Particles with nonlinear electric response: Suppressing van der Waals forces by an external field.
Soo, Heino; Dean, David S; Krüger, Matthias
2017-01-01
We study the classical thermal component of Casimir, or van der Waals, forces between point particles with highly anharmonic dipole Hamiltonians when they are subjected to an external electric field. Using a model for which the individual dipole moments saturate in a strong field (a model that mimics the charges in a neutral, perfectly conducting sphere), we find that the resulting Casimir force depends strongly on the strength of the field, as demonstrated by analytical results. For a certain angle between the external field and center-to-center axis, the fluctuation force can be tuned and suppressed to arbitrarily small values. We compare the forces between these particles with those between particles with harmonic Hamiltonians and also provide a simple formula for asymptotically large external fields, which we expect to be generally valid for the case of saturating dipole moments.
Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity
NASA Technical Reports Server (NTRS)
Chung, Jacob N.
1996-01-01
The objective of the research is to study the feasibility of employing an external force to replace the buoyancy force in order to maintain nucleate boiling in microgravity. We have found that a bulk velocity field, an electric field and an acoustic field could each play the role of the gravity field in microgravity. Nucleate boiling could be maintained by any one of the three external force fields in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, Tanja; Engel, Dieter; Ehresmann, Arno
2008-12-15
A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.
Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.
2017-05-01
The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Weimin; Niu, Haitao; Lin, Tong
2014-01-28
The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform externalmore » electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.« less
Proprioception Is Robust under External Forces
Kuling, Irene A.; Brenner, Eli; Smeets, Jeroen B. J.
2013-01-01
Information from cutaneous, muscle and joint receptors is combined with efferent information to create a reliable percept of the configuration of our body (proprioception). We exposed the hand to several horizontal force fields to examine whether external forces influence this percept. In an end-point task subjects reached visually presented positions with their unseen hand. In a vector reproduction task, subjects had to judge a distance and direction visually and reproduce the corresponding vector by moving the unseen hand. We found systematic individual errors in the reproduction of the end-points and vectors, but these errors did not vary systematically with the force fields. This suggests that human proprioception accounts for external forces applied to the hand when sensing the position of the hand in the horizontal plane. PMID:24019959
Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.
2016-10-01
The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.
Patterning in systems driven by nonlocal external forces.
Luneville, L; Mallick, K; Pontikis, V; Simeone, D
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
Patterning in systems driven by nonlocal external forces
NASA Astrophysics Data System (ADS)
Luneville, L.; Mallick, K.; Pontikis, V.; Simeone, D.
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
NASA Astrophysics Data System (ADS)
Booth, Adam M.; McCarley, Justin; Hinkle, Jason; Shaw, Susan; Ampuero, Jean-Paul; Lamb, Michael P.
2018-05-01
Landslides reactivate due to external environmental forcing or internal mass redistribution, but the process is rarely documented quantitatively. We capture the three-dimensional, 1-m resolution surface deformation field of a transiently reactivated landslide with image correlation of repeat airborne lidar. Undrained loading by two debris flows in the landslide's head, rather than external forcing, triggered reactivation. After that loading, the lower 2 km of the landslide advanced by up to 14 m in 2 years before completely stopping. The displacement field over those 2 years implies that the slip surface gained 1 kPa of shear strength, which was likely accomplished by a negative dilatancy-pore pressure feedback as material deformed around basal roughness elements. Thus, landslide motion can be decoupled from external environmental forcing in cases, motivating the need to better understand internal perturbations to the stress field to predict hazards and sediment fluxes as landscapes evolve.
Brownian escape and force-driven transport through entropic barriers: Particle size effect.
Cheng, Kuang-Ling; Sheng, Yu-Jane; Tsao, Heng-Kwong
2008-11-14
Brownian escape from a spherical cavity through small holes and force-driven transport through periodic spherical cavities for finite-size particles have been investigated by Brownian dynamic simulations and scaling analysis. The mean first passage time and force-driven mobility are obtained as a function of particle diameter a, hole radius R(H), cavity radius R(C), and external field strength. In the absence of external field, the escape rate is proportional to the exit effect, (R(H)R(C))(1-a2R(H))(32). In weak fields, Brownian diffusion is still dominant and the migration is controlled by the exit effect. Therefore, smaller particles migrate faster than larger ones. In this limit the relation between Brownian escape and force-driven transport can be established by the generalized Einstein-Smoluchowski relation. As the field strength is strong enough, the mobility becomes field dependent and grows with increasing field strength. As a result, the size selectivity diminishes.
A thermostatted kinetic theory model for event-driven pedestrian dynamics
NASA Astrophysics Data System (ADS)
Bianca, Carlo; Mogno, Caterina
2018-06-01
This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.
Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor
2002-03-01
When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.
Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system
NASA Astrophysics Data System (ADS)
Longcai, Zhang
2014-07-01
Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.
Dynamical properties of magnetized two-dimensional one-component plasma
NASA Astrophysics Data System (ADS)
Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios
2018-05-01
Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.
Instabilities of conducting fluid flows in cylindrical shells under external forcing
NASA Astrophysics Data System (ADS)
Burguete, Javier; Miranda, Montserrat
2010-11-01
Flows created in neutral conducting flows remain one of the less studied topics of fluid dynamics, in spite of their relevance both in fundamental research (dynamo action, turbulence suppression) and applications (continuous casting, aluminium production, biophysics). Here we present the effect of a time-dependent magnetic field parallel to the axis of circular cavities. Due to the Lenz's law, the time-dependent magnetic field generates an azymuthal current, that produces a radial force. This force produces the destabilization of the static fluid layer, and a flow is created. The geommetry of the experimental cell is a disc layer with external diameter smaller than 94 mm, with or without internal hole. The layer is up to 20mm depth, and we use as conducting fluid an In-Ga-Sn alloy. There is no external current applied on the problem, only an external magnetic field. This field evolves harmonically with a frequency up to 10Hz, small enough to not to observe skin depth effects. The magnitude ranges from 0 to 0.1 T. With a threshold of 0.01T a dynamical behaviour is observed, and the main characteristics of this flow have been determined: different temporal resonances and spatial patterns with differents symmetries (squares, hexagonal, triangles,...).
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Lavraud, B.; Torbert, R. B.; Argall, M.; Kacem, I.; Yu, W.; Alm, L.; Burch, J.; Russell, C. T.; Shuster, J.;
2016-01-01
We analyze plasma, magnetic field, and electric field data for a flux transfer event (FTE) to highlight improvements in our understanding of these transient reconnection signatures resulting from high-resolution data. The approximate 20 s long, reverse FTE, which occurred south of the geomagnetic equator near dusk, was immersed in super-Alfvnic flow. The field line twist is illustrated by the behavior of flows parallel perpendicular to the magnetic field. Four-spacecraft timing and energetic particle pitch angle anisotropies indicate a flux rope (FR) connected to the Northern Hemisphere and moving southeast. The flow forces evidently overcame the magnetic tension. The high-speed flows inside the FR were different from those outside. The external flows were perpendicular to the field as expected for draping of the external field around the FR. Modeling the FR analytically, we adopt a non-force free approach since the current perpendicular to the field is nonzero. It reproduces many features of the observations.
Ponderomotive forces in electrodynamics of moving media: The Minkowski and Abraham approaches
NASA Astrophysics Data System (ADS)
Nesterenko, V. V.; Nesterenko, A. V.
2016-09-01
In the general setting of the problem, the explicit compact formulae are derived for the ponderomotive forces in the macroscopic electrodynamics of moving media in the Minkowski and Abraham approaches. Taking account of the Minkowski constitutive relations and making use of a special representation for the Abraham energy-momentum tensor enable one to obtain a compact expression for the Abraham force in the case of arbitrary dependence of the medium velocity on spatial coordinates and the time and for nonstationary external electromagnetic field. We term the difference between the ponderomotive forces in the Abraham and Minkowski approaches as the Abraham force not only under consideration of media at rest but also in the case of moving media. The Lorentz force is found which is exerted by external electromagnetic field on the conduction current in a medium, the covariant Ohm law, and the constitutive Minkowski relations being taken into account. The physical argumentation is traced for the definition of the 4-vector of the ponderomotive force as the 4-divergence of the energy-momentum tensor of electromagnetic field in a medium.
Memory effects for a stochastic fractional oscillator in a magnetic field
NASA Astrophysics Data System (ADS)
Mankin, Romi; Laas, Katrin; Laas, Tõnu; Paekivi, Sander
2018-01-01
The problem of random motion of harmonically trapped charged particles in a constant external magnetic field is studied. A generalized three-dimensional Langevin equation with a power-law memory kernel is used to model the interaction of Brownian particles with the complex structure of viscoelastic media (e.g., dusty plasmas). The influence of a fluctuating environment is modeled by an additive fractional Gaussian noise. In the long-time limit the exact expressions of the first-order and second-order moments of the fluctuating position for the Brownian particle subjected to an external periodic force in the plane perpendicular to the magnetic field have been calculated. Also, the particle's angular momentum is found. It is shown that an interplay of external periodic forcing, memory, and colored noise can generate a variety of cooperation effects, such as memory-induced sign reversals of the angular momentum, multiresonance versus Larmor frequency, and memory-induced particle confinement in the absence of an external trapping field. Particularly in the case without external trapping, if the memory exponent is lower than a critical value, we find a resonancelike behavior of the anisotropy in the particle position distribution versus the driving frequency, implying that it can be efficiently excited by an oscillating electric field. Similarities and differences between the behaviors of the models with internal and external noises are also discussed.
Dynamic force signal processing system of a robot manipulator
NASA Technical Reports Server (NTRS)
Uchiyama, M.; Kitagaki, K.; Hakomori, K.
1987-01-01
If dynamic noises such as those caused by the inertia forces of the hand can be eliminated from the signal of the force sensor installed on the wrist of the robot manipulator and if the necessary information of the external force can be detected with high sensitivity and high accuracy, a fine force feedback control for robots used in high speed and various fields will be possible. As the dynamic force sensing system, an external force estimate method with the extended Kalman filter is suggested and simulations and tests for a one axis force were performed. Later a dynamic signal processing system of six axes was composed and tested. The results are presented.
NASA Technical Reports Server (NTRS)
Kleinman, Leonid S.; Red, X. B., Jr.
1995-01-01
An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.
NASA Technical Reports Server (NTRS)
Kleinman, Leonid S.; Reed, X. B., Jr.
1995-01-01
An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.
Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields
NASA Astrophysics Data System (ADS)
Bell, G. I.; Bruhwiler, D. L.; Litvinenko, V. N.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Cary, J. R.
2006-03-01
A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.
Thermal Noise Reduction of Mechanical Oscillators by Actively Controlled External Dissipative Forces
NASA Technical Reports Server (NTRS)
Liang, Shoudan; Medich, David; Czajkowsky, Daniel M.; Sheng, Sitong; Yuan, Jian-Yang; Shao, Zhifeng
1999-01-01
We show that the thermal fluctuations of very soft mechanical oscillators, such as the cantilever in an atomic force microscope (AFM), can be reduced without changing the stiffness of the spring or having to lower the environment temperature. We derive a theoretical relationship between the thermal fluctuations of an oscillator and an actively external-dissipative force. This relationship is verified by experiments with an AFM cantilever where the external active force is coupled through a magnetic field. With simple instrumentation, we have reduced the thermal noise amplitude of the cantilever by a factor of 3.4, achieving an apparent temperature of 25 K with the environment at 295K. This active noise reduction approach can significantly improve the accuracy of static position or static force measurements in a number of practical applications.
Qualitative analysis of a discrete thermostatted kinetic framework modeling complex adaptive systems
NASA Astrophysics Data System (ADS)
Bianca, Carlo; Mogno, Caterina
2018-01-01
This paper deals with the derivation of a new discrete thermostatted kinetic framework for the modeling of complex adaptive systems subjected to external force fields (nonequilibrium system). Specifically, in order to model nonequilibrium stationary states of the system, the external force field is coupled to a dissipative term (thermostat). The well-posedness of the related Cauchy problem is investigated thus allowing the new discrete thermostatted framework to be suitable for the derivation of specific models and the related computational analysis. Applications to crowd dynamics and future research directions are also discussed within the paper.
Plocková, J; Chmelík, J
2001-05-25
Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708
We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less
The use of electromagnetic body forces to enhance the quality of laser welds
NASA Astrophysics Data System (ADS)
Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.
2003-11-01
The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.
Information driving force and its application in agent-based modeling
NASA Astrophysics Data System (ADS)
Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei
2018-04-01
Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.
Guiding-center equations for electrons in ultraintense laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, J.E.; Fisch, N.J.
1994-01-01
The guiding-center equations are derived for electrons in arbitrarily intense laser fields also subject to external fields and ponderomotive forces. Exhibiting the relativistic mass increase of the oscillating electrons, a simple frame-invariant equation is shown to govern the behavior of the electrons for sufficiently weak background fields and ponderomotive forces. The parameter regime for which such a formulation is valid is made precise, and some predictions of the equation are checked by numerical simulation.
Forced magnetohydrodynamic turbulence in a uniform external magnetic field
NASA Technical Reports Server (NTRS)
Hossain, M.; Vahala, G.; Montgomery, D.
1985-01-01
Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx, ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence.
Forced MHD turbulence in a uniform external magnetic field
NASA Technical Reports Server (NTRS)
Hossain, M.; Vahala, G.; Montgomery, D.
1985-01-01
Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx' ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence.
Rigorous derivation of electromagnetic self-force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gralla, Samuel E.; Harte, Abraham I.; Wald, Robert M.
2009-07-15
During the past century, there has been considerable discussion and analysis of the motion of a point charge in an external electromagnetic field in special relativity, taking into account 'self-force' effects due to the particle's own electromagnetic field. We analyze the issue of 'particle motion' in classical electromagnetism in a rigorous and systematic way by considering a one-parameter family of solutions to the coupled Maxwell and matter equations corresponding to having a body whose charge-current density J{sup a}({lambda}) and stress-energy tensor T{sub ab}({lambda}) scale to zero size in an asymptotically self-similar manner about a worldline {gamma} as {lambda}{yields}0. In thismore » limit, the charge, q, and total mass, m, of the body go to zero, and q/m goes to a well-defined limit. The Maxwell field F{sub ab}({lambda}) is assumed to be the retarded solution associated with J{sup a}({lambda}) plus a homogeneous solution (the 'external field') that varies smoothly with {lambda}. We prove that the worldline {gamma} must be a solution to the Lorentz force equations of motion in the external field F{sub ab}({lambda}=0). We then obtain self-force, dipole forces, and spin force as first-order perturbative corrections to the center-of-mass motion of the body. We believe that this is the first rigorous derivation of the complete first-order correction to Lorentz force motion. We also address the issue of obtaining a self-consistent perturbative equation of motion associated with our perturbative result, and argue that the self-force equations of motion that have previously been written down in conjunction with the 'reduction of order' procedure should provide accurate equations of motion for a sufficiently small charged body with negligible dipole moments and spin. (There is no corresponding justification for the non-reduced-order equations.) We restrict consideration in this paper to classical electrodynamics in flat spacetime, but there should be no difficulty in extending our results to the motion of a charged body in an arbitrary globally hyperbolic curved spacetime.« less
NASA Astrophysics Data System (ADS)
Huang, Ann; Miansari, Morteza; Friend, James
The growing interest in acoustic manipulation of particles in micro to nanofluidics using surface acoustic waves (SAW), together with the many applications of magnetic nanoparticles-whether individual or in arrays-underpins our discovery of how these forces can be used to rapidly, easily, and irreversibly form 1D chains and 2D films. These films and chains are currently difficult to produce yet offer many advantages over individual nanoparticles in suspension. Making use of the scale of the structures formed, 10-9 to 10-5 m, and by taking a balance of the relevant external and interparticle forces, the underlying mechanisms responsible for the phenomena become apparent. For 1D chains, the magnetic field alone is sufficient, though applying an acoustic field drives a topology change from loosely connected chains to loops of 10 -100 particles. Adding the acoustic field drives a transition from these looped structures to dense 2D arrays via interparticle Bjerknes forces. Inter-particle drainage of the surrounding fluid leaves these structures intact after removal of the externally applied forces. Clear morphology transitions are present and depend on the relative amplitude of the incident Brownian, Bjerknes, and magnetic forces. UCSD: Frontiers of Innovation Scholars Program (U-1024).
Safety evaluation of large external fixation clamps and frames in a magnetic resonance environment.
Luechinger, Roger; Boesiger, Peter; Disegi, John A
2007-07-01
Large orthopedic external fixation clamps and related components were evaluated for force, torque, and heating response when subjected to the strong electromagnetic fields of magnetic-resonance (MR) imaging devices. Forces induced by a 3-Tesla (T) MR scanner were compiled for newly designed nonmagnetic clamps and older clamps that contained ferromagnetic components. Heating trials were performed in a 1.5 and in a 3 T MR scanner with two assembled external fixation frames. Forces of the newly designed clamps were more than a factor 2 lower as the gravitational force on the device whereas, magnetic forces on the older devices showed over 10 times the force induced by earth acceleration of gravity. No torque effects could be found for the newly designed clamps. Temperature measurements at the tips of Schanz screws in the 1.5 T MR scanner showed a rise of 0.7 degrees C for a pelvic frame and of 2.1 degrees C for a diamond knee bridge frame when normalized to a specific absorption rate (SAR) of 2 W/kg. The normalized temperature increases in the 3 T MR scanner were 0.9 degrees C for the pelvic frame and 1.1 degrees C for the knee bridge frame. Large external fixation frames assembled with the newly designed clamps (390 Series Clamps), carbon fiber reinforced rods, and implant quality 316L stainless steel Schanz screws met prevailing force and torque limits when tested in a 3-T field, and demonstrated temperature increase that met IEC-60601 guidelines for extremities. The influence of frame-induced eddy currents on the risk of peripheral nerve stimulation was not investigated. Copyright 2006 Wiley Periodicals, Inc.
Guo, Qing-Hua; Zhang, Chen-Jie; Wei, Chao; Xu, Min-Min; Yuan, Ya-Xian; Gu, Ren-Ao; Yao, Jian-Lin
2016-01-05
A large surface-enhanced Raman scattering (SERS) effect is critically dependent on the gap distance of adjacent nanostructures, i.e., "hot spots". However, the fabrication of dynamically controllable hot spots still remains a remarkable challenge. In the present study, we employed an external magnetic field to dynamically control the interparticle spacing of a two-dimensional monolayer film of Fe3O4@Au nanoparticles at a hexane/water interface. SERS measurements were performed to monitor the expansion and shrinkage of the nanoparticles gaps, which produced an obvious effect on SERS activities. The balance between the electrostatic repulsive force, surface tension, and magnetic attractive force allowed observation of the magnetic-field-responsive SERS effect. Upon introduction of an external magnetic field, a very weak SERS signal appeared initially, indicating weak enhancement due to a monolayer film with large interparticle spacing. The SERS intensity reached maximum after 5s and thereafter remained almost unchanged. The results indicated that the observed variations in SERS intensities were fully reversible after removal of the external magnetic field. The reduction of interparticle spacing in response to a magnetic field resulted in about one order of magnitude of SERS enhancement. The combined use of the monolayer film and external magnetic field could be developed as a strategy to construct hot spots both for practical application of SERS and theoretical simulation of enhancement mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.
Electromagnetic Force on a Moving Dipole
ERIC Educational Resources Information Center
Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.
2011-01-01
We analyse the force acting on a moving dipole due to an external electromagnetic field and show that the expression derived in Vekstein (1997 "Eur. J. Phys." 18 113) is erroneous and suggest the correct equation for the description of this force. We also discuss the physical meaning of the relativistic transformation of current for a closed…
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636
Improving Keyhole Stability by External Magnetic Field in Full Penetration Laser Welding
NASA Astrophysics Data System (ADS)
Li, Min; Xu, Jiajun; Huang, Yu; Rong, Youmin
2018-05-01
An external magnetic field was used to improve the keyhole stability in full penetration laser welding 316L steel. The increase of magnetic field strength gave rise to a shorter flying time of the spatter, a weaker size and brightness of the spatter, and a larger spreading area of vapor plume. This suggested that the dynamic behavior of the keyhole was stabilized by the external magnetic field. In addition, a stronger magnetic field could result in a more homogeneous distribution of laser energy, which increased the width of the weld zone, and the height of the bottom weld zone from 381 μm (0 mT) to 605 μm (50 mT). Dendrite and cellular crystal near the weld center disappeared, and grain size was refined. The external magnetic field was beneficial to the keyhole stability and improved the joint quality, because the weld pool was stirred by a Lorentz force resulting from the coupling effect of the magnetic field and inner thermocurrent.
Multimodal chemo-magnetic control of self-propelling microbots
NASA Astrophysics Data System (ADS)
Singh, Amit Kumar; Dey, Krishna Kanti; Chattopadhyay, Arun; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar
2014-01-01
We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment.We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment. Electronic supplementary information (ESI) available: Scanning electron microscopy, transmission electron microscopy, X-ray diffraction pattern, vibrating sample magnetometry (VSM) hysteresis loop of freshly prepared FeNP coated micromotor and movies of micromotor motion. See DOI: 10.1039/c3nr05294j
Pasma, J. H.; Schouten, A. C.; Aarts, R. G. K. M.; Meskers, C. G. M.; Maier, A. B.; van der Kooij, H.
2015-01-01
Standing balance requires multijoint coordination between the ankles and hips. We investigated how humans adapt their multijoint coordination to adjust to various conditions and whether the adaptation differed between healthy young participants and healthy elderly. Balance was disturbed by push/pull rods, applying two continuous and independent force disturbances at the level of the hip and between the shoulder blades. In addition, external force fields were applied, represented by an external stiffness at the hip, either stabilizing or destabilizing the participants' balance. Multivariate closed-loop system-identification techniques were used to describe the neuromuscular control mechanisms by quantifying the corrective joint torques as a response to body sway, represented by frequency response functions (FRFs). Model fits on the FRFs resulted in an estimation of time delays, intrinsic stiffness, reflexive stiffness, and reflexive damping of both the ankle and hip joint. The elderly generated similar corrective joint torques but had reduced body sway compared with the young participants, corresponding to the increased FRF magnitude with age. When a stabilizing or destabilizing external force field was applied at the hip, both young and elderly participants adapted their multijoint coordination by lowering or respectively increasing their neuromuscular control actions around the ankles, expressed in a change of FRF magnitude. However, the elderly adapted less compared with the young participants. Model fits on the FRFs showed that elderly had higher intrinsic and reflexive stiffness of the ankle, together with higher time delays of the hip. Furthermore, the elderly adapted their reflexive stiffness around the ankle joint less compared with young participants. These results imply that elderly were stiffer and were less able to adapt to external force fields. PMID:26719084
Nonlinear Bubble Interactions in Acoustic Pressure Fields
NASA Technical Reports Server (NTRS)
Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi
1996-01-01
The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).
Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis.
Stauch, Tim; Dreuw, Andreas
2016-11-23
In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications of quantum mechanochemical methods to point out their synergistic relationship with experiments.
Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma
NASA Astrophysics Data System (ADS)
Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.
2012-10-01
Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.
NASA Astrophysics Data System (ADS)
Brekke, Stewart
2010-03-01
Every mass or mass group, from atoms and molecules to stars and galaxies,has no motion, is vibrating, rotating,or moving linearly, singularly or in some combination. When created, the excess energy of creation will generate a vibration, rotation and/or linear motion besides the mass or mass group. Curvilinear or orbital motion is linear motion in an external force field. External forces, such as photon, molecular or stellar collisions may over time modify the inital rotational, vibratory or linear motions of the mass of mass group. The energy equation for each mass or mass group is E=mc^2 + 1/2mv^2 + 1/2I2̂+ 1/2kx0^2 + WG+ WE+ WM.
Magnetic force microscopy studies in bulk polycrystalline iron
NASA Astrophysics Data System (ADS)
Abuthahir, J.; Kumar, Anish
2018-02-01
The paper presents magnetic force microscopy (MFM) studies on the effect of crystallographic orientation and external magnetic field on magnetic microstructure in a bulk polycrystalline iron specimen. The magneto crystalline anisotropic effect on the domain structure is characterized with the support of electron backscatter diffraction study. The distinct variations in magnetic domain structure are observed based on the crystallographic orientation of the grain surface normal with respect to the cube axis i.e. the easy axis of magnetization. Further, the local magnetization behavior is studied in-situ by MFM in presence of external magnetic field in the range of -2000 to 2000 Oe. Various micro-magnetization phenomena such as reversible and irreversible domain wall movements, expansion and contraction of domains, Barkhausen jump, bowing of a pinned domain wall and nucleation of a spike domain are visualized. The respective changes in the magnetic microstructure are compared with the bulk magnetization obtained using vibrating sample magnetometer. Bowing of a domain wall, pinned at two points, upon application of magnetic field is used to estimate the domain wall energy density. The MFM studies in presence of external field applied in two perpendicular directions are used to reveal the influence of the crystalline anisotropy on the local micro-magnetization.
Deformation of a helical filament by flow and electric or magnetic fields
NASA Astrophysics Data System (ADS)
Kim, Munju; Powers, Thomas R.
2005-02-01
Motivated by recent advances in the real-time imaging of fluorescent flagellar filaments in living bacteria [Turner, Ryu, and Berg, J. Bacteriol. 82, 2793 (2000)], we compute the deformation of a helical elastic filament due to flow and external magnetic or high-frequency electric fields. Two cases of deformation due to hydrodynamic drag are considered: the compression of a filament rotated by a stationary motor and the extension of a stationary filament due to flow along the helical axis. We use Kirchhoff rod theory for the filament, and work to linear order in the deflection. Hydrodynamic forces are described first by resistive-force theory, and then for comparison by the more accurate slender-body theory. For helices with a short pitch, the deflection in axial flow predicted by slender-body theory is significantly smaller than that computed with resistive-force theory. Therefore, our estimate of the bending stiffness of a flagellar filament is smaller than that of previous workers. In our calculation of the deformation of a polarizable helix in an external field, we show that the problem is equivalent to the classical case of a helix deformed by forces applied only at the ends.
Chiral magnetic effect in the presence of electroweak interactions as a quasiclassical phenomenon
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim; Semikoz, Victor B.
2018-03-01
We elaborate the quasiclassical approach to obtain the modified chiral magnetic effect (CME) in the case when the massless charged fermions interact with electromagnetic fields and the background matter by the electroweak forces. The derivation of the anomalous current along the external magnetic field involves the study of the energy density evolution of chiral particles in parallel electric and magnetic fields. We consider both the particle acceleration by the external electric field and the contribution of the Adler anomaly. The condition of the validity of this method for the derivation of the CME is formulated. We obtain the expression for the electric current along the external magnetic field, which appears to coincide with our previous results based on the purely quantum approach. Our results are compared with the findings of other authors.
