron tunneling. The model systems studied have a carbon nanotube shaft with covalently attached "isolating" molecular stalks ending with "conducting" blades. Periodic charging and discharging of the blades at two metallic electrodes maintains an electric dipole on the blades that is rotated by an external electric field. Our simulations demonstrate that these molecular motors can be efficient under load and in the presence of noise and defects.

  14. An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian

    2014-10-01

    An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.

  15. Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction

    NASA Astrophysics Data System (ADS)

    Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.

    2018-05-01

    This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.

  16. Nonstationary time series prediction combined with slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, G.; Chen, X.

    2015-07-01

    Almost all climate time series have some degree of nonstationarity due to external driving forces perturbing the observed system. Therefore, these external driving forces should be taken into account when constructing the climate dynamics. This paper presents a new technique of obtaining the driving forces of a time series from the slow feature analysis (SFA) approach, and then introduces them into a predictive model to predict nonstationary time series. The basic theory of the technique is to consider the driving forces as state variables and to incorporate them into the predictive model. Experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted to test the model. The results showed improved prediction skills.

  17. Synchronization enhancement of indirectly coupled oscillators via periodic modulation in an optomechanical system.

    PubMed

    Du, Lei; Fan, Chu-Hui; Zhang, Han-Xiao; Wu, Jin-Hui

    2017-11-20

    We study the synchronization behaviors of two indirectly coupled mechanical oscillators of different frequencies in a doublecavity optomechanical system. It is found that quantum synchronization is roughly vanishing though classical synchronization seems rather good when each cavity mode is driven by an external field in the absence of temporal modulations. By periodically modulating cavity detunings or driving amplitudes, however, it is possible to observe greatly enhanced quantum synchronization accompanied with nearly perfect classical synchronization. The level of quantum synchronization observed here is, in particular, much higher than that for two directly coupled mechanical oscillators. Note also that the modulation on cavity detunings is more appealing than that on driving amplitudes when the robustness of quantum synchronization is examined against the bath's mean temperature or the oscillators' frequency difference.

  18. Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    Using a particle-based simulation model, we show that quenched disorder creates a drive-dependent skyrmion Hall effect as measured by the change in the ratiomore » $$R={V}_{\\perp }/{V}_{| | }$$ of the skyrmion velocity perpendicular (V ⊥) and parallel ($${V}_{| | }$$) to an external drive. R is zero at depinning and increases linearly with increasing drive, in agreement with recent experimental observations. At sufficiently high drives where the skyrmions enter a free flow regime, R saturates to the disorder-free limit. In addition, this behavior is robust for a wide range of disorder strengths and intrinsic Hall angle values, and occurs whenever plastic flow is present. For systems with small intrinsic Hall angles, we find that the Hall angle increases linearly with external drive, as also observed in experiment. In the weak pinning regime where the skyrmion lattice depins elastically, R is nonlinear and the net direction of the skyrmion lattice motion can rotate as a function of external drive. We show that the changes in the skyrmion Hall effect correlate with changes in the power spectrum of the skyrmion velocity noise fluctuations. The plastic flow regime is associated with $1/f$ noise, while in the regime in which R has saturated, the noise is white with a weak narrow band signal, and the noise power drops by several orders of magnitude. Finally, at low drives, the velocity noise in the perpendicular and parallel directions is of the same order of magnitude, while at intermediate drives the perpendicular noise fluctuations are much larger.« less

  19. Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems

    DOE PAGES

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-09-29

    Using a particle-based simulation model, we show that quenched disorder creates a drive-dependent skyrmion Hall effect as measured by the change in the ratiomore » $$R={V}_{\\perp }/{V}_{| | }$$ of the skyrmion velocity perpendicular (V ⊥) and parallel ($${V}_{| | }$$) to an external drive. R is zero at depinning and increases linearly with increasing drive, in agreement with recent experimental observations. At sufficiently high drives where the skyrmions enter a free flow regime, R saturates to the disorder-free limit. In addition, this behavior is robust for a wide range of disorder strengths and intrinsic Hall angle values, and occurs whenever plastic flow is present. For systems with small intrinsic Hall angles, we find that the Hall angle increases linearly with external drive, as also observed in experiment. In the weak pinning regime where the skyrmion lattice depins elastically, R is nonlinear and the net direction of the skyrmion lattice motion can rotate as a function of external drive. We show that the changes in the skyrmion Hall effect correlate with changes in the power spectrum of the skyrmion velocity noise fluctuations. The plastic flow regime is associated with $1/f$ noise, while in the regime in which R has saturated, the noise is white with a weak narrow band signal, and the noise power drops by several orders of magnitude. Finally, at low drives, the velocity noise in the perpendicular and parallel directions is of the same order of magnitude, while at intermediate drives the perpendicular noise fluctuations are much larger.« less

  20. Nonequilibrium Fluctuations and Enhanced Diffusion of a Driven Particle in a Dense Environment

    NASA Astrophysics Data System (ADS)

    Illien, Pierre; Bénichou, Olivier; Oshanin, Gleb; Sarracino, Alessandro; Voituriez, Raphaël

    2018-05-01

    We study the diffusion of a tracer particle driven out of equilibrium by an external force and traveling in a dense environment of arbitrary density. The system evolves on a discrete lattice and its stochastic dynamics is described by a master equation. Relying on a decoupling approximation that goes beyond the naive mean-field treatment of the problem, we calculate the fluctuations of the position of the tracer around its mean value on a lattice of arbitrary dimension, and with different boundary conditions. We reveal intrinsically nonequilibrium effects, such as enhanced diffusivity of the tracer induced by both the crowding interactions and the external driving. We finally consider the high-density and low-density limits of the model and show that our approximation scheme becomes exact in these limits.

  1. Study on optimal design of 210kW traction IPMSM considering thermal demagnetization characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Young Hyun; Lee, Seong Soo; Cheon, Byung Chul; Lee, Jung Ho

    2018-04-01

    This study analyses the permanent magnet (PM) used in the rotor of an interior permanent magnet synchronous motor (IPMSM) used for driving an electric railway vehicle (ERV) in the context of controllable shape, temperature, and external magnetic field. The positioning of the inserted magnets is a degree of freedom in the design of such machines. This paper describes a preliminary analysis using parametric finite-element method performed with the aim of achieving an effective design. Next, features of the experimental design, based on methods such as the central-composition method, Box-Behnken and Taguchi method, are explored to optimise the shape of the high power density. The results are used to produce an optimal design for IPMSMs, with design errors minimized using Maxwell 2D, a commercial program. Furthermore, the demagnetization process is analysed based on the magnetization and demagnetization theory for PM materials in computer simulation. The result of the analysis can be used to calculate the magnetization and demagnetization phenomenon according to the input B-H curve. This paper presents the conditions for demagnetization by the external magnetic field in the driving and stopped states, and proposes a simulation method that can analyse demagnetization phenomena according to each condition and design the IPMSM that maximizes efficiency and torque characteristics. Finally, operational characteristics are analysed in terms of the operation patterns of railway vehicles, and control conditions are deduced to achieve maximum efficiency in all sections. This was experimentally verified.

  2. Computational studies of steering nanoparticles with magnetic gradients

    NASA Astrophysics Data System (ADS)

    Aylak, Sultan Suleyman

    Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.

  3. Using Unconstrained Tongue Motion as an Alternative Control Mechanism for Wheeled Mobility

    PubMed Central

    Huo, Xueliang; Ghovanloo, Maysam

    2015-01-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users’ intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility. PMID:19362901

  4. Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility.

    PubMed

    Huo, Xueliang; Ghovanloo, Maysam

    2009-06-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users' intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility.

  5. The Earth's magnetosphere modeling and ISO standard

    NASA Astrophysics Data System (ADS)

    Alexeev, I.

    The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base Fairfield et al 1994 which contains Earth s magnetospheric magnetic field measurements accumulated during many years The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The last version of the Tsyganenko model has been constructed for a geomagnetic storm time interval This version based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters The same method has been used previously for paraboloid model construction This method is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace

  6. Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring

    NASA Astrophysics Data System (ADS)

    Yang, Zhang; Chong, Kang; Wang, Qingtao; Lei, Cheng; Zheng, Caiping

    2011-02-01

    At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.

  7. ICPP: Beltrami fields in plasmas -- H-mode boundary layers and high beta equilibria

    NASA Astrophysics Data System (ADS)

    Yoshida, Zensho

    2000-10-01

    The Beltrami fields, eigenfunctions of the curl operator, represent essential characteristics of twisted, spiral, chiral or helical structures in various vector fields. Amongst diverse applications of the theory of Beltrami fields, the present paper focuses on the self-organized states of plasmas. The Taylor relaxed state is the principal example of self-organized Beltrami fields. Suppose that a plasma is produced in an external magnetic field (harmonic field). If we do not apply any drive, the plasma will disappear and the system will relax into the harmonic magnetic field. When we drive a current and sustain the total helicity, the plasma relaxes into the Taylor state and achieves the Beltrami magnetic field. When a strong flow is implemented to a plasma, self-organized states becomes qualitatively different from the conventional relaxed stats. The two-fluid effect induces a coupling among the flow, magnetic field, electric field and the pressure, resulting in a "singular perturbation" to the MHD system. To invoke this effect, one must supply a driving force to sustain a strong flow. It is equivalent to giving an internal electric field or applying a steep gradient in pressure, because these fields are tightly coupled. In the two-fluid model, the Beltrami condition demands that the vorticity parallels the flow in both electron and ion fluids. We find that a superposition of two Beltrami magnetic fields (and also two Beltrami flows) solves the simultaneous two-fluid Beltrami conditions [1]. Despite this simple mathematical structure, the set of solutions contains field configurations that are far richer than the conventional theory. The hydrodynamic pressure of a shear flow yields a diamagnetic state that is suitable for confining a high-beta plasma. The H-mode boundary layer is an example, which is spontaneously generated by the core plasma pressure [2]. Active control of shear flow will significantly extend the scope of such self-organized states [3]. [1] S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett. 81, 4863 (1998). [2] S. M. Mahajan and Z. Yoshida, Phys. Plasmas 7, 635 (2000). [3] Z. Yoshida et al., in Non-Neutral Plasma Physics III (ed. J.J. Bollinger, AIP, 1999), 397.

  8. Outlining social physics for modern societies—locating culture, economics, and politics: The Enlightenment reconsidered

    PubMed Central

    Iberall, A. S.

    1985-01-01

    A groundwork is laid for a formulation of the modern human social system as a field continuum. As in a simple material physical field, the independent implied relationships of materials or processes in flux have to be based on local conservations of mass, energy, and momentum. In complex fields, the transport fluctuations of momentum are transformed into action modes (e.g., [unk] pdq = ΣHi = H, a characteristic quantum of action over a characteristic cycle time). In complex living systems, a fourth local conservation of population number, the demographic variable, has to be added as a renormalized variable. Modern man, settled in place via agriculture, urbanized, and engaged largely in trade and war, invents a fifth local conservation—value-in-trade, the economic variable. The potentials that drive these five fluxes are also enumerated. Among the more evident external and internal physical-chemical potentials, the driving potentials include a sheaf of internal potential-like components that represent the command-control system emergent as politics. In toto, culture represents the social solvent with the main processes of economics and politics being driven by a social pressure. PMID:16593594

  9. A Magneto-Inductive Sensor Based Wireless Tongue-Computer Interface

    PubMed Central

    Huo, Xueliang; Wang, Jia; Ghovanloo, Maysam

    2015-01-01

    We have developed a noninvasive, unobtrusive magnetic wireless tongue-computer interface, called “Tongue Drive,” to provide people with severe disabilities with flexible and effective computer access and environment control. A small permanent magnet secured on the tongue by implantation, piercing, or tissue adhesives, is utilized as a tracer to track the tongue movements. The magnetic field variations inside and around the mouth due to the tongue movements are detected by a pair of three-axial linear magneto-inductive sensor modules mounted bilaterally on a headset near the user’s cheeks. After being wirelessly transmitted to a portable computer, the sensor output signals are processed by a differential field cancellation algorithm to eliminate the external magnetic field interference, and translated into user control commands, which could then be used to access a desktop computer, maneuver a powered wheelchair, or control other devices in the user’s environment. The system has been successfully tested on six able-bodied subjects for computer access by defining six individual commands to resemble mouse functions. Results show that the Tongue Drive system response time for 87% correctly completed commands is 0.8 s, which yields to an information transfer rate of ~130 b/min. PMID:18990653

  10. High-beta spherical tokamak startup in TS-4 merging experiment by use of toroidal field ramp-up

    NASA Astrophysics Data System (ADS)

    Kaminou, Yasuhiro; , Toru, II; Kato, Joji; Inomoto, Michiaki; Ono, Yasushi; TS Group Team; National InstituteFusion Science Collaboration

    2014-10-01

    We demonstrated the formation method of an ultrahigh-beta spherical tokamak by use of a field-reversed configuration and a spheromak in TS-4 device (R ~ 0.5 m, A ~ 1.5, Ip ~ 30-100 kA, B ~ 100 mT). This method is composed of the following steps: 1. Two spheromaks are merged together and a high-beta spheromak or FRC is formed by reconnection heating. 2. External toroidal magnetic field is added (current rising time ~50 μs), and spherical tokamak-like configuration is formed. In this way, the ultrahigh-beta ST is formed. The ultrahigh-beta ST formed by FRC has a diamagnetic toroidal field, and it presumed to be in a second-stable state for ballooning stability, and the one formed by spheromak has a weak paramagnetic toroidal magnetic field, while a spheormak has a strong paramagnetic toroidal magnetic field. This diamagnetic current derives from inductive electric field by ramping up the external toroidal magnetic field, and the diamagnetic current sustains high thermal pressure of the ultrahigh-beta spherical tokamak. And the beta of the ultrahigh-beta ST formed by FRC reaches about 50%. To sustain the high-beta state, 0.6 MW neutral beam injection and center solenoid coils are installed to the TS-4 device. In the poster, we report the experimental results of ultrahigh-beta spherical tokamak startup and sustainment by NBI and CS current driving experiment.

  11. A numerical model for aggregations formation and magnetic driving of spherical particles based on OpenFOAM®.

    PubMed

    Karvelas, E G; Lampropoulos, N K; Sarris, I E

    2017-04-01

    This work presents a numerical model for the formation of particle aggregations under the influence of a permanent constant magnetic field and their driving process under a gradient magnetic field, suitably created by a Magnetic Resonance Imaging (MRI) device. The model is developed in the OpenFOAM platform and it is successfully compared to the existing experimental and numerical results in terms of aggregates size and their motion in water solutions. Furthermore, several series of simulations are performed for two common types of particles of different diameter in order to verify their aggregation and flow behaviour, under various constant and gradient magnetic fields in the usual MRI working range. Moreover, the numerical model is used to measure the mean length of aggregations, the total time needed to form and their mean velocity under different permanent and gradient magnetic fields. The present model is found to predict successfully the size, velocity and distribution of aggregates. In addition, our simulations showed that the mean length of aggregations is proportional to the permanent magnetic field magnitude and particle diameter according to the relation : l¯ a =7.5B 0 d i 3/2 . The mean velocity of the aggregations is proportional to the magnetic gradient, according to : u¯ a =6.63G˜B 0 and seems to reach a steady condition after a certain period of time. The mean time needed for particles to aggregate is proportional to permanent magnetic field magnitude, scaled by the relationship : t¯ a ∝7B 0 . A numerical model to predict the motion of magnetic particles for medical application is developed. This model is found suitable to predict the formation of aggregations and their motion under the influence of permanent and gradient magnetic fields, respectively, that are produced by an MRI device. The magnitude of the external constant magnetic field is the most important parameter for the aggregations formation and their driving. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C

    2014-01-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma,more » in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less

  13. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, C. C., E-mail: kleppercc@ornl.gov; Isler, R. C.; Biewer, T. M.

    2014-11-15

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, inmore » front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less

  14. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited).

    PubMed

    Klepper, C C; Martin, E H; Isler, R C; Colas, L; Goniche, M; Hillairet, J; Panayotis, S; Pegourié, B; Jacquot, J; Lotte, Ph; Colledani, G; Biewer, T M; Caughman, J B; Ekedahl, A; Green, D L; Harris, J H; Hillis, D L; Shannon, S C; Litaudon, X

    2014-11-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  15. Precession of the Earth as the Cause of Geomagnetism: Experiments lend support to the proposal that precessional torques drive the earth's dynamo.

    PubMed

    Malkus, W V

    1968-04-19

    I have proposed that the precessional torques acting on the earth can sustain a turbulent hydromagnetic flow in the molten core. A gross balance of the Coriolis force, the Lorentz force, and the precessional force in the core fluid provided estimates of the fluid velocity and the interior magnetic field characteristic of such flow. Then these numbers and a balance of the processes responsible for the decay and regeneration of the magnetic field provided an estimate of the magnetic field external to the core. This external field is in keeping with the observations, but its value is dependent upon the speculative value for the electrical conductivity of core material. The proposal that turbulent flow due to precession can occur in the core was tested in a study of nonmagnetic laboratory flows induced by the steady precession of fluid-filled rotating spheroids. It was found that these flows exhibit both small wavelike instabilities and violent finite-amplitude instability to turbulent motion above critical values of the precession rate. The observed critical parameters indicate that a laminar flow in the core, due to the earth's precession, would have weak hydrodynamic instabilities at most, but that finite-amplitude hydromagnetic instability could lead to fully turbulent flow.

  16. Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.

    2012-10-01

    Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.

  17. Enhanced diffusion with abnormal temperature dependence in underdamped space-periodic systems subject to time-periodic driving

    NASA Astrophysics Data System (ADS)

    Marchenko, I. G.; Marchenko, I. I.; Zhiglo, A. V.

    2018-01-01

    We present a study of the diffusion enhancement of underdamped Brownian particles in a one-dimensional symmetric space-periodic potential due to external symmetric time-periodic driving with zero mean. We show that the diffusivity can be enhanced by many orders of magnitude at an appropriate choice of the driving amplitude and frequency. The diffusivity demonstrates abnormal (decreasing) temperature dependence at the driving amplitudes exceeding a certain value. At any fixed driving frequency Ω normal temperature dependence of the diffusivity is restored at low enough temperatures, T

  18. Data-constrained models of quiet and storm-time geosynchronous magnetic field based on observations in the near geospace

    NASA Astrophysics Data System (ADS)

    Andreeva, V. A.; Tsyganenko, N. A.

    2017-12-01

    The geosynchronous orbit is unique in that its nightside segment skims along the boundary, separating the inner magnetosphere with a predominantly dipolar configuration from the magnetotail, where the Earth's magnetic field becomes small relative to the contribution from external sources. The ability to accurately reconstruct the magnetospheric configuration at GEO is important to understand the behavior of plasma and energetic particles, which critically affect space weather in the area densely populated by a host of satellites. To that end, we have developed a dynamical empirical model of the geosynchronous magnetic field with forecasting capability, based on a multi-year set of data taken by THEMIS, Polar, Cluster, Geotail, and Van Allen missions. The model's mathematical structure is devised using a new approach [Andreeva and Tsyganenko, 2016, doi:10.1002/2015JA022242], in which the toroidal/poloidal components of the field are represented using the radial and azimuthal basis functions. The model describes the field as a function of solar-magnetic coordinates, geodipole tilt angle, solar wind pressure, and a set of dynamic variables, quantifying the magnetosphere's response to external driving/loading and internal relaxation/dissipation during the disturbance recovery. The response variables are introduced following the approach by Tsyganenko and Sitnov [2005, doi:10.1029/2004JA010798], in which the electric current dynamics was described as a result of competition between the external energy input and the subsequent internal losses of the injected energy. The model's applicability range extends from quiet to moderately disturbed conditions, with peak Sym-H values -150 nT. The obtained results have been validated using independent GOES magnetometer data, taken during the maximum of the 23rd solar cycle and its declining phase.

  19. Microwave-Induced Magneto-Oscillations and Signatures of Zero-Resistance States in Phonon-Drag Voltage in Two-Dimensional Electron Systems

    NASA Astrophysics Data System (ADS)

    Levin, A. D.; Momtaz, Z. S.; Gusev, G. M.; Raichev, O. E.; Bakarov, A. K.

    2015-11-01

    We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.

  20. Effect of Floquet engineering on the p-wave superconductor with second-neighbor couplings

    NASA Astrophysics Data System (ADS)

    Li, X. P.; Li, C. F.; Wang, L. C.; Zhou, L.

    2018-06-01

    The influence of the Floquet engineering on a particular one-dimensional p-wave superconductor, Kitaev model, with second-neighbor couplings is investigated in this paper. The effective Hamiltonians in the rotated reference frames have been obtained, and the convergent regions of the approximated Hamiltonian as well as the topological phase diagrams have been analyzed and discussed. We show that by modulating the external driving field amplitude, frequency as well as the second-neighbor hopping amplitude, the rich phase diagrams and transitions between different topological phases can be obtained.

  1. Microwave-Induced Magneto-Oscillations and Signatures of Zero-Resistance States in Phonon-Drag Voltage in Two-Dimensional Electron Systems.

    PubMed

    Levin, A D; Momtaz, Z S; Gusev, G M; Raichev, O E; Bakarov, A K

    2015-11-13

    We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.

  2. NONVIOLENT RESISTANCE: HELPING CAREGIVERS REDUCE PROBLEMATIC BEHAVIORS IN CHILDREN AND ADOLESCENTS

    PubMed Central

    Omer, Haim; Lebowitz, Eli R.

    2017-01-01

    In this review, the principles of nonviolent resistance (NVR) and studies examining its acceptability and efficacy are reviewed. Originating in the sociopolitical field, NVR has been adapted for numerous settings including parents of youth with externalizing and other problems, foster parents, teachers and school personnel, and caregivers of psychiatric inpatients. NVR has also been applied to reduce accommodation of highly dependent adult children and to improve novice driving habits. The principles of NVR include refraining from violence, reducing escalation, utilizing outside support, and maintaining respect for the other. PMID:27292182

  3. Turning a Poor Ion Channel into a Good Pump

    NASA Astrophysics Data System (ADS)

    Astumian, Dean

    2003-05-01

    We consider a membrane protein that can exist in two configurations, either one of which acts as a poor ion channel, allowing ions to slowly leak across the membrane from high to low elctrochemical potential. We show that random external fluctuations can provide the energy to turn this poor channel into a good pump that drives ion transport from low to high electrochemical potential. We discuss this result in terms of a gambling analogy, and point to possible implications for fields as far ranging as population biology, economics, and actuarial science.

  4. Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces.

    PubMed

    Berman, Yonatan; Ben-Jacob, Eshel; Zhang, Xin; Shapira, Yoash

    2016-01-01

    Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors' long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors-the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.

  5. Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces

    PubMed Central

    Berman, Yonatan; Zhang, Xin; Shapira, Yoash

    2016-01-01

    Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors’ long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors—the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress. PMID:27031230

  6. Paraboloid magnetospheric magnetic field model and the status of the model as an ISO standard

    NASA Astrophysics Data System (ADS)

    Alexeev, I.

    A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions It is a reason why the method of the paraboloid magnetospheric model construction based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters Such approach is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace equation for each of these large-scale current systems in the magnetosphere with a

  7. Shaping Social Activity by Incentivizing Users

    PubMed Central

    Farajtabar, Mehrdad; Du, Nan; Rodriguez, Manuel Gomez; Valera, Isabel; Zha, Hongyuan; Song, Le

    2015-01-01

    Events in an online social network can be categorized roughly into endogenous events, where users just respond to the actions of their neighbors within the network, or exogenous events, where users take actions due to drives external to the network. How much external drive should be provided to each user, such that the network activity can be steered towards a target state? In this paper, we model social events using multivariate Hawkes processes, which can capture both endogenous and exogenous event intensities, and derive a time dependent linear relation between the intensity of exogenous events and the overall network activity. Exploiting this connection, we develop a convex optimization framework for determining the required level of external drive in order for the network to reach a desired activity level. We experimented with event data gathered from Twitter, and show that our method can steer the activity of the network more accurately than alternatives. PMID:26005312

  8. Synchronization of an optomechanical system to an external drive

    NASA Astrophysics Data System (ADS)

    Amitai, Ehud; Lörch, Niels; Nunnenkamp, Andreas; Walter, Stefan; Bruder, Christoph

    2017-05-01

    Optomechanical systems driven by an effective blue-detuned laser can exhibit self-sustained oscillations of the mechanical oscillator. These self-oscillations are a prerequisite for the observation of synchronization. Here, we study the synchronization of the mechanical oscillations to an external reference drive. We study two cases of reference drives: (1) an additional laser applied to the optical cavity; (2) a mechanical drive applied directly to the mechanical oscillator. Starting from a master equation description, we derive a microscopic Adler equation for both cases, valid in the classical regime in which the quantum shot noise of the mechanical self-oscillator does not play a role. Furthermore, we numerically show that, in both cases, synchronization arises also in the quantum regime. The optomechanical system is therefore a good candidate for the study of quantum synchronization.

  9. Gear bearing drive

    NASA Technical Reports Server (NTRS)

    Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor); Weinberg, Brian (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  10. Characterization of peeling modes in a low aspect ratio tokamak

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Thome, K. E.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Redd, A. J.; Schlossberg, D. J.

    2014-11-01

    Peeling modes are observed at the plasma edge in the Pegasus Toroidal Experiment under conditions of high edge current density (Jedge ˜ 0.1 MA m-2) and low magnetic field (B ˜ 0.1 T) present at near-unity aspect ratio. Their macroscopic properties are measured using external Mirnov coil arrays, Langmuir probes and high-speed visible imaging. The modest edge parameters and short pulse lengths of Pegasus discharges permit direct measurement of the internal magnetic field structure with an insertable array of Hall-effect sensors, providing the current profile and its temporal evolution. Peeling modes generate coherent, edge-localized electromagnetic activity with low toroidal mode numbers n ⩽ 3 and high poloidal mode numbers, in agreement with theoretical expectations of a low-n external kink structure. Coherent MHD fluctuation amplitudes are found to be strongly dependent on the experimentally measured Jedge/B peeling instability drive, consistent with theory. Peeling modes nonlinearly generate ELM-like, field-aligned filamentary structures that detach from the edge and propagate radially outward. The KFIT equilibrium code is extended with an Akima spline profile parameterization and an improved model for induced toroidal wall current estimation to obtain a reconstruction during peeling activity with its current profile constrained by internal Hall measurements. It is used to test the analytic peeling stability criterion and numerically evaluate ideal MHD stability. Both approaches predict instability, in agreement with experiment, with the latter identifying an unstable external kink.

  11. Driving and controlling molecular surface rotors with a terahertz electric field.

    PubMed

    Neumann, Jan; Gottschalk, Kay E; Astumian, R Dean

    2012-06-26

    Great progress has been made in the design and synthesis of molecular motors and rotors. Loosely inspired by biomolecular machines such as kinesin and the FoF1 ATPsynthase, these molecules are hoped to provide elements for construction of more elaborate structures that can carry out tasks at the nanoscale corresponding to the tasks accomplished by elementary machines in the macroscopic world. Most of the molecular motors synthesized to date suffer from the drawback that they operate relatively slowly (less than kHz). Here we show by molecular dynamics studies of a diethyl sulfide rotor on a gold(111) surface that a high-frequency oscillating electric field normal to the surface can drive directed rotation at GHz frequencies. The maximum directed rotation rate is 10(10) rotations per second, significantly faster than the rotation of previously reported directional molecular rotors. Understanding the fundamental basis of directed motion of surface rotors is essential for the further development of efficient externally driven artificial rotors. Our results represent a step toward the design of a surface-bound molecular rotary motor with a tunable rotation frequency and direction.

  12. Vortex-slip transitions in superconducting a-NbGe mesoscopic channels

    NASA Astrophysics Data System (ADS)

    Kokubo, N.; Sorop, T. G.; Besseling, R.; Kes, P. H.

    2006-06-01

    Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have systematically studied the flow properties of vortices confined in such mesoscopic channels as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field-down situation, in the field-up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements reveal that this anomaly is, in fact, a flow induced vortex slip transition: by increasing the external drive (either dc or ac) a sudden change occurs from n to n+2 moving vortex rows in the channel. The observed features can be explained in terms of an interplay between field focusing due to screening currents and a change in the predominant pinning mechanism.

  13. Stochastic resonance in a fractional oscillator driven by multiplicative quadratic noise

    NASA Astrophysics Data System (ADS)

    Ren, Ruibin; Luo, Maokang; Deng, Ke

    2017-02-01

    Stochastic resonance of a fractional oscillator subject to an external periodic field as well as to multiplicative and additive noise is investigated. The fluctuations of the eigenfrequency are modeled as the quadratic function of the trichotomous noise. Applying the moment equation method and Shapiro-Loginov formula, we obtain the exact expression of the complex susceptibility and related stability criteria. Theoretical analysis and numerical simulations indicate that the spectral amplification (SPA) depends non-monotonicly both on the external driving frequency and the parameters of the quadratic noise. In addition, the investigations into fractional stochastic systems have suggested that both the noise parameters and the memory effect can induce the phenomenon of stochastic multi-resonance (SMR), which is previously reported and believed to be absent in the case of the multiplicative noise with only a linear term.

  14. Magnetic Polarization Measurements of the Multi-modal Plasma Response to 3D fields in the EAST Tokamak

    DOE PAGES

    Logan, Nikolas; Cui, L.; Wang, Hui -Hui; ...

    2018-04-30

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n=2 fields in the same plasma for which the n=1 responses are well synchronized.more » Neither the maximum radial nor the maximum poloidal field response to n=2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n=1 and n=2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.« less

  15. Magnetic Polarization Measurements of the Multi-modal Plasma Response to 3D fields in the EAST Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Nikolas; Cui, L.; Wang, Hui -Hui

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n=2 fields in the same plasma for which the n=1 responses are well synchronized.more » Neither the maximum radial nor the maximum poloidal field response to n=2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n=1 and n=2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.« less

  16. Effect of gravity waves on the North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2017-04-01

    The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.

  17. Managing lifelike behavior in a dynamic self-assembled system

    NASA Astrophysics Data System (ADS)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  18. Externally resonated linear microvibromotor for microassembly

    NASA Astrophysics Data System (ADS)

    Saitou, Kazuhiro; Wou, Soungjin J.

    1998-10-01

    A new design of a linear micro vibromotor for on-substrate fine positioning of micro-scale components is presented where a micro linear slider is actuated by vibratory impacts exerted by micro cantilever impacters. These micro cantilever impacters are selectively resonated by shaking the entire substrate with a piezoelectric vibrator, requiring no need for built-in driving mechanisms such as electrostatic comb actuators as reported previously. This selective resonance of the micro cantilever impacters via an external vibration energy field provides with a very simple means of controlling forward and backward motion of the micro linear slider, facilitating assembly and disassembly of a micro component on a substrate. The double-V beam suspension design is employed in the micro cantilever impacters for larger displacement in the lateral direction while achieving higher stiffness in the transversal direction. An analytical model of the device is derived in order to obtain, through the Simulated Annealing algorithm, an optimal design which maximizes translation speed of the linear slider at desired external input frequencies. Prototypes of the externally-resonated linear micro vibromotor are fabricated using the three-layer polysilicon surface micro machining process provided by the MCNC MUMPS service.

  19. MHD limits and plasma response in high-beta hybrid operations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Igochine, V.; Piovesan, P.; Classen, I. G. J.; Dunne, M.; Gude, A.; Lauber, P.; Liu, Y.; Maraschek, M.; Marrelli, L.; McDermott, R.; Reich, M.; Ryan, D.; Schneller, M.; Strumberger, E.; Suttrop, W.; Tardini, G.; Zohm, H.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    The improved H-mode scenario (or high β hybrid operations) is one of the main candidates for high-fusion performance tokamak operation that offers a potential steady-state scenario. In this case, the normalized pressure {{β }N} must be maximized and pressure-driven instabilities will limit the plasma performance. These instabilities could have either resistive ((m  =  2, n  =  1) and (3,2) neoclassical tearing modes (NTMs)) or ideal character (n  =  1 ideal kink mode). In ASDEX Upgrade (AUG), the first limit for maximum achievable {{β }N} is set by the NTMs. The application of pre-emptive electron cyclotron current drive at the q  =  2 and q  =  1.5 resonant surfaces reduces this problem, so that higher values of {{β }N} can be reached. AUG experiments have shown that, in spite of the fact that hybrids are mainly limited by NTMs, the proximity to the no-wall limit leads to amplification of the external fields that strongly influence the plasma profiles. For example, rotation braking is observed throughout the plasma and peaks in the core. In this situation, even small external fields are amplified and their effect becomes visible. To quantify these effects, the plasma response to the magnetic fields produced by B-coils is measured as {{β }N} approaches the no-wall limit. These experiments and corresponding modeling allow the identification of the main limiting factors, which depend on the stabilizing influence of the conducting components facing the plasma surface, the existence of external actuators, and the kinetic interaction between the plasma and the marginally stable ideal modes. Analysis of the plasma reaction to external perturbations allowed us to identify optimal correction currents for compensating the intrinsic error field in the device. Such correction, together with the analysis of kinetic effects, will help to increase {{β }N} further in future experiments.

  20. Concepts of magnetospheric convection

    NASA Technical Reports Server (NTRS)

    Vasyliunas, V. M.

    1975-01-01

    The paper describes the basic theoretical notions of convection applicable to magnetospheres in general and discusses the relative importance of convective and corrotational motions, with particular reference to the comparison of the earth and Jupiter. The basic equations relating the E, B, and J fields and the bulk plasma velocity are given for the three principal regions in magnetosphere dynamics, namely, the central object and its magnetic field, the space surrounding the central object, and the external medium outside the magnetosphere. The notion of driving currents of magnetospheric convection and their closure is explained, while consideration of the added effects of the rotation of the central body completes the basic theoretical picture. Flow topology is examined for the two cases where convection dominates over corotation and vice versa.

  1. Conservation law for self-paced movements.

    PubMed

    Huh, Dongsung; Sejnowski, Terrence J

    2016-08-02

    Optimal control models of biological movements introduce external task factors to specify the pace of movements. Here, we present the dual to the principle of optimality based on a conserved quantity, called "drive," that represents the influence of internal motivation level on movement pace. Optimal control and drive conservation provide equivalent descriptions for the regularities observed within individual movements. For regularities across movements, drive conservation predicts a previously unidentified scaling law between the overall size and speed of various self-paced hand movements in the absence of any external tasks, which we confirmed with psychophysical experiments. Drive can be interpreted as a high-level control variable that sets the overall pace of movements and may be represented in the brain as the tonic levels of neuromodulators that control the level of internal motivation, thus providing insights into how internal states affect biological motor control.

  2. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...

  3. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...

  4. Solar wind driving and substorm triggering

    NASA Astrophysics Data System (ADS)

    Newell, Patrick T.; Liou, Kan

    2011-03-01

    We compare solar wind driving and its changes for three data sets: (1) 4861 identifications of substorm onsets from satellite global imagers (Polar UVI and IMAGE FUV); (2) a similar number of otherwise random times chosen with a similar solar wind distribution (slightly elevated driving); (3) completely random times. Multiple measures of solar wind driving were used, including interplanetary magnetic field (IMF) Bz, the Kan-Lee electric field, the Borovsky function, and dΦMP/dt (all of which estimate dayside merging). Superposed epoch analysis verifies that the mean Bz has a northward turning (or at least averages less southward) starting 20 min before onset. We argue that the delay between IMF impact on the magnetopause and tail effects appearing in the ionosphere is about that long. The northward turning is not the effect of a few extreme events. The median field shows the same result, as do all other measures of solar wind driving. We compare the rate of northward turning to that observed after random times with slightly elevated driving. The subsequent reversion to mean is essentially the same between random elevations and substorms. To further verify this, we consider in detail the distribution of changes from the statistical peak (20 min prior to onset) to onset. For Bz, the mean change after onset is +0.14 nT (i.e., IMF becomes more northward), but the standard deviation is σ = 2.8 nT. Thus large changes in either direction are common. For EKL, the change is -15 nT km/s ± 830 nT km/s. Thus either a hypothesis predicting northward turnings or one predicting southward turnings would find abundant yet random confirming examples. Indeed, applying the Lyons et al. (1997) trigger criteria (excluding only the prior requirement of 22/30 min Bz < 0, which is often not valid for actual substorms) to these three sets of data shows that "northward turning triggers" occur in 23% of the random data, 24% of the actual substorms, and after 27% of the random elevations. These results strongly support the idea of Morley and Freeman (2007), that substorms require initial elevated solar wind driving, but that there is no evidence for external triggering. Finally dynamic pressure, p, and velocity, v, show no meaningful variation around onset (although p averages 10% above an 11 year mean).

