Sample records for external fluid flow

  1. Surface effects on friction-induced fluid heating in nanochannel flows.

    PubMed

    Li, Zhigang

    2009-02-01

    We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.

  2. Effect of External Pressure and Catheter Gauge on Flow Rate, Kinetic Energy, and Endothelial Injury During Intravenous Fluid Administration in a Rabbit Model.

    PubMed

    Hu, Mei-Hua; Chan, Wei-Hung; Chen, Yao-Chang; Cherng, Chen-Hwan; Lin, Chih-Kung; Tsai, Chien-Sung; Chou, Yu-Ching; Huang, Go-Shine

    2016-01-01

    The effects of intravenous (IV) catheter gauge and pressurization of IV fluid (IVF) bags on fluid flow rate have been studied. However, the pressure needed to achieve a flow rate equivalent to that of a 16 gauge (G) catheter through smaller G catheters and the potential for endothelial damage from the increased kinetic energy produced by higher pressurization are unclear. Constant pressure on an IVF bag was maintained by an automatic adjustable pneumatic pressure regulator of our own design. Fluids running through 16 G, 18 G, 20 G, and 22 G catheters were assessed while using IV bag pressurization to achieve the flow rate equivalent to that of a 16 G catheter. We assessed flow rates, kinetic energy, and flow injury to rabbit inferior vena cava endothelium. By applying sufficient external constant pressure to an IVF bag, all fluids could be run through smaller (G) catheters at the flow rate in a 16 G catheter. However, the kinetic energy increased significantly as the catheter G increased. Damage to the venous endothelium was negligible or minimal/patchy cell loss. We designed a new rapid infusion system, which provides a constant pressure that compresses the fluid volume until it is free from visible residual fluid. When large-bore venous access cannot be obtained, multiple smaller catheters, external pressure, or both should be considered. However, caution should be exercised when fluid pressurized to reach a flow rate equivalent to that in a 16 G catheter is run through a smaller G catheter because of the profound increase in kinetic energy that can lead to venous endothelium injury.

  3. Instabilities of conducting fluid flows in cylindrical shells under external forcing

    NASA Astrophysics Data System (ADS)

    Burguete, Javier; Miranda, Montserrat

    2010-11-01

    Flows created in neutral conducting flows remain one of the less studied topics of fluid dynamics, in spite of their relevance both in fundamental research (dynamo action, turbulence suppression) and applications (continuous casting, aluminium production, biophysics). Here we present the effect of a time-dependent magnetic field parallel to the axis of circular cavities. Due to the Lenz's law, the time-dependent magnetic field generates an azymuthal current, that produces a radial force. This force produces the destabilization of the static fluid layer, and a flow is created. The geommetry of the experimental cell is a disc layer with external diameter smaller than 94 mm, with or without internal hole. The layer is up to 20mm depth, and we use as conducting fluid an In-Ga-Sn alloy. There is no external current applied on the problem, only an external magnetic field. This field evolves harmonically with a frequency up to 10Hz, small enough to not to observe skin depth effects. The magnitude ranges from 0 to 0.1 T. With a threshold of 0.01T a dynamical behaviour is observed, and the main characteristics of this flow have been determined: different temporal resonances and spatial patterns with differents symmetries (squares, hexagonal, triangles,...).

  4. Cytoplasmic motion induced by cytoskeleton stretching and its effect on cell mechanics.

    PubMed

    Zhang, T

    2011-09-01

    Cytoplasmic motion assumed as a steady state laminar flow induced by cytoskeleton stretching in a cell is determined and its effect on the mechanical behavior of the cell under externally applied forces is demonstrated. Non-Newtonian fluid is assumed for the multiphase cytoplasmic fluid and the analytical velocity field around the macromolecular chain is obtained by solving the reduced nonlinear momentum equation using homotopy technique. The entropy generation by the fluid internal friction is calculated and incorporated into the entropic elasticity based 8-chain constitutive relations. Numerical examples showed strengthening behavior of cells in response to externally applied mechanical stimuli. The spatial distribution of the stresses within a cell under externally applied fluid flow forces were also studied.

  5. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    NASA Astrophysics Data System (ADS)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  6. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface

    NASA Astrophysics Data System (ADS)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2018-01-01

    A better understanding of the subduction zone fluid cycle and its chemical-mechanical feedback requires in-depth knowledge about how fluids flow within and out of descending slabs. Relicts of fluid-flow systems in exhumed rocks of fossil subduction zones allow for identification of the general relationships between dehydration reactions, fluid pathway formation, the dimensions and timescales of distinct fluid flow events; all of which are required for quantitative models for fluid-induced subduction zone processes. Two types of garnet-quartz-phengite veins can be distinguished in an eclogite-facies mélange block from the Pouébo Eclogite Mélange, New Caledonia. These veins record synmetamorphic internal fluid release by mineral breakdown reactions (type I veins), and infiltration of an external fluid (type II veins) with the associated formation of a reaction selvage. The dehydration and fluid migration documented by the type I veins likely occurred on a timescale of 105-106 years, based on average subduction rates and metamorphic conditions required for mineral dehydration and fluid flow. The timeframe of fluid-rock interaction between the external fluid and the wall-rock of the type II veins is quantified using a continuous bulk-rock Li-diffusion profile perpendicular to a vein and its metasomatic selvage. Differences in Li concentration between the internal and external fluid reservoirs resulted in a distinct diffusion profile (decreasing Li concentration and increasing δ7 Li) as the reaction front propagated into the host rock. Li-chronometric constraints indicate that the timescales of fluid-rock interaction associated with type II vein formation are on the order of 1 to 4 months (0.150-0.08+0.14 years). The short-lived, pulse-like character of this process is consistent with the notion that fluid flow caused by oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the plate interface, which in turn, may trigger slip events reported from many subduction zones.

  7. Seals/Secondary Fluid Flows Workshop 1997; Volume I

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C. (Editor)

    2006-01-01

    The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery

  8. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-02-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.

  9. Electroosmotic flow of biorheological micropolar fluids through microfluidic channels

    NASA Astrophysics Data System (ADS)

    Chaube, Mithilesh Kumar; Yadav, Ashu; Tripathi, Dharmendra; Bég, O. Anwar

    2018-05-01

    An analytical analysis is presented in this work to assess the influence of micropolar nature of fluids in fully developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate microchannel. The walls of the channel are assumed as sinusoidal wavy to analyze the peristaltic flow nature. We consider that the wavelength of the wall motion is much larger as compared to the channel width to validate the lubrication theory. To simplify the Poisson Boltzmann equation, we also use the Debye-Hückel linearization. We consider governing equation for micropolar fluid in absence of body force and couple effects however external electric field is employed. The solutions for axial velocity, spin velocity, flow rate, pressure rise, and stream functions subjected to given physical boundary conditions are computed. The effects of pertinent parameters like Debye length and Helmholtz-Smoluchowski velocity which characterize the EDL phenomenon and external electric field, coupling number and micropolar parameter which characterize the micropolar fluid behavior, on peristaltic pumping are discussed through the illustrations. The results show that peristaltic pumping may alter by applying external electric fields. This model can be used to design and engineer the peristalsis-lab-on-chip and micro peristaltic syringe pumps for biomedical applications.

  10. Method for noninvasive determination of acoustic properties of fluids inside pipes

    DOEpatents

    None

    2016-08-02

    A method for determining the composition of fluids flowing through pipes from noninvasive measurements of acoustic properties of the fluid is described. The method includes exciting a first transducer located on the external surface of the pipe through which the fluid under investigation is flowing, to generate an ultrasound chirp signal, as opposed to conventional pulses. The chirp signal is received by a second transducer disposed on the external surface of the pipe opposing the location of the first transducer, from which the transit time through the fluid is determined and the sound speed of the ultrasound in the fluid is calculated. The composition of a fluid is calculated from the sound speed therein. The fluid density may also be derived from measurements of sound attenuation. Several signal processing approaches are described for extracting the transit time information from the data with the effects of the pipe wall having been subtracted.

  11. Electrostatically frequency tunable micro-beam-based piezoelectric fluid flow energy harvester

    NASA Astrophysics Data System (ADS)

    Rezaee, Mousa; Sharafkhani, Naser

    2017-07-01

    This research investigates the dynamic behavior of a sandwich micro-beam based piezoelectric energy harvester with electrostatically adjustable resonance frequency. The system consists of a cantilever micro-beam immersed in a fluid domain and is subjected to the simultaneous action of cross fluid flow and nonlinear electrostatic force. Two parallel piezoelectric laminates are extended along the length of the micro-beam and connected to an external electric circuit which generates an output power as a result of the micro-beam oscillations. The fluid-coupled structure is modeled using Euler-Bernoulli beam theory and the equivalent force terms for the fluid flow. Fluid induced forces comprise the added inertia force which is evaluated using equivalent added mass and the drag and lift forces which are evaluated using relative velocity and Van der Pol equation. In addition to flow velocity and fluid density, the influence of several design parameters such as external electrical resistance, piezo layer position, and dc voltage on the generated power are investigated by using Galerkin and step by step linearization method. It is shown that for given flowing fluid parameters, i.e., density and velocity, one can adjust the applied dc voltage to tune resonance frequency so that the lock-in phenomenon with steady large amplitude oscillations happens, also by adjusting the harvester parameters including the mechanical and electrical ones, the maximal output power of the harvester becomes possible.

  12. Fast fluid-flow events within a subduction-related vein system in oceanic eclogite: implications for pore fluid pressure at the plate interface

    NASA Astrophysics Data System (ADS)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2017-04-01

    A better understanding of the subduction zone fluid cycle and its mechanical feedback requires in-depth knowledge of how fluids flow within and out of the descending slabs. In order to develop reliable quantitative models of fluid flow, the general relationship between dehydration reactions, fluid pathway formation, and the dimensions and timescales of distinct fluid flow events have to be explored. The high-pressure/low-temperature metamorphic rocks of the Pouébo Eclogite Mélange in New Caledonia provide an excellent opportunity to study the fluid flux in a subduction zone setting. Fluid dynamics are recorded by high-pressure veins that cross-cut eclogite facies mélange blocks from this occurrence. Two types of garnet-quartz-phengite veins can be distinguished. These veins record both synmetamorphic internal fluid release by mineral breakdown reactions (type I veins) as well as infiltration of an external fluid (type II veins) and the associated formation of a reaction halo. The overall dehydration, fluid accumulation and fluid migration documented by the type I veins occurred on a timescale of 10^5-106 years that is mainly given by the geometry and convergence rate of the subduction system. In order to quantify the timeframe of fluid-rock interaction between the external fluid and the wall-rock, we have applied Li-isotope chronology. A continuous profile was sampled perpendicular to a type II vein including material from the vein, the reaction selvage and the immediate host rock. Additional drill cores were taken from parts of the outcrop that most likely remained completely unaffected by fluid infiltration-induced alteration. Different Li concentrations in the internal and external fluid reservoirs produced a distinct diffusion profile of decreasing Li concentration and increasing δ7Li as the reaction front propagated into the host-rock. Li-chronometric constraints indicate that fluid-rock interaction related to the formation of the type II veins and had been completed within ca. 3 years. The short-lived, pulse-like character of this process is in accordance with the notion that fluid flow related to oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the plate interface which may trigger slip events reported from many subduction zones.

  13. Nanoscale wicking methods and devices

    NASA Technical Reports Server (NTRS)

    Zhou, Jijie (Inventor); Bronikowski, Michael (Inventor); Noca, Flavio (Inventor); Sansom, Elijah B. (Inventor)

    2011-01-01

    A fluid transport method and fluid transport device are disclosed. Nanoscale fibers disposed in a patterned configuration allow transport of a fluid in absence of an external power source. The device may include two or more fluid transport components having different fluid transport efficiencies. The components may be separated by additional fluid transport components, to control fluid flow.

  14. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.

    PubMed

    Park, H M; Lee, W M

    2008-07-01

    Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.

  15. Physically-Based Modelling and Real-Time Simulation of Fluids.

    NASA Astrophysics Data System (ADS)

    Chen, Jim Xiong

    1995-01-01

    Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.

  16. Infrared non-destructive evaluation method and apparatus

    DOEpatents

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  17. Parametric electroconvection in a weakly conducting fluid in a horizontal parallel-plate capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartavykh, N. N.; Smorodin, B. L., E-mail: bsmorodin@yandex.ru; Il’in, V. A.

    2015-07-15

    We study the flows of a nonuniformly heated weakly conducting fluid in an ac electric field of a horizontal parallel-plate capacitor. Analysis is carried out for fluids in which the charge formation is governed by electroconductive mechanism associated with the temperature dependence of the electrical conductivity of the medium. Periodic and chaotic regimes of fluid flow are investigated in the limiting case of instantaneous charge relaxation and for a finite relaxation time. Bifurcation diagrams and electroconvective regimes charts are constructed. The regions where fluid oscillations synchronize with the frequency of the external field are determined. Hysteretic transitions between electroconvection regimesmore » are studied. The scenarios of transition to chaotic oscillations are analyzed. Depending on the natural frequency of electroconvective system and the external field frequency, the transition from periodic to chaotic oscillations can occur via quasiperiodicity, a subharmonic cascade, or intermittence.« less

  18. Instabilities, rheology and spontaneous flows in magnetotactic bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Alonso-Matilla, Roberto; Saintillan, David

    2017-11-01

    Magnetotactic bacteria are motile prokaryotes, mostly present in marine habitats, that synthesize intracellular magnetic membrane-bounded crystals known as magnetosomes. They behave as self-propelled permanent magnetic dipoles that orient and migrate along the geomagnetic field lines of the Earth. In this work, we analyze the macroscopic transport properties of suspensions of such bacteria in microfluidic devices. When placed in an external magnetic field, these microorganisms feel a net magnetic torque which is transmitted to the surrounding fluid, and can give rise to a net unidirectional fluid flow in a planar channel, with a flow rate and direction that can be controlled by adjusting both the magnitude and orientation of the external field. Using a continuum kinetic model, we provide a physical explanation for the onset of these spontaneous flows. We also study the rheological properties and stability of these suspensions in both an applied shear flow and a pressure-driven flow.

  19. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    PubMed

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2013-01-01

    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  20. A Hydrostatic Bearing Test System for Measuring Bearing Load Using Magnetic-Fluid Lubricants.

    PubMed

    Weng, Huei Chu; Chen, Lu-Yu

    2016-05-01

    This paper conducts a study on the design of a hydrostatic bearing test system. It involves the determination of viscous properties of magnetic-fluid lubricants. The load of a hydrostatic thrust bearing using a water-based magnetite nanofluid of varying volume flow rate is measured under an applied external induction field via the test system. Results reveal that the presence of nanoparticles in a carrier liquid would cause an enhanced bearing load. Such an effect could be further magnified by increasing the lubricant volume flow rate or the external induction field strength.

  1. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Sebastian, Alexis

    2015-05-01

    This paper studies analytically the effects of an external mean flow and an internal gap mean flow on sound transmission through a double-wall sandwich panel lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials, and the transfer matrix method with three types of boundary conditions is applied to solve the system simultaneously. The random incidence transmission loss in a diffuse field is calculated numerically, and the limiting angle of incidence due to total internal reflection is discussed in detail. The numerical predictions suggest that the sound insulation performance of such a double-wall panel is enhanced considerably by both external and gap mean flows particularly in the high-frequency range. Similar effects on transmission loss are observed for the two mean flows. It is shown that the effect of the gap mean flow depends on flow velocity, flow direction, gap depth and fluid properties and also that the fluid properties within the gap appear to influence the transmission loss more effectively than the gap flow. Despite the implementation difficulty in practice, an internal gap flow provides more design space for tuning the sound insulation performance of a double-wall sandwich panel and has great potential for active/passive noise control.

  2. Dynamics of Deformable Active Particles under External Flow Field

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  3. Low volume flow meter

    DOEpatents

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  4. Integrated reactor and centrifugal separator and uses thereof

    DOEpatents

    Birdwell, Jr., Joseph F; Jennings, Harold L [Clinton, TN; McFarlane, Joanna [Oak Ridge, TN; Tsouris, Constantino [Oak Ridge, TN

    2012-01-17

    An apparatus for providing reaction of fluids and separation of products with increased residence time. The apparatus includes a stationary shell, a rotating hollow cylindrical component disposed in the stationary shell, a residence-time increasing device external to the stationary shell, a standpipe for introducing fluid into an interior cavity of the hollow cylindrical component from the residence-time increasing device, a first outlet in fluid flow communication with the interior cavity of the hollow cylindrical component for a less dense phase fluid, and a second outlet in fluid flow communication with the interior cavity of the hollow cylindrical component for a more dense phase fluid.

  5. Gas Bubble Pinch-off in Viscous and Inviscid Liquids

    NASA Astrophysics Data System (ADS)

    Taborek, P.

    2005-11-01

    We have used high-speed video to analyze pinch-off of nitrogen gas bubbles in fluids with a wide range of viscosity. If the external fluid is highly viscous (ηext>100 cP), the radius is proportional to the time before break, τ, and decreases smoothly to zero. If the external fluid has low viscosity (ηext<10 cP), the neck radius scales as &1/2circ; until an instability develops in the gas bubble which causes the neck to rupture and tear apart. Finally, if the viscosity of the external fluid is in an intermediate range, an elongated thread is formed which breaks apart into micron-sized bubbles. 100,000 frame-per-second videos will be presented which illustrate each of these flow regimes.

  6. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. The external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water ...

  7. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  8. An Experimental Design of Bypass Magneto-Rheological (MR) damper

    NASA Astrophysics Data System (ADS)

    Rashid, MM; Aziz, Mohammad Abdul; Raisuddin Khan, Md.

    2017-11-01

    The magnetorheological (MR) fluid bypass damper fluid flow through a bypass by utilizing an external channel which allows the controllability of MR fluid in the channel. The Bypass MR damper (BMRD) contains a rectangular bypass flow channel, current controlled movable piston shaft arrangement and MR fluid. The static piston coil case is winding by a coil which is used inside the piston head arrangement. The current controlled coil case provides a magnetic flux through the BMRD cylinder for controllability. The high strength of alloy steel materials are used for making piston shaft which allows magnetic flux propagation throughout the BMRD cylinder. Using the above design materials, a Bypass MR damper is designed and tested. An excitation of current is applied during the experiment which characterizes the BMRD controllability. It is shown that the BMRD with external flow channel allows a high controllable damping force using an excitation current. The experimental result of damping force-displacement characteristics with current excitation and without current excitation are compared in this research. The BMRD model is validated by the experimental result at various frequencies and applied excitation current.

  9. Small hydraulic turbine drives

    NASA Technical Reports Server (NTRS)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  10. Numerical simulation of an elastic structure behavior under transient fluid flow excitation

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Irina N.; Lantsova, Irina Yu.

    2017-01-01

    This paper deals with the verification of a numerical technique of modeling fluid-structure interaction (FSI) problems. The configuration consists of incompressible viscous fluid around an elastic structure in the channel. External flow is laminar. Multivariate calculations are performed using special software ANSYS CFX and ANSYS Mechanical. Different types of parameters of mesh deformation and solver controls (time step, under relaxation factor, number of iterations at coupling step) were tested. The results are presented in tables and plots in comparison with reference data.

  11. Precession of the Earth as the Cause of Geomagnetism: Experiments lend support to the proposal that precessional torques drive the earth's dynamo.

    PubMed

    Malkus, W V

    1968-04-19

    I have proposed that the precessional torques acting on the earth can sustain a turbulent hydromagnetic flow in the molten core. A gross balance of the Coriolis force, the Lorentz force, and the precessional force in the core fluid provided estimates of the fluid velocity and the interior magnetic field characteristic of such flow. Then these numbers and a balance of the processes responsible for the decay and regeneration of the magnetic field provided an estimate of the magnetic field external to the core. This external field is in keeping with the observations, but its value is dependent upon the speculative value for the electrical conductivity of core material. The proposal that turbulent flow due to precession can occur in the core was tested in a study of nonmagnetic laboratory flows induced by the steady precession of fluid-filled rotating spheroids. It was found that these flows exhibit both small wavelike instabilities and violent finite-amplitude instability to turbulent motion above critical values of the precession rate. The observed critical parameters indicate that a laminar flow in the core, due to the earth's precession, would have weak hydrodynamic instabilities at most, but that finite-amplitude hydromagnetic instability could lead to fully turbulent flow.

  12. An adaptive extended finite element method for the analysis of agglomeration of colloidal particles in a flowing fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Jorshari, Razzi Movassaghi; Djilali, Ned

    2015-03-10

    Direct numerical simulations of the flow-nanoparticle interaction in a colloidal suspension are presented using an extended finite element method (XFEM) in which the dynamics of the nanoparticles is solved in a fully-coupled manner with the flow. The method is capable of accurately describing solid-fluid interfaces without the need of boundary-fitted meshes to investigate the dynamics of particles in complex flows. In order to accurately compute the high interparticle shear stresses and pressures while minimizing computing costs, an adaptive meshing technique is incorporated with the fluid-structure interaction algorithm. The particle-particle interaction at the microscopic level is modeled using the Lennard-Jones (LJ)more » potential and the corresponding potential parameters are determined by a scaling procedure. The study is relevant to the preparation of inks used in the fabrication of catalyst layers for fuel cells. In this paper, we are particularly interested in investigating agglomeration of the nanoparticles under external shear flow in a sliding bi-periodic Lees-Edwards frame. The results indicate that the external shear has a crucial impact on the structure formation of colloidal particles in a suspension.« less

  13. Dynamics and stability of a 2D ideal vortex under external strain

    NASA Astrophysics Data System (ADS)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2017-11-01

    The behavior of an initially axisymmetric 2D ideal vortex under an externally imposed strain flow is studied experimentally. The experiments are carried out using electron plasmas confined in a Penning-Malmberg trap; here, the dynamics of the plasma density transverse to the field are directly analogous to the dynamics of vorticity in a 2D ideal fluid. An external strain flow is applied using boundary conditions in a way that is consistent with 2D fluid dynamics. Data are compared to predictions from a theory assuming a piecewise constant elliptical vorticity distribution. Excellent agreement is found for quasi-flat profiles, whereas the dynamics of smooth profiles feature modified stability limits and inviscid damping of periodic elliptical distortions. This work supported by U.S. DOE Grants DE-SC0002451 and DE-SC0016532, and NSF Grant PHY-1414570.

  14. Experimental study of forced convective heat transfer from a vertical tube conveying dilute Ag/DI water nanofluids in a cross flow of air

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin Keshavarz; Layeghi, Mohammad; Hemmati, Mansor

    2013-03-01

    Forced convective heat transfer from a vertical circular tube conveying deionized (DI) water or very dilute Ag-DI water nanofluids (less than 0.02% volume fraction) in a cross flow of air has been investigated experimentally. Some experiments have been performed in a wind tunnel and heat transfer characteristics such as thermal conductance, effectiveness, and external Nusselt number has been measured at different air speeds, liquid flow rates, and nanoparticle concentrations. The cross flow of air over the tube and the liquid flow in the tube were turbulent in all cases. The experimental results have been compared and it has been found that suspending Ag nanoparticles in the base fluid increases thermal conductance, external Nusselt number, and effectiveness. Furthermore, by increasing the external Reynolds number, the external Nusselt number, effectiveness, and thermal conductance increase. Also, by increasing internal Reynolds number, the thermal conductance and external Nusselt number enhance while the effectiveness decreases.

  15. Electrically controlled adjustable-resistance exercise equipment employing magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Lukianovich, Alex; Ashour, Osama N.; Thurston, Wilbert L.; Rogers, Craig A.; Chaudhry, Zaffir A.

    1996-05-01

    Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid. The magnetorheological effect is one of the direct influences on the mechanical properties of a fluid. It represents a reversible increase, due to an external magnetic field, of the effective viscosity. Besides the variation of the rheological properties (viscosity, elasticity, and plasticity), the magnetic properties of the fluid (permeability and susceptibility), as well as the thermal and acoustic properties, are strongly influenced when an external magnetic field is applied. MR fluids have many appealing applications in the area of vibration control. The distinguishing feature of any MR fluid device is the absence of moving mechanical parts and the extreme simplicity of construction and technology. The most important element of any MR fluid device is an MR valve, which is functionally a controllable hydraulic resistance. As a demonstration of such devices, two commercially available pieces of exercise equipment, a cross stepper and a bench press, were modified to incorporate MR fluid and an external MR valve. As the magnetic field strength operating across the MR valve is adjusted, the viscosity of the flowing MR fluid changes and, accordingly, the needed force is adjusted.

  16. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  17. Natural convection in annular cone: Influence of radius ratio

    NASA Astrophysics Data System (ADS)

    Ahmed, N. J. Salman; Kamangar, Sarfaraz; Al-Rashed, Abdullah A. A. A.; Govindaraju, Kalimuthu; Khan, T. M. Yunus

    2018-05-01

    The viscous dissipation in the fluid flow refers to the transformation of the kinetic energy to the internal energy due to the viscosity of the fluid. The current work investigates the effect of viscous dissipation and radius ratio on the heat transfer characteristics and fluid flow behavior in an annular cone embedded with the porous medium. It is observed that the viscous dissipation effect leads to the decrease in the heat transfer rate from the external wall of the cone to the inner region of the geometry.

  18. a New Approach for Complete Mixing by Transverse and Streamwise Flow Motions in Micro-Channels

    NASA Astrophysics Data System (ADS)

    Wang, Muh-Rong; Dai, Chiau-Yi; Huang, Yang-Sheng

    Mixing control is an important issue in micro-fluid chip applications, such as μTAS (Micro-Total Analysis System) or LOC (Lab-on-Chip) because the flow at micro-scale is highly laminar. Several flow control schemes had been developed for complete mixing in the micro-channels in the past decades. However, most of the mixing control schemes are performed by utilizing specific excitation devices, such as electrokinetic, magnetic or pressure drivers. This paper investigates a new control scheme which is composed of a series of flow manipulation by changing the pressure at the two inlets of the micromixer as the external excitation. The fluids from two inlets are introduced to a square mixing chamber, which provides a space where the streamwise and transverse flow motions take place. The results show that the micromixer can be used to produce a large recirculation zone with series of small transverse fringes under external excitations. It is found that this new flow pattern enhances mixing processes at the micro-scale. A complete mixing can be achieved under appropriate flow control with the corresponding design.

  19. External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation

    NASA Astrophysics Data System (ADS)

    Rituraj, Fnu; Vacca, Andrea

    2018-06-01

    External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.

  20. Spontaneous oscillations in microfluidic networks

    NASA Astrophysics Data System (ADS)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  1. Effects of Flow and Non-Newtonian Fluids on Nonspherical Cavitation Bubbles,

    DTIC Science & Technology

    1983-04-10

    54 10 Alteration of Streamlines by Sphere for Y2 (8.*). 55 11 Major Components of Optical Cavitation. 61 12 Arrangement of Apparatus. 62 13 Laser ...341small" expansion parameter 111.12 Cnj C external flow time constant (t -c 0) WAS1 o spherical coordinate cone angle a f laser focal angle Figure 13...11.2 Dj - D external flow variable IV.22 Dbeam effective laser beau diameter V.1 De Deborah number Table 5 Ce, e, , e strain rates IV.8-9 Or* •e

  2. Characteristics of vibrational wave propagation and attenuation in submarine fluid-filled pipelines

    NASA Astrophysics Data System (ADS)

    Yan, Jin; Zhang, Juan

    2015-04-01

    As an important part of lifeline engineering in the development and utilization of marine resources, the submarine fluid-filled pipeline is a complex coupling system which is subjected to both internal and external flow fields. By utilizing Kennard's shell equations and combining with Helmholtz equations of flow field, the coupling equations of submarine fluid-filled pipeline for n=0 axisymmetrical wave motion are set up. Analytical expressions of wave speed are obtained for both s=1 and s=2 waves, which correspond to a fluid-dominated wave and an axial shell wave, respectively. The numerical results for wave speed and wave attenuation are obtained and discussed subsequently. It shows that the frequency depends on phase velocity, and the attenuation of this mode depends strongly on material parameters of the pipe and the internal and the external fluid fields. The characteristics of PVC pipe are studied for a comparison. The effects of shell thickness/radius ratio and density of the contained fluid on the model are also discussed. The study provides a theoretical basis and helps to accurately predict the situation of submarine pipelines, which also has practical application prospect in the field of pipeline leakage detection.

  3. Recycling isoelectric focusing with computer controlled data acquisition system. [for high resolution electrophoretic separation and purification of biomolecules

    NASA Technical Reports Server (NTRS)

    Egen, N. B.; Twitty, G. E.; Bier, M.

    1979-01-01

    Isoelectric focusing is a high-resolution technique for separating and purifying large peptides, proteins, and other biomolecules. The apparatus described in the present paper constitutes a new approach to fluid stabilization and increased throughput. Stabilization is achieved by flowing the process fluid uniformly through an array of closely spaced filter elements oriented parallel both to the electrodes and the direction of the flow. This seems to overcome the major difficulties of parabolic flow and electroosmosis at the walls, while limiting the convection to chamber compartments defined by adjacent spacers. Increased throughput is achieved by recirculating the process fluid through external heat exchange reservoirs, where the Joule heat is dissipated.

  4. Computational modeling of magnetic particle margination within blood flow through LAMMPS

    NASA Astrophysics Data System (ADS)

    Ye, Huilin; Shen, Zhiqiang; Li, Ying

    2017-11-01

    We develop a multiscale and multiphysics computational method to investigate the transport of magnetic particles as drug carriers in blood flow under influence of hydrodynamic interaction and external magnetic field. A hybrid coupling method is proposed to handle red blood cell (RBC)-fluid interface (CFI) and magnetic particle-fluid interface (PFI), respectively. Immersed boundary method (IBM)-based velocity coupling is used to account for CFI, which is validated by tank-treading and tumbling behaviors of a single RBC in simple shear flow. While PFI is captured by IBM-based force coupling, which is verified through movement of a single magnetic particle under non-uniform external magnetic field and breakup of a magnetic chain in rotating magnetic field. These two components are seamlessly integrated within the LAMMPS framework, which is a highly parallelized molecular dynamics solver. In addition, we also implement a parallelized lattice Boltzmann simulator within LAMMPS to handle the fluid flow simulation. Based on the proposed method, we explore the margination behaviors of magnetic particles and magnetic chains within blood flow. We find that the external magnetic field can be used to guide the motion of these magnetic materials and promote their margination to the vascular wall region. Moreover, the scaling performance and speedup test further confirm the high efficiency and robustness of proposed computational method. Therefore, it provides an efficient way to simulate the transport of nanoparticle-based drug carriers within blood flow in a large scale. The simulation results can be applied in the design of efficient drug delivery vehicles that optimally accumulate within diseased tissue, thus providing better imaging sensitivity, therapeutic efficacy and lower toxicity.

  5. Spheromak plasma flow injection into a torus chamber and the HIST plasmas

    NASA Astrophysics Data System (ADS)

    Hatuzaki, Akinori

    2005-10-01

    The importance of plasma flow or two-fluid effect is recognized in understanding the relaxed states of high-beta torus plasmas, start-up and current drive by non-coaxial helicity injection, magnetic reconnection and plasma dynamo in fusion, laboratory and space plasmas. As a new approach to create a flowing two-fluid plasma equilibrium, we have tried to inject tangentially the plasma flow with spheromak-type magnetic configurations into a torus vacuum chamber with an external toroidal magnetic field (TF) coil. In the initial experiments, the RFP-like configuration with helical magnetic structures was realized in the torus vessel. The ion flow measurement with Mach probes showed that the ion flow keeps the same direction despite the reversal of the toroidal current and the axial electric field. The ion fluid comes to flow in the opposite direction to the electron fluid by the reversal of TF. This result suggests that not only electron but also ion flow contributes significantly on the reversed toroidal current. In this case, the ratio of ui to the electron flow velocity ue is estimated as ui/ue ˜ 1/2. We also will inject the spheromak flow into the HIST spherical torus plasmas to examine the possibilities to embedding the two-fluid effect in the ST plasmas.

  6. Incompressible variable-density turbulence in an external acceleration field

    DOE PAGES

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; ...

    2017-08-24

    Dynamics and mixing of a variable-density turbulent flow subject to an externally imposed acceleration field in the zero-Mach-number limit are studied in a series of direct numerical simulations. The flow configuration studied consists of alternating slabs of high- and low-density fluid in a triply periodic domain. Density ratios in the range ofmore » $$1.05\\leqslant R\\equiv \\unicode[STIX]{x1D70C}_{1}/\\unicode[STIX]{x1D70C}_{2}\\leqslant 10$$are investigated. The flow produces temporally evolving shear layers. A perpendicular density–pressure gradient is maintained in the mean as the flow evolves, with multi-scale baroclinic torques generated in the turbulent flow that ensues. For all density ratios studied, the simulations attain Reynolds numbers at the beginning of the fully developed turbulence regime. An empirical relation for the convection velocity predicts the observed entrainment-ratio and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution regimes are identified: an initial diffusion-dominated regime with a growth rate$${\\sim}t^{1/2}$$followed by a turbulence-dominated regime with a growth rate$${\\sim}t^{3}$$. In the turbulent regime, composition probability density functions within the shear layers exhibit a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole fraction. In conclusion, the shear layers preferentially entrain low-density fluid by volume at all density ratios, which is reflected in the mixed-fluid composition.« less

  7. Incompressible variable-density turbulence in an external acceleration field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel

    Dynamics and mixing of a variable-density turbulent flow subject to an externally imposed acceleration field in the zero-Mach-number limit are studied in a series of direct numerical simulations. The flow configuration studied consists of alternating slabs of high- and low-density fluid in a triply periodic domain. Density ratios in the range ofmore » $$1.05\\leqslant R\\equiv \\unicode[STIX]{x1D70C}_{1}/\\unicode[STIX]{x1D70C}_{2}\\leqslant 10$$are investigated. The flow produces temporally evolving shear layers. A perpendicular density–pressure gradient is maintained in the mean as the flow evolves, with multi-scale baroclinic torques generated in the turbulent flow that ensues. For all density ratios studied, the simulations attain Reynolds numbers at the beginning of the fully developed turbulence regime. An empirical relation for the convection velocity predicts the observed entrainment-ratio and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution regimes are identified: an initial diffusion-dominated regime with a growth rate$${\\sim}t^{1/2}$$followed by a turbulence-dominated regime with a growth rate$${\\sim}t^{3}$$. In the turbulent regime, composition probability density functions within the shear layers exhibit a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole fraction. In conclusion, the shear layers preferentially entrain low-density fluid by volume at all density ratios, which is reflected in the mixed-fluid composition.« less

  8. Drag Reduction of an Airfoil Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Jiang, Chiyu; Sun, Anzhu; Marcus, Philip

    2017-11-01

    We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.

  9. Microscopic suspension feeders near boundaries: Effects of external water flow

    NASA Astrophysics Data System (ADS)

    Pepper, Rachel; Koehl, M. A. R.

    2015-11-01

    Microscopic sessile suspension feeders are an important part of aquatic ecosystems and form a vital link in the transfer of carbon in aquatic food webs. These suspension feeders live attached to boundaries, consume bacteria and small detritus, and are in turn eaten by larger organisms. Many create a feeding current that draws fluid towards them, and from which they filter their food. In still water, the feeding current consists of recirculating eddies which form as a result of fluid forcing near a boundary. These recirculating eddies can be depleted of food and significantly decrease nutrient uptake; a variety of strategies have been proposed for how attached feeders increase their access to undepleted water. We investigate the interaction of the flow produced by a microscopic suspension feeder with external environmental flow, such as the current in a stream or ocean. We show through calculations that even very slow flow (on the order of microns per second) is sufficient to provide a constant supply of undepleted water to suspension feeders when the feeders are modeled with perfect nutrient capture efficiency and in the absence of diffusion. We also discuss which natural flow environments exceed the threshold to supply undepleted water and which do not, and we examine how characteristics of the suspension feeders themselves, such as stalk length and feeding disk size, influence feeding currents and their interactions with external flows.

  10. Applications of Modern Hydrodynamics to Aeronautics. Part 1: Fundamental Concepts and the Most Important Theorems. Part 2: Applications

    NASA Technical Reports Server (NTRS)

    Prandtl, L.

    1979-01-01

    A discussion of the principles of hydrodynamics of nonviscous fluids in the case of motion of solid bodies in a fluid is presented. Formulae are derived to demonstrate the transition from the fluid surface to a corresponding 'control surface'. The external forces are compounded of the fluid pressures on the control surface and the forces which are exercised on the fluid by any solid bodies which may be inside of the control surfaces. Illustrations of these formulae as applied to the acquisition of transformations from a known simple flow to new types of flow for other boundaries are given. Theoretical and experimental investigations of models of airship bodies are presented.

  11. Directed Fluid Transport with Biomimetic ``Silia'' Arrays

    NASA Astrophysics Data System (ADS)

    Shields, A. R.; Evans, B. A.; Carstens, B. L.; Falvo, M. R.; Washburn, S.; Superfine, R.

    2008-10-01

    We present results on the long-range, directed fluid transport produced by the collective beating of arrays of biomimetic ``silia.'' Silia are arrays of free-standing nanorods roughly the size of biological cilia, which we fabricate from a polymer-magnetic nanoparticle composite material. With external permanent magnets we actuate our silia such that their motion mimics the beating of biological cilia. Biological cilia have evolved to produce microscale fluid transport and are increasingly being recognized as critical components in a wide range of biological systems. However, despite much effort cilia generated fluid flows remain an area of active study. In the last decade, cilia-driven fluid flow in the embryonic node of vertebrates has been implicated as the initial left-right symmetry breaking event in these embryos. With silia we generate directional fluid transport by mimicking the tilted conical beating of these nodal cilia and seek to answer open questions about the nature of particle advection in such a system. By seeding fluorescent microparticles into the fluid we have noted the existence of two distinct flow regimes. The fluid flow is directional and coherent above the tips of the silia, while between the silia tips and floor particle motion is complicated and suggestive of chaotic advection.

  12. Regimes of Flow over Complex Structures of Endothelial Glycocalyx: A Molecular Dynamics Simulation Study.

    PubMed

    Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H

    2018-04-10

    Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.

  13. Intrinsic particle-induced lateral transport in microchannels

    PubMed Central

    Amini, Hamed; Sollier, Elodie; Weaver, Westbrook M.; Di Carlo, Dino

    2012-01-01

    In microfluidic systems at low Reynolds number, the flow field around a particle is assumed to maintain fore-aft symmetry, with fluid diverted by the presence of a particle, returning to its original streamline downstream. This current model considers particles as passive components of the system. However, we demonstrate that at finite Reynolds number, when inertia is taken into consideration, particles are not passive elements in the flow but significantly disturb and modify it. In response to the flow field, particles translate downstream while rotating. The combined effect of the flow of fluid around particles, particle rotation, channel confinement (i.e., particle dimensions approaching those of the channel), and finite fluid inertia creates a net recirculating flow perpendicular to the primary flow direction within straight channels that resembles the well-known Dean flow in curved channels. Significantly, the particle generating this flow remains laterally fixed as it translates downstream and only the fluid is laterally transferred. Therefore, as the particles remain inertially focused, operations can be performed around the particles in a way that is compatible with downstream assays such as flow cytometry. We apply this particle-induced transfer to perform fluid switching and mixing around rigid microparticles as well as deformable cells. This transport phenomenon, requiring only a simple channel geometry with no external forces to operate, offers a practical approach for fluid transfer at high flow rates with a wide range of applications, including sample preparation, flow reaction, and heat transfer. PMID:22761309

  14. Electrification of particulate entrained fluid flows-Mechanisms, applications, and numerical methodology

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Gu, Zhaolin

    2015-10-01

    Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.

  15. Fluid flow sensing with ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  16. Impact of Cattaneo-Christov heat flux on electroosmotic transport of third-order fluids in a magnetic environment

    NASA Astrophysics Data System (ADS)

    Misra, J. C.; Mallick, B.; Sinha, A.; Roy Chowdhury, A.

    2018-05-01

    In the case of steady flow of a fluid under the combined influence of external electric and magnetic fields, the fluid moves forward by forming an axial momentum boundary layer. With this end in view a study has been performed here to investigate the problem of entropy generation during electroosmotically modulated flow of a third-order electrically conducting fluid flowing on a microchannel bounded by silicon-made parallel plates under the influence of a magnetic field, by paying due consideration to the steric effect. The associated mechanism of heat transfer has also been duly taken care of, by considering Cattaneo-Christov heat flux. A suitable finite difference scheme has been developed for the numerical procedure. A detailed study of the velocity and temperature distributions has been made by considering their variations with respect to different physical parameters involved in the problem. The results of numerical computation have been displayed graphically. The computational work has been carried out by considering blood as the working fluid, with the motivation of exploring some interesting phenomena in the context of hemodynamical flow in micro-vessels. Among other variables, parametric variations of the important physical variables, viz. i) skin friction and ii) Nusselt number have been investigated. The study confirms that the random motion of the fluid particles can be controlled by a suitable adjustment of the intensity of an externally applied magnetic field in the transverse direction. It is further revealed that the Nusselt number diminishes, as the Prandtl number gradually increases; however, a steady increase in the Nusselt number occurs with increase in thermal relaxation. Entropy generation is also found to be enhanced with increase in Joule heating. The results of the present study have also been validated in a proper manner.

  17. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.

    2013-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.

  18. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.

    PubMed

    Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua

    2016-08-01

    In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    NASA Astrophysics Data System (ADS)

    Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.

    2018-02-01

    Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.

  20. Fatigue failure in metal bellows due to flow-induced vibrations

    NASA Technical Reports Server (NTRS)

    Daniels, C. M.; Fargo, C. G.

    1969-01-01

    To prevent fatigue due to flow-induced vibrations in metal bellows connected to ducts carrying liquid hydrogen, a study was made which shows that the flexure lines are in general a function of the vibration coupling between the fluid and bellows structure, and the nature of the external environment.

  1. Numerical study of magnetohydrodynamic pulsatile flow of Sutterby fluid through an inclined overlapping arterial stenosis in the presence of periodic body acceleration

    NASA Astrophysics Data System (ADS)

    Abbas, Z.; Shabbir, M. S.; Ali, N.

    2018-06-01

    In the present theoretical investigation, we have numerically simulated the problem of blood flow through an overlapping stenosed arterial blood vessel under the action of externally applied body acceleration and the periodic pressure gradient. The rheology of blood is characterized by the Sutterby fluid model. The blood is considered as an electrically conducting fluid. A steady uniform magnetic field is applied in the radial direction of the blood vessel. The governing nonlinear partial differential equations of the present flow together with prescribed boundary conditions are solved by employing explicit finite difference scheme. Results concerning the temporal distribution of velocity, flow rate, shear stress and resistance to the flow are displayed through graphs. The effects of various emerging parameters on the flow variables are analyzed and discussed in detail. The analysis reveals that the applied magnetic field and periodic body acceleration have considerable effects on the flow field.

  2. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon, E-mail: yjchoi@uvic.ca; Djilali, Ned, E-mail: ndjilali@uvic.ca

    2016-01-15

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jonesmore » potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.« less

  3. Method and Apparatus for Predicting Unsteady Pressure and Flow Rate Distribution in a Fluid Network

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K. (Inventor)

    2009-01-01

    A method and apparatus for analyzing steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics, external body forces such as gravity and centrifugal force and conjugate heat transfer. In some embodiments, a graphical user interface provides for the interactive development of a fluid network simulation having nodes and branches. In some embodiments, mass, energy, and specific conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. In some embodiments, contained herein are data objects for computing thermodynamic and thermophysical properties for fluids. In some embodiments, the systems of equations describing the fluid network are solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods.

  4. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    NASA Astrophysics Data System (ADS)

    Sandeep, N.; Animasaun, I. L.

    2017-06-01

    Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  5. The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2014-03-01

    Sound transmission through a system of double shells, lined with poroelastic material in the presence of external mean flow, is studied. The porous material is modeled as an equivalent fluid because shear wave contributions are known to be insignificant. This is achieved by accounting for the energetically most dominant wave types in the calculations. The transmission characteristics of the sandwich construction are presented for different incidence angles and Mach numbers over a wide frequency range. It is noted that the transmission loss exhibits three dips on the frequency axis as opposed to flat panels where there are only two such frequencies—results are discussed in the light of these observations. Flow is shown to decrease the transmission loss below the ring frequency, but increase this above the ring frequency due to the negative stiffness and the damping effect added by the flow. In the absence of external mean flow, porous material provides superior insulation for most part of the frequency band of interest. However, in the presence of external flow, this is true only below the ring frequency—above this frequency, the presence of air gap in sandwich constructions is the dominant factor that determines the acoustic performance. In the absence of external flow, an air gap always improves sound insulation.

  6. Rarefied-continuum gas dynamics transition for SUMS project

    NASA Technical Reports Server (NTRS)

    Cheng, Sin-I

    1989-01-01

    This program is to develop an analytic method for reducing SUMS data for the determination of the undisturbed atmosphere conditions ahead of the shuttle along its descending trajectory. It is divided into an internal flow problem, an external flow problem and their matching conditions. Since the existing method of Direct Simulation Monte Carlo (DSMC) failed completely for the internal flow problem, the emphasis is on the internal flow of a highly non-equilibrium, rarefied air through a short tube of a diameter much less than the gaseous mean free path. A two fluid model analysis of this internal flow problem has been developed and studied with typical results illustrated. A computer program for such an analysis and a technical paper published in Lecture Notes in Physics No. 323 (1989) are included as Appendices 3 and 4. A proposal for in situ determination of the surface accommodation coefficients sigma sub t and sigma e is included in Appendix 5 because of their importance in quantitative data reduction. A two fluid formulation for the external flow problem is included as Appendix 6 and a review article for AIAA on Hypersonic propulsion, much dependent on ambient atmospheric density, is also included as Appendix 7.

  7. Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2013-08-01

    This paper investigates the sound transmission characteristics through a system of double-panel lined with poroelastic material in the core. The panels are surrounded by external and internal fluid media where a uniform external mean flow exists on one side. Biot's theory is used to model the porous material. Three types of constructions—bonded-bonded, bonded-unbonded and unbonded-unbonded—are considered. The effect of Mach number of the external flow on the sound transmission over a wide frequency range in a diffuse sound field is examined. External mean flow is shown to give a modest increase in transmission loss at low frequency, but a significant increase at high frequency. It is brought out that calculations based on static air on the incidence side provide a conservative estimate of sound transmission through the sandwich structure. The acoustic performance of the sandwich panel for different configurations is presented. The effect of curvature of the panel is also brought out by using shallow shell theory.

  8. An investigation of the basic physics of irrigation in urology and the role of automated pump irrigation in cystoscopy.

    PubMed

    Chang, Dwayne; Manecksha, Rustom P; Syrrakos, Konstantinos; Lawrentschuk, Nathan

    2012-01-01

    To investigate the effects of height, external pressure, and bladder fullness on the flow rate in continuous, non-continuous cystoscopy and the automated irrigation fluid pumping system (AIFPS). Each experiment had two 2-litre 0.9% saline bags connected to a continuous, non-continuous cystoscope or AIFPS via irrigation tubing. Other equipment included height-adjustable drip poles, uroflowmetry devices, and model bladders. In Experiment 1, saline bags were elevated to measure the increment in flow rate. In Experiment 2, saline bags were placed under external pressures to evaluate the effect on flow rate. In Experiment 3, flow rate changes in response to variable bladder fullness were measured. Elevating saline bags caused an increase in flow rates, however the increment slowed down beyond a height of 80 cm. Increase in external pressure on saline bags elevated flow rates, but inconsistently. A fuller bladder led to a decrease in flow rates. In all experiments, the AIFPS posted consistent flow rates. Traditional irrigation systems were susceptible to changes in height of irrigation solution, external pressure application, and bladder fullness thus creating inconsistent flow rates. The AIFPS produced consistent flow rates and was not affected by any of the factors investigated in the study.