A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orris, D.; Carcagno, R.; Nogiec, J.
2013-09-01
Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less
Ivanov, Yuri D; Pleshakova, Tatyana; Malsagova, Krystina; Kozlov, Andrey; Kaysheva, Anna; Kopylov, Arthur; Izotov, Alexander; Andreeva, Elena; Kanashenko, Sergey; Usanov, Sergey; Archakov, Alexander
2014-10-01
An approach combining atomic force microscopy (AFM) fishing and mass spectrometry (MS) analysis to detect proteins at ultra-low concentrations is proposed. Fishing out protein molecules onto a highly oriented pyrolytic graphite surface coated with polytetrafluoroethylene film was carried out with and without application of an external electric field. After that they were visualized by AFM and identified by MS. It was found that injection of solution leads to charge generation in the solution, and an electric potential within the measuring cell is induced. It was demonstrated that without an external electric field in the rapid injection input of diluted protein solution the fishing is efficient, as opposed to slow fluid input. The high sensitivity of this method was demonstrated by detection of human serum albumin and human cytochrome b5 in 10(-17) -10(-18) m water solutions. It was shown that an external negative voltage applied to highly oriented pyrolytic graphite hinders the protein fishing. The efficiency of fishing with an external positive voltage was similar to that obtained without applying any voltage. © 2014 FEBS.
NASA Astrophysics Data System (ADS)
Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai
2016-07-01
The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).
Maffeo, C.; Yoo, J.; Comer, J.; Wells, D. B.; Luan, B.; Aksimentiev, A.
2014-01-01
Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena and we review the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field. PMID:25238560
Maffeo, C; Yoo, J; Comer, J; Wells, D B; Luan, B; Aksimentiev, A
2014-10-15
Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena. We also discuss the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field.
NASA Astrophysics Data System (ADS)
Strey, Helmut; Brouzes, Eric; Kruse, Travis
2013-03-01
Droplet microfluidics has experienced tremendous growth, particularly since it is well suited for single-cell manipulation and analysis. As mature methods for high throughput droplet manipulation have been developed a technological bottleneck of current droplet microfluidics is that because droplets are separated, sequential chemical reactions are more difficult to achieve. For example, it is very difficult to concentrate target molecules, especially since every reaction step adds volume to the droplets. Our solution to this problem is to employ functionalized magnetic beads inside droplets. The basic idea is that an external magnetic field could be used to concentrate the magnetic beads in one part of the droplet and those could then be extracted by splitting the droplet. Here we present an experimental study of the self-assembly of superparamagnetic microparticles that are suspended in moving droplets and experience a combination of forces due to the internal fluid flow fields and external magnetic fields. We observed that this interplay of flow fields coupled to the formation of particle assemblies leads to the formations of stable patterns depending on the flow speed and magnetic field strength. An understanding of this dynamic assembly is critical in employing external forces for applications in separation and sorting. Funding through NYSTAR, Center for Advanced Technology and a grant from NIH-NHGRI (1 R21 HG006206-01).
From strings to coils: Rotational dynamics of DNA-linked colloidal chains
NASA Astrophysics Data System (ADS)
Kuei, Steve; Garza, Burke; Biswal, Sibani Lisa
2017-10-01
We investigate the dynamical behavior of deformable filaments experimentally using a tunable model system consisting of linked paramagnetic colloidal particles, where the persistence length lp, the contour length lc, and the strength and frequency of the external driving force are controlled. We find that upon forcing by an external magnetic field, a variety of structural and conformational regimes exist. Depending on the competition of forces and torques on the chain, we see classic rigid rotator behavior, as well as dynamically rich wagging, coiling, and folding behavior. Through a combination of experiments, computational models, and theoretical calculations, we are able to observe, classify, and predict these dynamics as a function of the dimensionless Mason and magnetoelastic numbers.
NASA Astrophysics Data System (ADS)
Matsumoto, S.; Kiyoshi, T.; Otsuka, A.; Hamada, M.; Maeda, H.; Yanagisawa, Y.; Nakagome, H.; Suematsu, H.
2012-02-01
High-temperature superconducting (HTS) magnets are believed to be a practical option in the development of high field nuclear magnetic resonance (NMR) systems. The development of a 600 MHz NMR system that uses an HTS magnet and a probe with an HTS radio frequency coil is underway. The HTS NMR magnet is expected to reduce the volume occupied by the magnet and to encourage users to install higher field NMR systems. The tolerance to high tensile stress is expected for HTS conductors in order to reduce the magnet in volume. A layer-wound Gd-Ba-Cu-O (GdBCO) insert coil was fabricated in order to investigate its properties under a high electromagnetic force in a high magnetic field. The GdBCO insert coil was successfully operated at a current of up to 321 A and an electromagnetic force BJR of 408 MPa in an external magnetic field generated by Nb3Sn and Nb-Ti low-temperature superconducting coils. The GdBCO insert coil also managed to generate a magnetic field of 6.8 T at the center of the coil in an external magnetic field of 17.2 T. The superconducting magnet consisting of GdBCO, Nb3Sn and Nb-Ti coils successfully generated a magnetic field of 24.0 T at 4.2 K, which represents a new record for a superconducting magnet.
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Toghraie, Davood; Karimipour, Arash; Wongwises, Somchai
2017-05-01
Presets work aims to investigate the natural convection inside a cylindrical annulus mold containing molten gallium under a horizontal magnetic field in three-dimensional coordinates. The modeling system is a vertical cylindrical annulus which is made by two co-axial cylinders of internal and external radii. The internal and external walls are maintained isothermal but in different temperatures. The upper and lower sides of annulus are also considered adiabatic while it is filled by an electrical conducting fluid. Three dimensional cylindrical coordinates as (r , θ , z) are used to respond the velocity components as (u , v , w) . The governing equations are steady, laminar and Newtonian using the Boussinesq approximation. Equations are nonlinear and they must be corresponded by applying the finite volume approach; so that the hybrid-scheme is applied to discretize equations. The results imply that magnetic field existence leads to generate the Lorentz force in opposite direction of the buoyancy forces. Moreover the Lorentz force and its corresponded electric field are more significant in both Hartmann layer and Roberts layer, respectively. The strong magnetic field is required to achieve better quality products in the casting process of a liquid metal with a higher Prandtl number.
Spinmotive force due to domain wall motion in high field regime
NASA Astrophysics Data System (ADS)
Ieda, Jun'ichi; Yamane, Yuta; Maekawa, Sadamichi
2012-02-01
Spinmotive force associated with a moving vortex domain wall is investigated numerically. Dynamics of magnetization textures such as a domain wall exerts a non-conservative spin-force on conduction electrons [1], offering a new concept of magnetic devices [2]. This spinmotive force in permalloy nanowires has been detected by voltage measurement [3] where magnitude of the signal is limited less than 500 nV. Theoretically it is suggested that the spinmotive force signal increases as a function of external magnetic fields. At higher magnetic fields, however, the wall propagation mode becomes rather chaotic involving transformations of the wall structure and it remains to be seen how the spinmotive force appears. Numerical simulations show that the spinmotive force scales with the field even in a field range where the wall motion is no longer associated coherent precession. This feature has been tested in a recent experiment [4]. Further enhancement of the spinmotive force is explored by designing ferromagnetic nanostructures [5] and materials. [1] S. Barnes and S. Maekawa, PRL (2007). [2] S. Barnes, J. Ieda, and S. Maekawa, APL (2006). [3] S. A. Yang et al., PRL (2009). [4] M. Hayashi, J. Ieda et al., submitted. [5] Y. Yamane, J. Ieda et al., APEX (2011).
Force Analysis and Energy Operation of Chaotic System of Permanent-Magnet Synchronous Motor
NASA Astrophysics Data System (ADS)
Qi, Guoyuan; Hu, Jianbing
2017-12-01
The disadvantage of a nondimensionalized model of a permanent-magnet synchronous Motor (PMSM) is identified. The original PMSM model is transformed into a Kolmogorov system to aid dynamic force analysis. The vector field of the PMSM is analogous to the force field including four types of torque — inertial, internal, dissipative, and generalized external. Using the feedback thought, the error torque between external torque and dissipative torque is identified. The pitchfork bifurcation of the PMSM is performed. Four forms of energy are identified for the system — kinetic, potential, dissipative, and supplied. The physical interpretations of the decomposition of force and energy exchange are given. Casimir energy is stored energy, and its rate of change is the error power between the dissipative energy and the energy supplied to the motor. Error torque and error power influence the different types of dynamic modes. The Hamiltonian energy and Casimir energy are compared to find the function of each in producing the dynamic modes. A supremum bound for the chaotic attractor is proposed using the error power and Lagrange multiplier.
Lattice QCD with strong external electric fields.
Yamamoto, Arata
2013-03-15
We study particle generation by a strong electric field in lattice QCD. To avoid the sign problem of the Minkowskian electric field, we adopt the "isospin" electric charge. When a strong electric field is applied, the insulating vacuum is broken down and pairs of charged particles are produced by the Schwinger mechanism. The competition against the color confining force is also discussed.
Instabilities of Current Carrying Torus
NASA Astrophysics Data System (ADS)
Liu, Wenjuan; Qiu, J.
2010-05-01
We investigate the initial equilibrium and stability conditions for an uniform current-carrying plasma ring with a non-trivial toroidal magnetic field Bt. Realistic parameters comparable to observations are used to describe the magnetic field inside and outside the torus. The external poloidal magnetic field is assumed to fall off as a power function with decay index n (n = - d log (Bex) /d log(h)). The parameter space is explored to find all initial equilibrium solutions, at which perturbation is introduced. It is shown that with non-trivial toroidal field, the current ring attains equilibrium with a weaker external field. It is also shown that the torus attains equilibrium at higher altitude when the external field decays more rapidly (greater n) or the ratio of the toroidal flux in the torus to the external field increases. We further study stabilities of the torus at equilibrium by defining a critical decay index ncr (Kliem and Török 2006). A sufficiently strong toroidal field can completely suppress the torus instability due to the current hoop force. With a weak toroidal field, similar to the case of Bt=0, the instability occurs when the external magnetic field declines rapidly with height when the field decay index n>ncr. For realistic sets of parameters, the equilibrium height is within 10 solar radii, and the effective ncr is in the range of 1.0-1.6. The critical decay index increases when the ratio of the toroidal flux to the external field decreases. This work is supported by NSF CAREER grant ATM-0748428.
Cytoplasmic motion induced by cytoskeleton stretching and its effect on cell mechanics.
Zhang, T
2011-09-01
Cytoplasmic motion assumed as a steady state laminar flow induced by cytoskeleton stretching in a cell is determined and its effect on the mechanical behavior of the cell under externally applied forces is demonstrated. Non-Newtonian fluid is assumed for the multiphase cytoplasmic fluid and the analytical velocity field around the macromolecular chain is obtained by solving the reduced nonlinear momentum equation using homotopy technique. The entropy generation by the fluid internal friction is calculated and incorporated into the entropic elasticity based 8-chain constitutive relations. Numerical examples showed strengthening behavior of cells in response to externally applied mechanical stimuli. The spatial distribution of the stresses within a cell under externally applied fluid flow forces were also studied.
Detecting the gravitational sensitivity of Paramecium caudatum using magnetic forces
NASA Astrophysics Data System (ADS)
Guevorkian, Karine; Valles, James M., Jr.
2006-03-01
Under normal conditions, Paramecium cells regulate their swimming speed in response to the pN level mechanical force of gravity. This regulation, known as gravikinesis, is more pronounced when the external force is increased by methods such as centrifugation. Here we present a novel technique that simulates gravity fields using the interactions between strong inhomogeneous magnetic fields and cells. We are able to achieve variable gravities spanning from 10xg to -8xg; where g is earth's gravity. Our experiments show that the swimming speed regulation of Paramecium caudatum to magnetically simulated gravity is a true physiological response. In addition, they reveal a maximum propulsion force for paramecia. This advance establishes a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.
Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser
NASA Astrophysics Data System (ADS)
Yao, Shuang; Zhang, Yang; Guan, Baiou
2015-08-01
A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.
Controlling dispersion forces between small particles with artificially created random light fields
Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan
2015-01-01
Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir–Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems. PMID:26096622
NASA Astrophysics Data System (ADS)
Boscaino, V.; Cipriani, G.; Di Dio, V.; Corpora, M.; Curto, D.; Franzitta, V.; Trapanese, M.
2017-05-01
An experimental study on the effect of permanent magnet tolerances on the performances of a Tubular Linear Ferrite Motor is presented in this paper. The performances that have been investigated are: cogging force, end effect cogging force and generated thrust. It is demonstrated that: 1) the statistical variability of the magnets introduces harmonics in the spectrum of the cogging force; 2) the value of the end effect cogging force is directly linked to the values of then remanence field of the external magnets placed on the slider; 3) the generated thrust and its statistical distribution depend on the remanence field of the magnets placed on the translator.
[Forced Oscillations of DNA Bases].
Yakushevich, L V; Krasnobaeva, L A
2016-01-01
This paper presents the results of the studying of forced angular oscillations of the DNA bases with the help of the mathematical model consisting of two coupled nonlinear differential equations that take into account the effects of dissipation and the influence of an external periodic field. The calculation results are illustrated for sequence of gene encoding interferon alpha 17 (IFNA 17).
[Present situation and development trends of asymmetrical flow field-flow fractionation].
Liang, Qihui; Wu, Di; Qiu, Bailing; Han, Nanyin
2017-09-08
Field-flow fractionation (FFF) is a kind of mature separation technologies in the field of bioanalysis, feasible of separating analytes with the differences of certain physical and chemical properties by the combination effects of two orthogonal force fields (flow field and external force field). Asymmetrical flow field-flow fractionation (AF4) is a vital subvariant of FFF, which applying a vertical flow field as the second dimension force field. The separation in AF4 opening channel is carried out by any composition carrier fluid, universally and effectively used in separation of bioparticles and biopolymers due to the non-invasivity feature. Herein, bio-analytes are held in bio-friendly environment and easily sterilized without using degrading carrier fluid which is conducive to maintain natural conformation. In this review, FFF and AF4 principles are briefly described, and some classical and emerging applications and developments in the bioanalytical fields are concisely introduced and tabled. Also, special focus is given to the hyphenation of AF4 with highly specific, sensitive detection technologies.
Stabilizing windings for tilting and shifting modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardin, S.C.; Christensen, U.R.
1982-02-26
This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less
A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields
Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano
2014-01-01
We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393
Malkus, W V
1968-04-19
I have proposed that the precessional torques acting on the earth can sustain a turbulent hydromagnetic flow in the molten core. A gross balance of the Coriolis force, the Lorentz force, and the precessional force in the core fluid provided estimates of the fluid velocity and the interior magnetic field characteristic of such flow. Then these numbers and a balance of the processes responsible for the decay and regeneration of the magnetic field provided an estimate of the magnetic field external to the core. This external field is in keeping with the observations, but its value is dependent upon the speculative value for the electrical conductivity of core material. The proposal that turbulent flow due to precession can occur in the core was tested in a study of nonmagnetic laboratory flows induced by the steady precession of fluid-filled rotating spheroids. It was found that these flows exhibit both small wavelike instabilities and violent finite-amplitude instability to turbulent motion above critical values of the precession rate. The observed critical parameters indicate that a laminar flow in the core, due to the earth's precession, would have weak hydrodynamic instabilities at most, but that finite-amplitude hydromagnetic instability could lead to fully turbulent flow.
Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Kang, Hyun Wook; Sanghi, Pramod; Milner, Thomas E
2007-03-01
A novel method to detect tissue-based macrophages using a combination of superparamagnetic iron oxide (SPIO) nanoparticles and differential phase optical coherence tomography (DP-OCT) with an external oscillating magnetic field is reported. Magnetic force acting on iron-laden tissue-based macrophages was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially focused and increased magnetic flux density. Nanoparticle motion was detected with DP-OCT, which can detect tissue movement with nanometer resolution. Frequency response of iron-laden tissue movement was twice the modulation frequency since the magnetic force is proportional to the product of magnetic flux density and gradient. Results of our experiments indicate that DP-OCT can be used to identify tissue-based macrophage when excited by an external focused oscillating magnetic field. (c) 2007 Wiley-Liss, Inc
Damping of Quasi-stationary Waves Between Two Miscible Liquids
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.
2002-01-01
Two viscous miscible liquids with an initially sharp interface oriented vertically inside a cavity become unstable against oscillatory external forcing due to Kelvin-Helmholtz instability. The instability causes growth of quasi-stationary (q-s) waves at the interface between the two liquids. We examine computationally the dynamics of a four-mode q-s wave, for a fixed energy input, when one of the components of the external forcing is suddenly ceased. The external forcing consists of a steady and oscillatory component as realizable in a microgravity environment. Results show that when there is a jump discontinuity in the oscillatory excitation that produced the four-mode q-s wave, the interface does not return to its equilibrium position, the structure of the q-s wave remains imbedded between the two fluids over a long time scale. The damping characteristics of the q-s wave from the time history of the velocity field show overdamped and critically damped response; there is no underdamped oscillation as the flow field approaches steady state. Viscous effects serve as a dissipative mechanism to effectively damp the system. The stability of the four-mode q-s wave is dependent on both a geometric length scale as well as the level of background steady acceleration.
Glassy phases and driven response of the phase-field-crystal model with random pinning.
Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R
2011-09-01
We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.
Orientational ordering of colloidal dispersions by application of time-dependent external forces.
Moths, Brian; Witten, T A
2013-08-01
We discuss a method of organizing incoherent motion of a colloidal suspension to produce synchronized, coherent motion, extending the discussion of our recent Letter [Moths and Witten, Phys. Rev. Lett. 110, 028301 (2013)]. The method does not require interaction between the objects. Instead, the effect is controlled by the "twist matrix" which gives the angular velocity of an asymmetric object in a fluid resulting from a weak external force. We analyze the two types of forcing considered in the Letter: a force alternating between two directions and a continuously rotating force. For the alternating force, we justify the claim of the Letter that under appropriate forcing conditions, the orientational entropy of the objects decreases indefinitely with time, on average. We provide a bound on that rate in terms of the twist matrix. For the case of rotating force, we derive conditions for phased-locked motion of the objects to the force and prove that there is only one stable phase-locked orientation under these conditions. We find numerically that the fastest alignment typically occurs for tilt angles of order unity. We discuss how the alignment effect scales with the object size for external forcing caused by gravity or an electric field. Under practical forcing conditions we estimate that the alignment should persist despite rotational diffusion for objects larger than about 10 microns. Potential misalignment owing to hydrodynamic interaction of the objects is estimated to be negligible at volume fractions smaller than about 10(-4.5) (10(-3)) when the forcing is gravitational (electrophoretic).
The stability properties of cylindrical force-free fields - Effect of an external potential field
NASA Technical Reports Server (NTRS)
Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.
1980-01-01
A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.
Cao, Yongze; Nakayama, Shota; Kumar, Pawan; Zhao, Yue; Kinoshita, Yukinori; Yoshimura, Satoru; Saito, Hitoshi
2018-05-03
For magnetic domain imaging with a very high spatial resolution by magnetic force microscopy the tip-sample distance should be as small as possible. However, magnetic imaging near sample surface is very difficult with conventional MFM because the interactive forces between tip and sample includes van der Waals and electrostatic forces along with magnetic force. In this study, we proposed an alternating magnetic force microscopy (A-MFM) which extract only magnetic force near sample surface without any topographic and electrical crosstalk. In the present method, the magnetization of a FeCo-GdOx superparamagnetic tip is modulated by an external AC magnetic field in order to measure the magnetic domain structure without any perturbation from the other forces near the sample surface. Moreover, it is demonstrated that the proposed method can also measure the strength and identify the polarities of the second derivative of the perpendicular stray field from a thin-film permanent magnet with DC demagnetized state and remanent state. © 2018 IOP Publishing Ltd.
The QBO and weak external forcing by solar activity: A three dimensional model study
NASA Technical Reports Server (NTRS)
Dameris, M.; Ebel, A.
1989-01-01
A better understanding is attempted of the physical mechanisms leading to significant correlations between oscillations in the lower and middle stratosphere and solar variability associated with the sun's rotation. A global 3-d mechanistic model of the middle atmosphere is employed to investigate the effects of minor artificially induced perturbations. The aim is to explore the physical mechanisms of the dynamical response especially of the stratosphere to weak external forcing as it may result from UV flux changes due to solar rotation. First results of numerical experiments dealing about the external forcing of the middle atmosphere by solar activity were presented elsewhere. Different numerical studies regarding the excitation and propagation of weak perturbations have been continued since then. The model calculations presented are made to investigate the influence of the quasi-biennial oscillation (QBO) on the dynamical response of the middle atmosphere to weak perturbations by employing different initial wind fields which represent the west and east phase of the QBO.
A Proposed E-Learning Policy Field for the Academy
ERIC Educational Resources Information Center
Parchoma, Gale
2006-01-01
In this article, Lewin's (1951) social field theory is used as a framework for analyzing the potential for implementing scalable and sustainable e-learning initiatives in the academy. Powerful external economic and social forces coming to bear on academic leadership decisions are considered. The impacts of the emergence of the global learning…
Field-induced magnetic phase transitions and metastable states in Tb3Ni
NASA Astrophysics Data System (ADS)
Gubkin, A. F.; Wu, L. S.; Nikitin, S. E.; Suslov, A. V.; Podlesnyak, A.; Prokhnenko, O.; Prokeš, K.; Yokaichiya, F.; Keller, L.; Baranov, N. V.
2018-04-01
In this paper we report the detailed study of magnetic phase diagrams, low-temperature magnetic structures, and the magnetic field effect on the electrical resistivity of the binary intermetallic compound Tb3Ni . The incommensurate magnetic structure of the spin-density-wave type described with magnetic superspace group P 1121/a 1'(a b 0 ) 0 s s and propagation vector kIC=[" close="]1/2 ,1/2 ,0 ]">0.506 ,0.299 ,0 was found to emerge just below Néel temperature TN=61 K. Further cooling below 58 K results in the appearance of multicomponent magnetic states: (i) a combination of k1=[1/2 ,0 ,0 ] below 48 K. An external magnetic field suppresses the complex low-temperature antiferromagnetic states and induces metamagnetic transitions towards a forced ferromagnetic state that are accompanied by a substantial magnetoresistance effect due to the magnetic superzone effect. The forced ferromagnetic state induced after application of an external magnetic field along the b and c crystallographic axes was found to be irreversible below 3 and 8 K, respectively.
Nair, Madhavan; Guduru, Rakesh; Liang, Ping; Hong, Jeongmin; Sagar, Vidya; Khizroev, Sakhrat
2013-01-01
Although highly active anti-retroviral therapy has resulted in remarkable decline in the morbidity and mortality in AIDS patients, inadequately low delivery of anti-retroviral drugs across the blood-brain barrier results in virus persistence. The capability of high-efficacy-targeted drug delivery and on-demand release remains a formidable task. Here we report an in vitro study to demonstrate the on-demand release of azidothymidine 5'-triphosphate, an anti-human immunodeficiency virus drug, from 30 nm CoFe2O4@BaTiO3 magneto-electric nanoparticles by applying a low alternating current magnetic field. Magneto-electric nanoparticles as field-controlled drug carriers offer a unique capability of field-triggered release after crossing the blood-brain barrier. Owing to the intrinsic magnetoelectricity, these nanoparticles can couple external magnetic fields with the electric forces in drug-carrier bonds to enable remotely controlled delivery without exploiting heat. Functional and structural integrity of the drug after the release was confirmed in in vitro experiments with human immunodeficiency virus-infected cells and through atomic force microscopy, spectrophotometry, Fourier transform infrared and mass spectrometry studies.
Designing a Poly (N-isopropylacrylamide) Nanocapsule for Magnetic Field-assisted Drug Delivery
NASA Astrophysics Data System (ADS)
Denmark, Daniel; Mukherjee, Pritish; Witanachchi, Sarath
2014-03-01
The method of synthesis and the characteristics of polymer based nanocapsules as biomedical drug delivery systems are presented. Magnetic iron oxide nanoparticles have been incorporated into these capsules for effective guidance with external magnetic fields to transport therapeutic compounds to various parts of the human body. Once they have reached their destination they can be stimulated to release the drug to the target tissue through externally applied fields. The polymeric material that constitutes the capsules is specifically designed to melt away with the external stimuli to deliver the therapeutic bio agents near the target tissue. In this work we use nebulization to create aqueous poly (N-isopropylacrylamide) nanoparticles that decompose after being heated beyond their transition temperature. Transmission Electron Microscopic imaging (TEM) and dynamic light scattering (DLS) experiments have been conducted to study the decomposition of the capsules under external stimuli. Distribution of the magnetic nanoparticles within the capsules and their role in delivering the bio agents have been investigated by the Magnetic Force Microscopy (MFM).
Internal phase transition induced by external forces in Finsler geometric model for membranes
NASA Astrophysics Data System (ADS)
Koibuchi, Hiroshi; Shobukhov, Andrey
2016-10-01
In this paper, we numerically study an anisotropic shape transformation of membranes under external forces for two-dimensional triangulated surfaces on the basis of Finsler geometry. The Finsler metric is defined by using a vector field, which is the tangential component of a three-dimensional unit vector σ corresponding to the tilt or some external macromolecules on the surface of disk topology. The sigma model Hamiltonian is assumed for the tangential component of σ with the interaction coefficient λ. For large (small) λ, the surface becomes oblong (collapsed) at relatively small bending rigidity. For the intermediate λ, the surface becomes planar. Conversely, fixing the surface with the boundary of area A or with the two-point boundaries of distance L, we find that the variable σ changes from random to aligned state with increasing of A or L for the intermediate region of λ. This implies that an internal phase transition for σ is triggered not only by the thermal fluctuations, but also by external mechanical forces. We also find that the frame (string) tension shows the expected scaling behavior with respect to A/N (L/N) at the intermediate region of A (L) where the σ configuration changes between the disordered and ordered phases. Moreover, we find that the string tension γ at sufficiently large λ is considerably smaller than that at small λ. This phenomenon resembles the so-called soft-elasticity in the liquid crystal elastomer, which is deformed by small external tensile forces.