  5. Voluntary and involuntary driving cessation in later life.

    PubMed

    Choi, Moon; Mezuk, Briana; Rebok, George W

    2012-01-01

    This study explores the decision-making process of driving cessation in later life, with a focus on voluntariness. The sample included 83 former drivers from the Baltimore Epidemiologic Catchment Area Study. A majority of participants (83%) reportedly stopped driving by their own decision. However, many voluntary driving retirees reported external factors such as financial difficulty, anxiety about driving, or lack of access to a car as main reasons for driving cessation. These findings imply that distinction between voluntary and involuntary driving cessation is ambiguous and that factors beyond health status, including financial strain, play a role in the transition to non-driving.

  6. A Self-Adaptive Dynamic Recognition Model for Fatigue Driving Based on Multi-Source Information and Two Levels of Fusion

    PubMed Central

    Sun, Wei; Zhang, Xiaorui; Peeta, Srinivas; He, Xiaozheng; Li, Yongfu; Zhu, Senlai

    2015-01-01

    To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model. PMID:26393615

  7. Spontaneous Ion Depletion and Accumulation Phenomena Induced by Imbibition through Permselective Medium

    NASA Astrophysics Data System (ADS)

    Lee, Hyomin; Jung, Yeonsu; Park, Sungmin; Kim, Ho-Young; Kim, Sung Jae

    2016-11-01

    Generally, an ion depletion region near a permselective medium is induced by predominant ion flux through the medium. External electric field or hydraulic pressure has been reported as the driving forces. Among these driving forces, an imbibition through the nanoporous medium was chosen as the mechanism to spontaneously generate the ion depletion region. The water-absorbing process leads to the predominant ion flux so that the spontaneous formation of the ion depletion zone is expected even if there are no additional driving forces except for the inherent capillary action. In this presentation, we derived the analytical solutions using perturbation method and asymptotic analysis for the spontaneous phenomenon. Using the analysis, we found that there is also spontaneous accumulation regime depending on the mobility of dissolved electrolytic species. Therefore, the rigorous analysis of the spontaneous ion depletion and accumulation phenomena would provide a key perspective for the control of ion transportation in nanofluidic system such as desalinator, preconcentrator, and energy harvesting device, etc. Samsung Research Funding Center of Samsung Electronics (SRFC-MA1301-02) and BK21 plus program of Creative Research Engineer Development IT, Seoul National University.

  8. Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle

    NASA Astrophysics Data System (ADS)

    Carreño, F.; Antón, M. A.; Arrieta-Yáñez, Francisco

    2013-11-01

    The resonance fluorescence spectrum (RFS) of a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle (MNP) is analyzed. The quantum dot is described as a four-level atomlike system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle, which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions, which is accompanied by very minor local field corrections. This manifests into dramatic modifications in the RFS of the hybrid system in contrast to the one obtained for the isolated QD. The RFS is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field applied in the Voigt geometry, and the Rabi frequency of the driving field. It is shown that the spin of the QD is imprinted onto certain sidebands of the RFS, and that the signal at these sidebands can be optimized by engineering the shape of the MNP.

  9. Dynamic phases of active matter systems with quenched disorder

    DOE PAGES

    Sandor, Csand; Libal, Andras; Reichhardt, Charles; ...

    2017-03-16

    Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions withmore » the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Lastly, our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.« less

  10. Dynamic phases of active matter systems with quenched disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, Csand; Libal, Andras; Reichhardt, Charles

    Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions withmore » the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Lastly, our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.« less

  11. Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships.

    PubMed

    Silva, Andre A; Gupta, Shalabh; Bazzi, Ali M; Ulatowski, Arthur

    2017-09-22

    Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures. In this regard, this paper presents a fault diagnosis methodology for electric drives in electric ships. This methodology utilizes the two-dimensional, i.e. scale-shift, wavelet transform of the sensor data to filter optimal information-rich regions which can enhance the diagnosis accuracy as well as reduce the computational complexity of the classifier. The methodology was tested on sensor data generated from an experimentally validated simulation model of electric drives under various cruising speed conditions. The results in comparison with other existing techniques show a high correct classification rate with low false alarm and miss detection rates. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Ratchet Effects in Active Matter Systems

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. Olson; Reichhardt, C.

    2017-03-01

    Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth of possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. We describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle-particle interactions, and nondissipative effects.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Cynthia Jane; Reichhardt, Charles

    Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth ofmore » possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. Here, we describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.« less

  14. Efficiency of autonomous soft nanomachines at maximum power.

    PubMed

    Seifert, Udo

    2011-01-14

    We consider nanosized artificial or biological machines working in steady state enforced by imposing nonequilibrium concentrations of solutes or by applying external forces, torques, or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall into three different classes characterized, respectively, as "strong and efficient," "strong and inefficient," and "balanced." For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.

  15. Interference effects in a cavity for optical amplification

    NASA Astrophysics Data System (ADS)

    Cardimona, D. A.; Alsing, P. M.

    2009-08-01

    In space situational awareness scenarios, the objects needed to be characterized and identified are usually quite far away and quite dim. Thus, optical detectors need to be able to sense these very dim optical signals. Quantum interference in a three-level system can lead to amplification of optical signals. If we put a three-level system into a cavity tuned to the frequency of an incoming optical signal, we anticipate the amplification possibilities should be increased proportional to the quality factor of the cavity. Our vision is to utilize quantum dots in photonic crystal cavities, but as a stepping stone we first investigate a simple three-level system in a free-space optical cavity. We investigate quantum interference and classical interference effects when a three-level system interacts with both a cavity field mode and an external driving field mode. We find that under certain circumstances the cavity field evolves to be equal in magnitude to, but 180° out-of-phase with the external pump field when the pump field frequency equals the cavity frequency. At this point the resonance fluorescence from the atom in the cavity goes to zero due to a purely classical interference effect between the two out-of-phase fields. This is quite different from the quantum interference that occurs under the right circumstances, when the state populations are coherently driven into a linear combination that is decoupled from any applied field - and population is trapped in the excited states, thus allowing for a population inversion and an amplification of incoming optical signals.

  16. Perfect and robust phase-locking of a spin transfer vortex nano-oscillator to an external microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamadeh, A.; Loubens, G. de, E-mail: gregoire.deloubens@cea.fr; Klein, O.

    2014-01-13

    We study the synchronization of the auto-oscillation signal generated by the spin transfer driven dynamics of two coupled vortices in a spin-valve nanopillar to an external source. Phase-locking to the microwave field h{sub rf} occurs in a range larger than 10% of the oscillator frequency for drive amplitudes of only a few Oersteds. Using synchronization at the double frequency, the generation linewidth is found to decrease by more than five orders of magnitude in the phase-locked regime (down to 1 Hz, limited by the resolution bandwidth of the spectrum analyzer) in comparison to the free running regime (140 kHz). This perfect phase-lockingmore » holds for frequency detuning as large as 2 MHz, which proves its robustness. We also analyze how the free running spectral linewidth impacts the main characteristics of the synchronization regime.« less

  17. Noise-induced volatility of collective dynamics

    NASA Astrophysics Data System (ADS)

    Harras, Georges; Tessone, Claudio J.; Sornette, Didier

    2012-01-01

    Noise-induced volatility refers to a phenomenon of increased level of fluctuations in the collective dynamics of bistable units in the presence of a rapidly varying external signal, and intermediate noise levels. The archetypical signature of this phenomenon is that—beyond the increase in the level of fluctuations—the response of the system becomes uncorrelated with the external driving force, making it different from stochastic resonance. Numerical simulations and an analytical theory of a stochastic dynamical version of the Ising model on regular and random networks demonstrate the ubiquity and robustness of this phenomenon, which is argued to be a possible cause of excess volatility in financial markets, of enhanced effective temperatures in a variety of out-of-equilibrium systems, and of strong selective responses of immune systems of complex biological organisms. Extensive numerical simulations are compared with a mean-field theory for different network topologies.

  18. Use of water-external micellar dispersions in oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.C.

    1970-04-14

    A water-external micellar dispersion followed by a mobility buffer and a water drive were used for enhanced oil recovery. Field Berea sandstone cores (19.6 percent porosity, 387 md permeability) were saturated with brine (16,500 ppM sodium chloride), flooded with crude oil from the Henry lease in Illinois (viscosity of 5.9 cp at 72/sup 0/F, specific gravity of 0.833), and waterflooded with water from Henry lease (17,210 ppM TDS). The micellar dispersion followed by the mobility buffer produced 99.6 percent of the oil in the core. The micellar slug contained ammonium petroleum sulfonate (MW 450), Henry crude oil, isopropanol, nonyl phenol,more » sodium hydroxide, and water from the Palestine water reservoir in Palestine, Illinois (412 ppM TDS). No. 530 Pusher, ammonium thiocyanate, isopropanol, and Palestine water were in the mobility buffer.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Amber M.; Wilfong, Brandon; Moetakef, Pouya

    A metal–insulator transition tuned by application of an external magnetic field occurs in the quasi-one dimensional system Bi1.7V8O16, which contains a mix of S = 1 and S = 1/2 vanadium cations. Unlike all other known vanadates, the magnetic susceptibility of Bi1.7V8O16 diverges in its insulating state, although no long-range magnetic ordering is observed from neutron diffraction measurements, possibly due to the frustrated geometry of the triangular ladders. Magnetotransport measurements reveal that the transition temperature is suppressed upon application of an external magnetic field, from 62.5 K at zero field to 40 K at 8 T. This behavior is bothmore » hysteretic and anisotropic, suggesting t2g orbital ordering of the V3+ and V4+ cations drives a first-order structural transition. Single crystal X-ray diffraction reveals a charge density wave of Bi3+ cations with a propagation vector of 0.846c*, which runs parallel to the triangular chain direction. Neutron powder diffraction measurements show a first-order structural transition, characterized by the coexistence of two tetragonal phases near the metal–insulator transition. Finally, we discuss the likelihood that ferromagnetic V–V dimers coexist with a majority spin-singlet state below the transition in Bi1.7V8O16.« less

  20. Algebraic aspects of the driven dynamics in the density operator and correlation functions calculation for multi-level open quantum systems

    NASA Astrophysics Data System (ADS)

    Bogolubov, Nikolai N.; Soldatov, Andrey V.

    2017-12-01

    Exact and approximate master equations were derived by the projection operator method for the reduced statistical operator of a multi-level quantum system with finite number N of quantum eigenstates interacting with arbitrary external classical fields and dissipative environment simultaneously. It was shown that the structure of these equations can be simplified significantly if the free Hamiltonian driven dynamics of an arbitrary quantum multi-level system under the influence of the external driving fields as well as its Markovian and non-Markovian evolution, stipulated by the interaction with the environment, are described in terms of the SU(N) algebra representation. As a consequence, efficient numerical methods can be developed and employed to analyze these master equations for real problems in various fields of theoretical and applied physics. It was also shown that literally the same master equations hold not only for the reduced density operator but also for arbitrary nonequilibrium multi-time correlation functions as well under the only assumption that the system and the environment are uncorrelated at some initial moment of time. A calculational scheme was proposed to account for these lost correlations in a regular perturbative way, thus providing additional computable terms to the correspondent master equations for the correlation functions.

  1. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  2. Andragogy and medical education: are medical students internally motivated to learn?

    PubMed

    Misch, Donald A

    2002-01-01

    Andragogy - the study of adult education - has been endorsed by many medical educators throughout North America. There remains, however, considerable controversy as to the validity and utility of adult education principles as espoused by the field's founder, Malcolm Knowles. Whatever the utility of andragogic doctrine in general education settings, there is reason to doubt its wholesale applicability to the training of medical professionals. Malcolm Knowles' last tenet of andragogy holds that adult learners are more motivated by internal than by external factors. The validity of this hypothesis in medical education is examined, and it is demonstrated that medical students' internal and external motivation are context-dependent, not easily distinguishable, and interrelate with one another in complex ways. Furthermore, the psychological motivation for medical student learning is determined by a variety of factors that range from internal to external, unconscious to conscious, and individual to societal. The andragogic hypothesis of increased internal motivation to learn on the part of adults in general, and medical trainees in particular, is rejected as simplistic, misleading, and counterproductive to developing a greater understanding of the forces that drive medical students to learn.

  3. Teachers' Views of the Impact of School Evaluation and External Inspection Processes

    ERIC Educational Resources Information Center

    Hopkins, Elizabeth; Hendry, Helen; Garrod, Frank; McClare, Siobhan; Pettit, Daniel; Smith, Luke; Burrell, Hannah; Temple, Jennifer

    2016-01-01

    The research explores the views of teachers about how their teaching is evaluated by others. The tensions between evaluations motivated by the drive to improve practice (school self-evaluation) and evaluation related to external accountability (external evaluation-inspection) are considered, linked to findings and ideas reported in the literature.…

  4. Differences in descending control of external oblique and latissimus dorsi muscles in humans: a preliminary study.

    PubMed

    Wightman, Francesca; Delves, Suzanne; Alexander, Caroline M; Strutton, Paul H

    2011-07-01

    Descending bilateral control of external oblique (EO) and latissimus dorsi (LD) was investigated using transcranial magnetic stimulation. Contralateral (CL) motor evoked potential (MEP) thresholds were lower and latencies were shorter than for ipsilateral (IL) MEPs. Hotspots for EO were symmetrical; this was not the case for LD. The volumes of drive to the left and right muscles were not different. The laterality index was not different between the left and right muscles. The average index for the EO muscles was closer to zero than that for LD, suggesting a stronger IL drive to EO. The symmetry of drive to each muscle did not differ; however, the symmetry of drive varies within a subject for different muscles and between subjects for the same muscle. The findings may be useful in understanding a number of clinical conditions relating to the trunk and also for predicting the outcome of rehabilitative strategies.

  5. MHD Stability in Compact Stellarators

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong

    1999-11-01

    A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.

  6. Benefits of GMR sensors for high spatial resolution NDT applications

    NASA Astrophysics Data System (ADS)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  7. Magnetic polarization measurements of the multi-modal plasma response to 3D fields in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Cui, L.; Wang, H.; Sun, Y.; Gu, S.; Li, G.; Nazikian, R.; Paz-Soldan, C.

    2018-07-01

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n  =  2 fields in the same plasma for which the n  =  1 responses are well synchronized. Neither the maximum radial nor the maximum poloidal field response to n  =  2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n  =  1 and n  =  2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.

  8. Ultralow-current-density and bias-field-free spin-transfer nano-oscillator

    PubMed Central

    Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Amiri, Pedram Khalili; Katine, Jordan A.; Krivorotov, Ilya N.; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L.; Jiang, Hongwen

    2013-01-01

    The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators. PMID:23478390

  9. Ultralow-current-density and bias-field-free spin-transfer nano-oscillator.

    PubMed

    Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Khalili Amiri, Pedram; Katine, Jordan A; Krivorotov, Ilya N; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L; Jiang, Hongwen

    2013-01-01

    The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.

  10. 48. MAIN WAREHOUSE THIRD LEVEL Elevator drive mechanism is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. MAIN WAREHOUSE - THIRD LEVEL Elevator drive mechanism is seen to the right, while drive wheels, belt wheels and chain drives are visible in the wooden wall framing. The horizontal metal conveyor (at the top of the wall Just under the inverted 'V' brace) is part of the empty can supply system connected to the external can conveyor. See Photo No. 28. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  11. Emergent Rotational Symmetries in Disordered Magnetic Domain Patterns

    NASA Astrophysics Data System (ADS)

    Su, Run; Seu, Keoki A.; Parks, Daniel; Kan, Jimmy J.; Fullerton, Eric E.; Roy, Sujoy; Kevan, Stephen D.

    2011-12-01

    Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition.

  12. CHEMODYNAMIC EVOLUTION OF DWARF GALAXIES IN TIDAL FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, David; Martel, Hugo; Romeo, Alessandro B., E-mail: david-john.williamson.1@ulaval.ca

    The mass–metallicity relation shows that the galaxies with the lowest mass have the lowest metallicities. As most dwarf galaxies are in group environments, interaction effects such as tides could contribute to this trend. We perform a series of smoothed particle hydrodynamics simulations of dwarf galaxies in external tidal fields to examine the effects of tides on their metallicities and metallicity gradients. In our simulated galaxies, gravitational instabilities drive gas inwards and produce centralized star formation and a significant metallicity gradient. Strong tides can contribute to these instabilities, but their primary effect is to strip the outer low-metallicity gas, producing amore » truncated gas disk with a large metallicity. This suggests that the effect of tides on the mass–metallicity relation is to move dwarf galaxies to higher metallicities.« less

  13. Emergent rotational symmetries in disordered magnetic domain patterns.

    PubMed

    Su, Run; Seu, Keoki A; Parks, Daniel; Kan, Jimmy J; Fullerton, Eric E; Roy, Sujoy; Kevan, Stephen D

    2011-12-16

    Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition. © 2011 American Physical Society

  14. Manipulating low-Reynolds-number flow by a watermill

    NASA Astrophysics Data System (ADS)

    Zhu, Lailai; Stone, Howard

    2017-11-01

    Cilia and filaments have evolved in nature to achieve swimming, mixing and pumping at low Reynolds number. Their unique capacity has inspired a variety of biomimetic strategies employing artificial slender structures to manipulate flows in microfluidic devices. Most of them have to rely on an external field, such as magnetic or electric fields to actuate the slender structures actively. In this talk, we will present a new approach of utilizing the underlying flow alone to drive these structures passively. We investigate theoretically and numerically a watermill composing several rigid slender rods in simple flows. Slender body theory with and without considering hydrodynamic interactions is adopted. The theoretical predictions agree qualitatively with the numerical results and quantitatively in certain configurations. A VR International Postdoc Grant from Swedish Research Council ``2015-06334'' (L.Z.) is gratefully acknowledged.

  15. Generation and control of optical frequency combs using cavity electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Qu, Ye; Yu, Rong; Wu, Ying

    2018-02-01

    We explore theoretically the generation and all-optical control of optical frequency combs (OFCs) in photon transmission based on a combination of single-atom-cavity quantum electrodynamics (CQED) and electromagnetically induced transparency (EIT). Here an external control field is used to form the cavity dark mode of the CQED system. When the strengths of the applied EIT control field are appropriately tuned, enhanced comb generation can be achieved. We discuss the properties of the dark mode and clearly show that the formation of the dark mode enables the efficient generation of OFCs. In our approach, the comb spacing is determined by the beating frequency between the driving pump and seed lasers. Our demonstrated theory may pave the way towards all-optical coherent control of OFCs using a CQED architecture.

  16. Bridging Quantum, Classical and Stochastic Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Patra, Ayoti

    Adiabatic invariants - quantities that are preserved under the slow driving of a system's external parameters - are important in classical mechanics, quantum mechanics and thermodynamics. Adiabatic processes allow a system to be guided to evolve to a desired final state. However, the slow driving of a quantum system makes it vulnerable to environmental decoherence, and for both quantum and classical systems, it is often desirable and time-efficient to speed up a process. Shortcuts to adiabaticity are strategies for preserving adiabatic invariants under rapid driving, typically by means of an auxiliary field that suppresses excitations, otherwise generated during rapid driving. Several theoretical approaches have been developed to construct such shortcuts. In this dissertation we focus on two different approaches, namely counterdiabatic driving and fast-forward driving, which were originally developed for quantum systems. The counterdiabatic approach introduced independently by Dermirplak and Rice [J. Phys. Chem. A, 107:9937, 2003], and Berry [J. Phys. A: Math. Theor., 42:365303, 2009] formally provides an exact expression for the auxiliary Hamiltonian, which however is abstract and difficult to translate into an experimentally implementable form. By contrast, the fast-forward approach developed by Masuda and Nakamura [Proc. R. Soc. A, 466(2116):1135, 2010] provides an auxiliary potential that may be experimentally implementable but generally applies only to ground states. The central theme of this dissertation is that classical shortcuts to adiabaticity can provide useful physical insights and lead to experimentally implementable shortcuts for analogous quantum systems. We start by studying a model system of a tilted piston to provide a proof of principle that quantum shortcuts can successfully be constructed from their classical counterparts. In the remainder of the dissertation, we develop a general approach based on flow-fields which produces simple expressions for auxiliary terms required for both counterdiabatic and fast-forward driving. We demonstrate the applicability of this approach for classical, quantum as well as stochastic systems. We establish strong connections between counterdiabatic and fast-forward approaches, and also between shortcut protocols required for classical, quantum and stochastic systems. In particular, we show how the fast-forward approach can be extended to highly excited states of quantum systems.

  17. Recombination driven vacancy motion - a mechanism of memristive switching in oxides

    NASA Astrophysics Data System (ADS)

    Shen, Xiao; Puzyrev, Yevgeniy S.; Pantelides, Sokrates T.

    2014-03-01

    Wide-band gap oxides with high O deficiencies are attractive memristive materials for applications. However, the details of the defect dynamics remain elusive, especially regarding what drives the defect motion to form the conducting state. While the external field is often cited as the driving force, we report an investigation of memristive switching in polycrystalline ZnO and propose a new mechanism. Using results from density functional theory calculations, we show that the motion of O vacancies during switching to the conductive state is not driven by the electric field, but by recombination of carriers at these vacancies, which transfers energy to the defects and greatly enhances their diffusion. Such mechanism originates from the large structural change of O vacancies upon capturing electrons. In addition, contrary to the hypothesis that memristive switching in polycrystalline materials is facilitated by the defect motion along the grain boundary (GB), we show in our system the vacancies move perpendicular to the GB, attaching and detaching from it during the switching process. We call it recombination driven vacancy breathing. This work is supported by NSF Grant DMR-1207241 and NSF XSEDE grant DMR-130121.

  18. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  19. A Low-Power Wearable Stand-Alone Tongue Drive System for People With Severe Disabilities.

    PubMed

    Jafari, Ali; Buswell, Nathanael; Ghovanloo, Maysam; Mohsenin, Tinoosh

    2018-02-01

    This paper presents a low-power stand-alone tongue drive system (sTDS) used for individuals with severe disabilities to potentially control their environment such as computer, smartphone, and wheelchair using their voluntary tongue movements. A low-power local processor is proposed, which can perform signal processing to convert raw magnetic sensor signals to user-defined commands, on the sTDS wearable headset, rather than sending all raw data out to a PC or smartphone. The proposed sTDS significantly reduces the transmitter power consumption and subsequently increases the battery life. Assuming the sTDS user issues one command every 20 ms, the proposed local processor reduces the data volume that needs to be wirelessly transmitted by a factor of 64, from 9.6 to 0.15 kb/s. The proposed processor consists of three main blocks: serial peripheral interface bus for receiving raw data from magnetic sensors, external magnetic interference attenuation to attenuate external magnetic field from the raw magnetic signal, and a machine learning classifier for command detection. A proof-of-concept prototype sTDS has been implemented with a low-power IGLOO-nano field programmable gate array (FPGA), bluetooth low energy, battery and magnetic sensors on a headset, and tested. At clock frequency of 20 MHz, the processor takes 6.6 s and consumes 27 nJ for detecting a command with a detection accuracy of 96.9%. To further reduce power consumption, an application-specified integrated circuit processor for the sTDS is implemented at the postlayout level in 65-nm CMOS technology with 1-V power supply, and it consumes 0.43 mW, which is 10 lower than FPGA power consumption and occupies an area of only 0.016 mm.

  20. Dynamics of magnetic single domain particles embedded in a viscous liquid

    NASA Astrophysics Data System (ADS)

    Usadel, K. D.; Usadel, C.

    2015-12-01

    Kinetic equations for magnetic nano particles dispersed in a viscous liquid are developed and analyzed numerically. Depending on the amplitude of an applied oscillatory magnetic field, the particles orient their time averaged anisotropy axis perpendicular to the applied field for low magnetic field amplitudes and nearly parallel to the direction of the field for high amplitudes. The transition between these regions takes place in a narrow field interval. In the low field region, the magnetic moment is locked to some crystal axis and the energy absorption in an oscillatory driving field is dominated by viscous losses associated with particle rotation in the liquid. In the opposite limit, the magnetic moment rotates within the particle while its easy axis being nearly parallel to the external field direction oscillates. The kinetic equations are generalized to include thermal fluctuations. This leads to a significant increase of the power absorption in the low and intermediate field regions with a pronounced absorption peak as function of particle size. In the high field region, on the other hand, the inclusion of thermal fluctuations reduces the power absorption. The illustrative numerical calculations presented are performed for magnetic parameters typical for iron oxide.

  1. Influence of Pressure Field in Melts on the Primary Nucleation in Solidification Processing

    NASA Astrophysics Data System (ADS)

    Rakita, Milan; Han, Qingyou

    2017-10-01

    It is well known that external fields applied to melts can cause nucleation at lower supercoolings, fragmentation of growing dendrites, and forced convection around the solidification front. All these effects contribute to a finer microstructure of solidified material. In this article, we analyze how the pressure field created with ultrasonic vibrations influences structure refinement in terms of supercooling. It is shown that only high cavitation pressures of the order of 104 atmospheres are capable of nucleating crystals at minimal supercoolings. We demonstrate the possibility of sononucleation even in superheated liquid. Simulation and experiments with water samples show that very high cavitation pressures occur in a relatively narrow zone where the drive acoustic field has an appropriate combination of pressure amplitude and frequency. In order to accurately predict the microstructure formed by ultrasonically assisted solidification of metals, this article calls for the development of equations of state that would describe the pressure-dependent behavior of molten metals.

  2. Optimization of 3D Field Design

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas; Zhu, Caoxiang

    2017-10-01

    Recent progress in 3D tokamak modeling is now leveraged to create a conceptual design of new external 3D field coils for the DIII-D tokamak. Using the IPEC dominant mode as a target spectrum, the Finding Optimized Coils Using Space-curves (FOCUS) code optimizes the currents and 3D geometry of multiple coils to maximize the total set's resonant coupling. The optimized coils are individually distorted in space, creating toroidal ``arrays'' containing a variety of shapes that often wrap around a significant poloidal extent of the machine. The generalized perturbed equilibrium code (GPEC) is used to determine optimally efficient spectra for driving total, core, and edge neoclassical toroidal viscosity (NTV) torque and these too provide targets for the optimization of 3D coil designs. These conceptual designs represent a fundamentally new approach to 3D coil design for tokamaks targeting desired plasma physics phenomena. Optimized coil sets based on plasma response theory will be relevant to designs for future reactors or on any active machine. External coils, in particular, must be optimized for reliable and efficient fusion reactor designs. Work supported by the US Department of Energy under DE-AC02-09CH11466.

  3. Influence of the Location of Attractive Polymer-Pore Interactions on Translocation Dynamics.

    PubMed

    Ghosh, Bappa; Chaudhury, Srabanti

    2018-01-11

    We probe the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. We investigate the effect of the strength and location of the polymer-pore interaction using nanopores that are partially charged either at the entry or the exit or on both sides of the pore. We study the change in the translocation time as a function of the strength of the polymer-pore interaction for a given chain length and under the effect of an externally applied field. Under a moderate driving force and a chain length longer than the length of the pore, the translocation time shows a nonmonotonic increase with an increase in the attractive interaction. Also, an interaction on the cis side of the pore can increase the translocation probability. In the presence of an external field and a strong attractive force, the translocation time for shorter chains is independent of the polymer-pore interaction at the entry side of the pore, whereas an interaction on the trans side dominates the translocation process. Our simulation results are rationalized by a qualitative analysis of the free energy landscape for polymer translocation.

  4. Physical driving force of actomyosin motility based on the hydration effect.

    PubMed

    Suzuki, Makoto; Mogami, George; Ohsugi, Hideyuki; Watanabe, Takahiro; Matubayasi, Nobuyuki

    2017-12-01

    We propose a driving force hypothesis based on previous thermodynamics, kinetics and structural data as well as additional experiments and calculations presented here on water-related phenomena in the actomyosin systems. Although Szent-Györgyi pointed out the importance of water in muscle contraction in 1951, few studies have focused on the water science of muscle because of the difficulty of analyzing hydration properties of the muscle proteins, actin, and myosin. The thermodynamics and energetics of muscle contraction are linked to the water-mediated regulation of protein-ligand and protein-protein interactions along with structural changes in protein molecules. In this study, we assume the following two points: (1) the periodic electric field distribution along an actin filament (F-actin) is unidirectionally modified upon binding of myosin subfragment 1 (M or myosin S1) with ADP and inorganic phosphate Pi (M.ADP.Pi complex) and (2) the solvation free energy of myosin S1 depends on the external electric field strength and the solvation free energy of myosin S1 in close proximity to F-actin can become the potential force to drive myosin S1 along F-actin. The first assumption is supported by integration of experimental reports. The second assumption is supported by model calculations utilizing molecular dynamics (MD) simulation to determine solvation free energies of a small organic molecule and two small proteins. MD simulations utilize the energy representation method (ER) and the roughly proportional relationship between the solvation free energy and the solvent-accessible surface area (SASA) of the protein. The estimated driving force acting on myosin S1 is as high as several piconewtons (pN), which is consistent with the experimentally observed force. © 2017 Wiley Periodicals, Inc.

  5. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.

    PubMed

    Li, Jiaming; de Melo, Leonardo F; Luo, Le

    2017-03-30

    We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.

  6. Dynamics of the exponential integrate-and-fire model with slow currents and adaptation.

    PubMed

    Barranca, Victor J; Johnson, Daniel C; Moyher, Jennifer L; Sauppe, Joshua P; Shkarayev, Maxim S; Kovačič, Gregor; Cai, David

    2014-08-01

    In order to properly capture spike-frequency adaptation with a simplified point-neuron model, we study approximations of Hodgkin-Huxley (HH) models including slow currents by exponential integrate-and-fire (EIF) models that incorporate the same types of currents. We optimize the parameters of the EIF models under the external drive consisting of AMPA-type conductance pulses using the current-voltage curves and the van Rossum metric to best capture the subthreshold membrane potential, firing rate, and jump size of the slow current at the neuron's spike times. Our numerical simulations demonstrate that, in addition to these quantities, the approximate EIF-type models faithfully reproduce bifurcation properties of the HH neurons with slow currents, which include spike-frequency adaptation, phase-response curves, critical exponents at the transition between a finite and infinite number of spikes with increasing constant external drive, and bifurcation diagrams of interspike intervals in time-periodically forced models. Dynamics of networks of HH neurons with slow currents can also be approximated by corresponding EIF-type networks, with the approximation being at least statistically accurate over a broad range of Poisson rates of the external drive. For the form of external drive resembling realistic, AMPA-like synaptic conductance response to incoming action potentials, the EIF model affords great savings of computation time as compared with the corresponding HH-type model. Our work shows that the EIF model with additional slow currents is well suited for use in large-scale, point-neuron models in which spike-frequency adaptation is important.

  7. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    DOEpatents

    Post, Richard F.

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  8. A multichannel and wide suitablity digital control device for liquid-crystal microlens controlled electrically

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2017-11-01

    In order to overcome the difficulty in imaging detection of high-speed moving targets under complex environments, and to get more comprehensive image information of the target, there is a urgent need to develop new high-performance optical imaging components. Compared to traditional lenses which have fixed shapes and immutable focal length, liquid-crystal microlens (LCMs) can not only adjust the focal length without changing the external shape, but also realize many practical functions such as swinging focus, spectral selection, depth of field adjustment, etc. The physical properties of spatial electric fields constructed between electrode plates of the LCMs are directly related to the light-field adjusting performances of LCMs, such as the polarity of electric field, the frequency and amplitude of applied voltage signal. In other words, the optical behaviors of LCMs will be affected remarkably by the parameters of driving voltage signal mentioned above. To implement these important functions flexibly and effectively, the driving voltage signal must be powerful and flexible. It had better to have multiple channels to control the direction of swinging focus, with relatively wide variance range to spread spectrum selection range, and with high precision to ensure accurately controlling LCMs. In addition, special waveforms may be required to support special functions of LCMs. Therefore a digital control device, which meet the requirements mentioned above, is designed, and then LCMs with it can realize imaging detection of targets in complex environment.

  9. Ubiquitous Instabilities of Dust Moving in Magnetized Gas

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Squire, Jonathan

    2018-06-01

    Squire & Hopkins (2017) showed that coupled dust-gas mixtures are generically subject to "resonant drag instabilities" (RDIs), which drive violently-growing fluctuations in both. But the role of magnetic fields and charged dust has not yet been studied. We therefore explore the RDI in gas which obeys ideal MHD and is coupled to dust via both Lorentz forces and drag, with an external acceleration (e.g., gravity, radiation) driving dust drift through gas. We show this is always unstable, at all wavelengths and non-zero values of dust-to-gas ratio, drift velocity, dust charge, "stopping time" or drag coefficient (for any drag law), or field strength; moreover growth rates depend only weakly (sub-linearly) on these parameters. Dust charge and magnetic fields do not suppress instabilities, but give rise to a large number of new instability "families," each with distinct behavior. The "MHD-wave" (magnetosonic or Alfvén) RDIs exhibit maximal growth along "resonant" angles where the modes have a phase velocity matching the corresponding MHD wave, and growth rates increase without limit with wavenumber. The "gyro" RDIs are driven by resonances between drift and Larmor frequencies, giving growth rates sharply peaked at specific wavelengths. Other instabilities include "acoustic" and "pressure-free" modes (previously studied), and a family akin to cosmic ray instabilities which appear when Lorentz forces are strong and dust streams super-Alfvénically along field lines. We discuss astrophysical applications in the warm ISM, CGM/IGM, HII regions, SNe ejecta/remnants, Solar corona, cool-star winds, GMCs, and AGN.

  10. Diffusion of Impaired Driving Laws Among US States.

    PubMed

    Macinko, James; Silver, Diana

    2015-09-01

    We examined internal and external determinants of state's adoption of impaired driving laws. Data included 7 state-level, evidence-based public health laws collected from 1980 to 2010. We used event history analyses to identify predictors of first-time law adoption and subsequent adoption between state pairs. The independent variables were internal state factors, including the political environment, legislative professionalism, government capacity, state resources, legislative history, and policy-specific risk factors. The external factors were neighboring states' history of law adoption and changes in federal law. We found a strong secular trend toward an increased number of laws over time. The proportion of younger drivers and the presence of a neighboring state with similar laws were the strongest predictors of first-time law adoption. The predictors of subsequent law adoption included neighbor state adoption and previous legislative action. Alcohol laws were negatively associated with first-time adoption of impaired driving laws, suggesting substitution effects among policy choices. Organizations seeking to stimulate state policy changes may need to craft strategies that engage external actors, such as neighboring states, in addition to mobilizing within-state constituencies.

  11. Diffusion of Impaired Driving Laws Among US States

    PubMed Central

    Silver, Diana

    2015-01-01

    Objectives. We examined internal and external determinants of state’s adoption of impaired driving laws. Methods. Data included 7 state-level, evidence-based public health laws collected from 1980 to 2010. We used event history analyses to identify predictors of first-time law adoption and subsequent adoption between state pairs. The independent variables were internal state factors, including the political environment, legislative professionalism, government capacity, state resources, legislative history, and policy-specific risk factors. The external factors were neighboring states’ history of law adoption and changes in federal law. Results. We found a strong secular trend toward an increased number of laws over time. The proportion of younger drivers and the presence of a neighboring state with similar laws were the strongest predictors of first-time law adoption. The predictors of subsequent law adoption included neighbor state adoption and previous legislative action. Alcohol laws were negatively associated with first-time adoption of impaired driving laws, suggesting substitution effects among policy choices. Conclusions. Organizations seeking to stimulate state policy changes may need to craft strategies that engage external actors, such as neighboring states, in addition to mobilizing within-state constituencies. PMID:26180969

  12. Ratchet Effects in Active Matter Systems

    DOE PAGES

    Reichhardt, Cynthia Jane; Reichhardt, Charles

    2016-12-21

    Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems that do not require the application of external driving has been realized through the use of active matter; they are self-propelled units that can be biological or nonbiological in nature. When active materials such as swimming bacteria interact with an asymmetric substrate, a net dc directed motion can arise even without external driving, opening a wealth ofmore » possibilities such as sorting, cargo transport, or micromachine construction. We review the current status of active matter ratchets for swimming bacteria, cells, active colloids, and swarming models, focusing on the role of particle-substrate interactions. Here, we describe ratchet reversals produced by collective effects and the use of active ratchets to transport passive particles. We discuss future directions including deformable substrates or particles, the role of different swimming modes, varied particle–particle interactions, and nondissipative effects.« less

  13. Heliostat field cost reduction by `slope drive' optimization

    NASA Astrophysics Data System (ADS)

    Arbes, Florian; Weinrebe, Gerhard; Wöhrbach, Markus

    2016-05-01

    An algorithm to optimize power tower heliostat fields employing heliostats with so-called slope drives is presented. It is shown that a field using heliostats with the slope drive axes configuration has the same performance as a field with conventional azimuth-elevation tracking heliostats. Even though heliostats with the slope drive configuration have a limited tracking range, field groups of heliostats with different axes or different drives are not needed for different positions in the heliostat field. The impacts of selected parameters on a benchmark power plant (PS10 near Seville, Spain) are analyzed.