  9. Generalized Fluid System Simulation Program, Version 5.0-Educational

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  10. Emittance Measurements for a Thin Liquid Sheet Flow

    NASA Technical Reports Server (NTRS)

    Englehart, Amy N.; McConley, Marc W.; Chubb, Donald L.

    1996-01-01

    The Liquid Sheet Radiator (LSR) is an external flow radiator that uses a triangular-shaped flowing liquid sheet as the radiating surface. It has potentially much lower mass than solid wall radiators such as pumped loop and heat pipe radiators, along with being nearly immune to micrometeoroid penetration. The LSR has an added advantage of simplicity. Surface tension causes a thin (100-300 microns) liquid sheet to coalesce to a point, causing the sheet flow to have a triangular shape. Such a triangular sheet is desirable since it allows for simple collection of the flow at a single point. A major problem for all external flow radiators is the requirement that the working fluid be of very low (approx. 10(sup -8) torr) vapor pressure to keep evaporative losses low. As a result, working fluids are limited to certain oils (such as used in diffusion pumps) for low temperatures (300-400 K) and liquid metals for higher temperatures. Previous research on the LSR has been directed at understanding the fluid mechanics of thin sheet flows and assessing the stability of such flows, especially with regard to the formation of holes in the sheet. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. The latest research has been directed at determining the emittance of thin sheet flows. The emittance was calculated from spectral transmittance data for the Dow Corning 705 silicone oil. By experimentally setting up a sheet flow, the emittance was also determined as a function of measurable quantities, most importantly, the temperature drop between the top of the sheet and the temperature at the coalescence point of the sheet. Temperature fluctuations upstream of the liquid sheet were a potential problem in the analysis and were investigated.

  11. Unstable equilibrium behaviour in collapsible tubes.

    PubMed

    Bertram, C D

    1986-01-01

    Thick-walled silicone rubber tube connected to rigid pipes upstream and downstream was externally pressurised (pe) to cause collapse while aqueous fluid flowed through propelled by a constant upstream head. Three types of equilibrium were found: stable equilibria (steady flow) at high downstream flow resistance R2, self-excited oscillations at low R2, and 'unattainable' (by varying external pressure) or exponentially unstable equilibria at intermediate R2. The self-excited oscillations were highly non-linear and appeared in four, apparently discrete, frequency bands: 2.7 Hz, 3.8-5.0 Hz, 12-16 Hz and 60-63 Hz, suggesting that the possible oscillation modes may be harmonically related. Stable, intermediate 'two-in-every-three-beats' oscillation was also observed, with a repetition frequency in the 3.8-5.0 Hz band. As pe was increased, self-excited oscillations were eventually suppressed, leaving internal fluid pressure varying with no single dominant frequency as a result of turbulent jet dissipation at the downstream rigid pipe connection. Comparison of pressure-wave velocity calculated from the local pressure-area relation for the tube with fluid velocity indicated that supercritical velocities were attained in the course of the self-excited oscillations.

  12. Abrupt contraction flow of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; López-López, M. T.; Bossis, G.

    2009-05-01

    Contraction and expansion flows of magnetorheological fluids occur in a variety of smart devices. It is important therefore to learn how these flows can be controlled by means of applied magnetic fields. This paper presents a first investigation into the axisymmetric flow of a magnetorheological fluid through an orifice (so-called abrupt contraction flow). The effect of an external magnetic field, longitudinal or transverse to the flow, is examined. In experiments, the pressure-flow rate curves were measured, and the excess pressure drop (associated with entrance and exit losses) was derived from experimental data through the Bagley correction procedure. The effect of the longitudinal magnetic field is manifested through a significant increase in the slope of the pressure-flow rate curves, while no discernible yield stress occurs. This behavior, observed at shear Mason numbers 10

  13. High-Performance Algorithms and Complex Fluids | Computational Science |

    Science.gov Websites

    only possible by combining experimental data with simulation. Capabilities Capabilities include: Block -laden, non-Newtonian, as well as traditional internal and external flows. Contact Ray Grout Group

  14. High-Speed Magnetohydrodynamic Flow Control Analyses With 3-D Simulations

    DTIC Science & Technology

    2008-01-01

    color. 14. ABSTRACT Magnetohydrodynamic studies of high-speed flow control are described with emphasis on understanding fluid response to specific...interactions play a crucial role by distorting the velocity field. The interaction with an external circuit through electrodes is relatively efficient when... Entropy layer . . . . . . . . . . . . . 20 6 Energy management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 Conclusion

  15. Experiments of draining and filling processes in a collapsible tube at high external pressure

    NASA Astrophysics Data System (ADS)

    Flaud, P.; Guesdon, P.; Fullana, J.-M.

    2012-02-01

    The venous circulation in the lower limb is mainly controlled by the muscular action of the calf. To study the mechanisms governing the venous draining and filling process in such a situation, an experimental setup, composed by a collapsible tube under external pressure, has been built. A valve preventing back flows is inserted at the bottom of the tube and allows to model two different configurations: physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions. Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The experimental results (draining and filling with physiological or pathological valves) are confronted to a simple one-dimensional numerical model which completes the physical interpretation. One major observation is that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous effects, and that a defect of the valve decreases, as expected, the ejected volume.

  16. Three-dimensional flows in a hyperelastic vessel under external pressure.

    PubMed

    Zhang, Sen; Luo, Xiaoyu; Cai, Zongxi

    2018-05-09

    We study the collapsible behaviour of a vessel conveying viscous flows subject to external pressure, a scenario that could occur in many physiological applications. The vessel is modelled as a three-dimensional cylindrical tube of nonlinear hyperelastic material. To solve the fully coupled fluid-structure interaction, we have developed a novel approach based on the Arbitrary Lagrangian-Eulerian (ALE) method and the frontal solver. The method of rotating spines is used to enable an automatic mesh adaptation. The numerical code is verified extensively with published results and those obtained using the commercial packages in simpler cases, e.g. ANSYS for the structure with the prescribed flow, and FLUENT for the fluid flow with prescribed structure deformation. We examine three different hyperelastic material models for the tube for the first time in this context and show that at the small strain, all three material models give similar results. However, for the large strain, results differ depending on the material model used. We further study the behaviour of the tube under a mode-3 buckling and reveal its complex flow patterns under various external pressures. To understand these flow patterns, we show how energy dissipation is associated with the boundary layers created at the narrowest collapsed section of the tube, and how the transverse flow forms a virtual sink to feed a strong axial jet. We found that the energy dissipation associated with the recirculation does not coincide with the flow separation zone itself, but overlaps with the streamlines that divide the three recirculation zones. Finally, we examine the bifurcation diagrams for both mode-3 and mode-2 collapses and reveal that multiple solutions exist for a range of the Reynolds number. Our work is a step towards modelling more realistic physiological flows in collapsible arteries and veins.

  17. Ferroelectric Fluid Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  18. Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device.

    PubMed

    Holland, C; Yu, J H; James, A; Nishijima, D; Shimada, M; Taheri, N; Tynan, G R

    2006-05-19

    An azimuthally symmetric radially sheared plasma fluid flow is observed to spontaneously form in a cylindrical magnetized helicon plasma device with no external sources of momentum input. A turbulent momentum conservation analysis shows that this shear flow is sustained by the Reynolds stress generated by collisional drift turbulence in the device. The results provide direct experimental support for the basic theoretical picture of drift-wave-shear-flow interactions.

  19. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  20. The analysis of the transient pressure response of the shuttle EPS-ECS cryogenic tanks with external pressurization systems

    NASA Technical Reports Server (NTRS)

    Barton, J. E.; Patterson, H. W.

    1973-01-01

    An analysis of transient pressures in externally pressurized cryogenic hydrogen and oxygen tanks was conducted and the effects of design variables on pressure response determined. The analysis was conducted with a computer program which solves the compressible viscous flow equations in two-dimensional regions representing the tank and external loop. The external loop volume, thermal mass, and heat leak were the dominant design variables affecting the system pressure response. No significant temperature stratification occurred in the fluid contained in the tank.

  1. Process and apparatus for obtaining samples of liquid and gas from soil

    DOEpatents

    Rossabi, J.; May, C.P.; Pemberton, B.E.; Shinn, J.; Sprague, K.

    1999-03-30

    An apparatus and process for obtaining samples of liquid and gas from subsurface soil is provided having filter zone adjacent an external expander ring. The expander ring creates a void within the soil substrate which encourages the accumulation of soil-borne fluids. The fluids migrate along a pressure gradient through a plurality of filters before entering a first chamber. A one-way valve regulates the flow of fluid into a second chamber in further communication with a collection tube through which samples are collected at the surface. A second one-way valve having a reverse flow provides additional communication between the chambers for the pressurized cleaning and back-flushing of the apparatus. 8 figs.

  2. Process and apparatus for obtaining samples of liquid and gas from soil

    DOEpatents

    Rossabi, Joseph; May, Christopher P.; Pemberton, Bradley E.; Shinn, Jim; Sprague, Keith

    1999-01-01

    An apparatus and process for obtaining samples of liquid and gas from subsurface soil is provided having filter zone adjacent an external expander ring. The expander ring creates a void within the soil substrate which encourages the accumulation of soil-borne fluids. The fluids migrate along a pressure gradient through a plurality of filters before entering a first chamber. A one-way valve regulates the flow of fluid into a second chamber in further communication with a collection tube through which samples are collected at the surface. A second one-way valve having a reverse flow provides additional communication between the chambers for the pressurized cleaning and back-flushing of the apparatus.

  3. Transport of self-propelling bacteria in micro-channel flow.

    PubMed

    Costanzo, A; Di Leonardo, R; Ruocco, G; Angelani, L

    2012-02-15

    Understanding the collective motion of self-propelling organisms in confined geometries, such as that of narrow channels, is of great theoretical and practical importance. By means of numerical simulations we study the motion of model bacteria in 2D channels under different flow conditions: fluid at rest, steady and unsteady flow. We find aggregation of bacteria near channel walls and, in the presence of external flow, also upstream swimming, which turns out to be a very robust result. Detailed analysis of bacterial velocity and orientation fields allows us to quantify the phenomenon by varying cell density, channel width and fluid velocity. The tumbling mechanism turns out to have strong influence on velocity profiles and particle flow, resulting in a net upstream flow in the case of non-tumbling organisms. Finally we demonstrate that upstream flow can be enhanced by a suitable choice of an unsteady flow pattern.

  4. An Experimental and numerical Study for squeezing flow

    NASA Astrophysics Data System (ADS)

    Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team

    2017-11-01

    We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  5. Chemical Evidence for Episodic Growth of a Fibrous Antitaxial Calcite Vein From Externally Derived Fluid

    NASA Astrophysics Data System (ADS)

    Barker, S. L.; Cox, S. F.; Eggins, S. M.; Gagan, M. K.

    2005-12-01

    Fibrous, massive and crustiform textured quartz and calcite veins occur within a deformed limestone-shale sequence at Taemas, in the Lachlan Fold Belt, eastern New South Wales, Australia. Stable isotope analyses of veins and host rock indicate that these veins formed from upwardly migrating, externally derived fluids. High spatial resolution (100 μm) analyses reveal per mil scale variations of stable C and O isotope ratios, and radiogenic Sr isotope ratios in a 1.5 cm thick, fibrous, antitaxial-growth calcite vein. LA-ICP-MS analyses (30 μm resolution) demonstrate significant variations in Fe, Mn, Sr, REE and Eu/Eu* parallel to the long axes of fibres. Stable and radiogenic isotopic ratio variations, and trace and REE concentration changes correlate with different cathodoluminesence zones, and slight changes in fibre orientation and thickness. The covariance of calcite textures and chemistry indicate that this fibrous vein grew episodically. Moreover, calcite in this vein was precipitated from externally derived fluid, which underwent variable fluid-rock interaction, and had a fluctuating oxidation state. This fibrous, antitaxial growth vein likely formed from fluid that migrated along fracture-controlled flow pathways.

  6. The lift force on a drop in unbounded plane Poiseuille flow

    NASA Technical Reports Server (NTRS)

    Wohl, P. R.

    1976-01-01

    The lift force on a deformable liquid sphere moving in steady, plane Poiseuille-Stokes flow and subjected to an external body force is calculated. The results are obtained by seeking a solution to Stokes' equations for the motion of the liquids inside and outside the slightly perturbed sphere surface, as expansions valid for small values of the ratio of the Weber number to the Reynolds number. When the ratio of the drop and external fluid viscosities is small, the lift exerted on a neutrally buoyant drop is found to be approximately one-tenth of the magnitude of the force reported by Wohl and Rubinow acting on the same drop in unbounded Poiseuille flow in a tube. The resultant trajectory of the drop is calculated and displayed as a function of the external body force.

  7. Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Hulka, James R.; Moser, Marlow D.; Rhys, Noah O.

    2008-01-01

    A common propellant combination used for high thrust generation is GH2/LOX. Historical GH2/LOX injection elements have been of the shear-coaxial type. Element type has a large heritage of research work to aid in element design. The swirl-coaxial element, despite its many performance benefits, has a relatively small amount of historical, LRE-oriented work to draw from. Design features of interest are grounded in the fluid mechanics of the liquid swirl process itself, are based on data from low-pressure, low mass flow rate experiments. There is a need to investigate how high ambient pressures and mass flow rates influence internal and external swirl features. The objective of this research is to determine influence of varying liquid mass flow rate and ambient chamber pressure on the intact-length fluid mechanics of a liquid swirl element.

  8. A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd

    1998-01-01

    This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.

  9. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.

  10. Generalized Fluid System Simulation Program, Version 5.0-Educational. Supplemental Information for NASA/TM-2011-216470. Supplement

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.

  11. A Computational Study of the Hydrodynamics in the Nasal Region of a Hammerhead Shark (Sphyrna tudes): Implications for Olfaction

    PubMed Central

    Rygg, Alex D.; Cox, Jonathan P. L.; Abel, Richard; Webb, Andrew G.; Smith, Nadine B.; Craven, Brent A.

    2013-01-01

    The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory chambers, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics of olfaction in Sphyrna tudes based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Computed external flow patterns elucidate the occurrence of flow phenomena that result in high and low pressures at the incurrent and excurrent nostrils, respectively, which induces flow through the olfactory chamber. The major (prenarial) nasal groove along the cephalofoil is shown to facilitate sampling of a large spatial extent (i.e., an extended hydrodynamic “reach”) by directing oncoming flow towards the incurrent nostril. Further, both the major and minor nasal grooves redirect some flow away from the incurrent nostril, thereby limiting the amount of fluid that enters the olfactory chamber. Internal hydrodynamic flow patterns are also revealed, where we show that flow rates within the sensory channels between olfactory lamellae are passively regulated by the apical gap, which functions as a partial bypass for flow in the olfactory chamber. Consequently, the hammerhead shark appears to utilize external (major and minor nasal grooves) and internal (apical gap) flow regulation mechanisms to limit water flow between the olfactory lamellae, thus protecting these delicate structures from otherwise high flow rates incurred by sampling a larger area. PMID:23555780

  12. Analysis of Turbulent Flow and Heat Transfer on a Flat Plate at High Mach Numbers with Variable Fluid Properties

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.; Loeffler, A. L., Jr.

    1959-01-01

    A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.

  13. An Improved Lattice Boltzmann Model for Non-Newtonian Flows with Applications to Solid-Fluid Interactions in External Flows

    NASA Astrophysics Data System (ADS)

    Adam, Saad; Premnath, Kannan

    2016-11-01

    Fluid mechanics of non-Newtonian fluids, which arise in numerous settings, are characterized by non-linear constitutive models that pose certain unique challenges for computational methods. Here, we consider the lattice Boltzmann method (LBM), which offers some computational advantages due to its kinetic basis and its simpler stream-and-collide procedure enabling efficient simulations. However, further improvements are necessary to improve its numerical stability and accuracy for computations involving broader parameter ranges. Hence, in this study, we extend the cascaded LBM formulation by modifying its moment equilibria and relaxation parameters to handle a variety of non-Newtonian constitutive equations, including power-law and Bingham fluids, with improved stability. In addition, we include corrections to the moment equilibria to obtain an inertial frame invariant scheme without cubic-velocity defects. After preforming its validation study for various benchmark flows, we study the physics of non-Newtonian flow over pairs of circular and square cylinders in a tandem arrangement, especially the wake structure interactions and their effects on resulting forces in each cylinder, and elucidate the effect of the various characteristic parameters.

  14. Quasi One-Dimensional Unsteady Modeling of External Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Kratz, Jonathan

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of an axisymmetric external compression supersonic inlet is being developed. The model utilizes compressible flow computational fluid dynamics to model the internal inlet segment as well as the external inlet portion between the cowl lip and normal shock, and compressible flow relations with flow propagation delay to model the oblique shocks upstream of the normal shock. The external compression portion between the cowl-lip and the normal shock is also modeled with leaking fluxes crossing the sonic boundary, with a moving CFD domain at the normal shock boundary. This model has been verified in steady state against tunnel inlet test data and it s a first attempt towards developing a more comprehensive model for inlet dynamics.

  15. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    NASA Technical Reports Server (NTRS)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  16. Phase behavior of a simple dipolar fluid under shear flow in an electric field.

    PubMed

    McWhirter, J Liam

    2008-01-21

    Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.

  17. Granular avalanches down inclined and vibrated planes

    NASA Astrophysics Data System (ADS)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  18. Rheology of Active Fluids

    NASA Astrophysics Data System (ADS)

    Saintillan, David

    2018-01-01

    An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.

  19. High-performance computational fluid dynamics: a custom-code approach

    NASA Astrophysics Data System (ADS)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  20. A volume-of-fluid method for simulation of compressible axisymmetric multi-material flow

    NASA Astrophysics Data System (ADS)

    de Niem, D.; Kührt, E.; Motschmann, U.

    2007-02-01

    A two-dimensional Eulerian hydrodynamic method for the numerical simulation of inviscid compressible axisymmetric multi-material flow in external force fields for the situation of pure fluids separated by macroscopic interfaces is presented. The method combines an implicit Lagrangian step with an explicit Eulerian advection step. Individual materials obey separate energy equations, fulfill general equations of state, and may possess different temperatures. Material volume is tracked using a piecewise linear volume-of-fluid method. An overshoot-free logically simple and economic material advection algorithm for cylinder coordinates is derived, in an algebraic formulation. New aspects arising in the case of more than two materials such as the material ordering strategy during transport are presented. One- and two-dimensional numerical examples are given.

  1. Distribution of self-propelled organisms in fluid flows

    NASA Astrophysics Data System (ADS)

    Neufeld, Zoltan

    2006-11-01

    We study the distribution of microorganisms represented as self-propelled particles in a moving fluid medium. The particles are advected by the flow and, in addition, they swim in a direction controlled by external factors. Two cases are considered: 1. passive spheroidal particles, that swim with constant speed but the swimming direction is reoriented by the viscous torque acting on the spheroid due to the local velocity field, and 2. chemotactic particles, whose swimming speed is oriented and proportional to the gradient of the concentration of a chemoattractant. We show that the combined effects of chaotic mixing and chemotaxis or flow reorientation leads to aggregation of the particles along a complex manifold. We analyse the properties of the aggregates and the efficiency of chemotaxis in flows with strongly non-uniform fluctuating distribution of the chemottractant.

  2. Indeterminism in Classical Dynamics of Particle Motion

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Burns, Randal; Meneveau, Charles; Szalay, Alex

    2013-03-01

    We show that ``God plays dice'' not only in quantum mechanics but also in the classical dynamics of particles advected by turbulent fluids. With a fixed deterministic flow velocity and an exactly known initial position, the particle motion is nevertheless completely unpredictable! In analogy with spontaneous magnetization in ferromagnets which persists as external field is taken to zero, the particle trajectories in turbulent flow remain random as external noise vanishes. The necessary ingredient is a rough advecting field with a power-law energy spectrum extending to smaller scales as noise is taken to zero. The physical mechanism of ``spontaneous stochasticity'' is the explosive dispersion of particle pairs proposed by L. F. Richardson in 1926, so the phenomenon should be observable in laboratory and natural turbulent flows. We present here the first empirical corroboration of these effects in high Reynolds-number numerical simulations of hydrodynamic and magnetohydrodynamic fluid turbulence. Since power-law spectra are seen in many other systems in condensed matter, geophysics and astrophysics, the phenomenon should occur rather widely. Fast reconnection in solar flares and other astrophysical systems can be explained by spontaneous stochasticity of magnetic field-line motion

  3. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  4. On the application of Chimera/unstructured hybrid grids for conjugate heat transfer

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1995-01-01

    A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.

  5. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  6. Learning to classify wakes from local sensory information

    NASA Astrophysics Data System (ADS)

    Alsalman, Mohamad; Colvert, Brendan; Kanso, Eva; Kanso Team

    2017-11-01

    Aquatic organisms exhibit remarkable abilities to sense local flow signals contained in their fluid environment and to surmise the origins of these flows. For example, fish can discern the information contained in various flow structures and utilize this information for obstacle avoidance and prey tracking. Flow structures created by flapping and swimming bodies are well characterized in the fluid dynamics literature; however, such characterization relies on classical methods that use an external observer to reconstruct global flow fields. The reconstructed flows, or wakes, are then classified according to the unsteady vortex patterns. Here, we propose a new approach for wake identification: we classify the wakes resulting from a flapping airfoil by applying machine learning algorithms to local flow information. In particular, we simulate the wakes of an oscillating airfoil in an incoming flow, extract the downstream vorticity information, and train a classifier to learn the different flow structures and classify new ones. This data-driven approach provides a promising framework for underwater navigation and detection in application to autonomous bio-inspired vehicles.

  7. Measuring Time-Averaged Blood Pressure

    NASA Technical Reports Server (NTRS)

    Rothman, Neil S.

    1988-01-01

    Device measures time-averaged component of absolute blood pressure in artery. Includes compliant cuff around artery and external monitoring unit. Ceramic construction in monitoring unit suppresses ebb and flow of pressure-transmitting fluid in sensor chamber. Transducer measures only static component of blood pressure.

  8. Influence of Wall Porosity and Surfaces Roughness on the Steady Performance of an Externally Pressurized Hydrostatic Conical Bearing Lubricated by a Rabinowitsch Fluid

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.

    2017-08-01

    In the paper, the influence of both the bearing surfaces roughness as well as porosity of one bearing surface on the pressure distribution and load-carrying capacity of a curvilinear, externally pressurized, thrust bearing is discussed. The equations of motion of a pseudo-plastic Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation and Christensen theory of hydrodynamic lubrication with rough bearing surfaces the modified Reynolds equation is obtained. The analytical solution is presented; as a result one obtains the formulae expressing the pressure distribution and load-carrying capacity. Thrust radial and conical bearings, externally pressurized, are considered as numerical examples.

  9. Approximation of Viscoelastic Stresses from Newtonian Turbulent Kinematics

    DTIC Science & Technology

    1988-09-01

    birefringence of polyethylene oxide solutions in a four roll mill. J.Poly.Sci.:Poly.Phys.Ed. 14, 1111-1119. Dandridge, A., Meeten , G.H., Layec-Raphalen, M.N...flows. Poly. Comm. 25, 144-146. Metzner, A.B., & Astarita, G . 1967 External flow of viscoelastic materials: fluid property restrictions on the use of...dumbbell model for dilute solutions. Rheol.Acta 23, 151-162. Philippoff, W. 1956 Flow-birefringence and stress. Nature 178 , 811-812. Ryskin, G . 1987a

  10. Point-vortex stability under the influence of an external periodic flow

    NASA Astrophysics Data System (ADS)

    Ortega, Rafael; Ortega, Víctor; Torres, Pedro J.

    2018-05-01

    We provide sufficient conditions for the stability of the particle advection around a fixed vortex in a two-dimensional ideal fluid under the action of a periodic background flow. The proof relies on the identification of closed invariant curves around the origin by means of Moser’s invariant curve theorem. Partially supported by Spanish MINECO and ERDF project MTM2014-52232-P.

  11. High power densities from high-temperature materials interactions. [thermionic energy conversion and metallic fluid heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1981-01-01

    Thermionic energy converters and metallic-fluid heat pipes are well suited to serve together synergistically. The two operating cycles appear as simple and isolated as their material problems seem forebodingly deceptive and complicated. Simplified equations verify material properties and interactions as primary influences on the operational effectiveness of both. Each experiences flow limitations in thermal emission and vaporization because of temperature restrictions redounding from thermophysicochemical stability considerations. Topics discussed include: (1) successful limitation of alkali-metal corrosion; (2) protection against external hot corrosive gases; (3) coping with external and internal vaporization; (4) controlling interfacial reactions and diffusion; and (5) meeting other thermophysical challenges; expansion matches and creep.

  12. Brownian microhydrodynamics of active filaments.

    PubMed

    Laskar, Abhrajit; Adhikari, R

    2015-12-21

    Slender bodies capable of spontaneous motion in the absence of external actuation in an otherwise quiescent fluid are common in biological, physical and technological contexts. The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a challenging fluid-structure interaction problem. Here, we model this problem by approximating the slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the fluid-structure interface. We derive equations of motion for such an active filament by enforcing momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the solution of an integral equation. A simplified form of the equations of motion, which allows for efficient numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation to the integral equation. We use this form of equation of motion to study dynamical steady states in free and hinged minimally active filaments. Our model provides the foundation to study collective phenomena in momentum-conserving, Brownian, active filament suspensions.

  13. Volumetric flow rate in simulations of microfluidic devices+

    NASA Astrophysics Data System (ADS)

    Kovalčíková, KristÍna; Slavík, Martin; Bachratá, Katarína; Bachratý, Hynek; Bohiniková, Alžbeta

    2018-06-01

    In this work, we examine the volumetric flow rate of microfluidic devices. The volumetric flow rate is a parameter which is necessary to correctly set up a simulation of a real device and to check the conformity of a simulation and a laboratory experiments [1]. Instead of defining the volumetric rate at the beginning as a simulation parameter, a parameter of external force is set. The proposed hypothesis is that for a fixed set of other parameters (topology, viscosity of the liquid, …) the volumetric flow rate is linearly dependent on external force in typical ranges of fluid velocity used in our simulations. To confirm this linearity hypothesis and to find numerical limits of this approach, we test several values of the external force parameter. The tests are designed for three different topologies of simulation box and for various haematocrits. The topologies of the microfluidic devices are inspired by existing laboratory experiments [3 - 6]. The linear relationship between the external force and the volumetric flow rate is verified in orders of magnitudes similar to the values obtained from laboratory experiments. Supported by the Slovak Research and Development Agency under the contract No. APVV-15-0751 and by the Ministry of Education, Science, Research and Sport of the Slovak Republic under the contract No. VEGA 1/0643/17.

  14. The stability of freak waves with regard to external impact and perturbation of initial data

    NASA Astrophysics Data System (ADS)

    Smirnova, Anna; Shamin, Roman

    2014-05-01

    We investigate solutions of the equations, describing freak waves, in perspective of stability with regard to external impact and perturbation of initial data. The modeling of freak waves is based on numerical solution of equations describing a non-stationary potential flow of the ideal fluid with a free surface. We consider the two-dimensional infinitely deep flow. For waves modeling we use the equations in conformal variables. The variant of these equations is offered in [1]. Mathematical correctness of these equations was discussed in [2]. These works establish the uniqueness of solutions, offer the effective numerical solution calculation methods, prove the numerical convergence of these methods. The important aspect of numerical modeling of freak waves is the stability of solutions, describing these waves. In this work we study the questions of stability with regards to external impact and perturbation of initial data. We showed the stability of freak waves numerical model, corresponding to the external impact. We performed series of computational experiments with various freak wave initial data and random external impact. This impact means the power density on free surface. In each experiment examine two waves: the wave that was formed by external impact and without one. In all the experiments we see the stability of equation`s solutions. The random external impact practically does not change the time of freak wave formation and its form. Later our work progresses to the investigation of solution's stability under perturbations of initial data. We take the initial data that provide a freak wave and get the numerical solution. In common we take the numerical solution of equation with perturbation of initial data. The computing experiments showed that the freak waves equations solutions are stable under perturbations of initial data.So we can make a conclusion that freak waves are stable relatively external perturbation and perturbation of initial data both. 1. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface// Eur. J.~Mech. B Fluids. 2002. V. 21. P. 283-291. 2. R.V. Shamin. Dynamics of an Ideal Liquid with a Free Surface in Conformal Variables // Journal of Mathematical Sciences, Vol. 160, No. 5, 2009. P. 537-678. 3. R.V. Shamin, V.E. Zakharov, A.I. Dyachenko. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y

  15. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturingmore » is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.« less

  16. [Present situation and development trends of asymmetrical flow field-flow fractionation].

    PubMed

    Liang, Qihui; Wu, Di; Qiu, Bailing; Han, Nanyin

    2017-09-08

    Field-flow fractionation (FFF) is a kind of mature separation technologies in the field of bioanalysis, feasible of separating analytes with the differences of certain physical and chemical properties by the combination effects of two orthogonal force fields (flow field and external force field). Asymmetrical flow field-flow fractionation (AF4) is a vital subvariant of FFF, which applying a vertical flow field as the second dimension force field. The separation in AF4 opening channel is carried out by any composition carrier fluid, universally and effectively used in separation of bioparticles and biopolymers due to the non-invasivity feature. Herein, bio-analytes are held in bio-friendly environment and easily sterilized without using degrading carrier fluid which is conducive to maintain natural conformation. In this review, FFF and AF4 principles are briefly described, and some classical and emerging applications and developments in the bioanalytical fields are concisely introduced and tabled. Also, special focus is given to the hyphenation of AF4 with highly specific, sensitive detection technologies.

  17. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  18. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow.

    PubMed

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  19. Hydrodynamics of Low Reynolds Respiratory-type Flows

    NASA Astrophysics Data System (ADS)

    Connor, Erin; True, Aaron; Crimaldi, John

    2017-11-01

    Both aquatic and terrestrial animals inhale surrounding fluid for metabolic and sensory purposes. As organisms inhale and exhale, complex fluid interactions occur both internal and external to the physiological orifice. Using both numerical and experimental approaches, we model an idealized respiratory flow consisting of cyclic inhalation and exhalation through a single cylindrical tube. We investigate the effect of varying Reynolds number (Re) as well as the ratio of the inhalation time to the exhalation time (I:E ratio) for a fixed inhalation volume. The numerical model is used for laminar cases at lower Re, whereas the experimental model permits the study to be extended into higher Reynolds numbers that include transitions to turbulence. We map the spatial distribution of both inhaled and exhaled fluid volumes. By comparing these two maps, we can compute the volume of exhaled fluid that is reingested during the subsequent inhalation. The models of interacting inhalation and exhalation exhibit a rich range of flow behaviors across Re number and I:E ratio. This study builds a foundation for more complex studies of animal respiration that will include more realistic morphologies.

  20. Dynamics of vesicles in electric fields

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia; Gracia, Ruben

    2007-11-01

    Electromechanical forces are widely used for cell manipulation. Knowledge of the physical mechanisms underlying the interaction of cells and external fields is essential for practical applications. Vesicles are model cells made of a lipid bilayer membrane. They are examples of ``soft'' particles, i.e., their shape when subjected to flow or electric field is not given a priori but it is governed by the balance of membrane, fluid and electrical stresses. This generic ``softness'' gives rise to a very complex vesicle dynamics in external fields. In an AC electric field, as the frequency is increased, vesicles filled with a fluid less conducting than the surrounding fluid undergo shape transition from prolate to oblate ellipsoids. The opposite effect is observed with drops. We present an electro- hydrodynamic theory based on the leaky dielectric model that quantitatively describes experimental observations. We compare drops and vesicles, and show how their distinct behavior stems from different interfacial properties.

  1. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, Kevin M.

    1994-01-01

    An apparatus for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device.

  2. Self-organization of magnetic particles at fluid interfaces

    NASA Astrophysics Data System (ADS)

    Belkin, Maxim

    Understanding principles that govern emergent behavior in systems with complex interactions has puzzled scientists for many years. In my work I studied seemingly simple but highly non-trivial system of magnetic micro-particles suspended at fluid interface and energized by an external vertical AC magnetic field. It can be considered as a prototype for probing the interplay of individual interactions on the collective response of system to the external driving. The first part of this work is focused on experimental study of self-organization in this system. In a certain region of parameters formation of localized snake-like structures with accompanying large-scale symmetric surface flows is observed. Characteristics of the self-organized structure as well as flows strongly depend on parameters of the external driving. Increased driving leads to a spontaneous symmetry breaking of the surface flows which results in a self-propulsion of the "snake". This observation leads to an idea of controlled design of a self-propelled swimmer. Numerical calculations based on a phenomenological model proposed for the description of such system successfully reproduces self-organization of the snake-like structures, self-propulsion under spontaneous and artificial symmetry breaking. Increase in the number of the particles promotes a formation of multiple snakes which are in turn unstable with respect to self-induced flows and become mobile swimmers. Such ensemble effectively mixes the surface of liquid. Experimental study of such two-dimensional mixing is the focus of the second part of this work. Results of molecular-dynamics simulations based on proposed theoretical model are reported.

  3. Fluid-solid interaction: benchmarking of an external coupling of ANSYS with CFX for cardiovascular applications.

    PubMed

    Hose, D R; Lawford, P V; Narracott, A J; Penrose, J M T; Jones, I P

    2003-01-01

    Fluid-solid interaction is a primary feature of cardiovascular flows. There is increasing interest in the numerical solution of these systems as the extensive computational resource required for such studies becomes available. One form of coupling is an external weak coupling of separate solid and fluid mechanics codes. Information about the stress tensor and displacement vector at the wetted boundary is passed between the codes, and an iterative scheme is employed to move towards convergence of these parameters at each time step. This approach has the attraction that separate codes with the most extensive functionality for each of the separate phases can be selected, which might be important in the context of the complex rheology and contact mechanics that often feature in cardiovascular systems. Penrose and Staples describe a weak coupling of CFX for computational fluid mechanics to ANSYS for solid mechanics, based on a simple Jacobi iteration scheme. It is important to validate the coupled numerical solutions. An extensive analytical study of flow in elastic-walled tubes was carried out by Womersley in the late 1950s. This paper describes the performance of the coupling software for the straight elastic-walled tube, and compares the results with Womersley's analytical solutions. It also presents preliminary results demonstrating the application of the coupled software in the context of a stented vessel.

  4. Swimming in external fields

    NASA Astrophysics Data System (ADS)

    Stark, Holger

    2016-11-01

    Microswimmers move autonomously but are subject to external fields, which influence their swimming path and their collective dynamics. With three concrete examples we illustrate swimming in external fields and explain the methodology to treat it. First, an active Brownian particle shows a conventional sedimentation profile in a gravitational field but with increased sedimentation length and some polar order along the vertical. Bottom-heavy swimmers are able to invert the sedimentation profile. Second, active Brownian particles interacting by hydrodynamic flow fields in a three-dimensional harmonic trap can spontaneously break the isotropic symmetry. They develop polar order, which one can describe by mean-field theory reminiscent to Weiss theory of ferromagnetism, and thereby pump fluid. Third, a single microswimmer shows interesting non-linear dynamics in Poiseuille flow including swinging and tumbling trajectories. For pushers, hydrodynamic interactions with bounding surfaces stabilize either straight swimming against the flow or tumbling close to the channel wall, while pushers always move on a swinging trajectory with a specific amplitude as limit cycle.

  5. Convective heat transfer and infrared thermography.

    PubMed

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  6. Anomalous Chained Turbulence in Actively Driven Flows on Spheres

    NASA Astrophysics Data System (ADS)

    Mickelin, Oscar; Słomka, Jonasz; Burns, Keaton J.; Lecoanet, Daniel; Vasil, Geoffrey M.; Faria, Luiz M.; Dunkel, Jörn

    2018-04-01

    Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

  7. Asymptotic stability of shear-flow solutions to incompressible viscous free boundary problems with and without surface tension

    NASA Astrophysics Data System (ADS)

    Tice, Ian

    2018-04-01

    This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in modeling the motion of such a fluid down an inclined plane, after a coordinate change. We consider the problem both with and without surface tension for horizontally periodic flows. This problem gives rise to shear-flow equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of the equilibria in certain parameter regimes. We prove that there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time t=0 give rise to global-in-time solutions that return to equilibrium exponentially in the case with surface tension and almost exponentially in the case without surface tension. We also establish a vanishing surface tension limit, which connects the solutions with and without surface tension.

  8. Computational Fluid Dynamics simulation of hydrothermal liquefaction of microalgae in a continuous plug-flow reactor.

    PubMed

    Ranganathan, Panneerselvam; Savithri, Sivaraman

    2018-06-01

    Computational Fluid Dynamics (CFD) technique is used in this work to simulate the hydrothermal liquefaction of Nannochloropsis sp. microalgae in a lab-scale continuous plug-flow reactor to understand the fluid dynamics, heat transfer, and reaction kinetics in a HTL reactor under hydrothermal condition. The temperature profile in the reactor and the yield of HTL products from the present simulation are obtained and they are validated with the experimental data available in the literature. Furthermore, the parametric study is carried out to study the effect of slurry flow rate, reactor temperature, and external heat transfer coefficient on the yield of products. Though the model predictions are satisfactory in comparison with the experimental results, it still needs to be improved for better prediction of the product yields. This improved model will be considered as a baseline for design and scale-up of large-scale HTL reactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The Fluid Mechanics of Natural Ventilation

    NASA Astrophysics Data System (ADS)

    Linden, P. F.

    1999-01-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. The governing feature of this flow is the exchange between an interior space and the external ambient. Although the wind may often appear to be the dominant driving mechanism, in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of ventilation are discussed: mixing ventilation, in which the interior is at an approximately uniform temperature, and displacement ventilation, where there is strong internal stratification. The dynamics of these buoyancy-driven flows are considered, and the effects of wind on them are examined. The aim behind this work is to give designers rules and intuition on how air moves within a building; the research reveals a fascinating branch of fluid mechanics.

  10. Pressure gradients fail to predict diffusio-osmosis

    NASA Astrophysics Data System (ADS)

    Liu, Yawei; Ganti, Raman; Frenkel, Daan

    2018-05-01

    We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.

  11. Nodal Cilia Dynamics and the Specification of the Left/Right Axis in Early Vertebrate Embryo Development

    PubMed Central

    Buceta, Javier; Ibañes, Marta; Rasskin-Gutman, Diego; Okada, Yasushi; Hirokawa, Nobutaka; Izpisúa-Belmonte, Juan Carlos

    2005-01-01

    Nodal cilia dynamics is a key factor for left/right axis determination in mouse embryos through the induction of a leftward fluid flow. So far it has not been clearly established how such dynamics is able to induce the asymmetric leftward flow within the node. Herein we propose that an asymmetric two-phase nonplanar beating cilia dynamics that involves the bending of the ciliar axoneme is responsible for the leftward fluid flow. We support our proposal with a host of hydrodynamic arguments, in silico experiments and in vivo video microscopy data in wild-type embryos and inv mutants. Our phenomenological modeling approach underscores how the asymmetry and speed of the flow depends on different relevant parameters. In addition, we discuss how the combination of internal and external mechanisms might cause the two-phase beating cilia dynamics. PMID:16040754

  12. Fuselage ventilation due to wind flow about a postcrash aircraft

    NASA Technical Reports Server (NTRS)

    Stuart, J. W.

    1980-01-01

    Postcrash aircraft fuselage fire development, dependent on the internal and external fluid dynamics is discussed. The natural ventilation rate, a major factor in the internal flow patterns and fire development is reviewed. The flow about the fuselage as affected by the wind and external fire is studied. An analysis was performend which estimated the rates of ventilation produced by the wind for a limited idealized environmental configuration. The simulation utilizes the empirical pressure coefficient distribution of an infinite circular cylinder near a wall with its boundary later flow to represent the atmospheric boundary layer. The resulting maximum ventilation rate for two door size openings, with varying circumferential location in a common 10 mph wind was an order of magnitude greater than the forced ventilation specified in full scale fire testing. The parameter discussed are: (1) fuselage size and shape, (2) fuselage orientation and proximity to the ground, (3) fuselage-openings size and location, (4) wind speed and direction, and (5) induced flow of the external fire plume is recommended. The fire testing should be conducted to a maximum ventilation rate at least an order of magnitude greater than the inflight air conditioning rates.

  13. Comparison of the performance of battery-operated fluid warmers.

    PubMed

    Lehavi, Amit; Yitzhak, Avraham; Jarassy, Refael; Heizler, Rami; Katz, Yeshayahu Shai; Raz, Aeyal

    2018-06-07

    Warming intravenous fluids is essential to prevent hypothermia in patients with trauma, especially when large volumes are administered. Prehospital and transport settings require fluid warmers to be small, energy efficient and independent of external power supply. We compared the warming properties and resistance to flow of currently available battery-operated fluid warmers. Fluid warming was evaluated at 50, 100 and 200 mL/min at a constant input temperature of 20°C and 10°C using a cardiopulmonary bypass roller pump and cooler. Output temperature was continuously recorded. Performance of fluid warmers varied with flows and input temperatures. At an input temperature of 20°C and flow of 50 mL/min, the Buddy Lite, enFlow, Thermal Angel and Warrior warmed 3.4, 2.4, 1 and 3.6 L to over 35°C, respectively. However, at an input temperature of 10°C and flow of 200 mL/min, the Buddy Lite failed to warm, the enFlow warmed 3.3 L to 25.7°C, the Thermal Angel warmed 1.5 L to 20.9°C and the Warrior warmed 3.4 L to 34.4°C (p<0.0001). We found significant differences between the fluid warmers: the use of the Buddy Lite should be limited to moderate input temperature and low flow rates. The use of the Thermal Angel is limited to low volumes due to battery capacity and low output temperature at extreme conditions. The Warrior provides the best warming performance at high infusion rates, as well as low input temperatures, and was able to warm the largest volumes in these conditions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth

    2016-04-04

    Inadequate access to pure water and sanitation requires new cost-effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide-spread application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Study of grid independence of finite element method on MHD free convective casson fluid flow with slip effect

    NASA Astrophysics Data System (ADS)

    Raju, R. Srinivasa; Ramesh, K.

    2018-05-01

    The purpose of this work is to study the grid independence of finite element method on MHD Casson fluid flow past a vertically inclined plate filled in a porous medium in presence of chemical reaction, heat absorption, an external magnetic field and slip effect has been investigated. For this study of grid independence, a mathematical model is developed and analyzed by using appropriate mathematical technique, called finite element method. Grid study discussed with the help of numerical values of velocity, temperature and concentration profiles in tabular form. avourable comparisons with previously published work on various special cases of the problem are obtained.

  16. Artificial Boundary Conditions for Computation of Oscillating External Flows

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    1996-01-01

    In this paper, we propose a new technique for the numerical treatment of external flow problems with oscillatory behavior of the solution in time. Specifically, we consider the case of unbounded compressible viscous plane flow past a finite body (airfoil). Oscillations of the flow in time may be caused by the time-periodic injection of fluid into the boundary layer, which in accordance with experimental data, may essentially increase the performance of the airfoil. To conduct the actual computations, we have to somehow restrict the original unbounded domain, that is, to introduce an artificial (external) boundary and to further consider only a finite computational domain. Consequently, we will need to formulate some artificial boundary conditions (ABC's) at the introduced external boundary. The ABC's we are aiming to obtain must meet a fundamental requirement. One should be able to uniquely complement the solution calculated inside the finite computational domain to its infinite exterior so that the original problem is solved within the desired accuracy. Our construction of such ABC's for oscillating flows is based on an essential assumption: the Navier-Stokes equations can be linearized in the far field against the free-stream back- ground. To actually compute the ABC's, we represent the far-field solution as a Fourier series in time and then apply the Difference Potentials Method (DPM) of V. S. Ryaben'kii. This paper contains a general theoretical description of the algorithm for setting the DPM-based ABC's for time-periodic external flows. Based on our experience in implementing analogous ABC's for steady-state problems (a simpler case), we expect that these boundary conditions will become an effective tool for constructing robust numerical methods to calculate oscillatory flows.

  17. Influence of the hole geometry on the flow distribution in ventricular catheters for hydrocephalus.

    PubMed

    Giménez, Ángel; Galarza, Marcelo; Pellicer, Olga; Valero, José; Amigó, José M

    2016-07-15

    Hydrocephalus is a medical condition consisting of an abnormal accumulation of cerebrospinal fluid within the brain. A catheter is inserted in one of the brain ventricles and then connected to an external valve to drain the excess of cerebrospinal fluid. The main drawback of this technique is that, over time, the ventricular catheter ends up getting blocked by the cells and macromolecules present in the cerebrospinal fluid. A crucial factor influencing this obstruction is a non-uniform flow pattern through the catheter, since it facilitates adhesion of suspended particles to the walls. In this paper we focus on the effects that tilted holes as well as conical holes have on the flow distribution and shear stress. We have carried out 3D computational simulations to study the effect of the hole geometry on the cerebrospinal fluid flow through ventricular catheters. All the simulations were done with the OpenFOAM® toolbox. In particular, three different groups of models were investigated by varying (i) the tilt angles of the holes, (ii) the inner and outer diameters of the holes, and (iii) the distances between the so-called hole segments. The replacement of cylindrical holes by conical holes was found to have a strong influence on the flow distribution and to lower slightly the shear stress. Tilted holes did not involve flow distribution changes when the hole segments are sufficiently separated, but the mean shear stress was certainly reduced. The authors present new results about the behavior of the fluid flow through ventricular catheters. These results complete earlier work on this topic by adding the influence of the hole geometry. The overall objective pursued by this research is to provide guidelines to improve existing commercially available ventricular catheters.

  18. Mathematical modeling of vortex induced vibrations of an elastic rod under air flow influence

    NASA Astrophysics Data System (ADS)

    Pogudalina, S. V.; Fedorova, N. N.

    2018-03-01

    The results of simulations of the oscillations of an elastic rod placed normally to the external air flow and rigidly fixed on a substrate are presented. The computations were carried out in ANSYS using the technology of two-way fluid-structure interaction (2FSI). Calculations of the problem were performed for various flow velocities, geometric parameters and properties of the rod material. The frequencies, amplitudes and shapes of vortex induced vibration were studied including those that are close to the lock-in mode.

  19. Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus

    NASA Astrophysics Data System (ADS)

    Abbas, Zaheer; Hasnain, Jafar

    A numerical study is performed to examine the two-phase magnetoconvection and heat transfer phenomena of Fe3O4 -kerosene nanofluid flow in a horizontal composite porous annulus with an external magnetic field. The annulus is filled with immiscible fluids flowing between two concentric cylinders. The governing equations of the flow problem are obtained using Darcy-Brinkman model. Heat transfer is analyzed in the presence of viscous and Darcian dissipation terms. The shooting method is used as a tool to solve the obtained non-linear ordinary differential equations for the velocity and temperature profiles. The velocity and temperature distributions are analyzed and discussed under the influence of involved flow parameters with the aid of graphs. It is found that both velocity and temperature of fluid are decreased with ferroparticle volume fraction. In addition to that, it is also presented that the existence of magnetic field decreases the benefit of ferrofluids in heat transfer progression.

  20. Sperm Motility in Flow

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman

    2012-11-01

    A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.

  1. Pore-scale Evaluation of Immiscible Fluid Characteristics and Displacements: Comparison Between Ambient- and Supercritical-Condition Experimental Studies

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Wildenschild, D.; Andersson, L.; Harper, E.; Sheppard, A.