Tug of war in motility assay experiments
NASA Astrophysics Data System (ADS)
Hexner, Daniel; Kafri, Yariv
2009-09-01
The dynamics of two groups of molecular motors pulling in opposite directions on a rigid filament is studied theoretically. To this end we first consider the behavior of one set of motors pulling in a single direction against an external force using a new mean-field approach. Based on these results we analyze a similar setup with two sets of motors pulling in opposite directions in a tug of war in the presence of an external force. In both cases we find that the interplay of fluid friction and protein friction leads to a complex phase diagram where the force-velocity relations can exhibit regions of bistability and spontaneous symmetry breaking. Finally, motivated by recent work, we turn to the case of motility assay experiments where motors bound to a surface push on a bundle of filaments. We find that, depending on the absence or the presence of bistability in the force-velocity curve at zero force, the bundle exhibits anomalous or biased diffusion on long-time and large-length scales.
On the synchrotron radiation reaction in external magnetic field
NASA Astrophysics Data System (ADS)
Tursunov, Arman; Kološ, Martin
2017-12-01
We study the dynamics of point electric charges undergoing radiation reaction force due to synchrotron radiation in the presence of external uniform magnetic field. The radiation reaction force cannot be neglected in many physical situations and its presence modifies the equations of motion significantly. The exact form of the equation of motion known as the Lorentz-Dirac equation contains higher order Schott term which leads to the appearance of the runaway solutions. We demonstrate effective computational ways to avoid such unphysical solutions and perform numerical integration of the dynamical equations. We show that in the ultrarelativistic case the Schott term is small and does not have considerable effect to the trajectory of a particle. We compare results with the covariant Landau-Lifshitz equation which is the first iteration of the Lorentz-Dirac equation. Even though the Landau-Lifshitz equation is thought to be approximative solution, we show that in realistic scenarios both approaches lead to identical results.
Biased and flow driven Brownian motion in periodic channels
NASA Astrophysics Data System (ADS)
Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.
2012-02-01
In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.
Stability of charged density waves in InAs nanowires in an external magnetic field
NASA Astrophysics Data System (ADS)
Zhukov, A. A.; Volk, Ch; Winden, A.; Hardtdegen, H.; Schäpers, Th
2017-11-01
We report on magnetotransport measurements at T=4.2 K in a high-quality InAs nanowire (R_wire ∼ 20 kΩ) in the presence of the charged tip of an atomic force microscope serving as a mobile gate. We demonstrate the crucial role of the external magnetic field on the amplitude of the charge density waves with a wavelength of 0.8 μm. The observed suppression rate of their amplitude is similar or slightly higher than the one for weak localization correction in our investigated InAs nanowire.
Large Electric Field-Enhanced-Hardness Effect in a SiO2 Film
NASA Astrophysics Data System (ADS)
Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen
2014-03-01
Silicon dioxide films are extensively used in nano and micro-electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation-induced deformation during the friction measurements.
NASA Astrophysics Data System (ADS)
Fuchs, Matthias
2017-08-01
The nature of the glass transition is one of the frontier questions in Statistical Physics and Materials Science. Highly cooperative structural processes develop in glass-forming melts exhibiting relaxational dynamics which is spread out over many decades in time. While considerable progress has been made in recent decades towards understanding dynamical slowing-down in quiescent systems, the interplay of glassy dynamics with external fields reveals a wealth of novel phenomena yet to be explored. This special issue focuses on recent results obtained by the Research Unit FOR 1394 `Nonlinear response to probe vitrification' which was funded by the German Science Foundation (DFG). In the projects of the research unit, strong external fields were used in order to gain insights into the complex structural and transport phenomena at the glass transition under far-from-equilibrium conditions. This aimed inter alia to test theories of the glass transition developed for quiescent systems by pushing them beyond their original regime. Combining experimental, simulational, and theoretical efforts, the eight projects within the FOR 1394 measured and determined aspects of the nonlinear response of supercooled metallic, polymeric, and silica melts, of colloidal dispersions, and of ionic liquids. Applied fields included electric and mechanic fields, and forced active probing (`micro-rheology'), where a single probe is forced through the glass-forming host. Nonlinear stress-strain and force-velocity relations as well as nonlinear dielectric susceptibilities and conductivities were observed. While the physical manipulation of melts and glasses is interesting in its own right, especially technologically, the investigations performed by the FOR 1394 suggest to use the response to strong homogeneous and inhomogeneous fields as technique to explore on the microscopic level the cooperative mechanisms in dense melts of strongly interacting constituents. Questions considered concern the (de-)coupling of different dynamical degrees of freedom in an external field, and the ensuing state diagrams. What forces are required to detach a localized probe particle from its initial environment in a supercooled liquid, in a glassy or granular system? Do metallic and colloidal glasses yield homogeneously or by strain localization under differently applied stresses? Which mechanisms determine field-dependent susceptibilities in dielectric and ionically conducting glass formers?
Trial-by-trial adaptation of movements during mental practice under force field.
Anwar, Muhammad Nabeel; Khan, Salman Hameed
2013-01-01
Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.
External foam layers to football helmets reduce head impact severity.
Nakatsuka, Austin S; Yamamoto, Loren G
2014-08-01
Current American football helmet design has a rigid exterior with a padded interior. Softening the hard external layer of the helmet may reduce the impact potential of the helmet, providing extra head protection and reducing its use as an offensive device. The objective of this study is to measure the impact reduction potential provided by external foam. We obtained a football helmet with built-in accelerometer-based sensors, placed it on a boxing mannequin and struck it with a weighted swinging pendulum helmet to mimic the forces sustained during a helmet-to-helmet strike. We then applied layers of 1.3 cm thick polyolefin foam to the exterior surface of the helmets and repeated the process. All impact severity measures were significantly reduced with the application of the external foam. These results support the hypothesis that adding a soft exterior layer reduces the force of impact which may be applicable to the football field. Redesigning football helmets could reduce the injury potential of the sport.
External Foam Layers to Football Helmets Reduce Head Impact Severity
Nakatsuka, Austin S
2014-01-01
Current American football helmet design has a rigid exterior with a padded interior. Softening the hard external layer of the helmet may reduce the impact potential of the helmet, providing extra head protection and reducing its use as an offensive device. The objective of this study is to measure the impact reduction potential provided by external foam. We obtained a football helmet with built-in accelerometer-based sensors, placed it on a boxing mannequin and struck it with a weighted swinging pendulum helmet to mimic the forces sustained during a helmet-to-helmet strike. We then applied layers of 1.3 cm thick polyolefin foam to the exterior surface of the helmets and repeated the process. All impact severity measures were significantly reduced with the application of the external foam. These results support the hypothesis that adding a soft exterior layer reduces the force of impact which may be applicable to the football field. Redesigning football helmets could reduce the injury potential of the sport. PMID:25157327
NASA Astrophysics Data System (ADS)
Monticelli, M.; Albisetti, E.; Petti, D.; Conca, D. V.; Falcone, M.; Sharma, P. P.; Bertacco, R.
2015-05-01
In-vitro tests and analyses are of fundamental importance for investigating biological mechanisms in cells and bio-molecules. The controlled application of forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in this field. In this work, we present a non-invasive magnetic on-chip platform which allows for the manipulation of magnetic particles, through micrometric magnetic conduits of Permalloy patterned on-chip. We show, from simulations and experiments, that this technology permits to exert a finely controlled force on magnetic beads along the chip surface. This force can be tuned from few to hundreds pN by applying a variable external magnetic field.
Conditions for Destabilizing Pickering emulsions using external electric fields
NASA Astrophysics Data System (ADS)
Hwang, Kyuho; Singh, Pushpendra; Aubry, Nadine
2009-11-01
Fine particles are readily adsorbed at fluid-fluid interfaces, and can be used as stabilizers in emulsion technology by preventing adjacent drops from coalescing with each other. We investigate a new technique to destabilize such emulsions, or Pickering emulsions, by applying an external electric field. Experiments show that the latter has two effects: (i) the drops elongate in the direction of the electric field, (ii) the local particle density varies on the drop surface due to the dielectrophoretic (DEP) force acting on the particles. It is shown that the latter is the dominant factor in the destabilization process. Particularly, the success of the method depends on the values of certain dimensionless parameters; specifically, the ratio of the work done by the dielectrophoretic force must be larger than the work done by the buoyant force. Moreover, drops do not coalesce through the regions where the particles locally cluster, whether those are gathered at the poles or at the equator of the drops. As particles move, particle-free openings form on the drop's surface, which allow for adjacent drops to merge. This process takes place even if the particles are fully packed on the drops' surfaces as particles get ejected from the clustering areas due to a buckling phenomenon.
Investigation of shock-acoustic-wave interaction in transonic flow
NASA Astrophysics Data System (ADS)
Feldhusen-Hoffmann, Antje; Statnikov, Vladimir; Klaas, Michael; Schröder, Wolfgang
2018-01-01
The buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side of the wing. Theories assume that this unsteadiness is driven by an acoustic feedback loop of disturbances in the flow field downstream of the shock wave whose upstream propagating part is generated by acoustic waves. Therefore, in this study, first variations in the sound pressure level of the airfoil's trailing-edge noise during a buffet cycle, which force the shock wave to move upstream and downstream, are detected, and then, the sensitivity of the shock wave oscillation during buffet to external acoustic forcing is analyzed. Time-resolved standard and tomographic particle-image velocimetry (PIV) measurements are applied to investigate the transonic buffet flow field over a supercritical DRA 2303 airfoil. The freestream Mach number is M_{∞} = 0.73, the angle of attack is α = {3.5}°, and the chord-based Reynolds number is Re_c = 1.9× 10^6. The perturbed Lamb vector field, which describes the major acoustic source term of trailing-edge noise, is determined from the tomographic PIV data. Subsequently, the buffet flow field is disturbed by an artificially generated acoustic field, the acoustic intensity of which is comparable to the Lamb vector that is determined from the PIV data. The results confirm the hypothesis that buffet is driven by an acoustic feedback loop and show the shock wave oscillation to directly respond to external acoustic forcing. That is, the amplitude modulation frequency of the artificial acoustic perturbation determines the shock oscillation.
Dissipative structures induced by spin-transfer torques in nanopillars
NASA Astrophysics Data System (ADS)
León, Alejandro O.; Clerc, Marcel G.; Coulibaly, Saliya
2014-02-01
Macroscopic magnetic systems subjected to external forcing exhibit complex spatiotemporal behaviors as result of dissipative self-organization. Pattern formation from a uniform magnetization state, induced by the combination of a spin-polarized current and an external magnetic field, is studied for spin-transfer nano-oscillator devices. The system is described in the continuous limit by the Landau-Lifshitz-Gilbert equation. The bifurcation diagram of the quintessence parallel state, as a function of the external field and current, is elucidated. We have shown analytically that this state exhibits a spatial supercritical quintic bifurcation, which generates in two spatial dimensions a family of stationary stripes, squares, and superlattice states. Analytically, we have characterized their respective stabilities and bifurcations, which are controlled by a single dimensionless parameter. This scenario is confirmed numerically.
Recruitment and retention of psychosocial rehabilitation workers.
Blankertz, L E; Robinson, S E
1997-01-01
Recruitment and retention of direct service workers can be a major problem for administrators of community mental health organizations. This paper, based on a nationwide study of psychosocial rehabilitation workers and administrators, examines the congruity of worker and administrator perceptions of worker motivation for entering and leaving the field. Workers are motivated by the intrinsic nature of the work to enter into and stay in the field. Job burnout is as important as low pay in forcing workers out of the field. Administrators, however, perceive money to be a major factor motivating workers to enter the field and perceive external opportunities as forces that pull them away. Thus, administrators must address their workers' needs if their agencies are to offer quality services.
Tension, cell shape and triple-junction angle anisotropy in the Drosophila germband
NASA Astrophysics Data System (ADS)
Lacy, Monica; Hutson, M. Shane; Meyer, Christian; McDonald, Xena
In the field of tissue mechanics, the embryonic development of Drosophila melanogaster offers many opportunities for study. One of Drosophila's most crucial morphogenetic stages is the retraction of an epithelial tissue called the germband. During retraction, the segments of the retracting germband, as well as the individual germband cells, elongate in response to forces from a connected tissue, the amnioserosa. Modeling of this elongation, based on tissue responses to laser wounding, has plotted the internal germband tension against the external amnioserosa stress, creating a phase space to determine points and regions corresponding to stable elongation. Although the resulting fits indicate a necessary opposition of internal and external forces, they are inconclusive regarding the exact balance. We will present results testing the model predictions by measuring cell shapes and the correlations between cell-edge directions and triple-junction angles. These measures resolve the ambiguity in pinpointing the internal-external force balance for each germband segment. Research was supported by NIH Grant Numbers 1R01GM099107 and 1R21AR068933.
The effect of an external electric field on the growth of incongruent-melting material
NASA Astrophysics Data System (ADS)
Uda, Satoshi; Huang, Xinming; Wang, Shou-Qi
2005-02-01
The significance of an electric field on the crystallization process is differentiated into two consequences; (i) thermodynamic effect and (ii) growth-dynamic effect. The former modifies the chemical potential of the associated phases which changes the equilibrium phase relationship while the latter influences the solute transport, growth kinetics, surface creation and defect generation during growth. The intrinsic electric field generating during growth is attributed to the crystallization-related electromotive force and the thermoelectric power driven by the temperature gradient at the interface which influences the solute transport and solute partitioning. The external electric field was applied to the growth apparatus in the ternary system of La2O3- Ga2O3- SiO2 so that the chemical potential of both solid and liquid phases changed leading to the variation of the equilibrium phase relationship. Imposing a 500 V/cm electric field on the system moved the boundary of primary phase field of lanthanum gallate ( LaGaO3) and Ga-bearing lanthanum silicate ( La14GaxSi9-xO) toward the SiO2 apex by 5 mol% which clearly demonstrated the change of the phase relationship by the external electric field.
External electric field effects on Schottky barrier at Gd3N@C80/Au interface
NASA Astrophysics Data System (ADS)
Onishi, Koichi; Nakashima, Fumihiro; Jin, Ge; Eto, Daichi; Hattori, Hayami; Miyoshi, Noriko; Kirimoto, Kenta; Sun, Yong
2017-08-01
The effects of the external electric field on the height of the Schottky barrier at the Gd3N@C80/Au interface were studied by measuring current-voltage characteristics at various temperatures from 200 K to 450 K. The Gd3N@C80 sample with the conduction/forbidden/valence energy band structure had a face-centered cubic crystal structure with the average grain size of several nanometers. The height of the Gd3N@C80/Au Schottky barrier was confirmed to be 400 meV at a low electric field at room temperature. Moreover, the height decreases with the increasing external electric field through a change of permittivity in the Gd3N@C80 sample due to a polarization of the [Gd3] 9 +-[N3 -+("separators="|C80 ) 6 -] dipoles in the Gd3N@C80 molecule. The field-dependence of the barrier height can be described using a power math function of the electric field strength. The results of the field-dependent barrier height indicate that the reduction in the Schottky barrier is due to an image force effect of the transport charge carrier at the Gd3N@C80/Au interface.
Quantization and instability of the damped harmonic oscillator subject to a time-dependent force
NASA Astrophysics Data System (ADS)
Majima, H.; Suzuki, A.
2011-12-01
We consider the one-dimensional motion of a particle immersed in a potential field U(x) under the influence of a frictional (dissipative) force linear in velocity ( -γẋ) and a time-dependent external force ( K(t)). The dissipative system subject to these forces is discussed by introducing the extended Bateman's system, which is described by the Lagrangian: ℒ=mẋẏ-U(x+{1}/{2}y)+U(x-{1}/{2}y)+{γ}/{2}(xẏ-yẋ)-xK(t)+yK(t), which leads to the familiar classical equations of motion for the dissipative (open) system. The equation for a variable y is the time-reversed of the x motion. We discuss the extended Bateman dual Lagrangian and Hamiltonian by setting U(x±y/2)={1}/{2}k( specifically for a dual extended damped-amplified harmonic oscillator subject to the time-dependent external force. We show the method of quantizing such dissipative systems, namely the canonical quantization of the extended Bateman's Hamiltonian ℋ. The Heisenberg equations of motion utilizing the quantized Hamiltonian ℋ̂ surely lead to the equations of motion for the dissipative dynamical quantum systems, which are the quantum analog of the corresponding classical systems. To discuss the stability of the quantum dissipative system due to the influence of an external force K(t) and the dissipative force, we derived a formula for transition amplitudes of the dissipative system with the help of the perturbation analysis. The formula is specifically applied for a damped-amplified harmonic oscillator subject to the impulsive force. This formula is used to study the influence of dissipation such as the instability due to the dissipative force and/or the applied impulsive force.
Nature of the electromagnetic force between classical magnetic dipoles
NASA Astrophysics Data System (ADS)
Mansuripur, Masud
2017-09-01
The Lorentz force law of classical electrodynamics states that the force 𝑭𝑭 exerted by the magnetic induction 𝑩𝑩 on a particle of charge 𝑞𝑞 moving with velocity 𝑽𝑽 is given by 𝑭𝑭 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩. Since this force is orthogonal to the direction of motion, the magnetic field is said to be incapable of performing mechanical work. Yet there is no denying that a permanent magnet can readily perform mechanical work by pushing/pulling on another permanent magnet or by attracting pieces of magnetizable material such as scrap iron or iron filings. We explain this apparent contradiction by examining the magnetic Lorentz force acting on an Amperian current loop, which is the model for a magnetic dipole. We then extend the discussion by analyzing the Einstein-Laub model of magnetic dipoles in the presence of external magnetic fields.
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants
Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele
2016-01-01
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed. PMID:28773773
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.
Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele
2016-08-02
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed.
Steady state model for the thermal regimes of shells of airships and hot air balloons
NASA Astrophysics Data System (ADS)
Luchev, Oleg A.
1992-10-01
A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.
Cell Mechanosensitivity: Mechanical Properties and Interaction with Gravitational Field
Ogneva, I. V.
2013-01-01
This paper addressed the possible mechanisms of primary reception of a mechanical stimulus by different cells. Data concerning the stiffness of muscle and nonmuscle cells as measured by atomic force microscopy are provided. The changes in the mechanical properties of cells that occur under changed external mechanical tension are presented, and the initial stages of mechanical signal transduction are considered. The possible mechanism of perception of different external mechanical signals by cells is suggested. PMID:23509748
Chemical reactions induced by oscillating external fields in weak thermal environments
NASA Astrophysics Data System (ADS)
Craven, Galen T.; Bartsch, Thomas; Hernandez, Rigoberto
2015-02-01
Chemical reaction rates must increasingly be determined in systems that evolve under the control of external stimuli. In these systems, when a reactant population is induced to cross an energy barrier through forcing from a temporally varying external field, the transition state that the reaction must pass through during the transformation from reactant to product is no longer a fixed geometric structure, but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal driving, the stability of the time-varying transition state directly determines the reaction rate [G. T. Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between the rates predicted by stability analysis and rates obtained through numerical calculation of the reactive flux. We also show that the optimal dividing surface and the resulting reaction rate for a reactive system driven by weak thermal noise can be approximated well using the transition state geometry of the underlying deterministic system. This agreement persists as long as the thermal driving strength is less than the order of that of the periodic driving. The power of this result is its simplicity. The surprising accuracy of the time-dependent noise-free geometry for obtaining transition state theory rates in chemical reactions driven by periodic fields reveals the dynamics without requiring the cost of brute-force calculations.
The nonlinear model for emergence of stable conditions in gas mixture in force field
NASA Astrophysics Data System (ADS)
Kalutskov, Oleg; Uvarova, Liudmila
2016-06-01
The case of M-component liquid evaporation from the straight cylindrical capillary into N - component gas mixture in presence of external forces was reviewed. It is assumed that the gas mixture is not ideal. The stable states in gas phase can be formed during the evaporation process for the certain model parameter valuesbecause of the mass transfer initial equationsnonlinearity. The critical concentrations of the resulting gas mixture components (the critical component concentrations at which the stable states occur in mixture) were determined mathematically for the case of single-component fluid evaporation into two-component atmosphere. It was concluded that this equilibrium concentration ratio of the mixture components can be achieved by external force influence on the mass transfer processes. It is one of the ways to create sustainable gas clusters that can be used effectively in modern nanotechnology.
Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J
2013-06-01
Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.
Dynamics of vesicles in electric fields
NASA Astrophysics Data System (ADS)
Vlahovska, Petia; Gracia, Ruben
2007-11-01
Electromechanical forces are widely used for cell manipulation. Knowledge of the physical mechanisms underlying the interaction of cells and external fields is essential for practical applications. Vesicles are model cells made of a lipid bilayer membrane. They are examples of ``soft'' particles, i.e., their shape when subjected to flow or electric field is not given a priori but it is governed by the balance of membrane, fluid and electrical stresses. This generic ``softness'' gives rise to a very complex vesicle dynamics in external fields. In an AC electric field, as the frequency is increased, vesicles filled with a fluid less conducting than the surrounding fluid undergo shape transition from prolate to oblate ellipsoids. The opposite effect is observed with drops. We present an electro- hydrodynamic theory based on the leaky dielectric model that quantitatively describes experimental observations. We compare drops and vesicles, and show how their distinct behavior stems from different interfacial properties.
Selective structural source identification
NASA Astrophysics Data System (ADS)
Totaro, Nicolas
2018-04-01
In the field of acoustic source reconstruction, the inverse Patch Transfer Function (iPTF) has been recently proposed and has shown satisfactory results whatever the shape of the vibrating surface and whatever the acoustic environment. These two interesting features are due to the virtual acoustic volume concept underlying the iPTF methods. The aim of the present article is to show how this concept of virtual subsystem can be used in structures to reconstruct the applied force distribution. Some virtual boundary conditions can be applied on a part of the structure, called virtual testing structure, to identify the force distribution applied in that zone regardless of the presence of other sources outside the zone under consideration. In the present article, the applicability of the method is only demonstrated on planar structures. However, the final example show how the method can be applied to a complex shape planar structure with point welded stiffeners even in the tested zone. In that case, if the virtual testing structure includes the stiffeners the identified force distribution only exhibits the positions of external applied forces. If the virtual testing structure does not include the stiffeners, the identified force distribution permits to localize the forces due to the coupling between the structure and the stiffeners through the welded points as well as the ones due to the external forces. This is why this approach is considered here as a selective structural source identification method. It is demonstrated that this approach clearly falls in the same framework as the Force Analysis Technique, the Virtual Fields Method or the 2D spatial Fourier transform. Even if this approach has a lot in common with these latters, it has some interesting particularities like its low sensitivity to measurement noise.
Manipulation of a neutral and nonpolar nanoparticle in water using a nonuniform electric field
NASA Astrophysics Data System (ADS)
Xu, Zhen; Wang, Chunlei; Sheng, Nan; Hu, Guohui; Zhou, Zhewei; Fang, Haiping
2016-01-01
The manipulation of nanoparticles in water is of essential importance in chemical physics, nanotechnology, medical technology, and biotechnology applications. Generally, a particle with net charges or charge polarity can be driven by an electric field. However, many practical particles only have weak and even negligible charge and polarity, which hinders the electric field to exert a force large enough to drive these nanoparticles directly. Here, we use molecular dynamics simulations to show that a neutral and nonpolar nanoparticle in liquid water can be driven directionally by an external electric field. The directed motion benefits from a nonuniform water environment produced by a nonuniform external electric field, since lower water energies exist under a higher intensity electric field. The nanoparticle spontaneously moves toward locations with a weaker electric field intensity to minimize the energy of the whole system. Considering that the distance between adjacent regions of nonuniform field intensity can reach the micrometer scale, this finding provides a new mechanism of manipulating nanoparticles from the nanoscale to the microscale.
Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor
Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin
2015-01-01
Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972
Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.
Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham
2015-07-27
Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.
Load identification approach based on basis pursuit denoising algorithm
NASA Astrophysics Data System (ADS)
Ginsberg, D.; Ruby, M.; Fritzen, C. P.
2015-07-01
The information of the external loads is of great interest in many fields of structural analysis, such as structural health monitoring (SHM) systems or assessment of damage after extreme events. However, in most cases it is not possible to measure the external forces directly, so they need to be reconstructed. Load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response functions are usually the knowns. Generally, this leads to a so called ill-posed inverse problem, which involves solving an underdetermined linear system of equations. For most practical applications it can be assumed that the applied loads are not arbitrarily distributed in time and space, at least some specific characteristics about the external excitation are known a priori. In this contribution this knowledge was used to develop a more suitable force reconstruction method, which allows identifying the time history and the force location simultaneously by employing significantly fewer sensors compared to other reconstruction approaches. The properties of the external force are used to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The possibility of reconstructing loads based on noisy structural measurement signals will be demonstrated by considering two frequently occurring loading conditions: harmonic excitation and impact events, separately and combined. First a simulation study of a simple plate structure is carried out and thereafter an experimental investigation of a real beam is performed.
Taeger, Christian D.; Friedrich, Oliver; Dragu, Adrian; Weigand, Annika; Hobe, Frieder; Drechsler, Caroline; Geppert, Carol I.; Arkudas, Andreas; Münch, Frank; Buchholz, Rainer; Pollmann, Charlotte; Schramm, Axel; Birkholz, Torsten; Horch, Raymund E.; Präbst, Konstantin
2015-01-01
Preventing ischemia-related cell damage is a priority when preserving tissue for transplantation. Perfusion protocols have been established for a variety of applications and proven to be superior to procedures used in clinical routine. Extracorporeal perfusion of muscle tissue though cumbersome is highly desirable since it is highly susceptible to ischemia-related damage. To show the efficacy of different perfusion protocols external field stimulation can be used to immediately visualize improvement or deterioration of the tissue during active and running perfusion protocols. This method has been used to show the superiority of extracorporeal perfusion using porcine rectus abdominis muscles perfused with heparinized saline solution. Perfused muscles showed statistically significant higher ability to exert force compared to nonperfused ones. These findings can be confirmed using Annexin V as marker for cell damage, perfusion of muscle tissue limits damage significantly compared to nonperfused tissue. The combination of extracorporeal perfusion and external field stimulation may improve organ conservation research. PMID:26145230
Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model
NASA Astrophysics Data System (ADS)
Huang, Tao; Yao, Jun; Huang, Zhaoqin; Yin, Xiaolong; Xie, Haojun; Zhang, Jianguang
2017-06-01
Water flooding is an efficient approach to maintain reservoir pressure and has been widely used to enhance oil recovery. However, preferential water pathways such as fractures can significantly decrease the sweep efficiency. Therefore, the utilization ratio of injected water is seriously affected. How to develop new flooding technology to further improve the oil recovery in this situation is a pressing problem. For the past few years, controllable ferrofluid has caused the extensive concern in oil industry as a new functional material. In the presence of a gradient in the magnetic field strength, a magnetic body force is produced on the ferrofluid so that the attractive magnetic forces allow the ferrofluid to be manipulated to flow in any desired direction through the control of the external magnetic field. In view of these properties, the potential application of using the ferrofluid as a new kind of displacing fluid for flooding in fractured porous media is been studied in this paper for the first time. Considering the physical process of the mobilization of ferrofluid through porous media by arrangement of strong external magnetic fields, the magnetic body force was introduced into the Darcy equation and deals with fractures based on the discrete-fracture model. The fully implicit finite volume method is used to solve mathematical model and the validity and accuracy of numerical simulation, which is demonstrated through an experiment with ferrofluid flowing in a single fractured oil-saturated sand in a 2-D horizontal cell. At last, the water flooding and ferrofluid flooding in a complex fractured porous media have been studied. The results showed that the ferrofluid can be manipulated to flow in desired direction through control of the external magnetic field, so that using ferrofluid for flooding can raise the scope of the whole displacement. As a consequence, the oil recovery has been greatly improved in comparison to water flooding. Thus, the ferrofluid flooding is a large potential method for enhanced oil recovery in the future.