  14. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep K.

    2018-05-01

    We follow up on the Sterling et al. discovery that nearly all polar coronal X-ray jets are made by an explosive eruption of a closed magnetic field carrying a miniature filament in its core. In the same X-ray and EUV movies used by Sterling et al., we examine the onset and growth of the driving magnetic explosion in 15 of the 20 jets that they studied. We find evidence that (1) in a large majority of polar X-ray jets, the runaway internal/tether-cutting reconnection under the erupting minifilament flux rope starts after both the minifilament’s rise and the spire-producing external/breakout reconnection have started; and (2) in a large minority, (a) before the eruption starts, there is a current sheet between the explosive closed field and the ambient open field, and (b) the eruption starts with breakout reconnection at that current sheet. The variety of event sequences in the eruptions supports the idea that the magnetic explosions that make polar X-ray jets work the same way as the much larger magnetic explosions that make a flare and coronal mass ejection (CME). That idea and recent observations indicating that magnetic flux cancellation is the fundamental process that builds the field in and around the pre-jet minifilament and triggers that field’s jet-driving explosion together suggest that flux cancellation inside the magnetic arcade that explodes in a flare/CME eruption is usually the fundamental process that builds the explosive field in the core of the arcade and triggers that field’s explosion.

  15. Development of simplified external control techniques for broad area semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Davis, Christopher C.

    1993-01-01

    The goal of this project was to injection lock a 500 mW broad area laser diode (BAL) with a single mode low power laser diode with injection beam delivery through a single mode optical fiber (SMF). This task was completed successfully with the following significant accomplishments: (1) injection locking of a BAL through a single-mode fiber using a master oscillator and integrated miniature optics; (2) generation of a single-lobed, high-power far-field pattern from the injection-locked BAL that steers with drive current; and (3) a comprehensive theoretical analysis of a model that describes the observed behavior of the injection locked oscillator.

  16. Stochastic memory: Memory enhancement due to noise

    NASA Astrophysics Data System (ADS)

    Stotland, Alexander; di Ventra, Massimiliano

    2012-01-01

    There are certain classes of resistors, capacitors, and inductors that, when subject to a periodic input of appropriate frequency, develop hysteresis loops in their characteristic response. Here we show that the hysteresis of such memory elements can also be induced by white noise of appropriate intensity even at very low frequencies of the external driving field. We illustrate this phenomenon using a physical model of memory resistor realized by TiO2 thin films sandwiched between metallic electrodes and discuss under which conditions this effect can be observed experimentally. We also discuss its implications on existing memory systems described in the literature and the role of colored noise.

  17. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  18. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE PAGES

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo; ...

    2017-05-18

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  19. Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle

    NASA Astrophysics Data System (ADS)

    Antón, M. A.; Carreño, F.; Melle, Sonia; Calderón, Oscar G.; Cabrera-Granado, E.; Singh, Mahi R.

    2013-05-01

    The preparation of quantum states with a defined spin is analyzed in a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle. The quantum dot is described as a four-level atom-like system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A metallic nanoparticle with spheroidal geometry is placed in close proximity to the quantum dot, and its effects are considered in the quasistatic approximation. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions which is accompanied by local-field corrections. This effect translates into a preferential acceleration of some of the optical pathways and therefore into a fast initialization of the QD by excitation with a short optical pulse. The population transfer between the lower levels of the QD and the fidelity is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field, and the Rabi frequency of the driving field. It is also shown that the main effect of the local-field corrections is a lengthening of the time elapsed to reach the steady-state. The hole spin is predicted to be successfully cooled from 5 to 0.04 K at a magnetic field of 4.6 T applied in the Voigt geometry.

  20. Optimal coherent control of dissipative N -level systems

    NASA Astrophysics Data System (ADS)

    Jirari, H.; Pötz, W.

    2005-07-01

    General optimal coherent control of dissipative N -level systems in the Markovian time regime is formulated within Pointryagin’s principle and the Lindblad equation. In the present paper, we study feasibility and limitations of steering of dissipative two-, three-, and four-level systems from a given initial pure or mixed state into a desired final state under the influence of an external electric field. The time evolution of the system is computed within the Lindblad equation and a conjugate gradient method is used to identify optimal control fields. The influence of both field-independent population and polarization decay on achieving the objective is investigated in systematic fashion. It is shown that, for realistic dephasing times, optimum control fields can be identified which drive the system into the target state with very high success rate and in economical fashion, even when starting from a poor initial guess. Furthermore, the optimal fields obtained give insight into the system dynamics. However, if decay rates of the system cannot be subjected to electromagnetic control, the dissipative system cannot be maintained in a specific pure or mixed state, in general.

  1. Propulsion and hydrodynamic particle transport of magnetically twisted colloidal ribbons

    NASA Astrophysics Data System (ADS)

    Massana-Cid, Helena; Martinez-Pedrero, Fernando; Navarro-Argemí, Eloy; Pagonabarraga, Ignacio; Tierno, Pietro

    2017-10-01

    We describe a method to trap, transport and release microscopic particles in a viscous fluid using the hydrodynamic flow field generated by a magnetically propelled colloidal ribbon. The ribbon is composed of ferromagnetic microellipsoids that arrange with their long axis parallel to each other, a configuration that is energetically favorable due to their permanent magnetic moments. We use an external precessing magnetic field to torque the anisotropic particles forming the ribbon, and to induce propulsion of the entire structure due to the hydrodynamic coupling with the close substrate. The propulsion speed of the ribbon can be controlled by varying the driving frequency, or the amplitude of the precessing field. The latter parameter is also used to reduce the average inter particle distance and to induce the twisting of the ribbon due to the increase in the attraction between the rotating ellipsoids. Furthermore, non magnetic particles are attracted or repelled with the hydrodynamic flow field generated by the propelling ribbon. The proposed method may be used in channel free microfluidic applications, where the precise trapping and transport of functionalized particles via non invasive magnetic fields is required.

  2. Field coupling-induced pattern formation in two-layer neuronal network

    NASA Astrophysics Data System (ADS)

    Qin, Huixin; Wang, Chunni; Cai, Ning; An, Xinlei; Alzahrani, Faris

    2018-07-01

    The exchange of charged ions across membrane can generate fluctuation of membrane potential and also complex effect of electromagnetic induction. Diversity in excitability of neurons induces different modes selection and dynamical responses to external stimuli. Based on a neuron model with electromagnetic induction, which is described by magnetic flux and memristor, a two-layer network is proposed to discuss the pattern control and wave propagation in the network. In each layer, gap junction coupling is applied to connect the neurons, while field coupling is considered between two layers of the network. The field coupling is approached by using coupling of magnetic flux, which is associated with distribution of electromagnetic field. It is found that appropriate intensity of field coupling can enhance wave propagation from one layer to another one, and beautiful spatial patterns are formed. The developed target wave in the second layer shows some difference from target wave triggered in the first layer of the network when two layers are considered by different excitabilities. The potential mechanism could be pacemaker-like driving from the first layer will be encoded by the second layer.

  3. Generation of powerful microwave pulses by channel power summation of two X-band phase-locked relativistic backward wave oscillators

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Deng, Yuqun; Chen, Changhua; Shi, Yanchao; Sun, Jun

    2018-03-01

    We demonstrate both theoretically and experimentally the possibility of the generation of powerful microwave pulses by channel power summation of two X-band phase-locked relativistic backward wave oscillators (RBWOs). A modulated electron beam induced by an external signal can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the initial phase of the external signal. A high-current dual-beam accelerator was built to drive the two RBWOs. An external signal was divided into two channels with an adjusted relative phase and injected into the two RBWOs through two TE10-TEM mode converters. The generated microwaves were combined with a power combiner consisting of two TM01-TE11 serpentine mode converters with a common output. In the experiments, as the input power for each channel was 150 kW, the two RBWOs output 3.1 GW and 3.7 GW, respectively, the jitter of the relative phase of two output microwaves was about 20°, and the summation power from the power combiner is 6.2 GW, corresponding to a combination efficiency of 91%.

  4. A Josephson radiation comb generator.

    PubMed

    Solinas, P; Gasparinetti, S; Golubev, D; Giazotto, F

    2015-07-20

    We propose the implementation of a Josephson Radiation Comb Generator (JRCG) based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. When the magnetic flux crosses a diffraction node of the critical current interference pattern, the superconducting phase undergoes a jump of π and a voltage pulse is generated at the extremes of the SQUID. Under periodic drive this allows one to generate a sequence of sharp, evenly spaced voltage pulses. In the frequency domain, this corresponds to a comb-like structure similar to the one exploited in optics and metrology. With this device it is possible to generate up to several hundreds of harmonics of the driving frequency. For example, a chain of 50 identical high-critical-temperature SQUIDs driven at 1 GHz can deliver up to a 0.5 nW at 200 GHz. The availability of a fully solid-state radiation comb generator such as the JRCG, easily integrable on chip, may pave the way to a number of technological applications, from metrology to sub-millimeter wave generation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shi-Zeng

    We derive the skyrmion dynamics in response to a weak external drive, taking all the magnon modes into account. A skyrmion has rotational symmetry, and the magnon modes can be characterized by an angular momentum. For a weak distortion of a skyrmion, only the magnon modes with an angular momentum | m | = 1 govern the dynamics of skyrmion topological center. We also determine that the skyrmion inertia comes by way of the magnon modes in the continuum spectrum. For a skyrmion driven by a magnetic field gradient or by a spin transfer torque generated by a current, themore » dynamical response is practically instantaneous. This justifies the rigid skyrmion approximation used in Thiele's collective coordinate approach. For a skyrmion driven by a spin Hall torque, the torque couples to the skyrmion motion through the magnons in the continuum and damping; therefore the skyrmion dynamics shows sizable inertia in this case. The trajectory of a skyrmion is an ellipse for an ac drive of spin Hall torque.« less

  6. Magnetic Damping of g-Jitter Induced Double-Diffusive Convection

    NASA Technical Reports Server (NTRS)

    Shu, Y.; Li, B. Q.; deGroh, H. C.

    2001-01-01

    This paper describes a numerical study of the g-jitter driven double diffusive convective flows, thermal and concentration distributions in binary alloy melt systems subject to an external magnetic field. The study is based on the finite element solution of transient magnetohydrodynamic equations governing the momentum, thermal and solutal transport in the melt pool. Numerical simulations are conducted using the synthesized single- and multi- frequency g-jitter as well as the real g-jitter data taken during space flights with or without an applied magnetic field. It is found that for the conditions studied, the main melt flow follows approximately a lineal- superposition of velocity components induced by individual g-jitter components, regardless of whether a magnetic field exists or not. The flow field is characterized by a recirculating double diffusive convection loop oscillating in time with a defined frequency equal to that of the driving g-jitter force. An applied magnetic field has little effect on the oscillating recirculating pattern, except around the moment in time when the flow reverses its direction. The field has no effect on the oscillation period, but it changes the phase angle. It is very effective in suppressing the flow intensity and produces a notable reduction of the solutal striation and time fluctuations in the melt. For a given magnetic field strength, the magnetic damping effect is more pronounced on the velocity associated with the largest g-jitter component present and/or the g-jitter spiking peaks. A stronger magnetic field is more effective in suppressing the melt convection and also is more helpful in bringing the convection in phase with the g-jitter driving force. The applied field is particularly useful in suppressing the effect of real g-jitter spikes on both flow and solutal distributions. With appropriately selected magnetic fields, the convective flows caused by g-jitter can be reduced sufficiently and diffusion dominant. solutal transport in the melt is possible.

  7. Driving with visual field loss : an exploratory simulation study

    DOT National Transportation Integrated Search

    2009-01-01

    The goal of this study was to identify the influence of peripheral visual field loss (VFL) on driving performance in a motion-based driving simulator. Sixteen drivers (6 with VFL and 10 with normal visual fields) completed a 14 km simulated drive. Th...

  8. Self-organization and stability of magnetosome chains—A simulation study

    PubMed Central

    Faivre, Damien; Klumpp, Stefan

    2018-01-01

    Magnetotactic bacteria orient in magnetic fields with the help of their magnetosome chain, a linear structure of membrane enclosed magnetic nanoparticles (magnetosomes) anchored to a cytoskeletal filament. Here, we use simulations to study the assembly and the stability of magnetosome chains. We introduce a computational model describing the attachment of the magnetosomes to the filament and their magnetic interactions. We show that the filamentous backbone is crucial for the robust assembly of the magnetic particles into a linear chain, which in turn is key for the functionality of the chain in cellular orientation and magnetically directed swimming. In addition, we simulate the response to an external magnetic field that is rotated away from the axis of the filament, an experimental method used to probe the mechanical stability of the chain. The competition between alignment along the filament and alignment with the external fields leads to the rupture of a chain if the applied field exceeeds a threshold value. These observations are in agreement with previous experiments at the population level. Beyond that, our simulations provide a detailed picture of chain rupture at the single cell level, which is found to happen through two abrupt events, which both depend on the field strength and orientation. The re-formation of the chain structure after such rupture is found to be strongly sped up in the presence of a magnetic field parallel to the filament, an observation that may also be of interest for the design of self-healing materials. Our simulations underline the dynamic nature of the magnetosome chain. More generally, they show the rich complexity of self-assembly in systems with competing driving forces for alignment. PMID:29315342

  9. The Triggering Mechanism of Quiet-Region Coronal Jet Eruptions: Flux Cancelation

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2017-01-01

    Coronal jets are frequent transient features on the Sun, observed in EUV and X-ray emissions. They occur in active regions, quiet Sun and coronal holes, and appear as a bright spire with base brightenings. Recent studies show that many coronal jets are driven by the eruption of a minifilament. Here we investigate the magnetic cause of jet-driving minifilament eruptions. We study ten randomly-found on-disk quiet-region coronal jets using SDO/AIA intensity images and SDO/HMI magnetograms. For all ten events, we track the evolution of photospheric magnetic flux in the jet-base region in EUV images and find that (a) a cool (transition-region temperature) minifilament is present prior to each jet eruption; (b) the pre-eruption minifilament resides above the polarity-inversion line between majority-polarity and minority-polarity magnetic flux patches; (c) the opposite-polarity flux patches converge and cancel with each other; (d) the cancelation between the majority-polarity and minority-polarity flux patches eventually destabilizes the field holding the minifilament to erupt outwards; (e) the envelope of the erupting field barges into ambient oppositely-directed far-reaching field and undergoes external reconnection (interchange reconnection); (f) the external reconnection opens the envelope field and the minifilament field inside, allowing reconnected-heated hot material and cool minifilament material to escape along the far-reaching field, producing the jet spire. In summary, we found that each of our ten jets resulted from a minifilament eruption following flux cancelation at the magnetic neutral line under the pre-eruption minifilament. These observations show that flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  10. A linear magnetic motor and generator

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  11. Virtually driving: are the driving environments "real enough" for exposure therapy with accident victims? An explorative study.

    PubMed

    Walshe, David; Lewis, Elizabeth; O'Sullivan, Kathleen; Kim, Sun I

    2005-12-01

    There is a small but growing body of research supporting the effectiveness of computer-generated environments in exposure therapy for driving phobia. However, research also suggests that difficulties can readily arise whereby patients do not immerse in simulated driving scenes. The simulated driving environments are not "real enough" to undertake exposure therapy. This sets a limitation to the use of virtual reality (VR) exposure therapy as a treatment modality for driving phobia. The aim of this study was to investigate if a clinically acceptable immersion/presence rate of >80% could be achieved for driving phobia subjects in computer generated environments by modifying external factors in the driving environment. Eleven patients referred from the Accident and Emergency Department of a general hospital or from their General Practitioner following a motor vehicle accident, who met DSM-IV criteria for Specific Phobia-driving were exposed to a computer-generated driving environment using computer driving games (London Racer/Midtown Madness). In an attempt to make the driving environments "real enough," external factors were modified by (a) projection of images onto a large screen, (b) viewing the scene through a windscreen, (c) using car seats for both driver and passenger, and (d) increasing vibration sense through use of more powerful subwoofers. Patients undertook a trial session involving driving through computer environments with graded risk of an accident. "Immersion/presence" was operationally defined as a subjective rating by the subject that the environment "feels real," together with an increase in subjective units of distress (SUD) ratings of >3 and/or an increase of heart rate of >15 beats per minute (BPM). Ten of 11 (91%) of the driving phobic subjects met the criteria for immersion/presence in the driving environment enabling progression to VR exposure therapy. These provisional findings suggest that the paradigm adopted in this study might be an effective and relatively inexpensive means of developing driving environments "real enough," to make VR exposure therapy a viable treatment modality for driving phobia following a motor vehicle accident (MVA).

  12. External Data and Attribute Hyperlink Programs for Promis*e(Registered Trademark)

    NASA Technical Reports Server (NTRS)

    Derengowski, Rich; Gruel, Andrew

    2001-01-01

    External Data and Attribute Hyperlink are computer programs that can be added to Promis*e(trademark) which is a commercial software system that automates routine tasks in the design (including drawing schematic diagrams) of electrical control systems. The programs were developed under the Stennis Space Center's (SSC) Dual Use Technology Development Program to provide capabilities for SSC's BMCS configuration management system which uses Promis*e(trademark). The External Data program enables the storage and management of information in an external database linked to a drawing. Changes can be made either in the database or on the drawing. Information that originates outside Promis*e(trademark) can be stored in custom fields that can be added to the database. Although this information is not available in Promis*e(trademark) printed drawings, it can be associated with symbols in the drawings, and can be retrieved through the drawings when the software is running. The Attribute Hyperlink program enables the addition of hyperlink information as attributes of symbols. This program enables the formation of a direct hyperlink between a schematic diagram and an Internet site or a file on a compact disk, on the user's hard drive, or on another computer on a network to which the user's computer is connected. The user can then obtain information directly related to the part (e.g., maintenance, or troubleshooting information) associated with the hyperlink.

  13. Gate control of quantum dot-based electron spin-orbit qubits

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen; Yu, Huaguang; Wang, Qiang

    2018-07-01

    We investigate theoretically the coherent spin dynamics of gate control of quantum dot-based electron spin-orbit qubits subjected to a tilted magnetic field under electric-dipole spin resonance (EDSR). Our results reveal that Rabi oscillation of qubit states can be manipulated electrically based on rapid gate control of SOC strength. The Rabi frequency is strongly dependent on the gate-induced electric field, the strength and orientation of the applied magnetic field. There are two major EDSR mechanisms. One arises from electric field-induced spin-orbit hybridization, and the other arises from magnetic field-induced energy-level crossing. The SOC introduced by the gate-induced electric field allows AC electric fields to drive coherent Rabi oscillations between spin-up and -down states. After the crossing of the energy-levels with the magnetic field, the spin-transfer crossing results in Rabi oscillation irrespective of whether or not the external electric field is present. The spin-orbit qubit is transferred into the orbit qubit. Rabi oscillation is anisotropic and periodic with respect to the tilted and in-plane orientation of the magnetic field originating from the interplay of the SOC, orbital, and Zeeman effects. The strong electrically-controlled SOC strength suggests the possibility for scalable applications of gate-controllable spin-orbit qubits.

  14. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    PubMed

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  15. Optical Rogue Waves in Vortex Turbulence.

    PubMed

    Gibson, Christopher J; Yao, Alison M; Oppo, Gian-Luca

    2016-01-29

    We present a spatiotemporal mechanism for producing 2D optical rogue waves in the presence of a turbulent state with creation, interaction, and annihilation of optical vortices. Spatially periodic structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg-Landau and Swift-Hohenberg models with external driving. When the pumping is high and the external driving is low, synchronized oscillations are unstable and lead to spatiotemporal vortex-mediated turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices, where the amplitude tends to zero, and to probability density functions (PDFs) with long tails typical of extreme optical events.

  16. Design of aircraft turbine fan drive gear transmission system

    NASA Technical Reports Server (NTRS)

    Dent, E.; Hirsch, R. A.; Peterson, V. W.

    1970-01-01

    The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts.

  17. Fluid cooled vehicle drive module

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  18. Trade-off between speed and cost in shortcuts to adiabaticity

    NASA Astrophysics Data System (ADS)

    Campbell, Steve

    Recent years have witnessed a surge of interest in the study of thermal nano-machines that are capable of converting disordered forms of energy into useful work. It has been shown for both classical and quantum systems that external drivings can allow a system to evolve adiabatically even when driven in finite time, a technique commonly known as shortcuts to adiabaticity. It was suggested to use such external drivings to render the unitary processes of a thermodynamic cycle quantum adiabatic, while being performed in finite time. However, implementing an additional external driving requires resources that should be accounted for. Furthermore, and in line with natural intuition, these transformations should not be achievable in arbitrarily short times. First, we will present a computable measure of the cost of a shortcut to adiabaticity. Using this, we then examine the speed with which a quantum system can be driven. As a main result, we will establish a rigorous link between this speed, the quantum speed limit, and the (energetic) cost of implementing such a shortcut to adiabaticity. Interestingly, this link elucidates a trade-off between speed and cost, namely that instantaneous manipulation is impossible as it requires an infinite cost.

  19. Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment.

    PubMed

    Astumian, R D

    2018-01-11

    In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.

  20. Sustainment Study of Flipped Spherical Torus Plasmas on HIST

    NASA Astrophysics Data System (ADS)

    Takamiya, T.; Nagata, M.; Kawami, K.; Hasegawa, H.; Fukumoto, N.; Uyama, T.; Masamune, S.; Iida, M.; Katsurai, M.

    2003-10-01

    We have discovered that helicity-driven ST plasmas relax toward the flipped state by decreasing the external toroidal field and reversing its sign in time [1]. From the viewpoint of coaxial helicity injection (CHI) current drive, it is conceivable that the flipped ST (F-ST), which consists of only closed flux surfaces, compares favorably with the normal ST. We have investigated the sustainment mechanism of the F-ST plasma. The helicity-driven relaxed theory shows that there exist the mixed states of ST and F-ST in the flux conserver. Helicity is transferred to F-ST through the ST with coupling with gun electrodes. It has been found that magnetic reconnection between the toroidal magnetic field plays important role in the sustainment of the F-ST. The magnetic field in the outer edge region shows regular oscillations which have a large amplitude of the n=1 mode. The core region of the F-ST seems to be relatively stable. [1] M. Nagata, et al., Phys. Rev. Lett. 90, 225001 (2003)

  1. Summary of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Forest, C. B.

    2001-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ~100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ~ 15 m/s. A gaussian grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  2. Design of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; O'Connell, R.; Spence, E. J.

    2003-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ˜100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ˜ 15 m/s. A grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  3. Direct measurements of safety factor profiles with motional Stark effect for KSTAR tokamak discharges with internal transport barriers

    NASA Astrophysics Data System (ADS)

    Ko, J.; Chung, J.

    2017-06-01

    The safety factor profile evolutions have been measured from the plasma discharges with the external current drive mechanism such as the multi-ion-source neutral beam injection for the Korea Superconducting Tokamak Advanced Research (KSTAR) for the first time. This measurement has been possible by the newly installed motional Stark effect (MSE) diagnostic system that utilizes the polarized Balmer-alpha emission from the energetic neutral deuterium atoms induced by the Stark effect under the Lorentz electric field. The 25-channel KSTAR MSE diagnostic is based on the conventional photoelastic modulator approach with the spatial and temporal resolutions less than 2 cm (for the most of the channels except 2 to 3 channels inside the magnetic axis) and about 10 ms, respectively. The strong Faraday rotation imposed on the optical elements in the diagnostic system is calibrated out from a separate and well-designed polarization measurement procedure using an in-vessel reference polarizer during the toroidal-field ramp-up phase before the plasma experiment starts. The combination of the non-inductive current drive during the ramp-up and shape control enables the formation of the internal transport barrier where the pitch angle profiles indicate flat or slightly hollow profiles in the safety factor.

  4. Closed Loop Control of a Tethered Magnetic Capsule Endoscope

    PubMed Central

    Taddese, Addisu Z.; Slawinski, Piotr R.; Obstein, Keith L.; Valdastri, Pietro

    2017-01-01

    Magnetic field gradients have repeatedly been shown to be the most feasible mechanism for gastrointestinal capsule endoscope actuation. An inverse quartic magnetic force variation with distance results in large force gradients induced by small movements of a driving magnet; this necessitates robotic actuation of magnets to implement stable control of the device. A typical system consists of a serial robot with a permanent magnet at its end effector that actuates a capsule with an embedded permanent magnet. We present a tethered capsule system where a capsule with an embedded magnet is closed loop controlled in 2 degree-of-freedom in position and 2 degree-of-freedom in orientation. Capitalizing on the magnetic field of the external driving permanent magnet, the capsule is localized in 6-D allowing for both position and orientation feedback to be used in a control scheme. We developed a relationship between the serial robot's joint parameters and the magnetic force and torque that is exerted onto the capsule. Our methodology was validated both in a dynamic simulation environment where a custom plug-in for magnetic interaction was written, as well as on an experimental platform. The tethered capsule was demonstrated to follow desired trajectories in both position and orientation with accuracy that is acceptable for colonoscopy. PMID:28286886

  5. Preconcentration and Separation of Mixed-Species Samples Near a Nano-Junction in a Convergent Microchannel

    PubMed Central

    Chiu, Ping-Hsien; Weng, Chen-Hsun; Yang, Ruey-Jen

    2015-01-01

    A fluidic microchip incorporating a convergent microchannel and a Nafion-nanoporous membrane is proposed for the preconcentration and separation of multi-species samples on a single platform. In the device, sample preconcentration is achieved by means of the ion concentration polarization effect induced at the micro/nano interface under the application of an external electric field, while species separation is achieved by exploiting the different electrophoretic mobilities of the sample components. The experimental results show that the device is capable of detecting C-reactive protein (CRP) with an initial concentration as low as 9.50 × 10−6 mg/L given a sufficient preconcentration time and driving voltage. In addition, it is shown that a mixed-species sample consisting of three negatively-charged components (bovine serum albumin (BSA), tetramethylrhodamine(TAMRA) isothiocyanate-Dextran and fluorescent polymer beads) can be separated and preconcentrated within 20 min given a driving voltage of 100 V across 1 cm microchannel in length. In general, the present results confirm the feasibility of the device for the immunoassay or detection of various multi-species samples under low concentration in the biochemical and biomedical fields. The novel device can therefore improve the detection limit of traditional medical facilities. PMID:26690167

  6. Electromagnetic processes during phase commutation in field regulated reluctance machine

    NASA Astrophysics Data System (ADS)

    Shishkov, A. N.; Sychev, D. A.; Zemlyansky, A. A.; Krupnova, M. N.; Funk, T. A.; Ishmet'eva, V. D.

    2018-03-01

    The processes of currents switching in stator windings have been explained by the existence of the electromagnetic torque ripples in the electric drive with the field-regulated reluctance machine. The maximum value of ripples in the open loop control system for the six-phase machine can reach 20 percent from the developed electromagnetic torque. This method allows one to make calculation of ripple spike towards average torque developed by the electromotor for the different number of phases. Application of a trapezoidal form of current at six phases became the solution. In case of a less number of phases than six, a ripple spike considerably increases, which is inadmissible. On the other hand, increasing the number of phases tends to the increase of the semiconductor inverter external dimensions based on the inconspicuous decreasing of a ripple spike. The creation and usage of high-speed control loops of current (HCLC) have been recommended for a reduction of the electromagnetic torque’s ripple level, as well as the appliance of positive current feedback in switching phase currents. This decision allowed one to receive a mean value of the torque more than 10%, compared to system without change, to reduce greatly ripple spike of the electromagnetic torque. The possibility of the electric drive effective operation with FRRM in emergency operation has been shown.

  7. Closed Loop Control of a Tethered Magnetic Capsule Endoscope.

    PubMed

    Taddese, Addisu Z; Slawinski, Piotr R; Obstein, Keith L; Valdastri, Pietro

    2016-06-01

    Magnetic field gradients have repeatedly been shown to be the most feasible mechanism for gastrointestinal capsule endoscope actuation. An inverse quartic magnetic force variation with distance results in large force gradients induced by small movements of a driving magnet; this necessitates robotic actuation of magnets to implement stable control of the device. A typical system consists of a serial robot with a permanent magnet at its end effector that actuates a capsule with an embedded permanent magnet. We present a tethered capsule system where a capsule with an embedded magnet is closed loop controlled in 2 degree-of-freedom in position and 2 degree-of-freedom in orientation. Capitalizing on the magnetic field of the external driving permanent magnet, the capsule is localized in 6-D allowing for both position and orientation feedback to be used in a control scheme. We developed a relationship between the serial robot's joint parameters and the magnetic force and torque that is exerted onto the capsule. Our methodology was validated both in a dynamic simulation environment where a custom plug-in for magnetic interaction was written, as well as on an experimental platform. The tethered capsule was demonstrated to follow desired trajectories in both position and orientation with accuracy that is acceptable for colonoscopy.

  8. Non-Equlibrium Driven Dynamics of Continuous Attractors in Place Cell Networks

    NASA Astrophysics Data System (ADS)

    Zhong, Weishun; Kim, Hyun Jin; Schwab, David; Murugan, Arvind

    Attractors have found much use in neuroscience as a means of information processing and decision making. Examples include associative memory with point and continuous attractors, spatial navigation and planning using place cell networks, dynamic pattern recognition among others. The functional use of such attractors requires the action of spatially and temporally varying external driving signals and yet, most theoretical work on attractors has been in the limit of small or no drive. We take steps towards understanding the non-equilibrium driven dynamics of continuous attractors in place cell networks. We establish an `equivalence principle' that relates fluctuations under a time-dependent external force to equilibrium fluctuations in a `co-moving' frame with only static forces, much like in Newtonian physics. Consequently, we analytically derive a network's capacity to encode multiple attractors as a function of the driving signal size and rate of change.

  9. Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism

    NASA Technical Reports Server (NTRS)

    Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.

    2008-01-01

    Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses for assessing whether the Door Drive Mechanism (DDM) was subjected to excessive additional stress, and more importantly, to evaluate the magnitude of the induced step or gap with respect to shuttle s body tiles. To model the flexibility of the DDM, a lumped parameter approximation was used to capture the compliance of individual parts within the drive linkage. These stiffness approximations were then validated using FEA and iteratively updated in the model to converge on the actual distributed parameter equivalent stiffnesses. The goal of the analyses is to determine the deflections in the mechanism and whether or not the deflections are in the region of elastic or plastic deformation. Plastic deformation may affect proper closure of the ETD and would impact aero-heating during re-entry.

  10. Recurrence plots revisited

    NASA Astrophysics Data System (ADS)

    Casdagli, M. C.

    1997-09-01

    We show that recurrence plots (RPs) give detailed characterizations of time series generated by dynamical systems driven by slowly varying external forces. For deterministic systems we show that RPs of the time series can be used to reconstruct the RP of the driving force if it varies sufficiently slowly. If the driving force is one-dimensional, its functional form can then be inferred up to an invertible coordinate transformation. The same results hold for stochastic systems if the RP of the time series is suitably averaged and transformed. These results are used to investigate the nonlinear prediction of time series generated by dynamical systems driven by slowly varying external forces. We also consider the problem of detecting a small change in the driving force, and propose a surrogate data technique for assessing statistical significance. Numerically simulated time series and a time series of respiration rates recorded from a subject with sleep apnea are used as illustrative examples.

  11. An open-source laser electronics suite

    NASA Astrophysics Data System (ADS)

    Pisenti, Neal C.; Reschovsky, Benjamin J.; Barker, Daniel S.; Restelli, Alessandro; Campbell, Gretchen K.

    2016-05-01

    We present an integrated set of open-source electronics for controlling external-cavity diode lasers and other instruments in the laboratory. The complete package includes a low-noise circuit for driving high-voltage piezoelectric actuators, an ultra-stable current controller based on the design of, and a high-performance, multi-channel temperature controller capable of driving thermo-electric coolers or resistive heaters. Each circuit (with the exception of the temperature controller) is designed to fit in a Eurocard rack equipped with a low-noise linear power supply capable of driving up to 5 A at +/- 15 V. A custom backplane allows signals to be shared between modules, and a digital communication bus makes the entire rack addressable by external control software over TCP/IP. The modular architecture makes it easy for additional circuits to be designed and integrated with existing electronics, providing a low-cost, customizable alternative to commercial systems without sacrificing performance.

  12. On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed

    1996-01-01

    A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.

  13. Magnetic Fields on the National Ignition Facility (MagNIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, D.; Folta, J.

    2016-08-12

    A magnetized target capability on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been investigated. Stakeholders’ needs and project feasibility analysis were considered in order to down-select from a wide variety of different potential magnetic field magnitudes and volumes. From the large range of different target platforms, laser configurations, and diagnostics configurations of interest to the stakeholders, the gas-pipe platform has been selected for the first round of magnetized target experiments. Gas pipe targets are routinely shot on the NIF and provide unique value for external collaborators. High-level project goals have been established including an experimentallymore » relevant 20Tesla magnetic field magnitude. The field will be achieved using pulsed power-driven coils. A system architecture has been proposed. The pulsed power drive system will be located in the NIF target bay. This decision provides improved maintainability and mitigates equipment safety risks associated with explosive failure of the drive capacitor. High-level and first-level subsystem requirements have been established. Requirements have been included for two distinct coil designs – full solenoid and quasi-Helmholtz. A Failure Modes and Effects Analysis (FMEA) has been performed and documented. Additional requirements have been derived from the mitigations included in the FMEA document. A project plan is proposed. The plan includes a first phase of electromagnetic simulations to assess whether the design will meet performance requirements, then a second phase of risk mitigation projects to address the areas of highest technical risk. The duration from project kickoff to the first magnetized target shot is approximately 29 months.« less

  14. Predictive Power-balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2013-10-01

    Local helicity injection (LHI) with outer poloidal-field (PF) induction for solenoid-free startup is being studied on PEGASUS, reaching Ip <= 0 . 175 MA with 6 kA of injected current. A lumped-parameter circuit model for predicting the performance of LHI initiated plasmas is under development. The model employs energy and helicity balance, and includes applied PF ramping and the inductive effects of shape evolution. Low- A formulations for both the plasma external inductance and a uniform equilibrium-field are used to estimate inductive voltages. PEGASUS LHI plasmas are created near the outboard injectors with aspect ratio (A) ~ 5-6.5 and grow inward to fill the confinement region at A <= 1 . 3 . Initial results match experimental Ip (t) trajectories within 15 kA with a prescribed geometry evolution. Helicity injection is the largest driving term in the initial phase, but in the later phase is reduced to 20-45% of the total drive as PF induction and decreasing plasma inductance become dominant. In contrast, attaining ~1 MA non-solenoidal startup via LHI on NSTX-U will require operation in the regime where helicity injection drive exceeds inductive and geometric changes at full size. A large-area multi-injector array will increase available helicity injection by 3-4 times and allow exploration of this helicity-dominated regime at Ip ~ 0 . 3 MA in PEGASUS. Comparison of model predictions with time-evolving magnetic equilibria is in progress for model validation. Work supported by US DOE Grant DE-FG02-96ER54375.

  15. The interaction of psychological and physiological homeostatic drives and role of general control principles in the regulation of physiological systems, exercise and the fatigue process - The Integrative Governor theory.

    PubMed

    St Clair Gibson, A; Swart, J; Tucker, R

    2018-02-01

    Either central (brain) or peripheral (body physiological system) control mechanisms, or a combination of these, have been championed in the last few decades in the field of Exercise Sciences as how physiological activity and fatigue processes are regulated. In this review, we suggest that the concept of 'central' or 'peripheral' mechanisms are both artificial constructs that have 'straight-jacketed' research in the field, and rather that competition between psychological and physiological homeostatic drives is central to the regulation of both, and that governing principles, rather than distinct physical processes, underpin all physical system and exercise regulation. As part of the Integrative Governor theory we develop in this review, we suggest that both psychological and physiological drives and requirements are underpinned by homeostatic principles, and that regulation of the relative activity of each is by dynamic negative feedback activity, as the fundamental general operational controller. Because of this competitive, dynamic interplay, we propose that the activity in all systems will oscillate, that these oscillations create information, and comparison of this oscillatory information with either prior information, current activity, or activity templates create efferent responses that change the activity in the different systems in a similarly dynamic manner. Changes in a particular system are always the result of perturbations occurring outside the system itself, the behavioural causative 'history' of this external activity will be evident in the pattern of the oscillations, and awareness of change occurs as a result of unexpected rather than planned change in physiological activity or psychological state.