    2015-12-01

    The transport of immiscible fluids within porous media is a topic of great importance for a wide range of subsurface processes; e.g. oil recovery, geologic sequestration of CO2, gas-water mass transfer in the vadose zone, and remediation of non-aqueous phase liquids (NAPLs) from groundwater. In particular, the trapping and mobilization of nonwetting phase fluids (e.g. oil, CO2, gas, or NAPL in water-wet media) is of significant concern; and has been well documented to be a function of both wetting and nonwetting fluid properties, morphological characteristics of the porous medium, and system history. However, generalization of empirical trends and results for application between different fluid-fluid-medium systems requires careful consideration and characterization of the relevant system properties. We present a comprehensive and cohesive description of nonwetting phase behaviour as observed via a suite of three dimensional x-ray microtomography imaging experiments investigating immiscible fluid flow, trapping, and interfacial interactions of wetting (brine) and nonwetting (air, oil, and supercritical CO2) phase in sandstones and synthetic media. Microtomographic images, acquired for drainage and imbibition flow processes, allow for precise and extensive characterization of nonwetting phase fluid saturation, topology, and connectivity; imaging results are paired with externally measured capillary pressure data to provide a comprehensive description of fluid states. Fluid flow and nonwetting phase trapping behaviour is investigated as a function of system history, morphological metrics of the geologic media, and nonwetting phase fluid characteristics; and particular emphasis is devoted to the differences between ambient condition (air-brine) and reservoir condition (supercritical CO2-brine) studies. Preliminary results provide insight into the applicability of using ambient condition experiments to explore reservoir condition processes, and also elucidate the underlying physics of trapping and mobilization of nonwetting phase fluids.

  2. Spreading of a ferrofluid core in three-stream micromixer channels

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomeng; Varma, V. B.; Xia, Huan Ming; Wang, Z. P.; Ramanujan, R. V.

    2015-05-01

    Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flow rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.

  3. Convective flow reversal in self-powered enzyme micropumps.

    PubMed

    Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C

    2016-03-08

    Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=D(P)/D(S) and expansion coefficients β=β(P)/β(S) of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δ<1 and δ<β ), an unexpected phenomenon arises: the flow direction reverses with time and distance from the pump. Our experimental results are in qualitative agreement with the model and show that both the speed and direction of fluid pumping (i) depend on the enzyme activity and coverage, (ii) vary with the distance from the pump, and (iii) evolve with time. These findings permit the rational design of enzymatic pumps that accurately control the direction and speed of fluid flow without external power sources, enabling effective, self-powered fluidic devices.

  4. Convective flow reversal in self-powered enzyme micropumps

    PubMed Central

    Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C.

    2016-01-01

    Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=DP/DS and expansion coefficients β=βP/βS of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δ<1 and δ<β), an unexpected phenomenon arises: the flow direction reverses with time and distance from the pump. Our experimental results are in qualitative agreement with the model and show that both the speed and direction of fluid pumping (i) depend on the enzyme activity and coverage, (ii) vary with the distance from the pump, and (iii) evolve with time. These findings permit the rational design of enzymatic pumps that accurately control the direction and speed of fluid flow without external power sources, enabling effective, self-powered fluidic devices. PMID:26903618

  5. Biased and flow driven Brownian motion in periodic channels

    NASA Astrophysics Data System (ADS)

    Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2012-02-01

    In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.

  6. Magnetic Control of Solutal Buoyancy Driven Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.

  7. Direct numerical simulation of incompressible acceleration-driven variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul

    2015-11-01

    Fully developed turbulence in variable-density flow driven by an externally imposed acceleration field, e.g., gravity, is fundamental in many applications, such as inertial confinement fusion, geophysics, and astrophysics. Aspects of this turbulence regime are poorly understood and are of interest to fluid modeling. We investigate incompressible acceleration-driven variable-density turbulence by a series of direct numerical simulations of high-density fluid in-between slabs of low-density fluid, in a triply-periodic domain. A pseudo-spectral numerical method with a Helmholtz-Hodge decomposition of the pressure field, which ensures mass conservation, is employed, as documented in Chung & Pullin (2010). A uniform dynamic viscosity and local Schmidt number of unity are assumed. This configuration encapsulates a combination of flow phenomena in a temporally evolving variable-density shear flow. Density ratios up to 10 and Reynolds numbers in the fully developed turbulent regime are investigated. The temporal evolution of the vertical velocity difference across the shear layer, shear-layer growth, mean density, and Reynolds number are discussed. Statistics of Lagrangian accelerations of fluid elements and of vorticity as a function of the density ratio are also presented. This material is based upon work supported by the AFOSR, the DOE, the NSF GRFP, and Caltech.

  8. Hydromechanical Modeling of Fluid Flow in the Lower Crust

    NASA Astrophysics Data System (ADS)

    Connolly, J.

    2011-12-01

    The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it determines the compaction time and length scales and, thereby, the response of the system to perturbations. Unfortunately, because metamorphic devolatilization is the most probable source of lower crustal fluids, the assumption of an initial steady state leaves much to be desired. In truth, in the modeling of lower crustal fluid flow, less is known about the initial state than is known about possible perturbations to it, e.g., metamorphic fluid production. Compaction is a bad and good news story. The bad news is that local flow patterns may be influenced by unknowable details; the good news is that compaction-driven fluid flow has a tendency to self-organize. Self-organization eliminates the dependence on details that are present on spatial or temporal scales that are smaller than the compaction length and time scales. Porosity waves are the mechanism for this self-organization, through which dilational deformation is localized in time and space to create pathways for fluid expulsion. The resulting flow patterns are sensitive to material properties and initial state, thus, inversion of natural flow patterns offers the greatest hope for constraining the compaction scales. Knowledge of these scales is also important because they limit the influence of external forcings on flow patterns, e.g., a shear zone may induce lateral or downward fluid flow, but only on the compaction time and length scales.

  9. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    PubMed Central

    Trangmar, Steven J.; Chiesa, Scott T.; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K.; Secher, Niels H.

    2015-01-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2. In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2. PMID:26371170

  10. Using Fluid Dynamics and Field Experiments to Improve Vehicle-based Wind Measurements for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Hanlon, T.; Bourlon, E.; Jensen, N.; Risk, D. A.

    2017-12-01

    Vehicle-based measurements of wind speed and direction are presently used for a range of applications, including gas plume detection. Theoretically, vehicle-based measurements could also be integrated with fixed-site measurements to add spatial richness in weather and atmospheric observing systems, but the quality and accuracy of such measurements is currently not well understood. Our research objective for this field-simulation study was to understand how anemometer placement and the vehicle's external air flow field affect measurement accuracy of vehicle-mounted anemometers. We used a truck-mounted anemometer to investigate wind measurements at different vehicle speeds and anemometer placements. We conducted field tests on a square 3.2 km route in flat, treeless terrain and positioned stationary sonic anemometers at each corner. We drove the route in replicate under varying wind conditions and vehicle speeds, and with multiple sonic anemometer placements on the vehicle. The vehicle-based anemometer measurements were corrected to remove the vehicle speed and course vector. In the lab, Computational Fluid Dynamic (CFD) simulations were generated in Ansys FLUENT to model the external flow fields at the locations of measurement under varying vehicle speed and yaw angle. In field trials we observed that vehicle-based measurements differed from stationary measurements by a different magnitude in each of the upwind, downwind and crosswind directions. The difference from stationary anemometers increased with vehicle speed, suggesting the vehicle's flow field does indeed impact the accuracy of vehicle-based anemometer measurements. We used the CFD simulations to develop a quantitative understanding of fluid flow around the vehicle, and to develop speed-based corrections that were applied to the field data. We were also able to make recommendations for anemometer placement. This study demonstrates the importance of applying aerodynamics-based correction factors to vehicle based wind measurements.

  11. Study on Controls of Fluids in Nanochannel via Hybrid Surface

    NASA Astrophysics Data System (ADS)

    Ye, Ziran

    This thesis contributes to the investigation of controls of nanofluidic fluids by utilizing hybrid surface patterns in nanochannel. Nanofluidics is a core and interdisciplinary research field which manipulates, controls and analyzes fluids in nanoscale and develop potential bio/chemical applications. This thesis studies the surface-induced phenomena in nanofluidics, we use surface decoration on nanochannel walls to investigate the influences on fluid motion and further explore the fundamental physical principle of this behavior. To begin with, we designed and fabricated the nanofluidic mixer for the first time, which comprised hybrid surface patterns with different wettabilities on both top and bottom walls of nanochannel. Although microfluidic mixers have been intensively investigated, nanofluidic mixer has never been reported. Without any inside geometric structure of nanochannel, the mixing phenomenon can be achieved by the surface patterns and the mixing length can be significantly shortened comparing with micromixer. We attribute this achievement to the chaotic flows of two fluids induced by the patterned surface. The surface-related phenomena may not be so prominent on large scale, however, it is pronounced when the scale shrinks down to nanometer due to the large surface-to-volume ratio in nanochannel. In the second part of this work, based on the technology of nanofabrication and similar principle, we built up another novel method to control the speed of capillary flow in nanochannel in a quantitative manner. Surface patterns were fabricated on the nanochannel walls to slow down the capillary flow. The flow speed can be precisely controlled by modifying hydrophobicity ratio. Under the extreme surface-to-volume ratio in nanochannel, the significant surface effect on the fluid effectively reduced the speed of capillary flow without any external energy source and equipment. Such approach may be adopted for a wide variety of nanofluidicsbased biochemical analysis systems.

  12. Multi-component fluid flow through porous media by interacting lattice gas computer simulation

    NASA Astrophysics Data System (ADS)

    Cueva-Parra, Luis Alberto

    In this work we study structural and transport properties such as power-law behavior of trajectory of each constituent and their center of mass, density profile, mass flux, permeability, velocity profile, phase separation, segregation, and mixing of miscible and immiscible multicomponent fluid flow through rigid and non-consolidated porous media. The considered parameters are the mass ratio of the components, temperature, external pressure, and porosity. Due to its solid theoretical foundation and computational simplicity, the selected approaches are the Interacting Lattice Gas with Monte Carlo Method (Metropolis Algorithm) and direct sampling, combined with particular collision rules. The percolation mechanism is used for modeling initial random porous media. The introduced collision rules allow to model non-consolidated porous media, because part of the kinetic energy of the fluid particles is transfered to barrier particles, which are the components of the porous medium. Having gained kinetic energy, the barrier particles can move. A number of interesting results are observed. Some findings include, (i) phase separation in immiscible fluid flow through a medium with no barrier particles (porosity p P = 1). (ii) For the flow of miscible fluids through rigid porous medium with porosity close to percolation threshold (p C), the flux density (measure of permeability) shows a power law increase ∝ (pC - p) mu with mu = 2.0, and the density profile is found to decay with height ∝ exp(-mA/Bh), consistent with the barometric height law. (iii) Sedimentation and driving of barrier particles in fluid flow through non-consolidated porous medium. This study involves developing computer simulation models with efficient serial and parallel codes, extensive data analysis via graphical utilities, and computer visualization techniques.

  13. Microfluidic Automation using elastomeric valves and droplets: reducing reliance on external controllers

    PubMed Central

    Kim, Sung-Jin; Lai, David; Park, Joong Yull; Yokokawa, Ryuji

    2012-01-01

    This paper gives an overview of elastomeric valve- and droplet-based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high complexity and throughput analysis. PMID:22761019

  14. Microchemical evidence for episodic growth of antitaxial veins during fracture-controlled fluid flow

    NASA Astrophysics Data System (ADS)

    Barker, Shaun L. L.; Cox, Stephen F.; Eggins, Stephen M.; Gagan, Michael K.

    2006-10-01

    The mechanism by which syntectonic hydrothermal veins form is widely debated, with some workers suggesting that certain vein textures are related to specific fluid flow regimes. Central to the debate is whether vein formation involves advective fluid flow, or occurs by local diffusion of material from the surrounding wall rock. To address this issue, we integrated textural observations and microchemical analyses of a hydrothermal vein from the Lachlan Orogen, southeast Australia, to reveal information about vein growth history, changes in fluid chemistry, and the evolution of fluid flow pathways during vein growth. The study area is part of a regional-scale fault-fracture network in an interbedded limestone-shale sequence, which formed at depths of ˜ 5-10 km (˜ 150-200 °C) during late Devonian crustal shortening. This integrated approach demonstrates that the zonation of textures, Sr isotopes, stable isotopes (C, O), and trace and rare earth elements is distinctly asymmetrical about the median growth-line of the vein. δ 18O values in vein calcite (17.0-18.8‰, VSMOW) are lower than those in surrounding unaltered limestones (23-25‰, VSMOW), and vary systematically across the vein. In contrast, δ 13C values are relatively constant across most of the vein, but become markedly depleted ( ca. 4‰) immediately adjacent to the wall rock. This strong depletion in δ 13C was probably caused by the influx of more oxidised fluids during the latest stages of vein growth. Strontium isotope ratios ( 87Sr/ 86Sr) vary between 0.70912 and 0.70931 across the vein. Abrubt changes in 87Sr/ 86Sr, δ 18O, Ce/Ce *, Eu/Eu * and trace element concentrations indicate that vein growth was accompanied by stepwise changes in the fluid flow pathway and consequent variations in fluid chemistry. Taken together, our findings are not consistent with growth of fibrous antitaxial veins by diffusional transfer of material from the surrounding wall rock. Instead, they suggest that externally sourced fluids migrated along episodically changing fracture-controlled flow pathways. This has implications for the dynamics of crustal permeability and mineralisation.

  15. Effect of DC magnetic field on atmospheric pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Safari, R.; Sohbatzadeh, F.

    2015-05-01

    In this work, external DC magnetic field effect on the atmospheric pressure plasma jet has been investigated, experimentally. The magnetic field has been produced using a Helmholtz coil configuration. It has been applied parallel and transverse to the jet flow. The strength of the DC magnetic field is 0-0.28 and 0-0.57 Tesla between the two coils in parallel and transverse applications, respectively. It has been shown that the plasma gas flow plays the main role in magneto-active collision-dominated plasma. The effect of plasma fluid velocity on the jet emission has been discussed, qualitatively. It has been observed that the external DC magnetic field has different trends in parallel and transverse applications. The measurements reveal that the plasma jet irradiance increases in parallel field, while it decreases in transverse field. The former has been attributed to increasing plasma number density and the latter to loss of plasma species that reduces the magneto-plasma jet irradiance and in turn shrinks plasma jet number density. As a result, the plasma fluid velocity is responsible for such trends though the magneto-active plasma remains isotropic.

  16. Thermal resistance model for CSP central receivers

    NASA Astrophysics Data System (ADS)

    de Meyer, O. A. J.; Dinter, F.; Govender, S.

    2016-05-01

    The receiver design and heliostat field aiming strategy play a vital role in the heat transfer efficiency of the receiver. In molten salt external receivers, the common operating temperature of the heat transfer fluid or molten salt ranges between 285°C to 565°C. The optimum output temperature of 565°C is achieved by adjusting the mass flow rate of the molten salt through the receiver. The reflected solar radiation onto the receiver contributes to the temperature rise in the molten salt by means of heat transfer. By investigating published work on molten salt external receiver operating temperatures, corresponding receiver tube surface temperatures and heat losses, a model has been developed to obtain a detailed thermographic representation of the receiver. The steady state model uses a receiver flux map as input to determine: i) heat transfer fluid mass flow rate through the receiver to obtain the desired molten salt output temperature of 565°C, ii) receiver surface temperatures iii) receiver tube temperatures iv) receiver efficiency v) pressure drop across the receiver and vi) corresponding tube strain per panel.

  17. A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures

    NASA Astrophysics Data System (ADS)

    Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio

    2017-04-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.

  18. Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.

    PubMed

    Luo, W-J

    2004-10-15

    This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.

  19. Determining temperature limits of drilling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thuren, J.B.; Chenevert, M.E.; Huang, W.T.W.

    A capillary three tube viscometer has been designed which allows the measurement of rheological properties of time dependent non-Newtonian fluids in laminar flow at high temperture and pressure. The objective of this investigation is to determine the temperature stability of clay-water suspensions containing various drilling fluid additives. The additives studied consisted of viscosifiers, filtrate reducers, and chemical thinners. The temperature range studied is from room temperature to 550{sup 0}F. The system pressure is consistently maintained above the vapor pressure. The Bentonite and water standardized base mud used is equivalent to a 25 ppB fluid. Stabilization of the base mud ismore » necessary to obtain steady state laminar flow conditions and to obtain reliable temperature thinning effects with each temperature interval under investigation. Generally the temperature levels are maintained for one hour until 550{sup 0}F is attained. The last interval is then maintained until system fluid degradation occurs. Rheological measurements are obtained from differential pressure transducers located in a three diameter tube test section and externally at ambient conditions from a Baroid Rotational Viscometer. The power law model for non-Newtonian fluids is used to correlate the data.« less

  20. Experiments on Thermal Convection in Rotating Spherical Shells With Radial Gravity: The Geophysical Fluid Flow Cell

    NASA Technical Reports Server (NTRS)

    Hart, John E.

    1996-01-01

    Experiments designed to study the fluid dynamics of buoyancy driven circulations in rotating spherical shells were conducted on the United States Microgravity Laboratory 2 spacelab mission. These experiments address several aspects of prototypical global convection relevant to large scale motions on the Sun, Earth, and on the giant planets. The key feature is the consistent modeling of radially directed gravity in spherical geometry by using dielectric polarization forces. Imagery of the planforms of thermally driven flows for rapidly-rotating regimes shows an initial separation and eventual merger of equatorial and polar convection as the heating (i.e. the Rayleigh number) is increased. At low rotation rates, multiple-states of motion for the same external parameters were observed.

  1. Dynamics of ferrofluidic flow in the Taylor-Couette system with a small aspect ratio

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2017-01-01

    We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field. PMID:28059129

  2. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, K.M.

    1994-01-04

    An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

  3. Operational durability of a giant ER valve for Braille display

    NASA Astrophysics Data System (ADS)

    Luning, Xu; Han, Li; Yufei, Li; Shen, Rong; Kunquan, Lu

    2017-05-01

    The compact configuration of giant ER (electrorheological) valves provides the possibility of realizing a full-page Braille display. The operational durability of ER valves is a key issue in fulfilling a Braille display. A giant ER valve was used to investigate the variations in pressure drops and critical pressure drops of the valves over a long period under some typical operational parameters. The results indicate that neither the pressure drops nor critical pressure drops of giant ER valves show apparent deterioration over a long period. Without ER fluid exchange, a blockage appears in the channel of the valve because the ER structures induced by an external electric field cannot be broken by the Brownian motion of hydraulic oil molecules when the external electric field is removed. Forcing ER fluid flow is an effective and necessary method to keep the channel of the valve unblocked. Thus the operational durability of the valve using giant ER fluids is able to meet the demands of Braille display.

  4. Hydrodynamic electron flow in a Weyl semimetal slab: Role of Chern-Simons terms

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2018-05-01

    The hydrodynamic flow of the chiral electron fluid in a Weyl semimetal slab of finite thickness is studied by using the consistent hydrodynamic theory. The latter includes viscous, anomalous, and vortical effects, as well as accounts for dynamical electromagnetism. The energy and momentum separations between the Weyl nodes are taken into account via the topological Chern-Simons contributions in the electric current and charge densities in Maxwell's equations. When an external electric field is applied parallel to the slab, it is found that the electron fluid velocity has a nonuniform profile determined by the viscosity and the no-slip boundary conditions. Most remarkably, the fluid velocity field develops a nonzero component across the slab that gradually dissipates when approaching the surfaces. This abnormal component of the flow arises due to the anomalous Hall voltage induced by the topological Chern-Simons current. Another signature feature of the hydrodynamics in Weyl semimetals is a strong modification of the anomalous Hall current along the slab in the direction perpendicular to the applied electric field. Additionally, it is found that the topological current induces an electric potential difference between the surfaces of the slab that is strongly affected by the hydrodynamic flow.

  5. A new approach to the effect of sound on vortex dynamics

    NASA Technical Reports Server (NTRS)

    Lund, Fernando; Zabusky, Norman J.

    1987-01-01

    Analytical results are presented on the effect of acoustic radiation on three-dimensional vortex motions in a homogeneous, slightly compressible, inviscid fluid. The flow is considered as linear and irrotational everywhere except inside a very thin cylindrical core region around the vortex filament. In the outside region, a velocity potential is introduced that must be multivalued, and it is shown how to compute this scalar potential if the motion of the vortex filament is prescribed. To find the motion of this singularity in an external potential flow, a variational principle involving a volume integral that must exclude the singular region is considered. A functional of the external potential and vortex filament position is obtained whose extrema give equations to determine the sought-after evolution. Thus, a generalization of the Biot-Savart law to flows with constant sound speed at low Mach number is obtained.

  6. Transverse flow induced by inhomogeneous magnetic fields in the Bjorken expansion

    NASA Astrophysics Data System (ADS)

    Pu, Shi; Yang, Di-Lun

    2016-03-01

    We investigate the magnetohydrodynamics in the presence of an external magnetic field following the power-law decay in proper time and having spatial inhomogeneity characterized by a Gaussian distribution in one of transverse coordinates under the Bjorken expansion. The leading-order solution is obtained in the weak-field approximation, where both energy density and fluid velocity are modified. It is found that the spatial gradient of the magnetic field results in transverse flow, where the flow direction depends on the decay exponents of the magnetic field. We suggest that such a magnetic-field-induced effect might influence anisotropic flow in heavy ion collisions.

  7. Large scale surface flow generation in driven suspensions of magnetic microparticles: Experiment, theoretical model and simulations

    NASA Astrophysics Data System (ADS)

    Belkin, Maxim; Snezhko, Alexey; Aranson, Igor

    2007-03-01

    Nontrivially ordered dynamic self-assembled snake-like structures are formed in an ensemble of magnetic microparticles suspended over a fluid surface and energized by an external alternating magnetic field. Formation and existence of such structures is always accompanied by flows which form vortices. These large-scale vortices can be very fast and are crucial for snake formation/destruction. We introduce theoretical model based on Ginzburg-Landau equation for parametrically excited surface waves coupled to conservation law for particle density and Navier-Stokes equation for water flows. The developed model successfully describes snake generation, accounts for flows and reproduces most experimental results observed.

  8. High flow, low mobile weight quick disconnect system

    NASA Technical Reports Server (NTRS)

    Smith, Ronn G. (Inventor); Nagy, Jr., Zoltan Frank (Inventor); Moszczienski, Joseph Roch (Inventor)

    2010-01-01

    A fluid coupling device and coupling system that may start and stop the flow of a fluid is disclosed. In some embodiments, first and second couplings are provided having an actuator coupled with each of the couplings. The couplings and actuators may be detachable to provide quick disconnect features and, in some embodiments, provide unitary actuation for the actuators of the coupling device to facilitate connection in mobile applications. Actuation may occur as the two couplings and actuators are engaged and disengaged and may occur by rotational actuation of the actuators. Rotational actuation can be provided to ensure flow through the coupling device, which in some embodiments may further provide an offset venturi feature. Upon disengagement, a compression element such as a compression spring can be provided to return the actuators to a closed position. Some embodiments further provide a seal external to the actuators and provided at incipient engagement of the couplings.

  9. Transonic Symposium: Theory, Application, and Experiment, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    Foughner, Jerome T., Jr. (Compiler)

    1989-01-01

    In order to assess the state of the art in transonic flow disciplines and to glimpse at future directions, NASA-Langley held a Transonic Symposium. Emphasis was placed on steady, three dimensional external, transonic flow and its simulation, both numerically and experimentally. The symposium included technical sessions on wind tunnel and flight experiments; computational fluid dynamic applications; inviscid methods and grid generation; viscous methods and boundary layer stability; and wind tunnel techniques and wall interference. This, being volume 1, is unclassified.

  10. Numerical Simulation of Vortex Ring Formation in the Presence of Background Flow: Implications for Squid Propulsion

    NASA Astrophysics Data System (ADS)

    Jiang, Houshuo; Grosenbaugh, Mark A.

    2002-11-01

    Numerical simulations are used to study the laminar vortex ring formation in the presence of background flow. The numerical setup includes a round-headed axisymmetric body with a sharp-wedged opening at the posterior end where a column of fluid is pushed out by a piston inside the body. The piston motion is explicitly included into the simulations by using a deforming mesh. The numerical method is verified by simulating the standard vortex ring formation process in quiescent fluid for a wide range of piston stroke to cylinder diameter ratios (Lm/D). The results from these simulations confirm the existence of a universal formation time scale (formation number) found by others from experimental and numerical studies. For the case of vortex ring formation by the piston/cylinder arrangement in a constant background flow (i.e. the background flow is in the direction of the piston motion), the results show that a smaller fraction of the ejected circulation is delivered into the leading vortex ring, thereby decreasing the formation number. The mechanism behind this reduction is believed to be related to the modification of the shear layer profile between the jet flow and the background flow by the external boundary layer on the outer surface of the cylinder. In effect, the vorticity in the jet is cancelled by the opposite signed vorticity in the external boundary layer. Simulations using different end geometries confirm the general nature of the phenomenon. The thrust generated from the jet and the drag forces acting on the body are calculated with and without background flow for different piston programs. The implications of these results for squid propulsion are discussed.

  11. Trajectory control of PbSe–γ-Fe2O3 nanoplatforms under viscous flow and an external magnetic field

    PubMed Central

    Etgar, Lioz; Nakhmani, Arie; Tannenbaum, Allen; Lifshitz, Efrat; Tannenbaum, Rina

    2010-01-01

    The flow behavior of nanostructure clusters, consisting of chemically bonded PbSe quantum dots and magnetic γ -Fe2O3 nanoparticles, has been investigated. The clusters are regarded as model nanoplatforms with multiple functionalities, where the γ -Fe2O3 magnets serve as transport vehicles, manipulated by an external magnetic field gradient, and the quantum dots act as fluorescence tags within an optical window in the near-infrared regime. The clusters’ flow was characterized by visualizing their trajectories within a viscous fluid (mimicking a blood stream), using an optical imaging method, while the trajectory pictures were analyzed by a specially developed processing package. The trajectories were examined under various flow rates, viscosities and applied magnetic field strengths. The results revealed a control of the trajectories even at low magnetic fields (<1 T), validating the use of similar nanoplatforms as active targeting constituents in personalized medicine. PMID:20368678

  12. Stability of magnetohydrodynamic Dean Flow as applied to centrifugally confined plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassam, A.B.

    1999-10-01

    Dean Flow is the azimuthal flow of fluid between static concentric cylinders. In a magnetized plasma, there may also be radial stratification of the pressure. The ideal magnetohydrodynamic stability of such a flow in the presence of a strong axial magnetic field and an added radial gravitational force is examined. It is shown that both the Kelvin{endash}Helmholtz instability and pressure-gradient-driven interchanges can be stabilized if the flow is driven by a unidirectional external force and if the plasma annulus is sufficiently thin (large aspect ratio). These results find application in schemes using centrifugal confinement of plasma for fusion. {copyright} {italmore » 1999 American Institute of Physics.}« less

  13. Does seismic activity control carbon exchanges between transform-faults in old ocean crust and the deep sea? A hypothesis examined by the EU COST network FLOWS

    NASA Astrophysics Data System (ADS)

    Lever, M. A.

    2014-12-01

    The European Cooperation in Science and Technology (COST)-Action FLOWS (http://www.cost.eu/domains_actions/essem/Actions/ES1301) was initiated on the 25th of October 2013. It is a consortium formed by members of currently 14 COST countries and external partners striving to better understand the interplay between earthquakes and fluid flow at transform-faults in old oceanic crust. The recent occurrence of large earthquakes and discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries, and indicates that earthquakes and fluid flow are intrinsically associated. This Action merges the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. National efforts are coordinated through Working Groups (WGs) focused on 1) geophysical and (bio)geochemical data acquisition; 2) modelling of structure and seismicity of faults; 3) engineering of deep-ocean physico-chemical seismic sensors; and 4) integration and dissemination. This poster will illustrate the overarching goals of the FLOWS Group, with special focus to research goals concerning the role of seismic activity in controlling the release of carbon from the old ocean crust into the deep ocean.

  14. The coupled geochemistry of Au and As in pyrite from ore deposits and geothermal fields: monitoring fluid evolution and external forcing factors in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Reich, M.; Deditius, A.; Tardani, D.; Sanchez-Alfaro, P.

    2014-12-01

    Among the many factors influencing the complex process of lava flow emplacement, the interaction with the substrate onto which flow is emplaced plays a central role. Lava flows are rarely emplaced onto smooth or regular surfaces. For example, at Kīlauea Volcano, Hawai'i, lava flows regularly flow over solid rock, vegetation, basaltic or silica sand, and man-made materials, including asphalt and concrete. In situ studies of lava-substrate interactions are inherently difficult, and often dangerous, to carry-out, requiring the design of controllable laboratory experiments. We investigate the effects of substrate grain size, cohesion, and roughness on flow mobility and morphology through a series of flow experiments using analog materials and molten basalt. We have developed a series of experiments that allow for adjustable substrate parameters and analyze their effects on lava flow emplacement. The first set of experiments are performed at the Fluids Mechanics Laboratory at the Lamont-Doherty Earth Observatory and focus on two analog materials: polyethylene glycol (PEG), a commercially available wax, and corn syrup. The fluids were each extruded onto a series of scaled substrate beds to replicate the emplacement of lava in a natural environment. Preliminary experiments demonstrated that irregular topography, particularly topography with a height amplitude similar to that of the flow itself, can affect flow morphology, width, and velocity by acting as local barriers or culverts to the fluid. This is expected from observations of fluid flow in natural environments. A follow-up set of experiments will be conducted in Fall 2015 at the Syracuse University (SU) Lava Project Lab. In this set, we will pour molten basalt directly onto a series of substrates representing natural environments found on the Earth and other rocky bodies in the Solar System. These experiments will allow for analysis of the effects of basaltic composition and high temperatures on lava-substrate heat transfer and mechanical interactions. Results will be used to improve current lava flow prediction models as well as increase our understanding of the evolution of volcanic regions on the Earth and other planets.

  15. Internal Flow Thermal/Fluid Modeling of STS-107 Port Wing in Support of the Columbia Accident Investigation Board

    NASA Technical Reports Server (NTRS)

    Sharp, John R.; Kittredge, Ken; Schunk, Richard G.

    2003-01-01

    As part of the aero-thermodynamics team supporting the Columbia Accident Investigation Board (CAB), the Marshall Space Flight Center was asked to perform engineering analyses of internal flows in the port wing. The aero-thermodynamics team was split into internal flow and external flow teams with the support being divided between shorter timeframe engineering methods and more complex computational fluid dynamics. In order to gain a rough order of magnitude type of knowledge of the internal flow in the port wing for various breach locations and sizes (as theorized by the CAB to have caused the Columbia re-entry failure), a bulk venting model was required to input boundary flow rates and pressures to the computational fluid dynamics (CFD) analyses. This paper summarizes the modeling that was done by MSFC in Thermal Desktop. A venting model of the entire Orbiter was constructed in FloCAD based on Rockwell International s flight substantiation analyses and the STS-107 reentry trajectory. Chemical equilibrium air thermodynamic properties were generated for SINDA/FLUINT s fluid property routines from a code provided by Langley Research Center. In parallel, a simplified thermal mathematical model of the port wing, including the Thermal Protection System (TPS), was based on more detailed Shuttle re-entry modeling previously done by the Dryden Flight Research Center. Once the venting model was coupled with the thermal model of the wing structure with chemical equilibrium air properties, various breach scenarios were assessed in support of the aero-thermodynamics team. The construction of the coupled model and results are presented herein.

  16. Earthquake-enhanced permeability - evidence from carbon dioxide release following the ML 3.5 earthquake in West Bohemia

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Matyska, C.; Heinicke, J.

    2017-02-01

    The West Bohemia/Vogtland region is characterized by earthquake swarm activity and degassing of CO2 of mantle origin. A fast increase of CO2 flow rate was observed 4 days after a ML 3.5 earthquake in May 2014 in the Hartoušov mofette, 9 km from the epicentres. During the subsequent 150 days the flow reached sixfold of the original level, and has been slowly decaying until present. Similar behavior was observed during and after the swarm in 2008 pointing to a fault-valve mechanism in long-term. Here, we present the results of simulation of gas flow in a two dimensional model of Earth's crust composed of a sealing layer at the hypocentre depth which is penetrated by the earthquake fault and releases fluid from a relatively low-permeability lower crust. This simple model is capable of explaining the observations, including the short travel time of the flow pulse from 8 km depth to the surface, long-term flow increase and its subsequent slow decay. Our model is consistent with other analyse of the 2014 aftershocks which attributes their anomalous character to exponentially decreasing external fluid force. Our observations and model hence track the fluid pressure pulse from depth where it was responsible for aftershocks triggering to the surface where a significant long-term increase of CO2 flow started 4 days later.

  17. Microfluidic droplet-based liquid-liquid extraction.

    PubMed

    Mary, Pascaline; Studer, Vincent; Tabeling, Patrick

    2008-04-15

    We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solute-fluorescein-from the external phase (extraction) and the opposite case, where droplets reject a solute-rhodamine-into the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe-2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.

  18. Electrical characteristics in reverse electrodialysis using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Chanda, Sourayon; Tsai, Peichun Amy

    2017-11-01

    We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.

  19. Introduction. Computational aerodynamics.

    PubMed

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  20. Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study.

    PubMed

    Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F

    2012-07-01

    Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.

  1. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . Copyright © 2015 the American Physiological Society.

  2. Novel Application of Time-Spatial Labeling Inversion Pulse Magnetic Resonance Imaging for Diagnosis of External Hydrocephalus.

    PubMed

    Nakae, Shunsuke; Murayama, Kazuhiro; Adachi, Kazuhide; Kumai, Tadashi; Abe, Masato; Hirose, Yuichi

    2018-01-01

    Although a subdural fluid collection frequently is observed, diagnostic methods that differentiate between the subdural collection caused by external hydrocephalus and that caused by subdural hygroma have not been established. Here, we report a case of external hydrocephalus caused by Gliadel-induced eosinophilic meningitis that has been previously reported in only 1 case and can be diagnosed by time-spatial labeling inversion pulse magnetic resonance imaging (time-SLIP MRI). A tumor located in the left temporal was detected incidentally in an 81-year-old man by examination of a head injury. The tumor was surgically resected and diagnosed as a high-grade glioma during the surgery; Gliadel wafers subsequently were implanted. Three weeks after the resection, the patient showed disturbed consciousness, and computed tomography revealed a subdural fluid collection. The out-flow of cerebrospinal through the resection cavity was detected by time-SLIP MRI. Cerebrospinal tests indicated high white blood cell counts and high protein levels, with more than 90% of the white blood cell count comprising eosinophils. Therefore, we suspected that the subdural fluid collection was caused by external hydrocephalus because of Gliadel-induced eosinophilic meningitis. We surgically removed the Gliadel wafers and subsequently performed a surgery to insert a ventriculoperitoneal shunt. Histologic examination indicated eosinophilic accumulation around the Gliadel wafers. The patient's symptoms improved after the insertion of a ventriculoperitoneal shunt. In the present case, time-SLIP MRI was a useful and noninvasive method for diagnosing external hydrocephalus which was caused by eosinophilic meningitis because of Gliadel-induced eosinophilic meningitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Passive micromixer using by convection and surface tension effects with air-liquid interface.

    PubMed

    Ju, Jongil; Warrick, Jay

    2013-12-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.

  4. Passive micromixer using by convection and surface tension effects with air-liquid interface

    PubMed Central

    Ju, Jongil; Warrick, Jay

    2014-01-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979

  5. Fluid-assisted melting in a collisional orogen

    NASA Astrophysics Data System (ADS)

    Berger, A.; Burri, T.; Engi, M.; Roselle, G. T.

    2003-04-01

    The Southern Steep Belt (SSB) of the Central Alps is the location of backthrusting during syn- to post-collisional deformation. From its metamorphic evolution and lithological contents the SSB has been interpreted as a tectonic accretion channel (TAC [1]). The central part of the SSB is additionally characterized by anatexites, leucogranitic aplites and pegmatites. Dehydration melting of muscovite is rare but did occurr locally. Moreover, no evidence of dehydration melting of biotite has been formed in that products of incongruent melting reactions (garnet, opx or cordierite) are missing. The melts are mainly produced by the infiltration of an external aqueous fluid. The fluids must have originated from the breakdown of hydrous minerals at temperatures below the water saturated solidus of the quartz-feldspar-system, such that the liberated fluids could not been trapped in the melt. Using the thermal modeling program MELONPIT [2] and assuming that solid fragments ascended in combination with tectonic accreated radioactive material, a complex thermal evolution inside the TAC has been derived. During subduction of the downgoing plate, isotherms were locally inverted, then subsequently relaxed, when subduction slowed down. At the collisional stage a small region develope, where the isotherms were still bent, and where temperatures increased during decompression. Assuming that dehydration reactions were followed by upward flow of fluids released from this region fluid present partial melting was triggered. The flow direction of the fluid was controlled by the pressure gradient and the steeply oriented foliations in the SSB. According to the model, the area of upward flowing fluids should be limited to the SSB. This is consistent with the observed regional distribution of leucosomes derived from in-situ melts. [1] Engi et al. (2001) Geology 29: 1143-1146 [2] Roselle et al. (2002) Am. J. Sci. 302: 381-409

  6. Lubricant retention in liquid-infused microgrooves exposed to turbulent flow

    NASA Astrophysics Data System (ADS)

    Fu, Matthew; Chen, Ting-Hsuan; Arnold, Craig; Hultmark, Marcus

    2017-11-01

    Liquid infused surfaces are a promising method of passive drag reduction for turbulent flows. These surfaces rely on functionalized roughness elements to trap a liquid lubricant that is immiscible with external fluids. The presence of the lubricant creates a collection of fluid-fluid interfaces which can support a finite slip velocity at the effective surface. Generating a streamwise slip at the surface has been demonstrated as an effective mechanism for drag reduction; however, sustained drag reduction is predicated on the retention of the lubricating layer. Here, a turbulent channel-flow facility is used to characterize the robustness of liquid-infused surfaces and evaluate criteria for ensuring retention of the lubricant. Microscale grooved surfaces infused with alkane lubricants are mounted flush in the channel and exposed to turbulent flows. The retention of lubricants and pressure drop are monitored to characterize the effects of surface geometry and lubricant properties. To improve the retention of lubricant within grooved structures, a novel laser patterning technique is used to scribe chemical barriers onto grooved surfaces and evaluated. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim) and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  7. Design of Interactively Time-Pulsed Microfluidic Mixers in Microchips using Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Fu, Lung-Ming; Tsai, Chien-Hsiung

    2007-01-01

    In this paper, we propose a novel technique in which driving voltages are applied interactively to the respective inlet fluid flows of three configurations of a microfluidic device, namely T-shaped, double-T-shaped, and double-cross-shaped configurations, to induce electroosmotic flow (EOF) velocity variations in such a way as to develop a rapid mixing effect in the microchannel. In these configurations a microfluidic mixer apply only one electrokinetic driving force, which drives the sample fluids and simultaneously produces a periodic switching frequency. It requires no other external driving force to induce perturbations to the flow field. The effects of the main applied electric field, the interactive frequency, and the pullback electric field on the mixing performance are thoroughly examined numerically. The optimal interactive frequency range for a given set of micromixer parameters is identified for each type of control mode. The numerical results confirm that micromixers operating at an optimal interactive frequency are capable of delivering a significantly enhanced mixing performance. Furthermore, it is shown that the optimal interactive frequency depends upon the magnitude of the main applied electric field. The interactively pulsed mixers developed in this study have a strong potential for use in lab-on-a-chip systems. They involve a simpler fabrication process than either passive or active on-chip mixers and require less human intervention in operation than their bulky external counterparts.

  8. MATCHED-INDEX-OF-REFRACTION FLOW FACILITY FOR FUNDAMENTAL AND APPLIED RESEARCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Carl Stoots; Donald M. McEligot

    2014-11-01

    Significant challenges face reactor designers with regard to thermal hydraulic design and associated modeling for advanced reactor concepts. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. The matched index of refraction (MIR) flow facility at Idaho National Laboratory (INL) has a unique capability to contribute to the development of validated computational fluid dynamics (CFD) codes through the use of state-of-the-art optical measurement techniques, such as Laser Doppler Velocimetry (LDV) andmore » Particle Image Velocimetry (PIV). PIV is a non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer particles within a fluid. At the heart of a PIV calculation is the cross correlation algorithm, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. Generally, the displacement is indicated by the location of the largest peak. To quantify these measurements accurately, sophisticated processing algorithms correlate the locations of particles within the image to estimate the velocity (Ref. 1). Prior to use with reactor deign, the CFD codes have to be experimentally validated, which requires rigorous experimental measurements to produce high quality, multi-dimensional flow field data with error quantification methodologies. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. Computational techniques with supporting test data may be needed to address the heat transfer from the fuel to the coolant during the transition from turbulent to laminar flow, including the possibility of an early laminarization of the flow (Refs. 2 and 3) (laminarization is caused when the coolant velocity is theoretically in the turbulent regime, but the heat transfer properties are indicative of the coolant velocity being in the laminar regime). Such studies are complicated enough that computational fluid dynamics (CFD) models may not converge to the same conclusion. Thus, experimentally scaled thermal hydraulic data with uncertainties should be developed to support modeling and simulation for verification and validation activities. The fluid/solid index of refraction matching technique allows optical access in and around geometries that would otherwise be impossible while the large test section of the INL system provides better spatial and temporal resolution than comparable facilities. Benchmark data for assessing computational fluid dynamics can be acquired for external flows, internal flows, and coupled internal/external flows for better understanding of physical phenomena of interest. The core objective of this study is to describe MIR and its capabilities, and mention current development areas for uncertainty quantification, mainly the uncertainty surface method and cross-correlation method. Using these methods, it is anticipated to establish a suitable approach to quantify PIV uncertainty for experiments performed in the MIR.« less

  9. CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.

    2010-04-01

    Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.

  10. Stability of the line preserving flows

    NASA Astrophysics Data System (ADS)

    Figura, Przemysław

    2017-11-01

    We examine the equations that are used to describe flows which preserve field lines. We study what happens if we introduce perturbations to the governing equations. The stability of the line preserving flows in the case of the magneto-fluids permeated by magnetic fields is strictly connected to the non-null magnetic reconnection processes. In most of our study we use the Euler potential representation of the external magnetic field. We provide general expressions for the perturbations of the Euler potentials that describe the magnetic field. Similarly, we provide expressions for the case of steady flow as well as we obtain certain conditions required for the stability of the flow. In addition, for steady flows we formulate conditions under which the perturbations of the external field are negligible and the field may be described by its initial unperturbed form. Then we consider the flow equation that transforms quantities from the laboratory coordinate system to the related external field coordinate system. We introduce perturbations to the equation and obtain its simplified versions for the case of a steady flow. For a given system, use of this method allows us to simplify the considerations provided that some part of the system may be described as a perturbation. Next, to study regions favourable for the magnetic reconnection to occur we introduce a deviation vector to the basic line preserving flows condition equation. We provide expressions of the vector for some simplifying cases. This method allows us to examine if given perturbations either stabilise the system or induce magnetic reconnection. To illustrate some of our results we study two examples, namely a simple laboratory plasma flow and a simple planetary magnetosphere model.

  11. Compact, Two-Sided Structural Cold Plate Configuration

    NASA Technical Reports Server (NTRS)

    Zaffetti, Mark

    2011-01-01

    In two-sided structural cold plates, typically there is a structural member, such as a honeycomb panel, that provides the structural strength for the cold plates that cool equipment. The cold plates are located on either side of the structural member and thus need to have the cooling fluid supplied to them. One method of accomplishing this is to route the inlet and outlet tubing to both sides of the structural member. Another method might be to supply the inlet to one side and the outlet to the other. With the latter method, an external feature such as a hose, tube, or manifold must be incorporated to pass the fluid from one side of the structural member to the other. Although this is a more compact design than the first option, since it eliminates the need for a dedicated supply and return line to each side of the structural member, it still poses problems, as these external features can be easily damaged and are now new areas for potential fluid leakage. This invention eliminates the need for an external feature and instead incorporates the feature internally to the structural member. This is accomplished by utilizing a threaded insert that not only connects the cold plate to the structural member, but also allows the cooling fluid to flow through it into the structural member, and then to the cold plate on the opposite side. The insert also employs a cap that acts as a cover to seal the open area needed to install the insert. There are multiple options for location of o-ring style seals, as well as the option to use adhesive for redundant sealing. Another option is to weld the cap to the cold plate after its installation, thus making it an integral part of the structural member. This new configuration allows the fluid to pass from one cold plate to the other without any exposed external features.

  12. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes

    NASA Astrophysics Data System (ADS)

    Hazel, Andrew L.; Heil, Matthias

    2003-07-01

    A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

  13. Development and Experimental Evaluation of Passive Fuel Cell Thermal Control

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Jakupca, Ian J.; Castle, Charles H.; Burke, Kenneth A.

    2014-01-01

    To provide uniform cooling for a fuel cell stack, a cooling plate concept was evaluated. This concept utilized thin cooling plates to extract heat from the interior of a fuel cell stack and move this heat to a cooling manifold where it can be transferred to an external cooling fluid. The advantages of this cooling approach include a reduced number of ancillary components and the ability to directly utilize an external cooling fluid loop for cooling the fuel cell stack. A number of different types of cooling plates and manifolds were developed. The cooling plates consisted of two main types; a plate based on thermopyrolytic graphite (TPG) and a planar (or flat plate) heat pipe. The plates, along with solid metal control samples, were tested for both thermal and electrical conductivity. To transfer heat from the cooling plates to the cooling fluid, a number of manifold designs utilizing various materials were devised, constructed, and tested. A key aspect of the manifold was that it had to be electrically nonconductive so it would not short out the fuel cell stack during operation. Different manifold and cooling plate configurations were tested in a vacuum chamber to minimize convective heat losses. Cooling plates were placed in the grooves within the manifolds and heated with surface-mounted electric pad heaters. The plate temperature and its thermal distribution were recorded for all tested combinations of manifold cooling flow rates and heater power loads. This testing simulated the performance of the cooling plates and manifold within an operational fuel cell stack. Different types of control valves and control schemes were tested and evaluated based on their ability to maintain a constant temperature of the cooling plates. The control valves regulated the cooling fluid flow through the manifold, thereby controlling the heat flow to the cooling fluid. Through this work, a cooling plate and manifold system was developed that could maintain the cooling plates within a minimal temperature band with negligible thermal gradients over power profiles that would be experienced within an operating fuel cell stack.

  14. Economies of scale: The physics basis

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Almerbati, A.; Lorente, S.

    2017-01-01

    Why is size so important? Why are "economies of scale" a universal feature of all flow systems, animate, inanimate, and human made? The empirical evidence is clear: the bigger are more efficient carriers (per unit) than the smaller. This natural tendency is observed across the board, from animal design to technology, logistics, and economics. In this paper, we rely on physics (thermodynamics) to determine the relation between the efficiency and size. Here, the objective is to predict a natural phenomenon, which is universal. It is not to model a particular type of device. The objective is to demonstrate based on physics that the efficiencies of diverse power plants should increase with size. The analysis is performed in two ways. First is the tradeoff between the "external" irreversibilities due to the temperature differences that exist above and below the temperature range occupied by the circuit executed by the working fluid. Second is the allocation of the fluid flow irreversibility between the hot and cold portions of the fluid flow circuit. The implications of this report in economics and design science (scaling up, scaling down) and the necessity of multi-scale design with hierarchy are discussed.