Ferromagnetic Swimmers - Devices and Applications
NASA Astrophysics Data System (ADS)
Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor
2017-11-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.
Magnetic targeting of nanoparticles across the intact blood–brain barrier
Kong, Seong Deok; Lee, Jisook; Ramachandran, Srinivasan; Eliceiri, Brian P.; Shubayev, Veronica I.; Lal, Ratnesh; Jin, Sungho
2015-01-01
Delivery of therapeutic or diagnostic agents across an intact blood–brain barrier (BBB) remains a major challenge. Here we demonstrate in a mouse model that magnetic nanoparticles (MNPs) can cross the normal BBB when subjected to an external magnetic field. Following a systemic administration, an applied external magnetic field mediates the ability of MNPs to permeate the BBB and accumulate in a perivascular zone of the brain parenchyma. Direct tracking and localization inside endothelial cells and in the perivascular extracellular matrix in vivo was established using fluorescent MNPs. These MNPs were inert and associated with low toxicity, using a non-invasive reporter for astrogliosis, biochemical and histological studies. Atomic force microscopy demonstrated that MNPs were internalized by endothelial cells, suggesting that trans-cellular trafficking may be a mechanism for the MNP crossing of the BBB observed. The silica-coated magnetic nanocapsules (SiMNCs) allow on-demand drug release via remote radio frequency (RF) magnetic field. Together, these results establish an effective strategy for regulating the biodistribution of MNPs in the brain through the application of an external magnetic field. PMID:23063548
RCS jet-flow field interaction effects on the aerodynamics of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Rausch, J. R.; Roberge, A. M.
1973-01-01
A study was conducted to determine the external effects caused by operation of the reaction control system during entry of the space shuttle orbiter. The effects of jet plume-external flow interactions were emphasized. Force data were obtained for the basic airframe characteristics plus induced effects when the reaction control system is operating. Resulting control amplification and/or coupling were derived and their effects on the aerodynamic stability and control of the orbiter and the reaction control system thrust were determined.
Challenges in Measuring External Currents Driven by the Solar Wind-Magnetosphere Interaction
NASA Technical Reports Server (NTRS)
Le, Guan; Slavin, James A.; Pfaff, Robert F.
2014-01-01
In studying the Earth's geomagnetism, it has always been a challenge to separate magnetic fields from external currents originating from the ionosphere and magnetosphere. While the internal magnetic field changes very slowly in time scales of years and more, the ionospheric and magnetospheric current systems driven by the solar wind -magnetosphere interaction are very dynamic. They are intimately controlled by the ionospheric electrodynamics and ionospheremagnetosphere coupling. Single spacecraft observations are not able to separate their spatial and temporal variations, and thus to accurately describe their configurations. To characterize and understand the external currents, satellite observations require both good spatial and temporal resolutions. This paper reviews our observations of the external currents from two recent LEO satellite missions: Space Technology 5 (ST-5), NASA's first three-satellite constellation mission in LEO polar orbit, and Communications/Navigation Outage Forecasting System (C/NOFS), an equatorial satellite developed by US Air Force Research Laboratory. We present recommendations for future geomagnetism missions based on these observations.
Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
NASA Astrophysics Data System (ADS)
Nganguia, H.; Young, Y.-N.
2013-11-01
In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Cao, Yongze; Kumar, Pawan; Zhao, Yue; Yoshimura, Satoru; Saito, Hitoshi
2018-05-01
Understanding the dynamic magnetization process of magnetic materials is crucial to improving their fundamental properties and technological applications. Here, we propose active magnetic force microscopy for observing reversible and irreversible magnetization processes by stimulating magnetization with an AC magnetic field based on alternating magnetic force microscopy with a sensitive superparamagnetic tip. This approach simultaneously measures sample's DC and AC magnetic fields. We used this microscopy approach to an anisotropic Sr-ferrite (SrF) sintered magnet. This is a single domain type magnet where magnetization mainly changes via magnetic rotation. The proposed method can directly observe the reversible and irreversible magnetization processes of SrF and clearly reveal magnetic domain evolution of SrF (without stimulating magnetization—stimulating reversible magnetization—stimulating irreversible magnetization switching) by slowly increasing the amplitude of the external AC magnetic field. This microscopy approach can evaluate magnetic inhomogeneity and explain the local magnetic process within the permanent magnet.
Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy
NASA Astrophysics Data System (ADS)
Ageev, O. A.; Blinov, Yu. F.; Il'ina, M. V.; Il'in, O. I.; Smirnov, V. A.; Tsukanova, O. G.
2016-02-01
The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70-120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.
Thermal Motion and Forced Migration of Colloidal Particles Generate Hydrostatic Pressure in Solvent
Hammel, H. T.; Scholander, P. F.
1973-01-01
A colloidal solution of ferrite particles in an osmometer has been used to demonstrate that the property that propels water across the semipermeable membrane is the decrease in hydrostatic pressure in the water of the solution. A magnetic field gradient directed so as to force the ferrite particles away from the semipermeable membrane of the osmometer and toward the free surface of the solution enhanced the colloidal osmotic pressure. The enhancement of this pressure was always exactly equal to the augmentation of the pressure as measured by the outward force of the particles, against the area of the free surface. Contrariwise, directing the magnetic field gradient so as to force the ferrite particles away from the free surface and toward the semipermeable membrane diminished the colloidal osmotic pressure of the solution. For a sufficiently forceful field gradient, the initial colloidal osmotic pressure could be negative, followed by an equilibrium pressure approaching zero regardless of the force of the particles against the membrane. Thus, the osmotic pressure of a solution is to be attributed to the pressure in the solvent generated in opposition to the pressure of the solute particles caused by their interaction with the free surface (Brownian motion and/or an external field force), or by their viscous shear when they migrate through the solvent, or both. PMID:16592046
Bungee force level, stiffness, and variation during treadmill locomotion in simulated microgravity.
De Witt, John K; Schaffner, Grant; Ploutz-Snyder, Lori L
2014-04-01
Crewmembers performing treadmill exercise on the International Space Station must wear a harness with an external gravity replacement force that is created by elastomer bungees. The quantification of the total external force, displacement, stiffness, and force variation is important for understanding the forces applied to the crewmember during typical exercise. Data were collected during static trials in the laboratory from a single subject and four subjects were tested while walking at 1.34 m x s(-1) and running at 2.24 m x s(-1) and 3.13 m x s(-1) on a treadmill during simulated microgravity in parabolic flight. The external force was provided by bungees and carabiner clips in configurations commonly used by crewmembers. Total external force, displacement, and force variation in the bungee system were measured, from which stiffness was computed. Mean external force ranged from 431 to 804 N (54-131% bodyweight) across subjects and conditions. Mean displacement was 4 to 8 cm depending upon gait speed. Mean stiffness was affected by bungee configuration and ranged from 1.73 to 29.20 N x cm(-1). Force variation for single bungee configurations was 2.61-4.48% of total external force and between 4.30-57.5% total external force for two-bungee configurations. The external force supplied to crewmembers by elastomer bungees provided a range of loading levels with variations that occur throughout the gait cycle. The quantification of bungee-loading characteristics is important to better define the system currently used by crewmembers during exercise.
A rolling locomotion method for untethered magnetic microrobots
NASA Astrophysics Data System (ADS)
Hou, Max T.; Shen, Hui-Mei; Jiang, Guan-Lin; Lu, Chiang-Ni; Hsu, I.-Jen; Yeh, J. Andrew
2010-01-01
It is a challenge to achieve free and efficient motion of microrobots on arbitrary surfaces. We report a rolling locomotion method for a magnetic microrobot with a rectangular body (300×200×50 μm3); this method is based on an external rotating magnetic field. The magnetic force, accompanied by normal and friction forces, enables the successive rotations of the microrobot. A magnetic field with a rotational speed of 2 rps rolls the microrobot, giving it a translation speed of 1.4 mm/s. With this locomotion ability, microrobots can move along a line or curve and can climb slopes or stairs.
Characteristics of dust voids in a strongly coupled laboratory dusty plasma
NASA Astrophysics Data System (ADS)
Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.
2018-05-01
A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.
On the theory of hysteretic magnetostriction of soft ferrogels
NASA Astrophysics Data System (ADS)
Zubarev, Andrey; Chirikov, Dmitry; Stepanov, Gennady; Borin, Dmitry; Lopez-Lopez, M. T.
2018-05-01
The paper deals with theoretical study of hysteretic magnetostriction of soft ferrogels - composite materials, consisting of the micron-sized magnetizable particles embedded into gel matrices. It is supposed that initially, before application of an external magnetic field, the particles are homogeneously and isotropically distributed in an elastic matrix. The theoretical explanation of the hysteresis phenomena is based on the conception that, under the field action, the particles rearrange into the linear chain-like aggregates. The typical length of the chains is determined by the competition between the force of magnetic attraction of the particles and the force of elastic deformation of the matrix.
On Thermodiffusion and Gauge Transformations for Thermodynamic Fluxes and Driving Forces
NASA Astrophysics Data System (ADS)
Goldobin, D. S.
2017-12-01
We discuss the molecular diffusion transport in infinitely dilute liquid solutions under nonisothermal conditions. This discussion is motivated by an occurring misinterpretation of thermodynamic transport equations written in terms of chemical potential in the presence of temperature gradient. The transport equations contain the contributions owned by a gauge transformation related to the fact that chemical potential is determined up to the summand of form ( AT + B) with arbitrary constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a constant value and B is owned by the potential energy invariance with respect to shifts by a constant value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our treatment is based on consideration of the entropy balance and suggests a promising hint for attempts of evaluation of the thermal diffusion constant from the first principles. We also discuss the impossibility of the "barodiffusion" for dilute solutions, understood in a sense of diffusion flux driven by the pressure gradient itself. When one speaks of "barodiffusion" terms in literature, these terms typically represent the drift in external potential force field (e.g., electric or gravitational fields), where in the final equations the specific force on molecules is substituted with an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the interpretation of the latter as barodiffusion is fragile and may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.
NASA Astrophysics Data System (ADS)
Suzuki, Masuo
2013-10-01
The mechanism of entropy production in transport phenomena is discussed again by emphasizing the role of symmetry of non-equilibrium states and also by reformulating Einstein’s theory of Brownian motion to derive entropy production from it. This yields conceptual reviews of the previous papers [M. Suzuki, Physica A 390 (2011) 1904; 391 (2012) 1074; 392 (2013) 314]. Separated variational principles of steady states for multi external fields {Xi} and induced currents {Ji} are proposed by extending the principle of minimum integrated entropy production found by the present author for a single external field. The basic strategy of our theory on steady states is to take in all the intermediate processes from the equilibrium state to the final possible steady states in order to study the irreversible physics even in the steady states. As an application of this principle, Gransdorff-Prigogine’s evolution criterion inequality (or stability condition) dXP≡∫dr∑iJidXi≤0 is derived in the stronger form dQi≡∫drJidXi≤0 for individual force Xi and current Ji even in nonlinear responses which depend on all the external forces {Xk} nonlinearly. This is called “separated evolution criterion”. Some explicit demonstrations of the present general theory to simple electric circuits with multi external fields are given in order to clarify the physical essence of our new theory and to realize the condition of its validity concerning the existence of the solutions of the simultaneous equations obtained by the separated variational principles. It is also instructive to compare the two results obtained by the new variational theory and by the old scheme based on the instantaneous entropy production. This seems to be suggestive even to the energy problem in the world.
Huang, Jing; Mei, Ye; König, Gerhard; ...
2017-01-24
Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PADmore » energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less
Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan
2017-02-14
In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jing; Mei, Ye; König, Gerhard
Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PADmore » energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less
Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field
Wang, Shunqiang; Zhou, Yihua; Tan, Jifu; Xu, Jiang; Yang, Jie; Liu, Yaling
2014-01-01
A multi-physics model was developed to study the delivery of magnetic nanoparticles (MNPs) to the stent-implanted region under an external magnetic field. The model is firstly validated by experimental work in literature. Then, effects of external magnetic field strength, magnetic particle size, and flow velocity on MNPs’ targeting and binding have been analyzed through a parametric study. Two new dimensionless numbers were introduced to characterize relative effects of Brownian motion (BM), magnetic force induced particle motion, and convective blood flow on MNPs motion. It was found that larger magnetic field strength, bigger MNP size, and slower flow velocity increase the capture efficiency of MNPs. The distribution of captured MNPs on the vessel along axial and azimuthal directions was also discussed. Results showed that the MNPs density decreased exponentially along axial direction after one-dose injection while it was uniform along azimuthal direction in the whole stented region (averaged over all sections). For the beginning section of the stented region, the density ratio distribution of captured MNPs along azimuthal direction is center-symmetrical, corresponding to the center-symmetrical distribution of magnetic force in that section. Two different generation mechanisms are revealed to form four main attraction regions. These results could serve as guidelines to design a better magnetic drug delivery system. PMID:24653546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B., E-mail: b-shokri@sbu.ac.ir
2015-03-15
Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of themore » electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.« less
A magneto-electro-optical effect in a plasmonic nanowire material
Valente, João; Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.
2015-01-01
Electro- and magneto-optical phenomena play key roles in photonic technology enabling light modulators, optical data storage, sensors and numerous spectroscopic techniques. Optical effects, linear and quadratic in external electric and magnetic field are widely known and comprehensively studied. However, optical phenomena that depend on the simultaneous application of external electric and magnetic fields in conventional media are barely detectable and technologically insignificant. Here we report that a large reciprocal magneto-electro-optical effect can be observed in metamaterials. In an artificial chevron nanowire structure fabricated on an elastic nano-membrane, the Lorentz force drives reversible transmission changes on application of a fraction of a volt when the structure is placed in a fraction-of-tesla magnetic field. We show that magneto-electro-optical modulation can be driven to hundreds of thousands of cycles per second promising applications in magneto-electro-optical modulators and field sensors at nano-tesla levels. PMID:25906761
Ye, Huilin; Shen, Zhiqiang; Wei, Mei; Li, Ying
2018-01-01
A large number of nanoparticles (NPs) have been raised for diverse biomedical applications and some of them have shown great potential in treatment and imaging of diseases. Design of NPs is essential for delivery efficacy due to a number of biophysical barriers, which prevents the circulation of NPs in vascular flow and their accumulation at tumour sites. The physiochemical properties of NPs, so-called ‘4S’ parameters, such as size, shape, stiffness and surface functionalization, play crucial roles in their life journey to be delivered to tumour sites. NPs can be modified in various ways to extend their blood circulation time and avoid their clearance by phagocytosis, and efficiently diffuse into tumour cells. However, it is difficult to overcome these barriers simultaneously by a simple combination of ‘4S’ parameters for NPs. At this moment, external triggerings are necessary to guide the movement of NPs, which include light, ultrasound, magnetic field, electrical field and chemical interaction. The delivery system can be constructed to be sensitive to these external stimuli which can reduce the non-specific toxicity and improve the efficacy of the drug-delivery system. From a mechanics point of view, we discuss how different forces play their roles in the margination of NPs in blood flow and tumour microvasculature. PMID:29662344
Applying torque to the Escherichia coli flagellar motor using magnetic tweezers.
van Oene, Maarten M; Dickinson, Laura E; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H
2017-03-07
The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor's response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor's performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level.
NASA Astrophysics Data System (ADS)
Ye, Huilin; Shen, Zhiqiang; Yu, Le; Wei, Mei; Li, Ying
2018-03-01
A large number of nanoparticles (NPs) have been raised for diverse biomedical applications and some of them have shown great potential in treatment and imaging of diseases. Design of NPs is essential for delivery efficacy due to a number of biophysical barriers, which prevents the circulation of NPs in vascular flow and their accumulation at tumour sites. The physiochemical properties of NPs, so-called `4S' parameters, such as size, shape, stiffness and surface functionalization, play crucial roles in their life journey to be delivered to tumour sites. NPs can be modified in various ways to extend their blood circulation time and avoid their clearance by phagocytosis, and efficiently diffuse into tumour cells. However, it is difficult to overcome these barriers simultaneously by a simple combination of `4S' parameters for NPs. At this moment, external triggerings are necessary to guide the movement of NPs, which include light, ultrasound, magnetic field, electrical field and chemical interaction. The delivery system can be constructed to be sensitive to these external stimuli which can reduce the non-specific toxicity and improve the efficacy of the drug-delivery system. From a mechanics point of view, we discuss how different forces play their roles in the margination of NPs in blood flow and tumour microvasculature.
Applying torque to the Escherichia coli flagellar motor using magnetic tweezers
van Oene, Maarten M.; Dickinson, Laura E.; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H.
2017-01-01
The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor’s response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor’s performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level. PMID:28266562
Dispersion of aerosol particles undergoing Brownian motion
NASA Astrophysics Data System (ADS)
Alonso, Manuel; Endo, Yoshiyuki
2001-12-01
The variance of the position distribution for a Brownian particle is derived in the general case where the particle is suspended in a flowing medium and, at the same time, is acted upon by an external field of force. It is shown that, for uniform force and flow fields, the variance is equal to that for a free particle. When the force field is not uniform but depends on spatial location, the variance can be larger or smaller than that for a free particle depending on whether the average motion of the particles takes place toward, respectively, increasing or decreasing absolute values of the field strength. A few examples concerning aerosol particles are discussed, with especial attention paid to the mobility classification of charged aerosols by a non-uniform electric field. As a practical application of these ideas, a new design of particle-size electrostatic classifier differential mobility analyser (DMA) is proposed in which the aerosol particles migrate between the electrodes in a direction opposite to that for a conventional DMA, thereby improving the resolution power of the instrument.
Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere
NASA Astrophysics Data System (ADS)
Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.
2018-01-01
Aims: Twisted magnetic flux ropes (MFRs) in the solar atmosphere have been researched extensively because of their close connection to many solar eruptive phenomena, such as flares, filaments, and coronal mass ejections (CMEs). In this work, we performed a set of 3D isothermal magnetohydrodynamic (MHD) numerical simulations, which use analytical twisted MFR models and study dynamical processes parametrically inside and around current-carrying twisted loops. We aim to generalize earlier findings by applying finite plasma β conditions. Methods: Inside the MFR, approximate internal equilibrium is obtained by pressure from gas and toroidal magnetic fields to maintain balance with the poloidal magnetic field. We selected parameter values to isolate best either internal or external kink instability before studying complex evolutions with mixed characteristics. We studied kink instabilities and magnetic reconnection in MFRs with low and high twists. Results: The curvature of MFRs is responsible for a tire tube force due to its internal plasma pressure, which tends to expand the MFR. The curvature effect of toroidal field inside the MFR leads to a downward movement toward the photosphere. We obtain an approximate internal equilibrium using the opposing characteristics of these two forces. A typical external kink instability totally dominates the evolution of MFR with infinite twist turns. Because of line-tied conditions and the curvature, the central MFR region loses its external equilibrium and erupts outward. We emphasize the possible role of two different kink instabilities during the MFR evolution: internal and external kink. The external kink is due to the violation of the Kruskal-Shafranov condition, while the internal kink requires a safety factor q = 1 surface inside the MFR. We show that in mixed scenarios, where both instabilities compete, complex evolutions occur owing to reconnections around and within the MFR. The S-shaped structures in current distributions appear naturally without invoking flux emergence. Magnetic reconfigurations common to eruptive MFRs and flare loop systems are found in our simulations.
Dependence of Interaction Free Energy between Solutes on an External Electrostatic Field
Yang, Pei-Kun
2013-01-01
To explore the athermal effect of an external electrostatic field on the stabilities of protein conformations and the binding affinities of protein-protein/ligand interactions, the dependences of the polar and hydrophobic interactions on the external electrostatic field, −Eext, were studied using molecular dynamics (MD) simulations. By decomposing Eext into, along, and perpendicular to the direction formed by the two solutes, the effect of Eext on the interactions between these two solutes can be estimated based on the effects from these two components. Eext was applied along the direction of the electric dipole formed by two solutes with opposite charges. The attractive interaction free energy between these two solutes decreased for solutes treated as point charges. In contrast, the attractive interaction free energy between these two solutes increased, as observed by MD simulations, for Eext = 40 or 60 MV/cm. Eext was applied perpendicular to the direction of the electric dipole formed by these two solutes. The attractive interaction free energy was increased for Eext = 100 MV/cm as a result of dielectric saturation. The force on the solutes along the direction of Eext computed from MD simulations was greater than that estimated from a continuum solvent in which the solutes were treated as point charges. To explore the hydrophobic interactions, Eext was applied to a water cluster containing two neutral solutes. The repulsive force between these solutes was decreased/increased for Eext along/perpendicular to the direction of the electric dipole formed by these two solutes. PMID:23852018
Spin-orbit induced electronic spin separation in semiconductor nanostructures.
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.
Spin–orbit induced electronic spin separation in semiconductor nanostructures
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136
La Delfa, Nicholas J; Potvin, Jim R
2017-03-01
This paper describes the development of a novel method (termed the 'Arm Force Field' or 'AFF') to predict manual arm strength (MAS) for a wide range of body orientations, hand locations and any force direction. This method used an artificial neural network (ANN) to predict the effects of hand location and force direction on MAS, and included a method to estimate the contribution of the arm's weight to the predicted strength. The AFF method predicted the MAS values very well (r 2 = 0.97, RMSD = 5.2 N, n = 456) and maintained good generalizability with external test data (r 2 = 0.842, RMSD = 13.1 N, n = 80). The AFF can be readily integrated within any DHM ergonomics software, and appears to be a more robust, reliable and valid method of estimating the strength capabilities of the arm, when compared to current approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Computing Gravitational Fields of Finite-Sized Bodies
NASA Technical Reports Server (NTRS)
Quadrelli, Marco
2005-01-01
A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.
Inverting polar domains via electrical pulsing in metallic germanium telluride
Nukala, Pavan; Ren, Mingliang; Agarwal, Rahul; Berger, Jacob; Liu, Gerui; Johnson, A. T. Charlie; Agarwal, Ritesh
2017-01-01
Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71o domain boundaries into 109o boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage. PMID:28401949
Effect of boundary conditions on magnetocapacitance effect in a ring-type magnetoelectric structure
NASA Astrophysics Data System (ADS)
Zhang, Juanjuan
2017-12-01
By considering the nonlinear magneto-elastic coupling relationships of magnetostrictive materials, an analytical model is proposed. The resonance frequencies can be accurately predicted by this theoretical model, and they are in good agreement with experimental data. Subsequently, the magnetocapacitance effect in a ring-type magnetoelectric (ME) structure with different boundary conditions is investigated, and it is found that various mechanical boundaries, the frequency, the magnetic field, the geometric size, and the interface bonding significantly affect the capacitance of the ME structure. Further, additional resonance frequencies can be predicted by considering appropriate imperfect interface bonding. Finally, the influence of an external force on the capacitance is studied. The result shows that an external force on the boundary changes the capacitance, but has only a weak influence on the resonance frequency.
NASA Astrophysics Data System (ADS)
Esquivel-Sirvent, Raul; Schatz, George
2014-03-01
The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.
Effect of External Loading on Force and Power Production During Plyometric Push-ups.
Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi
2018-04-01
Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morante, S., E-mail: morante@roma2.infn.it; Rossi, G.C., E-mail: rossig@roma2.infn.it; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome
We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.
NASA Astrophysics Data System (ADS)
Liao, Hengpei; Zheng, Jun; Jin, Liwei; Huang, Huan; Deng, Zigang; Shi, Yunhua; Zhou, Difan; Cardwell, David A.
2018-07-01
We report that the dynamic levitation force of bulk high temperature superconductors (HTS) in motion attenuates when exposed to an inhomogeneous magnetic field. This phenomenon has significant potential implications for the long-term stability and running performance of HTS in maglev applications. In order to suppress the attenuation of the levitation force associated with fluctuations in magnetic field, we compare the dynamic levitation performance of single grain Y-Ba-Cu-O (YBCO) and Gd-Ba-Cu-O (GdBCO) bulk superconductors with relatively high critical current densities. A bespoke HTS maglev dynamic measurement system (SCML-03) incorporating a rotating circular permanent magnet guideway was employed to simulate the movement of HTS in a varying magnetic field at different frequencies (i.e. speed of rotation). The attenuation of the levitation force during dynamic operation, which is key parameter for effective maglev operation, has been evaluated experimentally. It is found that GdBCO bulk superconductors that exhibit superior levitation force properties are more able to resist the attenuation of levitation force compared with YBCO bulk materials under the same operating conditions. This investigation indicates clearly that GdBCO bulk superconductors can play an important role in suppressing attenuation of the levitation force, therefore improving the long-term levitation performance under dynamic operating conditions. This result is potentially significant in the design and application of HTS in maglev systems.
NASA Astrophysics Data System (ADS)
Lou, Jiale; Zheng, Xiaogu; Frederiksen, Carsten S.; Liu, Haibo; Grainger, Simon; Ying, Kairan
2017-04-01
A decadal variance decomposition method is applied to the Northern Hemisphere (NH) 500-hPa geopotential height (GPH) and the sea level pressure (SLP) taken from the last millennium (850-1850 AD) experiment with the coupled climate model CCSM4, to estimate the contribution of the intra-decadal variability to the inter-decadal variability. By removing the intra-decadal variability from the total inter-decadal variability, the residual variability is more likely to be associated with slowly varying external forcings and slow-decadal climate processes, and therefore is referred to as slow-decadal variability. The results show that the (multi-)decadal changes of the NH 500-hPa GPH are primarily dominated by slow-decadal variability, whereas the NH SLP field is primarily dominated by the intra-decadal variability. At both pressure levels, the leading intra-decadal modes each have features related to the El Niño-southern oscillation, the intra-decadal variability of the Pacific decadal oscillation (PDO) and the Arctic oscillation (AO); while the leading slow-decadal modes are associated with external radiative forcing (mostly with volcanic aerosol loadings), the Atlantic multi-decadal oscillation and the slow-decadal variability of AO and PDO. Moreover, the radiative forcing has much weaker effect to the SLP than that to the 500-hPa GPH.