  16. Flexible integrated diode-transistor logic (DTL) driving circuits based on printed carbon nanotube thin film transistors with low operation voltage.

    PubMed

    Liu, Tingting; Zhao, Jianwen; Xu, Weiwei; Dou, Junyan; Zhao, Xinluo; Deng, Wei; Wei, Changting; Xu, Wenya; Guo, Wenrui; Su, Wenming; Jie, Jiansheng; Cui, Zheng

    2018-01-03

    Fabrication and application of hybrid functional circuits have become a hot research topic in the field of printed electronics. In this study, a novel flexible diode-transistor logic (DTL) driving circuit is proposed, which was fabricated based on a light emitting diode (LED) integrated with printed high-performance single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs). The LED, which is made of AlGaInP on GaAs, is commercial off-the-shelf, which could generate free electrical charges upon white light illumination. Printed top-gate TFTs were made on a PET substrate by inkjet printing high purity semiconducting SWCNTs (sc-SWCNTs) ink as the semiconductor channel materials, together with printed silver ink as the top-gate electrode and printed poly(pyromellitic dianhydride-co-4,4'-oxydianiline) (PMDA/ODA) as gate dielectric layer. The LED, which is connected to the gate electrode of the TFT, generated electrical charge when illuminated, resulting in biased gate voltage to control the TFT from "ON" status to "OFF" status. The TFTs with a PMDA/ODA gate dielectric exhibited low operating voltages of ±1 V, a small subthreshold swing of 62-105 mV dec -1 and ON/OFF ratio of 10 6 , which enabled DTL driving circuits to have high ON currents, high dark-to-bright current ratios (up to 10 5 ) and good stability under repeated white light illumination. As an application, the flexible DTL driving circuit was connected to external quantum dot LEDs (QLEDs), demonstrating its ability to drive and to control the QLED.

  17. Magnetic Eigenmodes in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Nornberg, M. D.; Bayliss, R. A.; Forest, C. B.; Kendrick, R. D.; O'Connell, R.; Spence, E. J.

    2002-11-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is only possible for specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from the water experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities of 15 m/s. A gaussian grid of 66 Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. A pair of magnetic field coils produce a roughly uniform field inside the sphere with a centerline field strength of 100 gauss. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  18. Sleep Better at Night...Back Up Your Data.

    ERIC Educational Resources Information Center

    Smith, Russell

    1996-01-01

    Discusses the need to back up computer files, and describes the technological evolution of back-up methods. Reviews tape drive and external hard drive back-up products offered by computer companies and presents back-up strategies to use with all back-up methods. A sidebar lists information on the reviewed products. (JMV)

  19. An epidemiological model for externally sourced vector-borne viruses applied to Bean yellow mosaic virus in lupin crops in a Mediterranean-type environment.

    PubMed

    Maling, T; Diggle, A J; Thackray, D J; Siddique, K H M; Jones, R A C

    2008-12-01

    A hybrid mechanistic/statistical model was developed to predict vector activity and epidemics of vector-borne viruses spreading from external virus sources to an adjacent crop. The pathosystem tested was Bean yellow mosaic virus (BYMV) spreading from annually self-regenerating, legume-based pastures to adjacent crops of narrow-leafed lupin (Lupinus angustifolius) in the winter-spring growing season in a region with a Mediterranean-type environment where the virus persists over summer within dormant seed of annual clovers. The model uses a combination of daily rainfall and mean temperature during late summer and early fall to drive aphid population increase, migration of aphids from pasture to lupin crops, and the spread of BYMV. The model predicted time of arrival of aphid vectors and resulting BYMV spread successfully for seven of eight datasets from 2 years of field observations at four sites representing different rainfall and geographic zones of the southwestern Australian grainbelt. Sensitivity analysis was performed to determine the relative importance of the main parameters that describe the pathosystem. The hybrid mechanistic/statistical approach used created a flexible analytical tool for vector-mediated plant pathosystems that made useful predictions even when field data were not available for some components of the system.

  20. Hierarchically structured nanowires on and nanosticks in ZnO microtubes

    PubMed Central

    Rivaldo-Gómez, C. M.; Cabrera-Pasca, G. A.; Zúñiga, A.; Carbonari, A. W.; Souza, J. A.

    2015-01-01

    We report both coaxial core-shell structured microwires and ZnO microtubes with growth of nanosticks in the inner and nanowires on the outer surface as a novel hierarchical micro/nanoarchitecture. First, a core-shell structure is obtained—the core is formed by metallic Zn and the semiconducting shell is comprised by a thin oxide layer covered with a high density of nanowires. Such Zn/ZnO core-shell array showed magnetoresistance effect. It is suggested that magnetic moments in the nanostructured shell superimposes to the external magnetic field enhancing the MR effect. Second, microtubes decorated with nanowires on the external surface are obtained. In an intermediate stage, a hierarchical morphology comprised of discrete nanosticks in the inner surface of the microtube has been found. Hyperfine interaction measurements disclosed the presence of confined metallic Zn regions at the interface between linked ZnO grains forming a chain and a ZnO thicker layer. Surprisingly, the metallic clusters form highly textured thin flat regions oriented parallel to the surface of the microtube as revealed by the electrical field gradient direction. The driving force to grow the internal nanosticks has been ascribed to stress-induced migration of Zn ions due to compressive stress caused by the presence of these confined regions. PMID:26456527

  1. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection.

    PubMed

    Carta, R; Tortora, G; Thoné, J; Lenaerts, B; Valdastri, P; Menciassi, A; Dario, P; Puers, R

    2009-12-15

    This paper describes the integration of an active locomotion module in a wirelessly powered endoscopic capsule. The device is a submersible capsule optimized to operate in a fluid environment in a liquid-distended stomach. A 3D inductive link is used to supply up to 400mW to the embedded electronics and a set of 4 radio-controlled motor propellers. The design takes advantage of a ferrite-core in the receiving coil-set. This approach significantly improves the coupling with the external field source with respect to earlier work by the group. It doubles the power that can be received with a coreless coil-set under identical external conditions. The upper limit of the received power was achieved complying with the strict regulations for safe exposure of biological tissue to variable magnetic fields. The wireless transferred power was proven to be sufficient to achieve the speed of 7cm/s in any directions. An optimized locomotion strategy was defined which limits the power consumption by running only 2 motors at a time. A user interface and a joystick controller allow to fully drive the capsule in an intuitive manner. The device functionalities were successfully tested in a dry and a wet environment in a laboratory set-up.

  2. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture

    DOE PAGES

    Zhang, Mingliang; Magagnosc, Daniel J.; Liberal, Iñigo; ...

    2016-11-07

    Next-generation ‘smart’ nanoparticle systems should be precisely engineered in size, shape and composition to introduce multiple functionalities, unattainable from a single material. Bottom-up chemical methods are prized for the synthesis of crystalline nanoparticles, that is, nanocrystals, with size- and shape-dependent physical properties, but they are less successful in achieving multifunctionality. Top-down lithographic methods can produce multifunctional nanoparticles with precise size and shape control, yet this becomes increasingly difficult at sizes of ~10 nm. In this paper, we report the fabrication of multifunctional, smart nanoparticle systems by combining top-down fabrication and bottom-up self-assembly methods. Particularly, we template nanorods from a mixturemore » of superparamagnetic Zn 0.2Fe 2.8O 4 and plasmonic Au nanocrystals. The superparamagnetism of Zn 0.2Fe 2.8O 4 prevents these nanorods from spontaneous magnetic-dipole-induced aggregation, while their magnetic anisotropy makes them responsive to an external field. Ligand exchange drives Au nanocrystal fusion and forms a porous network, imparting the nanorods with high mechanical strength and polarization-dependent infrared surface plasmon resonances. Finally, the combined superparamagnetic and plasmonic functions enable switching of the infrared transmission of a hybrid nanorod suspension using an external magnetic field.« less

  3. Far-from-equilibrium magnetic granular layers: dynamic patterns, magnetic order and self-assembled swimmers

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey

    2010-03-01

    Ensembles of interacting particles subject to an external periodic forcing often develop nontrivial collective behavior and self-assembled dynamic patterns. We study emergent phenomena in magnetic granular ensembles suspended at a liquid-air and liquid-liquid interfaces and subjected to a transversal alternating magnetic field. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (in particular, ``magnetic snakes'', ``asters'', ``clams'') emerging in such systems in a certain range of excitation parameters. These non-equilibrium dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex magnetic ordering. Transition between different self-assembled phases with parameters of external driving magnetic field is observed. I will show that above some frequency threshold magnetic snakes spontaneously break the symmetry of the self-induced surface flows (symmetry breaking instability) and turn into swimmers. Self-induced surface flows symmetry can be also broken in a controlled fashion by introduction of a large bead to a magnetic snake (bead-snake hybrid), that transforms it into a robust self-locomoting entity. Some features of the self-localized structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows.

  4. Changes in driving behavior and cognitive performance with different breath alcohol concentration levels.

    PubMed

    Liu, Yung-Ching; Fu, Shing-Mei

    2007-06-01

    This study examines the changes in driving behavior and cognitive performance of drivers with different breath alcohol concentration (BrAC) levels. Eight licensed drivers, aged between 20 and 30 years, with BrAC levels of 0.00, 0.25, 0.4 and 0.5 mg/l performed simulated driving tests under high- and low-load conditions. Subjects were asked to assess their subjective psychological load at specified intervals and perform various tasks. The outcome was measured in terms of reaction times for task completion, accuracy rates, and driver's driving behavior. The effects of BrAC vary depending on the task. Performance of tasks involving attention shift, information processing, and short-term memory showed significant deterioration with increasing BrAC, while dangerous external vehicle driving behavior occurred only when the BrAC reached 0.4 mg/l and the deterioration was marked. We can conclude that the cognitive faculty is the first to be impaired by drinking resulting in deteriorated performance in tasks related to divided attention, short-term memory, logical reasoning, followed by visual perception. On the other hand, increasing alcohol dose may not pose an immediate impact on the external vehicle driving behavior but may negatively affect the driver's motor behavior even at low BrAC levels. Experience and will power could compensate for the negative influence of alcohol enabling the drivers to remain in full steering control. This lag between alcohol consumption and impaired driving performance may mislead the drivers in thinking that they are still capable of safe steering and cause them to ignore the potential dangers of drunk driving.

  5. On-chip quantum tomography of mechanical nanoscale oscillators with guided Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Wüster, S.; Rost, J.-M.

    2017-07-01

    Nanomechanical oscillators as well as Rydberg-atomic waveguides hosted on microfabricated chip surfaces hold promise to become pillars of future quantum technologies. In a hybrid platform with both, we show that beams of Rydberg atoms in waveguides can quantum coherently interrogate and manipulate nanomechanical elements, allowing full quantum state tomography. Central to the tomography are quantum nondemolition measurements using the Rydberg atoms as probes. Quantum coherent displacement of the oscillator is also made possible by driving the atoms with external fields while they interact with the oscillator. We numerically demonstrate the feasibility of this fully integrated on-chip control and read-out suite for quantum nanomechanics, taking into account noise and error sources.

  6. Capture of nonmagnetic particles and living cells using a microelectromagnetic system

    NASA Astrophysics Data System (ADS)

    Aki, Atsushi; Ito, Osamu; Morimoto, Hisao; Nagaoka, Yutaka; Nakajima, Yoshikata; Mizuki, Toru; Hanajiri, Tatsuro; Usami, Ron; Maekawa, Toru

    2008-11-01

    We develop a microelectromagnetic system to trap nonmagnetic materials such as micropolystyrene particles and yeast cells in particular areas. We fabricate gold films, the width of the central narrow part is 22 μm, and flow an electric current through the films. We then apply an external uniform dc magnetic field to weaken the local magnetic field at the narrow part so that a nonuniform magnetic field is produced. We demonstrate that the particles, which are dispersed in magnetic fluid, are successfully trapped at the narrow part of the film. We evaluate the driving force acting on a microparticle in the nonuniform magnetic field and carry out a Stokesian dynamics simulation of the motion of the particles. We show that yeast cells are also trapped at the narrow part of the film. Finally, we fabricate multichannel microelectromagnets so that yeast cells are trapped at multiple points in the microelectromagnetic system. The present system may be applied to cell transfection on a cell microarray and, therefore, eventually contribute to progress in the identification and determination technologies of different drug targets and the functions of genes and proteins.

  7. Laboratory Evidence That Line-Tied Toroidal Magnetic Fields Can Suppress Loss-of-Equilibrium Flux Rope Eruptions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W. R., II; Jara-Almonte, J.

    2014-12-01

    Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (potential) and internal (plasma-generated) magnetic fields. We find that forces due to the line-tied toroidal magnetic field, which are not included in the basic torus instability theory, can play a major role in preventing eruptions. The dependence of these toroidal magnetic forces on various potential field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  8. Determination of eddy current response with magnetic measurements.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B

    2017-09-01

    Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.

  9. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  10. Thermally and electrically controllable multiple high harmonics generation by harmonically driven quasi-two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Maglevanny, I. I.; Smolar, V. A.; Karyakina, T. I.

    2018-06-01

    In this paper, we consider the activation processes in nonlinear meta-stable system based on a lateral (quasi-two-dimensional) superlattice and study the dynamics of such a system externally driven by a harmonic force. The internal control parameters are the longitudinal applied electric field and the sample temperature. The spontaneous transverse electric field is considered as an order parameter. The forced violations of order parameter are considered as a response of a system to periodic driving. We investigate the cooperative effects of self-organization and high harmonic forcing from the viewpoint of catastrophe theory and show the possibility of generation of third and higher odd harmonics in output signal that lead to distortion of its wave front. A higher harmonics detection strategy is further proposed and explained in detail by exploring the influences of system parameters on the response output of the system that are discussed through numerical simulations.

  11. Toroidal plasmoid generation via extreme hydrodynamic shear

    PubMed Central

    Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud

    2017-01-01

    Saint Elmo’s fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. PMID:29146825

  12. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.

    PubMed

    Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A

    2012-05-11

    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.

  13. Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Lyons, B. C.; Ferraro, N. M.; Paz-Soldan, C.; Nazikian, R.; Wingen, A.

    2017-04-01

    In order to understand the effect of rotation on the response of a plasma to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off-resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into suppression of edge-localized modes. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.

  14. Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations

    DOE PAGES

    Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.; ...

    2017-02-14

    In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.

    In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less

  16. Driving with Binocular Visual Field Loss? A Study on a Supervised On-Road Parcours with Simultaneous Eye and Head Tracking

    PubMed Central

    Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena

    2014-01-01

    Post-chiasmal visual pathway lesions and glaucomatous optic neuropathy cause binocular visual field defects (VFDs) that may critically interfere with quality of life and driving licensure. The aims of this study were (i) to assess the on-road driving performance of patients suffering from binocular visual field loss using a dual-brake vehicle, and (ii) to investigate the related compensatory mechanisms. A driving instructor, blinded to the participants' diagnosis, rated the driving performance (passed/failed) of ten patients with homonymous visual field defects (HP), including four patients with right (HR) and six patients with left homonymous visual field defects (HL), ten glaucoma patients (GP), and twenty age and gender-related ophthalmologically healthy control subjects (C) during a 40-minute driving task on a pre-specified public on-road parcours. In order to investigate the subjects' visual exploration ability, eye movements were recorded by means of a mobile eye tracker. Two additional cameras were used to monitor the driving scene and record head and shoulder movements. Thus this study is novel as a quantitative assessment of eye movements and an additional evaluation of head and shoulder was performed. Six out of ten HP and four out of ten GP were rated as fit to drive by the driving instructor, despite their binocular visual field loss. Three out of 20 control subjects failed the on-road assessment. The extent of the visual field defect was of minor importance with regard to the driving performance. The site of the homonymous visual field defect (HVFD) critically interfered with the driving ability: all failed HP subjects suffered from left homonymous visual field loss (HL) due to right hemispheric lesions. Patients who failed the driving assessment had mainly difficulties with lane keeping and gap judgment ability. Patients who passed the test displayed different exploration patterns than those who failed. Patients who passed focused longer on the central area of the visual field than patients who failed the test. In addition, patients who passed the test performed more glances towards the area of their visual field defect. In conclusion, our findings support the hypothesis that the extent of visual field per se cannot predict driving fitness, because some patients with HVFDs and advanced glaucoma can compensate for their deficit by effective visual scanning. Head movements appeared to be superior to eye and shoulder movements in predicting the outcome of the driving test under the present study scenario. PMID:24523869

  17. External electric field driving the ultra-low thermal conductivity of silicene.

    PubMed

    Qin, Guangzhao; Qin, Zhenzhen; Yue, Sheng-Ying; Yan, Qing-Bo; Hu, Ming

    2017-06-01

    The manipulation of thermal transport is in increasing demand as heat transfer plays a critical role in a wide range of practical applications, such as efficient heat dissipation in nanoelectronics and heat conduction hindering in solid-state thermoelectrics. It is well established that the thermal transport in semiconductors and insulators (phonons) can be effectively modulated by structure engineering or materials processing. However, almost all the existing approaches involve altering the original atomic structure of materials, which would be hindered due to either irreversible structure change or limited tunability of thermal conductivity. Motivated by the inherent relationship between phonon behavior and interatomic electrostatic interaction, we comprehensively investigate the effect of external electric field, a widely used gating technique in modern electronics, on the lattice thermal conductivity (κ). Taking two-dimensional silicon (silicene) as a model, we demonstrate that by applying an electric field (E z = 0.5 V Å -1 ) the κ of silicene can be reduced to a record low value of 0.091 W m -1 K -1 , which is more than two orders of magnitude lower than that without an electric field (19.21 W m -1 K -1 ) and is even comparable to that of the best thermal insulation materials. Fundamental insights are gained from observing the electronic structures. With an electric field applied, due to the screened potential resulting from the redistributed charge density, the interactions between silicon atoms are renormalized, leading to phonon renormalization and the modulation of phonon anharmonicity through electron-phonon coupling. Our study paves the way for robustly tuning phonon transport in materials without altering the atomic structure, and would have significant impact on emerging applications, such as thermal management, nanoelectronics and thermoelectrics.

  18. Auroral Acceleration, Solar Wind Driving, and Substorm Triggering (Invited)

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Liou, K.

    2010-12-01

    We use a data base of 4861 substorms identified by global UV images to investigate the substorm cycle dependence of various types of aurora, and to obtain new results on substorm triggering by external driving. Although all types of aurora increase at substorm onset, broadband (Alfvénic) aurora shows a particular association with substorms, and, especially, substorm onset. While diffuse electron and monoenergetic auroral precipitating power rises by 79% and 90% respectively following an onset, broadband aurora rises by 182%. In the first 10-15 minutes following onset, the power associated with Alfvénic acceleration is comparable to monoenergetic acceleration (also called “inverted-V” events). In general, this is not the case prior to onset, or indeed, during recovery. The rise time of the electron diffuse aurora following onset is much slower, about 50 minutes, and thus presumably extends into recovery. We also re-investigate the issue of solar wind triggering of substorms by considering not just changes in the solar wind prior to onset, but how the pattern of changes differs from random and comparable epochs. We verify that a preonset reduction of solar wind driving (“northward turning” in the simplest case of IMF Bz) holds for the superposed epoch mean of the ensemble. Moreover, this reduction is not the result of a small number of substorms with large changes. The reduction starts about 20 min prior to substorm onset, which, although a longer delay than previously suggested, is appropriate given the various propagation time delays involved. Next, we compare the IMF to random solar wind conditions. Not surprisingly, solar wind driving prior to onset averages somewhat higher than random. Although about a quarter of substorms occur for steady northward IMF conditions, more general coupling functions such as the Kan-Lee electric field, the Borovosky function, or our dΦMP/dt, show very few substorms occur following weak dayside merging. We assembled a data base of solar wind times with slightly elevated conditions, chosen to resemble the integrated driving typical before substorm onsets, but otherwise randomly occuring. We looked at how the IMF subsequently changed after these random elevations, compared to the changes preceding substorms. It turns out that mere reversion to the mean leads to a “northward turning” after the imposed selection criterion end. Thus (slightly generalizing the view of Morley and Freeman), substorms require solar wind driving which produces dayside merging, but external triggering is probably insignificant.

  19. Magnetic sensor technology based on giant magneto-impedance effect in amorphous wires

    NASA Astrophysics Data System (ADS)

    Wang, X.; Teng, Y.; Wang, C.; Li, Q.

    2012-12-01

    This project focuses on giant magneto-impedance (GMI) effect that found in the soft magnetic amorphous wires in recent years, when AC current through the amorphous wire, induced voltage in the wires would change sensitively with a small external magnetic field along the wire vertical imposed changes. GMI magnetic sensor could compensate for the shortcomings of the traditional magnetic sensors and detect weak magnetic field, meanwhile the characteristics of high stability, high sensitivity, high resolution, fast response and low power consumption, which makes it becoming the focus of extensive research at home and abroad and being new mode of the next age of the physical geography observation. The emphasis of the project is the research on the high sensitivity amorphous wire detector and the low noise capability circuit design. In this paper, it is analyzed the theory of the Amorphous Wire Giant-Magneto-Impedance (AWGMI) effect and its influence factors in details, and expatiated the sensor principle based on AWGMI. On the basis of AWGMI, the experimental system of the micro-magnetic sensor is designed, which is composed of the detecting signals, processing and collecting data, display and transmitting data circuit and corresponding functional software etc. The properties of this kind of micro-magnetic sensor are studied by experiments, such as its linearity, sensitivity, frequency response, noise, stability and temperature properties and so on, especially analyzed the relation of the drive signals with all kinds of characteristics. The results show that there is no direct relationship between the frequency of the drive signals and linear property of the sensor. But with the increase of its frequency, some fluctuation appears on the characteristic curves; the direct relation is found between the frequency of the drive signal and sensitivity, with the increase of the frequency, AWGMI effect increases monotonously. It leads to the amplitude of the output voltage increase with the change of the outer magnetic field and results in the increase of the sensor sensitivity; it can be enhanced the corresponding rate of the sensor to the low frequency magnetic field by increasing the drive signal frequency. By experiments, the best sensitivity and noise valves is 0.5225 mV/nT, 1.566nT respectively.

  20. Extension of Gibbs-Duhem equation including influences of external fields

    NASA Astrophysics Data System (ADS)

    Guangze, Han; Jianjia, Meng

    2018-03-01

    Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.

  1. Topologically invariant macroscopic statistics in balanced networks of conductance-based integrate-and-fire neurons.

    PubMed

    Yger, Pierre; El Boustani, Sami; Destexhe, Alain; Frégnac, Yves

    2011-10-01

    The relationship between the dynamics of neural networks and their patterns of connectivity is far from clear, despite its importance for understanding functional properties. Here, we have studied sparsely-connected networks of conductance-based integrate-and-fire (IF) neurons with balanced excitatory and inhibitory connections and with finite axonal propagation speed. We focused on the genesis of states with highly irregular spiking activity and synchronous firing patterns at low rates, called slow Synchronous Irregular (SI) states. In such balanced networks, we examined the "macroscopic" properties of the spiking activity, such as ensemble correlations and mean firing rates, for different intracortical connectivity profiles ranging from randomly connected networks to networks with Gaussian-distributed local connectivity. We systematically computed the distance-dependent correlations at the extracellular (spiking) and intracellular (membrane potential) levels between randomly assigned pairs of neurons. The main finding is that such properties, when they are averaged at a macroscopic scale, are invariant with respect to the different connectivity patterns, provided the excitatory-inhibitory balance is the same. In particular, the same correlation structure holds for different connectivity profiles. In addition, we examined the response of such networks to external input, and found that the correlation landscape can be modulated by the mean level of synchrony imposed by the external drive. This modulation was found again to be independent of the external connectivity profile. We conclude that first and second-order "mean-field" statistics of such networks do not depend on the details of the connectivity at a microscopic scale. This study is an encouraging step toward a mean-field description of topological neuronal networks.

  2. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  3. Propulsion and power for 21st century aviation

    NASA Astrophysics Data System (ADS)

    Sehra, Arun K.; Whitlow, Woodrow

    2004-05-01

    Air transportation in the new millennium will require revolutionary solutions to meet public demand for improving safety, reliability, environmental compatibility, and affordability. NASA's vision for 21st century aircraft is to develop propulsion systems that are intelligent, highly efficient, virtually inaudible (outside airport boundaries), and have near zero harmful emissions (CO 2 and NO x). This vision includes intelligent engines capable of adapting to changing internal and external conditions to optimally accomplish missions with either minimal or no human intervention. Distributed vectored propulsion will replace current two to four wing mounted and fuselage mounted engine configurations with a large number of small, mini, or micro engines. Other innovative concepts, such as the pulse detonation engine (PDE), which potentially can replace conventional gas turbine engines, also are reviewed. It is envisioned that a hydrogen economy will drive the propulsion system revolution towards the ultimate goal of silent aircrafts with zero harmful emissions. Finally, it is envisioned that electric drive propulsion based on fuel cell power will generate electric power, which in turn will drive propulsors to produce the desired thrust. This paper reviews future propulsion and power concepts that are under development at the National Aeronautics and Space Administration's (NASA) John H. Glenn Research Center at Lewis Field, Cleveland, Ohio, USA.

  4. Magneto-thermal Disk Winds from Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  5. Dynamic response and transfer function of social systems: A neuro-inspired model of collective human activity patterns.

    PubMed

    Lymperopoulos, Ilias N

    2017-10-01

    The interaction of social networks with the external environment gives rise to non-stationary activity patterns reflecting the temporal structure and strength of exogenous influences that drive social dynamical processes far from an equilibrium state. Following a neuro-inspired approach, based on the dynamics of a passive neuronal membrane, and the firing rate dynamics of single neurons and neuronal populations, we build a state-of-the-art model of the collective social response to exogenous interventions. In this regard, we analyze online activity patterns with a view to determining the transfer function of social systems, that is, the dynamic relationship between external influences and the resulting activity. To this end, first we estimate the impulse response (Green's function) of collective activity, and then we show that the convolution of the impulse response with a time-varying external influence field accurately reproduces empirical activity patterns. To capture the dynamics of collective activity when the generating process is in a state of statistical equilibrium, we incorporate into the model a noisy input convolved with the impulse response function, thus precisely reproducing the fluctuations of stationary collective activity around a resting value. The outstanding goodness-of-fit of the model results to empirical observations, indicates that the model explains human activity patterns generated by time-dependent external influences in various socio-economic contexts. The proposed model can be used for inferring the temporal structure and strength of external influences, as well as the inertia of collective social activity. Furthermore, it can potentially predict social activity patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Vehicle drive module having improved cooling configuration

    DOEpatents

    Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2007-02-13

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  7. How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Smart

    2014-05-01

    This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

  8. Single-molecule interfacial electron transfer dynamics in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Dhital, Bharat

    This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of molecule on ITO surface. Finally, the electric field effect on the interface properties has been probed by using surface-enhanced Raman spectroscopy and supported by density functional theory calculations in alizarin-TiO2 system. The perturbation, created by the external potential, has been observed to cause a shift and/or splitting interfacial bond vibrational mode, typical indicator of the coupling energy changes between alizarin and TiO2. Such splitting provides evidence for electric field-dependent electronic coupling changes that have a significant impact on the interfacial electron transfer dynamics.

  9. [Effect of air-electric fields on driving and reaction patterns. Test subjects in the car driving simulator (author's transl)].

    PubMed

    Anselm, D; Danner, M; Kirmaier, N; König, H L; Müller-Limmroth, W; Reis, A; Schauerte, W

    1977-06-10

    In the relevant frequency range of about 10 Hertz cars can be considered very largely as Faraday cages and consequently as screens against air-electric fields. This may have a negative influence on driving and reaction patterns as a result. In an extensive investigation 48 subjects in a driving simulator were exposed to definite artificially produced air-electric fields. The self-rating of the performance and concentration of the subjects, reaction times and driving errors were determined. While the reaction times remained practically constant, the driving behavior of the subjects improved.

  10. Direct drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  11. Implantable control, telemetry, and solar energy system in the moving actuator type total artificial heart.

    PubMed

    Ahn, J M; Lee, J H; Choi, S W; Kim, W E; Omn, K S; Park, S K; Kim, W G; Roh, J R; Min, B G

    1998-03-01

    The moving actuator type total artificial heart (TAH) developed in the Seoul National University has numerous design improvements based upon the digital signal processor (DSP). These improvements include the implantability of all electronics, an automatic control algorithm, and extension of the battery run-time in connection with an amorphous silicon solar system (SS). The implantable electronics consist of the motor drive, main processor, intelligent Li ion battery management (LIBM) based upon the DSP, telemetry system, and transcutaneous energy transmission (TET) system. Major changes in the implantable electronics include decreasing the temperature rise by over 21 degrees C on the motor drive, volume reduction (40 x 55 x 33 mm, 7 cell assembly) of the battery pack using a Li ion (3.6 V/cell, 900 mA.h), and improvement of the battery run-time (over 40 min) while providing the cardiac output (CO) of 5 L/min at 100 mm Hg afterload when the external battery for testing is connected with the SS (2.5 W, 192.192, 1 kg) for the external battery recharge or the partial TAH drive. The phase locked loop (PLL) based telemetry system was implemented to improve stability and the error correction DSP algorithm programmed to achieve high accuracy. A field focused light emitting diode (LED) was used to obtain low light scattering along the propagation path, similar to the optical property of the laser and miniature sized, mounted on the pancake type TET coils. The TET operating resonance frequency was self tuned in a range of 360 to 410 kHz to provide enough power even at high afterloads. An automatic cardiac output regulation algorithm was developed based on interventricular pressure analysis and carried out in several animal experiments successfully. All electronics have been evaluated in vitro and in vivo and prepared for implantation of the TAH. Substantial progress has been made in designing a completely implantable TAH at the preclinical stage.

  12. Direct-drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  13. Water transparency distribution under varied currents in the largest river-connected lake of China.

    PubMed

    Wang, Hua; Zhao, Yijun; Zhang, Zhizhang; Pang, Yong; Liang, Dongfang

    2017-01-01

    Water transparency is an important ecological indicator for shallow lakes. The largest shallow lake, Poyang Lake, as well as the most typical river-connected lake in China was selected as the research area. In view of the complicated water-sediment conditions induced by its frequent water exchange with external rivers, the dominant factors driving water transparency were determined against the field investigated data from 2003 to 2013 and a specific driving function was established. A numerical model coupling suspended sediment, Chl-a and chemical oxygen demand was developed and validated, and the spatial water transparency distributions under three typical current structures in Poyang Lake, Gravity-style, Jacking-style and Backflow-style, were quantitatively estimated. The following results stood out: water transparency in the lake varied distinctly with the current status; Backflow-style current was basically characterized by the lowest water transparency, while that under Jacking-style was the highest due to the lower sediment carrying capacity. In some outlying regions in the lake, where the water current is hardly influenced by the mainstream, the water transparency was always kept at a stable level.

  14. Application of the Landau-Zener-Stückelberg-Majorana dynamics to the electrically driven flip of a hole spin

    NASA Astrophysics Data System (ADS)

    Pasek, W. J.; Maialle, M. Z.; Degani, M. H.

    2018-03-01

    An idea of employing the Landau-Zener-Stückelberg-Majorana dynamics to flip a spin of a single ground state hole is introduced and explored by a time-dependent simulation. This configuration interaction study considers a hole confined in a quantum molecule formed in an InSb 〈111 〉 quantum wire by application of an electrostatic potential. An up-down spin-mixing avoided crossing is formed by nonaxial terms in the Kohn-Luttinger Hamiltonian and the Dresselhaus spin-orbit one. Manipulation of the system is possible by the dynamic change of an external vertical electric field, which enables the consecutive driving of the hole through two anticrossings. Moreover, a simple model of the power-law-type noise that impedes precise electric control of the system is included in the form of random telegraph noise to estimate the limitations of the working conditions. We show that in principle the process is possible, but it requires precise control of the parameters of the driving impulse.

  15. Improving Self-Assembly by Varying the Temperature Periodically with Time

    NASA Astrophysics Data System (ADS)

    Raz, Oren; Jarzynski, Christopher

    Self-assembly (SA) is the process by which basic components organize into a larger structure without external guidance. These processes are common in Nature, and also have technological applications, e.g. growing a crystal with a specific structure. So far, artificial SA processes have been designed mostly using diffusive building blocks with high specificity and directionality. The formation of the self-assembled structures is then driven by free-energy minimization into a thermodynamically stable state. In an alternative approach to SA, macroscopic parameters such as temperature, pressure, pH, magnetic field etc., are varied periodically with time. In this case, the SA structures are the stable periodic states of the driven system. Currently there are no design principles for periodically driven SA, other than in the limits of fast or weak driving. We present guiding ideas for self-assembly under periodic driving. As an example, we show a particular case in which self-assembly errors can be dramatically reduced by varying a system's temperature periodically with time. James S. McDonnell Foundation, and the US National Science Foundation: DMR-1506969.

  16. Dynamics and inertia of a skyrmion in chiral magnets and interfaces: A linear response approach based on magnon excitations

    DOE PAGES

    Lin, Shi-Zeng

    2017-07-06

    We derive the skyrmion dynamics in response to a weak external drive, taking all the magnon modes into account. A skyrmion has rotational symmetry, and the magnon modes can be characterized by an angular momentum. For a weak distortion of a skyrmion, only the magnon modes with an angular momentum | m | = 1 govern the dynamics of skyrmion topological center. We also determine that the skyrmion inertia comes by way of the magnon modes in the continuum spectrum. For a skyrmion driven by a magnetic field gradient or by a spin transfer torque generated by a current, themore » dynamical response is practically instantaneous. This justifies the rigid skyrmion approximation used in Thiele's collective coordinate approach. For a skyrmion driven by a spin Hall torque, the torque couples to the skyrmion motion through the magnons in the continuum and damping; therefore the skyrmion dynamics shows sizable inertia in this case. The trajectory of a skyrmion is an ellipse for an ac drive of spin Hall torque.« less

  17. Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX

    DOE PAGES

    Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; ...

    2016-07-05

    Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less

  18. Teen Driving as Public Drama: Statistics, Risk, and the Social Construction of Youth as a Public Problem

    ERIC Educational Resources Information Center

    Best, Amy L.

    2008-01-01

    In popular and policy framings in the USA, traffic accidents and fatalities involving teens are typically treated as having their own facticity. Much like other social phenomenon, teen driving accidents are regarded as though they are part of an objective reality external to a set of ideational or discursive processes and social organization of…

  19. Information Security Analysis: A Study to Analyze the Extent to Which Information Security Systems Can Be Utilized to Prevent Intoxicated Individuals from Driving

    ERIC Educational Resources Information Center

    Pierre, Joseph D.

    2011-01-01

    Information security systems (ISS) have been designed to protect assets from damages and from unauthorized access internally as well as externally. This research is promising similar protection from ISS methods that could prevent intoxicated individuals under the influence of alcohol from driving. However, previous research has shown significant…

  20. A new approach to driving and controlling precision lasers for cold-atom science

    NASA Astrophysics Data System (ADS)

    Luey, Ben; Shugrue, Jeremy; Anderson, Mike

    2014-05-01

    Vescent's Integrated Control Electronics (ICE) Platform is a new approach to controlling and driving lasers and other electoral devices in complex atomic and optical experiments. By employing low-noise, high-bandwidth analog electronics with digital control, ICE combines the performance of analog design with the convenience of the digital world. Utilizing a simple USB COM port interface, ICE can easily be controlled via LabView, Python, or an FPGA. High-speed TTL inputs enable precise external timing or triggering. ICE is capable of generating complex timing internally, enabling ICE to drive an entire experiment or it can be directed by an external control program. The system is capable of controlling up to 8 unique ICE slave boards providing flexibility to tailor an assortment of electronics hardware to the needs of a specific experiment. Examples of ICE slave boards are: a current controller and peak-lock laser servo, a four channel temperature controller, a current controller and offset phase lock servo. A single ensemble can drive, stabilize, and frequency lock 3 lasers in addition to powering an optical amplifier, while still leaving 2 remaining slots for further control needs. Staff Scientist

  1. DENSITY-MAGNETIC FIELD CORRELATION IN MAGNETOHYDRODYNAMIC TURBULENCE DRIVEN BY DIFFERENT DRIVING SCHEMES WITH DIFFERENT CORRELATION TIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Heesun; Cho, Jungyeon; Kim, Jongsoo, E-mail: hsyoon@cnu.ac.kr, E-mail: jcho@cnu.ac.kr, E-mail: jskim@kasi.re.kr

    Turbulent motions naturally produce density and magnetic-field fluctuations. Correlation between the two fluctuations is important for interpretation of observations, such as observations of the rotation measure (RM). In this paper, we study the effect of driving schemes on the density-magnetic-field correlation. In particular, we numerically investigate how the correlation time of driving affects the correlation between density and magnetic field. We perform compressible magnetohydrodynamic turbulence simulations at different sonic Mach numbers ( M {sub s} ), using two different driving schemes—a finite-correlated driving and a delta-correlated driving. In the former, the forcing vectors change continuously with a correlation time comparablemore » to the large-eddy turnover time. In the latter, the direction (and amplitude) of driving changes in a very short timescale. The finite-correlated driving results in strong anti-correlation between two fields when the sonic and the Alfvénic Mach numbers are similar to unity (i.e., when M {sub s} ∼ 1 and M {sub A} ∼ 1, respectively). However, the anti-correlation becomes weaker and approaches zero for higher values of M {sub s} or M {sub A}. The delta-correlated driving produces virtually no correlation between two fields when M {sub s} ∼ 1 and M {sub A} ∼ 1, and produces more and more positive correlations as M {sub s} or M {sub A} increases. We conjecture that two competing effects, tendency for achieving balance between the gas and the magnetic pressure and simultaneous compression of fluid and magnetic field, determine the correlation behavior. We also investigate how different driving schemes affect the Probability Density Function of three-dimensional density, dispersion measure, and RM.« less

  2. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V

    NASA Astrophysics Data System (ADS)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei

    2014-04-01

    A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.