  15. Effect of physical variables on capture of magnetic nanoparticles in simulated blood vessels

    NASA Astrophysics Data System (ADS)

    Zhang, Minghui; Brazel, Christopher

    2011-11-01

    This study investigated how the percent capture of magnetic nanoparticles in a simulated vessel varies with physical variables. Magnetic nanoparticles (MNPs) can used as part of therapeutic or diagnostic materials for cancer patients. By capturing these devices with a magnetic field, the particles can be concentrated in an area of diseased tissue. In this study, flow of nanoparticles in simulated blood vessels was used to determine the affect of applying an external magnetic field. This study used maghemite nanoparticles as the MNPs and either water or Fetal Bovine Serum as the carrier fluid. A UV-Vis collected capture data. The percent capture of MNPs was positively influenced by five physical variables: larger vessel diameters, lower linear flow velocity, higher magnetic field strength, better dispersion, lower MNP concentration, and lower protein content in fluid. Free MNPs were also compared to micelles, with the free particles having more successful magnetic capture. Four factors contributed to these trends: the strength of the magnetic field's influence on the MNPs, the MNPs' interactions with other particles and the fluid, the momentum of the nanoparticles, and magnetic mass to total mass ratio of the flowing particles. Funded by NSF REU Site #1062611.

  16. Paper pump for passive and programmable transport

    PubMed Central

    Wang, Xiao; Hagen, Joshua A.; Papautsky, Ian

    2013-01-01

    In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 μl/s to 1.7 μl/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications. PMID:24403999

  17. Microfluidic automation using elastomeric valves and droplets: reducing reliance on external controllers.

    PubMed

    Kim, Sung-Jin; Lai, David; Park, Joong Yull; Yokokawa, Ryuji; Takayama, Shuichi

    2012-10-08

    This paper gives an overview of elastomeric valve- and droplet-based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This Concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high-complexity and high-throughput analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. How fast does water flow in carbon nanotubes?

    PubMed

    Kannam, Sridhar Kumar; Todd, B D; Hansen, J S; Daivis, Peter J

    2013-03-07

    The purpose of this paper is threefold. First, we review the existing literature on flow rates of water in carbon nanotubes. Data for the slip length which characterizes the flow rate are scattered over 5 orders of magnitude for nanotubes of diameter 0.81-10 nm. Second, we precisely compute the slip length using equilibrium molecular dynamics (EMD) simulations, from which the interfacial friction between water and carbon nanotubes can be found, and also via external field driven non-equilibrium molecular dynamics simulations (NEMD). We discuss some of the issues in simulation studies which may be reasons for the large disagreements reported. By using the EMD method friction coefficient to determine the slip length, we overcome the limitations of NEMD simulations. In NEMD simulations, for each tube we apply a range of external fields to check the linear response of the fluid to the field and reliably extrapolate the results for the slip length to values of the field corresponding to experimentally accessible pressure gradients. Finally, we comment on several issues concerning water flow rates in carbon nanotubes which may lead to some future research directions in this area.

  19. Microlayered flow structure around an acoustically levitated droplet under a phase-change process.

    PubMed

    Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi

    2016-01-01

    The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction.

  20. Effect of bending on the dynamics and wrinkle formation for a capsule in shear flow

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Dupont, Claire; Barthes-Biesel, Dominique; Vidrascu, Marina; Le Tallec, Patrick

    2014-11-01

    When microcapsules are subjected to an external flow, the droplets enclosed within a thin hyperelastic wall undergo large deformations, which often lead to buckling of the thin capsule wall. The objective is to study numerically an initially spherical capsule in shear flow and analyze the influence of the membrane bending rigidity on the capsule dynamics and wrinkle formation. The 3D fluid-structure interactions are modeled coupling a boundary integral method to solve for the internal and external Stokes flows with a thin shell finite element method to solve for the wall deformation. Hyperelastic constitutive laws are implemented to model the deformation of the capsule mid-surface and the generalized Hooke's law for the bending effects. We show that the capsule global motion and deformation are mainly governed by in-plane membrane tensions and are marginally influenced by the bending stiffness Ks. The bending stiffness, however, plays a role locally in regions of compressive tensions. The wrinkle wavelength depends on Ks following a power law, which provides an experimental technique to determine the value of Ks through inverse analysis.

  1. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  2. Liquid rocket engine self-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Self-cooled combustion chambers are chambers in which the chamber wall temperature is controlled by methods other than fluid flow within the chamber wall supplied from an external source. In such chambers, adiabatic wall temperature may be controlled by use of upstream fluid components such as the injector or a film-coolant ring, or by internal flow of self-contained materials; e.g. pyrolysis gas flow in charring ablators, and the flow of infiltrated liquid metals in porous matrices. Five types of self-cooled chambers are considered in this monograph. The name identifying the chamber is indicative of the method (mechanism) by which the chamber is cooled, as follows: ablative; radiation cooled; internally regenerative (Interegen); heat sink; adiabatic wall. Except for the Interegen and heat sink concepts, each chamber type is discussed separately. A separate and final section of the monograph deals with heat transfer to the chamber wall and treats Stanton number evaluation, film cooling, and film-coolant injection techniques, since these subjects are common to all chamber types. Techniques for analysis of gas film cooling and liquid film cooling are presented.

  3. Radial accretion flows on static spherically symmetric black holes

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Sarbach, Olivier

    2015-08-01

    We analyze the steady radial accretion of matter into a nonrotating black hole. Neglecting the self-gravity of the accreting matter, we consider a rather general class of static, spherically symmetric and asymptotically flat background spacetimes with a regular horizon. In addition to the Schwarzschild metric, this class contains certain deformation of it, which could arise in alternative gravity theories or from solutions of the classical Einstein equations in the presence of external matter fields. Modeling the ambient matter surrounding the black hole by a relativistic perfect fluid, we reformulate the accretion problem as a dynamical system, and under rather general assumptions on the fluid equation of state, we determine the local and global qualitative behavior of its phase flow. Based on our analysis and generalizing previous work by Michel, we prove that for any given positive particle density number at infinity, there exists a unique radial, steady-state accretion flow which is regular at the horizon. We determine the physical parameters of the flow, including its accretion and compression rates, and discuss their dependency on the background metric.

  4. Nonequilibrium Langevin dynamics: A demonstration study of shear flow fluctuations in a simple fluid

    NASA Astrophysics Data System (ADS)

    Belousov, Roman; Cohen, E. G. D.; Rondoni, Lamberto

    2017-08-01

    The present paper is based on a recent success of the second-order stochastic fluctuation theory in describing time autocorrelations of equilibrium and nonequilibrium physical systems. In particular, it was shown to yield values of the related deterministic parameters of the Langevin equation for a Couette flow in a microscopic molecular dynamics model of a simple fluid. In this paper we find all the remaining constants of the stochastic dynamics, which then is simulated numerically and compared directly with the original physical system. By using these data, we study in detail the accuracy and precision of a second-order Langevin model for nonequilibrium physical systems theoretically and computationally. We find an intriguing relation between an applied external force and cumulants of the resulting flow fluctuations. This is characterized by a linear dependence of an athermal cumulant ratio, an apposite quantity introduced here. In addition, we discuss how the order of a given Langevin dynamics can be raised systematically by introducing colored noise.

  5. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, R.; Schallhorn, P. A.

    2016-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a general purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. Two thermodynamic property programs (GASP/WASP and GASPAK) provide required thermodynamic and thermophysical properties for 36 fluids: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutene, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride, ammonia, hydrogen peroxide, and air. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. The users can also supply property tables for fluids that are not in the library. Twenty-four different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, Joule-Thompson device, control valve, heat exchanger core, parallel tube, and compressible orifice. The program has the provision of including additional resistance options through User Subroutines. GFSSP employs a finite volume formulation of mass, momentum, and energy conservation equations in conjunction with the thermodynamic equations of state for real fluids as well as energy conservation equations for the solid. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. The application and verification of the code has been demonstrated through 30 example problems.

  6. Effect of the electric field ratio on electroosmotic flow patterns in cross-shaped microchannels by the lattice-Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Socias, Alvaro; Oyarzun, Diego; Guzman, Amador

    2014-11-01

    The electroosmotic flow (EOF) pattern characteristics in cross-shaped microchannels flow are important features when either suppressing or enhancing flow features for injection and separation or mixing of multiple species are the wanted objectives. There are situations in EOF in cross-shaped microchannels where the fluid flows toward unexpected and unwanted directions under a given external electric field that depends of both the applied electric field and lengths of the different channels. This article describes the effect of the electric field ratio, defined as the ratio between longitudinal nominal electric field ELong = (VE-VW) /(LW + LE) and the nominal electric field E a = (VS-VE) /(VS + VE) , where E, S and W define the east, south and west directions of the cross-shaped microchannel; V is the externally applied voltage and L is the length, on the EOF characteristics in a cross-shaped microchannel. We use the lattice-Boltzmann method (LBM) for solving the discretized Boltzmann Transport Equation (BTE) describing the coupled processes of hydrodynamics and electrodynamic. Our numerical simulations allow us to determine the EOF pattern for a wide range of the electric field ratio and Ea such that inverted flow features are captured and described, which are very important to determine for flow separation or mixing.

  7. Quasi-radial wall jets as a new concept in boundary layer flow control

    NASA Astrophysics Data System (ADS)

    Javadi, Khodayar; Hajipour, Majid

    2018-01-01

    This work aims to introduce a novel concept of wall jets wherein the flow is radially injected into a medium through a sector of a cylinder, called quasi-radial (QR) wall jets. The results revealed that fluid dynamics of the QR wall jet flow differs from that of conventional wall jets. Indeed, lateral and normal propagations of a conventional three-dimensional wall jet are via shear stresses. While, lateral propagation of a QR wall jet is due to mean lateral component of the velocity field. Moreover, discharged Arrays of conventional three-dimensional wall jets in quiescent air lead to formation of a combined wall jet at large distant from the nozzles, while QR wall jet immediately spread in lateral direction, meet each other and merge together very quickly in a short distance downstream of the jet nozzles. Furthermore, in discharging the conventional jets into an external flow, there is no strong interaction between them as they are moving parallel. While, in QR wall jets the lateral components of the velocity field strongly interact with boundary layer of the external flow and create strong helical vortices acting as vortex generators.

  8. Flow of magnetic particles in blood with isothermal heating: A fractional model for two-phase flow

    NASA Astrophysics Data System (ADS)

    Ali, Farhad; Imtiaz, Anees; Khan, Ilyas; Sheikh, Nadeem Ahmad

    2018-06-01

    In the sixteenth century, medical specialists were of the conclusion that magnet can be utilized for the treatment or wipe out the illnesses from the body. On this basis, the research on magnet advances day by day for the treatment of different types of diseases in mankind. This study aims to investigate the effect of magnetic field and their applications in human body specifically in blood. Blood is a non-Newtonian fluid because its viscosity depends strongly on the fraction of volume occupied by red cells also called the hematocrit. Therefore, in this paper blood is considered as an example of non-Newtonian Casson fluid. The blood flow is considered in a vertical cylinder together with heat transfer due to mixed conviction caused by buoyancy force and the external pressure gradient. Effect of magnetic field on the velocities of blood and magnetic particles is also considered. The problem is modelled using the Caputo-Fabrizio derivative approach. The governing fractional partial differential equations are solved using Laplace and Hankel transformation techniques and exact solutions are obtained. Effects of different parameters such as Grashof number, Prandtl number, Casson fluid parameter and fractional parameters, and magnetic field are shown graphically. Both velocity profiles increase with the increase of Grashoff number and Casson fluid parameter and reduce with the increase of magnetic field.

  9. Fluids in Convergent Margins: What do We Know about their Composition, Origin, Role in Diagenesis and Importance for Oceanic Chemical Fluxes?

    NASA Astrophysics Data System (ADS)

    Kastner, M.; Elderfield, H.; Martin, J. B.

    1991-05-01

    The nature and origin of fluids in convergent margins can be inferred from geochemical and isotopic studies of the venting and pore fluids, and is attempted here for the Barbados Ridge, Nankai Trough and the convergent margin off Peru. Venting and pore fluids with lower than seawater Cl- concentrations characterize all these margins. Fluids have two types of source: internal and external. The three most important internal sources are: (1) porosity reduction; (2) diagenetic and metamorphic dehydration; and (3) the breakdown of hydrous minerals. Gas hydrate formation and dissociation, authigenesis of hydrous minerals and the alteration of volcanic ash and/or the upper oceanic crust lead to a redistribution of the internal fluids and gases in vertical and lateral directions. The maximum amount of expelled water calculated can be ca. 7 m3 a-1 m-1, which is much less than the tens to more than 100 m3 a-1 m-1 of fluid expulsion which has been observed. The difference between these figures must be attributed to external fluid sources, mainly by transport of meteoric water enhanced by mixing with seawater. The most important diagenetic reactions which modify the fluid compositions, and concurrently the physical and even the thermal properties of the solids through which they flow are: (1) carbonate recrystallization, and more importantly precipitation; (2) bacterial and thermal degradation of organic matter; (3) formation and dissociation of gas hydrates; (4) dehydration and transformation of hydrous minerals, especially of clay minerals and opal-A; and (5) alteration, principally zeolitization and clay mineral formation, of volcanic ash and the upper oceanic crust.

  10. Soap-film flow induced by electric fields in asymmetric frames

    NASA Astrophysics Data System (ADS)

    Mollaei, S.; Nasiri, M.; Soltanmohammadi, N.; Shirsavar, R.; Ramos, A.; Amjadi, A.

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  11. Soap-film flow induced by electric fields in asymmetric frames.

    PubMed

    Mollaei, S; Nasiri, M; Soltanmohammadi, N; Shirsavar, R; Ramos, A; Amjadi, A

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  12. Tissue expansion and fluid absorption by skin tissue following intradermal injections through hollow microneedles

    NASA Astrophysics Data System (ADS)

    Shrestha, Pranav; Stoeber, Boris

    2017-11-01

    Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.

  13. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.

    PubMed

    Tang, Chao; Zhu, Luoding; Akingba, George; Lu, Xi-Yun

    2015-07-16

    Motivated by collapse of blood vessels for both healthy and diseased situations under various circumstances in human body, we have performed computational studies on an incompressible viscous fluid past a rigid channel with part of its upper wall being replaced by a deformable beam. The Navier-Stokes equations governing the fluid flow are solved by a multi-block lattice Boltzmann method and the structural equation governing the elastic beam motion by a finite difference method. The mutual coupling of the fluid and solid is realized by the momentum exchange scheme. The present study focuses on the influences of the dimensionless parameters controlling the fluid-structure system on the collapse and self-excited oscillation of the beam and fluid dynamics downstream. The major conclusions obtained in this study are described as follows. The self-excited oscillation can be intrigued by application of an external pressure on the elastic portion of the channel and the part of the beam having the largest deformation tends to occur always towards the end portion of the deformable wall. The blood pressure and wall shear stress undergo significant variations near the portion of the greatest oscillation. The stretching motion has the most contribution to the total potential elastic energy of the oscillating beam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head-space tissue culture vessel

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.

    1991-01-01

    The gravity induced motions, through the culture media, is calculated of living tissue segments cultured in the NASA rotating zero head space culture vessels. This is then compared with the media perfusion speed which is independent of gravity. The results may be interpreted as a change in the physical environment which will occur by operating the NASA tissue culture systems in actual microgravity (versus unit gravity). The equations governing particle motions which induce flows at the surface of tissues contain g terms. This allows calculation of the fluid flow speed, with respect to a cultured particle, as a function of the external gravitational field strength. The analysis is approached from a flow field perspective. Flow is proportional to the shear exerted on a structure which maintains position within the field. The equations are solved for the deviation of a particle from its original position in a circular streamline as a function of time. The radial deviation is important for defining the operating limits and dimensions of the vessel because of the finite radius at which particles necessarily intercept the wall. This analysis uses a rotating reference frame concept.

  15. Interactive computer graphics applications for compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  16. Experimental results for a hypersonic nozzle/afterbody flow field

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.; Hui, Frank C. L.

    1995-01-01

    This study was conducted to experimentally characterize the flow field created by the interaction of a single-expansion ramp-nozzle (SERN) flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5 Foot Hypersonic Wind Tunnel at the NASA Ames Research Center, in a cooperative experimental program involving Ames and McDonnell Douglas Aerospace. The model design and test planning were performed in close cooperation with members of the Ames computational fluid dynamics (CFD) team for the National Aerospace Plane (NASP) program. This paper presents experimental results consisting of oil-flow and shadow graph flow-visualization photographs, afterbody surface-pressure distributions, rake boundary-layer measurements, Preston-tube skin-friction measurements, and flow field surveys with five-hole and thermocouple probes. The probe data consist of impact pressure, flow direction, and total temperature profiles in the interaction flow field.

  17. Control of Thermal Convection in Layered Fluids Using Magnetic fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Immiscible fluid layers are found in a host of applications ranging from materials processing, for example the use of encapsulants in float zone crystal growth technique and a buffer layer in industrial Czochralski growth of crystals to prevent Marangoni convection, to heat transfer phenomena in day-to-day processes like the presence of air pockets in heat exchangers. In the microgravity and space processing realm, the exploration of other planets requires the development of enabling technologies in several fronts. The reduction in the gravity level poses unique challenges for fluid handling and heat transfer applications. The present work investigates the efficacy of controlling thermal convective flow using magnetic fluids and magnetic fields. The setup is a two-layer immiscible liquids system with one of the fluids being a diluted ferrofluid (super paramagnetic nano particles dispersed in carrier fluid). Using an external magnetic field one can essentially dial in a volumetric force - gravity level, on the magnetic fluid and thereby affect the system thermo-fluid behavior. The paper will describe the experimental and numerical modeling approach to the problem and discuss results obtained to date.

  18. Possible effects of two-phase flow pattern on the mechanical behavior of mudstones

    NASA Astrophysics Data System (ADS)

    Goto, H.; Tokunaga, T.; Aichi, M.

    2016-12-01

    To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled processes of two-phase flow through preferential flow paths and deformation of porous media is needed. References: Ewing R. P., and B. Berkowitz (1998), Water Resour. Res., 34, 611-622. Lenormand, R., E. Touboul, and C. Zarcone (1988), J. Fluid Mech., 189, 165-187.

  19. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    NASA Astrophysics Data System (ADS)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  20. Numerical investigation of the effects of channel geometry on platelet activation and blood damage.

    PubMed

    Wu, Jingshu; Yun, B Min; Fallon, Anna M; Hanson, Stephen R; Aidun, Cyrus K; Yoganathan, Ajit P

    2011-02-01

    Thromboembolic complications in Bileaflet mechanical heart valves (BMHVs) are believed to be due to the combination of high shear stresses and large recirculation regions. Relating blood damage to design geometry is therefore essential to ultimately optimize the design of BMHVs. The aim of this research is to quantitatively study the effect of 3D channel geometry on shear-induced platelet activation and aggregation, and to choose an appropriate blood damage index (BDI) model for future numerical simulations. The simulations in this study use a recently developed lattice-Boltzmann with external boundary force (LBM-EBF) method [Wu, J., and C. K. Aidun. Int. J. Numer. Method Fluids 62(7):765-783, 2010; Wu, J., and C. K. Aidun. Int. J. Multiphase flow 36:202-209, 2010]. The channel geometries and flow conditions are re-constructed from recent experiments by Fallon [The Development of a Novel in vitro Flow System to Evaluate Platelet Activation and Procoagulant Potential Induced by Bileaflet Mechanical Heart Valve Leakage Jets in School of Chemical and Biomolecular Engineering. Atlanta: Georgia Institute of Technology] and Fallon et al. [Ann. Biomed. Eng. 36(1):1]. The fluid flow is computed on a fixed regular 'lattice' using the LBM, and each platelet is mapped onto a Lagrangian frame moving continuously throughout the fluid domain. The two-way fluid-solid interactions are determined by the EBF method by enforcing a no-slip condition on the platelet surface. The motion and orientation of the platelet are obtained from Newtonian dynamics equations. The numerical results show that sharp corners or sudden shape transitions will increase blood damage. Fallon's experimental results were used as a basis for choosing the appropriate BDI model for use in future computational simulations of flow through BMHVs.

  1. Heterogonous Nanofluids for Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Alammar, Khalid

    2014-09-01

    Nuclear reactions can be associated with high heat energy release. Extracting such energy efficiently requires the use of high-rate heat exchangers. Conventional heat transfer fluids, such as water and oils are limited in their thermal conductivity, and hence nanofluids have been introduced lately to overcome such limitation. By suspending metal nanoparticles with high thermal conductivity in conventional heat transfer fluids, thermal conductivity of the resulting homogeneous nanofluid is increased. Heterogeneous nanofluids offer yet more potential for heat transfer enhancement. By stratifying nanoparticles within the boundary layer, thermal conductivity is increased where temperature gradients are highest, thereby increasing overall heat transfer of a flowing fluid. In order to test the merit of this novel technique, a numerical study of a laminar pipe flow of a heterogeneous nanofluid was conducted. Effect of Iron-Oxide distribution on flow and heat transfer characteristics was investigated. With Iron-Oxide volume concentration of 0.009 in water, up to 50% local heat transfer enhancement was predicted for the heterogeneous compared to homogeneous nanofluids. Increasing the Reynolds number is shown to increase enhancement while having negligible effect on pressure drop. Using permanent magnets attached externally to the pipe, an experimental investigation conducted at MIT nuclear reactor laboratory for similar flow characteristics of a heterogeneous nanofluid have shown upto 160% enhancement in heat transfer. Such results show that heterogeneous nanofluids are promising for augmenting heat transfer rates in nuclear power heat exchanger systems.

  2. Direct 40Ar/39Ar age determination of fluid inclusions using in-vacuo¬ stepwise crushing - Example of garnet from the Cycladic Blueschist Unit on Syros

    NASA Astrophysics Data System (ADS)

    Uunk, Bertram; Postma, Onno; Wijbrans, Jan; Brouwer, Fraukje

    2017-04-01

    Metamorphic minerals and veins commonly trap attending hydrous fluids in fluid inclusions, which yield a wealth of information on the history of the hosting metamorphic system. When these fluids are sufficiently saline, the KCl in the inclusions can be used as a K/Ar geochronologic system, potentially dating inclusion incorporation. Whilst primary fluid inclusions (PFIs) can date fluid incorporation during mineral or vein growth, secondary fluid inclusion trails (SFIs) can provide age constraints on later fluid flow events. At VU Amsterdam, a new in-vacuo crushing apparatus has been designed to extract fluid inclusions from minerals for 40Ar/39Ar analysis. Separates are crushed inside a crusher tube connected to a purification line and a quadrupole mass spectrometer. In-vacuo crushing is achieved by lifting and dropping a steel pestle using an externally controlled magnetic field. As the gas can be analyzed between different crushing steps, the setup permits stepwise crushing experiments. Additionally, crushed powder can be heated by inserting the crusher tube in an externally controlled furnace. Dating by 40Ar/39Ar stepwise crushing has the added advantage that, during neutron irradiation to produce 39Ar from 39K, 38Ar and 37Ar are also produced from 38Cl and 40Ca, respectively. Simultaneous analysis of these argon isotopes permits constraining the chemistry of the argon source sampled during the experiment. This allows a distinction between different fluid or crystal lattice sources. Garnet from three samples of the HP metamorphic Cycladic Blueschist Unit on Syros, Greece was stepwise crushed to obtain fluid inclusion ages. Initial steps for all three experiments yield significant components of excess argon, which are interpreted to originate from grain boundary fluids and secondary fluid inclusions trails. During subsequent steps, age results stabilize to a plateau age. One garnet from North Syros yields an unusually old 80 Ma plateau age. However, isochrons indicate the presence of excess argon in the PFIs and isochron ages overlap with other isotopic constraints on the age of garnet growth during eclogite metamorphism (55-50 Ma) in the underlying metabasite. Garnet from two samples from the center of Syros yields younger ages overlapping with greenschist overprinting (25-30 Ma). Further studies will indicate whether these younger ages reflect a young garnet growth age or a young fluid flow event affecting older garnet crystals. The stepwise crushing and heating approach shows to be effective in dating fluid inclusions in natural mineral systems. As many metamorphic processes occur under influence or in the presence of fluids, this method should greatly expand our possibilities to date crustal processes.

  3. Oscillatory flow in the cochlea visualized by a magnetic resonance imaging technique.

    PubMed

    Denk, W; Keolian, R M; Ogawa, S; Jelinski, L W

    1993-02-15

    We report a magnetic resonance imaging technique that directly measures motion of cochlear fluids. It uses oscillating magnetic field gradients phase-locked to an external stimulus to selectively visualize and quantify oscillatory fluid motion. It is not invasive, and it does not require optical line-of-sight access to the inner ear. It permits the detection of displacements far smaller than the spatial resolution. The method is demonstrated on a phantom and on living rats. It is projected to have applications for auditory research, for the visualization of vocal tract dynamics during speech and singing, and for determination of the spatial distribution of mechanical relaxations in materials.

  4. Study to develop improved methods to detect leakage in fluid systems, phase 2

    NASA Technical Reports Server (NTRS)

    Janus, J. C.; Cimerman, I.

    1971-01-01

    An ultrasonic contact sensor engineering prototype leak detection system was developed and its capabilities under cryogenic operations demonstrated. The results from tests indicate that the transducer performed well on liquid hydrogen plumbing, that flow and valve actuation could be monitored, and that the phase change from gaseous to liquid hydrogen could be detected by the externally mounted transducers. Tests also demonstrate the ability of the system to detect internal leaks past valve seats and to function as a flow meter. Such a system demonstrates that it is not necessary to break into welded systems to locate internal leaks.

  5. Enzyme-Powered Pumps: From Fundamentals to Applications

    NASA Astrophysics Data System (ADS)

    Ortiz-Rivera, Isamar

    Non-mechanical nano and microfluidic devices that function without the aid of an external power source, and can be tailored to meet specific needs, represent the next generation of smart devices. Recently, we have shown that surface-bound enzymes can act as pumps driving large-scale fluid flows in the presence of any substance that triggers the enzymatic reaction (e.g. substrate, co-factor, or biomarker). The fluid velocities attained in such systems depend directly on the enzymatic reaction rate and the concentration of the substance that initiates enzymatic catalysis. The use of biochemical reactions to power a micropump offers the advantages of specificity, sensitivity, and selectively, eliminating at the same time the need of an external power source, while providing biocompatibility. More importantly, these self-powered pumps overcome a significant obstacle in nano- and micro-fluidics: the need to use external pressure-driven pumps to push fluids through devices. Certainly, the development of enzyme-powered devices opens up new venues in biochemical engineering, particularly in the biomedical field. The work highlighted in this dissertation covers all the studies performed with enzyme-powered pumps, from the development of the micropump design, to the efforts invested in understanding the enzyme pump concept as a whole. The data collected to date, aims to expand our knowledge about enzyme-powered micropumps from the inside out: not only by exploring the different applications of these devices at the macroscale, but also by investigating in depth the mechanism of pump activation behind these systems. Specifically, we have focused on: (1) The general features that characterize the pumping behavior observed in enzyme-powered pumps, as well as the optimization of the device, (2) the possible mechanisms behind fluid motion, including the role of enzyme coverage and/or activity on the transduction of chemical energy into mechanical fluid flow in these devices, covering also the effect of the thermodynamics of the enzymatic reaction in the pumping behavior, and (3) the applicability of enzyme pumps as fluid flow-based inhibitor assays and as drug delivery devices. Our findings in each of these areas, gets us closer to our ultimate goal, where we aim to identify the optimal conditions needed for enzyme micropump operation, and construct a general model that could accurately predict enzyme micropump behavior for any enzyme-substrate combination. The information aforementioned has been divided in four chapters. Chapter 1 gives a quick glance into the development of enzyme-powered micropumps: from the systems and observed behaviors inspiring this work, to the first systems that were developed. The stability, duration, and extent of fluid pumping of enzyme pumps in general, are also discussed, along with the optimization of the enzyme-pump design. This chapter aims to provide a general idea of the motivation behind the concept of "enzyme-powered pumps", what are "enzyme-powered pumps", and which are the key features that characterize these systems. Chapter 2 is an extensive analysis of the mechanisms of actuation proposed for enzyme-powered micropumps. This chapter not only covers the first attempts to understand how enzyme pumps work, but also explores further the behavior of urease-powered pumps, which fluid flow patterns cannot be completely predicted only by considering thermal or solutal gradients. The findings of these studies could allow us to rationally control fluid flow for the directed delivery of payloads at designated locations. In Chapters 3 and 4, our focus was to highlight the potential application of enzyme-powered pumps for sensing and delivery. Chapter 3 explores the use of enzyme pumps as fluid flow-based inhibitor assays. At fixed concentrations of an enzyme and its substrate, the presence of an inhibitor can be detected by monitoring the decrease in fluid flow speed. Using this principle, sensors for toxic substances, like mercury, cyanide and azide, were designed using urease and catalase-powered pumps, respectively, with limits of detection well below the concentrations permitted by the Environmental Protection Agency (EPA). Chapter 4 demonstrates that, apart from their applicability as sensors, enzyme pumps can also be used for stimuli-responsive release, if the architecture applied for the design of the enzyme pump consists of a porous scaffold (e.g. hydrogel), that serves both as the platform for enzyme immobilization and as the host for guest molecules to be released. These proof-of-concept devices were developed with the idea of using the flows generated by enzymatic catalysis to power cargo release, only in the presence of the correct stimuli (e.g. release of insulin in the presence of glucose; release of antidotes in the presence of a toxic agent). In the cases studied, cargo release was directly proportional to the concentration of enzyme substrate in solution, highlighting the sensitivity of the device and its potential for drug delivery purposes. (Abstract shortened by Proquest.).

  6. Lens and dendrite formation during colloidal solidification

    NASA Astrophysics Data System (ADS)

    Worster, Grae; You, Jiaxue

    2017-11-01

    Colloidal particles in suspension are forced into a variety of morphologies when the suspending fluid medium is frozen: soil is compacted between ice lenses during frost heave; ice templating is a recent and growing technology to produce bio-inspired, micro-porous materials; cells and tissue can be damaged during cryosurgery; and metal-matrix composites with tailored microstructure can be fabricated by controlled casting. Various instabilities that affect the microscopic morphology are controlled by fluid flow through the compacted layer of particles that accumulates ahead of the solidification front. By analysing the flow in connection with equilibrium phase relationships, we develop a theoretical framework that identifies two different mechanisms for ice-lens formation, with and without a frozen fringe, identifies the external parameters that differentiates between them and the possibility of dendritic formations, and unifies a range of apparently disparate conclusions drawn from previous experimental studies. China Scholarship Council and the British Council.

  7. High-temperature self-circulating thermoacoustic heat exchanger

    NASA Astrophysics Data System (ADS)

    Backhaus, S.; Swift, G. W.; Reid, R. S.

    2005-07-01

    Thermoacoustic and Stirling engines and refrigerators use heat exchangers to transfer heat between the oscillating flow of their thermodynamic working fluids and external heat sources and sinks. An acoustically driven heat-exchange loop uses an engine's own pressure oscillations to steadily circulate its own thermodynamic working fluid through a physically remote high-temperature heat source without using moving parts, allowing for a significant reduction in the cost and complexity of thermoacoustic and Stirling heat exchangers. The simplicity and flexibility of such heat-exchanger loops will allow thermoacoustic and Stirling machines to access diverse heat sources and sinks. Measurements of the temperatures at the interface between such a heat-exchange loop and the hot end of a thermoacoustic-Stirling engine are presented. When the steady flow is too small to flush out the mixing chamber in one acoustic cycle, the heat transfer to the regenerator is excellent, with important implications for practical use.

  8. Acoustic Emission Sensing for Maritime Diesel Engine Performance and Health

    DTIC Science & Technology

    2016-05-01

    diesel internal combustion engine operating condition and health. A commercial-off- the-shelf AE monitoring system and a purpose-built data acquisition...subjected to external events such as a combustion event, fluid flow or the opening and closing of valves. This document reports on the monitoring and...conjunction with injection- combustion processes and valve events. AE from misfire as the result of a fuel injector malfunction was readily detectable

  9. Flow metering valve

    DOEpatents

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  10. Flow metering valve

    DOEpatents

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  11. Carbon nanotube heat-exchange systems

    DOEpatents

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  12. Chemotactic Motility of Sperm in Shear

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey S.; Riffell, Jeffrey A.; Zimmer, Richard K.; Stocker, Roman

    2011-11-01

    Chemical gradients are utilized by plants and animals in sexual reproduction to guide swimming sperm cells toward the egg. This process (``chemotaxis''), which can greatly increase the success of fertilization, is subject to interference by fluid flow, both in the bodily conduits of internal fertilizers (e.g. mammals) and in the aquatic environment of external fertilizers (e.g. benthic invertebrates). We studied the biomechanics of chemotaxing sea urchin spermatozoa using microfluidic devices, which allow for the precise and independent control of attractant gradients and fluid shear. We captured swimming trajectories and flagellar beat patterns using high-speed video-microscopy, to detect chemotactic responses and measure the effect of fluid forces on swimming. This work will ultimately help us to understand how swimming sperm cells actively navigate natural chemoattractant gradients for successful fertilization.

  13. Liquid metal magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lielpeteris, J.; Moreau, R.

    1989-01-01

    Liquid metal MHD is the subject of this book. It is of central importance in fields like metals processing, energy conversion, nuclear engineering (fast breeders or fusion reactors), geomagnetism and astrophysics. In some circumstances fluid flow phenomena are controlled by an existing magnetic field; the melts in induction furnaces or the liquid metal blanket around future tokamak fusion reactors being significant examples. In other cases the application of an external magnetic field (or of an electric current) may generate drastic modifications in the fluid motion and in the transfer rates; such effects may be used to develop new technologies (electromagneticmore » shaping) or to improve existing techniques (electromagnetic stirring in continuous casting). In the core of the Earth, fluid motion and magnetic fields are both present and their interaction governs important phenomena.« less

  14. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  15. Simple, robust storage of drops and fluids in a microfluidic device.

    PubMed

    Boukellal, Hakim; Selimović, Seila; Jia, Yanwei; Cristobal, Galder; Fraden, Seth

    2009-01-21

    We describe a single microfluidic device and two methods for the passive storage of aqueous drops in a continuous stream of oil without any external control but hydrodynamic flow. Advantages of this device are that it is simple to manufacture, robust under operation, and drops never come into contact with each other, making it unnecessary to stabilize drops against coalescence. In one method the device can be used to store drops that are created upstream from the storage zone. In the second method the same device can be used to simultaneously create and store drops from a single large continuous fluid stream without resorting to the usual flow focusing or T-junction drop generation processes. Additionally, this device stores all the fluid introduced, including the first amount, with zero waste. Transport of drops in this device depends, however, on whether or not the aqueous drops wet the device walls. Analysis of drop transport in these two cases is presented. Finally, a method for extraction of the drops from the device is also presented, which works best when drops do not wet the walls of the chip.

  16. Magnetically-actuated artificial cilia for microfluidic propulsion.

    PubMed

    Khaderi, S N; Craus, C B; Hussong, J; Schorr, N; Belardi, J; Westerweel, J; Prucker, O; Rühe, J; den Toonder, J M J; Onck, P R

    2011-06-21

    In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for lab-on-a-chip applications. The artificial cilia are fabricated using thin polymer films with embedded magnetic nano-particles and their deformation is studied under different external magnetic fields and flows. A coupled magneto-mechanical solid-fluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.

  17. Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis

    NASA Astrophysics Data System (ADS)

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O.

    2017-04-01

    A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes' couple stress fluid model is employed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing the couple stress parameter there is a significant increase in the axial pressure gradient whereas the core axial velocity is reduced. An increase in the electro-osmotic parameter both induces flow acceleration in the core region (around the channel centreline) and it also enhances the axial pressure gradient substantially. The study is relevant in the simulation of novel smart bio-inspired space pumps, chromatography and medical micro-scale devices.

  18. Bubble oscillation and inertial cavitation in viscoelastic fluids.

    PubMed

    Jiménez-Fernández, J; Crespo, A

    2005-08-01

    Non-linear acoustic oscillations of gas bubbles immersed in viscoelastic fluids are theoretically studied. The problem is formulated by considering a constitutive equation of differential type with an interpolated time derivative. With the aid of this rheological model, fluid elasticity, shear thinning viscosity and extensional viscosity effects may be taken into account. Bubble radius evolution in time is analyzed and it is found that the amplitude of the bubble oscillations grows drastically as the Deborah number (the ratio between the relaxation time of the fluid and the characteristic time of the flow) increases, so that, even for moderate values of the external pressure amplitude, the behavior may become chaotic. The quantitative influence of the rheological fluid properties on the pressure thresholds for inertial cavitation is investigated. Pressure thresholds values in terms of the Deborah number for systems of interest in ultrasonic biomedical applications, are provided. It is found that these critical pressure amplitudes are clearly reduced as the Deborah number is increased.

  19. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  20. Cooperative suction by vertical capillary array pump for controlling flow profiles of microfluidic sensor chips.

    PubMed

    Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi

    2012-10-18

    A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.

  1. Reference Solutions for Benchmark Turbulent Flows in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Pandya, Mohagna J.; Rumsey, Christopher L.

    2016-01-01

    A grid convergence study is performed to establish benchmark solutions for turbulent flows in three dimensions (3D) in support of turbulence-model verification campaign at the Turbulence Modeling Resource (TMR) website. The three benchmark cases are subsonic flows around a 3D bump and a hemisphere-cylinder configuration and a supersonic internal flow through a square duct. Reference solutions are computed for Reynolds Averaged Navier Stokes equations with the Spalart-Allmaras turbulence model using a linear eddy-viscosity model for the external flows and a nonlinear eddy-viscosity model based on a quadratic constitutive relation for the internal flow. The study involves three widely-used practical computational fluid dynamics codes developed and supported at NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions computed with these three codes on families of consistently refined grids are presented. Grid-to-grid and code-to-code variations are described in detail.

  2. 2-D and 3-D mixing flow analyses of a scramjet-afterbody configuration

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Eleshaky, Mohamed E.; Engelund, Walter C.

    1989-01-01

    A cold simulant gas study of propulsion/airframe integration for a hypersonic vehicle powered by a scramjet engine is presented. The specific heat ratio of the hot exhaust gases are matched by utilizing a cold mixture of argon and Freon-12. Solutions are obtained for a hypersonic corner flow and a supersonic rectangular flow in order to provide the upstream boundary conditions. The computational test examples also provide a comparison of this flow with that of air as the expanding supersonic jet, where the specific heats are assumed to be constant. It is shown that the three-dimensional computational fluid capabilities developed for these types of flow may be utilized to augment the conventional wind tunnel studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can help in the design of a scramjet internal-external nozzle.

  3. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    PubMed

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine testing more approachable for institutions that wish to initiate a Doppler QA program or complement a previously existing QA program.

  4. Splash flow from a metal plate hit by an electron beam pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, M., LLNL

    1997-09-01

    When a pulsed electron beam hits a metal plate with sufficient energy a volume of the metal becomes hot fluid that subsequently sprays out of the plate. A second pulse of electrons traveling toward the plate would scatter and degrade before impacting the solid plate because of its encounter with the diffuse material of the initial splash. People designing electron beam machines for use as pulsed radiation sources wish to eliminate the interaction between the electrons and the splash because they want sharp radiation pulses emitted from the solid plate. This report presents a compressible fluid model of this splashmore » flow and compares specific cases with experiments and comprehensive calculations performed by B. DeVolder and others at the Los Alamos National Laboratory, see reference (1). My aim was to develop as simple a theory as possible to calculate the speed and density of the splash flow. I have used both simplifying assumptions and mathematical approximations to develop convenient formulas. As I wished to make a clear and interesting presentation of this work to a diverse audience that includes people outside the specialty of fluid dynamics, some of my descriptions may seem wordier than necessary. The plan of the report is as follows. In the section called ``energy deposition`` I describe how an electron beam deposits energy in a solid plate, converting some of the material into a hot fluid. The initial temperature of this fluid is the key parameter in determining the nature of the subsequent flow; an explicit formula is shown. Flow occurs in two regions: along a streamtube within the metal plate and as an expanding plume outside the metal plate. Flow within the plate is described in the section called ``isentropic flow.`` This flow occurs as expansion waves move at the speed of sound through the streamtube. The analysis of this flow provides a formula for the mass flow over time from the plate into the external splash. The section called ``centered expansion`` elaborates on the nature of certain approximations I have made in treating the wave phenomena in both the streamtube and splash flows. The section called ``splash flow`` presents a formula to describe the material density as a function of space and time outside the plate. This formula depends on the time- dependent material density at the plate, which was found during the streamtube analysis. The section called ``examples`` shows the results of specific calculations and a comparison to computational and experimental results described in reference (1). The final section, ``possible future work,`` poses new questions.« less

  5. Hydrothermal alteration of kimberlite by convective flows of external water.

    PubMed

    Afanasyev, A A; Melnik, O; Porritt, L; Schumacher, J C; Sparks, R S J

    Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at <0.2). Such low water-rock ratios result in only small changes in stable isotope compositions; for example, δO 18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.

  6. Microlayered flow structure around an acoustically levitated droplet under a phase-change process

    PubMed Central

    Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi

    2016-01-01

    The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction. PMID:28725723

  7. Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces

    NASA Astrophysics Data System (ADS)

    Bautista, Oscar; Sanchez, Salvador; Mendez, Federico

    2015-11-01

    In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.

  8. Thin film drainage between pre-inflated capsules or vesicles

    NASA Astrophysics Data System (ADS)

    Keh, Martin; Walter, Johann; Leal, Gary

    2013-11-01

    Capsules and vesicles are often used as vehicles to carry active ingredients or fragrance in drug delivery and consumer products and oftentimes in these applications the particles may be pre-inflated due to the existence of a small osmotic pressure difference between the interior and exterior fluid. We study the dynamics of thin film drainage between capsules and vesicles in flow as it is crucial to fusion and deposition of the particles and, therefore, the stability and effectiveness of the products. Simulations are conducted using a numerical model coupling the boundary integral method for the motion of the fluids and a finite element method for the membrane mechanics. For low capillary numbers, the drainage behavior of vesicles and capsules are approximately the same, and also similar to that of drops as the flow-independent and uniform tension due to pre-inflation dominates. The tension due to deformation caused by flow will become more important as the strength of the external flow (i.e. the capillary number) increases. In this case, the shapes of the thin film region are fundamentally different for capsules and vesicles, and the drainage behavior in both cases differs from a drop. Funded by P&G.

  9. Dynamics of liquid bridges inside microchannels subject to pure oscillatory flows

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2014-11-01

    We report on 2D simulations of liquid bridges' dynamics in microchannels of uniform wettability and subject to external oscillatory flows. The flow equations were solved using the Cahn-Hilliard diffuse-interface formulation and the finite element method with unstructured grid. It was found that regardless of the wettability properties of the microchannel walls, there is a critical frequency above which the bridge shows perpetual periodic oscillatory motion. Below that critical frequency, the liquid bridge ruptures when the channel walls are philic and detaches from the surface when they are phobic. This critical frequency depends on the viscosity ratio, oscillation amplitude and geometric aspect ratio of the bridge. It was also found that the flow velocity is out of phase with the footprint/throat lengths and that the latter two show a phase difference. These differences were explained in terms of the motion of the two contact lines on the substrates and the deformation of the fluid-fluid interfaces. To characterize the behavior of the liquid bridge, two quantitative parameters; the liquid bridge-solid interfacial length and the length of the throat of the liquid bridge were used. Variations of the interfacial morphology development of the bridge were analyzed to understand the bridge response.

  10. Predicting System Accidents with Model Analysis During Hybrid Simulation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Fleming, Land D.; Throop, David R.

    2002-01-01

    Standard discrete event simulation is commonly used to identify system bottlenecks and starving and blocking conditions in resources and services. The CONFIG hybrid discrete/continuous simulation tool can simulate such conditions in combination with inputs external to the simulation. This provides a means for evaluating the vulnerability to system accidents of a system's design, operating procedures, and control software. System accidents are brought about by complex unexpected interactions among multiple system failures , faulty or misleading sensor data, and inappropriate responses of human operators or software. The flows of resource and product materials play a central role in the hazardous situations that may arise in fluid transport and processing systems. We describe the capabilities of CONFIG for simulation-time linear circuit analysis of fluid flows in the context of model-based hazard analysis. We focus on how CONFIG simulates the static stresses in systems of flow. Unlike other flow-related properties, static stresses (or static potentials) cannot be represented by a set of state equations. The distribution of static stresses is dependent on the specific history of operations performed on a system. We discuss the use of this type of information in hazard analysis of system designs.

  11. Active turbulence in a gas of self-assembled spinners

    PubMed Central

    Kokot, Gašper; Das, Shibananda; Winkler, Roland G.; Aranson, Igor S.; Snezhko, Alexey

    2017-01-01

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale. PMID:29158382

  12. Performance and Reliability of Exhaust Gas Waste Heat Recovery Units

    DTIC Science & Technology

    2014-09-01

    transfer in an annulus with an externally enhanced inner tube. International Journal of Heat and Fluid Flow, 14(1), 54‒63. Akpinar, E. K. (2006...from http://www.energy-tech.com/article.cfm?id=17567 Masliyah, J., & Nandakumar, K. (1976). Heat transfer in internally finned tubes. Journal of...exchanger by using turbulator. International Journal of Engineering Science & Advanced Technology, 2(4), 881‒885. Patankar, S. V. (1980). The

  13. Injector for use in high voltage isolators for liquid feed lines

    NASA Technical Reports Server (NTRS)

    Snyder, J. A. (Inventor)

    1973-01-01

    An improved injector is described for use in introducing fluid substances into feed lines employed in delivering flowing bodies of liquids. The injector includes a porous plug, concentrically related to a feed line, including an internally tapered surface of a truncated conical configuration with an inlet orifice of a first diameter substantially smaller than the first diameter and an external surface circumscribed by an annular chamber containing a body of insulating gas.

  14. Numerical analysis of Venous External Scaffolding Technology for Saphenous Vein Grafts.

    PubMed

    Meirson, T; Orion, E; Avrahami, I

    2015-07-16

    This paper presents a method for analyzing and comparing numerically Saphenous Vein Grafts (SVGs) following Coronary Artery Bypass Graft surgery (CABG). The method analyses the flow dynamics inside vein grafts with and without supporting using Venous External Scaffolding Technology (VEST). The numerical method uses patients׳ specific computational fluid dynamics (CFD) methods to characterize the relevant hemodynamic parameters of patients׳ SVGs. The method was used to compare the hemodynamics of six patient׳s specific model and flow conditions of stented and non-stented SVGs, 12 months post-transplantation. The flow parameters used to characterize the grafts׳ hemodynamics include Time Averaged Wall Shear Stress (TAWSS), Oscillatory Shear Index (OSI) and Relative Residence Time (RRT). The effect of stenting was clearly demonstrated by the chosen parameters. SVGs under constriction of VEST were associated with similar spatial average of TAWSS (10.73 vs 10.29 dyn/cm(2)), yet had fewer lesions with low TAWSS, lower OSI (0.041 vs 0.08) and RRT (0.12 vs 0.24), and more uniform flow with less flow discrepancies. In conclusion, the suggested method and parameters well demonstrated the advantage of VEST support. Stenting vein grafts with VEST improved hemodynamic factors which are correlated to graft failure following CABG procedure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Demonstration that a new flow sensor can operate in the clinical range for cerebrospinal fluid flow

    PubMed Central

    Raj, Rahul; Lakshmanan, Shanmugamurthy; Apigo, David; Kanwal, Alokik; Liu, Sheng; Russell, Thomas; Madsen, Joseph R.; Thomas, Gordon A.; Farrow, Reginald C.