Noel, Martin; Fortin, Karine; Bouyer, Laurent J
2009-01-01
Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases. PMID:19493356
Noel, Martin; Fortin, Karine; Bouyer, Laurent J
2009-06-03
Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases.
Ground-state magnetic phase diagram of bow-tie graphene nanoflakes in external magnetic field
NASA Astrophysics Data System (ADS)
Szałowski, Karol
2013-12-01
The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of bow-tie shape and various sizes in external in-plane magnetic field. The tight-binding Hamiltonian supplemented with Hubbard term is used to model the electronic structure of the systems in question. The existence of the antiferromagnetic phase with magnetic moments localized at the sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic state is predicted to occur in charge-undoped structures. For small nanoflake doped with a single charge carrier, the low-field phase is ferrimagnetic and a metamagnetic transition to ferromagnetic ordering can be forced by the field. The critical field is found to decrease with increasing size of the nanoflake. The influence of diagonal and off-diagonal disorder on the mentioned magnetic properties is studied. The effect of off-diagonal disorder is found to be more important than that of diagonal disorder, leading to significantly widened distribution of critical fields for disordered population of nanoflakes.
Passive magnetic bearing system
Post, Richard F.
2014-09-02
An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.
Large Electric Field–Enhanced–Hardness Effect in a SiO2 Film
Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen
2014-01-01
Silicon dioxide films are extensively used in nano and micro–electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation–induced deformation during the friction measurements. PMID:24681517
NASA Astrophysics Data System (ADS)
Lipscombe, Trevor C.; Mungan, Carl E.
2018-05-01
The brachistochrone problem consists of finding the track of shortest travel time between given initial and final points for a particle sliding frictionlessly along it under the influence of a given external force field. Solvable variations of the standard example of a uniform gravitational field would be suitable for homework and computer projects by undergraduate physics students studying intermediate mechanics and electromagnetism. An electrobrachistochrone problem is here proposed, in which a charged particle moves along a frictionless track under the influence of its electrostatic force of attraction to an image charge in a grounded conducting plane below the track. The path of least time is found to be a foreshortened cycloid and its properties are investigated analytically and graphically.
Localized and delocalized motion of colloidal particles on a magnetic bubble lattice.
Tierno, Pietro; Johansen, Tom H; Fischer, Thomas M
2007-07-20
We study the motion of paramagnetic colloidal particles placed above magnetic bubble domains of a uniaxial garnet film and driven through the lattice by external magnetic field modulation. An external tunable precessing field propels the particles either in localized orbits around the bubbles or in superdiffusive or ballistic motion through the bubble array. This motion results from the interplay between the driving rotating signal, the viscous drag force and the periodic magnetic energy landscape. We explain the transition in terms of the incommensurability between the transit frequency of the particle through a unit cell and the modulation frequency. Ballistic motion dynamically breaks the symmetry of the array and the phase locked particles follow one of the six crystal directions.
Analysis of a Li-Ion Nanobattery with Graphite Anode Using Molecular Dynamics Simulations
Ponce, Victor; Galvez-Aranda, Diego E.; Seminario, Jorge M.
2017-05-19
In this work, molecular dynamics simulations were performed of the initial charging of a Li-ion nanobattery with a graphite anode and lithium hexaflourphosphate (LiPF 6) salt dissolved in ethylene carbonate (CO 3C 2H 4) solvent as the electrolyte solution. The charging was achieved through the application of external electric fields simulating voltage sources. A variety of force fields were combined to simulate the materials of the nanobattery, including the solid electrolyte interphase, metal collectors, and insulator cover. Some of the force field parameters were estimated using ab initio methods and others were taken from the literature. We studied the behaviormore » of Li-ions traveling from cathode to anode through electrolyte solutions of concentrations 1.15 and 3.36 M. Time-dependent variables such as energy, temperature, volume, polarization, and mean square displacement are reported; a few of these variables, as well as others such as current, resistance, current density, conductivity, and resistivity are reported as a function of the external field and charging voltage. A solid electrolyte interphase (SEI) layer was also added to the model to study the mechanism behind the diffusion of the Li-ions through the SEI. As the battery is charged, the depletion of Li atoms in the cathode and their accumulation in the anode follow a linear increase of the polarizability in the solvent, until reaching a saturation point after which the charging of the battery stops, i.e., the energy provided by the external source decays to very low levels. Lastly, the nanobattery model containing the most common materials of a commercial lithium-ion battery is very useful to determine atomistic information that is difficult or too expensive to obtain experimentally; available data shows consistency with our results.« less
Magnetically controlled ferromagnetic swimmers
Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.
2017-01-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control. PMID:28276490
Magnetically controlled ferromagnetic swimmers
NASA Astrophysics Data System (ADS)
Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.
2017-03-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.
Shaping magnetic fields to direct therapy to ears and eyes.
Shapiro, B; Kulkarni, S; Nacev, A; Sarwar, A; Preciado, D; Depireux, D A
2014-07-11
Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs that can be manipulated by magnetic fields. However, we do not yet have the magnet systems that can then direct those constructs to the right places, in vivo, over human patient distances. We do not yet know where to put the external magnets, how to shape them, or when to turn them on and off to direct particles or magnetized cells-in blood, through tissue, and across barriers-to disease locations. In this article, we consider ear and eye disease targets. Ear and eye targets are too deep and complex to be targeted by a single external magnet, but they are shallow enough that a combination of magnets may be able to direct therapy to them. We focus on how magnetic fields should be shaped (in space and time) to direct magnetic constructs to ear and eye targets.
Transformation to a Web-Based Preservice Training Program: A Case Study
ERIC Educational Resources Information Center
Lifter, Karin; Kruger, Louis; Okun, Barbara; Tabol, Charity; Poklop, Laurie; Shishmanian, Eunice
2005-01-01
In this article, the authors describe how they transformed their interdisciplinary personnel preparation program in early intervention from a traditional classroom format to a primarily Web-based format. The authors used force field analysis, informed by survey results of faculty and practitioners, to examine the external and internal factors that…
Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations
NASA Astrophysics Data System (ADS)
Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.
2017-10-01
Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.
Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface
NASA Astrophysics Data System (ADS)
MacDowell, Luis G.
2017-08-01
In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.
Formation of Organized Protein Thin Films with External Electric Field.
Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M
2015-10-01
The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.
Sliding mode control of electromagnetic tethered satellite formation
NASA Astrophysics Data System (ADS)
Hallaj, Mohammad Amin Alandi; Assadian, Nima
2016-08-01
This paper investigates the control of tethered satellite formation actuated by electromagnetic dipoles and reaction wheels using the robust sliding mode control technique. Generating electromagnetic forces and moments by electric current coils provides an attractive control actuation alternative for tethered satellite system due to the advantages of no propellant consumption and no obligatory rotational motion. Based on a dumbbell model of tethered satellite in which the flexibility and mass of the tether is neglected, the equations of motion in Cartesian coordinate are derived. In this model, the J2 perturbation is taken into account. The far-field and mid-field models of electromagnetic forces and moments of two satellites on each other and the effect of the Earth's magnetic field are presented. A robust sliding mode controller is designed for precise trajectory tracking purposes and to deal with the electromagnetic force and moment uncertainties and external disturbances due to the Earth's gravitational and magnetic fields inaccuracy. Numerical simulation results are presented to validate the effectiveness of the developed controller and its superiority over the linear controller.
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W. R., II; Jara-Almonte, J.
2014-12-01
Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (potential) and internal (plasma-generated) magnetic fields. We find that forces due to the line-tied toroidal magnetic field, which are not included in the basic torus instability theory, can play a major role in preventing eruptions. The dependence of these toroidal magnetic forces on various potential field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).
An innovative methodology for measurement of stress distribution of inflatable membrane structures
NASA Astrophysics Data System (ADS)
Zhao, Bing; Chen, Wujun; Hu, Jianhui; Chen, Jianwen; Qiu, Zhenyu; Zhou, Jinyu; Gao, Chengjun
2016-02-01
The inflatable membrane structure has been widely used in the fields of civil building, industrial building, airship, super pressure balloon and spacecraft. It is important to measure the stress distribution of the inflatable membrane structure because it influences the safety of the structural design. This paper presents an innovative methodology for the measurement and determination of the stress distribution of the inflatable membrane structure under different internal pressures, combining photogrammetry and the force-finding method. The shape of the inflatable membrane structure is maintained by the use of pressurized air, and the internal pressure is controlled and measured by means of an automatic pressure control system. The 3D coordinates of the marking points pasted on the membrane surface are acquired by three photographs captured from three cameras based on photogrammetry. After digitizing the markings on the photographs, the 3D curved surfaces are rebuilt. The continuous membrane surfaces are discretized into quadrilateral mesh and simulated by membrane links to calculate the stress distributions using the force-finding method. The internal pressure is simplified to the external node forces in the normal direction according to the contributory area of the node. Once the geometry x, the external force r and the topology C are obtained, the unknown force densities q in each link can be determined. Therefore, the stress distributions of the inflatable membrane structure can be calculated, combining the linear adjustment theory and the force density method based on the force equilibrium of inflated internal pressure and membrane internal force without considering the mechanical properties of the constitutive material. As the use of the inflatable membrane structure is attractive in the field of civil building, an ethylene-tetrafluoroethylene (ETFE) cushion is used with the measurement model to validate the proposed methodology. The comparisons between the obtained results and numerical simulation for the inflation process of the ETFE cushion are performed, and the strong agreements demonstrate that the proposed methodology is feasible and accurate.
NASA Technical Reports Server (NTRS)
Zak, M.
1982-01-01
An analytical investigation of the equilibrium of wrinkling films is conducted. Zak (1979) has shown that wrinkling occurs in connection with the instability of a smooth film having no resistance to bending in the case of compression. The governing equation for the equilibrium of a film with possible regions of wrinkling is considered. The introduction of fictitious stress reduces the governing equation to a form which formally coincides with the governing equation for a string. Equilibrium conditions in the case of an absence of external forces are explored, taking into account the stretching of a semispherical film, the torsion of a convex film of revolution, and stress singularities. A study is conducted of the equilibrium under conditions in which external forces normal to the surface of a film are present. Attention is also given to the equilibrium in a potential field.
NASA Technical Reports Server (NTRS)
Fossler, I. H.; Cole, P.
1972-01-01
Experimental aerodynamic investigations were conducted on a .006 scale model of the space shuttle 040-A orbiter and its external fuel tank utilizing the NASA/MFSC dual sting support system in the MFSC 14 x 14 inch Trisonic Wind Tunnel. Normal force, pitching moment and axial force components were recorded simultaneously on the orbiter and the tank at selected tank field positions beneath the orbiter as both models were pitched through an angle of attack range of -5 deg to 20 deg. Incidence angles between orbiter and tank of 0 deg, 5 deg, 10 deg and 15 deg were investigated. During these tests Mach number was set at 0.6, 2.0 and 4.0.
Design of Interactively Time-Pulsed Microfluidic Mixers in Microchips using Numerical Simulation
NASA Astrophysics Data System (ADS)
Fu, Lung-Ming; Tsai, Chien-Hsiung
2007-01-01
In this paper, we propose a novel technique in which driving voltages are applied interactively to the respective inlet fluid flows of three configurations of a microfluidic device, namely T-shaped, double-T-shaped, and double-cross-shaped configurations, to induce electroosmotic flow (EOF) velocity variations in such a way as to develop a rapid mixing effect in the microchannel. In these configurations a microfluidic mixer apply only one electrokinetic driving force, which drives the sample fluids and simultaneously produces a periodic switching frequency. It requires no other external driving force to induce perturbations to the flow field. The effects of the main applied electric field, the interactive frequency, and the pullback electric field on the mixing performance are thoroughly examined numerically. The optimal interactive frequency range for a given set of micromixer parameters is identified for each type of control mode. The numerical results confirm that micromixers operating at an optimal interactive frequency are capable of delivering a significantly enhanced mixing performance. Furthermore, it is shown that the optimal interactive frequency depends upon the magnitude of the main applied electric field. The interactively pulsed mixers developed in this study have a strong potential for use in lab-on-a-chip systems. They involve a simpler fabrication process than either passive or active on-chip mixers and require less human intervention in operation than their bulky external counterparts.
In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires
NASA Astrophysics Data System (ADS)
Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li
2018-05-01
Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.
A Nonlinear Elasticity Model of Macromolecular Conformational Change Induced by Electrostatic Forces
Zhou, Y. C.; Holst, Michael; McCammon, J. Andrew
2008-01-01
In this paper we propose a nonlinear elasticity model of macromolecular conformational change (deformation) induced by electrostatic forces generated by an implicit solvation model. The Poisson-Boltzmann equation for the electrostatic potential is analyzed in a domain varying with the elastic deformation of molecules, and a new continuous model of the electrostatic forces is developed to ensure solvability of the nonlinear elasticity equations. We derive the estimates of electrostatic forces corresponding to four types of perturbations to an electrostatic potential field, and establish the existance of an equilibrium configuration using a fixed-point argument, under the assumption that the change in the ionic strength and charges due to the additional molecules causing the deformation are sufficiently small. The results are valid for elastic models with arbitrarily complex dielectric interfaces and cavities, and can be generalized to large elastic deformation caused by high ionic strength, large charges, and strong external fields by using continuation methods. PMID:19461946
Impact of external forcing on simulated hydroclimate from interannual to multicentennial timescales
NASA Astrophysics Data System (ADS)
Roldán, Pedro; Fidel González-Rouco, Jesús; Melo-Aguilar, Camilo
2017-04-01
During the last millennium, external forcing experienced important changes in different timescales. It has been demostrated that these changes had an impact on climate. In particular, changes in solar activity, volcanic eruptions and emissions of greenhouse gases are related to short-term and long-term changes in global temperatures, with situations of higher total external forcing generally related with higher global and hemispherical temperatures, and conversely with situations of lower forcing. This connection is clearly observed in climate simulations from different models and in proxy-based reconstructions. The changes in external forcing can also explain certain changes in atmospheric dynamics and hydroclimate, although in this case it is in general more difficult to trace causality arguments. Analyses based on simulations from two different models (ECHO-G and CESM-LME) have been performed, to assess the impact of external forcing on climate in timescales ranging from interannual to multicentennial. Various climatic variables have been analysed, including temperature, sea level pressure, surface wind, precipitation and soil moisture. For interannual timescales, composites have been defined with the years before and after the main volcanic eruptions of the last millennium as well as the minima of solar activity during this period. For longer timescales, a Principal Component analysis has been performed, to try to separate the signal of external forcing from that of internal variability. This has been done for the whole millennium and for the pre-industrial period, to assess the difference between natural and anthropogenic forcing. For multicentennial timescales, composites for the Medieval Climate Anomaly (MCA; ca. 950-1250), the Little Ice Age (LIA; ca. 1450-1850) and the 20th Century have been compared. These three periods were respectively characterised by higher, lower and higher forcing. This allows to assess the contribution of external forcing to the evolution of climate over longer time intervals. These analyses have shown that external forcing is an important factor in the evolution of the simulated hydroclimate of the last millennium. In the short-term, it has been observed that volcanic eruptions and other situations of extreme forcing significantly alter the global precipitation in the subsequent years. In the long-term, variations of external forcing can be related to changes in atmospheric dynamics and in hydroclimate. However, this impact is not homogeneously distributed. There are areas where hydroclimate is mainly influenced by the external forcing and other areas more influenced by internal variability, with spatial decorrelation being higher in precipitation or drought related variables than in temperature. The regional sensitivity to external forcing of hydroclimate is model and, to a lesser degree, simulation dependent.
The Vainshtein mechanism in the cosmic web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-bo
We investigate the dependence of the Vainshtein screening mechanism on the cosmic web morphology of both dark matter particles and halos as determined by ORIGAMI. Unlike chameleon and symmetron screening, which come into effect in regions of high density, Vainshtein screening instead depends on the dimensionality of the system, and screened bodies can still feel external fields. ORIGAMI is well-suited to this problem because it defines morphologies according to the dimensionality of the collapsing structure and does not depend on a smoothing scale or density threshold parameter. We find that halo particles are screened while filament, wall, and void particlesmore » are unscreened, and this is independent of the particle density. However, after separating halos according to their large scale cosmic web environment, we find no difference in the screening properties of halos in filaments versus halos in clusters. We find that the fifth force enhancement of dark matter particles in halos is greatest well outside the virial radius. We confirm the theoretical expectation that even if the internal field is suppressed by the Vainshtein mechanism, the object still feels the fifth force generated by the external fields, by measuring peculiar velocities and velocity dispersions of halos. Finally, we investigate the morphology and gravity model dependence of halo spins, concentrations, and shapes.« less
Vashista, Vineet; Khan, Moiz; Agrawal, Sunil K.
2017-01-01
In this paper, we develop an intervention to apply external gait synchronized forces on the pelvis to reduce the user’s effort during walking. A cable-driven robot was used to apply the external forces and an adaptive frequency oscillator scheme was developed to adapt the timing of force actuation to the gait frequency during walking. The external forces were directed in the sagittal plane to assist the trailing leg during the forward propulsion and vertical deceleration of the pelvis during the gait cycle. A pilot experiment with five healthy subjects was conducted. The results showed that the subjects applied lower ground reaction forces in the vertical and anterior-posterior directions during the late stance phase. In summary, the current work provides a novel approach to study the role of external pelvic forces in altering the walking effort. These studies can provide better understanding for designing exoskeletons and prosthetic devices to reduce the overall walking effort. PMID:29623294
High Reynolds number turbulence model of rotating shear flows
NASA Astrophysics Data System (ADS)
Masuda, S.; Ariga, I.; Koyama, H. S.
1983-09-01
A Reynolds stress closure model for rotating turbulent shear flows is developed. Special attention is paid to keeping the model constants independent of rotation. First, general forms of the model of a Reynolds stress equation and a dissipation rate equation are derived, the only restrictions of which are high Reynolds number and incompressibility. The model equations are then applied to two-dimensional equilibrium boundary layers and the effects of Coriolis acceleration on turbulence structures are discussed. Comparisons with the experimental data and with previous results in other external force fields show that there exists a very close analogy between centrifugal, buoyancy and Coriolis force fields. Finally, the model is applied to predict the two-dimensional boundary layers on rotating plane walls. Comparisons with existing data confirmed its capability of predicting mean and turbulent quantities without employing any empirical relations in rotating fields.
NASA Astrophysics Data System (ADS)
Scudder, J. D.
2017-12-01
Enroute to a new formulation of the heat law for the solar wind plasma the role of the invariably neglected, but omnipresent, thermal force for the multi-fluid physics of the corona and solar wind expansion will be discussed. This force (a) controls the size of the collisional ion electron energy exchange, favoring the thermal vs supra thermal electrons; (b) occurs whenever heat flux occurs; (c) remains after the electron and ion fluids come to a no slip, zero parallel current, equilibrium; (d) enhances the equilibrium parallel electric field; but (e) has a size that is theoretically independent of the electron collision frequency - allowing its importance to persist far up into the corona where collisions are invariably ignored in first approximation. The constituent parts of the thermal force allow the derivation of a new generalized electron heat flow relation that will be presented. It depends on the separate field aligned divergences of electron and ion pressures and the gradients of the ion gravitational potential and parallel flow energies and is based upon a multi-component electron distribution function. The new terms in this heat law explicitly incorporate the astrophysical context of gradients, acceleration and external forces that make demands on the parallel electric field and quasi-neutrality; essentially all of these effects are missing in traditional formulations.
Coronal Jet Collimation by Nonlinear Induced Flows
NASA Astrophysics Data System (ADS)
Vasheghani Farahani, S.; Hejazi, S. M.
2017-08-01
Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma-β. As the shear flow and plasma-β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.
Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields
NASA Astrophysics Data System (ADS)
Kim, S. H.; Hashi, S.; Ishiyama, K.
2011-01-01
This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.
NASA Astrophysics Data System (ADS)
Maglevanny, I. I.; Smolar, V. A.; Karyakina, T. I.
2018-06-01
In this paper, we consider the activation processes in nonlinear meta-stable system based on a lateral (quasi-two-dimensional) superlattice and study the dynamics of such a system externally driven by a harmonic force. The internal control parameters are the longitudinal applied electric field and the sample temperature. The spontaneous transverse electric field is considered as an order parameter. The forced violations of order parameter are considered as a response of a system to periodic driving. We investigate the cooperative effects of self-organization and high harmonic forcing from the viewpoint of catastrophe theory and show the possibility of generation of third and higher odd harmonics in output signal that lead to distortion of its wave front. A higher harmonics detection strategy is further proposed and explained in detail by exploring the influences of system parameters on the response output of the system that are discussed through numerical simulations.
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W.; Jara-Almonte, J.; Gao, L.
2014-10-01
Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (vacuum) and internal (plasma-generated) magnetic fields. We find that the line-tied tension force--a force that is not included in the basic torus instability theory--plays a major role in preventing eruptions. The dependence of this tension force on various vacuum field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).
Dynamics of Two Interactive Bubbles in An Acoustic Field - Part II: Experiments
NASA Astrophysics Data System (ADS)
Ashgriz, Nasser; Barbat, Tiberiu; Liu, Ching-Shi
1996-11-01
The motion of two air bubbles levitated in water, in the presence of a high-frequency acoustic field is experimentally studied. The interaction force between them is named "secondary Bjerknes force" and may be significant in microgravity environments; in our experiments the buoyancy effect is compensated through the action of the "primary Bjerknes forces" - interaction between each bubble oscillation and external sound field. The stationary sound field is produced by a piezoceramic tranducer, in the range of 22-24 kHz. The experiments succesfully demonstrate the existence of three patterns of interaction between bubbles of various sizes: attraction, repulsion and oscillation. Bubbles attraction is quantitatively studied using a high speed video, for "large" bubbles (in the range 0.5-2 mm radius); bubbles repulsion and oscillations are only observed with a regular video, for "small" bubbles (around the resonance size at these frequencies, 0.12 mm). Velocities and accelerations of each bubble are computed from the time history of the motion. The theoretical equations of motion are completed with a drag force formula for single bubbles and solved numerically. Experimental results, for the case of two attracting bubbles, are in good agreement with the numerical model, especially for values of the mutual distance greater than 3 large bubble radii.
Quantum friction in two-dimensional topological materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farias, M. Belén; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.
In this paper, we develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the nontrivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. Finally, it is shown that topologically nontrivial states in two-dimensional materials enable an increase ofmore » two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.« less
Quantum friction in two-dimensional topological materials
Farias, M. Belén; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.
2018-04-24
In this paper, we develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the nontrivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. Finally, it is shown that topologically nontrivial states in two-dimensional materials enable an increase ofmore » two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.« less
Experimental studies of protozoan response to intense magnetic fields and forces
NASA Astrophysics Data System (ADS)
Guevorkian, Karine
Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.
Nature of inclined growth in thin-layer electrodeposition under uniform magnetic fields.
Soba, Alejandro; González, Graciela; Calivar, Lucas; Marshall, Guillermo
2012-11-01
Electrochemical deposition (ECD) in thin cells in a vertical position relative to gravity, subject to an external uniform magnetic field, yields a growth pattern formation with dense branched morphology with branches tilted in the direction of the magnetic force. We study the nature of the inclined growth through experiments and theory. Experiments in ECD, in the absence of magnetic forces, reveal that a branch grows by allowing fluid to penetrate its tip and to be ejected from the sides through a pair of symmetric vortices attached to the tip. The upper vortices zone defines an arch separating an inner zone ion depleted and an outer zone in a funnel-like form with a concentrated solution through which metal ions are carried into the tip. When a magnetic field is turned on, vortex symmetry is broken, one vortex becoming weaker than the other, inducing an inclination of the funnel. Consequently, particles entering the funnel give rise to branch growth tilted in the same direction. Theory predicts, in the absence of a magnetic force, funnel symmetry induced through symmetric vortices driven by electric and gravitational forces; when the magnetic force is on, it is composed with the pair of clockwise and counterclockwise vortices, reducing or amplifying one or the other. In turn, funnel tilting modifies particle trajectories, thus, growth orientation.
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
Ekdahl, Carl
2017-05-01
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
Foskey, Mark; Niethammer, Marc; Krajcevski, Pavel; Lin, Ming C.
2014-01-01
Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound or MR images) and known external forces. Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation. PMID:22893381
Magnetic Alignment of γ-Fe2O3 Nanoparticles in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Jimenez, Andrew; Kumar, Sanat K.; Jestin, Jacques
Recent work in nanocomposites has been heavily focused on controlling the dispersion state of filler particles. The use of internal self-assembly based on matrix properties provides a limited solution to the desire for specified organizations. By introducing a magnetic field during the casting of a polymer solution it has been shown that particles can be oriented to form anisotropic structures - commonly sought after for improved mechanical properties. Here, magnetic nanoparticles were cast in two different polymer matrices to study the effect of various forces that lead to this highly desired alignment. The addition of the magnetic field as an external trigger was shown to not necessarily force the clustering, but rather orient the agglomerates already available in solution. This demonstrates the importance of other dominant forces introduced into the system by characteristics of the polymers themselves. While this magnetic field provides a direction for the sample, the key forces lie in the interactions between the polymers and nanoparticles (as well as their solvent). The study shows a dependence of anisotropy on the particle loading, matrix, and casting time, from which continued work hopes to quantify the clustering necessary to optimize alignment in the composite.
NASA Astrophysics Data System (ADS)
Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo
2017-04-01
Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system.
NASA Astrophysics Data System (ADS)
Yoon, Seokjin; Kasai, Akihide
2017-11-01
The dominant external forcing factors influencing estuarine circulation differ among coastal environments. A three-dimensional regional circulation model was developed to estimate external influence indices and relative contributions of external forcing factors such as external oceanic forcing, surface heat flux, wind stress, and river discharge to circulation and hydrographic properties in Tango Bay, Japan. Model results show that in Tango Bay, where the Tsushima Warm Current passes offshore of the bay, under conditions of strong seasonal winds and river discharge, the water temperature and salinity are strongly influenced by surface heat flux and river discharge in the surface layer, respectively, while in the middle and bottom layers both are mainly controlled by open boundary conditions. The estuarine circulation is comparably influenced by all external forcing factors, the strong current, surface heat flux, wind stress, and river discharge. However, the influence degree of each forcing factor varies with temporal variations in external forcing factors as: the influence of open boundary conditions is higher in spring and early summer when the stronger current passes offshore of the bay, that of surface heat flux reflects the absolute value of surface heat flux, that of wind stress is higher in late fall and winter due to strong seasonal winds, and that of river discharge is higher in early spring due to snow-melting and summer and early fall due to flood events.