  3. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  4. Direct-drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  5. Attentional focus and performance anxiety: effects on simulated race-driving performance and heart rate variability.

    PubMed

    Mullen, Richard; Faull, Andrea; Jones, Eleri S; Kingston, Kieran

    2012-01-01

    Previous studies have demonstrated that an external focus can enhance motor learning compared to an internal focus. The benefits of adopting an external focus are attributed to the use of less effortful automatic control processes, while an internal focus relies upon more effort-intensive consciously controlled processes. The aim of this study was to compare the effectiveness of a distal external focus with an internal focus in the acquisition of a simulated driving task and subsequent performance in a competitive condition designed to increase state anxiety. To provide further evidence for the automatic nature of externally controlled movements, the study included heart rate variability (HRV) as an index of mental effort. Sixteen participants completed eight blocks of four laps in either a distal external or internal focus condition, followed by two blocks of four laps in the competitive condition. During acquisition, the performance of both groups improved; however, the distal external focus group outperformed the internal focus group. The poorer performance of the internal focus group was accompanied by a larger reduction in HRV, indicating a greater investment of mental effort. In the competition condition, state anxiety increased, and for both groups, performance improved as a function of the increased anxiety. Increased heart rate and self-reported mental effort accompanied the performance improvement. The distal external focus group also outperformed the internal focus group across both neutral and competitive conditions and this more effective performance was again associated with lower levels of HRV. Overall, the results offer support for the suggestion that an external focus promotes a more automatic mode of functioning. In the competitive condition, both foci enhanced performance and while the improved performance may have been achieved at the expense of greater compensatory mental effort, this was not reflected in HRV scores.

  6. Driving-induced population trapping and linewidth narrowing via the quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Christensen, Charles N.; Iles-Smith, Jake; Petersen, Torkil S.; Mørk, Jesper; McCutcheon, Dara P. S.

    2018-06-01

    We investigate the suppression of spontaneous emission from a driven three-level system embedded in an optical cavity via a manifestation of the quantum Zeno effect. Strong resonant coupling of the lower two levels to an external optical field results in a decrease of the decay rate of the third upper level. We show that this effect has observable consequences in the form of emission spectra with subnatural linewidths, which should be measurable using, for example, quantum dot-cavity systems in currently obtainable parameter regimes, and may find use in applications requiring the control of single-photon arrival times and wave-packet extent. These results suggest an underappreciated link between the Zeno effect, dressed states, and Purcell enhancement.

  7. Future Prospects for the Total Artificial Heart.

    PubMed

    Sunagawa, Gengo; Horvath, David J; Karimov, Jamshid H; Moazami, Nader; Fukamachi, Kiyotaka

    2016-01-01

    A total artificial heart (TAH) is the sole remaining option for patients with biventricular failure who cannot be rescued by left ventricular assist devices (LVADs) alone. However, the pulsatile TAH in clinical use today has limitations: large pump size, unknown durability, required complex anticoagulation regimen, and association with significant postsurgical complications. That pump is noisy; its large pneumatic driving lines traverse the body, with bulky external components for its drivers. Continuous-flow pumps, which caused a paradigm shift in the LVAD field, have already contributed to the rapidly evolving development of TAHs. Novel continuous-flow TAHs are only in preclinical testing or developmental stages. We here review the current state of TAHs, with recommended requirements for the TAH of the future.

  8. Investigation of giant magnetoconductance in organic devices based on hopping mechanism

    NASA Astrophysics Data System (ADS)

    Yang, F. J.; Qin, W.; Xie, S. J.

    2014-04-01

    We suggest a spin-dependent hopping mechanism which includes the effect of the external magnetic field as well as hyperfine interaction (HFI) to explain the observed giant magnetoconductance (MC) in non-magnetic organic devices. Based on the extended Marcus theory, we calculate the MC by using the master equation. It is found that a MC value as large as 91% is obtained under a low driving voltage. For suitable parameters, the theoretical results are in good agreement with the experimental data. Influences of the carrier density, HFI, and the carrier localization on the MC value are investigated. Especially, it is found that a low-dimensional structure of the organic materials is favorable to get a large MC value.

  9. Investigation of giant magnetoconductance in organic devices based on hopping mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F. J.; Qin, W.; Xie, S. J., E-mail: xsj@sdu.edu.cn

    2014-04-14

    We suggest a spin-dependent hopping mechanism which includes the effect of the external magnetic field as well as hyperfine interaction (HFI) to explain the observed giant magnetoconductance (MC) in non-magnetic organic devices. Based on the extended Marcus theory, we calculate the MC by using the master equation. It is found that a MC value as large as 91% is obtained under a low driving voltage. For suitable parameters, the theoretical results are in good agreement with the experimental data. Influences of the carrier density, HFI, and the carrier localization on the MC value are investigated. Especially, it is found thatmore » a low-dimensional structure of the organic materials is favorable to get a large MC value.« less

  10. Effect of design variables on irreversible magnet demagnetization in brushless dc motor

    NASA Astrophysics Data System (ADS)

    Kim, Tae Heoung; Lee, Ju

    2005-05-01

    The large demagnetizing currents in brushless dc (BLdc) motor are generated by the short-circuited stator windings and the fault of a drive circuit. So, irreversible magnet demagnetization occurs due to the external demagnetizing field by these currents. In this paper, we deal with the effect of design variables on irreversible magnet demagnetization in BLdc motor through the modeling approach using a two-dimensional finite-element method (2D FEM). The nonlinear analysis of a permanent magnet is added to 2D FEM to consider irreversible demagnetization. As a result, it is shown that magnet thickness, teeth surface width, and rotor back yoke thickness are the most important geometrical dimensions of BLdc motor in terms of irreversible magnet demagnetization.

  11. Visualizing the Zero-Potential Line of Bipolar Electrodes with Arbitrary Geometry.

    PubMed

    Li, Meng; Liu, Shasha; Jiang, Yingyan; Wang, Wei

    2018-06-05

    In a typical bipolar electrochemistry (BPE) configuration, voltage applied between the two driving electrodes induced a potential drop through solution filled in the microchannel, resulting in an interfacial potential difference between solution and BPE varied along the BPE. In the present work, we employed a recently developed plasmonic imaging technique to map the distribution of surface potential of bipolar electrodes with various geometries including round, triangle, hexagon, star, and rhombus shapes under the nonfaradaic charging process, from which the line of zero potential (LZP) was visualized and determined. We further investigated the dependence of LZP on electrode geometry and the distribution of external electric field and explained the experimental results with a charge balance mechanism. The triangular and star-shaped BPEs show quite different LZP features from the other ones with symmetrical geometry. These experimentally obtained potential distributions are all in good agreement with electromagnetic simulations. Finally, the line of zero overpotential (LZO) of the triangular-shaped BPE under faradaic reactions were investigated. The results confirm the shift of LZO when faradaic reactions occurred at the corresponding ends of BPE. The present work demonstrates the first experimental capability to map the potential distribution of BPE with arbitrary geometry under an arbitrary driving field. It is anticipated to help the design and optimization on the geometry of electrodes and microchannels with implications for boosting their applications in chemical sensing and materials synthesis.

  12. Unraveling the Complexities of the Upper Atmosphere as a System

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T. J.

    2016-12-01

    The Earth's upper atmosphere responds as a system to external forcing from the Sun, magnetosphere, and lower atmosphere. The underlying system components comprise a highly dynamic, non-linear neutral fluid supporting fast propagating wave fields, advective transport, dissipation, and chemical changes, coupled to an active plasma constrained by all-encompassing magnetic and electric fields. More importantly, the plasma and more massive neutral gas are intimately coupled. Ion-neutral coupling can drive winds ten-times hurricane strength making inertia a dominant force; it can sometimes wipe out 90% of the plasma, and at other times allow plasma content to explode with dangerous consequences. Ion-neutral dissipation can result in intense heating, allowing the atmosphere to expand to double its normal size, dragging Earth orbiting satellites to the ground. The thermospheric dynamo, ultimately driven by the solar and magnetosphere dynamos, redistributes equatorial plasma and can drive structure, steep gradients, and irregularities. A single satellite sampling the medium is suitable for uncovering perhaps one or two of the many interacting processes, in what could be called discovery mode science. Without a three-dimensional imaging capability, a single satellite cannot explore the interaction and balance between the multiple of processes actually present. Unraveling the system-wide or global response requires multi-point in-situ constellation-type measurements, together with available two-dimensional imaging. Modeling the system can create an illusion of understanding, but until we really look we will never know.

  13. General relativistic dynamics of an extreme mass-ratio binary interacting with an external body

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Casals, Marc

    2017-10-01

    We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.

  14. Electrical characteristics in reverse electrodialysis using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Chanda, Sourayon; Tsai, Peichun Amy

    2017-11-01

    We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.

  15. Determining magnetospheric ULF wave activity from external drivers using the most influential solar wind parameters

    NASA Astrophysics Data System (ADS)

    Bentley, S.; Watt, C.; Owens, M. J.

    2017-12-01

    Ultra-low frequency (ULF) waves in the magnetosphere are involved in the energisation and transport of radiation belt particles and are predominantly driven by the external solar wind. By systematically examining the instantaneous relative contribution of non-derived solar wind parameters and accounting for their interdependencies using fifteen years of ground-based measurements (CANOPUS) at a single frequency and magnetic latitude, we conclude that the dominant causal parameters for ground-based ULF wave power are solar wind speed v, interplanetary magnetic field component Bz and summed power in number density perturbations δNp. We suggest that these correspond to driving by the Kelvin-Helmholtz instability, flux transfer events and direct perturbations from solar wind structures sweeping past. We will also extend our analysis to a stochastic wave model at multiple magnetic latitudes that will be used in future to predict background ULF wave power across the radiation belts in different magnetic local time sectors, and to examine the relative contribution of the parameters v, Bz and var(Np) in these sectors.

  16. Highly durable piezo-electric energy harvester by a super toughened and flexible nanocomposite: effect of laponite nano-clay in poly(vinylidene fluoride)

    NASA Astrophysics Data System (ADS)

    Rahman, Wahida; Ghosh, Sujoy Kumar; Ranjan Middya, Tapas; Mandal, Dipankar

    2017-09-01

    A highly durable piezoelectric energy harvester is introduced by integrating the toughness and flexibility of a non-electrically poled, laponite nano-clay mineral-induced γ-phase (up to 98%) in a poly(vinylidene-fluoride) (PVDF) matrix by a simple solvent evaporation technique. Owing to a superior electromechanical coupling effect, PVDF/laponite nanocomposites retain excellent biomechanical energy harvesting capabilities under external vibration (as high as 6 V output voltage and 70 nA output current under a compressive force of 300 N) and charge storage properties under an external high electric field (maximum 0.8~ \\text{J} \\text{c}{{\\text{m}}-3} of discharged energy density at a breakdown strength of 302 MV m-1). As a proof of concept, the fabricated nanogenerator (NG) possesses a high output power density (~6.3 mW m-2) that directly drives several consumer electronics without using any storage system or batteries. It paves the way for potential applicability in next generation electronics, particularly as a self-powered device and to configure sustainable internet of things (IoT) sensor networks.

  17. Effect of the carrier-envelope phase of the driving laser field on the high-order harmonic attosecond pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng Zhinan; Li Ruxin; Yu Wei

    2003-01-01

    The effect of the carrier-envelope phase of a few-cycle driving laser field on the generation and measurement of high-order harmonic attosecond pulses is investigated theoretically. We find that the position of the generated attosecond soft-x-ray pulse in the cutoff region is locked to the oscillation of the driving laser field, but not to the envelope of the laser pulse. This property ensures the success of the width measurement of an attosecond soft-x-ray pulse based on the cross correlation between the attosecond pulse and its driving laser pulse [M. Hentschel et al., Nature (London) 414, 509 (2001)]. However, there still existsmore » a timing jitter of the order of tens of attoseconds between the attosecond pulse and its driving laser field. We also propose a method to detect the carrier-envelope phase of the driving laser field by measuring the spatial distribution of the photoelectrons induced by the attosecond soft-x-ray pulse and its driving laser pulse.« less

  18. Compact vehicle drive module having improved thermal control

    DOEpatents

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2006-01-03

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  19. Vehicle drive module having improved EMI shielding

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-11-28

    EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  20. Preparation research of Nano-SiC/Ni-P composite coating under a compound field

    NASA Astrophysics Data System (ADS)

    Zhou, H. Z.; Wang, W. H.; Gu, Y. Q.; Liu, R.; Zhao, M. L.

    2016-07-01

    In this paper, the preparation process of Ni-P-SiC composite coatings on 45 steel surfaces with the assistance of magnetic and ultrasound fields was researched. The influence of external field on the surface morphology and performance of the composite layer is also discussed. Experimental results showed that when prepared under magnetic and ultrasonic fields, composite layers are significantly more dense and uniform than coatings made without external fields. Nano-SiC particles, dispersed uniformly in the layer, significantly improve the hardness of the composite layer, and the composite layer under the external field had the highest hardness at 680 HV The external fields can also accelerate deposition and increase the thickness of the layer. Compared to layers processed without the assistance of external fields, the thickness of the layers increased by nearly ten µm.

  1. Relativistic electromagnetic ion cyclotron instabilities

    NASA Astrophysics Data System (ADS)

    Chen, K. R.; Huang, R. D.; Wang, J. C.; Chen, Y. Y.

    2005-03-01

    The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interesting characteristics such as Alfvénic behavior and instability transition are discovered and illuminated in detail. The instabilities are reactive and are raised from the coupling of slow ions’ first-order resonance and fast ions’ second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow ions is required for driving a cubic (and a coupled quadratic) instability; the cubic (square) root scaling of the peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast ion density and Lorentz factor being close to unity. For the cubic instability, there is a threshold (ceiling) on the slow ion temperature and density (the external magnetic field and the fast ion energy); the Alfvén velocity is required to be low. This Alfvénic behavior is interesting in physics and important for its applications. The case of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the slow ion temperature or density (the external magnetic field or the fast ion energy) is increased (reduced) to about twice (half) the threshold (ceiling), the same growth rate peak transits from the cubic instability to the coupled quadratic instability and a different cubic instability branch appears. The instability transition is an interesting new phenomenon for instability.

  2. Phase space holes and synchronized BGK modes in autoresonantly driven, Penning-trapped electron clouds

    NASA Astrophysics Data System (ADS)

    Friedland, Lazar; Fajans, Joel; Bertsche, Will; Wurtele, Jonathan

    2003-10-01

    We study excitation and control of BGK modes in pure electron plasmas in a Penning trap. We apply an oscillating external potential with a negatively chirped frequency. This drive resonates with, and phase-locks to, a group of axially bouncing electrons in the trap. All initially phase-locked electrons remain phase-locked during the chirp (the autoresonance phenomenon), while some new particles are added to the resonant group, as the bucket moves through the phase space. This creates an oscillating in space and slowly evolving in energy hole in the phase space distribution of the electrons. The electron density perturbation associated with this evolving hole yields a BGK mode synchronized with the drive. The local depth of the hole in phase space, and, thus, the amplitude of the mode are controlled by the external parameter (the driving frequency). The process is reversible, so that the BGK mode can be returned to its nearly initial state, by reversing the direction of variation of the driving frequency. A kinetic theory of this excitation process is developed. The theory uses results on passage through, and capture into, bounce resonance in the system from Monte Carlo simulations of resonant bucket dynamics. We discuss the dependence of the excited BGK mode on the drive frequency chirp rate and other plasma parameters and compare these predictions with experiments.

  3. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system.

  4. Dominant modes of variability in large-scale Birkeland currents

    NASA Astrophysics Data System (ADS)

    Cousins, E. D. P.; Matsuo, Tomoko; Richmond, A. D.; Anderson, B. J.

    2015-08-01

    Properties of variability in large-scale Birkeland currents are investigated through empirical orthogonal function (EOF) analysis of 1 week of data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Mean distributions and dominant modes of variability are identified for both the Northern and Southern Hemispheres. Differences in the results from the two hemispheres are observed, which are attributed to seasonal differences in conductivity (the study period occurred near solstice). A universal mean and set of dominant modes of variability are obtained through combining the hemispheric results, and it is found that the mean and first three modes of variability (EOFs) account for 38% of the total observed squared magnetic perturbations (δB2) from both hemispheres. The mean distribution represents a standard Region 1/Region 2 (R1/R2) morphology of currents and EOF 1 captures the strengthening/weakening of the average distribution and is well correlated with the north-south component of the interplanetary magnetic field (IMF). EOF 2 captures a mixture of effects including the expansion/contraction and rotation of the (R1/R2) currents; this mode correlates only weakly with possible external driving parameters. EOF 3 captures changes in the morphology of the currents in the dayside cusp region and is well correlated with the dawn-dusk component of the IMF. The higher-order EOFs capture more complex, smaller-scale variations in the Birkeland currents and appear generally uncorrelated with external driving parameters. The results of the EOF analysis described here are used for describing error covariance in a data assimilation procedure utilizing AMPERE data, as described in a companion paper.

  5. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  6. Quantum dynamics in strong fluctuating fields

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor; Hänggi, Peter

    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete state fluctuations531 2.3. Averaging the quantum propagator533  2.3.1. Kubo oscillator535  2.3.2. Averaged dynamics of two-level quantum systems exposed to two-state stochastic fields537 2.4. Projection operator method: a primer5403. Two-state quantum dynamics in periodic fields542 3.1. Coherent destruction of tunnelling542 3.2. Driving-induced tunnelling oscillations (DITO)5434. Dissipative quantum dynamics in strong time-dependent fields544 4.1. General formalism544  4.1.1. Weak-coupling approximation545  4.1.2. Markovian approximation: Generalised Redfield Equations5475. Application I: Quantum relaxation in driven, dissipative two-level systems548 5.1. Decoupling approximation for fast fluctuating energy levels550  5.1.1. Control of quantum rates551  5.1.2. Stochastic cooling and inversion of level populations552  5.1.3. Emergence of an effective energy bias553 5.2. Quantum relaxation in strong periodic fields554 5.3. Approximation of time-dependent rates554 5.4. Exact averaging for dichotomous Markovian fluctuations5556. Application II: Driven electron transfer within a spin-boson description557 6.1. Curve-crossing problems with dissipation558 6.2. Weak system-bath coupling559 6.3. Beyond weak-coupling theory: Strong system-bath coupling563  6.3.1. Fast fluctuating energy levels565  6.3.2. Exact averaging over dichotomous fluctuations of the energy levels566  6.3.3. Electron transfer in fast oscillating periodic fields567  6.3.4. Dichotomously fluctuating tunnelling barrier5687. Quantum transport in dissipative tight-binding models subjected tostrong external fields569 7.1. Noise-induced absolute negative mobility571 7.2. Dissipative quantum rectifiers573 7.3. Limit of vanishing dissipation575 7.4. Case of harmonic mixing drive5758. Summary576Acknowledgements578References579

  7. Visual field defects may not affect safe driving.

    PubMed

    Dow, Jamie

    2011-10-01

    In Quebec a driver whose acquired visual field defect renders them ineligible for a driver's permit renewal may request an exemption from the visual field standard by demonstrating safe driving despite the defect. For safety reasons it was decided to attempt to identify predictors of failure on the road test in order to avoid placing driving evaluators in potentially dangerous situations when evaluating drivers with visual field defects. During a 4-month period in 2009 all requests for exemptions from the visual field standard were collected and analyzed. All available medical and visual field data were collated for 103 individuals, of whom 91 successfully completed the evaluation process and obtained a waiver. The collated data included age, sex, type of visual field defect, visual field characteristics, and concomitant medical problems. No single factor, or combination of factors, could predict failure of the road test. All 5 failures of the road test had cognitive problems but 6 of the successful drivers also had known cognitive problems. Thus, cognitive problems influence the risk of failure but do not predict certain failure. Most of the applicants for an exemption were able to complete the evaluation process successfully, thereby demonstrating safe driving despite their handicap. Consequently, jurisdictions that have visual field standards for their driving permit should implement procedures to evaluate drivers with visual field defects that render them unable to meet the standard but who wish to continue driving.

  8. Exotic ferromagnetism in the two-dimensional quantum material C3N

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Cheng; Li, Wei; Liu, Xiaosong

    2018-04-01

    The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator-ferromagnet transition by tuning an external electric field.

  9. The Caltech experimental investigation of fast 3D non-equilbrium dynamics: an overview

    NASA Astrophysics Data System (ADS)

    Bellan, Paul; Shikama, Taiichi; Chai, Kilbyoung; Ha, Bao; Chaplin, Vernon; Kendall, Mark; Moser, Auna; Stenson, Eve; Tobin, Zachary; Zhai, Xiang

    2012-10-01

    The formation and dynamics of writhing, plasma-filled, twisted open magnetic flux tubes is being investigated using pulsed-power laboratory experiments. This work is relevant to solar corona loops, astrophysical jets, spheromak formation, and open field lines in tokamaks and RFP's. MHD forces have been observed to drive fast axial plasma flows into the flux tube from the boundary it intercepts. These flows fill the flux tube with plasma while simultaneously injecting linked frozen-in azimuthal flux; helicity injection is thus associated with mass injection. Recent results include observation of a secondary instability (Rayleigh-Taylor driven by the effective gravity of an exponentially growing kink mode), color-coded plasmas manifesting bidirectional axial flows in a geometry similar to a solar corona loop, and spectroscopic measurements of the internal vector magnetic field. Experiments underway include investigating how an external magnetic field straps down a solar loop, investigation of the details of the Rayleigh-Taylor instability, development of a fast EUV movie camera, increasing the jet velocity, excitation of Alfven waves, and investigating 3D magnetic reconnection.

  10. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  11. Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence.

    PubMed

    Dellavale, Damián; Urteaga, Raúl; Bonetto, Fabián J

    2010-01-01

    The acoustic field in the liquid within a spherical solid shell is calculated. The proposed model takes into account Stoke's wave equation in the viscous fluid, the membrane theory to describe the solid shell motion and the energy loss through the external couplings of the system. A point source at the resonator center is included to reproduce the acoustic emission of a sonoluminescence bubble. Particular calculations of the resulting acoustic field are performed for viscous liquids of interest in single bubble sonoluminescence. The model reveals that in case of radially symmetric modes of low frequency, the quality factor is mainly determined by the acoustic energy flowing through the mechanical coupling of the resonator. Alternatively, for high frequency modes the quality factor is mainly determined by the viscous dissipation in the liquid. Furthermore, the interaction between the bubble acoustic emission and the resonator modes is analyzed. It was found that the bubble acoustic emission produces local maxima in the resonator response. The calculated amplitudes and relative phases of the harmonics constituting the bubble acoustic environment can be used to improve multi-frequency driving in sonoluminescence.

  12. Fueled By Wealth, Funneled By Politics: The Dominance of Domestic Drivers of Arms Procurement in Southeast Asia

    DTIC Science & Technology

    2015-12-01

    in driving arms procurements in Malaysia , Indonesia, and Singapore: availability of resources, domestic politics, external threats, and force...could incite more frequent excursions toward competitive arms dynamics. 14. SUBJECT TERMS Malaysia , Indonesia, Singapore, Southeast Asia, arms...This thesis investigates the following four factors to determine which are most powerful in driving arms procurements in Malaysia , Indonesia, and

  13. An Analytic Model for DoD Investment & Divestment Decisions (Briefing Charts)

    DTIC Science & Technology

    2015-05-01

    cost drives Strategic; Performance mixed; cost drives Invest Insurance Risk Mitigation √ “Making Trade-Offs in Corporate Portfolio Decisions...Effects (SE) + Insurance Intended externalities, unintended consequences Are SE measureable? Do they add/subtract so NPV is worthwhile? Deadweight...Sustainable Cost Effective Cost is supportable, LPO outsourced, or is income Advantageous NPV? Y Y Y Y either N N N N Secondary Effects+ Insurance

  14. External-Field-Induced Gradient Wetting for Controllable Liquid Transport: From Movement on the Surface to Penetration into the Surface.

    PubMed

    Li, Yan; He, Linlin; Zhang, Xiaofang; Zhang, Na; Tian, Dongliang

    2017-12-01

    External-field-responsive liquid transport has received extensive research interest owing to its important applications in microfluidic devices, biological medical, liquid printing, separation, and so forth. To realize different levels of liquid transport on surfaces, the balance of the dynamic competing processes of gradient wetting and dewetting should be controlled to achieve good directionality, confined range, and selectivity of liquid wetting. Here, the recent progress in external-field-induced gradient wetting is summarized for controllable liquid transport from movement on the surface to penetration into the surface, particularly for liquid motion on, patterned wetting into, and permeation through films on superwetting surfaces with external field cooperation (e.g., light, electric fields, magnetic fields, temperature, pH, gas, solvent, and their combinations). The selected topics of external-field-induced liquid transport on the different levels of surfaces include directional liquid motion on the surface based on the wettability gradient under an external field, partial entry of a liquid into the surface to achieve patterned surface wettability for printing, and liquid-selective permeation of the film for separation. The future prospects of external-field-responsive liquid transport are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Decrease of dynamic loads in mobile energy means

    NASA Astrophysics Data System (ADS)

    Polivaev, O. I.; Gorban, L. K.; Vorohobin, A. V.; Vedrinsky, O. S.

    2018-03-01

    The increase in the productivity of machine and tractor units is possible due to the increase in operating speeds, this leads to the emergence of increased dynamic loads in the system “engine-transmission-propulsion unit-soil”, which worsens the performance of machine-tractor aggregates. To reduce fluctuations in the “engine-transmission” system, special vibration dampers are used, which installed in close proximity to the engine and protect well the transmission from uneven engine operation; however, such dampers practically do not eliminate the oscillations of external loads. Reducing dynamic loads on the transmission and the mobile power engine (MPE) is an important issue directly related to improving the performance, reliability and durability of the tractor, as well as reducing the slippage of the drive wheels. In order to reduce effectively dynamic loads on the transmission and on the MPE, it is necessary to introduce resilient damping elements closer to the sources of oscillations, namely, to the driving wheels. At the same time, the elastic-damping element should provide accumulation of vibration energy caused by external influences and have a large energy capacity. The installation of an elastic-damping element in the final link of the tractor transmission ensures a reduction in the magnitude of external influences, thereby protecting the engine and transmission from large dynamic loads, and allows one to reduce the slippage of the propellers, which has a positive effect on the traction and energy characteristics of the tractor. Traction tests of the LTP-55 tractor on a concrete road showed that the use of an elasto-damping drive makes it possible to increase the maximum tractive power from 33.5 to 35.3 kW and to reduce the slipping of propellers by 12-30%, the specific fuel consumption by 6-10%. When driving on stubble, the use of an elastic-damping drive increases the maximum tractive power from 25 to 26 kW, reduces the skidding of propellers by 10-28%, and the specific fuel consumption by 10-12.5%.

  16. On Thermodiffusion and Gauge Transformations for Thermodynamic Fluxes and Driving Forces

    NASA Astrophysics Data System (ADS)

    Goldobin, D. S.

    2017-12-01

    We discuss the molecular diffusion transport in infinitely dilute liquid solutions under nonisothermal conditions. This discussion is motivated by an occurring misinterpretation of thermodynamic transport equations written in terms of chemical potential in the presence of temperature gradient. The transport equations contain the contributions owned by a gauge transformation related to the fact that chemical potential is determined up to the summand of form ( AT + B) with arbitrary constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a constant value and B is owned by the potential energy invariance with respect to shifts by a constant value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our treatment is based on consideration of the entropy balance and suggests a promising hint for attempts of evaluation of the thermal diffusion constant from the first principles. We also discuss the impossibility of the "barodiffusion" for dilute solutions, understood in a sense of diffusion flux driven by the pressure gradient itself. When one speaks of "barodiffusion" terms in literature, these terms typically represent the drift in external potential force field (e.g., electric or gravitational fields), where in the final equations the specific force on molecules is substituted with an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the interpretation of the latter as barodiffusion is fragile and may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.

  17. Correlated seed failure as an environmental veto to synchronize reproduction of masting plants.

    PubMed

    Bogdziewicz, Michał; Steele, Michael A; Marino, Shealyn; Crone, Elizabeth E

    2018-07-01

    Variable, synchronized seed production, called masting, is a widespread reproductive strategy in plants. Resource dynamics, pollination success, and, as described here, environmental veto are possible proximate mechanisms driving masting. We explored the environmental veto hypothesis, which assumes that reproductive synchrony is driven by external factors preventing reproduction in some years, by extending the resource budget model of masting with correlated reproductive failure. We ran this model across its parameter space to explore how key parameters interact to drive seeding dynamics. Next, we parameterized the model based on 16 yr of seed production data for populations of red (Quercus rubra) and white (Quercus alba) oaks. We used these empirical models to simulate seeding dynamics, and compared simulated time series with patterns observed in the field. Simulations showed that resource dynamics and reproduction failure can produce masting even in the absence of pollen coupling. In concordance with this, in both oaks, among-year variation in resource gain and correlated reproductive failure were necessary and sufficient to reproduce masting, whereas pollen coupling, although present, was not necessary. Reproductive failure caused by environmental veto may drive large-scale synchronization without density-dependent pollen limitation. Reproduction-inhibiting weather events are prevalent in ecosystems, making described mechanisms likely to operate in many systems. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  18. Examining the impact of cell phone conversations on driving using meta-analytic techniques.

    PubMed

    Horrey, William J; Wickens, Christopher D

    2006-01-01

    The performance costs associated with cell phone use while driving were assessed meta-analytically using standardized measures of effect size along five dimensions. There have been many studies on the impact of cell phone use on driving, showing some mixed findings. Twenty-three studies (contributing 47 analysis entries) met the appropriate conditions for the meta-analysis. The statistical results from each of these studies were converted into effect sizes and combined in the meta-analysis. Overall, there were clear costs to driving performance when drivers were engaged in cell phone conversations. However, subsequent analyses indicated that these costs were borne primarily by reaction time tasks, with far smaller costs associated with tracking (lane-keeping) performance. Hands-free and handheld phones revealed similar patterns of results for both measures of performance. Conversation tasks tended to show greater costs than did information-processing tasks (e.g., word games). There was a similar pattern of results for passenger and remote (cell phone) conversations. Finally, there were some small differences between simulator and field studies, though both exhibited costs in performance for cell phone use. We suggest that (a) there are significant costs to driver reactions to external hazards or events associated with cell phone use, (b) hands-free cell phones do not eliminate or substantially reduce these costs, and (c) different research methodologies or performance measures may underestimate these costs. Potential applications of this research include the assessment of performance costs attributable to different types of cell phones, cell phone conversations, experimental measures, or methodologies.

  19. The influence of cognitive impairment with no dementia on driving restriction and cessation in older adults.

    PubMed

    Kowalski, Kristina; Love, Janet; Tuokko, Holly; MacDonald, Stuart; Hultsch, David; Strauss, Esther

    2012-11-01

    Cognitively impaired older adults may be at increased risk of unsafe driving. Individuals with insight into their own impairments may minimize their risk by restricting or stopping driving. The purpose of this study was to examine the influence of cognitive impairment on driving status and driving habits and intentions. Participants were classified as cognitively impaired, no dementia single (CIND-single), CIND-multiple, or not cognitively impaired (NCI) and compared on their self-reported driving status, habits, and intentions to restrict or quit driving in the future. The groups differed significantly in driving status, but not in whether they restricted their driving or reduced their driving frequency. CIND-multiple group also had significantly higher intention to restrict/stop driving than the NCI group. Reasons for restricting and quitting driving were varied and many individuals reported multiple reasons, both external and internal, for their driving habits and intentions. Regardless of cognitive status, none of the current drivers were seriously thinking of restricting or quitting driving in the next 6 months. It will be important to determine, in future research, how driving practices change over time and what factors influence decisions to restrict or stop driving for people with cognitive impairment. Copyright © 2011. Published by Elsevier Ltd.

  20. Suppression of multipactor discharge on a dielectric surface by an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Libing; Zhu Xiangqin; Wang Yue

    2011-07-15

    The multipactor discharge on a dielectric surface in an external magnetic field is simulated by using the particle-in-cell method, and the electron number, energy, the velocity of the yield of secondary electrons, and the power deposited on dielectric surface in the process of multipactor discharge are investigated. The effects of the strength of the external magnetic field on multipactor are studied. The results show that when the external magnetic field reaches a certain value, the multipactor is weaker than that in the case of no external magnetic field and becomes much lighter versus the strength of the external magnetic fieldmore » in the half microwave period in which the ExB drift pulls the electrons back to dielectric surface. And in the other half microwave period in which the ExB drift pushes the electrons away from the dielectric surface, the multipactor is cut off. So the power capability can be increased to the fourfold by the suppression of multipactor by applying an external magnetic field.« less

  1. Offset Compound Gear Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2010-01-01

    The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.

  2. Useful field of view in simulated driving: Reaction times and eye movements of drivers

    PubMed Central

    Seya, Yasuhiro; Nakayasu, Hidetoshi; Yagi, Tadasu

    2013-01-01

    To examine the spatial distribution of a useful field of view (UFOV) in driving, reaction times (RTs) and eye movements were measured in simulated driving. In the experiment, a normal or mirror-reversed letter “E” was presented on driving images with different eccentricities and directions from the current gaze position. The results showed significantly slower RTs in the upper and upper left directions than in the other directions. The RTs were significantly slower in the left directions than in the right directions. These results suggest that the UFOV in driving may be asymmetrical among the meridians in the visual field. PMID:24349688

  3. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  4. All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current.

    PubMed

    Müller, K; Kaldewey, T; Ripszam, R; Wildmann, J S; Bechtold, A; Bichler, M; Koblmüller, G; Abstreiter, G; Finley, J J

    2013-01-01

    The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2-5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2-10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity.

  5. Electric-field driven assembly of live bacterial cell microarrays for rapid phenotypic assessment and cell viability testing.

    PubMed

    Goel, Meenal; Verma, Abhishek; Gupta, Shalini

    2018-07-15

    Microarray technology to isolate living cells using external fields is a facile way to do phenotypic analysis at the cellular level. We have used alternating current dielectrophoresis (AC-DEP) to drive the assembly of live pathogenic Salmonella typhi (S.typhi) and Escherichia coli (E.coli) bacteria into miniaturized single cell microarrays. The effects of voltage and frequency were optimized to identify the conditions for maximum cell capture which gave an entrapment efficiency of 90% in 60 min. The chip was used for calibration-free estimation of cellular loads in binary mixtures and further applied for rapid and enhanced testing of cell viability in the presence of drug via impedance spectroscopy. Our results using a model antimicrobial sushi peptide showed that the cell viability could be tested down to 5 μg/mL drug concentration under an hour, thus establishing the utility of our system for ultrafast and sensitive detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Magnetic Control of Locked Modes in Present Devices and ITER

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Sabbagh, S.; Sweeney, R.; Hender, T.; Kirk, A.; La Haye, R. J.; Strait, E. J.; Ding, Y. H.; Rao, B.; Fietz, S.; Maraschek, M.; Frassinetti, L.; in, Y.; Jeon, Y.; Sakakihara, S.