    2015-01-01

    A flow sensor has been fabricated and tested that is capable of measuring the slow flow characteristic of the cerebrospinal fluid in the range from less than 4 mL/h to above 100 mL/h. This sensor is suitable for long-term implantation because it uses a wireless external spectrometer to measure passive subcutaneous components. The sensors are pressure-sensitive capacitors, in the range of 5 pF with an air gap at atmospheric pressure. Each capacitor is in series with an inductor to provide a resonant frequency that varies with flow rate. At constant flow, the system is steady with drift <0.3 mL/h over a month. At variable flow rate, V̇, the resonant frequency, f0, which is in the 200–400 MHz range, follows a second order polynomial with respect to V̇. For this sensor system the uncertainty in measuring f0 is 30 kHz which corresponds to a sensitivity in measuring flow of ΔV̇= 0.6 mL/hr. Pressures up to 20 cm H2O relative to ambient pressure were also measured. An implantable twin capacitor system is proposed that can measure flow, which is fully compensated for all hydrostatic pressures. For twin capacitors, other sources of systematic variation within clinical range, such as temperature and ambient pressure, are smaller than our sensitivity and we delineate a calibration method that should maintain clinically useful accuracy over long times. PMID:26543321

  16. The fluid mechanics of natural ventilation

    NASA Astrophysics Data System (ADS)

    Linden, Paul

    1999-11-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. Modern buildings have extreme designs with large, tall open plan spaces and large cooling requirements. Natural ventilation offers a means of cooling these buildings and providing good indoor air quality. The essential feature of ventilation is an exchange between an interior space and the external ambient. Recent work shows that in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of buoyancy-driven ventilation are discussed: mixing ventilation in which the interior is at approximately uniform temperature and displacement ventilation where there is strong internal stratification. The dynamics of these flows are considered and the effects of wind on them are examined both experimentally and theoretically. The aim behind this work is to give designers rules and intuition on how air moves within a building and the research shows a fascinating branch of fluid mechanics.

  17. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow

    NASA Astrophysics Data System (ADS)

    Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan

    2016-12-01

    Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.

  18. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    NASA Astrophysics Data System (ADS)

    Jiemsakul, Thanakorn; Manakasettharn, Supone; Kanharattanachai, Sivakorn; Wanna, Yongyuth; Wangsuya, Sujint; Pratontep, Sirapat

    2017-01-01

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO2 laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs.

  19. Insertable fluid flow passage bridgepiece and method

    DOEpatents

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  20. Fluid breakup in carbon nanotubes: An explanation of ultrafast ion transport

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2017-09-01

    Ultrafast ion transport in carbon nanotubes (CNTs) has been experimentally observed, but the underlying mechanism is unknown. In this work, we investigate ion transport in CNTs through molecular dynamics (MD) simulations. It is found that the flow in CNTs undergoes a transition from the passage of a continuous liquid chain to the transport of isolated ion-water clusters as the CNT length or the external electric filed strength is increased. The breakup of the liquid chain in CNTs greatly reduces the resistance caused by the hydrogen bonds of water and significantly enhances the ionic mobility, which explains the two-order-magnitude enhancement of ionic conductance in CNTs reported in the literature. A theoretical criterion for fluid breakup is proposed, which agrees well with MD results. The fluid breakup phenomenon provides new insights into enhancing ion transport in nanoconfinements.

  1. Interaction of pressure and momentum driven flows with thin porous media: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Naaktgeboren, Christian

    Flow interaction with thin porous media arise in a variety of natural and man-made settings. Examples include flow through thin grids in electronics cooling, and NOx emissions reduction by means of ammonia injection grids, pulsatile aquatic propulsion with complex trailing anatomy (e.g., jellyfish with tentacles) and microbursts from thunderstorm activity over dense vegetation, unsteady combustion in or near porous materials, pulsatile jet-drying of textiles, and pulsed jet agitation of clothing for trace contaminant sampling. Two types of interactions with thin porous media are considered: (i) forced convection or pressure-driven flows, where fluid advection is maintained by external forces, and (ii) inertial or momentum-driven flows, in which fluid motion is generated but not maintained by external forces. Forced convection analysis through thin permeable media using a porous continuum approach requires the knowledge of porous medium permeability and form coefficients, K and C, respectively, which are defined by the Hazen-Dupuit-Darcy (HDD) equation. Their determination, however, requires the measurement of the pressure-drop per unit of porous medium length. The pressure-drop caused by fluid entering and exiting the porous medium, however, is not related to the porous medium length. Hence, for situations in which the inlet and outlet pressure-drops are not negligible, e.g., for short porous media, the definition of Kand C via the HDD equation becomes ambiguous. This aspect is investigated analytically and numerically using the flow through a restriction in circular pipe and parallel plates channels as preliminary models. Results show that inlet and outlet pressure-drop effects become increasingly important when the inlet and outlet fluid surface fraction φ decreases and the Reynolds number Re increases for both laminar and turbulent flow regimes. A conservative estimate of the minimum porous medium length beyond which the core pressure-drop predominates over the inlet and outlet pressure-drop is obtained by considering a least restrictive porous medium core. Finally, modified K and C are proposed and predictive equations, accurate to within 2.5%, are obtained for both channel configurations with Re ranging from 10-2 to 102 and φ from 6% to 95%. When momentum driven flows interact with thin porous media, the interaction of vortices with the media's complex structure gives way to a number of phenomena of fundamental and applied interest, such as unsteady flow separation. A special case that embodies many of the key features of these flows is the interaction of a vortex ring with a permeable flat surface. Although fundamental, this complex flow configuration has never been considered. The present investigation experimentally studies the fluid mechanics of the interaction of a vortex ring impinging directly on thin permeable flat targets. The vortex ring is formed in water using a piston-cylinder mechanism and visualized using planar laser-induced fluorescence (PLIF). The rings are formed for jet Reynolds numbers of 3000 and 6000, and piston stroke-to-diameter ratios of 1.0, 3.0, and 6.0. Thin screens of similar geometry having surface opening fractions of 44, 60, 69, and 79% are targeted by the rings. The flow that emerges downstream of the screens reforms into a new, "transmitted" vortex ring. For the lower porosity targets, features that are characteristic of vortex ring impingement on walls are also observed, such as primary vortex ring rebound and reversal, flow separation, formation of secondary vortices and mixing. As the interaction proceeds, however, the primary vortex ring and secondary vortices are drawn toward the symmetry axis of the flow by fluid passing through the permeable screen. Quantitative flow measurements using digital particle image velocimetry (DPIV), indicate the transmitted vortex ring has lower velocity and less (total) kinetic energy than the incident ring. Ring trajectories and total kinetic energy relationships between vortices upstream and downstream the porous targets as a function of the porosity are presented, based on the velocity field from the DPIV measurements. Results show that kinetic energy dissipation is more intense for the low porosity targets and that flows with higher initial kinetic energy impacting on the same target loose a smaller percentage of their initial energy.

  2. Development of a higher-efficiency tubular cavity receiver for direct steam generation on a dish concentrator

    NASA Astrophysics Data System (ADS)

    Pye, John; Hughes, Graham; Abbasi, Ehsan; Asselineau, Charles-Alexis; Burgess, Greg; Coventry, Joe; Logie, Will; Venn, Felix; Zapata, José

    2016-05-01

    An integrated model for an axisymmetric helical-coil tubular cavity receiver is presented, incorporating optical ray-tracing for incident solar flux, radiosity analysis for thermal emissions, computational fluid dynamics for external convection, and a one-dimensional hydrodynamic model for internal flow-boiling of water. A receiver efficiency of 98.7% is calculated, for an inlet/outlet temperature range of 60-500 °C, which is the ratio of fluid heating to receiver incident irradiance. The high-efficiency design makes effective use of non-uniform flux in its non-isothermal layout, matching lower temperature regions to areas of lower flux. Full-scale testing of the design will occur in late 2015.

  3. Molecular Theory for Electrokinetic Transport in pH-Regulated Nanochannels.

    PubMed

    Kong, Xian; Jiang, Jian; Lu, Diannan; Liu, Zheng; Wu, Jianzhong

    2014-09-04

    Ion transport through nanochannels depends on various external driving forces as well as the structural and hydrodynamic inhomogeneity of the confined fluid inside of the pore. Conventional models of electrokinetic transport neglect the discrete nature of ionic species and electrostatic correlations important at the boundary and often lead to inconsistent predictions of the surface potential and the surface charge density. Here, we demonstrate that the electrokinetic phenomena can be successfully described by the classical density functional theory in conjunction with the Navier-Stokes equation for the fluid flow. The new theoretical procedure predicts ion conductivity in various pH-regulated nanochannels under different driving forces, in excellent agreement with experimental data.

  4. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  5. Comparison of the Fluid Resuscitation Rate with and without External Pressure Using Two Intraosseous Infusion Systems for Adult Emergencies, the CITRIN (Comparison of InTRaosseous infusion systems in emergency medicINe)-Study

    PubMed Central

    Gries, André; Hossfeld, Björn; Bechmann, Ingo; Bernhard, Michael

    2015-01-01

    Introduction Intraosseous infusion is recommended if peripheral venous access fails for cardiopulmonary resuscitation or other medical emergencies. The aim of this study, using body donors, was to compare a semi-automatic (EZ-IO®) device at two insertion sites and a sternal intraosseous infusion device (FASTR™). Methods Twenty-seven medical students being inexperienced first-time users were randomized into three groups using EZ-IO and FASTR. The following data were evaluated: attempts required for successful placement, insertion time and flow rates with and without external pressure to the infusion. Results The first-pass insertion success of the EZ-IO tibia, EZ-IO humerus and FASTR was 91%, 77%, and 95%, respectively. Insertion times (MW±SD) did not show significant differences with 17±7 (EZ-IO tibia) vs. 29±42 (EZ-IO humerus) vs. 33±21 (FASTR), respectively. One-minute flow rates using external pressures between 0 mmHg and 300 mmHg ranged between 27±5 to 69±54 ml/min (EZ-IO tibia), 16±3 to 60±44 ml/min (EZ-IO humerus) and 53±2 to 112±47 ml/min (FASTR), respectively. Concerning pressure-related increases in flow rates, negligible correlations were found for the EZ-IO tibia in all time frames (c = 0.107–0.366; p≤0.013), moderate positive correlations were found for the EZ-IO humerus after 5 minutes (c = 0.489; p = 0.021) and strong positive correlations were found for the FASTR in all time frames (c = 0.63–0.80; p≤0.007). Post-hoc statistical power was 0.62 with the given sample size. Conclusions The experiments with first-time users applying EZ-IO and FASTR in body donors indicate that both devices may be effective intraosseous infusion devices, likely suitable for fluid resuscitation using a pressure bag. Variations in flow rate may limit their reliability. Larger sample sizes will prospectively be required to substantiate our findings. PMID:26630579

  6. Comparison of the Fluid Resuscitation Rate with and without External Pressure Using Two Intraosseous Infusion Systems for Adult Emergencies, the CITRIN (Comparison of InTRaosseous infusion systems in emergency medicINe)-Study.

    PubMed

    Hammer, Niels; Möbius, Robert; Gries, André; Hossfeld, Björn; Bechmann, Ingo; Bernhard, Michael

    2015-01-01

    Intraosseous infusion is recommended if peripheral venous access fails for cardiopulmonary resuscitation or other medical emergencies. The aim of this study, using body donors, was to compare a semi-automatic (EZ-IO®) device at two insertion sites and a sternal intraosseous infusion device (FASTR™). Twenty-seven medical students being inexperienced first-time users were randomized into three groups using EZ-IO and FASTR. The following data were evaluated: attempts required for successful placement, insertion time and flow rates with and without external pressure to the infusion. The first-pass insertion success of the EZ-IO tibia, EZ-IO humerus and FASTR was 91%, 77%, and 95%, respectively. Insertion times (MW ± SD) did not show significant differences with 17 ± 7 (EZ-IO tibia) vs. 29 ± 42 (EZ-IO humerus) vs. 33 ± 21 (FASTR), respectively. One-minute flow rates using external pressures between 0 mmHg and 300 mmHg ranged between 27 ± 5 to 69 ± 54 ml/min (EZ-IO tibia), 16 ± 3 to 60 ± 44 ml/min (EZ-IO humerus) and 53 ± 2 to 112 ± 47 ml/min (FASTR), respectively. Concerning pressure-related increases in flow rates, negligible correlations were found for the EZ-IO tibia in all time frames (c = 0.107-0.366; p ≤ 0.013), moderate positive correlations were found for the EZ-IO humerus after 5 minutes (c = 0.489; p = 0.021) and strong positive correlations were found for the FASTR in all time frames (c = 0.63-0.80; p ≤ 0.007). Post-hoc statistical power was 0.62 with the given sample size. The experiments with first-time users applying EZ-IO and FASTR in body donors indicate that both devices may be effective intraosseous infusion devices, likely suitable for fluid resuscitation using a pressure bag. Variations in flow rate may limit their reliability. Larger sample sizes will prospectively be required to substantiate our findings.

  7. Droplet microfluidics driven by gradients of confinement.

    PubMed

    Dangla, Rémi; Kayi, S Cagri; Baroud, Charles N

    2013-01-15

    The miniaturization of droplet manipulation methods has led to drops being proposed as microreactors in many applications of biology and chemistry. In parallel, microfluidic methods have been applied to generate monodisperse emulsions for applications in the pharmaceuticals, cosmetics, and food industries. To date, microfluidic droplet production has been dominated by a few designs that use hydrodynamic forces, resulting from the flowing fluids, to break drops at a junction. Here we present a platform for droplet generation and manipulation that does not depend on the fluid flows. Instead, we use devices that incorporate height variations to subject the immiscible interfaces to gradients of confinement. The resulting curvature imbalance along the interface causes the detachment of monodisperse droplets, without the need for a flow of the external phase. Once detached, the drops are self-propelled due to the gradient of surface energy. We show that the size of the drops is determined by the device geometry; it is insensitive to the physical fluid properties and depends very weakly on the flow rate of the dispersed phase. This allows us to propose a geometric theoretical model that predicts the dependence of droplet size on the geometric parameters, which is in agreement with experimental measurements. The approach presented here can be applied in a wide range of standard applications, while simplifying the device operations. We demonstrate examples for single-droplet operations and high-throughput generation of emulsions, all of which are performed in simple and inexpensive devices.

  8. Droplet microfluidics driven by gradients of confinement

    PubMed Central

    Dangla, Rémi; Kayi, S. Cagri; Baroud, Charles N.

    2013-01-01

    The miniaturization of droplet manipulation methods has led to drops being proposed as microreactors in many applications of biology and chemistry. In parallel, microfluidic methods have been applied to generate monodisperse emulsions for applications in the pharmaceuticals, cosmetics, and food industries. To date, microfluidic droplet production has been dominated by a few designs that use hydrodynamic forces, resulting from the flowing fluids, to break drops at a junction. Here we present a platform for droplet generation and manipulation that does not depend on the fluid flows. Instead, we use devices that incorporate height variations to subject the immiscible interfaces to gradients of confinement. The resulting curvature imbalance along the interface causes the detachment of monodisperse droplets, without the need for a flow of the external phase. Once detached, the drops are self-propelled due to the gradient of surface energy. We show that the size of the drops is determined by the device geometry; it is insensitive to the physical fluid properties and depends very weakly on the flow rate of the dispersed phase. This allows us to propose a geometric theoretical model that predicts the dependence of droplet size on the geometric parameters, which is in agreement with experimental measurements. The approach presented here can be applied in a wide range of standard applications, while simplifying the device operations. We demonstrate examples for single-droplet operations and high-throughput generation of emulsions, all of which are performed in simple and inexpensive devices. PMID:23284169

  9. Development of a Flow Field for Testing a Boundary-Layer-Ingesting Propulsor

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Arend, David J.; Wolter, John D.

    2017-01-01

    The test section of the 8- by 6-Foot Supersonic Wind Tunnel at NASA Glenn Research Center was modified to produce the test conditions for a boundary-layer-ingesting propulsor. A test was conducted to measure the flow properties in the modified test section before the propulsor was installed. Measured boundary layer and freestream conditions were compared to results from computational fluid dynamics simulations of the external surface for the reference vehicle. Testing showed that the desired freestream conditions and boundary layer thickness could be achieved; however, some non-uniformity of the freestream conditions, particularly the total temperature, were observed.

  10. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  11. PREFACE: XXI Fluid Mechanics Conference

    NASA Astrophysics Data System (ADS)

    Szmyd, Janusz S.; Fornalik-Wajs, Elzbieta; Jaszczur, Marek

    2014-08-01

    This Conference Volume contains the papers presented at the 21st Fluid Mechanics Conference (XXI FMC) held at AGH - University of Science and Technology in Krakow, Poland, 15-18 June 2014, and accepted for Proceedings published in the Journal of Physics: Conference Series. The Fluid Mechanics Conferences have been taking place every two years since 1974, a total of forty years. The 21st Fluid Mechanics Conference (XXI FMC) is being organized under the auspices of the Polish Academy of Sciences, Committee of Mechanics. The goal of this conference is to provide a forum for the exposure and exchange of ideas, methods and results in fluid mechanics. Conference topics include, but are not limited to Aerodynamics, Atmospheric Science, Bio-Fluids, Combustion and Reacting Flows, Computational Fluid Dynamics, Experimental Fluid Mechanics, Flow Machinery, General Fluid Dynamics, Hydromechanics, Heat and Fluid Flow, Measurement Techniques, Micro- and Nano- Flow, Multi-Phase Flow, Non-Newtonian Fluids, Rotating and Stratified Flows, Turbulence. Within the general subjects of this conference, the Professor Janusz W. Elsner Competition for the best fluid mechanics paper presented during the Conference is organized. Authors holding a M.Sc. or a Ph.D. degree and who are not older than 35 years of age may enter the Competition. Authors with a Ph.D. degree must present individual papers; authors with a M.Sc. degree may present papers with their supervisor as coauthor, including original results of experimental, numerical or analytic research. Six state-of-the-art keynote papers were delivered by world leading experts. All contributed papers were peer reviewed. Recommendations were received from the International Scientific Committee, reviewers and the advisory board. Accordingly, of the 163 eligible extended abstracts submitted, after a review process by the International Scientific Committee, 137 papers were selected for presentation at the 21st Fluid Mechanics Conference, 68 papers were accepted for Proceedings published in the Journal of Physics: Conference Series. The total number of submitted and accepted papers for this year's conference represents a significant increase over previous Fluid Mechanics Conferences, and has expanded its initial national character and borders which speaks to the great vitality of fluid mechanics. We hope that these proceedings will be used not only as a document of the event but also to assess achievements and new paths to be taken in fluid mechanics research. Finally, we would like to congratulate the winners of the 2014 Professor Janusz W Elsner Competition Ruri Hidema from Japan, Fernando Tejero from Spain and Lukasz Laniewski-Wollk from Poland. Acknowledgements We would like to express grateful appreciation to our colleagues from the Polish Academy of Sciences, Committee of Mechanics, as well as to the International Scientific Committee i.e. Members and the Advisory Board. Their advice and efforts have helped us to overcome the problems normally associated with organising international meetings. Special thanks goes to the reviewers for their work in encouraging the submission of papers and the subsequent review of all papers. Their contribution cannot be overestimated. The 21st Fluid Mechanics Conference was organised by AGH University of Science and Technology, the Polish Academy of Sciences the Committee of Mechanics and the AGH-UST Foundation. Proceedings was published in the Journal of Physics: Conference Series. The demanding work involved could not have been done without the contribution of so many individuals from all institutions as well as numerous external co-workers. Without their extremely valuable help such a meeting would have been impossible. Thank you all so much! Details of the committees are available in the PDF

  12. Electroosmotic flow and mixing in microchannels with the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Tang, G. H.; Li, Zhuo; Wang, J. K.; He, Y. L.; Tao, W. Q.

    2006-11-01

    Understanding the electroosmotic flow in microchannels is of both fundamental and practical significance for the design and optimization of various microfluidic devices to control fluid motion. In this paper, a lattice Boltzmann equation, which recovers the nonlinear Poisson-Boltzmann equation, is used to solve the electric potential distribution in the electrolytes, and another lattice Boltzmann equation, which recovers the Navier-Stokes equation including the external force term, is used to solve the velocity fields. The method is validated by the electric potential distribution in the electrolytes and the pressure driven pulsating flow. Steady-state and pulsating electroosmotic flows in two-dimensional parallel uniform and nonuniform charged microchannels are studied with this lattice Boltzmann method. The simulation results show that the heterogeneous surface potential distribution and the electroosmotic pulsating flow can induce chaotic advection and thus enhance the mixing in microfluidic systems efficiently.

  13. Rheological changes induced by clast fragmentation in debris flows

    NASA Astrophysics Data System (ADS)

    Caballero, Lizeth; Sarocchi, Damiano; Soto, Enrique; Borselli, Lorenzo

    2014-09-01

    On the basis of rotating drum analogue experiments, we describe a fragmentation process acting within debris flows during transport and its influence on rheologic behavior. Our hypothesis is based on a detailed textural analysis including granulometry, clast morphology, and rheologic properties of the fluid matrix. Results of the experiments point out that breakage of certain granulometric classes produces fine particles like fine sand and silt. The population growth of fine clasts with time leads to an increase in yield strength and viscosity that progressively modifies the rheologic behavior. From a textural point of view, this is reflected in a bimodal granulometric distribution. Up to now this characteristic has been explained as the effect of bulking and/or sedimentation processes during transport. Our experimental results show that the type of fragmentation depends on particle size and is the consequence of strong clast-clast interaction and clast-fluid interactions. Coarse particles develop small fractures which cause the loss of sharp edges and asperities. Medium-sized particles develop through-going fractures that cause them to break apart. The latter process explains why intermediate granulometric classes progressively diminish with time in debris flows. Analogue experiments enable us to study the efficacy of clast fragmentation in modifying the textural character and flow behavior of debris flows without the influence of external factors such as erosion and sedimentation. The obtained results constitute the base of a new approach for modeling debris flow dynamics.

  14. Secondary electroosmotic flow in microchannels with nonuniform and asymmetric Zeta potential

    NASA Astrophysics Data System (ADS)

    Zhang, Jinbai; He, Guowei; Liu, Feng

    2004-11-01

    Microfluidics has a broad range of applications in biotechnology, such as sample injection, drug delivering, solution mixing, and separations. All of these techniques require handling fluids in the low Reynolds number (Re) regime. Electroosmotic flow (EOF) or electroosmocitcs is the bulk movement of liquid relative to a stationary surface due to an externally applied electronic field. It is an alternative to pressure-driven flows with convenient implementation The driving force for EOF is dependent on the zeta potential. Previous reseraches focus on the nonuniform Zeta potential. In the present work, we consider nonuniform and asymmetric Zeta potential. The effects of asymmetric Zeta potential on the EOF are investigated analytically and simulated numerically. It is demonstrated that the nonuniform and asymmetric Zeta potential can generate more flow patterns for microfluidic control compared to symmetric Zeta potential.

  15. Acoustic concentration of particles in fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Michael W.; Kaduchak, Gregory

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less

  16. Dynamics assembly of magnetic microparticles suspended in moving droplets under the influence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Strey, Helmut; Brouzes, Eric; Kruse, Travis

    2013-03-01

    Droplet microfluidics has experienced tremendous growth, particularly since it is well suited for single-cell manipulation and analysis. As mature methods for high throughput droplet manipulation have been developed a technological bottleneck of current droplet microfluidics is that because droplets are separated, sequential chemical reactions are more difficult to achieve. For example, it is very difficult to concentrate target molecules, especially since every reaction step adds volume to the droplets. Our solution to this problem is to employ functionalized magnetic beads inside droplets. The basic idea is that an external magnetic field could be used to concentrate the magnetic beads in one part of the droplet and those could then be extracted by splitting the droplet. Here we present an experimental study of the self-assembly of superparamagnetic microparticles that are suspended in moving droplets and experience a combination of forces due to the internal fluid flow fields and external magnetic fields. We observed that this interplay of flow fields coupled to the formation of particle assemblies leads to the formations of stable patterns depending on the flow speed and magnetic field strength. An understanding of this dynamic assembly is critical in employing external forces for applications in separation and sorting. Funding through NYSTAR, Center for Advanced Technology and a grant from NIH-NHGRI (1 R21 HG006206-01).

  17. Analysis of a space emergency ammonia dump using the FLOW-NET two-phase flow program

    NASA Technical Reports Server (NTRS)

    Navickas, J.; Rivard, W. C.

    1992-01-01

    Venting of cryogenic and non-cryogenic fluids to a vacuum or a very low pressure will take place in many space-based systems that are currently being designed. This may cause liquid freezing either internally within the flow circuit or on external spacecraft surfaces. Typical ammonia flow circuits were investigated to determine the effect of the geometric configuration and initial temperature, pressure, and void fraction on the freezing characteristics of the system. The analysis was conducted also to investigate the ranges of applicability of the FLOW-NET program. It was shown that a typical system can be vented to very low liquid fractions before freezing occurs. However, very small restrictions in the flow circuit can hasten the inception of freezing. The FLOW-NET program provided solutions over broad ranges of system conditions, such as venting of an ammonia tank, initially completely filled with liquid, through a series of contracting and expanding line cross sections to near-vacuum conditions.

  18. A package for 3-D unstructured grid generation, finite-element flow solution and flow field visualization

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald

    1990-01-01

    A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.

  19. Numerical analysis of a fluidic oscillator

    NASA Astrophysics Data System (ADS)

    Hoettges, Stefan; Schenkel, Torsten; Oertel, Herbert

    2010-11-01

    The technology of fluid logic or fluidic has its origins in 1959 when scientists were looking for alternatives to electronics to realize measuring or automatic control tasks. In recent years interest in fluidic components has been renewed. Possible applications of fluidic oscillators have been tested in flow control, to reduce or eliminate separation regions, to avoid resonance noise in the flow past cavities, to improve combustion processes or for efficient cooling of turbine blades or electronic components. The oscillatory motion of the jet is achieved only by suitable shaping of the nozzle geometry and fluid-dynamic interactions, hence no moving components or external sources of energy are necessary. Therefore fluidic oscillators can be used in extreme environmental conditions, such as high temperatures, aggressive media or within electromagnetic fields. In the present study the working principle of the fluidic oscillator has been identified using three-dimensional unsteady RANS simulations and stability analysis. The numerical models used have been validated successfully against experimental data. Furthermore the effects of changes in inlet velocity, geometry and working fluid on the oscillation frequency have been investigated. Based on the results a new dimensionless number has been derived in order to characterize the unsteady behavior of the fluidic oscillator.

  20. Spreading of a ferrofluid core in three-stream micromixer channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaomeng; Varma, V. B.; Ramanujan, R. V., E-mail: ramanujan@ntu.edu.sg

    2015-05-15

    Spreading of a water based ferrofluid core, cladded by a diamagnetic fluid, in three-stream micromixer channels was studied. This spreading, induced by an external magnetic field, is known as magnetofluidic spreading (MFS). MFS is useful for various novel applications where control of fluid-fluid interface is desired, such as micromixers or micro-chemical reactors. However, fundamental aspects of MFS are still unclear, and a model without correction factors is lacking. Hence, in this work, both experimental and numerical analyses were undertaken to study MFS. We show that MFS increased for higher applied magnetic fields, slower flow speed of both fluids, smaller flowmore » rate of ferrofluid relative to cladding, and higher initial magnetic particle concentration. Spreading, mainly due to connective diffusion, was observed mostly near the channel walls. Our multi-physics model, which combines magnetic and fluidic analyses, showed, for the first time, excellent agreement between theory and experiment. These results can be useful for lab-on-a-chip devices.« less

  1. Numerical Study of Rarefied Hypersonic Flow Interacting with a Continuum Jet. Degree awarded by Pennsylvania State Univ., Aug. 1999

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    2000-01-01

    An uncoupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC) technique is developed and applied to provide solutions for continuum jets interacting with rarefied external flows. The technique is based on a correlation of the appropriate Bird breakdown parameter for a transitional-rarefied condition that defines a surface within which the continuum solution is unaffected by the external flow-jet interaction. The method is applied to two problems to assess and demonstrate its validity; one of a jet interaction in the transitional-rarefied flow regime and the other in the moderately rarefied regime. Results show that the appropriate Bird breakdown surface for uncoupling the continuum and non-continuum solutions is a function of a non-dimensional parameter relating the momentum flux and collisionality between the two interacting flows. The correlation is exploited for the simulation of a jet interaction modeled for an experimental condition in the transitional-rarefied flow regime and the validity of the correlation is demonstrated. The uncoupled technique is also applied to an aerobraking flight condition for the Mars Global Surveyor spacecraft with attitude control system jet interaction. Aerodynamic yawing moment coefficients for cases without and with jet interaction at various angles-of-attack were predicted, and results from the present method compare well with values published previously. The flow field and surface properties are analyzed in some detail to describe the mechanism by which the jet interaction affects the aerodynamics.

  2. ICPP: Beltrami fields in plasmas -- H-mode boundary layers and high beta equilibria

    NASA Astrophysics Data System (ADS)

    Yoshida, Zensho

    2000-10-01

    The Beltrami fields, eigenfunctions of the curl operator, represent essential characteristics of twisted, spiral, chiral or helical structures in various vector fields. Amongst diverse applications of the theory of Beltrami fields, the present paper focuses on the self-organized states of plasmas. The Taylor relaxed state is the principal example of self-organized Beltrami fields. Suppose that a plasma is produced in an external magnetic field (harmonic field). If we do not apply any drive, the plasma will disappear and the system will relax into the harmonic magnetic field. When we drive a current and sustain the total helicity, the plasma relaxes into the Taylor state and achieves the Beltrami magnetic field. When a strong flow is implemented to a plasma, self-organized states becomes qualitatively different from the conventional relaxed stats. The two-fluid effect induces a coupling among the flow, magnetic field, electric field and the pressure, resulting in a "singular perturbation" to the MHD system. To invoke this effect, one must supply a driving force to sustain a strong flow. It is equivalent to giving an internal electric field or applying a steep gradient in pressure, because these fields are tightly coupled. In the two-fluid model, the Beltrami condition demands that the vorticity parallels the flow in both electron and ion fluids. We find that a superposition of two Beltrami magnetic fields (and also two Beltrami flows) solves the simultaneous two-fluid Beltrami conditions [1]. Despite this simple mathematical structure, the set of solutions contains field configurations that are far richer than the conventional theory. The hydrodynamic pressure of a shear flow yields a diamagnetic state that is suitable for confining a high-beta plasma. The H-mode boundary layer is an example, which is spontaneously generated by the core plasma pressure [2]. Active control of shear flow will significantly extend the scope of such self-organized states [3]. [1] S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett. 81, 4863 (1998). [2] S. M. Mahajan and Z. Yoshida, Phys. Plasmas 7, 635 (2000). [3] Z. Yoshida et al., in Non-Neutral Plasma Physics III (ed. J.J. Bollinger, AIP, 1999), 397.

  3. Nature-inspired micro-fluidic manipulation using artificial cilia

    NASA Astrophysics Data System (ADS)

    den Toonder, Jaap; de Goede, Judith; Khatavkar, Vinayak; Anderson, Patrick

    2006-11-01

    One particular micro-fluidics manipulation mechanism ``designed'' by nature is that due to a covering of beating cilia over the external surface of micro-organisms (e.g. Paramecium). A cilium can be viewed as a small hair or flexible rod (in protozoa: typical length 10 μm and diameter 0.1 μm) which is attached to the surface. We have developed polymer micro-actuators, made with standard micro-technology processing, which respond to an applied electrical or magnetic field by changing their shape. The shape and size of the polymer actuators mimics that of cilia occurring in nature. We have shown experimentally that, indeed, our artificial cilia can induce significant flow velocities of at least 75 μm/s in a fluid with a viscosity of 10 mPas. In this paper we will give an overview of our activities in developing the polymer actuators and the corresponding technology, show experimental and numerical fluid flow results, and finally assess the feasibility of applying this new and attractive micro-fluidic actuation method in functional biosensors.

  4. A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap

    NASA Astrophysics Data System (ADS)

    Musiał, Tomasz; Piasecka, Magdalena; Hożejowska, Sylwia

    In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.

  5. The unidirectional motion of two heat-conducting liquids in a flat channel

    NASA Astrophysics Data System (ADS)

    Andreev, V. K.; Cheremnykh, E. N.

    2017-10-01

    The unidirectional motion of two viscous incompressible liquids in a flat channel is studied. Liquids contact on a flat interface. External boundaries are fixed solid walls, on which the non-stationary temperature gradients are given. The motion is induced by a joint action of thermogravitational and thermocapillary forces and given total non - stationary fluid flow rate in layers. The corresponding initial boundary value problem is conjugate and inverse because the pressure gradients along axes channel have to be determined together with the velocity and temperature field. For this problem the exact stationary solution is found and a priori estimates of non - stationary solutions are obtained. In Laplace images the solution of the non - stationary problem is found in quadratures. It is proved, that the solution converges to a steady regime with time, if the temperature on the walls and the fluid flow rate are stabilized. The numerical calculations for specific liquid media good agree with the theoretical results.

  6. Reservoir Condition Pore-scale Imaging of Multiple Fluid Phases Using X-ray Microtomography

    PubMed Central

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin

    2015-01-01

    X-ray microtomography was used to image, at a resolution of 6.6 µm, the pore-scale arrangement of residual carbon dioxide ganglia in the pore-space of a carbonate rock at pressures and temperatures representative of typical formations used for CO2 storage. Chemical equilibrium between the CO2, brine and rock phases was maintained using a high pressure high temperature reactor, replicating conditions far away from the injection site. Fluid flow was controlled using high pressure high temperature syringe pumps. To maintain representative in-situ conditions within the micro-CT scanner a carbon fiber high pressure micro-CT coreholder was used. Diffusive CO2 exchange across the confining sleeve from the pore-space of the rock to the confining fluid was prevented by surrounding the core with a triple wrap of aluminum foil. Reconstructed brine contrast was modeled using a polychromatic x-ray source, and brine composition was chosen to maximize the three phase contrast between the two fluids and the rock. Flexible flow lines were used to reduce forces on the sample during image acquisition, potentially causing unwanted sample motion, a major shortcoming in previous techniques. An internal thermocouple, placed directly adjacent to the rock core, coupled with an external flexible heating wrap and a PID controller was used to maintain a constant temperature within the flow cell. Substantial amounts of CO2 were trapped, with a residual saturation of 0.203 ± 0.013, and the sizes of larger volume ganglia obey power law distributions, consistent with percolation theory. PMID:25741751

  7. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers

    PubMed Central

    Nellis, G. F.; Kelin, S. A.; Zhu, W.; Gianchandani, Y.

    2010-01-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid. PMID:20976021

  8. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    PubMed

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  9. Computational study of a self-cleaning process on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Farokhirad, Samaneh

    All substances around us are bounded by interfaces. In general, interface between different phases of materials are categorized as fluid-fluid, solid-fluid, and solid-solid. Fluid-fluid interfaces exhibit a distinct behavior by adapting their shape in response to external stimulus. For example, a liquid droplet on a substrate can undergo different wetting morphologies depending on topography and chemical composition of the surface. Fundamentally, interfacial phenomena arise at the limit between two immiscible phases, namely interface. The interface dynamic governs, to a great extent, physical processes such as impact and spreading of two immiscible media, and stabilization of foams and emulsions from break-up and coalescence. One of the recent challenging problems in the interface-driven fluid dynamics is the self-propulsion mechanism of droplets by means of different types of external forces such as electrical potential, or thermal Marangoni effect. Rapid removal of self-propelled droplet from the surface is an essential factor in terms of expense and efficiency for many applications including self-cleaning and enhanced heat and mass transfer to save energy and natural resources. A recent study on superhydrophobic nature of micro- and nanostructures of cicada wings offers a unique way for the self-propulsion process with no external force, namely coalescence-induced self-propelled jumping of droplet which can act effectively at any orientation. The biological importance of this new mechanism is associated with protecting such surfaces from long term exposure to colloidal particles such as microbial colloids and virus particles. Different interfacial phenomena can occur after out-of-plane jumping of droplet. If the departed droplet is landed back by gravity, it may impact and spread on the surface or coalesce with another droplet and again self-peopled itself to jump away from the surface. The complete removal of the propelled droplet to a sufficient distance beyond the boundary layer of the surface can be accomplished with a surface-parallel shear flow. This thesis presents an investigation of the physics involved in the mechanism of coalescence-induced self-propelled jumping of droplet with and without particle presence, through the use of numerical simulation. (Abstract shortened by ProQuest.).

  10. Comments regarding two upwind methods for solving two-dimensional external flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Kleb, W. L.

    1994-01-01

    Steady flow over the leading portion of a multicomponent airfoil section is studied using computational fluid dynamics (CFD) employing an unstructured grid. To simplify the problem, only the inviscid terms are retained from the Reynolds-averaged Navier-Stokes equations - leaving the Euler equations. The algorithm is derived using the finite-volume approach, incorporating explicit time-marching of the unsteady Euler equations to a time-asymptotic, steady-state solution. The inviscid fluxes are obtained through either of two approximate Riemann solvers: Roe's flux difference splitting or van Leer's flux vector splitting. Results are presented which contrast the solutions given by the two flux functions as a function of Mach number and grid resolution. Additional information is presented concerning code verification techniques, flow recirculation regions, convergence histories, and computational resources.

  11. Micro pumping with cardiomyocyte-polymer hybrid.

    PubMed

    Park, Jungyul; Kim, Il Chaek; Baek, Jeongeun; Cha, Misun; Kim, Jinseok; Park, Sukho; Lee, Junghoon; Kim, Byungkyu

    2007-10-01

    This paper presents a hybrid micropump actuated by the up-down motion of a dome shaped cell-polymer membrane composite. The contractile force induced from self-beating cardiomyocytes cultured on the membrane causes shrinkage and relaxation of a microchamber, leading to a flow in a microchannel. Flow direction is controlled by the geometry of diffuser/nozzle in the microchannel. The fabrication process is noninvasive to cells, thus, cardiomyocytes can robustly maintain their activity for a long time. The fluid motion in the microchannel was monitored by tracking 2 microm polystyrene beads. A net flow rate of 0.226 nl min(-1) was obtained in our microscale device. Our device demonstrates a unique performance of a cell-microdevice hybrid lab-on-a-chip that does not require any external power source, preventing electrical or heat shock to analytes.

  12. Effect of Eccentricity on the Static and Dynamic Performance of a Turbulent Hybrid Bearing

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis A.

    1991-01-01

    The effect of journal eccentricity on the static and dynamic performance of a water lubricated, 5-recess hybrid bearing is presented in detail. The hydrostatic bearing has been designed to operate at a high speed and with a large level of external pressurization. The operating conditions determine the flow in the bearing to be highly turbulent and strongly dominated by fluid inertia effects. The analysis covers the spectrum of journal center displacements directed towards the middle of a recess and towards the mid-land portion between two consecutive recesses. Predicted dynamic force coefficients are uniform for small to moderate eccentricities. For large journal center displacements, fluid cavitation and recess position determine large changes in the bearing dynamic performance. The effect of fluid inertia force coefficients on the threshold speed of instability and whirl ratio of a single mass flexible rotor is discussed.

  13. Design of magneto-rheological mount for a cabin of heavy equipment vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Soon-Yong; Do, Xuan Phu; Choi, Seung-Bok

    2016-04-01

    In this paper, magneto-rheological (MR) mount for a cabin of heavy equipment vehicles is designed for improving vibration isolation in both low and high frequency domains. The proposed mount consists of two principal parts of mount, rubber part and MR fluid path. The rubber part of existed mount and spring are used to change the stiffness and frequency characteristics for low vibration frequency range. The MR fluid path is a valve type structure using flow mode. In order to control the external magnetic field, a solenoid coil is placed in MR mount. Magnetic intensity analysis is then conducted to optimize dimensions using computer simulation. Experimental results show that magnetic field can reduce low frequency vibration. The results presented in this work indicate that proper application of MR fluid and rubber characteristic to devise MR mount can lead to the improvement of vibration control performance in both low and high frequency ranges.

  14. Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows

    NASA Astrophysics Data System (ADS)

    Minier, Jean-Pierre; Profeta, Christophe

    2015-11-01

    This article analyzes the status of two classical one-particle probability density function (PDF) descriptions of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the process made up by particle position and velocity Zp=(xp,Up) and is represented by its PDF p (t ;yp,Vp) which is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem. The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity seen by particles Zp=(xp,Up,Us) , and, consequently, handles an extended PDF p (t ;yp,Vp,Vs) which is the solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that well-posed PDF descriptions are essentially due to a proper choice of the variables selected to describe physical systems and guidelines are formulated to emphasize the key role played by the notion of slow and fast variables.

  15. Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics.

    PubMed

    Krujatz, Felix; Illing, Rico; Krautwer, Tobias; Liao, Jing; Helbig, Karsten; Goy, Katharina; Opitz, Jörg; Cuniberti, Gianaurelio; Bley, Thomas; Weber, Jost

    2015-12-01

    Externally illuminated photobioreactors (PBRs) are widely used in studies on the use of phototrophic microorganisms as sources of bioenergy and other photobiotechnology research. In this work, straightforward simulation techniques were used to describe effects of varying fluid flow conditions in a continuous hydrogen-producing PBR on the rate of photofermentative hydrogen production (rH2 ) by Rhodobacter sphaeroides DSM 158. A ZEMAX optical ray tracing simulation was performed to quantify the illumination intensity reaching the interior of the cylindrical PBR vessel. 24.2% of the emitted energy was lost through optical effects, or did not reach the PBR surface. In a dense culture of continuously producing bacteria during chemostatic cultivation, the illumination intensity became completely attenuated within the first centimeter of the PBR radius as described by an empirical three-parametric model implemented in Mathcad. The bacterial movement in chemostatic steady-state conditions was influenced by varying the fluid Reynolds number. The "Computational Fluid Dynamics" and "Particle Tracing" tools of COMSOL Multiphysics were used to visualize the fluid flow pattern and cellular trajectories through well-illuminated zones near the PBR periphery and dark zones in the center of the PBR. A moderate turbulence (Reynolds number = 12,600) and fluctuating illumination of 1.5 Hz were found to yield the highest continuous rH2 by R. sphaeroides DSM 158 (170.5 mL L(-1) h(-1) ) in this study. © 2015 Wiley Periodicals, Inc.

  16. Active thermal control systems for lunar and Martian exploration

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Petete, Patricia A.; Dzenitis, John

    1990-01-01

    Several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and Martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and Martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators. The lunar and Martian excursion vehicles incorporate internal single-phase water acquisition, which is connected via heat exchangers to external body-mounted single-phase radiators. A water evaporation system is used for the transfer vehicles during periods of high heating.

  17. A fluid-structure interaction model of the internal carotid and ophthalmic arteries for the noninvasive intracranial pressure measurement method.

    PubMed

    Misiulis, Edgaras; Džiugys, Algis; Navakas, Robertas; Striūgas, Nerijus

    2017-05-01

    Accurate and clinically safe measurements of intracranial pressure (ICP) are crucial for secondary brain damage prevention. There are two methods of ICP measurement: invasive and noninvasive. Invasive methods are clinically unsafe; therefore, safer noninvasive methods are being developed. One of the noninvasive ICP measurement methods implements the balance principle, which assumes that if the velocity of blood flow in both ophthalmic artery segments - the intracranial (IOA) and extracranial (EOA) - is equal, then the acting ICP on the IOA and the external pressure (Pe) on the EOA are also equal. To investigate the assumption of the balance principle, a generalized computational model incorporating a fluid-structure interaction (FSI) module was created and used to simulate noninvasive ICP measurement by accounting for the time-dependent behavior of the elastic internal carotid (ICA) and ophthalmic (OA) arteries and their interaction with pulsatile blood flow. It was found that the extra balance pressure term, which incorporates the hydrodynamic pressure drop between measurement points, must be added into the balance equation, and the corrections on a difference between the velocity of blood flow in the IOA and EOA must be made, due to a difference in the blood flow rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Steady-streaming effects on the motion of the cerebrospinal fluid (CSF) in the spinal canal

    NASA Astrophysics Data System (ADS)

    Lawrence, Jenna; Coenen, Wilfried; Sanchez, Antonio; Lasheras, Juan

    2017-11-01

    With each heart beat the oscillatory blood supply to the rigid cranial vault produces a time-periodic variation of the intracranial pressure that drives the cerebrospinal fluid (CSF) periodically in and out of the compliant spinal canal. We have recently conducted an analysis of this flow-structure interaction problem taking advantage of the small compliance of the dura membrane bounding externally the CSF and of the disparity of length scales associated with the geometry of the subarachnoid space. We have shown in an idealized geometry that the steady-streaming motion associated with this periodic flow, resulting from the nonlinear cumulative effects of convective acceleration, causes a bulk recirculation of CSF inside the spinal canal, which has been observed in many radiological studies. We extend here our study to investigate the possible contribution arising from the flow around the nerve roots protruding from the spinal cord, an effect that was neglected in our previous work. For this purpose, we consider the oscillatory motion around a cylindrical post confined between two parallel plates. For large values of the relevant Strouhal number we find at leading order a harmonic Stokes flow, whereas steady-streaming effects enter in the first-order corrections, which are computed for realistic values of the Womersley number and of the cylinder height-to-radius ratio.

  19. Biophysics and biofluid dynamics of primary cilia: evidence for and against the flow-sensing function.

    PubMed

    Nag, Subhra; Resnick, Andrew

    2017-09-01

    Primary cilia have been called "the forgotten organelle" for over 20 yr. As cilia now have their own journal and several books devoted to their study, perhaps it is time to reconsider the moniker "forgotten organelle." In fact, during the drafting of this review, 12 relevant publications have been issued; we therefore apologize in advance for any relevant work we inadvertently omitted. What purpose is yet another ciliary review? The primary goal of this review is to specifically examine the evidence for and against the hypothesized flow-sensing function of primary cilia expressed by differentiated epithelia within a kidney tubule, bringing together differing disciplines and their respective conceptual and experimental approaches. We will show that understanding the biophysics/biomechanics of primary cilia provides essential information for understanding any potential role of ciliary function in disease. We will summarize experimental and mathematical models used to characterize renal fluid flow and incident force on primary cilia and to characterize the mechanical response of cilia to an externally applied force and discuss possible ciliary-mediated cell signaling pathways triggered by flow. Throughout, we stress the importance of separating the effects of fluid shear and stretch from the action of hydrodynamic drag. Copyright © 2017 the American Physiological Society.

  20. Flow Cage Assemblies

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor)

    2017-01-01

    Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.

  1. A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.

    2018-03-01

    Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.

  2. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.

    PubMed

    Verbruggen, Stefaan W; Vaughan, Ted J; McNamara, Laoise M

    2014-01-01

    Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid-structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity ([Formula: see text] compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities [Formula: see text] and average maximum shear stresses [Formula: see text] surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology.

  3. A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xing; Lin, Guang; Zou, Jianfeng

    To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less

  4. Flow-driven instabilities during pattern formation of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.

    2015-06-01

    The slime mold Dictyostelium discoideum is a well known model system for the study of biological pattern formation. In the natural environment, aggregating populations of starving Dictyostelium discoideum cells may experience fluid flows that can profoundly change the underlying wave generation process. Here we study the effect of advection on the pattern formation in a colony of homogeneously distributed Dictyostelium discoideum cells described by the standard Martiel-Goldbeter model. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. The evolution of small perturbations in cAMP concentrations is studied analytically in the linear regime and by corresponding numerical simulations. We show that flow can significantly influence the dynamics of the system and lead to a flow-driven instability that initiate downstream traveling cAMP waves. We also show that boundary conditions have a significant effect on the observed patterns and can lead to a new kind of instability.

  5. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.

    2013-12-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.

  6. MHD Turbulence Sheared in Fixed and Rotating Frames

    NASA Technical Reports Server (NTRS)

    Kassinos, S. C.; Knaepen, B.; Wray, A.