The effects of forcing on a single stream shear layer and its parent boundary layer
NASA Technical Reports Server (NTRS)
Haw, Richard C.; Foss, John F.
1990-01-01
Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.
Modeling of magnetic particle orientation in magnetic powder injection molding
NASA Astrophysics Data System (ADS)
Doo Jung, Im; Kang, Tae Gon; Seul Shin, Da; Park, Seong Jin
2018-03-01
The magnetic micro powder orientation under viscous shear flow has been analytically understood and characterized into a new analytical orientation model for a powder injection molding process. The effects of hydrodynamic force from the viscous flow, external magnetic force and internal dipole-dipole interaction were considered to predict the orientation under given process conditions. Comparative studies with a finite element method proved the calculation validity with a partial differential form of the model. The angular motion, agglomeration and magnetic chain formation have been simulated, which shows that the effect of dipole-dipole interaction among powders on the orientation state becomes negligible at a high Mason number condition and at a low λ condition (the ratio of external magnetic field strength and internal magnetic moment of powder). Our developed model can be very usefully employed in the process analysis and design of magnetic powder injection molding.
Magnetic assembly route to colloidal responsive photonic nanostructures.
He, Le; Wang, Mingsheng; Ge, Jianping; Yin, Yadong
2012-09-18
Responsive photonic structures can respond to external stimuli by transmitting optical signals. Because of their important technological applications such as color signage and displays, biological and chemical sensors, security devices, ink and paints, military camouflage, and various optoelectronic devices, researchers have focused on developing these functional materials. Conventionally, self-assembled colloidal crystals containing periodically arranged dielectric materials have served as the predominant starting frameworks. Stimulus-responsive materials are incorporated into the periodic structures either as the initial building blocks or as the surrounding matrix so that the photonic properties can be tuned. Although researchers have proposed various versions of responsive photonic structures, the low efficiency of fabrication through self-assembly, narrow tunability, slow responses to the external stimuli, incomplete reversibility, and the challenge of integrating them into existing photonic devices have limited their practical application. In this Account, we describe how magnetic fields can guide the assembly of superparamagnetic colloidal building blocks into periodically arranged particle arrays and how the photonic properties of the resulting structures can be reversibly tuned by manipulating the external magnetic fields. The application of the external magnetic field instantly induces a strong magnetic dipole-dipole interparticle attraction within the dispersion of superparamagnetic particles, which creates one-dimensional chains that each contains a string of particles. The balance between the magnetic attraction and the interparticle repulsions, such as the electrostatic force, defines the interparticle separation. By employing uniform superparamagnetic particles of appropriate sizes and surface charges, we can create one-dimensional periodicity, which leads to strong optical diffraction. Acting remotely over a large distance, magnetic forces drove the rapid formation of colloidal photonic arrays with a wide range of interparticle spacing. They also allowed instant tuning of the photonic properties because they manipulated the interparticle force balance, which changed the orientation of the colloidal assemblies or their periodicity. This magnetically responsive photonic system provides a new platform for chromatic applications: these colloidal particles assemble instantly into ordered arrays with widely, rapidly, and reversibly tunable structural colors, which can be easily and rapidly fixed in a curable polymer matrix. Based on these unique features, we demonstrated many applications of this system, such as structural color printing, the fabrication of anticounterfeiting devices, switchable signage, and field-responsive color displays. We also extended this idea to rapidly organize uniform nonmagnetic building blocks into photonic structures. Using a stable ferrofluid of highly charged magnetic nanoparticles, we created virtual magnetic moments inside the nonmagnetic particles. This "magnetic hole" strategy greatly broadens the scope of the magnetic assembly approach to the fabrication of tunable photonic structures from various dielectric materials.
Strauss, Eric J; Ishak, Charbel; Inzerillo, Christopher; Walsh, Michael; Yildirim, Gokce; Walker, Peter; Jazrawi, Laith; Rosen, Jeffrey
2007-08-01
To determine whether positioning of the tibia affects the degree of tibial external rotation seen during a dial test in the posterior cruciate ligament (PCL)-posterolateral corner (PLC)-deficient knee. Laboratory investigation. Biomechanics laboratory. An anterior force applied to the tibia in the combined PCL-PLC-deficient knee will yield increased tibial external rotation during a dial test. The degree of tibial external rotation was measured with 5 Nm of external rotation torque applied to the tibia at both 30 degrees and 90 degrees of knee flexion. Before the torque was applied, an anterior force, a posterior force, or neutral (normal, reduced control) force was applied to the tibia. External rotation measurements were repeated after sequential sectioning of the PCL, the posterolateral structures and the fibular collateral ligament (FCL). Baseline testing of the intact specimens demonstrated a mean external rotation of 18.6 degrees with the knee flexed to 30 degrees (range 16.1-21.0 degrees ), and a mean external rotation of 17.3 degrees with the knee flexed to 90 degrees (range 13.8-20.0 degrees ). Sequential sectioning of the PCL, popliteus and popliteofibular ligament, and the FCL led to a significant increase in tibial external rotation compared with the intact knee for all testing scenarios. After sectioning of the popliteus and popliteofibular ligament, the application of an anterior force during testing led to a mean tibial external rotation that was 5 degrees greater than during testing in the neutral position and 7.5 degrees greater than during testing with a posterior force. In the PCL, popliteus/popliteofibular ligament and FCL-deficient knee, external rotation was 9 degrees and 12 degrees greater with the application of an anterior force during testing compared with neutral positioning and the application of a posterior force, respectively. An anterior force applied to the tibia during the dial test in a combined PCL-PLC-injured knee increased the overall amount of observed tibial external rotation during the dial test. The anterior force reduced the posterior tibial subluxation associated with PCL injury, which is analogous to what is observed when the dial test is performed with the patient in the prone position. Reducing the tibia with either an anterior force when the patient is supine or performing the dial test with the patient in the prone position increases the ability of an examiner to detect a concomitant PLC injury in the setting of a PCL-deficient knee.
NASA Astrophysics Data System (ADS)
Kashina, M. A.; Alabuzhev, A. A.
2018-02-01
The dynamics of the incompressible fluid drop under the non-uniform electric field are considered. The drop is bounded axially by two parallel solid planes and the case of heterogeneous plates is investigated. The external electric field acts as an external force that causes motion of the contact line. We assume that the electric current is alternative current and the AC filed amplitude is a spatially non-uniform function. In equilibrium, the drop has the form of a circular cylinder. The equilibrium contact angle is 0.5 π. In order to describe this contact line motion the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, which frequency is proportional to twice the frequency of the electric field. The Hocking parameter depends on the polar angle, i.e. the coefficient of the interaction between the plate and the fluid (the contact line) is a function of the plane coordinates. This function is expanded in a series of the Laplace operator eigenfunctions.
Delayed-feedback chimera states: Forced multiclusters and stochastic resonance
NASA Astrophysics Data System (ADS)
Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.
2016-07-01
A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.
Lee, Jong-Chul; Lee, Sangyoup
2013-09-01
Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.
Electrically controlled adjustable-resistance exercise equipment employing magnetorheological fluid
NASA Astrophysics Data System (ADS)
Lukianovich, Alex; Ashour, Osama N.; Thurston, Wilbert L.; Rogers, Craig A.; Chaudhry, Zaffir A.
1996-05-01
Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid. The magnetorheological effect is one of the direct influences on the mechanical properties of a fluid. It represents a reversible increase, due to an external magnetic field, of the effective viscosity. Besides the variation of the rheological properties (viscosity, elasticity, and plasticity), the magnetic properties of the fluid (permeability and susceptibility), as well as the thermal and acoustic properties, are strongly influenced when an external magnetic field is applied. MR fluids have many appealing applications in the area of vibration control. The distinguishing feature of any MR fluid device is the absence of moving mechanical parts and the extreme simplicity of construction and technology. The most important element of any MR fluid device is an MR valve, which is functionally a controllable hydraulic resistance. As a demonstration of such devices, two commercially available pieces of exercise equipment, a cross stepper and a bench press, were modified to incorporate MR fluid and an external MR valve. As the magnetic field strength operating across the MR valve is adjusted, the viscosity of the flowing MR fluid changes and, accordingly, the needed force is adjusted.
Electroosmotic flow of biorheological micropolar fluids through microfluidic channels
NASA Astrophysics Data System (ADS)
Chaube, Mithilesh Kumar; Yadav, Ashu; Tripathi, Dharmendra; Bég, O. Anwar
2018-05-01
An analytical analysis is presented in this work to assess the influence of micropolar nature of fluids in fully developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate microchannel. The walls of the channel are assumed as sinusoidal wavy to analyze the peristaltic flow nature. We consider that the wavelength of the wall motion is much larger as compared to the channel width to validate the lubrication theory. To simplify the Poisson Boltzmann equation, we also use the Debye-Hückel linearization. We consider governing equation for micropolar fluid in absence of body force and couple effects however external electric field is employed. The solutions for axial velocity, spin velocity, flow rate, pressure rise, and stream functions subjected to given physical boundary conditions are computed. The effects of pertinent parameters like Debye length and Helmholtz-Smoluchowski velocity which characterize the EDL phenomenon and external electric field, coupling number and micropolar parameter which characterize the micropolar fluid behavior, on peristaltic pumping are discussed through the illustrations. The results show that peristaltic pumping may alter by applying external electric fields. This model can be used to design and engineer the peristalsis-lab-on-chip and micro peristaltic syringe pumps for biomedical applications.
Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes
Han, Koohee; Shields, C. Wyatt; Diwakar, Nidhi M.; Bharti, Bhuvnesh; López, Gabriel P.; Velev, Orlin D.
2017-01-01
Colloidal-scale assemblies that reconfigure on demand may serve as the next generation of soft “microbots,” artificial muscles, and other biomimetic devices. This requires the precise arrangement of particles into structures that are preprogrammed to reversibly change shape when actuated by external fields. The design and making of colloidal-scale assemblies with encoded directional particle-particle interactions remain a major challenge. We show how assemblies of metallodielectric patchy microcubes can be engineered to store energy through magnetic polarization and release it on demand by microscale reconfiguration. The dynamic pattern of folding and reconfiguration of the chain-like assemblies can be encoded in the sequence of the cube orientation. The residual polarization of the metallic facets on the microcubes leads to local interactions between the neighboring particles, which is directed by the conformational restrictions of their shape after harvesting energy from external magnetic fields. These structures can also be directionally moved, steered, and maneuvered by global forces from external magnetic fields. We illustrate these capabilities by examples of assemblies of specific sequences that can be actuated, reoriented, and spatially maneuvered to perform microscale operations such as capturing and transporting live cells, acting as prototypes of microbots, micromixers, and other active microstructures. PMID:28798960
Surface evolution in bare bamboo-type metal lines under diffusion and electric field effects
NASA Astrophysics Data System (ADS)
Averbuch, Amir; Israeli, Moshe; Nathan, Menachem; Ravve, Igor
2003-07-01
Irregularities such as voids and cracks often occur in bamboo-type metal lines of microelectronic interconnects. They increase the resistance of the circuits, and may even lead to a fatal failure. In this work, we analyze numerically the electromigration of an unpassivated bamboo-type line with pre-existing irregularities in its top surface (also called a grain-void interface). The bamboo line is subjected to surface diffusion forces and external electric fields. Under these forces, initial defects may either heal or become worse. The grain-void interface is considered to be one-dimensional, and the physical formulation of an electromigration and diffusion model results in two coupled, fourth order, one-dimensional time-dependent PDEs, with the boundary conditions imposed at the electrode points and at the triple point, which belongs to two neighboring grains and the void. These equations are discretized by finite differences on a regular grid in space, and by a Runge-Kutta integration scheme in time, and solved simultaneously with a static Laplace equation describing the voltage distribution throughout each grain, when the substrate conductivity is neglected. Since the voltage distribution is required only along an interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the interface line is studied for different ratios between diffusion and electric field forces, and for different initial configurations of the grain-void interface. We study plain and tilted contour lines, considering positive and negative tilts with respect to the external electric field, a stepped contour with field lines entering or exiting the 'step', and a number of modifications of the classical Mullins problem of thermal grooving. We also consider a two-grain Mullins problem with a normal and tilted boundary between the grains, examining positive and negative tilts.
Surface-Controlled Properties of Myosin Studied by Electric Field Modulation.
van Zalinge, Harm; Ramsey, Laurence C; Aveyard, Jenny; Persson, Malin; Mansson, Alf; Nicolau, Dan V
2015-08-04
The efficiency of dynamic nanodevices using surface-immobilized protein molecular motors, which have been proposed for diagnostics, drug discovery, and biocomputation, critically depends on the ability to precisely control the motion of motor-propelled, individual cytoskeletal filaments transporting cargo to designated locations. The efficiency of these devices also critically depends on the proper function of the propelling motors, which is controlled by their interaction with the surfaces they are immobilized on. Here we use a microfluidic device to study how the motion of the motile elements, i.e., actin filaments propelled by heavy mero-myosin (HMM) motor fragments immobilized on various surfaces, is altered by the application of electrical loads generated by an external electric field with strengths ranging from 0 to 8 kVm(-1). Because the motility is intimately linked to the function of surface-immobilized motors, the study also showed how the adsorption properties of HMM on various surfaces, such as nitrocellulose (NC), trimethylclorosilane (TMCS), poly(methyl methacrylate) (PMMA), poly(tert-butyl methacrylate) (PtBMA), and poly(butyl methacrylate) (PBMA), can be characterized using an external field. It was found that at an electric field of 5 kVm(-1) the force exerted on the filaments is sufficient to overcome the frictionlike resistive force of the inactive motors. It was also found that the effect of assisting electric fields on the relative increase in the sliding velocity was markedly higher for the TMCS-derivatized surface than for all other polymer-based surfaces. An explanation of this behavior, based on the molecular rigidity of the TMCS-on-glass surfaces as opposed to the flexibility of the polymer-based ones, is considered. To this end, the proposed microfluidic device could be used to select appropriate surfaces for future lab-on-a-chip applications as illustrated here for the almost ideal TMCS surface. Furthermore, the proposed methodology can be used to gain fundamental insights into the functioning of protein molecular motors, such as the force exerted by the motors under different operational conditions.
Direct numerical simulation of the effect of an electric field on flame stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belhi, Memdouh; Domingo, Pascale; Vervisch, Pierre
2010-12-15
The role of electric fields in stabilising combustion is a well-known phenomenon. Among the possible mechanisms favouring the anchorage of the flame base, the ion-driven wind acting directly on flow momentum ahead of the flame base could be the leading one. Direct numerical simulation has been used to verify this hypothesis and lead to a better understanding of diffusion flame base anchoring in the presence of an externally applied voltage. In this context, a simplified modelling approach is proposed to describe combustion in the presence of electric body forces. The model reproduces the tendencies of experimental observations found in themore » literature. The sensitivity of the flame lift-off height to the applied voltage is studied and the modification of the velocity field ahead of the flame base induced by the electric volume forces is highlighted. (author)« less
Development of magnetic separation system of magnetoliposomes
NASA Astrophysics Data System (ADS)
Nakao, R.; Matuo, Y.; Mishima, F.; Taguchi, T.; Maenosono, S.; Nishijima, S.
2009-10-01
The magnetic separation technology using sub-microsized ferromagnetic particle is indispensable in many areas of medical biosciences. For example, ferromagnetic particles (200-500 nm) are widely used for cell sorting in stem cell research with the use of cell surface-specific antigens. Nanosized ferromagnetic particles (10-20 nm) have been suggested as more suitable in drug delivery studies given their efficiency of tissue penetration, however, the magnetic separation method for them has not been established. One of the major reasons is that magnetic force acting on the object particles decreases drastically as a particle diameter becomes small. In this study, magnetic force acting on the targets was enhanced by the combination of superconducting magnet and the filter consisting of ferromagnetic particle. By doing so, we confirmed that Fe 3O 4 of 20 nm in diameter was trapped in the magnetic filter under an external magnetic field of 0.5 T. Fe 3O 4 encapsulated with phospholipid liposomes of 200 nm in diameter was also shown to be trapped as external magnetic field of 1.5 T, but not of 0.5 T. We also showed the result of particle trajectory calculation which emulated well the experimental data.
Ultrafast giant magnetic cooling effect in ferromagnetic Co/Pt multilayers.
Shim, Je-Ho; Ali Syed, Akbar; Kim, Chul-Hoon; Lee, Kyung Min; Park, Seung-Young; Jeong, Jong-Ryul; Kim, Dong-Hyun; Eon Kim, Dong
2017-10-06
The magnetic cooling effect originates from a large change in entropy by the forced magnetization alignment, which has long been considered to be utilized as an alternative environment-friendly cooling technology compared to conventional refrigeration. However, an ultimate timescale of the magnetic cooling effect has never been studied yet. Here, we report that a giant magnetic cooling (up to 200 K) phenomenon exists in the Co/Pt nano-multilayers on a femtosecond timescale during the photoinduced demagnetization and remagnetization, where the disordered spins are more rapidly aligned, and thus magnetically cooled, by the external magnetic field via the lattice-spin interaction in the multilayer system. These findings were obtained by the extensive analysis of time-resolved magneto-optical responses with systematic variation of laser fluence as well as external field strength and direction. Ultrafast giant magnetic cooling observed in the present study can enable a new avenue to the realization of ultrafast magnetic devices.The forced alignment of magnetic moments leads to a large change in entropy, which can be used to reduce the temperature of a material. Here, the authors show that this magnetic cooling effect occurs on a femtosecond time scale in cobalt-platinum nano-multilayers.
Influence of the Location of Attractive Polymer-Pore Interactions on Translocation Dynamics.
Ghosh, Bappa; Chaudhury, Srabanti
2018-01-11
We probe the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. We investigate the effect of the strength and location of the polymer-pore interaction using nanopores that are partially charged either at the entry or the exit or on both sides of the pore. We study the change in the translocation time as a function of the strength of the polymer-pore interaction for a given chain length and under the effect of an externally applied field. Under a moderate driving force and a chain length longer than the length of the pore, the translocation time shows a nonmonotonic increase with an increase in the attractive interaction. Also, an interaction on the cis side of the pore can increase the translocation probability. In the presence of an external field and a strong attractive force, the translocation time for shorter chains is independent of the polymer-pore interaction at the entry side of the pore, whereas an interaction on the trans side dominates the translocation process. Our simulation results are rationalized by a qualitative analysis of the free energy landscape for polymer translocation.
Skyrmions Driven by Intrinsic Magnons
NASA Astrophysics Data System (ADS)
Psaroudaki, Christina; Loss, Daniel
2018-06-01
We study the dynamics of a Skyrmion in a magnetic insulating nanowire in the presence of time-dependent oscillating magnetic field gradients. These ac fields act as a net driving force on the Skyrmion via its own intrinsic magnetic excitations. In a microscopic quantum field theory approach, we include the unavoidable coupling of the external field to the magnons, which gives rise to time-dependent dissipation for the Skyrmion. We demonstrate that the magnetic ac field induces a super-Ohmic to Ohmic crossover behavior for the Skyrmion dissipation kernels with time-dependent Ohmic terms. The ac driving of the magnon bath at resonance results in a unidirectional helical propagation of the Skyrmion in addition to the otherwise periodic bounded motion.
Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa.
Kivelson, M G; Khurana, K K; Russell, C T; Volwerk, M; Walker, R J; Zimmer, C
2000-08-25
On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.
Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa
NASA Astrophysics Data System (ADS)
Kivelson, Margaret G.; Khurana, Krishan K.; Russell, Christopher T.; Volwerk, Martin; Walker, Raymond J.; Zimmer, Christophe
2000-08-01
On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.
Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors.
Wang, Hongbo; de Boer, Greg; Kow, Junwai; Alazmani, Ali; Ghajari, Mazdak; Hewson, Robert; Culmer, Peter
2016-08-24
Tactile sensors are essential if robots are to safely interact with the external world and to dexterously manipulate objects. Current tactile sensors have limitations restricting their use, notably being too fragile or having limited performance. Magnetic field-based soft tactile sensors offer a potential improvement, being durable, low cost, accurate and high bandwidth, but they are relatively undeveloped because of the complexities involved in design and calibration. This paper presents a general design methodology for magnetic field-based three-axis soft tactile sensors, enabling researchers to easily develop specific tactile sensors for a variety of applications. All aspects (design, fabrication, calibration and evaluation) of the development of tri-axis soft tactile sensors are presented and discussed. A moving least square approach is used to decouple and convert the magnetic field signal to force output to eliminate non-linearity and cross-talk effects. A case study of a tactile sensor prototype, MagOne, was developed. This achieved a resolution of 1.42 mN in normal force measurement (0.71 mN in shear force), good output repeatability and has a maximum hysteresis error of 3.4%. These results outperform comparable sensors reported previously, highlighting the efficacy of our methodology for sensor design.
Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors
Wang, Hongbo; de Boer, Greg; Kow, Junwai; Alazmani, Ali; Ghajari, Mazdak; Hewson, Robert; Culmer, Peter
2016-01-01
Tactile sensors are essential if robots are to safely interact with the external world and to dexterously manipulate objects. Current tactile sensors have limitations restricting their use, notably being too fragile or having limited performance. Magnetic field-based soft tactile sensors offer a potential improvement, being durable, low cost, accurate and high bandwidth, but they are relatively undeveloped because of the complexities involved in design and calibration. This paper presents a general design methodology for magnetic field-based three-axis soft tactile sensors, enabling researchers to easily develop specific tactile sensors for a variety of applications. All aspects (design, fabrication, calibration and evaluation) of the development of tri-axis soft tactile sensors are presented and discussed. A moving least square approach is used to decouple and convert the magnetic field signal to force output to eliminate non-linearity and cross-talk effects. A case study of a tactile sensor prototype, MagOne, was developed. This achieved a resolution of 1.42 mN in normal force measurement (0.71 mN in shear force), good output repeatability and has a maximum hysteresis error of 3.4%. These results outperform comparable sensors reported previously, highlighting the efficacy of our methodology for sensor design. PMID:27563908
Coronal Jet Collimation by Nonlinear Induced Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasheghani Farahani, S.; Hejazi, S. M.
2017-08-01
Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale ofmore » influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma- β . As the shear flow and plasma- β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.« less
Shinoda, Wataru; DeVane, Russell; Klein, Michael L.
2010-01-01
A new coarse-grained (CG) intermolecular force field is presented for a series of zwitterionic lipids. The model is an extension of our previous work on nonionic surfactants and is designed to reproduce experimental surface/interfacial properties as well as distribution functions from all-atom molecular dynamics (MD) simulations. Using simple functional forms, the force field parameters are optimized for multiple lipid molecules, simultaneously. The resulting CG lipid bilayers have reasonable molecular areas, chain order parameters, and elastic properties. The computed surface pressure vs. area (π-A) curve for a DPPC monolayer demonstrates a significant improvement over the previous CG models. The DPPC monolayer has a longer persistence length than a PEG lipid monolayer, exhibiting a long-lived curved monolayer surface under negative tension. The bud ejected from an oversaturated DPPC monolayer has a large bicelle-like structure, which is different from the micellar bud formed from an oversaturated PEG lipid monolayer. We have successfully observed vesicle formation during CG-MD simulations, starting from an aggregate of DMPC molecules. Depending on the aggregate size, the lipid assembly spontaneously transforms into a closed vesicle or a bicelle. None of the various intermediate structures between these extremes seem to be stable. An attempt to observe fusion of two vesicles through the application of an external adhesion force was not successful. The present CG force field also supports stable multi-lamellar DMPC vesicles. PMID:20438090
Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang
2014-08-01
This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.
Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis
NASA Astrophysics Data System (ADS)
Otto, Oliver; Gutsche, Christof; Kremer, Friedrich; Keyser, Ulrich F.
2008-02-01
We developed an optical tweezers setup to study the electrophoretic motion of colloids in an external electric field. The setup is based on standard components for illumination and video detection. Our video based optical tracking of the colloid motion has a time resolution of 0.2ms, resulting in a bandwidth of 2.5kHz. This enables calibration of the optical tweezers by Brownian motion without applying a quadrant photodetector. We demonstrate that our system has a spatial resolution of 0.5nm and a force sensitivity of 20fN using a Fourier algorithm to detect periodic oscillations of the trapped colloid caused by an external ac field. The electrophoretic mobility and zeta potential of a single colloid can be extracted in aqueous solution avoiding screening effects common for usual bulk measurements.
Electrodeless RF Plasma Thruster Using m = 0 Coil
NASA Astrophysics Data System (ADS)
Nishimura, Shuichi; Arai, Daisuke; Kuwahara, Daisuke; Shinohara, Shunjiro
2016-10-01
In order to realize a deep space exploration in the future, we have been developing a next generation electrodeless electric propulsion system by electromagnetic acceleration of high-density helicon plasma. A new proposed method by m = 0 coil plasma acceleration (m is an azimuthal mode number) is based on the Lorentz force: a product of the induced azimuthal current by supplying an AC current to the m = 0 coil and the radial component of the externally applied magnetic field (divergent field configuration). Here, we have investigated the dependences of an ion velocity and an electron density on the external parameters, leading to optimized conditions, using the SHD device. By increasing AC current on the order of 100 A, we could see the increase of ion velocity and electron density by a factor of 2.5 and 3, respectively.
Key External Influences Affecting Consumers’ Decisions Regarding Food
Martínez-Ruiz, María Pilar; Gómez-Cantó, Carmen María
2016-01-01
Among the numerous internal and external forces that compete for consumers’ attention in the context in which they buy their food, this paper will seek to provide a review of the most important external influences, such as the variables related to food itself. To this end, in addition to the food attributes traditionally identified in fields such as consumer behavior, it will give special consideration to the classification of food values. Although the influence of these variables on consumer decisions depends on the individual, analyzing them will undoubtedly increase understanding of consumers’ decisions. Additionally, identifying and describing these variables will enable subsequent research on how they influence both consumer behavior and other key outcomes for producers, manufacturers, and retailers in the food industry, such as satisfaction, trust, and loyalty. PMID:27803686
Electrically induced formation of uncapped, hollow polymeric microstructures
NASA Astrophysics Data System (ADS)
Lee, Sung Hun; Kim, Pilnam; Jeong, Hoon Eui; Suh, Kahp Y.