    2014-10-01

    The toroidal phase of non-rotating (``locked'') neoclassical tearing modes was controlled in several devices by means of applied magnetic perturbations. Evidence is presented from various tokamaks (ASDEX Upgrade, DIII-D, JET, J-TEXT, KSTAR), spherical tori (MAST, NSTX) and a reversed field pinch (EXTRAP-T2R). Furthermore, the phase of interchange modes was controlled in the LHD helical device. These results share a common interpretation in terms of torques acting on the mode. Based on this interpretation, it is predicted that control-coil currents will be sufficient to control the phase of locking in ITER. This will be possible both with the internal coils and with the external error-field-correction coils, and might have promising consequences for disruption avoidance (by aiding the electron cyclotron current drive stabilization of locked modes), as well as for spatially distributing heat loads during disruptions. This work was supported in part by the US Department of Energy under DE-SC0008520, DE-FC-02-04ER54698 and DE-AC02-09CH11466.

  7. Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning

    DOE PAGES

    Zhou, S. H.; Liu, C.; Yao, Y. X.; ...

    2016-04-29

    BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggestmore » that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. In conclusion, the compositions of the initial compounds from these highly driven liquids can be far from equilibrium.« less

  8. Self-replication with magnetic dipolar colloids

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  9. Vehicle drive module having improved terminal design

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-04-25

    A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  10. DC Motor control using motor-generator set with controlled generator field

    DOEpatents

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  11. Determination of the space-charge field amplitude in polymeric photorefractive polymers.

    PubMed

    Hwang, Ui-Jung; Choi, Chil-Sung; Vuong, Nguyen Quoc; Kim, Nakjoong

    2005-12-22

    The space-charge field built in a polymeric photorefractive polymer was calculated by a simple method based on the oriented gas model. When anisotropic chromophores in a photorefractive polymer were exposed to an external field, they oriented preferentially to exhibit a birefringence. Then, under illumination of two coherent beams and an external field, they reoriented to form a photorefractive grating. During the formation of the grating, the chromophores were reoriented by the space-charge field as well as by the external applied field. The birefringence induced in the material by an external electric field was determined by measuring the transmittance of the sample which is placed between crossed polarizers, where birefringence depicts the orientation of the chromophores. By measuring the diffraction efficiency with a modified degenerate four-wave mixing setup, the index amplitude of the grating was determined. Finally, the space-charge field was determined by comparing the diffraction efficiency with the birefringence with respect to the applied electric field. In our study, the space-charge field was about 20% of the external applied field, which coincided with previous results obtained from our laboratory.

  12. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    PubMed

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.

  13. Modeling the excitation of global Alfven modes by an external antenna in the Joint European Torus (JET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huysmans, G.T.A.; Kerner, W.; Borba, D.

    1995-05-01

    The active excitation of global Alfven modes using the saddle coils in the Joint European Torus (JET) [{ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1984, Proceedings of the 10th International Conference, London (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 11] as the external antenna, will provide information on the damping of global modes without the need to drive the modes unstable. For the modeling of the Alfven mode excitation, the toroidal resistive magnetohydrodynamics (MHD) code CASTOR (Complex Alfven Spectrum in TORoidal geometry) [18{ital th} {ital EPS} {ital Conference} {ital On} {italmore » Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Physics}, Berlin, 1991, edited by P. Bachmann and D. C. Robinson (The European Physical Society, Petit-Lancy, 1991), Vol. 15, Part IV, p. 89] has been extended to calculate the response to an external antenna. The excitation of a high-performance, high beta JET discharge is studied numerically. In particular, the influence of a finite pressure is investigated. Weakly damped low-{ital n} global modes do exist in the gaps in the continuous spectrum at high beta. A pressure-driven global mode is found due to the interaction of Alfven and slow modes. Its frequency scales solely with the plasma temperature, not like a pure Alfven mode with a density and magnetic field.« less

  14. Fabricating Atom-Sized Gaps by Field-Aided Atom Migration in Nanoscale Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Bi, Jun-Jie; Xie, Zhen; Yin, Kaikai; Wang, Dunyou; Zhang, Guang-Ping; Xiang, Dong; Wang, Chuan-Kui; Li, Zong-Liang

    2018-05-01

    The gap sizes between electrodes generated by typical methods are generally much larger than the dimension of a common molecule when fabricating a single-molecule junction, which dramatically suppresses the yield of single-molecule junctions. Based on the ab initio calculations, we develop a strategy named the field-aided method to accurately fabricate an atomic-sized gap between gold nanoelectrodes. To understand the mechanism of this strategy, configuration evolutions of gold nanojunction in stretching and compressing processes are calculated. The numerical results show that, in the stretching process, the gold atoms bridged between two electrodes are likely to form atomic chains. More significantly, lattice vacant positions can be easily generated in stretching and compressing processes, which make field-aided gap generation possible. In field-aided atom migration (FAAM), the external field can exert driving force, enhance the initial energy of the system, and decrease the barrier in the migration path, which makes the atom migration feasible. Conductance and stretching and compressing forces, as measurable variables in stretching and compressing processes, present very useful signals for determining the time to perform FAAM. Following this desirable strategy, we successfully fabricate gold nanogaps with a dimension of 0.38 ±0.05 nm in the experiment, as our calculation simulates.

  15. Vision-related fitness to drive mobility scooters: A practical driving test.

    PubMed

    Cordes, Christina; Heutink, Joost; Tucha, Oliver M; Brookhuis, Karel A; Brouwer, Wiebo H; Melis-Dankers, Bart J M

    2017-03-06

    To investigate practical fitness to drive mobility scooters, comparing visually impaired participants with healthy controls. Between-subjects design. Forty-six visually impaired (13 with very low visual acuity, 10 with low visual acuity, 11 with peripheral field defects, 12 with multiple visual impairment) and 35 normal-sighted controls. Participants completed a practical mobility scooter test-drive, which was recorded on video. Two independent occupational therapists specialized in orientation and mobility evaluated the videos systematically. Approximately 90% of the visually impaired participants passed the driving test. On average, participants with visual impairments performed worse than normal-sighted controls, but were judged sufficiently safe. In particular, difficulties were observed in participants with peripheral visual field defects and those with a combination of low visual acuity and visual field defects. People with visual impairment are, in practice, fit to drive mobility scooters; thus visual impairment on its own should not be viewed as a determinant of safety to drive mobility scooters. However, special attention should be paid to individuals with visual field defects with or without a combined low visual acuity. The use of an individual practical fitness-to-drive test is advised.

  16. Effect of strong electric field on the conformational integrity of insulin.

    PubMed

    Wang, Xianwei; Li, Yongxiu; He, Xiao; Chen, Shude; Zhang, John Z H

    2014-10-02

    A series of molecular dynamics (MD) simulations up to 1 μs for bovine insulin monomer in different external electric fields were carried out to study the effect of external electric field on conformational integrity of insulin. Our results show that the secondary structure of insulin is kept intact under the external electric field strength below 0.15 V/nm, but disruption of secondary structure is observed at 0.25 V/nm or higher electric field strength. Although the starting time of secondary structure disruption of insulin is not clearly correlated with the strength of the external electric field ranging between 0.15 and 0.60 V/nm, long time MD simulations demonstrate that the cumulative effect of exposure time under the electric field is a major cause for the damage of insulin's secondary structure. In addition, the strength of the external electric field has a significant impact on the lifetime of hydrogen bonds when it is higher than 0.60 V/nm. The fast evolution of some hydrogen bonds of bovine insulin in the presence of the 1.0 V/nm electric field shows that different microwaves could either speed up protein folding or destroy the secondary structure of globular proteins deponding on the intensity of the external electric field.

  17. Strain engineering of graphene nanoribbons: pseudomagnetic versus external magnetic fields

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis

    2017-05-01

    Bandgap opening due to strain engineering is a key architect for making graphene's optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.

  18. Synchronization of a self-sustained cold-atom oscillator

    NASA Astrophysics Data System (ADS)

    Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.

    2018-04-01

    Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.

  19. Optimal control of mode transition for four-wheel-drive hybrid electric vehicle with dry dual-clutch transmission

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiguo; Lei, Dan; Chen, Jiayi; Li, Hangyu

    2018-05-01

    When the four-wheel-drive hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT) is in the mode transition process from pure electrical rear wheel drive to front wheel drive with engine or hybrid drive, the problem of vehicle longitudinal jerk is prominent. A mode transition robust control algorithm which resists external disturbance and model parameter fluctuation has been developed, by taking full advantage of fast and accurate torque (or speed) response of three electrical power sources and getting the clutch of DCT fully involved in the mode transition process. Firstly, models of key components of driveline system have been established, and the model of five-degrees-of-freedom vehicle longitudinal dynamics has been built by using a Uni-Tire model. Next, a multistage optimal control method has been produced to realize the decision of engine torque and clutch-transmitted torque. The sliding-mode control strategy for measurable disturbance has been proposed at the stage of engine speed dragged up. Meanwhile, the double tracking control architecture that integrates the model calculating feedforward control with H∞ robust feedback control has been presented at the stage of speed synchronization. Finally, the results from Matlab/Simulink software and hardware-in-the-loop test both demonstrate that the proposed control strategy for mode transition can not only coordinate the torque among different power sources and clutch while minimizing vehicle longitudinal jerk, but also provide strong robustness to model uncertainties and external disturbance.

  20. Step-wise potential development across the lipid bilayer under external electric fields

    NASA Astrophysics Data System (ADS)

    Majhi, Amit Kumar

    2018-04-01

    Pore formation across the bilayers under external electric field is an important phenomenon, which has numerous applications in biology and bio-engineering fields. However, it is not a ubiquitous event under all field applications. To initiate a pore in the bilayer a particular threshold electric field is required. The electric field alters the intrinsic potential distribution across the bilayer as we as it enhances total potential drop across the bilayer, which causes the pore formation. The intrinsic potential profile has a maximum peak value, which is 0.8 V and it gets enhanced under application of external field, 0.43 V/nm. The peak value becomes 1.4 V when a pore appears in the bilayer and it continues to evolve as along as the external electric field remains switched on.

  1. Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.; Vainio, R.; Palmroth, M.; Juusola, L.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Turc, L.; von Alfthan, S.

    2018-02-01

    We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two-dimensional hybrid-Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast-mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift-like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time-energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath.

  2. Synchronization and long-time memory in neural networks with inhibitory hubs and synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Bertolotti, Elena; Burioni, Raffaella; di Volo, Matteo; Vezzani, Alessandro

    2017-01-01

    We investigate the dynamical role of inhibitory and highly connected nodes (hub) in synchronization and input processing of leaky-integrate-and-fire neural networks with short term synaptic plasticity. We take advantage of a heterogeneous mean-field approximation to encode the role of network structure and we tune the fraction of inhibitory neurons fI and their connectivity level to investigate the cooperation between hub features and inhibition. We show that, depending on fI, highly connected inhibitory nodes strongly drive the synchronization properties of the overall network through dynamical transitions from synchronous to asynchronous regimes. Furthermore, a metastable regime with long memory of external inputs emerges for a specific fraction of hub inhibitory neurons, underlining the role of inhibition and connectivity also for input processing in neural networks.

  3. One-step generation of continuous-variable quadripartite cluster states in a circuit QED system

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li

    2017-07-01

    We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.

  4. Topological protection of multiparticle dissipative transport

    NASA Astrophysics Data System (ADS)

    Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de Las Heras, Daniel; Fischer, Thomas M.

    2016-06-01

    Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry.

  5. Cavity QED analysis of an exciton-plasmon hybrid molecule via the generalized nonlocal optical response method

    NASA Astrophysics Data System (ADS)

    Hapuarachchi, Harini; Premaratne, Malin; Bao, Qiaoliang; Cheng, Wenlong; Gunapala, Sarath D.; Agrawal, Govind P.

    2017-06-01

    A metal nanoparticle coupled to a semiconductor quantum dot forms a tunable hybrid system which exhibits remarkable optical phenomena. Small metal nanoparticles possess nanocavitylike optical concentration capabilities due to the presence of strong dipolar excitation modes in the form of localized surface plasmons. Semiconductor quantum dots have strong luminescent capabilities widely used in many applications such as biosensing. When a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole coupling occurs between the two nanoparticles giving rise to various optical signatures in the scattered spectra. This coupling makes the two nanoparticles behave like a single hybrid molecule. Hybrid molecules made of metal nanoparticles (MNPs) and quantum dots (QDs) under the influence of an external driving field have been extensively studied in literature, using the local response approximation (LRA). However, such previous work in this area was not adequate to explain some experimental observations such as the size-dependent resonance shift of metal nanoparticles which becomes quite significant with decreasing diameter. The nonlocal response of metallic nanostructures which is hitherto disregarded by such studies is a main reason for such nonclassical effects. The generalized nonlocal optical response (GNOR) model provides a computationally less-demanding path to incorporate such properties into the theoretical models. It allows unified theoretical explanation of observed experimental phenomena which previously seemed to require ab initio microscopic theory. In this paper, we analyze the hybrid molecule in an external driving field as an open quantum system using a cavity-QED approach. In the process, we quantum mechanically model the dipole moment operator and the dipole response field of the metal nanoparticle taking the nonlocal effects into account. We observe that the spectra resulting from the GNOR based model effectively demonstrate the experimentally observed size dependent amplitude scaling, linewidth broadening, and resonance shift phenomena compared to the respective LRA counterparts. Then, we provide a comparison between our suggested GNOR based cavity-QED model and the conventional LRA model, where it becomes evident that our analytical model provides a close match to the experimentally suggested behavior. Furthermore, we show that the Rayleigh scattering spectra of the MNP-QD hybrid molecule possess an asymmetric Fano interference pattern that is tunable to suit various applications.

  6. Rationale for a GRAVSAT-MAGSAT mission: A perspective on the problem of external/internal transient field effects

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1985-01-01

    The Earth's magnetic field at MAGSAT altitudes not only has contributions from the Earth's core and static magnetization in the lithosphere, but also from external electric current systems in the ionosphere and magnetosphere, along with induced electric currents flowing in the conducting earth. Hermance assessed these last two contributions; the external time-varying fields and their associated internal counter-parts which are electromagnetically induced. It is readily recognized that during periods of magnetic disturbance, external currents often contribute from 10's to 100's of nanoteslas (gammas) to observations of the Earth's field. Since static anomalies from lithospheric magnetization are of this same magnitude or less, these external source fields must be taken into account when attempting to delineate gross structural features in the crust.

  7. Driving with homonymous visual field loss: a review of the literature

    PubMed Central

    Bowers, Alex R.

    2016-01-01

    Driving is an important rehabilitation goal for patients with homonymous field defects (HFDs); however, whether or not people with HFDs should be permitted to drive is not clear. Over the last 15 years there has been a marked increase in the number of studies evaluating the effects of HFDs on driving performance. This review of the literature provides a much-needed summary for practitioners and researchers, addressing the following topics: regulations pertaining to driving with HFDs, self-reported driving difficulties, pass rates in on-road tests, the effects of HFDs on lane position and steering stability, the effects of HFDs on scanning and detection of potential hazards, screening for potential fitness to drive, evaluating practical fitness to drive, and the efficacy of interventions to improve driving of persons with HFDs. Although there is clear evidence from on-road studies that some people with HFDs may be rated as safe to drive, others are reported to have significant deficits in skills important for safe driving including taking a lane position too close to one side of the travel lane, unstable steering and inadequate viewing (scanning) behaviors. Driving simulator studies have provided strong evidence of a wide range in compensatory scanning abilities and detection performance, despite similar amounts of visual field loss. Conventional measurements of visual field extent (in which eye movements are not permitted) do not measure such compensatory abilities and are not predictive of on-road driving performance; thus, there is a need to develop better tests to screen for visual fitness to drive of people with HFDs. We are not yet at a point where we can predict which HFD patient is likely to be a safe driver. Therefore, it seems only fair to provide an opportunity for individualized assessments of practical fitness to drive either on the road and/or in a driving simulator. PMID:27535208

  8. Driving with homonymous visual field loss: a review of the literature.

    PubMed

    Bowers, Alex R

    2016-09-01

    Driving is an important rehabilitation goal for patients with homonymous field defects (HFDs); however, whether or not people with HFDs should be permitted to drive is not clear. Over the last 15 years, there has been a marked increase in the number of studies evaluating the effects of HFDs on driving performance. This review of the literature provides a much-needed summary for practitioners and researchers, addressing the following topics: regulations pertaining to driving with HFDs, self-reported driving difficulties, pass rates in on-road tests, the effects of HFDs on lane position and steering stability, the effects of HFDs on scanning and detection of potential hazards, screening for potential fitness to drive, evaluating practical fitness to drive and the efficacy of interventions to improve driving of persons with HFDs. Although there is clear evidence from on-road studies that some people with HFDs may be rated as safe to drive, others are reported to have significant deficits in skills important for safe driving, including taking a lane position too close to one side of the travel lane, unstable steering and inadequate viewing (scanning) behaviour. Driving simulator studies have provided strong evidence of a wide range in compensatory scanning abilities and detection performance, despite similar amounts of visual field loss. Conventional measurements of visual field extent (in which eye movements are not permitted) do not measure such compensatory abilities and are not predictive of on-road driving performance. Thus, there is a need to develop better tests to screen people with HFDs for visual fitness to drive. We are not yet at a point where we can predict which HFD patient is likely to be a safe driver. Therefore, it seems only fair to provide an opportunity for individualised assessments of practical fitness to drive either on the road and/or in a driving simulator. © 2016 Optometry Australia.

  9. Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Zheng, Jian; Li, Zhichao; Ding, Yongkun; Yang, Dong; Hu, Guangyue; Zhao, Bin

    2015-09-01

    A simple model, based on energy and pressure equilibrium, is proposed to deal with the effect of external magnetic fields on the plasma parameters inside the laser path, which shows that the electron temperature can be significantly enhanced as the intensity of the external magnetic fields increases. With the combination of this model and a 1D three-wave coupling code, the effect of external magnetic fields on the reflectivities of stimulated scattering processes is studied. The results indicate that a magnetic field with an intensity of tens of Tesla can decrease the reflectivities of stimulated scattering processes by several orders of magnitude.

  10. Modeling of Autovariator Operation as Power Components Adjuster in Adaptive Machine Drives

    NASA Astrophysics Data System (ADS)

    Balakin, P. D.; Belkov, V. N.; Shtripling, L. O.

    2018-01-01

    Full application of the available power and stationary mode preservation for the power station (engine) operation of the transport machine under the conditions of variable external loading, are topical issues. The issues solution is possible by means of mechanical drives with the autovaried rate transfer function and nonholonomic constraint of the main driving mediums. Additional to the main motion, controlled motion of the driving mediums is formed by a variable part of the transformed power flow and is implemented by the integrated control loop, functioning only on the basis of the laws of motion. The mathematical model of the mechanical autovariator operation is developed using Gibbs function, acceleration energy; the study results are presented; on their basis, the design calculations of the autovariator driving mediums and constraints, including its automatic control loop, are possible.

  11. Genuine Quantum Signatures in Synchronization of Anharmonic Self-Oscillators.

    PubMed

    Lörch, Niels; Amitai, Ehud; Nunnenkamp, Andreas; Bruder, Christoph

    2016-08-12

    We study the synchronization of a Van der Pol self-oscillator with Kerr anharmonicity to an external drive. We demonstrate that the anharmonic, discrete energy spectrum of the quantum oscillator leads to multiple resonances in both phase locking and frequency entrainment not present in the corresponding classical system. Strong driving close to these resonances leads to nonclassical steady-state Wigner distributions. Experimental realizations of these genuine quantum signatures can be implemented with current technology.

  12. On-Road Driving Performance by Persons with Hemianopia and Quadrantanopia

    PubMed Central

    Wood, Joanne M.; McGwin, Gerald; Elgin, Jennifer; Vaphiades, Michael S.; Braswell, Ronald A.; DeCarlo, Dawn K.; Kline, Lanning B.; Meek, G. Christine; Searcey, Karen; Owsley, Cynthia

    2009-01-01

    Purpose This study was designed to examine the on-road driving performance of drivers with hemianopia and quadrantanopia compared with age-matched controls. Methods Participants included persons with hemianopia or quadrantanopia and those with normal visual fields. Visual and cognitive function tests were administered, including confirmation of hemianopia and quadrantanopia through visual field testing. Driving performance was assessed using a dual-brake vehicle and monitored by a certified driving rehabilitation specialist. The route was 14.1 miles of city and interstate driving. Two “back-seat” evaluators masked to drivers’ clinical characteristics independently assessed driving performance using a standard scoring system. Results Participants were 22 persons with hemianopia and 8 with quadrantanopia (mean age, 53 ± 20 years) and 30 participants with normal fields (mean age, 52 ± 19 years). Inter-rater agreement for back-seat evaluators was 96%. All drivers with normal fields were rated as safe to drive, while 73% (16/22) of hemianopic and 88% (7/8) of quadrantanopic drivers received safe ratings. Drivers with hemianopia or quadrantanopia who displayed on-road performance problems tended to have difficulty with lane position, steering steadiness, and gap judgment compared to controls. Clinical characteristics associated with unsafe driving were slowed visual processing speed, reduced contrast sensitivity and visual field sensitivity. Conclusions Some drivers with hemianopia or quadrantanopia are fit to drive compared with age-matched control drivers. Results call into question the fairness of governmental policies that categorically deny licensure to persons with hemianopia or quadrantanopia without the opportunity for on-road evaluation. PMID:18936138

  13. Older Adult Multitasking Performance Using a Gaze-Contingent Useful Field of View.

    PubMed

    Ward, Nathan; Gaspar, John G; Neider, Mark B; Crowell, James; Carbonari, Ronald; Kaczmarski, Hank; Ringer, Ryan V; Johnson, Aaron P; Loschky, Lester C; Kramer, Arthur F

    2018-03-01

    Objective We implemented a gaze-contingent useful field of view paradigm to examine older adult multitasking performance in a simulated driving environment. Background Multitasking refers to the ability to manage multiple simultaneous streams of information. Recent work suggests that multitasking declines with age, yet the mechanisms supporting these declines are still debated. One possible framework to better understand this phenomenon is the useful field of view, or the area in the visual field where information can be attended and processed. In particular, the useful field of view allows for the discrimination of two competing theories of real-time multitasking, a general interference account and a tunneling account. Methods Twenty-five older adult subjects completed a useful field of view task that involved discriminating the orientation of lines in gaze-contingent Gabor patches appearing at varying eccentricities (based on distance from the fovea) as they operated a vehicle in a driving simulator. In half of the driving scenarios, subjects also completed an auditory two-back task to manipulate cognitive workload, and during some trials, wind was introduced as a means to alter general driving difficulty. Results Consistent with prior work, indices of driving performance were sensitive to both wind and workload. Interestingly, we also observed a decline in Gabor patch discrimination accuracy under high cognitive workload regardless of eccentricity, which provides support for a general interference account of multitasking. Conclusion The results showed that our gaze-contingent useful field of view paradigm was able to successfully examine older adult multitasking performance in a simulated driving environment. Application This study represents the first attempt to successfully measure dynamic changes in the useful field of view for older adults completing a multitasking scenario involving driving.

  14. Development of rotating magnetic field coil system in the HIST spherical torus device

    NASA Astrophysics Data System (ADS)

    Yoshikawa, T.; Kikuchi, Y.; Yamada, S.; Hashimoto, S.; Nishioka, T.; Fukumoto, N.; Nagata, M.

    2007-11-01

    Coaxial Helicity Injection (CHI) is one of most attractive methods to achieve non-inductive current drive in spherical torus devices. The current drive mechanism of CHI relies on MHD relaxation process of rotating kink behavior [1], so that there is a possibility to control the CHI by using an externally applied rotating magnetic field (RMF). We have recently started to develop a RMF coil system in the HIST spherical torus device. Eight coils are located above and below the midplane at four toroidal locations so that the RMF is resonant with n = 1 rotating kink mode driven by the CHI. In addition, the RMF coil set is installed inside a flux conserver of 5 mm thickness (cut-off frequency ˜ 170 Hz) so that the RMF penetrates into the plasma. The coil winding is made of 20 turns of enameled copper circular wires (1.5 mm^2 conductor cross section), covered with a thin stainless steal case of 0.5 mm thickness (cut-off frequency ˜ 710 kHz). The RMF system is driven by an IGBT inverter power supply (nominal current: 1 kA, nominal voltage: 1 kV) with an operating frequency band from 10 kHz to 30 kHz. The estimated amplitude of RMF neglecting effects of image current at the flux conserver is a few tens Gauss at around the magnetic axis. A preliminary experimental result will be shown in the conference. [1] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003).

  15. Radiation-Hardened Solid-State Drive

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.

    2010-01-01

    A method is provided for a radiationhardened (rad-hard) solid-state drive for space mission memory applications by combining rad-hard and commercial off-the-shelf (COTS) non-volatile memories (NVMs) into a hybrid architecture. The architecture is controlled by a rad-hard ASIC (application specific integrated circuit) or a FPGA (field programmable gate array). Specific error handling and data management protocols are developed for use in a rad-hard environment. The rad-hard memories are smaller in overall memory density, but are used to control and manage radiation-induced errors in the main, and much larger density, non-rad-hard COTS memory devices. Small amounts of rad-hard memory are used as error buffers and temporary caches for radiation-induced errors in the large COTS memories. The rad-hard ASIC/FPGA implements a variety of error-handling protocols to manage these radiation-induced errors. The large COTS memory is triplicated for protection, and CRC-based counters are calculated for sub-areas in each COTS NVM array. These counters are stored in the rad-hard non-volatile memory. Through monitoring, rewriting, regeneration, triplication, and long-term storage, radiation-induced errors in the large NV memory are managed. The rad-hard ASIC/FPGA also interfaces with the external computer buses.

  16. Paper pump for passive and programmable transport

    PubMed Central

    Wang, Xiao; Hagen, Joshua A.; Papautsky, Ian

    2013-01-01

    In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 μl/s to 1.7 μl/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications. PMID:24403999

  17. A unified acquisition system for acoustic data

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Holmes, H. K.

    1977-01-01

    A multichannel, acoustic AM carrier system was developed for a wide variety of applications, particularly for aircraft noise and sonic boom measurements. Each data acquisition channel consists of a condenser microphone, an acoustic signal converter, and a Zero Drive amplifier, along with peripheral supporting equipment. A control network insures continuous optimal tuning of the converter and permits remote calibration of the condenser microphone. With a 12.70-mm (1/2-in.) condenser microphone, the converter/Zero Drive amplifier combination has a frequency response from 0 Hz to 20 kHz (-3 db), a dynamic range exceeding 70 db, and a minimum noise floor of 50 db ref. 20 micro Pa) in the band 22.4 Hz to 22.4 kHz. The system requires no external impedance matching networks and is insensitive to cable length, at least up to 900 m (3,000 ft). System gain varies only + or - 1 db over the temperature range 4 to 54 C (40 to 130 F). Adapters are available to accommodate 23.77-mm (1-in.) and 6.35-mm (1/4-in.) microphones and to provide 30-db attenuation. A field test to obtain the acoustical time history of a helicopter flyover proved successful.

  18. Distracted Driving and Risk of Crash or Near-crash Involvement among Older Drivers using Naturalistic Driving Data with a Case-crossover Study Design.

    PubMed

    Huisingh, Carrie; Owsley, Cynthia; Levitan, Emily B; Irvin, Marguerite R; MacLennan, Paul; McGwin, Gerald

    2018-05-17

    The purpose of this study was to examine the association between secondary task involvement and risk of crash and near-crash involvement among older drivers using naturalistic driving data. Data from drivers aged ≥70 years in the Strategic Highway Research Program (SHRP2) Naturalistic Driving Study database was utilized. The personal vehicle of study participants was equipped with four video cameras enabling recording of the driver and the road environment. Secondary task involvement during a crash or near-crash event was compared to periods of non-crash involvement in a case-crossover study design. Conditional logistic regression was used to generate odds ratios (OR) and 95% confidence intervals (CI). Overall, engaging in any secondary task was not associated with crash (OR=0.94, 95% CI 0.68-1.29) or near-crash (OR=1.08, 95% CI 0.79-1.50) risk. The risk of a major crash event with cell phone use was 3.79 times higher than the risk with no cell phone use (95% CI 1.00-14.37). Other glances into the interior of the vehicle were associated with an increased risk of near-crash involvement (OR=2.55, 95% CI 1.24-5.26). Other distractions external to the vehicle were associated with a decreased risk of crash involvement (OR=0.53, 95% CI 0.30-0.94). Interacting with a passenger and talking/singing were not associated with crash or near-crash risk. Older drivers should avoid any cell phone use and minimize non-driving related eye glances towards the interior of the vehicle while driving. Certain types of events external to the vehicle are associated with a reduced crash risk among older drivers.

  19. The prevalence of distraction among passenger vehicle drivers: a roadside observational approach.

    PubMed

    Huisingh, Carrie; Griffin, Russell; McGwin, Gerald

    2015-01-01

    Distracted driving contributes to a large proportion of motor vehicle crashes, yet little is known about the prevalence of distracted driving and the specific types of distracting behaviors. The objective of this study was to estimate the prevalence of driver distraction using a roadside observational study design. A cross-sectional survey involving direct roadside observation was conducted at 11 selected intersections. Trained investigators observed a sample of passenger vehicles and recorded distraction-related behaviors, driver characteristics, and contextual factors such as vehicle speed and traffic flow. Of the 3,265 drivers observed, the prevalence of distracted driving was 32.7%. Among those involved in a distracting activity, the most frequently observed distractions included interacting with another passenger (53.2%, where passengers were present), talking on the phone (31.4%), external-vehicle distractions (20.4%), and texting/dialing a phone (16.6%). The prevalence of talking on the phone was higher among females than males (38.6% vs. 24.3%), whereas external vehicle distractions were higher among males than females (25.8% vs. 24.3%). Drivers <30 years were observed being engaged in any distracting activity, interacting with other passengers, and texting/dialing more frequently than drivers aged 30-50 and >50 years. Drivers were engaged in distracting behaviors more frequently when the car was stopped. When using similar methodology, roadside observational studies generate comparable prevalence estimates of driver distraction as naturalistic driving studies. Driver distraction is a common problem among passenger vehicle drivers. Despite the increased awareness on the dangers of texting and cell phone use while driving, these specific activities were 2 of the most frequently observed distractions. There is a continued need for road safety education about the dangers of distracted driving, especially for younger drivers.

  20. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    DOE PAGES

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; ...

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized β N ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches β N = 5.28 with B T = 6.75, while the peaked pressure case reaches β N < 5.15. Fast particle magnetohydrodynamicmore » stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×10 20/m 3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/n Gr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less

  1. Integrated tokamak modeling: when physics informs engineering and research planning

    NASA Astrophysics Data System (ADS)

    Poli, Francesca

    2017-10-01

    Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.

  2. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  3. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xufen; Wang, Yougang; Feix, Martin

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbitsmore » with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.« less

  4. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal.

    PubMed

    Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang

    2017-08-01

    Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.

  5. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal

    NASA Astrophysics Data System (ADS)

    Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang

    2017-08-01

    Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.

  6. The SILCC (SImulating the LifeCycle of molecular Clouds) project - I. Chemical evolution of the supernova-driven ISM

    NASA Astrophysics Data System (ADS)

    Walch, S.; Girichidis, P.; Naab, T.; Gatto, A.; Glover, S. C. O.; Wünsch, R.; Klessen, R. S.; Clark, P. C.; Peters, T.; Derigs, D.; Baczynski, C.

    2015-11-01

    The SILCC (SImulating the Life-Cycle of molecular Clouds) project aims to self-consistently understand the small-scale structure of the interstellar medium (ISM) and its link to galaxy evolution. We simulate the evolution of the multiphase ISM in a (500 pc)2 × ±5 kpc region of a galactic disc, with a gas surface density of Σ _{_GAS} = 10 M_{⊙} pc^{-2}. The FLASH 4 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2 and CO considering (self-) shielding, and supernova (SN) feedback but omit shear due to galactic rotation. We explore SN explosions at different rates in high-density regions (peak), in random locations with a Gaussian distribution in the vertical direction (random), in a combination of both (mixed), or clustered in space and time (clus/clus2). Only models with self-gravity and a significant fraction of SNe that explode in low-density gas are in agreement with observations. Without self-gravity and in models with peak driving the formation of H2 is strongly suppressed. For decreasing SN rates, the H2 mass fraction increases significantly from <10 per cent for high SN rates, i.e. 0.5 dex above Kennicutt-Schmidt, to 70-85 per cent for low SN rates, i.e. 0.5 dex below KS. For an intermediate SN rate, clustered driving results in slightly more H2 than random driving due to the more coherent compression of the gas in larger bubbles. Magnetic fields have little impact on the final disc structure but affect the dense gas (n ≳ 10 cm-3) and delay H2 formation. Most of the volume is filled with hot gas (˜80 per cent within ±150 pc). For all but peak driving a vertically expanding warm component of atomic hydrogen indicates a fountain flow. We highlight that individual chemical species populate different ISM phases and cannot be accurately modelled with temperature-/density-based phase cut-offs.

  7. The suppression effect of external magnetic field on the high-power microwave window multipactor phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xue, E-mail: zhangxue.iecas@yahoo.com; Wang, Yong; Fan, Junjie

    2015-02-15

    To suppress the surface multipactor phenomenon and improve the transmitting power of the high-power microwave window, the application of external magnetic fields is theoretically analyzed and simulated. A Monte Carlo algorithm is used to track the secondary electron trajectories and study the multipactor scenario on the surface of a cylinder window. It is confirmed that over-resonant magnetic fields (an external magnetic field whose magnitude is slightly greater than that of a resonant magnetic field) will generate a compensating trajectory and collision, which can suppress the secondary electron avalanche. The optimal value of this external magnetic field that will avoid themore » multipactor phenomenon on cylinder windows is discussed.« less

  8. Large-Scale Physical Models of Thermal Remediation of DNAPL Source Zones in Aquitards

    DTIC Science & Technology

    2009-05-01

    pressure at the bottom of the tank. The higher pressure is reflected in higher measured water levels in external gauges . Figure 63: 3D Cross...than atmospheric. This higher pressure can raise the apparent water level in a sight gauge or external overflow and can even drive more fluid through...the water table. All met or exceeded their goals. Typical turnkey unit costs (including design, permitting, fabrication, mobilization, drilling

  9. Study on transport properties of silicene monolayer under external field using NEGF method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syaputra, Marhamni, E-mail: marhamni@students.itb.ac.id; Wella, Sasfan Arman; Wungu, Triati Dewi Kencana

    2015-09-30

    We investigate the current-voltage (I-V) characteristics of a pristine monolayer silicene using non-equilibrium Green function (NEGF) method combining with density functional theory (DFT). This method succeeded in showing the relationship of I and V on silicene corresponding to the electronic characteristics such as density of states. The external field perpendicular to the silicene monolayer affects in increasing of the current. Under 0.2 eV external field, the current reaches the maximum peak at Vb = 0.3 eV with the increase is about 60% from what it is in zero external field.

  10. Simulating a Thin Accretion Disk Using PLUTO

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.

    2017-08-01

    Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.

  11. Quantum correlations and violation of the Bell inequality induced by an external field in a two-photon radiative cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Luqi; Das, Sumanta

    2011-06-15

    We study the polarization-dependent second-order correlation of a pair of photons emitted in a four-level radiative cascade driven by an external field. It is found that the quantum correlations of the emitted photons, degraded by the energy splitting of the intermediate levels in the radiative cascade, can be efficiently revived by a far-detuned external field. The physics of this revival is linked to an induced Stark shift and the formation of dressed states in the system by the nonresonant external field. Furthermore, we investigated the competition between the effect of the coherent external field and incoherent dephasing of the intermediatemore » levels. We find that the degradation of quantum correlations due to the incoherent dephasing can be contained for small dephasing with the external field. We also studied the nonlocality of the correlations by evaluating the Bell inequality in the linear polarization basis for the radiative cascade. We find that the Bell parameter decreases rapidly with increase in the intermediate-level energy splitting or incoherent dephasing rate to the extent that there is no violation. However, the presence of an external field leads to control over the degrading mechanisms and preservation of nonlocal correlation among the photons. This in turn can induce a violation of Bell's inequality in the radiative cascade for arbitrary intermediate-level splitting and small incoherent dephasing.« less

  12. Exactly solvable relativistic model with the anomalous interaction

    NASA Astrophysics Data System (ADS)

    Ferraro, Elena; Messina, Antonino; Nikitin, A. G.

    2010-04-01

    A special class of Dirac-Pauli equations with time-like vector potentials of an external field is investigated. An exactly solvable relativistic model describing the anomalous interaction of a neutral Dirac fermion with a cylindrically symmetric external electromagnetic field is presented. The related external field is a superposition of the electric field generated by a charged infinite filament and the magnetic field generated by a straight line current. In the nonrelativistic approximation the considered model is reduced to the integrable Pron’ko-Stroganov model.