    2004-01-01

    We consider homogeneous turbulence in a conducting fluid that is exposed to a uniform external magnetic field while being sheared in fixed and rotating frames. We take both the frame-rotation axis and the applied magnetic field to be aligned in the direction normal to the plane of the mean shear. Here a systematic parametric study is carried out in a series of Direct Numerical Simulations (DNS) in order to clarify the main effects determining the structural anisotropy and stability of the flow.

  7. Current problems in applied mathematics and mathematical physics

    NASA Astrophysics Data System (ADS)

    Samarskii, A. A.

    Papers are presented on such topics as mathematical models in immunology, mathematical problems of medical computer tomography, classical orthogonal polynomials depending on a discrete variable, and boundary layer methods for singular perturbation problems in partial derivatives. Consideration is also given to the computer simulation of supernova explosion, nonstationary internal waves in a stratified fluid, the description of turbulent flows by unsteady solutions of the Navier-Stokes equations, and the reduced Galerkin method for external diffraction problems using the spline approximation of fields.

  8. A nonlinear dynamical system approach for the yielding behaviour of a viscoplastic material.

    PubMed

    Burghelea, Teodor; Moyers-Gonzalez, Miguel; Sainudiin, Raazesh

    2017-03-08

    A nonlinear dynamical system model that approximates a microscopic Gibbs field model for the yielding of a viscoplastic material subjected to varying external stresses recently reported in R. Sainudiin, M. Moyers-Gonzalez and T. Burghelea, Soft Matter, 2015, 11(27), 5531-5545 is presented. The predictions of the model are in fair agreement with microscopic simulations and are in very good agreement with the micro-structural semi-empirical model reported in A. M. V. Putz and T. I. Burghelea, Rheol. Acta, 2009, 48, 673-689. With only two internal parameters, the nonlinear dynamical system model captures several key features of the solid-fluid transition observed in experiments: the effect of the interactions between microscopic constituents on the yield point, the abruptness of solid-fluid transition and the emergence of a hysteresis of the micro-structural states upon increasing/decreasing external forces. The scaling behaviour of the magnitude of the hysteresis with the degree of the steadiness of the flow is consistent with previous experimental observations. Finally, the practical usefulness of the approach is demonstrated by fitting a rheological data set measured with an elasto-viscoplastic material.

  9. Influence of fast advective flows on pattern formation of Dictyostelium discoideum

    PubMed Central

    Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard

    2018-01-01

    We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179

  10. Microfluidic rheology of active particle suspensions: Kinetic theory

    NASA Astrophysics Data System (ADS)

    Alonso-Matilla, Roberto; Ezhilan, Barath; Saintillan, David

    2016-11-01

    We analyze the effective rheology of a dilute suspension of self-propelled slender particles between two infinite parallel plates in a pressure-driven flow. We use a continuum kinetic model to study the dynamics and transport of particles, where hydrodynamic interactions induced by the swimmers are taken into account. Using finite volume simulations we study how the activity of the swimmer and the external flow modify the rheological properties of the system. Results indicate that at low flow rates, activity decreases the value of the viscosity for pushers and increases its value for pullers. Both effects become weaker with increasing the flow strength due to the alignment of the particles with the flow. In the case of puller particles, shear thinning is observed over the entire range of flow rates. Pusher particles exhibit shear thickening at intermediate flow rates, where passive stresses start dominating over active stresses, reaching a viscosity greater than that of the Newtonian fluid. Finally shear thinning is observed at high flow rates. Both pushers and pullers exhibit a Newtonian plateau at very high flow rates. We demonstrate a good agreement between numerical results and experiments.

  11. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-01-01

    The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.

  12. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  13. Self-sculpting of a dissolvable body due to gravitational convection

    NASA Astrophysics Data System (ADS)

    Davies Wykes, Megan S.; Huang, Jinzi Mac; Hajjar, George A.; Ristroph, Leif

    2018-04-01

    Natural sculpting processes such as erosion or dissolution often yield universal shapes that bear no imprint or memory of the initial conditions. Here we conduct laboratory experiments aimed at assessing the shape dynamics and role of memory for the simple case of a dissolvable boundary immersed in a fluid. Though no external flow is imposed, dissolution and consequent density differences lead to gravitational convective flows that in turn strongly affect local dissolving rates and shape changes, and we identify two distinct behaviors. A flat boundary dissolving from its lower surface tends to retain its overall shape (an example of near perfect memory) while bearing small-scale pits that reflect complex near-body flows. A boundary dissolving from its upper surface tends to erase its initial shape and form an upward spike structure that sharpens indefinitely. We propose an explanation for these different outcomes based on observations of the coupled shape dynamics, concentration fields, and flows.

  14. Viscous dissipation effects on MHD slip flow and heat transfer in porous micro duct with LTNE assumptions using modified lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Rabhi, R.; Amami, B.; Dhahri, H.; Mhimid, A.

    2017-11-01

    This paper deals with heat transfer and fluid flow in a porous micro duct under local thermal non equilibrium conditions subjected to an external oriented magnetic field. The considered sample is a micro duct filled with porous media assumed to be homogenous, isotropic and saturated. The slip velocity and the temperature jump were uniformly imposed to the wall. In modeling the flow, the Brinkmann-Forchheimer extended Darcy model was incorporated into the momentum equations. In the energy equation, the local thermal non equilibrium between the two phases was adopted. A modified axisymmetric lattice Boltzmann method was used to solve the obtained governing equation system. Attention was focused on the influence of the emerging parameters such as Knudsen number, Kn, Hartmann number, Ha, Eckert number, Ec, Biot number, Bi and the magnetic field inclination γ on flow and heat transfer throughout this paper.

  15. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.

    PubMed

    Chang, Suk Tai; Beaumont, Erin; Petsev, Dimiter N; Velev, Orlin D

    2008-01-01

    We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.

  16. Time-dependent electrokinetic flows of non-Newtonian fluids in microchannel-array for energy conversion

    NASA Astrophysics Data System (ADS)

    Chun, Myung-Suk; Chun, Byoungjin; Lee, Ji-Young; Complex Fluids Team

    2016-11-01

    We investigate the externally time-dependent pulsatile electrokinetic viscous flows by extending the previous simulations concerning the electrokinetic microfluidics for different geometries. The external body force originated from between the nonlinear Poisson-Boltzmann field and the flow-induced electric field is employed in the Cauchy momentum equation, and then the Nernst-Planck equation in connection with the net current conservation is coupled. Our explicit model allows one to quantify the effects of the oscillating frequency and conductance of the Stern layer, considering the shear thinning effect and the strong electric double layer interaction. This presentation reports the new results regarding the implication of optimum frequency pressure pulsations toward realizing mechanical to electrical energy transfer with high conversion efficiencies. These combined factors for different channel dimension are examined in depth to obtain possible enhancements of streaming current, with taking advantage of pulsating pressure field. From experimental verifications by using electrokinetic power chip, it is concluded that our theoretical framework can serve as a useful basis for micro/nanofluidics design and potential applications to the enhanced energy conversion. NRF of Korea (No.2015R1A2A1A15052979) and KIST (No.2E26490).

  17. Active turbulence in a gas of self-assembled spinners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  18. Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract

    NASA Astrophysics Data System (ADS)

    Russo, Flavia; Boghi, Andrea; Gori, Fabio

    2018-04-01

    Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.

  19. Active turbulence in a gas of self-assembled spinners

    DOE PAGES

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.; ...

    2017-11-20

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  20. Decadal variability in core surface flows deduced from geomagnetic observatory monthly means

    NASA Astrophysics Data System (ADS)

    Whaler, K. A.; Olsen, N.; Finlay, C. C.

    2016-10-01

    Monthly means of the magnetic field measurements at ground observatories are a key data source for studying temporal changes of the core magnetic field. However, when they are calculated in the usual way, contributions of external (magnetospheric and ionospheric) origin may remain, which make them less favourable for studying the field generated by dynamo action in the core. We remove external field predictions, including a new way of characterizing the magnetospheric ring current, from the data and then calculate revised monthly means using robust methods. The geomagnetic secular variation (SV) is calculated as the first annual differences of these monthly means, which also removes the static crustal field. SV time-series based on revised monthly means are much less scattered than those calculated from ordinary monthly means, and their variances and correlations between components are smaller. On the annual to decadal timescale, the SV is generated primarily by advection in the fluid outer core. We demonstrate the utility of the revised monthly means by calculating models of the core surface advective flow between 1997 and 2013 directly from the SV data. One set of models assumes flow that is constant over three months; such models exhibit large and rapid temporal variations. For models of this type, less complex flows achieve the same fit to the SV derived from revised monthly means than those from ordinary monthly means. However, those obtained from ordinary monthly means are able to follow excursions in SV that are likely to be external field contamination rather than core signals. Having established that we can find models that fit the data adequately, we then assess how much temporal variability is required. Previous studies have suggested that the flow is consistent with torsional oscillations (TO), solid body-like oscillations of fluid on concentric cylinders with axes aligned along the Earth's rotation axis. TO have been proposed to explain decadal timescale changes in the length-of-day. We invert for flow models where the only temporal changes are consistent with TO, but such models have an unacceptably large data misfit. However, if we relax the TO constraint to allow a little more temporal variability, we can fit the data as well as with flows assumed constant over three months, demonstrating that rapid SV changes can be reproduced by rather small flow changes. Although the flow itself changes slowly, its time derivative can be locally (temporally and spatially) large, in particular when and where core surface secular acceleration peaks. Spherical harmonic expansion coefficients of the flows are not well resolved, and many of them are strongly correlated. Averaging functions, a measure of our ability to determine the flow at a given location from the data distribution available, are poor approximations to the ideal, even when centred on points of the core surface below areas of high observatory density. Both resolution and averaging functions are noticeably worse for the toroidal flow component, which dominates the flow, than the poloidal flow component, except around the magnetic equator where averaging functions for both components are poor.

  1. Numerical Analysis of Micromixers for Optimization of Mixing Action

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Adhikari, Param

    2011-03-01

    Micro-bio/chemical applications often require rapid and uniform mixing of a number of fluid streams that carries bio/chemical species in the solution. At microscale, fluid flow is highly laminar with low Reynolds number, fluids mixing mechanism is primarily by diffusion and free from any turbulence. Demand for highly efficient micromixers for microfluidic networks is due to slower mixing process for larger bio-molecules such as peptides, proteins, and nucleic acids compared to micro-scale molecules. Passive and active mixers are two basic mixers that are currently in use for these applications. Passive mixers often require very long mixing channels where are most active mixers require bulky moving parts to stir the fluids. In this study, electroosmotic effects orthogonally aligned with the fluid flowstream are utilized for optimum mixing effect in various micromixers. Cross-dependencies among several geometrical, electrical, and fluid parameters and their significance are studied in order to achieve an optimum mixing effect. It has been planned to optimize the mixer by non-moving stirring actions provided by an external magnetic field. Acknowledgements to School of Graduate Studies and Research at YSU for URC Grant and RP Award 2009-2010.

  2. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.

    PubMed

    Lan, Wen-Jie; Edwards, Martin A; Luo, Long; Perera, Rukshan T; Wu, Xiaojian; Martin, Charles R; White, Henry S

    2016-11-15

    Ion current rectification (ICR) refers to the asymmetric potential-dependent rate of the passage of solution ions through a nanopore, giving rise to electrical current-voltage characteristics that mimic those of a solid-state electrical diode. Since the discovery of ICR in quartz nanopipettes two decades ago, synthetic nanopores and nanochannels of various geometries, fabricated in membranes and on wafers, have been extensively investigated to understand fundamental aspects of ion transport in highly confined geometries. It is now generally accepted that ICR requires an asymmetric electrical double layer within the nanopore, producing an accumulation or depletion of charge-carrying ions at opposite voltage polarities. Our research groups have recently explored how the voltage-dependent ion distributions and ICR within nanopores can induce novel nanoscale flow phenomena that have applications in understanding ionics in porous materials used in energy storage devices, chemical sensing, and low-cost electrical pumping of fluids. In this Account, we review our most recent investigations on this topic, based on experiments using conical nanopores (10-300 nm tip opening) fabricated in thin glass, mica, and polymer membranes. Measurable fluid flow in nanopores can be induced either using external pressure forces, electrically via electroosmotic forces, or by a combination of these two forces. We demonstrate that pressure-driven flow can greatly alter the electrical properties of nanopores and, vice versa, that the nonlinear electrical properties of conical nanopores can impart novel and useful flow phenomena. Electroosmotic flow (EOF), which depends on the magnitude of the ion fluxes within the double layer of the nanopore, is strongly coupled to the accumulation/depletion of ions. Thus, the same underlying cause of ICR also leads to EOF rectification, i.e., unequal flows occurring for the same voltage but opposite polarities. EOF rectification can be used to electrically pump fluids with very precise control across membranes containing conical pores via the application of a symmetric sinusoidal voltage. The combination of pressure and asymmetric EOF can also provide a means to generate new nanopore electrical behaviors, including negative differential resistance (NDR), in which the current through a conical pore decreases with increasing driving force (applied voltage), similar to solid-state tunnel diodes. NDR results from a positive feedback mechanism between the ion distributions and EOF, yielding a true bistability in both fluid flow and electrical current at a critical applied voltage. Nanopore-based NDR is extremely sensitive to the surface charge near the nanopore opening, suggesting possible applications in chemical sensing.

  3. Computational analysis of stall and separation control in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Stein, Alexander

    2000-10-01

    A numerical technique for simulating unsteady viscous fluid flow in turbomachinery components has been developed. In this technique, the three-dimensional form of the Reynolds averaged Navier-Stokes equations is solved in a time-accurate manner. The flow solver is used to study fluid dynamic phenomena that lead to instabilities in centrifugal compressors. The results indicate that large flow incidence angles, at reduced flow rates, can cause boundary layer separation near the blade leading edge. This mechanism is identified as the primary factor in the stall inception process. High-pressure jets upstream of the compressor face are studied as a means of controlling compressor instabilities. Steady jets are found to alter the leading edge flow pattern and effectively suppress compressor instabilities. Yawed jets are more effective than parallel jets and an optimum yaw angle exists for each compression system. Numerical simulations utilizing pulsed jets have also been done. Pulsed jets are found to yield additional performance enhancements and lead to a reduction in external air requirements for operating the jets. Jets pulsed at higher frequencies perform better than low-frequency jets. These findings suggest that air injection is a viable means of alleviating compressor instabilities and could impact gas turbine technology. Results concerning the optimization of practical air injection systems and implications for future research are discussed. The flow solver developed in this work, along with the postprocessing tools developed to interpret the results, provide a rational framework for analyzing and controlling current and next generation compression systems.

  4. Theoretical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.

  5. Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Hedayat, A.

    2015-01-01

    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch.

  6. Non-Ideal Compressible Fluid Dynamics: A Challenge for Theory

    NASA Astrophysics Data System (ADS)

    Kluwick, A.

    2017-03-01

    The possibility that compression as well as rarefaction shocks may form in single phase vapours was envisaged first by Bethe (1942). However calculations based on the Van der Waals equation of state indicated that the latter type of shock is possible only if the specific heat at constant volume cv divided by the universal gas constant R is larger than about 17.5 which he considered too large to be satisfied by real fluids. This conclusion was contested by Thompson (1971) who showed that the type of shock capable of forming in arbitrary fluids is determined by the sign of the thermodynamic quantity to which he referred to as fundamental derivative of gas dynamics. Here v, p, s and c denote the specific volume, the pressure, the entropy and the speed of sound. Thompson and co-workers also showed that the required condition for the existence of rarefaction shocks, that Γ may take on negative values, is indeed satisfied for a number of hydrocarbon and fluorocarbon vapours. This finding spawned a burst of theoretical studies elaborating on the unusual and often counterintuitive behaviour of shocks with rarefaction shocks present. These produced both results of theoretical character but also results suggesting the practical importance of Non-Ideal Compressible Fluid Dynamics in general. The present paper addresses some of the challenges encountered in connection with the theoretical treatment of the associated flow behaviour. Weakly nonlinear acoustic waves of finite amplitude serve as a starting point. Here mixed rather than strictly positive nonlinearity generates a wealth of phenomena not possible in perfect gases. Examples of steady flows where these non-classical effects play a decisive role (and which may be useful also for future experimental work) are quasi one-dimensional nozzle flows and transonic two-dimensional flows past corners. The study of viscous effects concentrates on laminar flows of boundary layer type. Here non-classical phenomena are caused by the uncommon smallness of the Eckert number but also by the unconventional Mach number dependence on p in the external inviscid flow region.

  7. Flow Diode and Method for Controlling Fluid Flow Origin of the Invention

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W (Inventor)

    2015-01-01

    A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.

  8. Local Osmosis and Isotonic Transport

    PubMed Central

    Mathias, R.T.; Wang, H.

    2006-01-01

    Osmotically driven water flow, u (cm/s), between two solutions of identical osmolarity, co (300 mM in mammals), has a theoretical isotonic maximum given by u = j/co, where j (moles/cm2/s) is the rate of salt transport. In many experimental studies, transport was found to be indistinguishable from isotonic. The purpose of this work is to investigate the conditions for u to approach isotonic. A necessary condition is that the membrane salt/ water permeability ratio, ε, must be small: typical physiological values are ε = 10−3 to 10−5, so ε is generally small but this is not sufficient to guarantee near-isotonic transport. If we consider the simplest model of two series membranes, which secrete a tear or drop of sweat (i.e., there are no externally-imposed boundary conditions on the secretion), diffusion is negligible and the predicted osmolarities are: basal = co, intracellular ≈ (1 + ε)co, secretion ≈ (1 + 2ε)co, and u ≈ (1 – 2ε)j/co. Note that this model is also appropriate when the transported solution is experimentally collected. Thus, in the absence of external boundary conditions, transport is experimentally indistinguishable from isotonic. However, if external boundary conditions set salt concentrations to co on both sides of the epithelium, then fluid transport depends on distributed osmotic gradients in lateral spaces. If lateral spaces are too short and wide, diffusion dominates convection, reduces osmotic gradients and fluid flow is significantly less than isotonic. Moreover, because apical and basolateral membrane water fluxes are linked by the intracellular osmolarity, water flow is maximum when the total water permeability of basolateral membranes equals that of apical membranes. In the context of the renal proximal tubule, data suggest it is transporting at near optimal conditions. Nevertheless, typical physiological values suggest the newly filtered fluid is reabsorbed at a rate u ≈ 0.86 j/co, so a hypertonic solution is being reabsorbed. The osmolarity of the filtrate cF (M) will therefore diminish with distance from the site of filtration (the glomerulus) until the solution being transported is isotonic with the filtrate, u = j/cF.With this steady- state condition, the distributed model becomes approximately equivalent to two membranes in series. The osmolarities are now: cF ≈ (1 – 2ε)j/co, intracellular ≈ (1 – ε)co, lateral spaces ≈ co, and u ≈(1 + 2ε)j/co. The change in cF is predicted to occur with a length constant of about 0.3 cm. Thus, membrane transport tends to adjust transmembrane osmotic gradients toward εco, which induces water flow that is isotonic to within order ε. These findings provide a plausible hypothesis on how the proximal tubule or other epithelia appear to transport an isotonic solution. PMID:16596445

  9. Glow Discharge Plasma Demonstrated for Separation Control in the Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Ashpis, David e.; Hultgren, Lennart S.

    2004-01-01

    Flow separation in the low-pressure turbine (LPT) is a major barrier that limits further improvements of aerodynamic designs of turbine airfoils. The separation is responsible for performance degradation, and it prevents the design of highly loaded airfoils. The separation can be delayed, reduced, or eliminated completely if flow control techniques are used. Successful flow control technology will enable breakthrough improvements in gas turbine performance and design. The focus of this research project was the development and experimental demonstration of active separation control using glow discharge plasma (GDP) actuators in flow conditions simulating the LPT. The separation delay was shown to be successful, laying the foundation for further development of the technologies to practical application in the LPT. In a fluid mechanics context, the term "flow control" means a technology by which a very small input results in a very large effect on the flow. In this project, the interest is to eliminate or delay flow separation on LPT airfoils by using an active flow control approach, in which disturbances are dynamically inserted into the flow, they interact with the flow, and they delay separation. The disturbances can be inserted using a localized, externally powered, actuating device, examples are acoustic, pneumatic, or mechanical devices that generate vibrations, flow oscillations, or pulses. A variety of flow control devices have been demonstrated in recent years in the context of the external aerodynamics of aircraft wings and airframes, where the incoming flow is quiescent or of a very low turbulence level. However, the flow conditions in the LPT are significantly different because there are high levels of disturbances in the incoming flow that are characterized by high free-stream turbulence intensity. In addition, the Reynolds number, which characterizes the viscous forces in the flow and is related to the flow speed, is very low in the LPT passages.

  10. Acoustic bubble dynamics in a microvessel surrounded by elastic material

    NASA Astrophysics Data System (ADS)

    Wang, S. P.; Wang, Q. X.; Leppinen, D. M.; Zhang, A. M.; Liu, Y. L.

    2018-01-01

    This paper is concerned with microbubble dynamics in a blood vessel surrounded by elastic tissue subject to ultrasound, which are associated with important applications in medical ultrasonics. Both the blood flow inside the vessel and the tissue flow external to the vessel are modeled using the potential flow theory coupled with the boundary element method. The elasticity of tissue is modeled through the inclusion of a pressure term in the dynamic boundary condition at the interface between the two fluids. Weakly viscous effects are considered using viscous potential flow theory. The numerical model is validated by comparison with the theoretical results of the Rayleigh-Plesset equation for spherical bubbles, the numerical results for acoustic bubbles in an unbounded flow, and the experimental images for a spark generated bubble in a rigid circular cylinder. Numerical analyses are then performed for the bubble oscillation, jet formation and penetration through the bubble, and the deformation of the vessel wall in terms of the ultrasound amplitude and the vessel radius.

  11. Summary of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Forest, C. B.

    2001-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ~100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ~ 15 m/s. A gaussian grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  12. Design of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; O'Connell, R.; Spence, E. J.

    2003-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ˜100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ˜ 15 m/s. A grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  13. Structure of the Small Amplitude Motion on Transversely Sheared Mean Flows

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Afsar, Mohamed Z.; Leib, Stewart J.

    2013-01-01

    This paper considers the small amplitude unsteady motion of an inviscid non-heat conducting compressible fluid on a transversely sheared mean flow. It extends a previous result given in Goldstein (1978(b) and 1979(a)) which shows that the hydrodynamic component of the motion is determined by two arbitrary convected quantities in the absence of solid surfaces or other external sources. The result is important because it can be used to specify appropriate boundary conditions for unsteady surface interaction problems on transversely sheared mean flows in the same way that the vortical component of the Kovasznay (1953) decomposition is used to specify these conditions for surface interaction problems on uniform mean flows. But unlike the Kovasznay (1953) case the arbitrary convected quantities no longer bear a simple relation to the physical variables. One purpose of this paper is to derive a formula that relates these quantities to the (physically measurable) vorticity and pressure fluctuations in the flow.

  14. A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.

    2015-11-01

    In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme

  15. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  16. Methodology for the Design of Streamline-Traced External-Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2014-01-01

    A design methodology based on streamline-tracing is discussed for the design of external-compression, supersonic inlets for flight below Mach 2.0. The methodology establishes a supersonic compression surface and capture cross-section by tracing streamlines through an axisymmetric Busemann flowfield. The compression system of shock and Mach waves is altered through modifications to the leading edge and shoulder of the compression surface. An external terminal shock is established to create subsonic flow which is diffused in the subsonic diffuser. The design methodology was implemented into the SUPIN inlet design tool. SUPIN uses specified design factors to design the inlets and computes the inlet performance, which includes the flow rates, total pressure recovery, and wave drag. A design study was conducted using SUPIN and the Wind-US computational fluid dynamics code to design and analyze the properties of two streamline-traced, external-compression (STEX) supersonic inlets for Mach 1.6 freestream conditions. The STEX inlets were compared to axisymmetric pitot, two-dimensional, and axisymmetric spike inlets. The STEX inlets had slightly lower total pressure recovery and higher levels of total pressure distortion than the axisymmetric spike inlet. The cowl wave drag coefficients of the STEX inlets were 20% of those for the axisymmetric spike inlet. The STEX inlets had external sound pressures that were 37% of those of the axisymmetric spike inlet, which may result in lower adverse sonic boom characteristics. The flexibility of the shape of the capture cross-section may result in benefits for the integration of STEX inlets with aircraft.

  17. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A computational model of amoeboid cell swimming

    NASA Astrophysics Data System (ADS)

    Campbell, Eric J.; Bagchi, Prosenjit

    2017-10-01

    Amoeboid cells propel by generating pseudopods that are finger-like protrusions of the cell body that continually grow, bifurcate, and retract. Pseudopod-driven motility of amoeboid cells represents a complex and multiscale process that involves bio-molecular reactions, cell deformation, and cytoplasmic and extracellular fluid motion. Here we present a 3D model of pseudopod-driven swimming of an amoeba suspended in a fluid without any adhesion and in the absence of any chemoattractant. Our model is based on front-tracking/immersed-boundary methods, and it combines large deformation of the cell, a coarse-grain model for molecular reactions, and cytoplasmic and extracellular fluid flow. The predicted shapes of the swimming cell from our model show similarity with experimental observations. We predict that the swimming behavior changes from random-like to persistent unidirectional motion, and that the swimming speed increases, with increasing cell deformability and protein diffusivity. The unidirectionality in cell swimming is observed without any external cues and as a direct result of a change in pseudopod dynamics. We find that pseudopods become preferentially focused near the front of the cell and appear in greater numbers with increasing cell deformability and protein diffusivity, thereby increasing the swimming speed and making the cell shape more elongated. We find that the swimming speed is minimum when the cytoplasm viscosity is close to the extracellular fluid viscosity. We further find that the speed increases significantly as the cytoplasm becomes less viscous compared with the extracellular fluid, resembling the viscous fingering phenomenon observed in interfacial flows. While these results support the notion that softer cells migrate more aggressively, they also suggest a strong coupling between membrane elasticity, membrane protein diffusivity, and fluid viscosity.

  19. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    PubMed

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. [Preventive dentistry 3. Prevalence, aetiology and diagnosis of dentine (hyper)sensitivity].

    PubMed

    van der Weijden, F N; van Loveren, C; Slot, D E; van der Weijden, G A

    2017-02-01

    Many people sometimes experience pain when they inhale breath across the cingula, or sensitivity and/or pain when they eat ice cream, for example. In some cases, however, this can become seriously unpleasant. In those cases, one can speak of dentine hypersensitivity. In Europe, an average of 27% of the population suffers from this. Dentine hypersensitivity is characterised by a short, sharp pain reaction after a warm or cold sensation. The external sensation causes an accelerated or converse flow of fluid in the dentinal tubules that excites the extremities of the nerve cells, which results in the sensation pain. For the external sensation, it is necessary that the cingula are exposed and the dentinal tubules are open. Dentine hypersensitivity is diagnosed after other possibilities have been eliminated.

  1. A Lifting Ball Valve for cryogenic fluid applications

    NASA Astrophysics Data System (ADS)

    Cardin, Joseph M.; Reinicke, Robert H.; Bruneau, Stephen D.

    1993-11-01

    Marotta Scientific Controls, Inc. has designed a Lifting Ball Valve (LBV) capable of both flow modulation and tight shutoff for cryogenic and other applications. The LBV features a thin-walled visor valving element that lifts off the seal with near axial motion before rotating completely out of the flow path. This is accomplished with a simple, robust mechanism that minimizes cost and weight. Conventional spherical rotating seats ar plagued by leakage due to 'scuffing' as the seal and seat slide against one another while opening. Cryogenic valves, which typically utilize plastic seals, are particularly susceptible to this type of damage. The seat in the LBV lifts off the seal without 'scuffing' making it immune to this failure mode. In addition, the LBV lifting mechanism is capable of applying the very high seating loads required to seal at cryogenic temperatures. These features make the LBV ideally suited for cryogenic valve applications. Another major feature of the LBV is the fact that the visor rotates completely out of the flow path. This allows for a smaller, lighter valve for a given flow capacity, especially for line sizes above one inch. The LBV is operated by a highly integrated 'wetted' DC brushless motor. The motor rotor is 'wetted' ion that it is immersed in the fluid. To ensure compatibility, the motor rotor is encased in a thin-walled CRES weldment. The motor stator is outside the fluid containment weldment and therefore is not in direct contact with the fluid. To preclude the potential for external leakage there are no static or dynamic seals or bellows across the pressure boundary. The power required to do the work of operating the valving mechanism is transmitted across the pressure boundary by electromagnetic interaction between the motor rotor and the stator. Commutation of the motor is accomplished using the output of a special 'wetted' resolver. This paper describes the design, operation, and element testing of the LBV.

  2. Numerical modelling of bedload sediment transport

    NASA Astrophysics Data System (ADS)

    Langlois, Vincent J.

    2010-05-01

    We present a numerical study of sediment transport in the bedload regime. Classical bedload transport laws only describe the variation of the vertically integrated flux of grains as a function of the Shields number. However, these relations are only valid if the moving layer of the bed is at equilibrium with the external flow. Besides, they do not contain enough information for many geomorphological applications. For instance, understanding inertial effects in the moving bed requires models that are able to account for the variability of hydrodynamical conditions, and the discrete nature of the sediment material. We developped a numerical modelling of the behaviour of a three-dimensional bed of grains sheared by a unidirectional fluid flow. These simulations are based on a combination of discrete and continuum approaches: sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a 'mean field' model. Both the drag exerted on grains by the fluid and the retroactive effect of the presence of grains on the flow are accounted for, allowing the system to converge to its equilibrium state (no assumption is made on the fluid velocity profile inside the layer of moving grains). Above the motion threshold, the variation of the flux of grains in the steady state is found to vary like the cube of the Shields number (as predicted by Bagnold). Besides, our simulations allow us to obtain new insights into the detailed mechanisms of bedload transport, by giving access to non-integral quantities, such as the trajectories of each individual grains, the detailed velocity and packing fraction profiles inside the granular bed, etc. It is therefore possible to investigate some effects that are not accounted for in usual continuum models, such as the polydispersity of grains, the ageing of the bed, the response to a variation of the flowrate, etc.

  3. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    NASA Astrophysics Data System (ADS)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  4. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  5. Monodisperse microdroplet generation and stopping without coalescence

    DOEpatents

    Beer, Neil Reginald

    2015-04-21

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  6. Monodisperse microdroplet generation and stopping without coalescence

    DOEpatents

    Beer, Neil Reginald

    2016-02-23

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  7. Substantial reduction of the heat losses to ambient air by natural convection from horizontal in-tube flows: impact of an axial bundle of passive baffles

    NASA Astrophysics Data System (ADS)

    Campo, A.; Cortés, C.

    This paper is concerned with a distinct and effective technique to insulate horizontal tubes carrying hot fluids without using the variety of insulating materials traditionally utilized in industry. The tubes transport hot fluids and are exposed to a natural convection environment of air at standard atmospheric temperature and pressure. Essentially, an ``equivalent quantity of insulation'' is provided by an envelope of straight symmetric baffles made from a low conductivity material that is affixed to the outer surface of the horizontal tubes. A simple 1-D lumped model of comparable precision to the customary 2-D differential model serves to regulate the thermal interaction between the two perpendicular fluid streams, one horizontal due to internal forced convection and the other vertical due to external natural convection in air. All computations are algebraic and lead to a rapid determination of the two quantities that are indispensable to design engineers: the mean bulk temperatures of the internal hot fluid moving either laminarly or turbulently, together with the degraded levels of heat transfer rates.

  8. Microfluidics with fluid walls.

    PubMed

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  9. High-throughput optofluidic system for the laser microsurgery of oocytes

    NASA Astrophysics Data System (ADS)

    Chandsawangbhuwana, Charlie; Shi, Linda Z.; Zhu, Qingyuan; Alliegro, Mark C.; Berns, Michael W.

    2012-01-01

    This study combines microfluidics with optical microablation in a microscopy system that allows for high-throughput manipulation of oocytes, automated media exchange, and long-term oocyte observation. The microfluidic component of the system transports oocytes from an inlet port into multiple flow channels. Within each channel, oocytes are confined against a microfluidic barrier using a steady fluid flow provided by an external computer-controlled syringe pump. This allows for easy media replacement without disturbing the oocyte location. The microfluidic and optical-laser microbeam ablation capabilities of the system were validated using surf clam (Spisula solidissima) oocytes that were immobilized in order to permit ablation of the 5 μm diameter nucleolinus within the oocyte nucleolus. Oocytes were the followed and assayed for polar body ejection.

  10. Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Ko, William; Lim, Sookkyung; Lee, Wanho; Kim, Yongsam; Berg, Howard C.; Peskin, Charles S.

    2017-06-01

    The helical flagella that are attached to the cell body of bacteria such as Escherichia coli and Salmonella typhimurium allow the cell to swim in a fluid environment. These flagella are capable of polymorphic transformation in that they take on various helical shapes that differ in helical pitch, radius, and chirality. We present a mathematical model of a single flagellum described by Kirchhoff rod theory that is immersed in a fluid governed by Stokes equations. We perform numerical simulations to demonstrate two mechanisms by which polymorphic transformation can occur, as observed in experiments. First, we consider a flagellar filament attached to a rotary motor in which transformations are triggered by a reversal of the direction of motor rotation [L. Turner et al., J. Bacteriol. 182, 2793 (2000), 10.1128/JB.182.10.2793-2801.2000]. We then consider a filament that is fixed on one end and immersed in an external fluid flow [H. Hotani, J. Mol. Biol. 156, 791 (1982), 10.1016/0022-2836(82)90142-5]. The detailed dynamics of the helical flagellum interacting with a viscous fluid is discussed and comparisons with experimental and theoretical results are provided.

  11. Space Technology for Medical Aids

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Under one of the earliest contracts awarded in the Apollo lunar landing program, Parker Hannifin Corporation developed and produced equipment for controlling the flow of propellants into the mammoth engines of the Saturn moonbooster. Today, Parker is supplying the huge valves that control propellant flow from the Space Shuttle's external fuel tank to the engines of the Shuttle Orbiter as well as the "peanut valve," named for its small size. In 1977, NASA, recognizing the company's special expertise in miniature systems, asked Parker to participate in the development of an implantable artificial sphincter for control of urinary incontinence. The company's peanut valve experience provided an ideal base for a new biomedical project, the Programmable Implantable Medication System (PIMS) for continuous, computer-directed delivery of precisely metered medication -- insulin, for example -- within a patient's body. The work on PIMS also inspired development of Micromed, a related programmable medication device for external, rather than implantable use. The Biomedical Products Division has also applied its fluid handling expertise to a drugless therapy system called Cryomax for the treatment of such disorders as rheumatoid arthritis and lupus.

  12. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

  13. External micro-PIXE analysis of fluid inclusions: Test of the LABEC facility on samples of quartz veins from Apuan Alps (Italy)

    NASA Astrophysics Data System (ADS)

    Massi, M.; Calusi, S.; Giuntini, L.; Ruggieri, G.; Dini, A.

    2008-05-01

    Fluid inclusions are small portions, usually smaller than 100 μm, of fluid trapped within minerals during or after growth. Their characteristics provide therefore fundamental information on nature and evolution of fluids present in the past in different geological environments. At the LABEC laboratory in Firenze, high-salinity fluid inclusions in quartz crystals, coming from the Apuan Alps metamorphic complex, were analysed at the external scanning microbeam. Results, although still preliminary, have already provided us with hints on fluid-rock interaction processes during the metamorphism of the Apuan Alps.

  14. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani; Roy, Titob

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for themore » constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.« less

  15. Method of making tapered capillary tips with constant inner diameters

    DOEpatents

    Kelly, Ryan T [West Richland, WA; Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2009-02-17

    Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.

  16. Scaling and Instabilities in Bubble Pinch-Off

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; Waldrep, R.; Taborek, P.

    2005-05-01

    We have used a 100 000 frame-per-second video to analyze the pinch-off of nitrogen gas bubbles in fluids with a wide range of viscosity. If the external fluid is highly viscous (ηext>100 cP), the bubble neck radius is proportional to the time before break, τ, and decreases smoothly to zero. If the external fluid has low viscosity (ηext<10 cP), the radius scales as τ1/2 until an instability develops in the gas bubble, which causes the neck to rupture and tear apart. Finally, if the viscosity of the external fluid is in an intermediate range, an elongated thread is formed, which breaks apart into micron-sized bubbles.

  17. Aeroelastic analysis of circular cylindrical and truncated conical shells subjected to a supersonic flow

    NASA Astrophysics Data System (ADS)

    Sabri, Farhad

    Shells of revolution, particularly cylindrical and conical shells, are one of the basic structural elements in the aerospace structures. With the advent of high speed aircrafts, these shells can show dynamic instabilities when they are exposed to a supersonic flow. Therefore, aeroelastic analysis of these elements is one of the primary design criteria which aeronautical engineers are dealing with. This analysis can be done with the help of finite element method (FEM) coupled with the computational fluid dynamic (CFD) or by experimental methods but it is time consuming and very expensive. The purpose of this dissertation is to develop such a numerical tool to do aeroelastic analysis in a fast and precise way. Meanwhile during the design stage, where the different configurations, loading and boundary conditions may need to be analyzed, this numerical method can be used very easily with the high order of reliability. In this study structural modeling is a combination of linear Sanders thin shell theory and classical finite element method. Based on this hybrid finite element method, the shell displacements are found from the exact solutions of shell theory rather than approximating by polynomial function done in traditional finite element method. This leads to a precise and fast convergence. Supersonic aerodynamic modeling is done based on the piston theory and modified piston theory with the shell curvature term. The stress stiffening due to lateral pressure and axial compression are also taken into accounts. Fluid-structure interaction in the presence of inside quiescent fluid is modeled based on the potential theory. In this method, fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacements at the fluid-structure interface. This proposed hybrid finite element has capabilities to do following analysis: (i) Buckling and vibration of an empty or partially fluid filled circular cylindrical shell or truncated conical shell subjected to internal/external pressure and axial compression loading. This is a typical example of external liquid propellant tanks of space shuttles and re-entry vehicles where they may experience this kind of loading during the flight. In the current work, different end boundary conditions of a circular cylindrical shell with different filling ratios were analyzed. To the best author' knowledge this is the first study where this kind of complex loading and boundary conditions are treated together during such an analysis. Only static instability, divergence, was observed where it showed that the fluid filling ratio does not have any effect on the critical buckling pressure and axial compression. It only reduces the vibration frequencies. It also revealed that the pressurized shell loses its stability at a higher critical axial load. (ii) Aeroelastic analysis of empty or partially liquid filled circular cylindrical and conical shells. Different boundary conditions with different geometries of shells subjected to supersonic air flow are studied here. In all of cases shell loses its stability though the coupled mode flutter. The results showed that internal pressure has a stabilizing effect and increases the critical flutter speed. It is seen that the value of critical dynamic pressure changes rapidly and widely as the filling ratio increases from a low value. In addition, by increasing the length ratio the decrement of flutter speed is decreased and vanishes. This rapid change in critical dynamic pressure at low filling ratios and its almost steady behaviour at large filling ratios indicate that the fluid near the bottom of the shell is largely influenced by elastic deformation when a shell is subjected to external subsonic flow. Based on comparison with the existing numerical, analytical and experimental data and the power of capabilities of this hybrid finite element method to model different boundary conditions and complex loadings, this FEM package can be used effectively for the design of advanced aerospace structures. It provides the results at less computational cost compare to the commercial FEM software, which imposes some restrictions when such an analysis is done.

  18. New Developments of Computational Fluid Dynamics and Their Applications to Practical Engineering Problems

    NASA Astrophysics Data System (ADS)

    Chen, Hudong

    2001-06-01

    There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward-facing steps, flows over a curved hill and typical NACA airfoils at various angles of attack including prediction of stall angle. We further provide numerous engineering cases, ranging from external aerodynamics around various car bodies to internal flows involved in various industrial devices. We conclude with a discussion of certain future extensions for complex fluids.

  19. Self-contained small utility system

    DOEpatents

    Labinov, Solomon D.; Sand, James R.

    1995-01-01

    A method and apparatus is disclosed to provide a fuel efficient source of readily converted energy to an isolated or remote energy consumption facility. External heat from any of a large variety of sources is converted to an electrical, mechanical, heat or cooling form of energy. A polyatomic working fluid energized by external heat sources is dissociated to a higher gaseous energy state for expansion through a turbine prime mover. The working fluid discharge from the turbine prime mover is routed to a recouperative heat exchanger for exothermic recombination reaction heat transfer to working fluid discharged from the compressor segment of the thermodynaic cycle discharge. The heated compressor discharge fluid is thereafter further heated by the external heat source to the initial higher energy state. Under the pressure at the turbine outlet, the working fluid goes out from a recouperative heat exchanger to a superheated vapor heat exchanger where it is cooled by ambient medium down to an initial temperature of condensation. Thereafter, the working fluid is condensed to a complete liquid state in a condenser cooled by an external medium. This liquid is expanded isenthalpically down to the lowest pressure of the cycle. Under this pressure, the working fluid is evaporated to the superheated vapor state of the inlet of a compressor.

  20. Testing of improved polyimide actuator rod seals at high temperature and under vacuum conditions for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.

    1974-01-01

    Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.

  1. Investigation of blood flow in the external carotid artery and its branches with a new 0D peripheral model.

    PubMed

    Ohhara, Yoshihito; Oshima, Marie; Iwai, Toshinori; Kitajima, Hiroaki; Yajima, Yasuharu; Mitsudo, Kenji; Krdy, Absy; Tohnai, Iwai

    2016-02-04

    Patient-specific modelling in clinical studies requires a realistic simulation to be performed within a reasonable computational time. The aim of this study was to develop simple but realistic outflow boundary conditions for patient-specific blood flow simulation which can be used to clarify the distribution of the anticancer agent in intra-arterial chemotherapy for oral cancer. In this study, the boundary conditions are expressed as a zero dimension (0D) resistance model of the peripheral vessel network based on the fractal characteristics of branching arteries combined with knowledge of the circulatory system and the energy minimization principle. This resistance model was applied to four patient-specific blood flow simulations at the region where the common carotid artery bifurcates into the internal and external carotid arteries. Results of these simulations with the proposed boundary conditions were compared with the results of ultrasound measurements for the same patients. The pressure was found to be within the physiological range. The difference in velocity in the superficial temporal artery results in an error of 5.21 ± 0.78 % between the numerical results and the measurement data. The proposed outflow boundary conditions, therefore, constitute a simple resistance-based model and can be used for performing accurate simulations with commercial fluid dynamics software.

  2. Adaptive compliant structures for flow regulation

    PubMed Central

    Brinkmeyer, Alex; Theunissen, Raf; M. Weaver, Paul; Pirrera, Alberto

    2017-01-01

    This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli—i.e. the aerodynamic loads imposed by different operating conditions—the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices. PMID:28878567

  3. Adaptive compliant structures for flow regulation.

    PubMed

    Arena, Gaetano; M J Groh, Rainer; Brinkmeyer, Alex; Theunissen, Raf; M Weaver, Paul; Pirrera, Alberto

    2017-08-01

    This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli-i.e. the aerodynamic loads imposed by different operating conditions-the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices.

  4. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  5. Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows

    NASA Astrophysics Data System (ADS)

    Kaitna, Roland; Palucis, Marisa C.; Yohannes, Bereket; Hill, Kimberly M.; Dietrich, William E.

    2016-02-01

    Debris flows are typically a saturated mixture of poorly sorted particles and interstitial fluid, whose density and flow properties depend strongly on the presence of suspended fine sediment. Recent research suggests that grain size distribution (GSD) influences excess pore pressures (i.e., pressure in excess of predicted hydrostatic pressure), which in turn plays a governing role in debris flow behaviors. We report a series of controlled laboratory experiments in a 4 m diameter vertically rotating drum where the coarse particle size distribution and the content of fine particles were varied independently. We measured basal pore fluid pressures, pore fluid pressure profiles (using novel sensor probes), velocity profiles, and longitudinal profiles of the flow height. Excess pore fluid pressure was significant for mixtures with high fines fraction. Such flows exhibited lower values for their bulk flow resistance (as measured by surface slope of the flow), had damped fluctuations of normalized fluid pressure and normal stress, and had velocity profiles where the shear was concentrated at the base of the flow. These effects were most pronounced in flows with a wide coarse GSD distribution. Sustained excess fluid pressure occurred during flow and after cessation of motion. Various mechanisms may cause dilation and contraction of the flows, and we propose that the sustained excess fluid pressures during flow and once the flow has stopped may arise from hindered particle settling and yield strength of the fluid, resulting in transfer of particle weight to the fluid. Thus, debris flow behavior may be strongly influenced by sustained excess fluid pressures controlled by particle settling rates.

  6. Analyzing the influence of PEG molecular weight on the separation of PEGylated gold nanoparticles by asymmetric-flow field-flow fractionation.

    PubMed

    Hansen, Matthew; Smith, Mackensie C; Crist, Rachael M; Clogston, Jeffrey D; McNeil, Scott E

    2015-11-01

    Polyethylene glycol (PEG) is an important tool for increasing the biocompatibility of nanoparticle therapeutics. Understanding how these potential nanomedicines will react after they have been introduced into the bloodstream is a critical component of the preclinical evaluation process. Hence, it is paramount that better methods for separating, characterizing, and analyzing these complex and polydisperse formulations are developed. We present a method for separating nominal 30-nm gold nanoparticles coated with various molecular weight PEG moieties that uses only phosphate-buffered saline as the mobile phase, without the need for stabilizing surfactants. The optimized asymmetric-flow field-flow fractionation technique using in-line multiangle light scattering, dynamic light scattering, refractive index, and UV-vis detectors allowed successful separation and detection of a mixture of nanoparticles coated with 2-, 5-, 10-, and 20-kDa PEG. The particles coated with the larger PEG species (10 and 20 kDa) were eluted at times significantly earlier than predicted by field-flow fractionation theory. This was attributed to a lower-density PEG shell for the higher molecular weight PEGylated nanoparticles, which allows a more fluid PEG surface that can be greater influenced by external forces. Hence, the apparent particle hydrodynamic size may fluctuate significantly depending on the overall density of the stabilizing surface coating when an external force is applied. This has considerable implications for PEGylated nanoparticles intended for in vivo application, as nanoparticle size is important for determining circulation times, accumulation sites, and routes of excretion, and highlights the importance and value of the use of secondary size detectors when one is working with complex samples in asymmetric-flow field-flow fractionation.

  7. Fluidica CFD software for fluids instruction

    NASA Astrophysics Data System (ADS)

    Colonius, Tim

    2008-11-01

    Fluidica is an open-source freely available Matlab graphical user interface (GUI) to to an immersed-boundary Navier- Stokes solver. The algorithm is programmed in Fortran and compiled into Matlab as mex-function. The user can create external flows about arbitrarily complex bodies and collections of free vortices. The code runs fast enough for complex 2D flows to be computed and visualized in real-time on the screen. This facilitates its use in homework and in the classroom for demonstrations of various potential-flow and viscous flow phenomena. The GUI has been written with the goal of allowing the student to learn how to use the software as she goes along. The user can select which quantities are viewed on the screen, including contours of various scalars, velocity vectors, streamlines, particle trajectories, streaklines, and finite-time Lyapunov exponents. In this talk, we demonstrate the software in the context of worked classroom examples demonstrating lift and drag, starting vortices, separation, and vortex dynamics.