2006-11-01
Uncapped, hollow polymeric microstructures were fabricated on a silicon substrate using electric field induced stretching and detachment. Initially, square or cylinder microposts were generated using a solvent-assisted capillary molding technique, and a featureless electrode mask was positioned on the top of the microstructure with spacers maintaining an air gap (~20 µm). Upon exposure to an external electric field (1.0-3.0 V µm-1), the hollow microstructures were destabilized and stretched by the well-known electrohydrodynamic instability, resulting in contact of the top polymer surface with the mask. Subsequently, detachment of the capping layer occurred upon removal of the mask due to larger adhesion forces at the polymer/mask interface than cohesion forces of the polymer. These hollow microstructures were tested to capture the budding yeast, Saccharomyces cerevisiae, for shear protection.
Field-Assisted Contact Line Motion in Thin Films.
Ghosh, Udita Uday; DasGupta, Sunando
2018-04-25
The balance of intermolecular and surface forces plays a critical role in the transport phenomena near the contact line region of an extended meniscus in several technologically important processes. Externally applied fields can alter the equilibrium and stability of the meniscus with concomitant effects on its shape and spreading characteristics and may even lead to an oscillation. This feature article provides a detailed account of the present and past efforts in exploring the behavior of curved thin liquid films subjected to mild thermal perturbations, heat input, and electrical and magnetic fields for pure as well as colloidal suspensions, including the effects of particle charge and polarity. The shape-dependent intermolecular force field has been evaluated in situ by a nonobtrusive optical technique utilizing the interference phenomena and subsequent image processing. The critical role of disjoining pressure is identified along with the determination of the Hamaker constant. The spatial and temporal variations of the capillary forces are evaluated for the advancing and receding menisci. The Maxwell-stress-induced enhanced spreading during electrowetting, at relatively low voltages, and that due to the application of a magnetic field are discussed with respect to their distinctly different characteristics and application potentials. The use of the augmented Young-Laplace equation elicited additional insights into the fundamental physics for flow in ultrathin liquid films.
Knudsen, Mads Faurschou; Jacobsen, Bo Holm; Seidenkrantz, Marit-Solveig; Olsen, Jesper
2014-01-01
The Atlantic Multidecadal Oscillation (AMO) represents a significant driver of Northern Hemisphere climate, but the forcing mechanisms pacing the AMO remain poorly understood. Here we use the available proxy records to investigate the influence of solar and volcanic forcing on the AMO over the last ~450 years. The evidence suggests that external forcing played a dominant role in pacing the AMO after termination of the Little Ice Age (LIA; ca. 1400–1800), with an instantaneous impact on mid-latitude sea-surface temperatures that spread across the North Atlantic over the ensuing ~5 years. In contrast, the role of external forcing was more ambiguous during the LIA. Our study further suggests that the Atlantic Meridional Overturning Circulation is important for linking external forcing with North Atlantic sea-surface temperatures, a conjecture that reconciles two opposing theories concerning the origin of the AMO. PMID:24567051
Knudsen, Mads Faurschou; Jacobsen, Bo Holm; Seidenkrantz, Marit-Solveig; Olsen, Jesper
2014-02-25
The Atlantic Multidecadal Oscillation (AMO) represents a significant driver of Northern Hemisphere climate, but the forcing mechanisms pacing the AMO remain poorly understood. Here we use the available proxy records to investigate the influence of solar and volcanic forcing on the AMO over the last ~450 years. The evidence suggests that external forcing played a dominant role in pacing the AMO after termination of the Little Ice Age (LIA; ca. 1400-1800), with an instantaneous impact on mid-latitude sea-surface temperatures that spread across the North Atlantic over the ensuing ~5 years. In contrast, the role of external forcing was more ambiguous during the LIA. Our study further suggests that the Atlantic Meridional Overturning Circulation is important for linking external forcing with North Atlantic sea-surface temperatures, a conjecture that reconciles two opposing theories concerning the origin of the AMO.
Markolf, Keith L; Jackson, Steven; McAllister, David R
2012-09-01
Syndesmosis (high ankle) sprains produce disruption of the distal tibiofibular ligaments. Forces on the distal fibula that produce these injuries are unknown. Twenty-seven fresh-frozen lower extremities were used for this study. A load cell recorded forces acting on the distal fibula from forced ankle dorsiflexion and applied external foot torque; medial-lateral and anterior-posterior displacements of the distal fibula were recorded. Fibular forces and axial displacements were also recorded with applied axial force. During forced ankle dorsiflexion and external foot torque tests, the distal fibula always displaced posteriorly with respect to the tibia with no measurable medial-lateral displacement. With 10 Nm dorsiflexion moment, cutting the tibiofibular ligaments approximately doubled fibular force and displacement values. Cutting the tibiofibular ligaments significantly increased fibular displacement from applied external foot torque. Fibular forces and axial displacements from applied axial weight-bearing force were highest with the foot dorsiflexed. The highest mean fibular force in the study (271.9 N) occurred with 10 Nm external foot torque applied to a dorsiflexed foot under 1000 N axial force. Two important modes of loading that could produce high ankle sprains were identified: forced ankle dorsiflexion and external foot torque applied to a dorsiflexed ankle loaded with axial force. The distal tibiofibular ligaments restrained fibular displacement during these tests. Residual mortise widening observed at surgery may be the result of tibiofibular ligament injuries caused by posterior displacement of the fibula. Therefore, a syndesmosis screw used to fix the fibula would be subjected to posterior bending forces from these loading modes. Ankle bracing to prevent extreme ankle dorsiflexion during rehabilitation may be advisable to prevent excessive fibular motions that could affect syndesmosis healing.
Propulsion of Active Colloids by Self-Induced Field Gradients.
Boymelgreen, Alicia; Yossifon, Gilad; Miloh, Touvia
2016-09-20
Previously, metallodielectric Janus particles have been shown to travel with their dielectric hemisphere forward under low frequency applied electric fields as a result of asymmetric induced-charge electroosmotic flow. Here, it is demonstrated that at high frequencies, well beyond the charge relaxation time of the electric double layer induced around the particle, rather than the velocity decaying to zero, the Janus particles reverse direction, traveling with their metallic hemisphere forward. It is proposed that such motion is the result of a surface force, arising from localized nonuniform electric field gradients, induced by the dual symmetry-breaking of an asymmetric particle adjacent to a wall, which act on the induced dipole of the particle to drive net motion even in a uniform AC field. Although the field is external, since the driving gradient is induced on the particle level, it may be considered an active colloid. We have thus termed this propulsion mechanism "self-dielectrophoresis", to distinguish from traditional dielectrophoresis where the driving nonuniform field is externally fixed and the particle direction is restricted. It is demonstrated theoretically and experimentally that the critical frequency at which the particle reverses direction can be characterized by a nondimensional parameter which is a function of electrolyte concentration and particle size.
Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces
NASA Astrophysics Data System (ADS)
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth
2015-04-01
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth
2015-04-21
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.
Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field.
Heyner, Daniel; Wicht, Johannes; Gómez-Pérez, Natalia; Schmitt, Dieter; Auster, Hans-Ulrich; Glassmeier, Karl-Heinz
2011-12-23
The observed weakness of Mercury's magnetic field poses a long-standing puzzle to dynamo theory. Using numerical dynamo simulations, we show that it could be explained by a negative feedback between the magnetospheric and the internal magnetic fields. Without feedback, a small internal field was amplified by the dynamo process up to Earth-like values. With feedback, the field strength saturated at a much lower level, compatible with the observations at Mercury. The classical saturation mechanism via the Lorentz force was replaced by the external field impact. The resulting surface field was dominated by uneven harmonic components. This will allow the feedback model to be distinguished from other models once a more accurate field model is constructed from MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and BepiColombo data.
NASA Astrophysics Data System (ADS)
Yang, Yong; Chai, Xueguang
2018-05-01
When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* < 0 can be kept for any value of B a when the rate db a /dt is greater than a certain value. There is an extreme value for any curve of maximum stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.
Hernández-Díaz, Lorenzo; Hernández-Reta, Juan Carlos; Encinas, Armando; Nahmad-Molinari, Yuri
2010-05-19
We present a novel study on the effect of a magnetic field applied on a binary mixture doped with magnetic nanoparticles close to its demixing transition. Turbidity measurements in the Faraday configuration show that the effect of applying an external field produces changes in the critical opalescence of the mixture that allow us to track an aggregation produced by critical Casimir forces and a reversible aggregation due to the formation of chain-like flocks in response to the external magnetic field. The observation of a crossover of the aggregation curves through optical signals is interpreted as the evolution from low to high power dispersion nuclei due to an increase in the radius of the condensation seed brought about by Casimir or magnetic interactions. Finally, evidence of an enhanced magnetocaloric effect due to the coupling between mixing and ordering phase transitions is presented which opens up a nonsolid state approach of designing refrigerating cycles and devices.
NASA Astrophysics Data System (ADS)
Lu, Shin-Ming; Chan, Wen-Yuan; Su, Wei-Bin; Pai, Woei Wu; Liu, Hsiang-Lin; Chang, Chia-Seng
2018-04-01
The form of the external potential (FEP) for generating field emission resonance (FER) in a scanning tunneling microscopy (STM) junction is usually assumed to be triangular. We demonstrate that this assumption can be examined using a plot that can characterize FEP. The plot is FER energies versus the corresponding distances between the tip and sample. Through this energy–distance relationship, we discover that the FEP is nearly triangular for a blunt STM tip. However, the assumption of a triangular potential form is invalid for a sharp tip. The disparity becomes more severe as the tip is sharper. We demonstrate that the energy–distance plot can be exploited to determine the barrier width in field emission and estimate the effective sharpness of an STM tip. Because FERs were observed on Pb islands grown on the Cu(111) surface in this study, determination of the tip sharpness enabled the derivation of the subtle expansion deformation of Pb islands due to electrostatic force in the STM junction.
Dynamics of the Random Field Ising Model
NASA Astrophysics Data System (ADS)
Xu, Jian
The Random Field Ising Model (RFIM) is a general tool to study disordered systems. Crackling noise is generated when disordered systems are driven by external forces, spanning a broad range of sizes. Systems with different microscopic structures such as disordered mag- nets and Earth's crust have been studied under the RFIM. In this thesis, we investigated the domain dynamics and critical behavior in two dipole-coupled Ising ferromagnets Nd2Fe14B and LiHoxY 1-xF4. With Tc well above room temperature, Nd2Fe14B has shown reversible disorder when exposed to an external transverse field and crosses between two universality classes in the strong and weak disorder limits. Besides tunable disorder, LiHoxY1-xF4 has shown quantum tunneling effects arising from quantum fluctuations, providing another mechanism for domain reversal. Universality within and beyond power law dependence on avalanche size and energy were studied in LiHo0.65Y0.35 F4.
Diminution of contact angle hysteresis under the influence of an oscillating force.
Manor, Ofer
2014-06-17
We suggest a simple quantitative model for the diminution of contact angle hysteresis under the influence of an oscillatory force invoked by thermal fluctuations, substrate vibrations, acoustic waves, or oscillating electric fields. Employing force balance rather than the usual description of contact angle hysteresis in terms of Gibbs energy, we highlight that a wetting system, such as a sessile drop or a bubble adhered to a solid substrate, appears at long times to be partially or fully independent of contact angle hysteresis and thus independent of static friction forces, as a result of contact line pinning. We verify this theory by studying several well-known experimental observations such as the approach of an arbitrary contact angle toward the Young contact angle and the apparent decrease (or increase) in an advancing (or a receding) contact angle under the influence of an external oscillating force.
NASA Astrophysics Data System (ADS)
Ding, Kun; Chan, C. T.
2018-04-01
The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.
Fällman, Erik; Schedin, Staffan; Jass, Jana; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove
2004-06-15
An optical force measurement system for quantitating forces in the pN range between micrometer-sized objects has been developed. The system was based upon optical tweezers in combination with a sensitive position detection system and constructed around an inverted microscope. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omnidirectional mechanical spring in response to an external force. The particle's displacement from the equilibrium position is therefore a direct measure of the exerted force. A weak probe laser beam, focused directly below the trapping focus, was used for position detection of the trapped particle (a polystyrene bead). The bead and the condenser focus the light to a distinct spot in the far field, monitored by a position sensitive detector. Various calibration procedures were implemented in order to provide absolute force measurements. The system has been used to measure the binding forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads.
NASA Astrophysics Data System (ADS)
Fallman, Erik G.; Schedin, Staffan; Andersson, Magnus J.; Jass, Jana; Axner, Ove
2003-06-01
Optical tweezers together with a position sensitive detection system allows measurements of forces in the pN range between micro-sized biological objects. A prototype force measurement system has been constructed around in inverted microscope with an argon-ion pumped Ti:sapphire laser as light source for optical trapping. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omni-directional mechanical spring if an external force displaces it. The displacement from the equilibrium position is a measure of the exerted force. For position detection of the trapped particle (polystyrene beads), a He-Ne laser beam is focused a small distance below the trapping focus. An image of the bead appears as a distinct spot in the far field, monitored by a photosensitive detector. The position data is converted to a force measurement by a calibration procedure. The system has been used for measuring the binding forces between E-coli bacterial adhesin and their receptor sugars.
2017-05-25
operate independently without external nation support; (3) a custom approach is necessary in security forces development based on political requirements...independently without external nation support; (3) a custom approach is necessary in security forces development based on political requirements...interventions both successful and unsuccessful, that an external country must craft a custom approach to develop local security forces based on the
Dynamical turbulent flow on the Galton board with friction.
Chepelianskii, A D; Shepelyansky, D L
2001-07-16
We study numerically and analytically the dynamics of charged particles on the Galton board, a regular lattice of disk scatters, in the presence of constant external force, magnetic field, and friction. It is shown that under certain conditions friction leads to the appearance of a strange chaotic attractor. In this regime the average velocity and direction of particle flow can be effectively affected by electric and magnetic fields. We discuss the applications of these results to the charge transport in antidot superlattices and the stream of suspended particles in a viscous flow through scatters.
Physics models of centriole replication.
Cheng, Kang; Zou, Changhua
2006-01-01
Our previous pre-clinic experimental results have showed that the epithelialization can be enhanced by the externally applied rectangular pulsed electrical current stimulation (RPECS). The results are clinically significant for patients, especially for those difficult patients whose skin wounds need long periods to heal. However, the results also raise questions: How does the RPECS accelerate the epithelium cell proliferation? To answer these questions, we have previously developed several models for animal cells, in a view of physics, to explain mechanisms of mitosis and cytokinesis at a cellular level, and separation of nucleotide sequences and the unwinding of a double helix during DNA replication at a bio-molecular level. In this paper, we further model the mechanism of centriole replication during a natural and normal mitosis and cytokinesis to explore the mechanism of epithelialization enhanced with the externally applied RPECS at a bio-molecular level. Our models suggest: (1) Centriole replication is an information flowing. The direction of the information flowing is from centrioles to centrioles based on a cylindrical template of 9 x 3 protein microtubules (MTs) pattern. (2) A spontaneous and strong electromagnetic field (EMF) force is a pushing force that separates a mother and a daughter centrioles in centrosomes or in cells, while a pulling force of interacting fibers and pericentriolar materials delivers new babies. The newly born babies inherit the pattern information from their mother(s) and grow using microtubule fragments that come through the centrosome pores. A daughter centriole is always born and grows along stronger EMF. The EMF mostly determines centrioles positions and plays key role in centriole replication. We also hypothesize that the normal centriole replication could not been disturbed in centrosome in the epithelium cells by our RPECS, because the centrioles have two non-conducting envelope (cell and centrosome membranes), that protect the normal duplication. The induced electric field by externally applied RPECS could be mild compared with the spontaneous and natural electric field of the centrioles. Therefore, the centriole replication during the epithelium cellular proliferation may be directly, as well as indirectly (e.g., somatic reflex) accelerated by the RPECS.
NASA Astrophysics Data System (ADS)
Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.
1987-04-01
An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.
Numerical Investigation of Force-Free Magnetophoresis of Nonspherical Microparticles
NASA Astrophysics Data System (ADS)
Zhang, Jie; Wang, Cheng
2017-11-01
Our group recently demonstrated novel force-free magnetophoresis to separate nonspherical particles by shape. In this approach, a uniform magnetic field is used to generate a magnetic torque, which breaks the rotational symmetry of the particles and leads to shape-dependent lateral migration of the particles. We use direct numerical simulations to gain a better understanding of this magnetophoresis mechanism by focusing on ellipsoidal microparticles - a representative type of nonspherical particles encountered in biomedical engineering. We study key effects that influence the rotational and translational behaviors, including particle-wall separation distance, direction and strength of the magnetic field, particle aspect ratio and size. The numerical results show that the lateral migration is negligible in the absence of the magnetic field. When the magnetic field is applied, the particles migrate laterally. The migration direction depends on the direction of external magnetic fields, which controls the symmetry property of the particle rotation. These findings agree well with experiments. Our numerical simulations yield a comprehensive understanding of particle migration mechanism, and provide useful guidelines on design of separating devices for non-spherical micro-particles.
Active fluid mixing with magnetic microactuators for capture of salmonella
NASA Astrophysics Data System (ADS)
Hanasoge, S.; Owen, D.; Ballard, M.; Mills, Z.; Xu, J.; Erickson, M.; Hesketh, P. J.; Alexeev, A.
2016-05-01
Detection of low concentrations of bacteria in food samples is a challenging process. Key to this process is the separation of the target from the food matrix. We demonstrate magnetic beads and magnetic micro-cilia based microfluidic mixing and capture, which are particularly useful for pre-concentrating the target. The first method we demonstrate makes use of magnetic microbeads held on to NiFe discs on the surface of the substrate. These beads are rotated around the magnetic discs by rotating the external magnetic field. The second method we demonstrate shows the use of cilia which extends into the fluid and is manipulated by a rotating external field. Magnetic micro-features were fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The high magnetic permeability of NiFe allows for maximum magnetic force on the features. The magnetic features were actuated using an external rotating magnet up to frequencies of 50Hz. We demonstrate active mixing produced by the microbeads and the cilia in a microchannel. Also, we demonstrate the capture of target species in a sample using microbeads.
Magnetic energy dissipation in force-free jets
NASA Technical Reports Server (NTRS)
Choudhuri, Arnab Rai; Konigl, Arieh
1986-01-01
It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.
Zhao, Heng; Song, Pengfei; Meixner, Duane D; Kinnick, Randall R; Callstrom, Matthew R; Sanchez, William; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao
2014-11-01
Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called external vibration multi-directional ultrasound shearwave elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A 2-D shear wave speed map was reconstructed from each individual shear wave field, and a final 2-D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver magnetic resonance elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging.
Zhao, Heng; Song, Pengfei; Meixner, Duane D.; Kinnick, Randall R.; Callstrom, Matthew R.; Sanchez, William; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.
2014-01-01
Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A two-dimensional (2D) shear wave speed map was reconstructed from each individual shear wave field, and a final 2D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver Magnetic Resonance Elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging. PMID:25020066
Projections of Southern Hemisphere atmospheric circulation interannual variability
NASA Astrophysics Data System (ADS)
Grainger, Simon; Frederiksen, Carsten S.; Zheng, Xiaogu
2017-02-01
An analysis is made of the coherent patterns, or modes, of interannual variability of Southern Hemisphere 500 hPa geopotential height field under current and projected climate change scenarios. Using three separate multi-model ensembles (MMEs) of coupled model intercomparison project phase 5 (CMIP5) models, the interannual variability of the seasonal mean is separated into components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. In the CMIP5 RCP8.5 and RCP4.5 experiments, there is very little change in the twenty-first century in the intraseasonal component modes, related to the Southern annular mode (SAM) and mid-latitude wave processes. The leading three slowly-varying internal component modes are related to SAM, the El Niño-Southern oscillation (ENSO), and the South Pacific wave (SPW). Structural changes in the slow-internal SAM and ENSO modes do not exceed a qualitative estimate of the spatial sampling error, but there is a consistent increase in the ENSO-related variance. Changes in the SPW mode exceed the sampling error threshold, but cannot be further attributed. Changes in the dominant slowly-varying external mode are related to projected changes in radiative forcing. They reflect thermal expansion of the tropical troposphere and associated changes in the Hadley Cell circulation. Changes in the externally-forced associated variance in the RCP8.5 experiment are an order of magnitude greater than for the internal components, indicating that the SH seasonal mean circulation will be even more dominated by a SAM-like annular structure. Across the three MMEs, there is convergence in the projected response in the slow-external component.
Effects of load on ground reaction force and lower limb kinematics during concentric squats.
Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos
2005-10-01
The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.
Theoretical model for Sub-Doppler Cooling with EIT System
NASA Astrophysics Data System (ADS)
He, Peiru; Tengdin, Phoebe; Anderson, Dana; Rey, Ana Maria; Holland, Murray
2016-05-01
We propose a of sub-Doppler cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the so-called Electromagnetically Induced Transparency (EIT) effect, a destructive quantum interference phenomenon experienced by atoms with Lambda-shaped energy levels when illuminated by two light fields with appropriate frequencies. By detuning the probe lasers slightly from the ``dark resonance'', we observe that atoms can be significantly cooled down by the strong viscous force within the transparency window, while being just slightly heated by the diffusion caused by the small absorption near resonance. In contrast to polarization gradient cooling or EIT sideband cooling, no external magnetic field or external confining potential are required. Using a semi-classical method, analytical expressions, and numerical simulations, we demonstrate that the proposed EIT cooling method can lead to temperatures well below the Doppler limit. This work is supported by NSF and NIST.
Zhang, Zhuhua; Liu, Xiaofei; Yu, Jin; Hang, Yang; Li, Yao; Guo, Yufeng; Xu, Ying; Sun, Xu; Zhou, Jianxin; Guo, Wanlin
2016-01-01
Low-dimensional materials exhibit many exceptional properties and functionalities which can be efficiently tuned by externally applied force or fields. Here we review the current status of research on tuning the electronic and magnetic properties of low-dimensional carbon, boron nitride, metal-dichalcogenides, phosphorene nanomaterials by applied engineering strain, external electric field and interaction with substrates, etc, with particular focus on the progress of computational methods and studies. We highlight the similarities and differences of the property modulation among one- and two-dimensional nanomaterials. Recent breakthroughs in experimental demonstration of the tunable functionalities in typical nanostructures are also presented. Finally, prospective and challenges for applying the tunable properties into functional devices are discussed. WIREs Comput Mol Sci 2016, 6:324-350. doi: 10.1002/wcms.1251 For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article.
Quantitative study of FORC diagrams in thermally corrected Stoner- Wohlfarth nanoparticles systems
NASA Astrophysics Data System (ADS)
De Biasi, E.; Curiale, J.; Zysler, R. D.
2016-12-01
The use of FORC diagrams is becoming increasingly popular among researchers devoted to magnetism and magnetic materials. However, a thorough interpretation of this kind of diagrams, in order to achieve quantitative information, requires an appropriate model of the studied system. For that reason most of the FORC studies are used for a qualitative analysis. In magnetic systems thermal fluctuations "blur" the signatures of the anisotropy, volume and particle interactions distributions, therefore thermal effects in nanoparticles systems conspire against a proper interpretation and analysis of these diagrams. Motivated by this fact, we have quantitatively studied the degree of accuracy of the information extracted from FORC diagrams for the special case of single-domain thermal corrected Stoner- Wohlfarth (easy axes along the external field orientation) nanoparticles systems. In this work, the starting point is an analytical model that describes the behavior of a magnetic nanoparticles system as a function of field, anisotropy, temperature and measurement time. In order to study the quantitative degree of accuracy of our model, we built FORC diagrams for different archetypical cases of magnetic nanoparticles. Our results show that from the quantitative information obtained from the diagrams, under the hypotheses of the proposed model, is possible to recover the features of the original system with accuracy above 95%. This accuracy is improved at low temperatures and also it is possible to access to the anisotropy distribution directly from the FORC coercive field profile. Indeed, our simulations predict that the volume distribution plays a secondary role being the mean value and its deviation the only important parameters. Therefore it is possible to obtain an accurate result for the inversion and interaction fields despite the features of the volume distribution.
Studying Climate Response to Forcing by the Nonlinear Dynamical Mode Decomposition
NASA Astrophysics Data System (ADS)
Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander
2017-04-01
An analysis of global climate response to external forcing, both anthropogenic (mainly, CO2 and aerosol) and natural (solar and volcanic), is needed for adequate predictions of global climate change. Being complex dynamical system, the climate reacts to external perturbations exciting feedbacks (both positive and negative) making the response non-trivial and poorly predictable. Thus an extraction of internal modes of climate system, investigation of their interaction with external forcings and further modeling and forecast of their dynamics, are all the problems providing the success of climate modeling. In the report the new method for principal mode extraction from climate data is presented. The method is based on the Nonlinear Dynamical Mode (NDM) expansion [1,2], but takes into account a number of external forcings applied to the system. Each NDM is represented by hidden time series governing the observed variability, which, together with external forcing time series, are mapped onto data space. While forcing time series are considered to be known, the hidden unknown signals underlying the internal climate dynamics are extracted from observed data by the suggested method. In particular, it gives us an opportunity to study the evolution of principal system's mode structure in changing external conditions and separate the internal climate variability from trends forced by external perturbations. Furthermore, the modes so obtained can be extrapolated beyond the observational time series, and long-term prognosis of modes' structure including characteristics of interconnections and responses to external perturbations, can be carried out. In this work the method is used for reconstructing and studying the principal modes of climate variability on inter-annual and decadal time scales accounting the external forcings such as anthropogenic emissions, variations of the solar activity and volcanic activity. The structure of the obtained modes as well as their response to external factors, e.g. forecast their change in 21 century under different CO2 emission scenarios, are discussed. [1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510 [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016). Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. http://doi.org/10.1063/1.4968852
Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Grégory; Esat, Kıvanç; Hartweg, Sebastian
We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance formore » the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.« less
A self-assembled nanoscale robotic arm controlled by electric fields
NASA Astrophysics Data System (ADS)
Kopperger, Enzo; List, Jonathan; Madhira, Sushi; Rothfischer, Florian; Lamb, Don C.; Simmel, Friedrich C.