  13. The Effects of Dextromethorphan on Driving Performance and the Standardized Field Sobriety Test.

    PubMed

    Perry, Paul J; Fredriksen, Kristian; Chew, Stephanie; Ip, Eric J; Lopes, Ingrid; Doroudgar, Shadi; Thomas, Kelan

    2015-09-01

    Dextromethorphan (DXM) is abused most commonly among adolescents as a recreational drug to generate a dissociative experience. The objective of the study was to assess driving with and without DXM ingestion. The effects of one-time maximum daily doses of DXM 120 mg versus a guaifenesin 400 mg dose were compared among 40 healthy subjects using a crossover design. Subjects' ability to drive was assessed by their performance in a driving simulator (STISIM® Drive driving simulator software) and by conducting a standardized field sobriety test (SFST) administered 1-h postdrug administration. The one-time dose of DXM 120 mg did not demonstrate driving impairment on the STISIM® Drive driving simulator or increase SFST failures compared to guaifenesin 400 mg. Doses greater than the currently recommended maximum daily dose of 120 mg are necessary to perturb driving behavior. © 2015 American Academy of Forensic Sciences.

  14. Quantum gates by periodic driving

    PubMed Central

    Shi, Z. C.; Wang, W.; Yi, X. X.

    2016-01-01

    Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions—it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation. PMID:26911900

  15. Quantum gates by periodic driving.

    PubMed

    Shi, Z C; Wang, W; Yi, X X

    2016-02-25

    Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions-it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation.

  16. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B.E.; Biewer, T.M.; Chattopadhyay, P.K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R.N. Dexter, D. W. Kerst, T.W. Lovell et.al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current- driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces energy transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electric field and themore » electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself.« less

  17. Magnetic Torque in Single Crystal Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Hobza, Anthony; Müllner, Peter

    2017-06-01

    Magnetic shape memory alloys deform in an external magnetic field in two distinct ways: by axial straining—known as magnetic-field-induced strain—and by bending when exposed to torque. Here, we examine the magnetic torque that a magnetic field exerts on a long Ni-Mn-Ga rod. A single crystal specimen of Ni-Mn-Ga was constrained with respect to bending and subjected to an external magnetic field. The torque required to rotate the specimen in the field was measured as a function of the orientation of the sample with the external magnetic field, strain, and the magnitude of the external magnetic field. The torque was analyzed based on the changes in the free energy with the angle between the field and the sample. The contributions of magnetocrystalline anisotropy and shape anisotropy to the Zeeman energy determine the net torque. The torque is large when magneotcrystalline and shape anisotropies act synergistically and small when these anisotropies act antagonistically.

  18. Quantum synchronization of a driven self-sustained oscillator.

    PubMed

    Walter, Stefan; Nunnenkamp, Andreas; Bruder, Christoph

    2014-03-07

    Synchronization is a universal phenomenon that is important both in fundamental studies and in technical applications. Here we investigate synchronization in the simplest quantum-mechanical scenario possible, i.e., a quantum-mechanical self-sustained oscillator coupled to an external harmonic drive. Using the power spectrum we analyze synchronization in terms of frequency entrainment and frequency locking in close analogy to the classical case. We show that there is a steplike crossover to a synchronized state as a function of the driving strength. In contrast to the classical case, there is a finite threshold value in driving. Quantum noise reduces the synchronized region and leads to a deviation from strict frequency locking.

  19. Energy absorption due to spatial resonance of Alfven waves at continuum tip

    NASA Astrophysics Data System (ADS)

    Chen, Eugene; Berk, Herb; Breizman, Boris; Zheng, Linjin

    2011-10-01

    We investigate the response of tokamak plasma to an external driving source. An impedance-like function depending on the driving frequency that is growing at a small rate, is calculated and interpreted with different source profiles. Special attention is devoted to the case where driving frequency approaches that of the TAE continuum tip. The calculation can be applied to the estimation of TAE damping rate by analytically continuing the inverse of the impedance function to the lower half plane. The root of the analytic continuation corresponds to the existence of a quasi-mode, from which the damping rate can be found.

  20. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry.

    PubMed

    Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  1. Compression of turbulent magnetized gas in giant molecular clouds

    NASA Astrophysics Data System (ADS)

    Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark

    2018-01-01

    Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.

  2. Fluctuations of the partition function in the generalized random energy model with external field

    NASA Astrophysics Data System (ADS)

    Bovier, Anton; Klimovsky, Anton

    2008-12-01

    We study Derrida's generalized random energy model (GREM) in the presence of uniform external field. We compute the fluctuations of the ground state and of the partition function in the thermodynamic limit for all admissible values of parameters. We find that the fluctuations are described by a hierarchical structure which is obtained by a certain coarse graining of the initial hierarchical structure of the GREM with external field. We provide an explicit formula for the free energy of the model. We also derive some large deviation results providing an expression for the free energy in a class of models with Gaussian Hamiltonians and external field. Finally, we prove that the coarse-grained parts of the system emerging in the thermodynamic limit tend to have a certain optimal magnetization, as prescribed by the strength of the external field and by parameters of the GREM.

  3. Hybrid microfluidics combined with active and passive approaches for continuous cell separation.

    PubMed

    Yan, Sheng; Zhang, Jun; Yuan, Dan; Li, Weihua

    2017-01-01

    Microfluidics, which is classified as either active or passive, is capable of separating cells of interest from a complex and heterogeneous sample. Active methods utilise external fields such as electric, magnetic, acoustic, and optical to drive cells for separation, while passive methods utilise channel structures, intrinsic hydrodynamic forces, and steric hindrances to manipulate cells. However, when processing complex biological samples such as whole blood with rare cells, separation with a single module microfluidic device is difficult. Hybrid microfluidics is an emerging technique, which utilises active and passive methods whilst fulfilling higher requirements for stable performance, versatility, and convenience, including (i) the ability to process multi-target cells, (ii) enhanced ability for multiplexed separation, (iii) higher sensitivity, and (iv) tunability for a wider operational range. This review introduces the fundamental physics and typical formats for subclasses of hybrid microfluidic devices based on their different physical fields; presents current examples of cell sorting to highlight the advantage and usefulness of hybrid microfluidics on biomedicine, and then discusses the challenges and perspective of future development and the promising direction of research in this field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2005-01-01

    This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.

  5. Instabilities of Current Carrying Torus

    NASA Astrophysics Data System (ADS)

    Liu, Wenjuan; Qiu, J.

    2010-05-01

    We investigate the initial equilibrium and stability conditions for an uniform current-carrying plasma ring with a non-trivial toroidal magnetic field Bt. Realistic parameters comparable to observations are used to describe the magnetic field inside and outside the torus. The external poloidal magnetic field is assumed to fall off as a power function with decay index n (n = - d log (Bex) /d log(h)). The parameter space is explored to find all initial equilibrium solutions, at which perturbation is introduced. It is shown that with non-trivial toroidal field, the current ring attains equilibrium with a weaker external field. It is also shown that the torus attains equilibrium at higher altitude when the external field decays more rapidly (greater n) or the ratio of the toroidal flux in the torus to the external field increases. We further study stabilities of the torus at equilibrium by defining a critical decay index ncr (Kliem and Török 2006). A sufficiently strong toroidal field can completely suppress the torus instability due to the current hoop force. With a weak toroidal field, similar to the case of Bt=0, the instability occurs when the external magnetic field declines rapidly with height when the field decay index n>ncr. For realistic sets of parameters, the equilibrium height is within 10 solar radii, and the effective ncr is in the range of 1.0-1.6. The critical decay index increases when the ratio of the toroidal flux to the external field decreases. This work is supported by NSF CAREER grant ATM-0748428.

  6. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Garate, José-A.

    2016-08-01

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ˜0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  7. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics.

    PubMed

    English, Niall J; Garate, José-A

    2016-08-28

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ∼0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  8. Complex deformation associated with anhydrite layers in the Tromsø Basin, SW Barents Sea.

    NASA Astrophysics Data System (ADS)

    Marfo, George; Olakunle Omosanya, Kamaldeen; Johansen, Ståle Emil; Zervas, Ioannis

    2017-04-01

    Internal and external deformation associated with salt structures is of prime interest due to their economic importance as hydrocarbon seals, reservoirs, repositories for chemical waste and their implication on drilling. Salt structures are often associated with anhydrites, which may 'cap' or are enclosed within the allochthonous salt structures. Despite their economic importance, the internal and external structures of evaporites remain poorly studied from field and seismic data due to the sparse outcrops of evaporites and poor seismic imaging. The zero-phased, normal polarity, high resolution multiple 2D seismic data, in combination with detailed interpretation of wireline logs provide an excellent study into the salt structures, and offers a good opportunity to investigate the dynamics, geometries and mechanisms driving deformation of internal and external salt layers associated with the Late Carboniferous to Early Permian Salt structures in the Tromsø Basin. The methods include seismic interpretation and the application of multiple seismic attributes to map stratigraphic units and discontinuities. Our results show that the anhydrite layers are marked by high amplitude reflections at the crests and flanks or fully enclosed within the salt diapirs. Crestal and lateral anhydrite caprocks represent external salt structures whilst the entrained anhydrites or stringers are intrasalt structures. Anhydrite caprocks generally show structural styles such as faults and large-scale folds which are harmonic to the top salt structure. In contrast, anhydrite stringers show folds of varying scale, which are harmonic to disharmonic to the top salt structure. Boudins and steeply dipping stringer fragments are also interpreted within the stringers. Caprock deformation is attributed to salt upwelling. Folding and boudinaging of originally horizontal and continuous stringer layers formed from a multiphase superimposed sequence of ductile and brittle deformation in response to complex multi-dimensional salt flow. Internal salt flow involves radial and tangential compression, which leads to dominant fold structures near the margins. Boudins on the lower flanks of the diapir formed due radial extension. Our study further demonstrates that differential geometries exhibited by the different anhydrite groups imply that the mechanisms deforming internal and external salt structures are different. The results from this study are comparable to observations from salt mines, field exposures, scaled physical and numerical models.

  9. Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients.

    PubMed

    Leong, Sim Siong; Yeap, Swee Pin; Lim, JitKang

    2016-12-06

    Magnetic separation is a versatile technique used in sample preparation for diagnostic purpose. For such application, an external magnetic field is applied to drive the separation of target entity (e.g. bacteria, viruses, parasites and cancer cells) from a complex raw sample in order to ease the subsequent task(s) for disease diagnosis. This separation process not only can be achieved via the utilization of high magnetic field gradient, but also, in most cases, low magnetic field gradient with magnitude less than 100 T m -1 is equally feasible. It is the aim of this review paper to summarize the usage of both high gradient magnetic separation and low gradient magnetic separation (LGMS) techniques in this area of research. It is noteworthy that effectiveness of the magnetic separation process not only determines the outcome of a diagnosis but also directly influences its accuracy as well as sensing time involved. Therefore, understanding the factors that simultaneously influence the efficiency of both magnetic separation process and target detection is necessary. Moreover, for LGMS, there are several important considerations that should be taken into account in order to ensure its successful implementation. Hence, this review paper aims to provide an overview to relate all this crucial information by linking the magnetic separation theory to biomedical diagnostic applications.

  10. The Formation of a Small-Scale Filament After Flux Emergence on the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Chen, Hechao; Yang, Jiayan; Yang, Bo; Ji, Kaifan; Bi, Yi

    2018-06-01

    We present observations of the formation process of a small-scale filament on the quiet Sun during 5 - 6 February 2016 and investigate its formation cause. Initially, a small dipole emerged, and its associated arch filament system was found to reconnect with overlying coronal fields accompanied by numerous extreme ultraviolet bright points. When the bright points faded, many elongated dark threads formed and bridged the positive magnetic element of the dipole and the external negative network fields. Interestingly, an anticlockwise photospheric rotational motion (PRM) set in within the positive endpoint region of the newborn dark threads following the flux emergence and lasted for more than 10 hours. Under the drive of the PRM, these dispersive dark threads gradually aligned along the north-south direction and finally coalesced into an inverse S-shaped filament. Consistent with the dextral chirality of the filament, magnetic helicity calculations show that an amount of negative helicity was persistently injected from the rotational positive magnetic element and accumulated during the formation of the filament. These observations suggest that twisted emerging fields may lead to the formation of the filament via reconnection with pre-existing fields and release of its inner magnetic twist. The persistent PRM might trace a covert twist relaxation from below the photosphere to the low corona.

  11. Phase locking route behind complex periodic windows in a forced oscillator

    NASA Astrophysics Data System (ADS)

    Jan, Hengtai; Tsai, Kuo-Ting; Kuo, Li-wei

    2013-09-01

    Chaotic systems have complex reactions against an external driving force; even in cases with low-dimension oscillators, the routes to synchronization are diverse. We proposed a stroboscope-based method for analyzing driven chaotic systems in their phase space. According to two statistic quantities generated from time series, we could realize the system state and the driving behavior simultaneously. We demonstrated our method in a driven bi-stable system, which showed complex period windows under a proper driving force. With increasing periodic driving force, a route from interior periodic oscillation to phase synchronization through the chaos state could be found. Periodic windows could also be identified and the circumstances under which they occurred distinguished. Statistical results were supported by conditional Lyapunov exponent analysis to show the power in analyzing the unknown time series.

  12. Effect of external magnetic field on locking range of spintronic feedback nano oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.

    2018-05-01

    In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.

  13. An initial physical mechanism in the treatment of neurologic disorders with externally applied pico Tesla magnetic fields.

    PubMed

    Jacobson, J I; Yamanashi, W S

    1995-04-01

    The recent clinical studies describing the treatment of some neurological disorders with an externally applied pico Tesla (10(-12) Tesla, or 10(-8) gauss) magnetic field are considered from a physical view point. An equation relating the intrinsic (or rest) energy of a charged particle of mass m with its energy of interaction in an externally applied magnetic field B is presented. The equation represents an initial basic physical interaction as a part of a more complex biological mechanism to explain the therapeutic effects of externally applied magnetic fields in these and other neurologic disorders.

  14. A physical mechanism in the treatment of neurologic disorders with externally applied pico Tesla magnetic fields.

    PubMed

    Jacobson, J I; Yamanashi, W S

    1995-06-01

    The clinical studies describing the treatment of some neurological disorders with an externally applied pico Tesla (10R Tesla, or 10(-8) gauss) magnetic field are considered from a physical view point. An equation relating the intrinsic or "rest" energy of a charged particle of mass with its energy of interaction in an externally applied magnetic field B is presented. The equation is proposed to represent an initial basic physical interaction as a part of a more complex biological mechanism to explain the therapeutic effects of externally applied magnetic fields in these and other neurologic disorders.

  15. Dipole interaction of the Quincke rotating particles.

    PubMed

    Dolinsky, Yu; Elperin, T

    2012-02-01

    We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.

  16. Dipole interaction of the Quincke rotating particles

    NASA Astrophysics Data System (ADS)

    Dolinsky, Yu.; Elperin, T.

    2012-02-01

    We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.

  17. Demonstration of motion control of ZrO2 microparticles in uniform/non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Onishi, Genki; Trung, Ngo Nguyen Chi; Matsutani, Naoto; Nakayama, Tadachika; Suzuki, Tsuneo; Suematsu, Hisayuki; Niihara, Koichi

    2018-02-01

    This study aims to elucidate the mechanism that drives dielectric microparticles under an electric field. The driving of microstructures is affected by various electrical phenomena occurring at the same time such as surface potential, polarization, and electrostatic force. It makes the clarification of the driving mechanism challenging. A simple experimental system was used to observe the behavior of spherical ZrO2 microparticles in a nonaqueous solution under an electric field. The results suggest that the mechanism that drives the ZrO2 microparticles under an electric field involved the combination of an electric image force, a gradient force, and the contact charging phenomenon. A method is proposed to control the motion of micro- and nanostructures in further study and applications.

  18. Hubbard pair cluster in the external fields. Studies of the magnetic properties

    NASA Astrophysics Data System (ADS)

    Balcerzak, T.; Szałowski, K.

    2018-06-01

    The magnetic properties of the two-site Hubbard cluster (dimer or pair), embedded in the external electric and magnetic fields and treated as the open system, are studied by means of the exact diagonalization of the Hamiltonian. The formalism of the grand canonical ensemble is adopted. The phase diagrams, on-site magnetizations, spin-spin correlations, mean occupation numbers and hopping energy are investigated and illustrated in figures. An influence of temperature, mean electron concentration, Coulomb U parameter and external fields on the quantities of interest is presented and discussed. In particular, the anomalous behaviour of the magnetization and correlation function vs. temperature near the critical magnetic field is found. Also, the effect of magnetization switching by the external fields is demonstrated.

  19. Turbulent magnetic fluctuations in laboratory reconnection

    NASA Astrophysics Data System (ADS)

    Von Stechow, Adrian; Grulke, Olaf; Klinger, Thomas

    2016-07-01

    The role of fluctuations and turbulence is an important question in astrophysics. While direct observations in space are rare and difficult dedicated laboratory experiments provide a versatile environment for the investigation of magnetic reconnection due to their good diagnostic access and wide range of accessible plasma parameters. As such, they also provide an ideal chance for the validation of space plasma reconnection theories and numerical simulation results. In particular, we studied magnetic fluctuations within reconnecting current sheets for various reconnection parameters such as the reconnection rate, guide field, as well as plasma density and temperature. These fluctuations have been previously interpreted as signatures of current sheet plasma instabilities in space and laboratory systems. Especially in low collisionality plasmas these may provide a source of anomalous resistivity and thereby contribute a significant fraction of the reconnection rate. We present fluctuation measurements from two complementary reconnection experiments and compare them to numerical simulation results. VINETA.II (Greifswald, Germany) is a cylindrical, high guide field reconnection experiment with an open field line geometry. The reconnecting current sheet has a three-dimensional structure that is predominantly set by the magnetic pitch angle which results from the superposition of the guide field and the in-plane reconnecting field. Within this current sheet, high frequency magnetic fluctuations are observed that correlate well with the local current density and show a power law spectrum with a spectral break at the lower hybrid frequency. Their correlation lengths are found to be extremely short, but propagation is nonetheless observed with high phase velocities that match the Whistler dispersion. To date, the experiment has been run with an external driving field at frequencies higher than the ion cyclotron frequency f_{ci}, which implies that the EMHD framework applies. Recent machine upgrades allow the inclusion of ion dynamics by reducing the drive frequency below f_{ci}. Two numerical codes (EMHD and hybrid, respectively) have been developed at the Max Planck Institute for solar physics and are used to investigate instability mechanisms and scaling laws for the observed results. MRX (PPPL. Princeton) is a zero to medium guide field, toroidal reconnection experiment. Despite the differing plasma parameters, the qualitative magnetic fluctuation behavior (amplitude profiles, spectra and propagation properties) is comparable to VINETA.II. Results from a new measurement campaign at several different guide fields provides partial overlap with VINETA.II guide field ratios and thereby extends the accessible parameter space of our studies.

  20. Describing and Predicting Developmental Profiles of Externalizing Problems from Childhood to Adulthood

    PubMed Central

    Petersen, Isaac T.; Bates, John E.; Dodge, Kenneth A.; Lansford, Jennifer E.; Pettit, Gregory S.

    2014-01-01

    This longitudinal study considers externalizing behavior problems from ages 5 to 27 (N = 585). Externalizing problem ratings by mothers, fathers, teachers, peers, and self-report were modeled with growth curves. Risk and protective factors across many different domains and time frames were included as predictors of the trajectories. A major contribution of the study is in demonstrating how heterotypic continuity and changing measures can be handled in modeling changes in externalizing behavior over long developmental periods. On average, externalizing problems decreased from early childhood to preadolescence, increased during adolescence, and decreased from late adolescence to adulthood. There was strong nonlinear continuity in externalizing problems over time. Family process, peer process, stress, and individual characteristics predicted externalizing problems beyond the strong continuity of externalizing problems. The model accounted for 70% of the variability in the development of externalizing problems. The model’s predicted values showed moderate sensitivity and specificity in prediction of arrests, illegal drug use, and drunk driving. Overall, the study showed that by using changing, developmentally-relevant measures and simultaneously taking into account numerous characteristics of children and their living situations, research can model lengthy spans of development and improve predictions of the development of later, severe externalizing problems. PMID:25166430

  1. Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Futera, Zdenek; English, Niall J.

    2017-07-01

    The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.

  2. Dual-responsive soft actuators based on self-assembled polymers

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jae; Park, Moon Jeong

    Electroactive polymer actuators (EAPs) have been extensively studied for biomimetic technologies such as artificial muscles and soft robotics. While a large deformation can be achievable from EAPs under relatively low-driving voltages, the slow response time has long been a fundamental drawback of EAPs. Here, we investigate a new soft actuator capable of responding two different external stimuli. The actuator is composed of electroactive polymer and light-responsive polymer. We have employed ionic block copolymers having well-connected ion-conduction channels to raise response to electric-field. Light-responsive polymers were additionally incorporated into them to control the deformation of the actuator in an independent manner. Noteworthy observation in the present study is that the dual-responsive polymers resulted in synergetic achievement of high bending strain and fast response time, which marked a significant improvement from the conventional EAPs.

  3. Secondary electroosmotic flow in microchannels with nonuniform and asymmetric Zeta potential

    NASA Astrophysics Data System (ADS)

    Zhang, Jinbai; He, Guowei; Liu, Feng

    2004-11-01

    Microfluidics has a broad range of applications in biotechnology, such as sample injection, drug delivering, solution mixing, and separations. All of these techniques require handling fluids in the low Reynolds number (Re) regime. Electroosmotic flow (EOF) or electroosmocitcs is the bulk movement of liquid relative to a stationary surface due to an externally applied electronic field. It is an alternative to pressure-driven flows with convenient implementation The driving force for EOF is dependent on the zeta potential. Previous reseraches focus on the nonuniform Zeta potential. In the present work, we consider nonuniform and asymmetric Zeta potential. The effects of asymmetric Zeta potential on the EOF are investigated analytically and simulated numerically. It is demonstrated that the nonuniform and asymmetric Zeta potential can generate more flow patterns for microfluidic control compared to symmetric Zeta potential.

  4. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials.

    PubMed

    Sodemann, Inti; Fu, Liang

    2015-11-20

    It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry. However, in this work, we demonstrate that Hall-like currents can occur in second-order response to external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose form is determined by point group symmetry. We discus optimal conditions to observe this effect and propose candidate two- and three-dimensional materials, including topological crystalline insulators, transition metal dichalcogenides, and Weyl semimetals.

  5. Synthesis of magnetic microtubes decorated with nanowires and cells

    NASA Astrophysics Data System (ADS)

    Pomar, C. Diaz; Martinho, H.; Ferreira, F. F.; Goia, T. S.; Rodas, A. C. D.; Santos, S. F.; Souza, J. A.

    2018-04-01

    Antiferromagnetic and ferrimagnetic microtubes decorated with nanowires have been obtained during thermal oxidation process, which was assisted by in situ electrical resistivity measurements. The synthesis route including heat treatment and electrical current along with growth mechanism are presented. This simple method and the ability to tune in the magnetic moment of the obtained microtubes going from a nonmagnetic-like to a large magnetization saturation open an avenue for interesting applications. In vitro experiments involving adherence, migration, and proliferation of fibroblasts cell culture on the surface of the microtubes indicated the absence of cytotoxicity for this material. We have also calculated both torque and driving magnetic force for these microtubes with nanowires and cells as a function of external magnetic field gradient which were found to be robust opening the possibility for magnetic bio micro-robot device fabrication and application in biotechnology.

  6. Suppression of phase synchronisation in network based on cat's brain.

    PubMed

    Lameu, Ewandson L; Borges, Fernando S; Borges, Rafael R; Iarosz, Kelly C; Caldas, Iberê L; Batista, Antonio M; Viana, Ricardo L; Kurths, Jürgen

    2016-04-01

    We have studied the effects of perturbations on the cat's cerebral cortex. According to the literature, this cortex structure can be described by a clustered network. This way, we construct a clustered network with the same number of areas as in the cat matrix, where each area is described as a sub-network with a small-world property. We focus on the suppression of neuronal phase synchronisation considering different kinds of perturbations. Among the various controlling interventions, we choose three methods: delayed feedback control, external time-periodic driving, and activation of selected neurons. We simulate these interventions to provide a procedure to suppress undesired and pathological abnormal rhythms that can be associated with many forms of synchronisation. In our simulations, we have verified that the efficiency of synchronisation suppression by delayed feedback control is higher than external time-periodic driving and activation of selected neurons of the cat's cerebral cortex with the same coupling strengths.

  7. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability.

    PubMed

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  8. Effect of rear end spoiler angle of a sedan car

    NASA Astrophysics Data System (ADS)

    Mashud, Mohammad; Das, Rubel Chandra

    2017-06-01

    Automotive vehicle's performance, safety, maneuverability can be influenced by multi-disciplinary factors such as car engine, tires, aerodynamics, and ergonomics of design. With the recent years, inflation in the fuel prices & the demand to have reduced greenhouse emissions has played a significant role in redefining the car aerodynamics. The shape of the vehicle uses about 3% of fuel to overcome the resistance in urban driving, while it takes 11% of fuel for the highway driving. This considerable high value of fuel usage in highway driving attracts several design engineers to enhance the aerodynamics of the vehicle using minimal design changes. Besides, automotive vehicles have become so much faster experiencing uplift force which creates unexpected accidents. This brings the idea of using external devices, which could be attached to the present vehicle without changing the body. This paper is based on the design, developments and numeral calculation of the effects of external device, which will be spoiler that mounted at the rear side of the sedan car to make the present vehicles more aerodynamically attractive. The influence of rear spoiler on the generated lift, drag, and pressure distributions are investigated and reported using commercially available Autodesk Simulation CFD software tool.

  9. Effect of external magnetic field on the crystal growth of nano-structured Zn xMn 1- x+ yZr yFe 2-2 yO 4 thin films

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Rafique, M. S.; Khaleeq-ur-Rahaman, M.; Siraj, K.; Usman, Arslan; Ahsan, A.; Naseem, S.; Khan, K.

    2011-06-01

    Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 and Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films with different concentrations of Mn and Zr have been deposited on single crystal n-Si (400) at room temperature (RT) by pulse laser deposition technique (PLD). The films have been deposited under two conditions: (i) with the applied external magnetic field across the propagation of the plume (ii) without applied external magnetic field ( B=0). XRD results show the films have spinel cubic structure when deposited in the presence of magnetic field. SEM and AFM observations clearly show the effect of external applied magnetic field on the growth of films in terms of small particle size, improved uniformity and lower r.m.s. roughness. Thin films deposited under the influence of external magnetic field exhibit higher magnetization as measured by the VSM. The optical band gap energy Eg, refractive index n, reflection, absorption and the thickness of the thin films were measured by spectroscopy ellipsometer. The reflection of Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films is higher than Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 thin films due to the greater concentration of Zr. The thicknesses of the thin films under the influence of external magnetic field are larger than the films grown without field for both samples. The optical band gap energy Eg decreases with increasing film thickness. The films with external magnetic field are found highly absorbing in nature due to the larger film thickness.

  10. Mobility scooter driving ability in visually impaired individuals.

    PubMed

    Cordes, Christina; Heutink, Joost; Brookhuis, Karel A; Brouwer, Wiebo H; Melis-Dankers, Bart J M

    2018-06-01

    To investigate how well visually impaired individuals can learn to use mobility scooters and which parts of the driving task deserve special attention. A mobility scooter driving skill test was developed to compare driving skills (e.g. reverse driving, turning) between 48 visually impaired (very low visual acuity = 14, low visual acuity = 10, peripheral field defects = 11, multiple visual impairments = 13) and 37 normal-sighted controls without any prior experience with mobility scooters. Performance on this test was rated on a three-point scale. Furthermore, the number of extra repetitions on the different elements were noted. Results showed that visually impaired participants were able to gain sufficient driving skills to be able to use mobility scooters. Participants with visual field defects combined with low visual acuity showed most problems learning different skills and needed more training. Reverse driving and stopping seemed to be most difficult. The present findings suggest that visually impaired individuals are able to learn to drive mobility scooters. Mobility scooter allocators should be aware that these individuals might need more training on certain elements of the driving task. Implications for rehabilitation Visual impairments do not necessarily lead to an inability to acquire mobility scooter driving skills. Individuals with peripheral field defects (especially in combination with reduced visual acuity) need more driving ability training compared to normal-sighted people - especially to accomplish reversing. Individual assessment of visually impaired people is recommended, since participants in this study showed a wide variation in ability to learn driving a mobility scooter.

  11. How do distracted and normal driving differ : an analysis of the ACAS naturalistic driving data

    DOT National Transportation Integrated Search

    2007-05-01

    To determine how distracted and normal driving differ, this report re-examines : driving performance data from the advanced collision avoidance system (ACAS) field : operational test (FOT), a naturalistic driving study (96 drivers, 136,792 miles). : ...

  12. Magnetic field induced quantum dot brightening in liquid crystal synergized magnetic and semiconducting nanoparticle composite assemblies

    DOE PAGES

    Amaral, Jose Jussi; Wan, Jacky; Rodarte, Andrea L.; ...

    2014-10-22

    The design and development of multifunctional composite materials from artificial nano-constituents is one of the most compelling current research areas. This drive to improve over nature and produce ‘meta-materials’ has met with some success, but results have proven limited with regards to both the demonstration of synergistic functionalities and in the ability to manipulate the material properties post-fabrication and in situ. Here, magnetic nanoparticles (MNPs) and semiconducting quantum dots (QDs) are co-assembled in a nematic liquid crystalline (LC) matrix, forming composite structures in which the emission intensity of the quantum dots is systematically and reversibly controlled with a small appliedmore » magnetic field (<100 mT). This magnetic field-driven brightening, ranging between a two- to three-fold peak intensity increase, is a truly cooperative effect: the LC phase transition creates the co-assemblies, the clustering of the MNPs produces LC re-orientation at atypical low external field, and this re-arrangement produces compaction of the clusters, resulting in the detection of increased QD emission. These results demonstrate a synergistic, reversible, and an all-optical process to detect magnetic fields and additionally, as the clusters are self-assembled in a fluid medium, they offer the possibility for these sensors to be used in broad ranging fluid-based applications.« less

  13. High Performance Regimes in Alcator C-Mod at High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Marmar, E. S.; Alcator C-Mod Team

    2017-10-01

    Alcator is the only divertor tokamak in the world capable of operating at magnetic fields up to 8 T, equaling and exceeding that planned for ITER. Using RF and microwave tools for auxiliary heating and current drive, C-Mod accesses high pressure, high density, reactor-relevant regimes with no external torque and equilibrated electrons and ions, with exclusive use of high-Z metal plasma-facing components. The 2016 experimental campaign focused on naturally ELM-suppressed, enhanced energy confinement regimes (including I-mode and EDA H-mode, and approaches to super-H-mode), with emphasis on operation at the highest fields (52 atm.) was achieved. Taken together, combined with previous results from C-Mod and the world tokamak database, these results form a strong foundation for the high field, compact approach to achieving fusion energy production. New advances in high temperature, high field superconductors open the possibilities for practical development of this path for commercial fusion. Supported by USDOE.

  14. Dynamic behavior of the interface of striplike structures in driven lattice gases

    NASA Astrophysics Data System (ADS)

    Saracco, Gustavo P.; Albano, Ezequiel V.

    2008-09-01

    In this work, the dynamic behavior of the interfaces in both the standard and random driven lattice gas models (DLG and RDLG, respectively) is investigated via numerical Monte Carlo simulations in two dimensions. These models consider a lattice gas of density ρ=1/2 with nearest-neighbor attractive interactions between particles under the influence of an external driven field applied along one fixed direction in the case of the DLG model, and a randomly varying direction in the case of the RDLG model. The systems are also in contact with a reservoir at temperature T . Those systems undergo a second-order nonequilibrium phase transition between an ordered state characterized by high-density strips crossing the sample along the driving field, and a quasilattice gas disordered state. For T≲Tc , the average interface width of the strips (W) was measured as a function of the lattice size and the anisotropic shape factor. It was found that the saturation value Wsat2 only depends on the lattice size parallel to the external field axis Ly and exhibits two distinct regimes: Wsat2∝lnLy for low temperatures, that crosses over to Wsat2∝Ly2αI near the critical zone, αI=1/2 being the roughness exponent of the interface. By using the relationship αI=1/(1+ΔI) , the anisotropic exponent for the interface of the DLG model was estimated, giving ΔI≃1 , in agreement with the computed value for anisotropic bulk exponent ΔB in a recently proposed theoretical approach. At the crossover region between both regimes, we observed indications of bulk criticality. The time evolution of W at Tc was also monitored and shows two growing stages: first one observes that W∝lnt for several decades, and in the following times one has W∝tβI , where βI is the dynamic exponent of the interface width. By using this value we estimated the dynamic critical exponent of the correlation length in the perpendicular direction to the external field, giving z⊥I≈4 , which is consistent with the dynamic exponent of the bulk critical transition z⊥B in both theoretical approaches developed for the standard model. A similar scenario was also observed in the RDLG model, suggesting that both models may belong to the same universality class.

  15. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo

    1984-01-01

    An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.

  16. Rotary mechanical latch

    DOEpatents

    Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.

    2012-11-13

    A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.

  17. Flexible programmable logic module

    DOEpatents

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  18. Characterization of magnetic force microscopy probe tip remagnetization for measurements in external in-plane magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weis, Tanja; Engel, Dieter; Ehresmann, Arno

    2008-12-15

    A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.

  19. Stable solitary waves in super dense plasmas at external magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen

    2015-07-01

    Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.

  20. Fast, externally triggered, digital phase controller for an optical lattice

    NASA Astrophysics Data System (ADS)

    Sadgrove, Mark; Nakagawa, Ken'ichi

    2011-11-01

    We present a method to control the phase of an optical lattice according to an external trigger signal. The method has a latency of less than 30 μs. Two phase locked digital synthesizers provide the driving signal for two acousto-optic modulators which control the frequency and phase of the counter-propagating beams which form a standing wave (optical lattice). A micro-controller with an external interrupt function is connected to the desired external signal, and updates the phase register of one of the synthesizers when the external signal changes. The standing wave (period λ/2 = 390 nm) can be moved by units of 49 nm with a mean jitter of 28 nm. The phase change is well known due to the digital nature of the synthesizer, and does not need calibration. The uses of the scheme include coherent control of atomic matter-wave dynamics.

  1. Contacts in the Office of Pesticide Programs, Field and External Affairs Division

    EPA Pesticide Factsheets

    Contact the Field and External Affairs Division (FEAD) about program policies and regulations; legislation and congressional interaction; regional, state, and tribal coordination and assistance; international and field programs; and communication activity.

  2. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.

    PubMed

    Budkov, Yu A; Kolesnikov, A L; Kiselev, M G

    2015-11-28

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.

  3. Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition

    NASA Astrophysics Data System (ADS)

    Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team

    2017-10-01

    We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.

  4. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  5. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B. E.; Biewer, T. M.; Chattopadhyay, P. K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell et al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current-driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces fluctuations and transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electricmore » field and the electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself. (c) 2000 American Institute of Physics.« less

  6. A New Approach to Isolating External Magnetic Field Components in Spacecraft Measurements of the Earth's Magnetic Field Using Global Positioning System observables

    NASA Technical Reports Server (NTRS)

    Raymond, C.; Hajj, G.

    1994-01-01

    We review the problem of separating components of the magnetic field arising from sources in the Earth's core and lithosphere, from those contributions arising external to the Earth, namely ionospheric and magnetospheric fields, in spacecraft measurements of the Earth's magnetic field.

  7. Small hydraulic turbine drives

    NASA Technical Reports Server (NTRS)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  8. On noninvasive assessment of acoustic fields acting on the fetus

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Kazakov, V. V.

    2014-05-01

    The aim of this study is to verify a noninvasive technique for assessing the characteristics of acoustic fields in the audible range arising in the uterus under the action of maternal voice, external sounds, and vibrations. This problem is very important in view of actively developed methods for delivery of external sounds to the uterus: music, maternal voice recordings, sounds from outside the mother's body, etc., that supposedly support development of the fetus at the prenatal stage psychologically and cognitively. However, the parameters of acoustic signals have been neither measured nor normalized, which may be dangerous for the fetus and hinder actual assessment of their impact on fetal development. The authors show that at frequencies below 1 kHz, acoustic pressure in the uterus may be measured noninvasively using a hydrophone placed in a soft capsule filled with liquid. It was found that the acoustic field at frequencies up to 1 kHz arising in the uterus under the action of an external sound field has amplitude-frequency parameters close to those of the external field; i.e., the external field penetrates the uterus with hardly any difficulty.