  8. Computational solution of the velocity and wall shear stress distribution inside a left carotid artery under pulsatile flow conditions

    NASA Astrophysics Data System (ADS)

    Arslan, Nurullah; Turmuş, Hakan

    2014-08-01

    Stroke is still one of the leading causes for death after heart diseases and cancer in all over the world. Strokes happen because an artery that carries blood uphill from the heart to the head is clogged. Most of the time, as with heart attacks, the problem is atherosclerosis, hardening of the arteries, calcified buildup of fatty deposits on the vessel wall. In this study, the fluid dynamic simulations were done in a left carotid bifurcation under the pulsatile flow conditions computationally. Pulsatile flow waveform is given in the paper. In vivo geometry and boundary conditions were obtained from a patient who has stenosis located at external carotid artery (ECA) and internal carotid artery (ICA) of his common carotid artery (CCA). The location of critical flow fields such as low wall shear stress (WSS), stagnation regions and separation regions were detected near the highly stenosed region and at branching region.

  9. Deformation and dynamics of red blood cells in flow through cylindrical microchannels.

    PubMed

    Fedosov, Dmitry A; Peltomäki, Matti; Gompper, Gerhard

    2014-06-28

    The motion of red blood cells (RBCs) in microcirculation plays an important role in blood flow resistance and in the cell partitioning within a microvascular network. Different shapes and dynamics of RBCs in microvessels have been previously observed experimentally including the parachute and slipper shapes. We employ mesoscale hydrodynamic simulations to predict the phase diagram of shapes and dynamics of RBCs in cylindrical microchannels, which serve as idealized microvessels, for a wide range of channel confinements and flow rates. A rich dynamical behavior is found, with snaking and tumbling discocytes, slippers performing a swinging motion, and stationary parachutes. We discuss the effects of different RBC states on the flow resistance, and the influence of RBC properties, characterized by the Föppl-von Kármán number, on the shape diagram. The simulations are performed using the same viscosity for both external and internal fluids surrounding a RBC; however, we discuss how the viscosity contrast would affect the shape diagram.

  10. Electrically tunable negative refraction in core/shell-structured nanorod fluids.

    PubMed

    Su, Zhaoxian; Yin, Jianbo; Guan, Yanqing; Zhao, Xiaopeng

    2014-10-21

    We theoretically investigate optical refraction behavior in a fluid system which contains silica-coated gold nanorods dispersed in silicone oil under an external electric field. Because of the formation of a chain-like or lattice-like structure of dispersed nanorods along the electric field, the fluid shows a hyperbolic equifrequency contour characteristic and, as a result, all-angle broadband optical negative refraction for transverse magnetic wave propagation can be realized. We calculate the effective permittivity tensor of the fluid and verify the analysis using finite element simulations. We also find that the negative refractive index can vary with the electric field strength and external field distribution. Under a non-uniform external field, the gradient refraction behavior can be realized.

  11. Numerical and experimental study of the effect of the induced electric potential in Lorentz force velocimetry

    NASA Astrophysics Data System (ADS)

    Hernández, Daniel; Boeck, Thomas; Karcher, Christian; Wondrak, Thomas

    2018-01-01

    Lorentz force velocimetry (LFV) is a contactless velocity measurement technique for electrically conducting fluids. When a liquid metal or a molten glass flows through an externally applied magnetic field, eddy currents and a flow-braking force are generated inside the liquid. This force is proportional to the velocity or flow rate of the fluid and, due to Newton’s third law, a force of the same magnitude but in opposite direction acts on the source of the applied magnetic field which in our case are permanent magnets. According to Ohm’s law for moving conductors at low magnetic Reynolds numbers, an electric potential is induced which ensures charge conservation. In this paper, we analyze the contribution of the induced electric potential to the total Lorentz force by considering two different scenarios: conducting walls of finite thickness and aspect ratio variation of the cross-section of the flow. In both the cases, the force component generated by the electric potential is always in the opposite direction to the total Lorentz force. This force component is sensitive to the electric boundary conditions of the flow of which insulating and perfectly conducting walls are the two limiting cases. In the latter case, the overall electric resistance of the system is minimized, resulting in a considerable increase in the measured Lorentz force. Additionally, this force originating from the electric potential also decays when the aspect ratio of the cross-section of the flow is changed. Hence, the sensitivity of the measurement technique is enhanced by either increasing wall conductivity or optimizing the aspect ratio of the cross-section of the flow.

  12. Fluid-rock interactions during UHP metamorphism: A review of the Dabie-Sulu orogen, east-central China

    NASA Astrophysics Data System (ADS)

    Zhang, Z. M.; Shen, K.; Liou, J. G.; Dong, X.; Wang, W.; Yu, F.; Liu, F.

    2011-08-01

    Comprehensive review on the characteristics of petrology, oxygen isotope, fluid inclusion and nominally anhydrous minerals (NAMs) for many Dabie-Sulu ultrahigh-pressure (UHP) metamorphic rocks including drill-hole core samples reveals that fluid has played important and multiple roles during complicated fluid-rock interactions attending the subduction and exhumation of supracrustal rocks. We have identified several distinct stages of fluid-rock interactions as follows: (1) The Neoproterozoic supercrustal protoliths of UHP rocks experienced variable degrees of hydration through interactions with cold meteoric water with extremely low oxygen isotope compositions during Neoproterozoic Snow-ball Earth time. (2) A series of dehydration reactions took place during Triassic subduction of the Yangtze plate beneath the Sino-Korean plate; the released fluid entered mainly into volatile-bearing high-pressure (HP) and UHP minerals, such as phengite, zoisite-epidote, talc, lawsonite and magnesite, as well as into UHP NAMs, such as garnet, omphacite and rutile. (3) Silicate-rich supercritical fluid (hydrous melt) existed during the UHP metamorphism at mantle depths >100 km which mobilized many normally fluid-immobile elements and caused unusual element fractionation. (4) The fluid exsolved from the NAMs during the early exhumation of the Dabie-Sulu terrane was the main source for HP hydrate retrogression and generation of HP veins. (5) Local amphibolite-facies retrogression at crustal depths took place by infiltration of aqueous fluid of various salinities possibly derived from an external source. (6) The greenschist-facies overprinting and low-pressure (LP) quartz veins were generated by fluid flow along ductile shear zones and brittle faults during late-stage uplift of the UHP terrane.

  13. External Boundary Conditions for Three-Dimensional Problems of Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon V.

    1997-01-01

    We consider an unbounded steady-state flow of viscous fluid over a three-dimensional finite body or configuration of bodies. For the purpose of solving this flow problem numerically, we discretize the governing equations (Navier-Stokes) on a finite-difference grid. The grid obviously cannot stretch from the body up to infinity, because the number of the discrete variables in that case would not be finite. Therefore, prior to the discretization we truncate the original unbounded flow domain by introducing some artificial computational boundary at a finite distance of the body. Typically, the artificial boundary is introduced in a natural way as the external boundary of the domain covered by the grid. The flow problem formulated only on the finite computational domain rather than on the original infinite domain is clearly subdefinite unless some artificial boundary conditions (ABC's) are specified at the external computational boundary. Similarly, the discretized flow problem is subdefinite (i.e., lacks equations with respect to unknowns) unless a special closing procedure is implemented at this artificial boundary. The closing procedure in the discrete case is called the ABC's as well. In this paper, we present an innovative approach to constructing highly accurate ABC's for three-dimensional flow computations. The approach extends our previous technique developed for the two-dimensional case; it employs the finite-difference counterparts to Calderon's pseudodifferential boundary projections calculated in the framework of the difference potentials method (DPM) by Ryaben'kii. The resulting ABC's appear spatially nonlocal but particularly easy to implement along with the existing solvers. The new boundary conditions have been successfully combined with the NASA-developed production code TLNS3D and used for the analysis of wing-shaped configurations in subsonic (including incompressible limit) and transonic flow regimes. As demonstrated by the computational experiments and comparisons with the standard (local) methods, the DPM-based ABC's allow one to greatly reduce the size of the computational domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide for a noticeable increase of the convergence rate of multigrid iterations.

  14. General connected and reconnected fields in plasmas

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2018-02-01

    For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of "magnetic reconnection" may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection.

  15. Catalytically induced electrokinetics for motors and micropumps.

    PubMed

    Paxton, Walter F; Baker, Paul T; Kline, Timothy R; Wang, Yang; Mallouk, Thomas E; Sen, Ayusman

    2006-11-22

    We have explored the role of electrokinetics in the spontaneous motion of platinum-gold nanorods suspended in hydrogen peroxide (H2O2) solutions that may arise from the bimetallic electrochemical decomposition of H2O2. The electrochemical decomposition pathway was confirmed by measuring the steady-state short-circuit current between platinum and gold interdigitated microelectrodes (IMEs) in the presence of H2O2. The resulting ion flux from platinum to gold implies an electric field in the surrounding solution that can be estimated from Ohm's Law. This catalytically generated electric field could in principle bring about electrokinetic effects that scale with the Helmholtz-Smoluchowski equation. Accordingly, we observed a linear relationship between bimetallic rod speed and the resistivity of the bulk solution. Previous observations relating a decrease in speed to an increase in ethanol concentration can be explained in terms of a decrease in current density caused by the presence of ethanol. Furthermore, we found that the catalytically generated electric field in the solution near a Pt/Au IME in the presence of H2O2 is capable of inducing electroosmotic fluid flow that can be switched on and off externally. We demonstrate that the velocity of the fluid flow in the plane of the IME is a function of the electric field, whether catalytically generated or applied from an external current source. Our findings indicate that the motion of PtAu nanorods in H2O2 is primarily due to a catalytically induced electrokinetic phenomenon and that other mechanisms, such as those related to interfacial tension gradients, play at best a minor role.

  16. Looking inside a debris flow

    NASA Astrophysics Data System (ADS)

    Bowman, Elisabeth; Sanvitale, Nicoletta; Bird, Joshua

    2014-05-01

    Debris flows, masses of saturated, channelized, granular materials that flow at high speeds downslope, present a hazard to lives and infrastructure in regions of high relief and runoff. They also present a challenge to modelling due to the heterogeneous, multi-phase, nature of the constituent materials, with particles ranging from boulder-size to silt-size and fluid viscosity being altered by the presence of fine particles and clay. As a debris flow travels on its flow path, it will tend to segregate, with larger particles being focused to the flow front and fluid being concentrated in the tail - resulting in different rheological behaviour in time and space. It will also tend to erode and deposit material as it moves through different channel segments or reaches, with this behaviour influenced by the confinement of the channel and the angle of the slope within each reach. Flume studies offer the potential to examine in detail the behaviour of model debris flows within the penultimate and final (deposit fan area) reaches - zones which are generally of most interest in terms of human risk. Flume studies which are conducted using transparent debris offer additional benefits to more traditional methods that use opaque materials, enabling insights to the flow behaviour that are inaccessible via other physical methods. We present flume model work which has been designed to capture some essential aspects of debris flow behaviour using well graded (polydisperse) transparent debris, albeit at reduced scale. These aspects include the final deposit spread or runout increasing for a lower concentration of solids and a higher penultimate reach slope angle, and observable particle size segregation during downslope motion. We present time-varying measurements made internally and externally at a point in the channel via Plane Laser Induced Fluorescence and Particle Image Velocimetry, PIV. The measurements enable velocity distributions of the segregating flows over time to be determined that can be directly compared with theoretical relationships developed from measurements made at flow margins.

  17. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  18. Nonwoven Fabric Uses and Prospects in Human Space Flight

    NASA Technical Reports Server (NTRS)

    Bacon, Jack

    2001-01-01

    The US space shuttle fleet has been flying for over 20 years. Although the shuttle operates in a unique exterior environment, the interior is intentionally made to be as close to the "normal" human environment as possible. The filtration needs of the shuttle are not substantially different from those of a large mobile home or camper, supporting the needs of a family of seven for up to two weeks. Therefore, most of the materials that are used to filter the air, water, and other fluids on the Shuttle are similar or identical to those employed in other sectors of the transportation industry. The only significantly different feature of the space environment is the unique "three-phase" nature of the air (with suspended liquids and solids ranging in size from aerosol droplets to binoculars). Such suspended debris contributes to the air filtration and waste management problem. Careful flow management and cleanliness practices help to mitigate the effect of debris, and liquid spills are rare, seldom making it to the filters. (It has been common on all spacecraft to look first for lost items on the air intake filters, since all objects ultimately migrate there in the flow. Liquids tend to seep rather than "spill", and so tend to aggregate in a ball near the source.) In addition to the basic fluids of the interior environment (water and water wastes, air, and its constituent supply gasses) the shuttle also has unfiltered fluid systems for Freon, hydrogen, helium, ammonia, hydraulic fluid, and propellants. Only the propellant system, owing to its uncommon chemistry, represents a fluid system that is not typical of household or medical applications. Careful external filtration prior to flight assures the cleanliness in these closed systems.

  19. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using /sup 111/In-DTPA ventriculography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, S.A.; Trump, D.L.; Chen, D.C.

    1982-11-01

    Cerebrospinal fluid flow dynamics were evaluated by /sup 111/In-diethylenetriamine pentaacetic acid (/sup 111/In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that /sup 111/In-DTPA cerebrospinal fluid flow imaging is useful in characterizingmore » these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis.« less

  20. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.

    PubMed

    De Wilde, David; Trachet, Bram; De Meyer, Guido; Segers, Patrick

    2016-09-06

    Low and oscillatory wall shear stresses (WSS) near aortic bifurcations have been linked to the onset of atherosclerosis. In previous work, we calculated detailed WSS patterns in the carotid bifurcation of mice using a Fluid-structure interaction (FSI) approach. We subsequently fed the animals a high-fat diet and linked the results of the FSI simulations to those of atherosclerotic plaque location on a within-subject basis. However, these simulations were based on boundary conditions measured under anesthesia, while active mice might experience different hemodynamics. Moreover, the FSI technique for mouse-specific simulations is both time- and labor-intensive, and might be replaced by simpler and easier Computational Fluid Dynamics (CFD) simulations. The goal of the current work was (i) to compare WSS patterns based on anesthesia conditions to those representing active resting and exercising conditions; and (ii) to compare WSS patterns based on FSI simulations to those based on steady-state and transient CFD simulations. For each of the 3 computational techniques (steady state CFD, transient CFD, FSI) we performed 5 simulations: 1 for anesthesia, 2 for conscious resting conditions and 2 more for conscious active conditions. The inflow, pressure and heart rate were scaled according to representative in vivo measurements obtained from literature. When normalized by the maximal shear stress value, shear stress patterns were similar for the 3 computational techniques. For all activity levels, steady state CFD led to an overestimation of WSS values, while FSI simulations yielded a clear increase in WSS reversal at the outer side of the sinus of the external carotid artery that was not visible in transient CFD-simulations. Furthermore, the FSI simulations in the highest locomotor activity state showed a flow recirculation zone in the external carotid artery that was not present under anesthesia. This recirculation went hand in hand with locally increased WSS reversal. Our data show that FSI simulations are not necessary to obtain normalized WSS patterns, but indispensable to assess the oscillatory behavior of the WSS in mice. Flow recirculation and WSS reversal at the external carotid artery may occur during high locomotor activity while they are not present under anesthesia. These phenomena might thus influence plaque formation to a larger extent than what was previously assumed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Gas turbine engine exhaust diffuser including circumferential vane

    DOEpatents

    Orosa, John A.; Matys, Pawel

    2015-05-19

    A flow passage defined between an inner and an outer boundary for guiding a fluid flow in an axial direction. A flow control vane is supported at a radial location between the inner and outer boundaries. A fluid discharge opening is provided for discharging a flow of the compressed fluid from a trailing edge of the vane, and a fluid control surface is provided adjacent to the fluid discharge opening and extends in the axial direction at the trailing edge of the vane. The fluid control surface has a curved trailing edge forming a Coanda surface. The fluid discharge opening is selectively provided with a compressed fluid to produce a Coanda effect along the control surface. The Coanda effect has a component in the radial direction effecting a turning of the fluid flow in the flow path radially inward or outward toward one of the inner and outer boundaries.

  2. Electric fluid pump

    DOEpatents

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  3. Visualization of various working fluids flow regimes in gravity heat pipe

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. Amount of heat flux transferred by heat pipe, of course depends on kind of working fluid. The article deal about visualization of various working fluids flow regimes in glass gravity heat pipe by high speed camera and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) filled with water, ethanol and fluorinert FC 72. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.

  4. Determining the Coefficient of Discharge for a Draining Container

    ERIC Educational Resources Information Center

    Hicks, Ashley; Slaton, William

    2014-01-01

    The flow of fluids through open containers is a topic studied frequently in introductory physics classes. A fluid mechanics class delves deeper into the topic of fluid flow through open containers with holes or barriers. The flow of a fluid jet out of a sharp-edged orifice rarely has the same area as the orifice due to a fluid flow phenomenon…

  5. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray, or segregated flow

    NASA Astrophysics Data System (ADS)

    Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.

    2015-08-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].

  6. Hydrocarbon fluid, ejector refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, G.J.; Foster, A.R.

    1993-08-31

    A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream ofmore » the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.« less

  7. Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics.

    PubMed

    Pourmehran, Oveis; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-10-01

    Magnetic drug targeting (MDT) is a local drug delivery system which aims to concentrate a pharmacological agent at its site of action in order to minimize undesired side effects due to systemic distribution in the organism. Using magnetic drug particles under the influence of an external magnetic field, the drug particles are navigated toward the target region. Herein, computational fluid dynamics was used to simulate the air flow and magnetic particle deposition in a realistic human airway geometry obtained by CT scan images. Using discrete phase modeling and one-way coupling of particle-fluid phases, a Lagrangian approach for particle tracking in the presence of an external non-uniform magnetic field was applied. Polystyrene (PMS40) particles were utilized as the magnetic drug carrier. A parametric study was conducted, and the influence of particle diameter, magnetic source position, magnetic field strength and inhalation condition on the particle transport pattern and deposition efficiency (DE) was reported. Overall, the results show considerable promise of MDT in deposition enhancement at the target region (i.e., left lung). However, the positive effect of increasing particle size on DE enhancement was evident at smaller magnetic field strengths (Mn [Formula: see text] 1.5 T), whereas, at higher applied magnetic field strengths, increasing particle size has a inverse effect on DE. This implies that for efficient MTD in the human respiratory system, an optimal combination of magnetic drug career characteristics and magnetic field strength has to be achieved.

  8. The nonlinear interaction of Tollmien-Schlichting waves and Taylor-Goertler vortices in curved channel flows

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1987-01-01

    It is known that a viscous fluid flow with curved streamlines can support both Tollmien-Schlichting and Taylor-Goertler instabilities. In a situation where both modes are possible on the basis of linear theory a nonlinear theory must be used to determine the effect of the interaction of the instabilities. The details of this interaction are of practical importance because of its possible catastrophic effects on mechanisms used for laminar flow control. This interaction is studied in the context of fully developed flows in curved channels. A part form technical differences associated with boundary layer growth the structures of the instabilities in this flow are very similar to those in the practically more important external boundary layer situation. The interaction is shown to have two distinct phases depending on the size of the disturbances. At very low amplitudes two oblique Tollmein-Schlichting waves interact with a Goertler vortex in such a manner that the amplitudes become infinite at a finite time. This type of interaction is described by ordinary differential amplitude equations with quadratic nonlinearities.

  9. Turbulent Fluid Motion 6: Turbulence, Nonlinear Dynamics, and Deterministic Chaos

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1996-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions, on the average, separate exponentially with time, having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic. In a search for solutions which contrast with the turbulent ones, the Reynolds number (or strength of the forcing) is reduced. Several qualitatively different flows are noted. These are, respectively, fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, we classify only the fully chaotic flows as turbulent. Those flows have both a positive Liapunov exponent and Poincare sections without pattern. By contrast, the weakly chaotic flows, although having positive Liapunov exponents, have some pattern in their Poincare sections. The fixed-point and periodic flows are nonturbulent, since turbulence, as generally understood, is both time-dependent and aperiodic.

  10. Characteristics and performance of the variable polarity plasma arc welding process used in the Space Shuttle external tank

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Liu, J. W.

    1990-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. Flow profiles and power distribution of argon plasma gas as a working fluid to produce plasma arc jet in the VPPA welding process was analyzed. Major loss of heat transfer for flow through the nozzle is convective heat transfer; for the plasma jet flow between the outlet of the nozzle and workpiece is radiative heat transfer; and for the flow through the keyhole of the workpiece is convective heat transfer. The majority of the power absorbed by the keyhole of the workpiece is used for melting the solid metal workpiece into a molten metallic puddle. The crown and root widths and the crown and root heights can be predicted. An algorithm for promoting automatic control of flow parameters and the dimensions of the final product of the welding specification to be used for the VPPA Welding System operated at MSFC are provided.

  11. Theoretical and experimental emittance measurements for a thin liquid sheet flow

    NASA Technical Reports Server (NTRS)

    Englehart, Amy N.; Mcconley, Marc W.; Chubb, Donald L.

    1995-01-01

    Surface tension forces at the edges of a thin liquid (approximately 200 microns) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. Since the fluid must have very low vapor pressure, Dow Corning 705 silicone oil was used and the emittance of a flowing sheet of oil was determined by two methods. The emittance was derived as a function of the temperature drop between the top of the sheet and the coalescence point of the sheet, the sink temperature, the volumetric flow and the length of the sheet. the emittance for the oil was also calculated using an extinction coefficient determined from spectral transmittance data of the oil. The oil's emittance ranges from .67 to .87 depending on the sheet thickness and sheet temperature. The emittance derived from the temperature drop was slightly less than the emittance calculated from transmittance data. An investigation of temperature fluctuation upstream of the slit plate was also done. The fluctuations were determined to be negligible, not affecting the temperature drop which was due to radiation.

  12. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  13. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  14. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    PubMed

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  15. Fluid circulations in the depths of accretionary prism: the record of quartz from the Shimanto Belt, Japan

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Vacelet, Maxime; Ramboz, Claire; Famin, Vincent; Augier, Romain; Palazzin, Giulia

    2014-05-01

    Fluids present in the depths of subduction zones play a major role on seismogenesis, although fluid circulations paths and physico-chemical conditions are still largely unknown. Two main reservoirs of water, either in the pores of sediments or bound to hydrous minerals, release large amounts of water in the relatively shallow and deep domains of subduction zones, respectively. The usual model of circulation assumes then a bottom-up circulation driven by fluid pressure gradients. This study aims at reassessing this model, using the record of rocks from a paleo-accretionary prism, the Shimanto Belt in Japan. These rocks, buried to 5kbars and 300° C (Toriumi and Teruya, Modern Geology, 1988), were affected by pervasive fracturing throughout their history, from burial to exhumation. The quartz filling these fractures and the fluid inclusions that it contains keep the track of the fluid associated with the rock evolution. Using a combined approach of microstructural observations by optical microscopy and cathodoluminescence (CL), and chemical characterization by electron and ion microprobe as well as microthermometry, we show that there are actually two distinct fluids that have cyclically wetted the rock at depth. The first one is an 'external' fluid penetrating through macroscopic fractures and precipitating a quartz blue in CL. In contrast, a 'local' fluid attended the formation of quartz brown in CL, precipitating in microfractures or associated with ductile recrystallization. The two fluids are also chemically distinct: Both have a salinity close to seawater, but the local fluid is fresher than the external one. In addition, the external fluid is richer in aluminum than the local one. Finally, the external fluid is very slightly depleted in δ18O, although the difference is probably not significant and the first-order isotopic signal is a buffering by host rock. Our interpretation of microstructures and chemical signatures is that the external fluid is seawater, penetrating to accretionary prism depths during transient phases of large-scale fracturing and fluid circulation. Macroscale fractures then close, permeability drops, and the fluid is progressively reequilibrated at depth with water produced in-situ by metamorphic reactions. The general scheme is therefore a top-down circulation, contrasting with the usually proposed bottom-up flux. We finally discuss geodynamical scenarios, such as during the postseismic phase or in association with thermal anomalies, where such a counter-intuitive top-down flux of water could prevail in subduction zones.

  16. Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects

    NASA Astrophysics Data System (ADS)

    Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman

    2017-07-01

    Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.

  17. Generating Inviscid and Viscous Fluid-Flow Simulations over an Aircraft Surface Using a Fluid-Flow Mesh

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.

  18. Interfacial Area Development in Two-Phase Fluid Flow: Transient vs. Quasi-Static Flow Conditions

    NASA Astrophysics Data System (ADS)

    Meisenheimer, D. E.; Wildenschild, D.

    2017-12-01

    Fluid-fluid interfaces are important in multiphase flow systems in the environment (e.g. groundwater remediation, geologic CO2 sequestration) and industry (e.g. air stripping, fuel cells). Interfacial area controls mass transfer, and therefore reaction efficiency, between the different phases in these systems but they also influence fluid flow processes. There is a need to better understand this relationship between interfacial area and fluid flow processes so that more robust theories and models can be built for engineers and policy makers to improve the efficacy of many multiphase flow systems important to society. Two-phase flow experiments were performed in glass bead packs under transient and quasi-static flow conditions. Specific interfacial area was calculated from 3D images of the porous media obtained using the fast x-ray microtomography capability at the Advanced Photon Source. We present data suggesting a direct relationship between the transient nature of the fluid-flow experiment (fewer equilibrium points) and increased specific interfacial area. The effect of flow condition on Euler characteristic (a representative measure of fluid topology) will also be presented.

  19. Grain-scale Sr isotope heterogeneity in amphibolite (retrograded UHP eclogite, Dabie terrane): Implications for the origin and flow behavior of retrograde fluids during slab exhumation

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Yang, Yueheng; Chen, Yi; Su, Bin; Gao, Yijie; Zhang, Lingmin; Liu, Jingbo; Mao, Qian

    2016-12-01

    To constrain the origin and flow behavior of amphibolite-facies retrograde fluids during slab exhumation, we investigate the textures, trace element contents, and in situ strontium (Sr) isotopic compositions (using LA-MC-ICP-MS) of multiple types of epidote and apatite in the UHP eclogite and amphibolites from the Hualiangting area (Dabie terrane, China). The UHP epidote porphyroblasts in the eclogite (Ep-E), which formed at 28-30 kbar and 660-720 °C, contain high amounts of Sr, Pb, Th, Ba, and light rare earth elements (LREEs) and have a narrow range of initial 87Sr/86Sr ratios (0.70431 ± 0.00012 to 0.70454 ± 0.00010). Two types of amphibolite-facies epidote were recognized in the amphibolites. The first type of epidote (Ep-AI) developed in all the amphibolites and has slightly lower trace element contents than Ep-E. The Ep-AI has a same initial 87Sr/86Sr ratio range as the Ep-E and represents the primary amphibolite-facies retrograde product that is associated with an internally buffered fluid at 8.0-10.3 kbar and 646-674 °C. The other type of epidote (Ep-AII) occurs as irregular fragments, veins/veinlets, or reaction rims on the Ep-AI in certain amphibolites. Elemental X-ray maps reveal the presence of Ep-AI relics in the Ep-AII domains (appearing as a patchy texture), which indicates that Ep-AII most likely formed by the partial replacement of the Ep-AI in the presence of an infiltrating fluid. The distinctly lower trace element contents of Ep-AII are ascribed to element scavenging by a mechanism of dissolution-transport-precipitation during replacement. The Ep-AII in an individual amphibolite exhibits large intra- and inter-grain variations in the initial 87Sr/86Sr ratios (0.70493 ± 0.00030 to 0.70907 ± 0.00022), which are between those of the Ep-AI and granitic gneisses (wall rock of the amphibolites, 0.7097-0.7108). These results verify that the infiltrating fluid was externally derived from granitic gneisses. The matrix apatite in the amphibolites has the same initial 87Sr/86Sr ratio range as the Ep-AI, indicating that the amphibolite-facies fluid involved in the apatite crystallization was also internally derived. We propose that at least two separate stages of fluids were accounted for the amphibolite-facies retrogression of the Hualiangting eclogite. The fluid responsible for the growth of most of the amphibolite minerals was locally derived and behaved in a pervasive manner, whereas the influx of gneiss-derived fluid was transient, episodic, and highly channelized with a longer transport distance (> 60 m). The disparate origins and flow behavior of these fluids significantly influence the water budget and element transfer in exhumed HP-UHP slabs. This study also indicates that examining grain-scale Sr isotopic variations provides key information regarding the isotopic (dis)equilibrium, fluid origins, and fluid-flow regimes in metamorphic or metasomatic rocks that form in subduction-zone environments.

  20. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  1. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  2. Custom Unit Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis

    2010-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.

  3. Status and Prospects of Computational Fluid Dynamics for Unsteady Transonic Viscous Flows.

    DTIC Science & Technology

    1984-10-01

    including external stores) at transonic flight conditions for which viscous effects are important, and to couple these aerodynamic characteristics with the...OBTAINED * EXPENSIVE FOR MANY RUNS * SCALING (VISCOUS EFFECTS , * CHEMICAL NONEQUILIBRIUM. etc.) USE BOTH TOGETHER - ~. om~innta rv -cliD tor aero:nautical...8217onl’-eir ~ nvsc j 963s 1970s Re-averige, * ’aver-71 :J, ’r ’s 1980S t.urb, enr,, (38 Ius* 19805* ~’ii~~ .r **~’, r o nstead; effects ~~~~~~~~~i, trOr

  4. Measuring Intracranial Pressure And Volume Noninvasively

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1994-01-01

    Ultrasonic technique eliminates need to drill into brain cavity. Intracranial dynamics instrument probes cranium ultrasonically to obtain data for determination of intracranial pressure (ICP) and pressure-volume index (PVI). Instrument determines sensitivity of skull to changes in pressure and by use of mechanical device to exert external calibrated pressure on skull. By monitoring volume of blood flowing into jugular vein, one determines change of volume of blood in cranial system. By measuring response of skull to increasing pressure (where pressure increased by tilting patient known amount) and by using cranial blood pressure, one determines intial pressure in cerebrospinal fluid. Once PVI determined, ICP determined.

  5. Performance of three systems for warming intravenous fluids at different flow rates.

    PubMed

    Satoh, J; Yamakage, M; Wasaki, S I; Namiki, A

    2006-02-01

    This study compared the intravenous fluid warming capabilities of three systems at different flow rates. The devices studied were a water-bath warmer, a dry-heat plate warmer, and an intravenous fluid tube warmer Ambient temperature was controlled at 22 degrees to 24 degrees C. Normal saline (0.9% NaCl) at either room temperature (21 degrees to 23 degrees C) or at ice-cold temperature (3 degrees to 5 degrees C) was administered through each device at a range of flow rates (2 to 100 ml/min). To mimic clinical conditions, the temperature of the fluid was measured with thermocouples at the end of a one metre tube connected to the outflow of the warmer for the first two devices and at the end of the 1.2 m warming tubing for the intravenous fluid tube warmer The temperature of fluid delivered by the water bath warmer increased as the flow rate was increased up to 15 to 20 ml/min but decreased with greater flow rates. The temperature of the fluid delivered by the dry-heat plate warmer significantly increased as the flow rate was increased within the range tested (due to decreased cooling after leaving the device at higher flow rates). The temperature of fluid delivered by the intravenous fluid tube warmer did not depend on the flow rate up to 20 ml/min but significantly and fluid temperature-dependently decreased at higher flow rates (>30 ml/min). Under the conditions of our testing, the dry heat plate warmer delivered the highest temperature fluid at high flow rates.

  6. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor.

    PubMed

    Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo

    2015-12-01

    The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.

  7. Destabilization of confined granular packings due to fluid flow

    NASA Astrophysics Data System (ADS)

    Monloubou, Martin; Sandnes, Bjørnar

    2016-04-01

    Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.

  8. Effect of Er,Cr:YSGG laser on human dentin fluid flow.

    PubMed

    Al-Omari, Wael M; Palamara, Joseph E

    2013-11-01

    The aim of the current investigation was to assess the rate and magnitude of dentin fluid flow of dentinal surfaces irradiated with Er,Cr:YSGG laser. Twenty extracted third molars were sectioned, mounted, and irradiated with Er,Cr:YSGG laser at 3.5 and 4.5 W power settings. Specimens were connected to an automated fluid flow measurement apparatus (Flodec). The rate, magnitude, and direction of dentin fluid flow were recorded at baseline and after irradiation. Nonparametric Wilcoxon signed ranks repeated measure t test revealed a statistically significant reduction in fluid flow for all the power settings. The 4.5-W power output reduced the flow significantly more than the 3.5 W. The samples showed a baseline outward flow followed by inward flow due to irradiation then followed by decreased outward flow. It was concluded that Er,Cr:YSGG laser irradiation at 3.5 and 4.5 W significantly reduced dentinal fluid flow rate. The reduction was directly proportional to power output.

  9. Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1997-01-01

    It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.

  10. Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.

    PubMed

    Afonso, A M; Alves, M A; Pinho, F T

    2013-04-01

    This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmotic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190-193, 2003], in which an electrically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheological behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as the shear-thinning effects are increased. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Flow accelerated organic coating degradation

    NASA Astrophysics Data System (ADS)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as well as promotes the migration of coating materials from the coating into the working fluid, where coatings experience more severe deterioration in their barrier property under flowing conditions. Pure water has shown to be a much more aggressive working fluid than electrolyte solutions. The flowing fluid over the coating surface could be used as an effective acceleration method.

  12. Magnetically stimulated fluid flow patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  13. Magnetically stimulated fluid flow patterns

    ScienceCinema

    Martin, Jim; Solis, Kyle

    2018-05-23

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  14. Localized arc filament plasma actuators for noise mitigation and mixing enhancement

    NASA Technical Reports Server (NTRS)

    Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)

    2008-01-01

    A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.

  15. Localized arc filament plasma actuators for noise mitigation and mixing enhancement

    NASA Technical Reports Server (NTRS)

    Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)

    2010-01-01

    A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.

  16. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  17. Towards High-Frequency Shape Memory Alloy Actuators Incorporating Liquid Metal Energy Circuits

    NASA Astrophysics Data System (ADS)

    Hartl, Darren; Mingear, Jacob; Bielefeldt, Brent; Rohmer, John; Zamarripa, Jessica; Elwany, Alaa

    2017-12-01

    Large shape memory alloy (SMA) actuators are currently limited to applications with low cyclic actuation frequency requirements due to their generally poor heat transfer rates. This limitation can be overcome through the use of distributed body heating methods such as induction heating or by accelerated cooling methods such as forced convection in internal cooling channels. In this work, a monolithic SMA beam actuator containing liquid gallium-indium alloy-filled channels is fabricated through additive manufacturing. These liquid metal channels enable a novel multi-physical thermal control system, allowing for increased heating and cooling rates to facilitate an increased cyclic actuation frequency. Liquid metal flowing in the channels performs the dual tasks of inductively heating the surrounding SMA material and then actively cooling the SMA via forced internal fluid convection. A coupled thermoelectric model, implemented in COMSOL, predicts a possible fivefold increase in the cyclic actuation frequency due to these increased thermal transfer rates when compared to conventional SMA forms having external heating coils and being externally cooled via forced convection. The first ever experimental prototype SMA actuator of this type is described and, even at much lower flow rates, is shown to exhibit a decrease in cooling time of 40.9%.

  18. International Congress of Fluid Mechanics, 3rd, Cairo, Egypt, Jan. 2-4, 1990, Proceedings. Volumes 1, 2, 3, & 4

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.; Mobarak, A.; Rayan, M. Abou

    This conference presents papers in the fields of flow separation, unsteady aerodynamics, fluid machinery, boundary-layer control and stability, grid generation, vorticity dominated flows, and turbomachinery. Also considered are propulsion, waves and sound, rotor aerodynamics, computational fluid dynamics, Euler and Navier-Stokes equations, cavitation, mixing and shear layers, mixing layers and turbulent flows, and fluid machinery and two-phase flows. Also addressed are supersonic and reacting flows, turbulent flows, and thermofluids.

  19. Isotachophoresis system having larger-diameter channels flowing into channels with reduced diameter and with selectable counter-flow

    DOEpatents

    Mariella, Jr., Raymond P.

    2018-03-06

    An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.

  20. Design and Analysis Tool for External-Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2012-01-01

    A computational tool named SUPIN has been developed to design and analyze external-compression supersonic inlets for aircraft at cruise speeds from Mach 1.6 to 2.0. The inlet types available include the axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced Busemann inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flowfield is divided into parts to provide a framework for the geometry and aerodynamic modeling and the parts are defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick analysis. SUPIN provides inlet geometry in the form of coordinates and surface grids useable by grid generation methods for higher-fidelity computational fluid dynamics (CFD) analysis. SUPIN is demonstrated through a series of design studies and CFD analyses were performed to verify some of the analysis results.

  1. Colloidal layers in magnetic fields and under shear flow

    NASA Astrophysics Data System (ADS)

    Löwen, H.; Messina, R.; Hoffmann, N.; Likos, C. N.; Eisenmann, C.; Keim, P.; Gasser, U.; Maret, G.; Goldberg, R.; Palberg, T.

    2005-11-01

    The behaviour of colloidal mono- and bilayers in external magnetic fields and under shear is discussed and recent progress is summarized. Superparamagnetic colloidal particles form monolayers when they are confined to a air-water interface in a hanging water droplet. An external magnetic field allows us to tune the strength of the mutual dipole-dipole interaction between the colloids and the anisotropy of the interaction can be controlled by the tilt angle of the magnetic field relative to the surface normal of the air-water interface. For sufficiently large magnetic field strength crystalline monolayers are found. The role of fluctuations in these two-dimensional crystals is discussed. Furthermore, clustering phenomena in binary mixtures of superparamagnetic particles forming fluid monolayers are predicted. Finally, we address sheared colloidal bilayers and find that the orientation of confined colloidal crystals can be tailored by a previously applied shear direction.

  2. Dissipative, forced turbulence in two-dimensional magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Montgomery, D.; Joyce, G.

    1976-01-01

    The equations of motion for turbulent two-dimensional magnetohydrodynamic flows are solved in the presence of finite viscosity and resistivity, for the case in which external forces (mechanical and/or magnetic) act on the fluid. The goal is to verify the existence of a magnetohydrodynamic dynamo effect which is represented mathematically by a substantial back-transfer of mean square vector potential to the longest allowed Fourier wavelengths. External forces consisting of a random part plus a fraction of the value at the previous time step are employed, after the manner of Lilly for the Navier-Stokes case. The regime explored is that for which the mechanical and magnetic Reynolds numbers are in the region of 100 to 1000. The conclusions are that mechanical forcing terms alone cannot lead to dynamo action, but that dynamo action can result from either magnetic forcing terms or from both mechanical and magnetic forcing terms simultaneously.

  3. Argon Bubble Transport and Capture in Continuous Casting with an External Magnetic Field Using GPU-Based Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Jin, Kai

    Continuous casting produces over 95% of steel in the world today, hence even small improvements to this important industrial process can have large economic impact. In the continuous casting of steel process, argon gas is usually injected at the slide gate or stopper rod to prevent clogging, but entrapped bubbles may cause defects in the final product. Many defects in this process are related to the transient fluid flow in the mold region of the caster. Electromagnetic braking (EMBr) device is often used at high casting speed to modify the mold flow, reduce the surface velocity and fluctuation. This work studies the physics in continuous casting process including effects of EMBr on the motion of fluid flow in the mold region, and transport and capture of bubbles in the solidification processes. A computational effective Reynolds-averaged Navier-Stokes (RANS) model and a high fidelity Large Eddy Simulation (LES) model are used to understand the motion of the molten steel flow. A general purpose multi-GPU Navier-Stokes solver, CUFLOW, is developed. A Coherent-Structure Smagorinsky LES model is implemented to model the turbulent flow. A two-way coupled Lagrangian particle tracking model is added to track the motion of argon bubbles. A particle/bubble capture model based on force balance at dendrite tips is validated and used to study the capture of argon bubbles by the solidifying steel shell. To investigate the effects of EMBr on the turbulent molten steel flow and bubble transport, an electrical potential method is implemented to solve the magnetohydrodynamics equations. Volume of Fluid (VOF) simulations are carried out to understand the additional resistance force on moving argon bubbles caused by adding transverse magnetic field. A modified drag coefficient is extrapolated from the results and used in the two-way coupled Eulerian-Lagrangian model to predict the argon bubble transport in a caster with EMBr. A hook capture model is developed to understand the effects of hooks on argon bubble capture.

  4. Ultrasound Thermal Field Imaging of Opaque Fluids

    NASA Technical Reports Server (NTRS)

    Andereck, C. David

    1999-01-01

    We have initiated an experimental program to develop an ultrasound system for non-intrusively imaging the thermal field in opaque fluids under an externally imposed temperature gradient. Many industrial processes involve opaque fluids, such as molten metals, semiconductors, and polymers, often in situations in which thermal gradients are important. For example, one may wish to understand semiconductor crystal growth dynamics in a Bridgman apparatus. Destructive testing of the crystal after the process is completed gives only indirect information about the fluid dynamics of the formation process. Knowledge of the coupled thermal and velocity fields during the growth process is then essential. Most techniques for non-intrusive velocity and temperature measurement in fluids are optical in nature, and hence the fluids studied must be transparent. In some cases (for example, LDV (laser Doppler velocimetry) and PIV (particle imaging velocimetry)) the velocities of small neutrally buoyant seed particles suspended in the fluid, are measured. Without particle seeding one can use the variation of the index of refraction of the fluid with temperature to visualize, through interferometric, Schlieren or shadowgraph techniques, the thermal field. The thermal field in turn gives a picture of the pattern existing in the fluid. If the object of study is opaque, non-optical techniques must be used. In this project we focus on the use of ultrasound, which propagates easily through opaque liquids and solids. To date ultrasound measurements have almost exclusively relied on the detection of sound scattered from density discontinuities inside the opaque material of interest. In most cases it has been used to visualize structural properties, but more recently the ultrasound Doppler velocimeter has become available. As in the optical case, it relies on seed particles that scatter Doppler shifted sound back to the detector. Doppler ultrasound techniques are, however, not useful for studying convective fluid flow in crystal growth, because particle seeding is unacceptable and flow velocities are typically too low to be resolved, and may be even lower in microgravity conditions where buoyancy forces are negligible. We will investigate a different use of ultrasound to probe the flows of opaque fluids non-intrusively and without the use of seed particles: our goal is to ultrasonically visualize the thermal field of opaque fluids with relatively high spatial resolution. The proposed technique relies upon the variation of sound speed with temperature of the fluid. A high frequency ultra-sound pulse passing through a fluid-filled chamber will traverse the chamber in a time determined by the relevant chamber dimension and the temperature of the fluid through which the pulse passes. With high time-resolution instrumentation that compares the excitation signal with the received pulse we can detect the influence of the fluid temperature on the pulse travel time. This is effectively an interferometric system, which in its optical form is an extremely sensitive approach to measuring thermal fields in fluids. Moreover, the temperature dependence of sound velocity in liquid metals is comparable to the temperature dependence of the speed of light required for accurate interferometric thermal images in transparent fluids. With an array of transducers scanned electronically a map of the thermal field over the chamber could be produced. An alternative approach would be to use the ultrasound analog of the shadowgraph technique. In the optical version, collimated light passes through the fluid, where it is focused or defocused locally by temperature field induced variations of the index of refraction. The resulting image reveals the thermal field through the spatial pattern of light intensity variations. By analogy, an ultrasound plane wave traversing an opaque fluid sample would be also locally focused or defocused depending on the speed of sound variations, giving rise to spatial variations in sound intensity that will reveal the thermal field pattern. These approaches could be applied to any situation in which temperature differences are expected to occur, and will rapidly provide information about the flow that simply cannot be obtained by any current intrusive or non-intrusive diagnostic technique. As materials processing in microgravity matures it will become increasingly important to have available simple and versatile diagnostic tools, such as we will develop, for studying the flows of opaque fluids under thermal forcing.

  5. Non-equilibrium condensation of supercritical carbon dioxide in a converging-diverging nozzle

    NASA Astrophysics Data System (ADS)

    Ameli, Alireza; Afzalifar, Ali; Turunen-Saaresti, Teemu

    2017-03-01

    Carbon dioxide (CO2) is a promising alternative as a working fluid for future energy conversion and refrigeration cycles. CO2 has low global warming potential compared to refrigerants and supercritical CO2 Brayton cycle ought to have better efficiency than today’s counter parts. However, there are several issues concerning behaviour of supercritical CO2 in aforementioned applications. One of these issues arises due to non-equilibrium condensation of CO2 for some operating conditions in supercritical compressors. This paper investigates the non-equilibrium condensation of carbon dioxide in the course of an expansion from supercritical stagnation conditions in a converging-diverging nozzle. An external look-up table was implemented, using an in-house FORTRAN code, to calculate the fluid properties in supercritical, metastable and saturated regions. This look-up table is coupled with the flow solver and the non-equilibrium condensation model is introduced to the solver using user defined expressions. Numerical results are compared with the experimental measurements. In agreement with the experiment, the distribution of Mach number in the nozzle shows that the flow becomes supersonic in upstream region near the throat where speed of sound is minimum also the equilibrium reestablishment occurs at the outlet boundary condition.

  6. Inertial particles in a shearless mixing layer: direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Ireland, Peter; Collins, Lance

    2010-11-01

    Entrainment, the drawing in of external fluid by a turbulent flow, is present in nearly all turbulent processes, from exhaust plumes to oceanic thermoclines to cumulus clouds. While the entrainment of fluid and of passive scalars in turbulent flows has been studied extensively, comparatively little research has been undertaken on inertial particle entrainment. We explore entrainment of inertial particles in a shearless mixing layer across a turbulent-non-turbulent interface (TNI) and a turbulent-turbulent interface (TTI) through direct numerical simulation (DNS). Particles are initially placed on one side of the interface and are advanced in time in decaying turbulence. Our results show that the TTI is more efficient in mixing droplets than the TNI. We also find that without the influence of gravity, over the range of Stokes numbers present in cumulus clouds, particle concentration statistics are essentially independent of the dissipation scale Stokes number. The DNS data agrees with results from experiments performed in a wind tunnel with close parametric overlap. We anticipate that a better understanding of the role of gravity and turbulence in inertial particle entrainment will lead to improved cloud evolution predictions and more accurate climate models. Sponsored by the U.S. NSF.

  7. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  8. Directed transport of active magnetotactic bacteria in porous media flow

    NASA Astrophysics Data System (ADS)

    Waisbord, Nicolas; Dehkharghani, Amin; Coons, Thomas; Guasto, Jeffrey S.

    2017-11-01

    Swimming cell migration through porous media is a topic of ecological and technical relevance for understanding sediment ecosystems and bioremediation of soil for decontamination. We focus on magnetotactic bacteria - which align passively with Earth's magnetic field and migrate in such sediment environments - as a model system. The transport properties of magnetotactic bacteria are measured in a 2D microfluidic porous medium as a function of the porous microstructure geometry and under a variety of environmental conditions. In a quiescent fluid and in the absence of an external, guiding magnetic field, the effective diffusion of cells' random walk is unsurprisingly hindered with decreasing porosity due to cell-surface interactions. When guided by a magnetic field, cell trajectories acquire a net direction and form lanes, a behavior that is enhanced with increasing magnetic field. When the directed motility is coupled with an opposing fluid flow through the porous medium, convective cells form and locally trap the swimming bacteria. These results, which are corroborated by Langevin Simulations are an important step toward understanding magnetotactic bacterial ecology as well as for the magnetic guidance of microrobots in complex environments. Supported by NSF Grant CBET-1511340.