  9. Parity Deformed Jaynes-Cummings Model: “Robust Maximally Entangled States”

    PubMed Central

    Dehghani, A.; Mojaveri, B.; Shirin, S.; Faseghandis, S. Amiri

    2016-01-01

    The parity-deformations of the quantum harmonic oscillator are used to describe the generalized Jaynes-Cummings model based on the λ-analog of the Heisenberg algebra. The behavior is interestingly that of a coupled system comprising a two-level atom and a cavity field assisted by a continuous external classical field. The dynamical characters of the system is explored under the influence of the external field. In particular, we analytically study the generation of robust and maximally entangled states formed by a two-level atom trapped in a lossy cavity interacting with an external centrifugal field. We investigate the influence of deformation and detuning parameters on the degree of the quantum entanglement and the atomic population inversion. Under the condition of a linear interaction controlled by an external field, the maximally entangled states may emerge periodically along with time evolution. In the dissipation regime, the entanglement of the parity deformed JCM are preserved more with the increase of the deformation parameter, i.e. the stronger external field induces better degree of entanglement. PMID:27917882

  10. Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient

    NASA Astrophysics Data System (ADS)

    Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S.; Back, Christian H.; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo

    2017-01-01

    A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.

  11. Lipid rafts sense and direct electric field-induced migration

    PubMed Central

    Lin, Bo-jian; Tsao, Shun-hao; Chen, Alex; Hu, Shu-Kai; Chao, Ling

    2017-01-01

    Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction. PMID:28739955

  12. Lipid rafts sense and direct electric field-induced migration.

    PubMed

    Lin, Bo-Jian; Tsao, Shun-Hao; Chen, Alex; Hu, Shu-Kai; Chao, Ling; Chao, Pen-Hsiu Grace

    2017-08-08

    Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction.

  13. Electrical Stressing Induced Monolayer Vacancy Island Growth on TiSe2

    NASA Astrophysics Data System (ADS)

    Zheng, Husong; Valtierra, Salvador; Ofori-Opoku, Nana; Chen, Chuanhui; Sun, Lifei; Yuan, Shuaishuai; Jiao, Liying; Bevan, Kirk H.; Tao, Chenggang

    2018-03-01

    To ensure the practical application of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe2 surfaces as a model system, for the first time we have observed a shape evolution and growth from triangular to hexagonal driven by scanning tunneling microscopy (STM) electrical stressing. The size of islands shows linear growth with a rate of (3.00 +- 0.05) x 10-3 nm/s, when the STM scanning parameters are held fixed at Vs = 1.0 V and I = 1.8 nA. We further quantified how the growth rate is related to the tunneling current magnitude. Our simulations of monolayer island evolution using phase-field modeling are in good agreement with our experimental observations, and point towards preferential edge atom dissociation under STM scanning driving the observed growth. The results could be potentially important for device applications of ultrathin transition metal dichalcogenides and related 2D materials subject to electrical stressing under device operating conditions.

  14. Monte Carlo investigation of anomalous transport in presence of a discontinuity and of an advection field

    NASA Astrophysics Data System (ADS)

    Marseguerra, M.; Zoia, A.

    2007-04-01

    Anomalous diffusion has recently turned out to be almost ubiquitous in transport problems. When the physical properties of the medium where the transport process takes place are stationary and constant at each spatial location, anomalous transport has been successfully analysed within the Continuous Time Random Walk (CTRW) model. In this paper, within a Monte Carlo approach to CTRW, we focus on the particle transport through two regions characterized by different physical properties, in presence of an external driving action constituted by an additional advective field, modelled within both the Galilei invariant and Galilei variant schemes. Particular attention is paid to the interplay between the distributions of space and time across the discontinuity. The resident concentration and the flux of the particles are finally evaluated and it is shown that at the interface between the two regions the flux is continuous as required by mass conservation, while the concentration may reveal a neat discontinuity. This result could open the route to the Monte Carlo investigation of the effectiveness of a physical discontinuity acting as a filter on particle concentration.

  15. Laboratory evidence that line-tied tension forces can suppress loss-of-equilibrium flux rope eruptions in the solar corona

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W.; Jara-Almonte, J.; Gao, L.

    2014-10-01

    Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (vacuum) and internal (plasma-generated) magnetic fields. We find that the line-tied tension force--a force that is not included in the basic torus instability theory--plays a major role in preventing eruptions. The dependence of this tension force on various vacuum field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  16. Numerical simulation of a helical shape electric arc in the external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Urusov, R. M.; Urusova, I. R.

    2016-10-01

    Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.

  17. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  18. Thermoelectric efficiency enhanced in a quantum dot with polarization leads, spin-flip and external magnetic field

    NASA Astrophysics Data System (ADS)

    Yao, Hui; Niu, Peng-Bin; Zhang, Chao; Xu, Wei-Ping; Li, Zhi-Jian; Nie, Yi-Hang

    2018-03-01

    We theoretically study the thermoelectric transport properties in a quantum dot system with two ferromagnetic leads, the spin-flip scattering and the external magnetic field. The results show that the spin polarization of the leads strongly influences thermoelectric coefficients of the device. For the parallel configuration the peak of figure of merit increases with the increase of polarization strength and non-collinear configuration trends to destroy the improvement of figure of merit induced by lead polarization. While the modulation of the spin-flip scattering on the figure of merit is effective only in the absence of external magnetic field or small magnetic field. In terms of improving the thermoelectric efficiency, the external magnetic field plays a more important role than spin-flip scattering. The thermoelectric efficiency can be significantly enhanced by the magnetic field for a given spin-flip scattering strength.

  19. Particles with nonlinear electric response: Suppressing van der Waals forces by an external field.

    PubMed

    Soo, Heino; Dean, David S; Krüger, Matthias

    2017-01-01

    We study the classical thermal component of Casimir, or van der Waals, forces between point particles with highly anharmonic dipole Hamiltonians when they are subjected to an external electric field. Using a model for which the individual dipole moments saturate in a strong field (a model that mimics the charges in a neutral, perfectly conducting sphere), we find that the resulting Casimir force depends strongly on the strength of the field, as demonstrated by analytical results. For a certain angle between the external field and center-to-center axis, the fluctuation force can be tuned and suppressed to arbitrarily small values. We compare the forces between these particles with those between particles with harmonic Hamiltonians and also provide a simple formula for asymptotically large external fields, which we expect to be generally valid for the case of saturating dipole moments.

  20. Anomalous transport from holography. Part I

    NASA Astrophysics Data System (ADS)

    Bu, Yanyan; Lublinsky, Michael; Sharon, Amir

    2016-11-01

    We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1) V ×U(1) A Maxwell theory in Schwarzschild-AdS5. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport co-efficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.

  1. Decadal period external magnetic field variations determined via eigenanalysis

    NASA Astrophysics Data System (ADS)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.; Beggan, C.; Velímský, J.; Olsen, N.

    2016-06-01

    We perform a reanalysis of hourly mean magnetic data from ground-based observatories spanning 1997-2009 inclusive, in order to isolate (after removal of core and crustal field estimates) the spatiotemporal morphology of the external fields important to mantle induction, on (long) periods of months to a full solar cycle. Our analysis focuses on geomagnetically quiet days and middle to low latitudes. We use the climatological eigenanalysis technique called empirical orthogonal functions (EOFs), which allows us to identify discrete spatiotemporal patterns with no a priori specification of their geometry -- the form of the decomposition is controlled by the data. We apply a spherical harmonic analysis to the EOF outputs in a joint inversion for internal and external coefficients. The results justify our assumption that the EOF procedure responds primarily to the long-period external inducing field contributions. Though we cannot determine uniquely the contributory source regions of these inducing fields, we find that they have distinct temporal characteristics which enable some inference of sources. An identified annual-period pattern appears to stem from a north-south seasonal motion of the background mean external field distribution. Separate patterns of semiannual and solar-cycle-length periods appear to stem from the amplitude modulations of spatially fixed background fields.

  2. Using Mobile Devices to Connect Teachers and Museum Educators

    NASA Astrophysics Data System (ADS)

    Delen, Ibrahim; Krajcik, Joseph

    2017-06-01

    The use of mobile devices is increasing rapidly as a potential tool for science teaching. In this study, five educators (three middle school teachers and two museum educators) used a mobile application that supported the development of a driving question. Previous studies have noted that teachers make little effort to connect learning experiences between classrooms and museums, and few studies have focused on creating connections between teachers and museum educators. In this study, teachers and museum educators created an investigation together by designing a driving question in conjunction with the research group before field trips. During field trips, students collected their own data using iPods or iPads to take pictures or record videos of the exhibits. When students returned to the school, they used the museum data with their peers as they tried to answer the driving question. After completing the field trips, five educators were interviewed to investigate their experiences with designing driving questions and using mobile devices. Besides supporting students in data collection during the field trip, using mobile devices helped teachers to get the museum back to the classroom. Designing the driving question supported museum educators and teachers to plan the field trip collaboratively.

  3. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  4. Driving Method for Compensating Reliability Problem of Hydrogenated Amorphous Silicon Thin Film Transistors and Image Sticking Phenomenon in Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong

    2011-03-01

    In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.

  5. Flowing Active Liquids in a Pipe: Hysteretic Response of Polar Flocks to External Fields

    NASA Astrophysics Data System (ADS)

    Morin, Alexandre; Bartolo, Denis

    2018-04-01

    We investigate the response of colloidal flocks to external fields. We first show that individual colloidal rollers align with external flows, as would a classical spin with magnetic fields. Assembling polar active liquids from colloidal rollers, we experimentally demonstrate their hysteretic response: Confined colloidal flocks can proceed against external flows. We theoretically explain this collective robustness, using an active hydrodynamic description, and show how orientational elasticity and confinement protect the direction of collective motion. Finally, we exploit the intrinsic bistability of confined active flows to devise self-sustained microfluidic oscillators.

  6. Formation of Dawn-Dusk Asymmetry in Earth's Magnetotail Thin Current Sheet: A Three-Dimensional Particle-In-Cell Simulation

    NASA Astrophysics Data System (ADS)

    Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.

    2018-04-01

    Using a three-dimensional particle-in-cell simulation, we investigate the formation of dawn-dusk asymmetry in Earth's magnetotail. The magnetotail current sheet is compressed by an external driving electric field down to a thickness on the order of ion kinetic scales. In the resultant thin current sheet (TCS) where the magnetic field line curvature radius is much smaller than ion gyroradius, a significant portion of the ions becomes unmagnetized and decoupled from the magnetized electrons, giving rise to a Hall electric field Ez and an additional cross-tail current jy caused by the unmagnetized ions being unable to comove with the electrons in the Hall electric field. The Hall electric field transports via E × B drift magnetic flux and magnetized plasma dawnward, causing a reduction of the current sheet thickness and the normal magnetic field Bz on the duskside. This leads to an even stronger Hall effect (stronger jy and Ez) in the duskside TCS. Thus, due to the internal kinetic effects in the TCS, namely, the Hall effect and the associated dawnward E × B drift, the magnetotail dawn-dusk asymmetry forms in a short time without any global, long-term effects. The duskside preference of reconnection and associated dynamic phenomena (such as substorm onsets, dipolarizing flux bundles, fast flows, energetic particle injections, and flux ropes), which has been pervasively observed by spacecraft in the past 20 years, can thus be explained as a consequence of this TCS asymmetry.

  7. Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2008-01-01

    At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.

  8. Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma

    2018-06-01

    When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.

  9. The effect of external non-driving factors, payment type and waiting and queuing on fatigue in long distance trucking.

    PubMed

    Williamson, Ann; Friswell, Rena

    2013-09-01

    The aim of this study was to explore the effects of external influences on long distance trucking, in particular, incentive-based remuneration systems and the need to wait or queue to load or unload on driver experiences of fatigue. Long distance truck drivers (n=475) were recruited at truck rest stops on the major transport corridors within New South Wales, Australia and asked to complete a survey by self-administration or interview. The survey covered demographics, usual working arrangements, details of the last trip and safety outcomes including fatigue experiences. On average drivers' last trip was over 2000 km and took 21.5 h to complete with an additional 6h of non-driving work. Incentive payments were associated with longer working hours, greater distances driven and higher fatigue for more drivers. Drivers required to wait in queues did significantly more non-driving work and experienced fatigue more often than those who did not. Drivers who were not paid to wait did the longest trips with average weekly hours above the legal working hours limits, had the highest levels of fatigue and the highest levels of interference by work with family life. In contrast, drivers who were paid to wait did significantly less work with shorter usual hours and shorter last trips. Multivariate analysis showed that incentive-based payment and unpaid waiting in queues were significant predictors of driver fatigue. The findings suggest that mandating payment of drivers for non-driving work including waiting would reduce the amount of non-driving work required for drivers and reduce weekly hours of work. In turn this would reduce driver fatigue and safety risk as well as enhancing the efficiency of the long distance road transport industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Oscillating field current drive experiments in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Blair, Arthur P., Jr.

    Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches. To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic field circuits of the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP.) Partial sustainment experiments were conducted where the two voltage oscillations were superimposed on the standard MST power supplies. Supplementary current drive of about 10% has been demonstrated, comparable to theoretical predictions. However, maximum current drive does not coincide with maximum helicity injection rate - possibly due to an observed dependence of core and edge tearing modes on the relative phase of the oscillators. A dependence of wall interactions on phase was also observed, the largest interaction coinciding with negative current drive. Experiments were conducted at 280 and 530 Hz. 530 Hz proved to be too high and yielded little or no net current drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict the effects of voltage amplitudes, frequencies, and waveforms on performance and to optimize the design of OFCD hardware. Predicted current drive was comparable to experimental values, though the aforementioned phase dependence was not. Comparisons were also made with a more comprehensive 3D model which proved to be a more accurate predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An entrainment of the natural sawtooth frequency to our applied oscillation was observed as well as a slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the ion temperature was also observed that can be partially accounted for by collisional heating via magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.

  11. A hierarchical detection method in external communication for self-driving vehicles based on TDMA.

    PubMed

    Alheeti, Khattab M Ali; Al-Ani, Muzhir Shaban; McDonald-Maier, Klaus

    2018-01-01

    Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms.

  12. External solution driving forces for isotonic fluid absorption in proximal tubules.

    PubMed

    Andreoli, T E; Schafer, J A

    1979-02-01

    We have explored evidence that suggests that lateral intercellular spaces is the mammalian proximal nephron do not serve as a hypertonic "central compartment" driving volume absorption. A primary consideration is the very low transepithelial resistance of this tissue as demonstrated by several laboratories. By making the reasonable assumption that passive ion permeation occurs via a paracellular route, we have concluded that the diffusion resistance of the spaces in insufficient to allow the development of a significant compositional difference between the spaces and the peritubular medium. This conclusion led us to look for potential osmotic gradients existing between the luminal and peritubular solutions. From the perfusion rate dependence of osmotic volume flow in the absence of active transport in isolated convoluted and straight proximal tubules, we calculated that both segments have very high hydraulic conductances, on the order of 3,000-5,000 micron/sec. Consequently, slight differences in the effective osmolality of the external solutions are sufficient to explain net volume absorption both in vivo and in vitro. We have provided evidence for two such driving forces. First, the development of asymmetrical anion concentration differences along the length of the proximal nephron due to preferential reabsorption of HCO-3 provides a driving force if the reflection coefficient for HCO-3 exceeds that for Cl-. Second, slight luminal hypotonicity may develop as a consequence of active solute absorption. Although both mechanisms probably occur simultaneously in vivo, we consider the former to be quantitatively the most important.

  13. Hemianopic and Quadrantanopic Field Loss, Eye and Head Movements, and Driving

    PubMed Central

    McGwin, Gerald; Elgin, Jennifer; Vaphiades, Michael S.; Braswell, Ronald A.; DeCarlo, Dawn K.; Kline, Lanning B.; Owsley, Cynthia

    2011-01-01

    Purpose. To compare eye and head movements, lane keeping, and vehicle control of drivers with hemianopic and quadrantanopic field defects with controls, and to identify differences in these parameters between hemianopic and quadrantanopic drivers rated safe to drive by a clinical driving rehabilitation specialist compared with those rated as unsafe. Methods. Eye and head movements and lane keeping were rated in 22 persons with homonymous hemianopic defects and 8 with quadrantanopic defects (mean age, 53 years) who were ≥6 months post-injury and 30 persons with normal fields (mean age, 53 years). All were licensed to drive and were current drivers or aimed to resume driving. Participants drove a 6.3-mile route along non-interstate city roads under in-traffic conditions. Vehicle control was assessed objectively by vehicle instrumentation for speed, braking, acceleration, and cornering. Results. As a group, drivers with hemianopic or quadrantanopic defects drove slower, exhibited less excessive cornering or acceleration, and executed more shoulder movements than the controls. Those drivers with hemianopic or quadrantanopic defects rated as safe also made more head movements into their blind field, received superior ratings regarding eye movement extent and lane position stability, and exhibited less sudden braking and drove faster than those rated unsafe. Conclusions. Persons with hemianopic and quadrantanopic defects rated as safe to drive compensated by making more head movements into their blind field, combined with more stable lane keeping and less sudden braking. Future research should evaluate whether these characteristics could be trained in rehabilitation programs aimed at improving driving safety in this population. PMID:21367969

  14. Improving Keyhole Stability by External Magnetic Field in Full Penetration Laser Welding

    NASA Astrophysics Data System (ADS)

    Li, Min; Xu, Jiajun; Huang, Yu; Rong, Youmin

    2018-05-01

    An external magnetic field was used to improve the keyhole stability in full penetration laser welding 316L steel. The increase of magnetic field strength gave rise to a shorter flying time of the spatter, a weaker size and brightness of the spatter, and a larger spreading area of vapor plume. This suggested that the dynamic behavior of the keyhole was stabilized by the external magnetic field. In addition, a stronger magnetic field could result in a more homogeneous distribution of laser energy, which increased the width of the weld zone, and the height of the bottom weld zone from 381 μm (0 mT) to 605 μm (50 mT). Dendrite and cellular crystal near the weld center disappeared, and grain size was refined. The external magnetic field was beneficial to the keyhole stability and improved the joint quality, because the weld pool was stirred by a Lorentz force resulting from the coupling effect of the magnetic field and inner thermocurrent.

  15. DRAWING R100132, FIELD OFFICERS' AREA, BUILDING LOCATIONS, DRIVEWAYS, AND SIDEWALKS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DRAWING R-1001-32, FIELD OFFICERS' AREA, BUILDING LOCATIONS, DRIVEWAYS, AND SIDEWALKS, SOUTH CIRCLE, CASA GRANDE REAL, AND SEQUOIA DRIVES. Ink on linen, signed by H.B. Nurse. Date has been erased, but probably June 15, 1933. Also marked "PWC 104289." - Hamilton Field, East of Nave Drive, Novato, Marin County, CA

  16. DUII control system performance measures for Oregon counties 1991-2001

    DOT National Transportation Integrated Search

    2002-06-01

    Driving Under the Influence of Intoxicants (DUII) is a complex social problem that has origins in both internal and external system factors. Due to its complexity, Oregon communities and involved agencies must concentrate on addressing the negative r...

  17. Miniature Housings for Electronics With Standard Interfaces

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.; Alhorn, Dean C.

    2006-01-01

    A family of general-purpose miniature housings has been designed to contain diverse sensors, actuators, and drive circuits plus associated digital electronic readout and control circuits. The circuits contained in the housings communicate with the external world via standard RS-485 interfaces.

  18. RichMol: A general variational approach for rovibrational molecular dynamics in external electric fields

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yachmenev, Andrey

    2018-03-01

    In this paper, a general variational approach for computing the rovibrational dynamics of polyatomic molecules in the presence of external electric fields is presented. Highly accurate, full-dimensional variational calculations provide a basis of field-free rovibrational states for evaluating the rovibrational matrix elements of high-rank Cartesian tensor operators and for solving the time-dependent Schrödinger equation. The effect of the external electric field is treated as a multipole moment expansion truncated at the second hyperpolarizability interaction term. Our fully numerical and computationally efficient method has been implemented in a new program, RichMol, which can simulate the effects of multiple external fields of arbitrary strength, polarization, pulse shape, and duration. Illustrative calculations of two-color orientation and rotational excitation with an optical centrifuge of NH3 are discussed.

  19. Plasma coating of nanoparticles in the presence of an external electric field

    NASA Astrophysics Data System (ADS)

    Ebadi, Zahra; Pourali, Nima; Mohammadzadeh, Hosein

    2018-04-01

    Film deposition onto nanoparticles by low-pressure plasma in the presence of an external electric field is studied numerically. The plasma discharge fluid model along with surface deposition and heating models for nanoparticles, as well as a dynamics model considering the motion of nanoparticles, are employed for this study. The results of the simulation show that applying external field during the process increases the uniformity of the film deposited onto nanoparticles and leads to that nanoparticles grow in a spherical shape. Increase in film uniformity and particles sphericity is related to particle dynamics that is controlled by parameters of the external field like frequency and amplitude. The results of this work can be helpful to produce spherical core-shell nanoparticles in nanomaterial industry.

  20. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation.

    PubMed

    Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing

    2017-11-08

    Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.

  1. Field gradients can control the alignment of nanorods.

    PubMed

    Ooi, Chinchun; Yellen, Benjamin B

    2008-08-19

    This work is motivated by the unexpected experimental observation that field gradients can control the alignment of nonmagnetic nanorods immersed inside magnetic fluids. In the presence of local field gradients, nanorods were observed to align perpendicular to the external field at low field strengths, but parallel to the external field at high field strengths. The switching behavior results from the competition between a preference to align with the external field (orientational potential energy) and preference to move into regions of minimum magnetic field (positional potential energy). A theoretical model is developed to explain this experimental behavior by investigating the statistics of nanorod alignment as a function of both the external uniform magnetic field strength and the local magnetic field variation above a periodic array of micromagnets. Computational phase diagrams are developed which indicate that the relative population of nanorods in parallel and perpendicular states can be adjusted through several control parameters. However, an energy barrier to rotation was discovered to influence the rate kinetics and restrict the utility of this assembly technique to nanorods which are slightly shorter than the micromagnet length. Experimental results concerning the orientation of nanorods inside magnetic fluid are also presented and shown to be in strong agreement with the theoretical work.

  2. FLANDERS FIELDS MEMORIAL IN TRAFFIC ISLAND ON EAST DRIVE. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLANDERS FIELDS MEMORIAL IN TRAFFIC ISLAND ON EAST DRIVE. VIEW TO NORTHEAST. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  3. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    DOE PAGES

    Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas; ...

    2018-05-03

    We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less

  4. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas

    We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less

  5. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    NASA Astrophysics Data System (ADS)

    Shipley, G. A.; Awe, T. J.; Hutsel, B. T.; Slutz, S. A.; Lamppa, D. C.; Greenly, J. B.; Hutchinson, T. M.

    2018-05-01

    Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate d I / d t = 5 k A / n s . After the cold fuel is magnetized, a rapidly rising current ( 200 k A / n s ) generates a calculated electric field of 64 M V / m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. A range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.

  6. Methods for determining optical power, for power-normalizing laser measurements, and for stabilizing power of lasers via compliance voltage sensing

    DOEpatents

    Taubman, Matthew S; Phillips, Mark C

    2015-04-07

    A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.

  7. 'I didn't see that coming': simulated visual fields and driving hazard perception test performance.

    PubMed

    Glen, Fiona C; Smith, Nicholas D; Jones, Lee; Crabb, David P

    2016-09-01

    Evidence is limited regarding specific types of visual field loss associated with unsafe driving. We use novel gaze-contingent software to examine the effect of simulated visual field loss on computer-based driving hazard detection with the specific aim of testing the impact of scotomata located to the right and left of fixation. The 'hazard perception test' is a component of the UK driving licence examination, which measures speed of detecting 15 different hazards in a series of real-life driving films. We have developed a novel eye-tracking and computer set up capable of generating a realistic gaze-contingent scotoma simulation (GazeSS) overlaid on film content. Thirty drivers with healthy vision completed three versions of the hazard perception test in a repeated measures experiment. In two versions, GazeSS simulated a scotoma in the binocular field of view to the left or right of fixation. A third version was unmodified to establish baseline performance. Participants' mean baseline hazard perception test score was 51 ± 7 (out of 75). This reduced to 46 ± 9 and 46 ± 11 when completing the task with a binocular visual field defect located to the left and right of fixation, respectively. While the main effect of simulated visual field loss on performance was statistically significant (p = 0.007), there were no average differences in the experimental conditions where a scotoma was located in the binocular visual field to the right or left of fixation. Simulated visual field loss impairs driving hazard detection on a computer-based test. There was no statistically significant difference in average performance when the simulated scotoma was located to the right or left of fixation of the binocular visual field, but certain types of hazard caused more difficulties than others. © 2016 Optometry Australia.

  8. Development of the physics driver in NOAA Environmental Modeling System (NEMS)

    NASA Astrophysics Data System (ADS)

    Lei, H.; Iredell, M.; Tripp, P.

    2016-12-01

    As a key component of the Next Generation Global Prediction System (NGGPS), a physics driver is developed in the NOAA Environmental Modeling System (NEMS) in order to facilitate the research, development, and transition to operations of innovations in atmospheric physical parameterizations. The physics driver connects the atmospheric dynamic core, the Common Community Physics Package and the other NEMS-based forecast components (land, ocean, sea ice, wave, and space weather). In current global forecasting system, the physics driver has incorporated major existing physics packages including radiation, surface physics, cloud and microphysics, ozone, and stochastic physics. The physics driver is also applicable to external physics packages. The structure adjustment in NEMS by separating the PHYS trunk is to create an open physics package pool. This open platform is beneficial to the enhancement of U.S. weather forecast ability. In addition, with the universal physics driver, the NEMS can also be used for specific functions by connecting external target physics packages through physics driver. The test of its function is to connect a physics dust-radiation model in the system. Then the modified system can be used for dust storm prediction and forecast. The physics driver is also developed into a standalone form. This is to facilitate the development works on physics packages. The developers can save instant fields of meteorology data and snapshots from the running system , and then used them as offline driving data fields to test the new individual physics modules or small modifications to current modules. This prevents the run of whole system for every test.

  9. Magnetically controllable Pickering emulsion prepared by a reduced graphene oxide-iron oxide composite.

    PubMed

    Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Lee, Wei-der

    2015-01-15

    Pickering emulsions stabilized by graphene oxide (GO) have attracted much attention owing to the unique 2-D structure and amphiphilic surface properties of GO. On the other hand, investigations on reduced GO (RGO) to prepare Pickering emulsions are still limited, especially for water-in-oil (W/O) emulsions. Considering growing interests for directing Pickering emulsions to a specific location, it is necessary to embed Pickering emulsions with responsiveness upon external driving forces such as magnetic fields. To that end, we developed magnetically responsive RGO (denoted as "MRGO") and used MRGO to prepare W/O Pickering emulsions. MRGO was synthesized by decorating iron oxide nanoparticles on the surface of RGO and characterized by SEM, EDS, TEM, FT-IR, Raman, XRD and SQUID. MRGO Pickering emulsion (MRGO-PE) was prepared by suspending MRGO sheets in dodecane and mixing with water vigorously. The amount of MRGO added to prepare MRGO-PE is related to the size distribution of the droplets of MRGO-PE and the relationship can be well-described using a mass balance model. The motion of droplets of MRGO-PE under an external magnetic field is demonstrated. We also investigated the adsorptive property of MRGO-PE by evaluating the removal of Nile Red dye from dodecane. The results shows that the dye removal by MRGO-PE is not just achieved by MRGO layer of MRGO-PE but also by water encapsulated by MRGO. Owing to their magnetic property, MRGO-PE can be utilized as a magnetically-controlled carrier which can preserve and transport to specific locations certain compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Multimodal chemo-magnetic control of self-propelling microbots

    NASA Astrophysics Data System (ADS)

    Singh, Amit Kumar; Dey, Krishna Kanti; Chattopadhyay, Arun; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar

    2014-01-01

    We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment.We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment. Electronic supplementary information (ESI) available: Scanning electron microscopy, transmission electron microscopy, X-ray diffraction pattern, vibrating sample magnetometry (VSM) hysteresis loop of freshly prepared FeNP coated micromotor and movies of micromotor motion. See DOI: 10.1039/c3nr05294j

  11. Leukoaraiosis Significantly Worsens Driving Performance of Ordinary Older Drivers

    PubMed Central

    Zheng, Rencheng; Fang, Fang; Ohori, Masanori; Nakamura, Hiroki; Kumagai, Yasuhiho; Okada, Hiroshi; Teramura, Kazuhiko; Nakayama, Satoshi; Irimajiri, Akinori; Taoka, Hiroshi; Okada, Satoshi

    2014-01-01

    Background Leukoaraiosis is defined as extracellular space caused mainly by atherosclerotic or demyelinated changes in the brain tissue and is commonly found in the brains of healthy older people. A significant association between leukoaraiosis and traffic crashes was reported in our previous study; however, the reason for this is still unclear. Method This paper presents a comprehensive evaluation of driving performance in ordinary older drivers with leukoaraiosis. First, the degree of leukoaraiosis was examined in 33 participants, who underwent an actual-vehicle driving examination on a standard driving course, and a driver skill rating was also collected while the driver carried out a paced auditory serial addition test, which is a calculating task given verbally. At the same time, a steering entropy method was used to estimate steering operation performance. Results The experimental results indicated that a normal older driver with leukoaraiosis was readily affected by external disturbances and made more operation errors and steered less smoothly than one without leukoaraiosis during driving; at the same time, their steering skill significantly deteriorated. Conclusions Leukoaraiosis worsens the driving performance of older drivers because of their increased vulnerability to distraction. PMID:25295736

  12. Combined Optimal Control System for excavator electric drive

    NASA Astrophysics Data System (ADS)

    Kurochkin, N. S.; Kochetkov, V. P.; Platonova, E. V.; Glushkin, E. Y.; Dulesov, A. S.

    2018-03-01

    The article presents a synthesis of the combined optimal control algorithms of the AC drive rotation mechanism of the excavator. Synthesis of algorithms consists in the regulation of external coordinates - based on the theory of optimal systems and correction of the internal coordinates electric drive using the method "technical optimum". The research shows the advantage of optimal combined control systems for the electric rotary drive over classical systems of subordinate regulation. The paper presents a method for selecting the optimality criterion of coefficients to find the intersection of the range of permissible values of the coordinates of the control object. There is possibility of system settings by choosing the optimality criterion coefficients, which allows one to select the required characteristics of the drive: the dynamic moment (M) and the time of the transient process (tpp). Due to the use of combined optimal control systems, it was possible to significantly reduce the maximum value of the dynamic moment (M) and at the same time - reduce the transient time (tpp).

  13. Superconducting Sphere in an External Magnetic Field Revisited

    ERIC Educational Resources Information Center

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  14. The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas

    NASA Astrophysics Data System (ADS)

    Wu, D.; Luan, S. X.; Wang, J. W.; Yu, W.; Gong, J. X.; Cao, L. H.; Zheng, C. Y.; He, X. T.

    2017-06-01

    The two-stage electron acceleration/heating model (Wu et al 2017 Nucl. Fusion 57 016007 and Wu et al 2016 Phys. Plasmas 23 123116) is extended to the study of laser magnetized-plasmas interactions at relativistic intensities and in the presence of large-scale preformed plasmas. It is shown that the electron-heating efficiency is a controllable value by the external magnetic fields. Detailed studies indicate that for a right-hand circularly polarized laser, the electron heating efficiency depends on both strength and directions of external magnetic fields. The electron-heating is dramatically enhanced when the external magnetic field is of B\\equiv {ω }c/{ω }0> 1. When magnetic field is of negative direction, i.e. B< 0, it trends to suppress the electron heating. The underlining physics—the dependences of electron-heating on both the strength and directions of the external magnetic fields—is uncovered. With -∞ < B< 1, the electron-heating is explained by the synergetic effects by longitudinal charge separation electric field and the reflected ‘envelop-modulated’ CP laser. It is indicated that the ‘modulation depth’ of reflected CP laser is significantly determined by the external magnetic fields, which will in turn influence the efficiency of the electron-heating. While with B> 1, a laser front sharpening mechanism is identified at relativistic laser magnetized-plasmas interactions, which is responsible for the dramatical enhancement of electron-heating.

  15. Geomorphic process from topographic form: automating the interpretation of repeat survey data in river valleys

    USGS Publications Warehouse

    Kasprak, Alan; Caster, Joshua J.; Bangen, Sara G.; Sankey, Joel B.

    2017-01-01

    The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High-resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process-based river management and restoration.

  16. Design Considerations of a Novel Two-Beam Accelerator

    NASA Astrophysics Data System (ADS)

    Luginsland, John William

    This thesis reports the design study of a new type of charged particle accelerator called the Twobetron. The accelerator consists of two beams of electrons traveling through a series of pillbox cavities. The power of a high current annular beam excites an electromagnetic mode in the cavities, which, in turn, drives a low current on-axis pencil beam to high energy. We focus on the design considerations that would make use of existing pulsed power systems, for a proof-of-principle experiment. Potential applications of this new device include radiotherapy, materials processing, and high energy accelerators. The first phase of the research involves analytic description of the accelerating process. This reveals the problem of phase slippage. Derbenev's proposed cure of beam radius modulation is analyzed. Further studies include the effect of initial phase and secondary beam loading. Scaling laws to characterize the Twobetron's performance are derived. Computer simulation is performed to produce a self-consistent analysis of the dynamics of the space charge and its interaction with the accelerator structure. Particle -in-cell simulations answer several questions concerning beam stability, cavity modes, and the nature of the structure. Specifically, current modulation on the primary beam is preserved in the simulations. However, these simulations also revealed that mode competition and significant cavity coupling are serious issues that need to be addressed. Also considered is non-axisymmetric instability on the driver beam of the Twobetron, in particular, the beam breakup instability (BBU), which is known to pose a serious threat to linear accelerators in general. We extend the classical analysis of BBU to annular beams. The effect of higher order non-axisymmetric modes is also examined. It is shown that annular beams are more stable than pencil beams to BBU in general. Our analysis also reveals that the rf magnetic field is more important than the rf electric field in contributing to BBU growth. We next address the issue of primary beam modulation. Both particle-in-cell and analytic investigation showed that the usual relativistic klystron amplifiers (RKA) mechanism cannot provide full beam modulation at convenient levels of external rf drive. However, the recent discovery at the Air Force Phillips Laboratory of the injection locked relativistic klystron oscillator suggests that electromagnetic feedback between the driver cavity and the booster cavity might significantly enhance the current modulation. A simple model is constructed to analyze this cavity coupling and its mutual interaction with the primary beam. Quantitative agreement is found between our model and the Phillips Laboratory experiments. This analysis suggests that significant current modulation on the primary beam may be achieved with low level external rf drive.

  17. A Microcomputer Interface for External Circuit Control.

    ERIC Educational Resources Information Center

    Gorham, D. A.

    1983-01-01

    Describes an interface designed to meet the requirements of an instrumentation teaching laboratory, particularly to develop computer-controlled digital circuitry while exploiting electrical drive properties of common transistor-transistor logic (TTL) devices, minimizing cost/number of components. Discusses decoding for Pet, switches, lights, and…

  18. Weed ecology and population dynamics

    USDA-ARS?s Scientific Manuscript database

    A global rise in herbicide resistant weed genotypes, coupled with a growing demand for food produced with minimal external synthetic inputs, is driving producer interest in reducing reliance on herbicides for weed management. An improved understanding of weed ecology can support the design of weed s...

  19. Phase locking of a semiconductor double-quantum-dot single-atom maser

    NASA Astrophysics Data System (ADS)

    Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.

    2017-11-01

    We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.

  20. Wave Driven Non-linear Flow Oscillator for the 22-Year Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In the Earth's atmosphere, a zonal flow oscillation is observed with periods between 20 and 32 months, the Quasi Biennial Oscillation. This oscillation does not require external time dependent forcing but is maintained by non-linear wave momentum deposition. It is proposed that such a mechanism also drives long-period oscillations in planetary and stellar interiors. We apply this mechanism to generate a flow oscillation for the 22-year solar cycle. The oscillation would occur just below the convective envelope where waves can propagate. Using scale analysis, we present results from a simplified model that incorporates Hines' gravity wave parameterization. Wave amplitudes less than 10 m/s can produce reversing zonal flows of 25 m/s that should be sufficient to generate a corresponding oscillation in the poloidal magnetic field. Low buoyancy frequency and the associated increase in turbulence help to produce the desired oscillation period of the flow.

Top