  9. Wall effects in continuous microfluidic magneto-affinity cell separation.

    PubMed

    Wu, Liqun; Zhang, Yong; Palaniapan, Moorthi; Roy, Partha

    2010-05-01

    Continuous microfluidic magneto-affinity cell separator combines unique microscale flow phenomenon with advantageous nanobead properties, to isolate cells with high specificity. Owing to the comparable size of the cell-bead complexes and the microchannels, the walls of the microchannel exert a strong influence on the separation of cells by this method. We present a theoretical and experimental study that provides a quantitative description of hydrodynamic wall interactions and wall rolling velocity of cells. A transient convection model describes the transport of cells in two-phase microfluidic flow under the influence of an external magnetic field. Transport of cells along the microchannel walls is also considered via an additional equation. Results show the variation of cell flux in the fluid phases and the wall as a function of a dimensionless parameter arising in the equations. Our results suggest that conditions may be optimized to maximize cell separation while minimizing contact with the wall surfaces. Experimentally measured cell rolling velocities on the wall indicate the presence of other near-wall forces in addition to fluid shear forces. Separation of a human colon carcinoma cell line from a mixture of red blood cells, with folic acid conjugated 1 microm and 200 nm beads, is reported.

  10. Non-Newtonian fluid flow in 2D fracture networks

    NASA Astrophysics Data System (ADS)

    Zou, L.; Håkansson, U.; Cvetkovic, V.

    2017-12-01

    Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.

  11. Analyzing Axial Stress and Deformation of Tubular for Steam Injection Process in Deviated Wells Based on the Varied (T, P) Fields

    PubMed Central

    Liu, Yunqiang; Xu, Jiuping; Wang, Shize; Qi, Bin

    2013-01-01

    The axial stress and deformation of high temperature high pressure deviated gas wells are studied. A new model is multiple nonlinear equation systems by comprehensive consideration of axial load of tubular string, internal and external fluid pressure, normal pressure between the tubular and well wall, and friction and viscous friction of fluid flowing. The varied temperature and pressure fields were researched by the coupled differential equations concerning mass, momentum, and energy equations instead of traditional methods. The axial load, the normal pressure, the friction, and four deformation lengths of tubular string are got ten by means of the dimensionless iterative interpolation algorithm. The basic data of the X Well, 1300 meters deep, are used for case history calculations. The results and some useful conclusions can provide technical reliability in the process of designing well testing in oil or gas wells. PMID:24163623

  12. Large-scale disruptions in a current-carrying magnetofluid

    NASA Technical Reports Server (NTRS)

    Dahlburg, J. P.; Montgomery, D.; Doolen, G. D.; Matthaeus, W. H.

    1986-01-01

    Internal disruptions in a strongly magnetized electrically conducting fluid contained within a rigid conducting cylinder of square cross section are investigated theoretically, both with and without an externally applied axial electric field, by means of computer simulations using the pseudospectral three-dimensional Strauss-equations code of Dahlburg et al. (1985). Results from undriven inviscid, driven inviscid, and driven viscid simulations are presented graphically, and the significant effects of low-order truncations on the modeling accuracy are considered. A helical current filament about the cylinder axis is observed. The ratio of turbulent kinetic energy to total poloidal magnetic energy is found to undergo cyclic bounces in the undriven inviscid case, to exhibit one large bounce followed by decay to a quasi-steady state with poloidal fluid velocity flow in the driven inviscid case, and to show one large bounce followed by further sawtoothlike bounces in the driven viscid case.

  13. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  14. Numerical analysis of mixing enhancement for micro-electroosmotic flow

    NASA Astrophysics Data System (ADS)

    Tang, G. H.; He, Y. L.; Tao, W. Q.

    2010-05-01

    Micro-electroosmotic flow is usually slow with negligible inertial effects and diffusion-based mixing can be problematic. To gain an improved understanding of electroosmotic mixing in microchannels, a numerical study has been carried out for channels patterned with wall blocks, and channels patterned with heterogeneous surfaces. The lattice Boltzmann method has been employed to obtain the external electric field, electric potential distribution in the electrolyte, the flow field, and the species concentration distribution within the same framework. The simulation results show that wall blocks and heterogeneous surfaces can significantly disturb the streamlines by fluid folding and stretching leading to apparently substantial improvements in mixing. However, the results show that the introduction of such features can substantially reduce the mass flow rate and thus effectively prolongs the available mixing time when the flow passes through the channel. This is a non-negligible factor on the effectiveness of the observed improvements in mixing efficiency. Compared with the heterogeneous surface distribution, the wall block cases can achieve more effective enhancement in the same mixing time. In addition, the field synergy theory is extended to analyze the mixing enhancement in electroosmotic flow. The distribution of the local synergy angle in the channel aids to evaluate the effectiveness of enhancement method.

  15. Computational analysis of the effectiveness of blood flushing with saline injection from an intravascular diagnostic catheter

    PubMed Central

    Ghata, Narugopal; Aldredge, Ralph C.; Bec, Julien; Marcu, Laura

    2015-01-01

    SUMMARY Optical techniques including fluorescence lifetime spectroscopy have demonstrated potential as a tool for study and diagnosis of arterial vessel pathologies. However, their application in the intravascular diagnostic procedures has been hampered by the presence of blood hemoglobin that affects the light delivery to and the collection from the vessel wall. We report a computational fluid dynamics model that allows for the optimization of blood flushing parameters in a manner that minimizes the amount of saline needed to clear the optical field of view and reduces any adverse effects caused by the external saline jet. A 3D turbulence (k−ω) model was employed for Eulerian–Eulerian two-phase flow to simulate the flow inside and around a side-viewing fiber-optic catheter. Current analysis demonstrates the effects of various parameters including infusion and blood flow rates, vessel diameters, and pulsatile nature of blood flow on the flow structure around the catheter tip. The results from this study can be utilized in determining the optimal flushing rate for given vessel diameter, blood flow rate, and maximum wall shear stress that the vessel wall can sustain and subsequently in optimizing the design parameters of optical-based intravascular catheters. PMID:24953876

  16. The effects of forcing on a single stream shear layer and its parent boundary layer

    NASA Technical Reports Server (NTRS)

    Haw, Richard C.; Foss, John F.

    1990-01-01

    Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.

  17. Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason; Vera, Jerry

    2015-01-01

    Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.

  18. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  19. The direction of fluid flow during contact metamorphism of siliceous carbonate rocks: new data for the Monzoni and Predazzo aureoles, northern Italy, and a global review

    NASA Astrophysics Data System (ADS)

    Ferry, John M.; Wing, Boswell A.; Penniston-Dorland, Sarah C.; Rumble, Douglas

    2002-03-01

    Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux ~5,000 and ~300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.

  20. The direction of fluid flow during contact metamorphism of siliceous carbonate rocks: new data for the Monzoni and Predazzo aureoles, northern Italy, and a global review

    NASA Astrophysics Data System (ADS)

    Ferry, John; Wing, Boswell; Penniston-Dorland, Sarah; Rumble, Douglas

    2001-11-01

    Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux 5,000 and 300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.

  1. Fluids of the ocular surface: concepts, functions and physics.

    PubMed

    Cher, Ivan

    2012-08-01

    General adoption of the ocular surface (OS) concept has advanced the therapy of the external eye. Fresh physical findings have prompted new concepts; examples taken from each section of the text are: (i) ever-present lipid sealant bridges the palpebral fissure capping the three-dimensional 'OS' sac. The muco-aqueous pool (MAP) is thus enclosed, secluded from atmosphere, evaporation mitigated. Hence, the OS is conceptually, a compartment. The term 'dacruon' (otherwise 'tear film') has been coined for the combined fluids of the OS, viz. lipid film and MAP. (ii) Investigative techniques of physics yield data on (say) surface tension and viscosity, and on functions such as anchorage of dacruon base to the varied mucosae of the OS, lubrication, renovation of intermarginal fluid layers as the eye opens after each blink, and refinement of optics and vision by the fluids attached to the cornea. (iii) Physical events in the opening eye produce the unique 'black line' phenomenon in which capillary force induces subsurface flows into thirsty menisci, bringing about parameniscal dark grooves, pupil-ward of each meniscus. Attenuation of fluorescein in the shallowed fluid gaps behind each groove makes the dye appear unilluminated ('black lines') relative to adjacent full-thickness MAP fluid glowing under cobalt-blue illumination. Isolated from cornea by grooves and gaps, the meniscal fluid cannot pass freely over the cornea. It therefore streams through the menisci to nasolacrimal outflow. © 2012 The Author. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  2. Ovarian fluid allows directional cryptic female choice despite external fertilization

    PubMed Central

    Alonzo, Suzanne H.; Stiver, Kelly A.; Marsh-Rollo, Susan E.

    2016-01-01

    In species with internal fertilization, females can favour certain males over others, not only before mating but also within the female's reproductive tract after mating. Here, we ask whether such directional post-mating (that is, cryptic) female mate choice can also occur in species with external fertilization. Using an in vitro sperm competition experiment, we demonstrate that female ovarian fluid (ovarian fluid) changes the outcome of sperm competition by decreasing the importance of sperm number thereby increasing the relative importance of sperm velocity. We further show that ovarian fluid does not differentially affect sperm from alternative male phenotypes, but generally enhances sperm velocity, motility, straightness and chemoattraction. Under natural conditions, female ovarian fluid likely increases the paternity of the preferred parental male phenotype, as these males release fewer but faster sperm. These results imply females have greater control over fertilization and potential to exert selection on males in species with external fertilization than previously thought possible. PMID:27529581

  3. Reducing or stopping the uncontrolled flow of fluid such as oil from a well

    DOEpatents

    Hermes, Robert E

    2014-02-18

    The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

  4. Statistical independence of the initial conditions in chaotic mixing.

    PubMed

    García de la Cruz, J M; Vassilicos, J C; Rossi, L

    2017-11-01

    Experimental evidence of the scalar convergence towards a global strange eigenmode independent of the scalar initial condition in chaotic mixing is provided. This convergence, underpinning the independent nature of chaotic mixing in any passive scalar, is presented by scalar fields with different initial conditions casting statistically similar shapes when advected by periodic unsteady flows. As the scalar patterns converge towards a global strange eigenmode, the scalar filaments, locally aligned with the direction of maximum stretching, as described by the Lagrangian stretching theory, stack together in an inhomogeneous pattern at distances smaller than their asymptotic minimum widths. The scalar variance decay becomes then exponential and independent of the scalar diffusivity or initial condition. In this work, mixing is achieved by advecting the scalar using a set of laminar flows with unsteady periodic topology. These flows, that resemble the tendril-whorl map, are obtained by morphing the forcing geometry in an electromagnetic free surface 2D mixing experiment. This forcing generates a velocity field which periodically switches between two concentric hyperbolic and elliptic stagnation points. In agreement with previous literature, the velocity fields obtained produce a chaotic mixer with two regions: a central mixing and an external extensional area. These two regions are interconnected through two pairs of fluid conduits which transfer clean and dyed fluid from the extensional area towards the mixing region and a homogenized mixture from the mixing area towards the extensional region.

  5. A Generalized Electron Heat Flow Relation and its Connection to the Thermal Force and the Solar Wind Parallel Electric Field

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.

    2017-12-01

    Enroute to a new formulation of the heat law for the solar wind plasma the role of the invariably neglected, but omnipresent, thermal force for the multi-fluid physics of the corona and solar wind expansion will be discussed. This force (a) controls the size of the collisional ion electron energy exchange, favoring the thermal vs supra thermal electrons; (b) occurs whenever heat flux occurs; (c) remains after the electron and ion fluids come to a no slip, zero parallel current, equilibrium; (d) enhances the equilibrium parallel electric field; but (e) has a size that is theoretically independent of the electron collision frequency - allowing its importance to persist far up into the corona where collisions are invariably ignored in first approximation. The constituent parts of the thermal force allow the derivation of a new generalized electron heat flow relation that will be presented. It depends on the separate field aligned divergences of electron and ion pressures and the gradients of the ion gravitational potential and parallel flow energies and is based upon a multi-component electron distribution function. The new terms in this heat law explicitly incorporate the astrophysical context of gradients, acceleration and external forces that make demands on the parallel electric field and quasi-neutrality; essentially all of these effects are missing in traditional formulations.

  6. Tuning the shear viscosity of a dilute suspension using particle shapes that inhibit rotation

    NASA Astrophysics Data System (ADS)

    Sinai Borker, Neeraj; Stroock, Abraham; Koch, Donald

    2017-11-01

    We show that a suspension of slender, rigid-particles that attain an equilibrium orientation in a simple shear flow have a much smaller intrinsic viscosity relative to a suspension of tumbling particles with the same aspect ratio. An axisymmetric particle, such as a ring or a fiber, with certain cross-sections can attain an equilibrium orientation in a low Reynolds number simple shear flow without application of external forces (Singh et al., J. Fluid Mech., 2013; Bretherton, J. Fluid Mech., 1962 a). These particles align such that the slender dimension(s) of the particle is/are almost perpendicular to the velocity gradient direction of the simple shear flow and thus they have much smaller stresslets compared to the time averaged stresslet of a rotating slender particle. While slender fibers, also remain aligned in a similar state for a long time, the major contribution to the average stresslet occurs when the fiber is flipping. Using slender body theory and boundary element method calculations we demonstrate that particle alignment could significantly reduce the intrinsic viscosity of the suspension relative to a suspension of rotating particles. By choosing particle shapes that can be fabricated using manufacturing techniques such as photolithography or 3-D printing, our results open new pathways to control the rheological properties of a particle suspension by altering the shape of the particle. This research was funded by NSF Grant CBET-1435013.

  7. Ferromagnetic Swimmers - Devices and Applications

    NASA Astrophysics Data System (ADS)

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  8. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model.

    PubMed

    Choi, Hyunjung; Shin, Ji Hyun; Kim, Eun Sung; Park, So Jung; Bae, Il-Hong; Jo, Yoon Kyung; Jeong, In Young; Kim, Hyoung-June; Lee, Youngjin; Park, Hea Chul; Jeon, Hong Bae; Kim, Ki Woo; Lee, Tae Ryong; Cho, Dong-Hyung

    2016-01-01

    The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling.

  9. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  10. Fluid Flow Phenomena during Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction andmore » speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.« less

  11. Novel multi-functional fluid flow device for studying cellular mechanotransduction

    PubMed Central

    Lyons, James S.; Iyer, Shama R.; Lovering, Richard M.; Ward, Christopher W.; Stains, Joseph P.

    2016-01-01

    Cells respond to their mechanical environment by initiating multiple mechanotransduction signaling pathways. Defects in mechanotransduction have been implicated in a number of pathologies; thus, there is need for convenient and efficient methods for studying the mechanisms underlying these processes. A widely used and accepted technique for mechanically stimulating cells in culture is the introduction of fluid flow on cell monolayers. Here, we describe a novel, multifunctional fluid flow device for exposing cells to fluid flow in culture. This device integrates with common lab equipment including routine cell culture plates and peristaltic pumps. Further, it allows the fluid flow treated cells to be examined with outcomes at the cell and molecular level. We validated the device using the biologic response of cultured UMR-106 osteoblast-like cells in comparison to a commercially available system of laminar sheer stress to track live cell calcium influx in response to fluid flow. In addition, we demonstrate the fluid flow-dependent activation of phospho-ERK in these cells, consistent with the findings in other fluid flow devices. This device provides a low cost, multi-functional alternative to currently available systems, while still providing the ability to generate physiologically relevant conditions for studying processes involved in mechanotransduction in vitro. PMID:27887728

  12. Fluid flow plate for decreased density of fuel cell assembly

    DOEpatents

    Vitale, Nicholas G.

    1999-01-01

    A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.

  13. Numerical Modelling of Three-Fluid Flow Using The Level-set Method

    NASA Astrophysics Data System (ADS)

    Li, Hongying; Lou, Jing; Shang, Zhi

    2014-11-01

    This work presents a numerical model for simulation of three-fluid flow involving two different moving interfaces. These interfaces are captured using the level-set method via two different level-set functions. A combined formulation with only one set of conservation equations for the whole physical domain, consisting of the three different immiscible fluids, is employed. Numerical solution is performed on a fixed mesh using the finite volume method. Surface tension effect is incorporated using the Continuum Surface Force model. Validation of the present model is made against available results for stratified flow and rising bubble in a container with a free surface. Applications of the present model are demonstrated by a variety of three-fluid flow systems including (1) three-fluid stratified flow, (2) two-fluid stratified flow carrying the third fluid in the form of drops and (3) simultaneous rising and settling of two drops in a stationary third fluid. The work is supported by a Thematic and Strategic Research from A*STAR, Singapore (Ref. #: 1021640075).

  14. High precision high flow range control valve

    DOEpatents

    McCray, J.A.

    1999-07-13

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

  15. High precision high flow range control valve

    DOEpatents

    McCray, John A.

    1999-01-01

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

  16. Experimental investigation of the flow dynamics and rheology of complex fluids in pipe flow by hybrid multi-scale velocimetry

    NASA Astrophysics Data System (ADS)

    Haavisto, Sanna; Cardona, Maria J.; Salmela, Juha; Powell, Robert L.; McCarthy, Michael J.; Kataja, Markku; Koponen, Antti I.

    2017-11-01

    A hybrid multi-scale velocimetry method utilizing Doppler optical coherence tomography in combination with either magnetic resonance imaging or ultrasound velocity profiling is used to investigate pipe flow of four rheologically different working fluids under varying flow regimes. These fluids include water, an aqueous xanthan gum solution, a softwood fiber suspension, and a microfibrillated cellulose suspension. The measurement setup enables not only the analysis of the rheological (bulk) behavior of a studied fluid but gives simultaneously information on their wall layer dynamics, both of which are needed for analyzing and solving practical fluid flow-related problems. Preliminary novel results on rheological and boundary layer flow properties of the working fluids are reported and the potential of the hybrid measurement setup is demonstrated.

  17. Flow Patterns in the Jugular Veins of Pulsatile Tinnitus Patients

    PubMed Central

    Kao, Evan; Kefayati, Sarah; Amans, Matthew R.; Faraji, Farshid; Ballweber, Megan; Halbach, Van; Saloner, David

    2017-01-01

    Pulsatile Tinnitus (PT) is a pulse-synchronous sound heard in the absence of an external source. PT is often related to abnormal flow in vascular structures near the cochlea. One vascular territory implicated in PT is the internal jugular vein (IJV). Using computational fluid dynamics (CFD) based on patient-specific Magnetic Resonance Imaging (MRI), we investigated the flow within the IJV of seven subjects, four symptomatic and three asymptomatic of PT. We found that there were two extreme anatomic types classified by the shape and position of the jugular bulbs: elevated and rounded. PT patients had elevated jugular bulbs that led to a distinctive helical flow pattern within the proximal internal jugular vein. Asymptomatic subjects generally had rounded jugular bulbs that neatly redirected flow from the sigmoid sinus directly into the jugular vein. These two flow patterns were quantified by calculating the length-averaged streamline curvature of the flow within the proximal jugular vein: 130.3 ± 8.1 m-1 for geometries with rounded bulbs, 260.7 ± 29.4 m-1 for those with elevated bulbs (P < 0.005). Our results suggest that variations in the jugular bulb geometry lead to distinct flow patterns that are linked to PT, but further investigation is needed to determine if the vortex pattern is causal to sound generation. PMID:28057349

  18. Pore-scale modeling of moving contact line problems in immiscible two-phase flow.

    NASA Astrophysics Data System (ADS)

    Kucala, A.; Noble, D.; Martinez, M. J.

    2016-12-01

    Two immiscible fluids in static equilibrium form a common interface along a solid surface, characterized as the static contact (wetting) angle and is a function of surface geometry, intermolecular forces, and interfacial surface energies manifested as interfacial tension. This static configuration may become perturbed due to external force imbalances (mass injection, pressure gradients, buoyancy, etc.) and the contact line location and interface curvature becomes dynamic. Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. The moving two-phase interface is tracked using the level set method and discretized with the conformal decomposition finite element method (CDFEM), allowing for surface tension effects to be computed at the exact interface location. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  19. A fluid-structure interaction model of soft robotics using an active strain approach

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Lin, Zhaowu; Gao, Tong

    2017-11-01

    Soft robotic swimmers exhibit rich dynamics that stem from the non-linear interplay of the fluid and immersed soft elastic body. Due to the difficulty of handling the nonlinear two-way coupling of hydrodynamic flow and deforming elastic body, studies of flexible swimmers often employ either one-way coupling strategies with imposed motions of the solid body or some simplified elasticity models. To explore the nonlinear dynamics of soft robots powered by smart soft materials, we develop a computational model to deal with the two-way fluid/elastic structure interactions using the fictitious domain method. To mimic the dynamic response of the functional soft material under external actuations, we assume the solid phase to be neo-Hookean, and employ an active strain approach to incorporate actuation, which is based on the multiplicative decomposition of the deformation gradient tensor. We demonstrate the capability of our algorithm by performing a series of numerical explorations that manipulate an elastic structure with finite thickness, starting from simple rectangular or circular plates to soft robot prototypes such as stingrays and jellyfish.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle

    A product formed from a first material including a geopolymer resin material, a geopolymer material, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress),more » thereby forming particles having an external dimension in a range between 1 nm and 2 cm.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle

    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress),more » thereby forming particles having an external dimension in a range between 1 nm and 2 cm.« less

  2. A New Modular Approach for Tightly Coupled Fluid/Structure Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru

    2003-01-01

    Static aeroelastic computations are made using a C++ executive suitable for closely coupled fluid/structure interaction studies. The fluid flow is modeled using the Euler/Navier Stokes equations and the structure is modeled using finite elements. FORTRAN based fluids and structures codes are integrated under C++ environment. The flow and structural solvers are treated as separate object files. The data flow between fluids and structures is accomplished using I/O. Results are demonstrated for transonic flow over partially flexible surface that is important for aerospace vehicles. Use of this development to accurately predict flow induced structural failure will be demonstrated.

  3. Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1997-01-01

    A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.

  4. A monolithic homotopy continuation algorithm with application to computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Brown, David A.; Zingg, David W.

    2016-09-01

    A new class of homotopy continuation methods is developed suitable for globalizing quasi-Newton methods for large sparse nonlinear systems of equations. The new continuation methods, described as monolithic homotopy continuation, differ from the classical predictor-corrector algorithm in that the predictor and corrector phases are replaced with a single phase which includes both a predictor and corrector component. Conditional convergence and stability are proved analytically. Using a Laplacian-like operator to construct the homotopy, the new algorithm is shown to be more efficient than the predictor-corrector homotopy continuation algorithm as well as an implementation of the widely-used pseudo-transient continuation algorithm for some inviscid and turbulent, subsonic and transonic external aerodynamic flows over the ONERA M6 wing and the NACA 0012 airfoil using a parallel implicit Newton-Krylov finite-difference flow solver.

  5. Active nematic gels as active relaxing solids

    NASA Astrophysics Data System (ADS)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  6. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  7. Rotation profile flattening and toroidal flow shear reversal due to the coupling of magnetic islands in tokamaks

    DOE PAGES

    Tobias, B.; Chen, M.; Classen, I. G. J.; ...

    2016-04-15

    The electromagnetic coupling of helical modes, including those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. Furthermore, with increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lockmore » to each other without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q95, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. Additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor-a key issue for ITER. Published by AIP Publishing.« less

  8. Rotation profile flattening and toroidal flow shear reversal due to the coupling of magnetic islands in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobias, B.; Grierson, B. A.; Okabayashi, M.

    2016-05-15

    The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each othermore » without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q{sub 95}, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor—a key issue for ITER.« less

  9. Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel

    NASA Astrophysics Data System (ADS)

    Abdulhameed, M.; Vieru, D.; Roslan, R.

    2017-10-01

    This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological analysis and medical diagnosis.

  10. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1996-01-01

    Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.

  11. Yield-stress fluids foams: flow patterns and controlled production in T-junction and flow-focusing devices.

    PubMed

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise

    2016-11-23

    We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.

  12. A systems approach to theoretical fluid mechanics: Fundamentals

    NASA Technical Reports Server (NTRS)

    Anyiwo, J. C.

    1978-01-01

    A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.

  13. Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel

    NASA Astrophysics Data System (ADS)

    Mogilner, Alex; Manhart, Angelika

    2018-01-01

    The cell is a mechanical machine, and continuum mechanics of the fluid cytoplasm and the viscoelastic deforming cytoskeleton play key roles in cell physiology. We review mathematical models of intracellular fluid mechanics, from cytoplasmic fluid flows, to the flow of a viscous active cytoskeletal gel, to models of two-phase poroviscous flows, to poroelastic models. We discuss application of these models to cell biological phenomena, such as organelle positioning, blebbing, and cell motility. We also discuss challenges of understanding fluid mechanics on the cellular scale.

  14. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  15. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Yao, Jun; Huang, Zhaoqin; Yin, Xiaolong; Xie, Haojun; Zhang, Jianguang

    2017-06-01

    Water flooding is an efficient approach to maintain reservoir pressure and has been widely used to enhance oil recovery. However, preferential water pathways such as fractures can significantly decrease the sweep efficiency. Therefore, the utilization ratio of injected water is seriously affected. How to develop new flooding technology to further improve the oil recovery in this situation is a pressing problem. For the past few years, controllable ferrofluid has caused the extensive concern in oil industry as a new functional material. In the presence of a gradient in the magnetic field strength, a magnetic body force is produced on the ferrofluid so that the attractive magnetic forces allow the ferrofluid to be manipulated to flow in any desired direction through the control of the external magnetic field. In view of these properties, the potential application of using the ferrofluid as a new kind of displacing fluid for flooding in fractured porous media is been studied in this paper for the first time. Considering the physical process of the mobilization of ferrofluid through porous media by arrangement of strong external magnetic fields, the magnetic body force was introduced into the Darcy equation and deals with fractures based on the discrete-fracture model. The fully implicit finite volume method is used to solve mathematical model and the validity and accuracy of numerical simulation, which is demonstrated through an experiment with ferrofluid flowing in a single fractured oil-saturated sand in a 2-D horizontal cell. At last, the water flooding and ferrofluid flooding in a complex fractured porous media have been studied. The results showed that the ferrofluid can be manipulated to flow in desired direction through control of the external magnetic field, so that using ferrofluid for flooding can raise the scope of the whole displacement. As a consequence, the oil recovery has been greatly improved in comparison to water flooding. Thus, the ferrofluid flooding is a large potential method for enhanced oil recovery in the future.

  16. Effect of Slow External Flow on Flame Spreading over Solid Material: Opposed Spreading over Polyethylene Wire Insulation

    NASA Technical Reports Server (NTRS)

    Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.

    2001-01-01

    The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.

  17. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  18. New views of granular mass flows

    USGS Publications Warehouse

    Iverson, R.M.; Vallance, J.W.

    2001-01-01

    Concentrated grain-fluid mixtures in rock avalanches, debris flows, and pyroclastic flows do not behave as simple materials with fixed rheologies. Instead, rheology evolves as mixture agitation, grain concentration, and fluid-pressure change during flow initiation, transit, and deposition. Throughout a flow, however, normal forces on planes parallel to the free upper surface approximately balance the weight of the superincumbent mixture, and the Coulomb friction rule describes bulk intergranular shear stresses on such planes. Pore-fluid pressure can temporarily or locally enhance mixture mobility by reducing Coulomb friction and transferring shear stress to the fluid phase. Initial conditions, boundary conditions, and grain comminution and sorting can influence pore-fluid pressures and cause variations in flow dynamics and deposits.

  19. Similarities and differences between mind-wandering and external distraction: a latent variable analysis of lapses of attention and their relation to cognitive abilities.

    PubMed

    Unsworth, Nash; McMillan, Brittany D

    2014-07-01

    The current study examined the extent to which task-unrelated thoughts represent both vulnerability to mind-wandering and susceptibility to external distraction from an individual difference perspective. Participants performed multiple measures of attention control, working memory capacity, and fluid intelligence. Task-unrelated thoughts were assessed using thought probes during the attention control tasks. Using latent variable techniques, the results suggested that mind-wandering and external distraction reflect distinct, yet correlated constructs, both of which are related to working memory capacity and fluid intelligence. Furthermore, the results suggest that the common variance shared by mind-wandering, external distraction, and attention control is what primarily accounts for their relation with working memory capacity and fluid intelligence. These results support the notion that lapses of attention are strongly related to cognitive abilities. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Transpiration purged optical probe

    DOEpatents

    VanOsdol, John; Woodruff, Steven

    2004-01-06

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  1. Concept of planetary gear system to control fluid mixture ratio

    NASA Technical Reports Server (NTRS)

    Mcgroarty, J. D.

    1966-01-01

    Mechanical device senses and corrects for fluid flow departures from the selected flow ratio of two fluids. This system has been considered for control of rocket engine propellant mixture control but could find use wherever control of the flow ratio of any two fluids is desired.

  2. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    PubMed Central

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2–4) in agreement with experiments. The virtual solute concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241–251), computations predict that 60–80% of the pumped flux stems from serosal bath in agreement with the experimental estimate of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux of water through cells exceeds inward water flux between cells. Molecules moving along the paracellular pathway are driven by a translateral flow of water, i.e., the model generates pseudo-solvent drag. The associated flux-ratio equation is derived. PMID:10919860

  3. Influence of geometry and material of insulating posts on particle trapping using positive dielectrophoresis.

    PubMed

    Pesch, Georg R; Du, Fei; Baune, Michael; Thöming, Jorg

    2017-02-03

    Insulator-based dielectrophoresis (iDEP) is a powerful particle analysis technique based on electric field scattering at material boundaries which can be used, for example, for particle filtration or to achieve chromatographic separation. Typical devices consist of microchannels containing an array of posts but large scale application was also successfully tested. Distribution and magnitude of the generated field gradients and thus the possibility to trap particles depends apart from the applied field strength on the material combination between post and surrounding medium and on the boundary shape. In this study we simulate trajectories of singe particles under the influence of positive DEP that are flowing past one single post due to an external fluid flow. We analyze the influence of key parameters (excitatory field strength, fluid flow velocity, particle size, distance from the post, post size, and cross-sectional geometry) on two benchmark criteria, i.e., a critical initial distance from the post so that trapping still occurs (at fixed particle size) and a critical minimum particle size necessary for trapping (at fixed initial distance). Our approach is fundamental and not based on finding an optimal geometry of insulating structures but rather aims to understand the underlying phenomena of particle trapping. A sensitivity analysis reveals that electric field strength and particle size have the same impact, as have fluid flow velocity and post dimension. Compared to these parameters the geometry of the post's cross-section (i.e. rhomboidal or elliptical with varying width-to-height or aspect ratio) has a rather small influence but can be used to optimize the trapping efficiency at a specific distance. We hence found an ideal aspect ratio for trapping for each base geometry and initial distance to the tip which is independent of the other parameters. As a result we present design criteria which we believe to be a valuable addition to the existing literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Permeability of continental crust influenced by internal and external forcing

    USGS Publications Warehouse

    Rojstaczer, S.A.; Ingebritsen, S.E.; Hayba, D.O.

    2008-01-01

    The permeability of continental crust is so highly variable that it is often considered to defy systematic characterization. However, despite this variability, some order has been gleaned from globally compiled data. What accounts for the apparent coherence of mean permeability in the continental crust (and permeability-depth relations) on a very large scale? Here we argue that large-scale crustal permeability adjusts to accommodate rates of internal and external forcing. In the deeper crust, internal forcing - fluxes induced by metamorphism, magmatism, and mantle degassing - is dominant, whereas in the shallow crust, external forcing - the vigor of the hydrologic cycle - is a primary control. Crustal petrologists have long recognized the likelihood of a causal relation between fluid flux and permeability in the deep, ductile crust, where fluid pressures are typically near-lithostatic. It is less obvious that such a relation should pertain in the relatively cool, brittle upper crust, where near-hydrostatic fluid pressures are the norm. We use first-order calculations and numerical modeling to explore the hypothesis that upper-crustal permeability is influenced by the magnitude of external fluid sources, much as lower-crustal permeability is influenced by the magnitude of internal fluid sources. We compare model-generated permeability structures with various observations of crustal permeability. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.

  5. Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahedo, Eduardo; Navarro-Cavalle, Jaume

    2013-04-15

    An axisymmetric macroscopic model of the magnetized plasma flow inside the helicon thruster chamber is derived, assuming that the power absorbed from the helicon antenna emission is known. Ionization, confinement, subsonic flows, and production efficiency are discussed in terms of design and operation parameters. Analytical solutions and simple scaling laws for ideal plasma conditions are obtained. The chamber model is then matched with a model of the external magnetic nozzle in order to characterize the whole plasma flow and assess thruster performances. Thermal, electric, and magnetic contributions to thrust are evaluated. The energy balance provides the power conversion between ionsmore » and electrons in chamber and nozzle, and the power distribution among beam power, ionization losses, and wall losses. Thruster efficiency is assessed, and the main causes of inefficiency are identified. The thermodynamic behavior of the collisionless electron population in the nozzle is acknowledged to be poorly known and crucial for a complete plasma expansion and good thrust efficiency.« less

  6. Preconditioned implicit solvers for the Navier-Stokes equations on distributed-memory machines

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Liou, Meng-Sing; Dyson, Rodger W.

    1994-01-01

    The GMRES method is parallelized, and combined with local preconditioning to construct an implicit parallel solver to obtain steady-state solutions for the Navier-Stokes equations of fluid flow on distributed-memory machines. The new implicit parallel solver is designed to preserve the convergence rate of the equivalent 'serial' solver. A static domain-decomposition is used to partition the computational domain amongst the available processing nodes of the parallel machine. The SPMD (Single-Program Multiple-Data) programming model is combined with message-passing tools to develop the parallel code on a 32-node Intel Hypercube and a 512-node Intel Delta machine. The implicit parallel solver is validated for internal and external flow problems, and is found to compare identically with flow solutions obtained on a Cray Y-MP/8. A peak computational speed of 2300 MFlops/sec has been achieved on 512 nodes of the Intel Delta machine,k for a problem size of 1024 K equations (256 K grid points).

  7. Experiences with explicit finite-difference schemes for complex fluid dynamics problems on STAR-100 and CYBER-203 computers

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Rudy, D. H.; Drummond, J. P.; Harris, J. E.

    1982-01-01

    Several two- and three-dimensional external and internal flow problems solved on the STAR-100 and CYBER-203 vector processing computers are described. The flow field was described by the full Navier-Stokes equations which were then solved by explicit finite-difference algorithms. Problem results and computer system requirements are presented. Program organization and data base structure for three-dimensional computer codes which will eliminate or improve on page faulting, are discussed. Storage requirements for three-dimensional codes are reduced by calculating transformation metric data in each step. As a result, in-core grid points were increased in number by 50% to 150,000, with a 10% execution time increase. An assessment of current and future machine requirements shows that even on the CYBER-205 computer only a few problems can be solved realistically. Estimates reveal that the present situation is more storage limited than compute rate limited, but advancements in both storage and speed are essential to realistically calculate three-dimensional flow.

  8. Ultrasonographic evaluation of myometrial thickness and prediction of a successful external cephalic version.

    PubMed

    Buhimschi, Catalin S; Buhimschi, Irina A; Wehrum, Mark J; Molaskey-Jones, Sherry; Sfakianaki, Anna K; Pettker, Christian M; Thung, Stephen; Campbell, Katherine H; Dulay, Antonette T; Funai, Edmund F; Bahtiyar, Mert O

    2011-10-01

    To test the hypothesis that myometrial thickness predicts the success of external cephalic version. Abdominal ultrasonographic scans were performed in 114 consecutive pregnant women with breech singletons before an external cephalic version maneuver. Myometrial thickness was measured by a standardized protocol at three sites: the lower segment, midanterior wall, and the fundal uterine wall. Independent variables analyzed in conjunction with myometrial thickness were: maternal age, parity, body mass index, abdominal wall thickness, estimated fetal weight, amniotic fluid index, placental thickness and location, fetal spine position, breech type, and delivery outcomes such as final mode of delivery and birth weight. Successful version was associated with a thicker ultrasonographic fundal myometrium (unsuccessful: 6.7 [5.5-8.4] compared with successful: 7.4 [6.6-9.7] mm, P=.037). Multivariate regression analysis showed that increased fundal myometrial thickness, high amniotic fluid index, and nonfrank breech presentation were the strongest independent predictors of external cephalic version success (P<.001). A fundal myometrial thickness greater than 6.75 mm and an amniotic fluid index greater than 12 cm were each associated with successful external cephalic versions (fundal myometrial thickness: odds ratio [OR] 2.4, 95% confidence interval [CI] 1.1-5.2, P=.029; amniotic fluid index: OR 2.8, 95% CI 1.3-6.0, P=.008). Combining the two variables resulted in an absolute risk reduction for a failed version of 27.6% (95% CI 7.1-48.1) and a number needed to treat of four (95% CI 2.1-14.2). Fundal myometrial thickness and amniotic fluid index contribute to success of external cephalic version and their evaluation can be easily incorporated in algorithms before the procedure. III.

  9. Viscoelastic fluid-structure interactions between a flexible cylinder and wormlike micelle solution

    NASA Astrophysics Data System (ADS)

    Dey, Anita A.; Modarres-Sadeghi, Yahya; Rothstein, Jonathan P.

    2018-06-01

    It is well known that when a flexible or flexibly mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable even at infinitesimal Reynolds numbers due to a purely elastic flow instability that can occur at large Weissenberg numbers. Recent work has shown that these elastic flow instabilities can drive the motion of flexible sheets. The fluctuating fluid forces exerted on the structure from the elastic flow instabilities can lead to a coupling between an oscillatory structural motion and the state of stress in the fluid flow. In this paper, we present the results of an investigation into the flow of a viscoelastic wormlike micelle solution past a flexible circular cylinder. The time variation of the flow field and the state of stress in the fluid are shown using a combination of particle image tracking and flow-induced birefringence images. The static and dynamic responses of the flexible cylinder are presented for a range of flow velocities. The nonlinear dynamics of the structural motion is studied to better understand an observed transition from a symmetric to an asymmetric structural deformation and oscillation behavior.

  10. On the boundary flow using pulsed nanosecond DBD plasma actuators

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Jie; Cui, Y. D.; Li, Jiun-Ming; Zheng, Jian-Guo; Khoo, B. C.

    2018-05-01

    Our previous studies in quiescent air environment [Z. J. Zhao et al., AIAA J. 53(5) (2015) 1336; J. G. Zheng et al., Phys. Fluids 26(3) (2014) 036102] reveal experimentally and numerically that the shock wave generated by the nanosecond pulsed plasma is fundamentally a microblast wave. The shock-induced burst perturbations (overpressure and induced velocity) are found to be restricted to a very narrow region (about 1 mm) behind the shock front and last only for a few microseconds. These results indicate that the pulsed nanosecond dielectric barrier discharge (DBD) plasma actuator has stronger local effects in time and spatial domain. In this paper, we further investigate the effects of pulsed plasma on the boundary layer flow over a flat plate. The present investigation reveals that the nanosecond pulsed plasma actuator generates intense perturbations and tends to promote the laminar boundary over a flat plate to turbulent flow. The heat effect after the pulsed plasma discharge was observed in the external flow, lasting a few milliseconds for a single pulse and reaching a quasi-stable state for multi-pulses.

  11. Microfluidic circuit designs for performing fluidic manipulations that reduce the number of pumping sources and fluid reservoirs

    DOEpatents

    Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2001-01-01

    A microfabricated device and method for proportioning and mixing biological or chemical materials by pressure- or vacuum-driven flow is disclosed. The microfabricated device mixes a plurality of materials in volumetric proportions controlled by the flow resistances of tributary reagent channels through which the materials are transported. The microchip includes two or more tributary reagent channels combining at one or more junctions to form one or more mixing channels. By varying the geometries of the channels (length, cross section, etc.), a plurality of reagent materials can be mixed at a junction such that the proportions of the reagent materials in the mixing channel depend on a ratio of the channel geometries and material properties. Such an approach facilitates flow division on the microchip without relying on techniques external to the microchip. Microchannel designs that provide the necessary flow division to accomplish valving operations using a minimum of pressure or vacuum sources are also described. In addition, microchannel designs that accomplish fluidic operation utilizing a minimal number of fluidic reservoirs are disclosed.

  12. Effect of simple shear flow on photosynthesis rate and morphology of micro algae

    NASA Astrophysics Data System (ADS)

    Mitsuhashi, S.; Fujimoto, M.; Muramatsu, H.; Tanishita, K.

    The convective motion of micro algal suspension gives an advantageous effect on the photosynthetic rate in the bioreactor, however, the nature of convective effect on the photosynthesis has not been fully understood. The propose of this study concerns the nature of photosynthetic rate in a well-defined hydrodynamic shear flow of Spirulina platensis suspension, generated in a double rotating coaxial cylinders. The double rotating coaxial cylinders was installed in the incubator chamber with the controlled illumination intensity and temperature. Two kind of experiments, short and long term experiments, were performed to evaluate the direct effect of shear flow on the photosynthetic rate. The short term experiment indicates that the simple shear flow enables to augment the photosynthesis of Spirulina suspension and simultaneously causes the cell destruction due to the excessive shear stress. The long term experiment for 100 hours reveals that the growth rate and the morphology of Spirulina is sensitive to the external fluid mechanical stimulus. The long term application of mechanical stress on the algae may result in the adaptation of the photosynthetic function and morphology.

  13. Impulsive Injection for Compressor Stator Separation Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Braunscheidel, Edward P.; Bright, Michelle M.

    2005-01-01

    Flow control using impulsive injection from the suction surface of a stator vane has been applied in a low speed axial compressor. Impulsive injection is shown to significantly reduce separation relative to steady injection for vanes that were induced to separate by an increase in vane stagger angle of 4 degrees. Injected flow was applied to the airfoil suction surface using spanwise slots pitched in the streamwise direction. Injection was limited to the near-hub region, from 10 to 36 percent of span, to affect the dominant loss due to hub leakage flow. Actuation was provided externally using high-speed solenoid valves closely coupled to the vane tip. Variations in injected mass, frequency, and duty cycle are explored. The local corrected total pressure loss across the vane at the lower span region was reduced by over 20 percent. Additionally, low momentum fluid migrating from the hub region toward the tip was effectively suppressed resulting in an overall benefit which reduced corrected area averaged loss through the passage by 4 percent. The injection mass fraction used for impulsive actuation was typically less than 0.1 percent of the compressor through flow.

  14. Thermoelectric Generation Using Counter-Flows of Ideal Fluids

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Lu, Baiyi; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2017-08-01

    Thermoelectric (TE) performance of a three-dimensional (3-D) TE module is examined by exposing it between a pair of counter-flows of ideal fluids. The ideal fluids are thermal sources of TE module flow in the opposite direction at the same flow rate and generate temperature differences on the hot and cold surfaces due to their different temperatures at the channel inlet. TE performance caused by different inlet temperatures of thermal fluids are numerically analyzed by using the finite-volume method on 3-D meshed physical models and then compared with those using a constant boundary temperature. The results show that voltage and current of the TE module increase gradually from a beginning moment to a steady flow and reach a stable value. The stable values increase with inlet temperature of the hot fluid when the inlet temperature of cold fluid is fixed. However, the time to get to the stable values is almost consistent for all the temperature differences. Moreover, the trend of TE performance using a fluid flow boundary is similar to that of using a constant boundary temperature. Furthermore, 3-D contours of fluid pressure, temperature, enthalpy, electromotive force, current density and heat flux are exhibited in order to clarify the influence of counter-flows of ideal fluids on TE generation. The current density and heat flux homogeneously distribute on an entire TE module, thus indicating that the counter-flows of thermal fluids have high potential to bring about fine performance for TE modules.

  15. Fluid flows and forces in development: functions, features and biophysical principles

    PubMed Central

    Freund, Jonathan B.; Goetz, Jacky G.; Hill, Kent L.; Vermot, Julien

    2012-01-01

    Throughout morphogenesis, cells experience intracellular tensile and contractile forces on microscopic scales. Cells also experience extracellular forces, such as static forces mediated by the extracellular matrix and forces resulting from microscopic fluid flow. Although the biological ramifications of static forces have received much attention, little is known about the roles of fluid flows and forces during embryogenesis. Here, we focus on the microfluidic forces generated by cilia-driven fluid flow and heart-driven hemodynamics, as well as on the signaling pathways involved in flow sensing. We discuss recent studies that describe the functions and the biomechanical features of these fluid flows. These insights suggest that biological flow determines many aspects of cell behavior and identity through a specific set of physical stimuli and signaling pathways. PMID:22395739

  16. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  17. Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, C. P.; Lam, Y. C., E-mail: myclam@ntu.edu.sg; BioSystems and Micromechanics

    2015-07-15

    Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxationmore » times. The flows were shown to be chaotic through the computation of their correlation dimension (D{sub 2}) and the largest Lyapunov exponent (λ{sub 1}), with D{sub 2} being fractional and λ{sub 1} being positive. Contour maps of D{sub 2} and λ{sub 1} of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D{sub 2} and λ{sub 1} maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.« less

  18. Influence of mantle viscosity structure and mineral grain size on fluid migration pathways in the mantle wedge.

    NASA Astrophysics Data System (ADS)

    Cerpa, N. G.; Wada, I.; Wilson, C. R.; Spiegelman, M. W.

    2016-12-01

    We develop a 2D numerical porous flow model that incorporates both grain size distribution and matrix compaction to explore the fluid migration (FM) pathways in the mantle wedge. Melt generation for arc volcanism is thought to be triggered by slab-derived fluids that migrate into the hot overlying mantle and reduce its melting temperature. While the narrow location of the arcs relative to the top of the slab ( 100±30 km) is a robust observation, the release of fluids is predicted to occur over a wide range of depth. Reconciling such observations and predictions remains a challenge for the geodynamic community. Fluid transport by porous flow depends on the permeability of the medium which in turn depends on fluid fraction and mineral grain size. The grain size distribution in the mantle wedge predicted by laboratory derived laws was found to be a possible mechanism to focusing of fluids beneath the arcs [Wada and Behn, 2015]. The viscous resistance of the matrix to the volumetric strain generates compaction pressure that affects fluid flow and can also focus fluids towards the arc [Wilson et al, 2014]. We thus have developed a 2D one-way coupled Darcy's-Stokes flow model (solid flow independent of fluid flow) for the mantle wedge that combines both effects. For the solid flow calculation, we use a kinematic-dynamic approach where the system is driven by the prescribed slab velocity. The solid rheology accounts for both dislocation and diffusion creep and we calculate the grain size distribution following Wada and Behn [2015]. In our fluid flow model, the permeability of the medium is grain size dependent and the matrix bulk viscosity depends on solid shear viscosity and fluid fraction. The fluid influx from the slab is imposed as a boundary condition at the base of the mantle wedge. We solve the discretized governing equations using the software package TerraFERMA. Applying a range of model parameter values, including slab age, slab dip, subduction rate, and fluid influx, we quantify the combined effects of grain size and compaction on fluid flow paths.

  19. Effects of magnetic-fluid flow on structural instability of a carbon nanotube conveying nanoflow under a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Sadeghi-Goughari, Moslem; Jeon, Soo; Kwon, Hyock-Ju

    2017-09-01

    In drug delivery systems, carbon nanotubes (CNTs) can be used to deliver anticancer drugs into target site to kill metastatic cancer cells under the magnetic field guidance. Deep understanding of dynamic behavior of CNTs in drug delivery systems may enable more efficient use of the drugs while reducing systemic side effects. In this paper, we study the effect of magnetic-fluid flow on the structural instability of a CNT conveying nanoflow under a longitudinal magnetic field. The Navier-Stokes equation of magnetic-fluid flow is coupled with Euler-Bernoulli beam theory for modeling fluid structure interaction (FSI). Size effects of the magnetic fluid and the CNT are addressed through small-scale parameters including the Knudsen number (Kn) and the nonlocal parameter. Results show the positive role of magnetic properties of fluid flow on the structural stability of CNT. Specifically, magnetic force applied to the fluid flow has an effect of decreasing the structural stiffness of system while increasing the critical flow velocity. Furthermore, we discover that the nanoscale effects of CNT and fluid flow tend to amplify the influence of magnetic field on the vibrational behavior of the system.

  20. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

Top