2018-01-01
The use of dynamic, self-assembled DNA nanostructures in the context of nanorobotics requires fast and reliable actuation mechanisms. We therefore created a 55-nanometer–by–55-nanometer DNA-based molecular platform with an integrated robotic arm of length 25 nanometers, which can be extended to more than 400 nanometers and actuated with externally applied electrical fields. Precise, computer-controlled switching of the arm between arbitrary positions on the platform can be achieved within milliseconds, as demonstrated with single-pair Förster resonance energy transfer experiments and fluorescence microscopy. The arm can be used for electrically driven transport of molecules or nanoparticles over tens of nanometers, which is useful for the control of photonic and plasmonic processes. Application of piconewton forces by the robot arm is demonstrated in force-induced DNA duplex melting experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Accioly, Artur; Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay; Locatelli, Nicolas
2016-09-07
A theoretical study on how synchronization and resonance-like phenomena in superparamagnetic tunnel junctions can be driven by spin-transfer torques is presented. We examine the magnetization of a superparamagnetic free layer that reverses randomly between two well-defined orientations due to thermal fluctuations, acting as a stochastic oscillator. When subject to an external ac forcing, this system can present stochastic resonance and noise-enhanced synchronization. We focus on the roles of the mutually perpendicular damping-like and field-like torques, showing that the response of the system is very different at low and high frequencies. We also demonstrate that the field-like torque can increase themore » efficiency of the current-driven forcing, especially at sub-threshold electric currents. These results can be useful for possible low-power, more energy efficient applications.« less
Cell partition in two phase polymer systems
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1979-01-01
Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.
Magnetically Actuated Soft Capsule With the Multimodal Drug Release Function
Yim, Sehyuk; Goyal, Kartik; Sitti, Metin
2014-01-01
In this paper, we present a magnetically actuated multimodal drug release mechanism using a tetherless soft capsule endoscope for the treatment of gastric disease. Because the designed capsule has a drug chamber between both magnetic heads, if it is compressed by the external magnetic field, the capsule could release a drug in a specific position locally. The capsule is designed to release a drug in two modes according to the situation. In the first mode, a small amount of drug is continuously released by a series of pulse type magnetic field (0.01–0.03 T). The experimental results show that the drug release can be controlled by the frequency of the external magnetic pulse. In the second mode, about 800 mm3 of drug is released by the external magnetic field of 0.07 T, which induces a stronger magnetic attraction than the critical force for capsule’s collapsing. As a result, a polymeric coating is formed around the capsule. The coated area is dependent on the drug viscosity. This paper presents simulations and various experiments to evaluate the magnetically actuated multimodal drug release capability. The proposed soft capsules could be used as minimally invasive tetherless medical devices with therapeutic capability for the next generation capsule endoscopy. PMID:25378896
Shcherbakov, Valera P; Winklhofer, Michael
2010-03-01
Birds are endowed with a magnetic sense that allows them to detect Earth's magnetic field and to use it for orientation. Physiological and behavioral experiments have shown the upper beak to host a magnetoreceptor. Putative magnetoreceptive structures in the beak are nerve terminals that each contain a dozen or so of micrometer-sized clusters of superparamagnetic nanocrystals made of magnetite/maghemite and numerous electron-opaque platelets filled with a so far unidentified, amorphous ferric iron compound. The platelets typically form chainlike structures, which have been proposed to function as magnetic flux focusers for detecting the intensity of the geomagnetic field. Here, we test that proposition from first principles and develop an unconstrained model to determine the equilibrium distribution of magnetization along a linear chain of platelets which we assume to behave magnetically soft and to have no magnetic remanence. Our analysis, which is valid for arbitrary values of the intrinsic magnetic susceptibility chi , shows that chi needs to be much greater than unity to amplify the external field by two orders of magnitude in a chain of platelets. However, the high amplification is confined to the central region of the chain and subsides quadratically toward the ends of the chain. For large values of chi , the possibility opens up of realizing magnetoreceptor mechanisms on the basis of attraction forces between adjacent platelets in a linear chain. The force in the central region of the chain may amount to several pN, which would be sufficient to convert magnetic input energy into mechanical output energy. The striking feature of an ensemble of platelets is its ability to organize into tightly spaced chains under the action of an external field of given strength. We discuss how this property can be exploited for a magnetoreception mechanism.
Computational studies of steering nanoparticles with magnetic gradients
NASA Astrophysics Data System (ADS)
Aylak, Sultan Suleyman
Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.
Investigation of the external flow analysis for density measurements at high altitude
NASA Technical Reports Server (NTRS)
Bienkowski, G. K.
1984-01-01
The results of analysis performed on the external flow around the shuttle orbiter nose regions at the Shuttle Upper Atmosphere Mass Spectrometer (SUMS) inlet orifice are presented. The purpose of the analysis is to quantitatively characterize the flow conditions to facilitate SUMS flight data reduction and subsequent determination of orbiter aerodynamic force coefficients in the hypersonic rarefied flow regime. Experimental determination of aerodynamic force coefficients requires accurate simultaneous measurement of forces (or acceleration) and dynamic pressure along with independent knowledge of density and velocity. The SUMS provides independent measurement of dynamic pressure; however, it does so indirectly and requires knowledge of the relationship between measured orifice conditions and the dynamic pressure which can only be determined on the basis of molecule or theory for a winged configuration. Monte Carlo direct simulation computer codes were developed for both the flow field solution at the orifice and for the internal orifice flow. These codes were used to study issues associated with geometric modeling of the orbiter nose geometry and the modeling of intermolecular collisions including rotational energy exchange and a preliminary analysis of vibrational excitation and dissociation effects. Data obtained from preliminary simulation runs are presented.
NASA Astrophysics Data System (ADS)
Li, Kai; Liu, Jun; Liu, Weiqiang
2017-04-01
As a novel thermal protection technique for hypersonic vehicles, Magnetohydrodynamic (MHD) heat shield system has been proved to be of great intrinsic value in the hypersonic field. In order to analyze the thermal protection mechanisms of such a system, a physical model is constructed for analyzing the effect of the Lorentz force components in the counter and normal directions. With a series of numerical simulations, the dominating Lorentz force components are analyzed for the MHD heat flux mitigation in different regions of a typical reentry vehicle. Then, a novel magnetic field with variable included angle between magnetic induction line and streamline is designed, which significantly improves the performance of MHD thermal protection in the stagnation and shoulder areas. After that, the relationships between MHD shock control and MHD thermal protection are investigated, based on which the magnetic field above is secondarily optimized obtaining better performances of both shock control and thermal protection. Results show that the MHD thermal protection is mainly determined by the Lorentz force's effect on the boundary layer. From the stagnation to the shoulder region, the flow deceleration effect of the counter-flow component is weakened while the flow deflection effect of the normal component is enhanced. Moreover, there is no obviously positive correlation between the MHD shock control and thermal protection. But once a good Lorentz force's effect on the boundary layer is guaranteed, the thermal protection performance can be further improved with an enlarged shock stand-off distance by strengthening the counter-flow Lorentz force right after shock.
Tanaka, Shinobu; Hayashi, Shigeki; Fukushima, Satoshi; Yasuki, Tsuyoshi
2013-01-01
This article describes the chest injury risk reduction effect of shoulder restraints using finite element (FE) models of the worldwide harmonized side impact dummy (WorldSID) and Total Human Model for Safety (THUMS) in an FE model 32 km/h oblique pole side impact. This research used an FE model of a mid-sized vehicle equipped with various combinations of curtain shield air bags, torso air bags, and shoulder restraint air bags. As occupant models, AM50 WorldSID and THUMS AM50 Version 4 were used for comparison. The research investigated the effect of shoulder restraint air bag on chest injury by comparing cases with and without a shoulder side air bag. The maximum external force to the chest was reduced by shoulder restraint air bag in both WorldSID and THUMS, reducing chest injury risk as measured by the amount of rib deflection, number of the rib fractures, and rib deflection ratio. However, it was also determined that the external force to shoulder should be limited to the chest injury threshold because the external shoulder force transmits to the chest via the arm in the case of WorldSID and via the scapula in the case of THUMS. Because these results show the shoulder restraint air bag effect on chest injury risk, the vent hole size of the shoulder restraint air bag was changed for varying reaction forces to investigate the relationship between the external force to the shoulder and the risk of chest injury. In the case of THUMS, an external shoulder force of 1.8 kN and more force from the shoulder restraint air bag was necessary to help prevent rib fracture. Increasing external force applied to shoulder up to 6.2 kN (the maximum force used in this study) did not induce any rib or clavicle fractures in the THUMS. When the shoulder restraint air bag generated external force to the shoulder from 1.8 to 6.2 kN in THUMS, which were applied to the WorldSID, the shoulder deflection ranged from 35 to 68 mm, and the shoulder force ranged from 1.8 to 2.3 kN. In the test configuration used, a shoulder restraint using the air bag helps reduce chest injury risk by lowering the maximum magnitude of external force to the shoulder and chest. To help reduce rib fracture risk in the THUMS, the shoulder restraint air bag was expected to generate a force of 3.7 kN with a minimum rib deflection ratio. This corresponds to a shoulder rib deflection of 60 mm and a shoulder load of 2.2 kN in WorldSID. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.
Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas
NASA Astrophysics Data System (ADS)
Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta
2018-04-01
Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.
REVIEWS OF TOPICAL PROBLEMS Gravitational radiation of systems and the role of their force field
NASA Astrophysics Data System (ADS)
Nikishov, Anatolii I.; Ritus, Vladimir I.
2011-02-01
Gravitational radiation (GR) from compact relativistic systems with a known energy-momentum tensor (EMT) and GR from two masses elliptically orbiting their common center of inertia are considered. In the ultrarelativistic limit, the GR spectrum of a charge rotating in a uniform magnetic field, a Coulomb field, a magnetic moment field, and a combination of the last two fields differs by a factor 4πGm2Γ2/e2 (Γ being of the order of the charge Lorentz factor) from its electromagnetic radiation (EMR) spectrum. This factor is independent of the radiation frequency but does depend on the wave vector direction and the way the field behaves outside of the orbit. For a plane wave external field, the proportionality between the gravitational and electromagnetic radiation spectra is exact, whatever the velocity of the charge. Qualitative estimates of Γ are given for a charge moving ultrarelativistically in an arbitrary field, showing that it is of the order of the ratio of the nonlocal and local source contributions to the GR. The localization of external forces near the orbit violates the proportionality of the spectra and reduces GR by about the Lorentz factor squared. The GR spectrum of a rotating relativistic string with masses at the ends is given, and it is shown that the contributions by the masses and string are of the same order of magnitude. In the nonrelativistic limit, the harmonics of GR spectra behave universally for all the rotating systems considered. A trajectory method is developed for calculating the GR spectrum. In this method, the spatial (and hence polarization) components of the conserved EMT are calculated in the long wavelength approximation from the time component of the EMTs of the constituent masses of the system. Using this method, the GR spectrum of two masses moving in elliptic orbits about their common center of inertia is calculated, as are the relativistic corrections to it.
Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction
NASA Astrophysics Data System (ADS)
Solov'ev, A. A.
2013-09-01
We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.
A locomotion mechanism with external magnetic guidance for active capsule endoscope.
Wang, Xiaona; Meng, Max Q H; Chen, Xijun
2010-01-01
Gastrointestinal (GI) disorder is one of the most common diseases in human body. The swallowable wireless capsule endoscopy has been proved to be a convenient, painless and effective way to examine the whole GI tract. However, lack of motion control makes the movement of the capsule substantially random, resulting in missing diagnosis. In this paper, a locomotion mechanism is developed for the next-generation active capsule endoscope. An internal actuator integrated on-board the capsule is designed to provide driving force and improve the dexterity. A small permanent magnet enclosed inside the capsule interacts with an external magnetic field to control the capsule's orientation and offer extra driving force. This mechanism avoids sophisticated and bulky control system and reduces power consumption inside the capsule. Ex-vivo experimental results showed that it can make a controllable movement inside the porcine large intestine. The mechanism also has the potential to be a platform for further development, such as devices of operations, spraying medicine, biopsy etc.
NASA Astrophysics Data System (ADS)
Xiong, Yan; Chen, Yang; Sun, Zhiyong; Hao, Lina; Dong, Jie
2014-07-01
Ionic polymer metal composites (IPMCs) are a type of electroactive polymer (EAP) that can be used as both sensors and actuators. An IPMC has enormous potential application in the field of biomimetic robotics, medical devices, and so on. However, an IPMC actuator has a great number of disadvantages, such as creep and time-variation, making it vulnerable to external disturbances. In addition, the complex actuation mechanism makes it difficult to model and the demand of the control algorithm is laborious to implement. In this paper, we obtain a creep model of the IPMC by means of model identification based on the method of creep operator linear superposition. Although the mathematical model is not approximate to the IPMC accurate model, it is accurate enough to be used in MATLAB to prove the control algorithm. A controller based on the active disturbance rejection control (ADRC) method is designed to solve the drawbacks previously given. Because the ADRC controller is separate from the mathematical model of the controlled plant, the control algorithm has the ability to complete disturbance estimation and compensation. Some factors, such as all external disturbances, uncertainty factors, the inaccuracy of the identification model and different kinds of IPMCs, have little effect on controlling the output block force of the IPMC. Furthermore, we use the particle swarm optimization algorithm to adjust ADRC parameters so that the IPMC actuator can approach the desired block force with unknown external disturbances. Simulations and experimental examples validate the effectiveness of the ADRC controller.
Viscous Effects on Blast Wave Flowfields.
1984-12-01
18 3-7 Grids used in shock-cylinder interaction calculations ....... ...................... ... 21 3-8 Pressure-time histories ...structure flow ........ .. 32 iv LIST OF ILLUSTRATIONS (concluded) r ~ue Pa e 4-2 Calculated pressure-time histories for shock-field structure...written in dimensionless, conservative-law formll ,r e orf t jas without external forces as follows: : *1 t, ’ yF 1 - v 4 yFv ) (2-1) K r V --, ~ V F F j
NASA Astrophysics Data System (ADS)
Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
NASA Astrophysics Data System (ADS)
Snezhko, Alexey
2010-03-01
Ensembles of interacting particles subject to an external periodic forcing often develop nontrivial collective behavior and self-assembled dynamic patterns. We study emergent phenomena in magnetic granular ensembles suspended at a liquid-air and liquid-liquid interfaces and subjected to a transversal alternating magnetic field. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (in particular, ``magnetic snakes'', ``asters'', ``clams'') emerging in such systems in a certain range of excitation parameters. These non-equilibrium dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex magnetic ordering. Transition between different self-assembled phases with parameters of external driving magnetic field is observed. I will show that above some frequency threshold magnetic snakes spontaneously break the symmetry of the self-induced surface flows (symmetry breaking instability) and turn into swimmers. Self-induced surface flows symmetry can be also broken in a controlled fashion by introduction of a large bead to a magnetic snake (bead-snake hybrid), that transforms it into a robust self-locomoting entity. Some features of the self-localized structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows.
Unfolding of globular polymers by external force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Samuel; Terentjev, Eugene M., E-mail: emt1000@cam.ac.uk
2015-11-14
We examine the problem of a polymer chain, folded into a globule in poor solvent, subjected to a constant tensile force. Such a situation represents a Gibbs thermodynamic ensemble and is useful for analysing force-clamp atomic force microscopy measurements, now very common in molecular biophysics. Using a basic Flory mean-field theory, we account for surface interactions of monomers with solvent. Under an increasing tensile force, a first-order phase transition occurs from a compact globule to a fully extended chain, in an “all-or-nothing” unfolding event. This contrasts with the regime of imposed extension, first studied by Halperin and Zhulina [Europhys. Lett.more » 15, 417 (1991)], where there is a regime of coexistence of a partial globule with an extended chain segment. We relate the transition forces in this problem to the solvent quality and degree of polymerisation, and also find analytical expressions for the energy barriers present in the problem. Using these expressions, we analyse the kinetic problem of a force-ramp experiment and show that the force at which a globule ruptures depends on the rate of loading.« less
Diffusion in the special theory of relativity.
Herrmann, Joachim
2009-11-01
The Markovian diffusion theory is generalized within the framework of the special theory of relativity. Since the velocity space in relativity is a hyperboloid, the mathematical stochastic calculus on Riemanian manifolds can be applied but adopted here to the velocity space. A generalized Langevin equation in the fiber space of position, velocity, and orthonormal velocity frames is defined from which the generalized relativistic Kramers equation in the phase space in external force fields is derived. The obtained diffusion equation is invariant under Lorentz transformations and its stationary solution is given by the Jüttner distribution. Besides, a nonstationary analytical solution is derived for the example of force-free relativistic diffusion.
The dynamics of copper intercalated molybdenum ditelluride
NASA Astrophysics Data System (ADS)
Onofrio, Nicolas; Guzman, David; Strachan, Alejandro
2016-11-01
Layered transition metal dichalcogenides are emerging as key materials in nanoelectronics and energy applications. Predictive models to understand their growth, thermomechanical properties, and interaction with metals are needed in order to accelerate their incorporation into commercial products. Interatomic potentials enable large-scale atomistic simulations connecting first principle methods and devices. We present a ReaxFF reactive force field to describe molybdenum ditelluride and its interactions with copper. We optimized the force field parameters to describe the energetics, atomic charges, and mechanical properties of (i) layered MoTe2, Mo, and Cu in various phases, (ii) the intercalation of Cu atoms and small clusters within the van der Waals gap of MoTe2, and (iii) bond dissociation curves. The training set consists of an extensive set of first principles calculations computed using density functional theory (DFT). We validate the force field via the prediction of the adhesion of a single layer MoTe2 on a Cu(111) surface and find good agreement with DFT results not used in the training set. We characterized the mobility of the Cu ions intercalated into MoTe2 under the presence of an external electric field via finite temperature molecular dynamics simulations. The results show a significant increase in drift velocity for electric fields of approximately 0.4 V/Å and that mobility increases with Cu ion concentration.
Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target.
Nacev, A; Weinberg, I N; Stepanov, P Y; Kupfer, S; Mair, L O; Urdaneta, M G; Shimoji, M; Fricke, S T; Shapiro, B
2015-01-14
The ability to use magnets external to the body to focus therapy to deep tissue targets has remained an elusive goal in magnetic drug targeting. Researchers have hitherto been able to manipulate magnetic nanotherapeutics in vivo with nearby magnets but have remained unable to focus these therapies to targets deep within the body using magnets external to the body. One of the factors that has made focusing of therapy to central targets between magnets challenging is Samuel Earnshaw's theorem as applied to Maxwell's equations. These mathematical formulations imply that external static magnets cannot create a stable potential energy well between them. We posited that fast magnetic pulses could act on ferromagnetic rods before they could realign with the magnetic field. Mathematically, this is equivalent to reversing the sign of the potential energy term in Earnshaw's theorem, thus enabling a quasi-static stable trap between magnets. With in vitro experiments, we demonstrated that quick, shaped magnetic pulses can be successfully used to create inward pointing magnetic forces that, on average, enable external magnets to concentrate ferromagnetic rods to a central location.
Structural phase transitions in isotropic magnetic elastomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meilikhov, E. Z., E-mail: meilikhov@yandex.ru; Farzetdinova, R. M.
Magnetic elastomers represent a new type of materials that are “soft” matrices with “hard” magnetic granules embedded in them. The elastic forces of the matrix and the magnetic forces acting between granules are comparable in magnitude even under small deformations. As a result, these materials acquire a number of new properties; in particular, their mechanical and/or magnetic characteristics can depend strongly on the polymer matrix filling with magnetic particles and can change under the action of an external magnetic field, pressure, and temperature. To describe the properties of elastomers, we use a model in which the interaction of magnetic granulesmore » randomly arranged in space with one another is described in the dipole approximation by the distribution function of dipole fields, while their interaction with the matrix is described phenomenologically. A multitude of deformation, magnetic-field, and temperature effects that are described in this paper and are quite accessible to experimental observation arise within this model.« less
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
Time series data analysis using DFA
NASA Astrophysics Data System (ADS)
Okumoto, A.; Akiyama, T.; Sekino, H.; Sumi, T.
2014-02-01
Detrended fluctuation analysis (DFA) was originally developed for the evaluation of DNA sequence and interval for heart rate variability (HRV), but it is now used to obtain various biological information. In this study we perform DFA on artificially generated data where we already know the relationship between signal and the physical event causing the signal. We generate artificial data using molecular dynamics. The Brownian motion of a polymer under an external force is investigated. In order to generate artificial fluctuation in the physical properties, we introduce obstacle pillars fixed to nanostructures. Using different conditions such as presence or absence of obstacles, external field, and the polymer length, we perform DFA on energies and positions of the polymer.
External Forces Affecting Higher Education. NACUBO Professional File. Vol. 7, No. 5.
ERIC Educational Resources Information Center
Bailey, Stephen K.
Out of the many external forces that influence college campuses, there are four that have had (or are likely to have) a major impact on the fortunes of higher education. The ways in which college and university officials and friends react to these forces can make an enormous difference to the future of higher education. The forces are: (1) Federal…
Casimir force phase transitions in the graphene family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.
The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. We found that the expansion of the graphene family by adding silicene, germanene and stanene (2D allotropes of Si, Ge, and Sn), lends itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. Here, we discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling and externally applied fields. Particularly, we find that the interaction energy experiences different power law distance decays, magnitudes and dependences onmore » characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.« less
Casimir force phase transitions in the graphene family
Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; ...
2017-03-15
The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. We found that the expansion of the graphene family by adding silicene, germanene and stanene (2D allotropes of Si, Ge, and Sn), lends itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. Here, we discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling and externally applied fields. Particularly, we find that the interaction energy experiences different power law distance decays, magnitudes and dependences onmore » characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.« less
Magnetic assembly of nonmagnetic particles into photonic crystal structures.
He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong
2010-11-10
We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.
Boundary-value problem for plasma centrifuge at arbitrary magnetic Reynolds numbers
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Hong, S. H.
1977-01-01
We solve in closed form the boundary-value problem for the partial differential equations which describe the (azimuthal) rotation velocity and induced magnetic fields in a cylindrical plasma centrifuge with ring electrodes of different radii and an external, axial magnetic field. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number H and the magnetic Reynolds number R. For small Hall coefficients, the induced magnetic field does not affect the plasma rotation. As a result of the Lorentz forces, the plasma rotates with speeds as high as 100,000 cm/sec around its axis of symmetry at typical conditions, so that the lighter (heavier) ion and atom components are enriched at (off) the center of the discharge cylinder.
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-06-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-03-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
NASA Astrophysics Data System (ADS)
Bai, Zhan-Wu; Zhang, Wei
2018-01-01
The diffusion behaviors of Brownian particles in a tilted periodic potential under the influence of an internal white noise and an external Ornstein-Uhlenbeck noise are investigated through numerical simulation. In contrast to the case when the bias force is smaller or absent, the diffusion coefficient exhibits a nonmonotonic dependence on the correlation time of the external noise when bias force is large. A mechanism different from locked-to-running transition theory is presented for the diffusion enhancement by a bias force in intermediate to large damping. In the underdamped regime and the presence of external noise, the diffusion coefficient is a monotonically decreasing function of low temperature rather than a nonmonotonic function when external noise is absent. The diffusive process undergoes four regimes when bias force approaches but is less than its critical value and noises intensities are small. These behaviors can be attributed to the locked-to-running transition of particles.
Debye screening of dislocations.
Groma, I; Györgyi, G; Kocsis, B
2006-04-28
Debye-like screening by edge dislocations of some externally given stress is studied by means of a variational approach to coarse grained field theory. Explicitly given are the force field and the induced geometrically necessary dislocation (GND) distribution, in the special case of a single glide axis in 2D, for (i) a single edge dislocation and (ii) a dislocation wall. Numerical simulation demonstrates that the correlation in relaxed dislocation configurations is in good agreement with the induced GND in case (i). Furthermore, the result (ii) well predicts the experimentally observed decay length for the GND developing close to grain boundaries.
Charged-particle transport in turbulent astrophysical plasmas
NASA Technical Reports Server (NTRS)
Newman, C. E., Jr.
1972-01-01
The effect of electromagnetic fluctuations, or plasma turbulence, on the motion of the individual particles in a plasma is investigated. Two alternative methods are used to find a general equation governing the time-evolution of a distribution of charged particles subject to both an external force field and the random fields of the fluctuations. It is found that, for the high-temperature, low-density plasmas frequently encountered in the study of astrophysics, the presence of even a small amount of turbulence can have a very important effect on the behavior of the plasma. Two problems in which turbulence plays an important role are treated.
Dynamic Control of Topological Defects in Artificial Colloidal Ice
Libál, A.; Nisoli, C.; Reichhardt, C.; ...
2017-04-05
We demonstrate the use of an external field to stabilize and control defect lines connecting topological monopoles in spin ice. For definiteness we perform Brownian dynamics simulations with realistic units mimicking experimentally realized artificial colloidal spin ice systems, and show how defect lines can grow, shrink or move under the action of direct and alternating fields. Asymmetric alternating biasing forces can cause the defect line to ratchet in either direction, making it possible to precisely position the line at a desired location. Such manipulation could be employed to achieve mobile information storage in these metamaterials.
Dynamic Control of Topological Defects in Artificial Colloidal Ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libál, A.; Nisoli, C.; Reichhardt, C.
We demonstrate the use of an external field to stabilize and control defect lines connecting topological monopoles in spin ice. For definiteness we perform Brownian dynamics simulations with realistic units mimicking experimentally realized artificial colloidal spin ice systems, and show how defect lines can grow, shrink or move under the action of direct and alternating fields. Asymmetric alternating biasing forces can cause the defect line to ratchet in either direction, making it possible to precisely position the line at a desired location. Such manipulation could be employed to achieve mobile information storage in these metamaterials.
Controlling Two-dimensional Tethered Vesicle Motion Using an Electric Field
Yoshina-Ishii, Chiaki; Boxer, Steven G.
2008-01-01
We recently introduced methods to tether phospholipid vesicles or proteoliposomes onto a fluid supported lipid bilayer using DNA hybridization. These intact tethered vesicles diffuse in two dimensions parallel to the supporting membrane surface. In this paper, we report the dynamic response of individual tethered vesicles to an electric field applied parallel to the bilayer surface. Vesicles respond to the field by moving in the direction of electro-osmotic flow, and this can be used to reversibly concentrate tethered vesicles against a barrier. By adding increasing amounts of negatively charged phosphatidylserine to the supporting bilayer to increase electro-osmosis, the electrophoretic mobility of the tethered vesicles can be increased. The electro-osmotic contribution can be modeled well by a sphere connected to a cylindrical anchor in a viscous membrane with charged head groups. The electrophoretic force on the negatively charged tethered vesicles opposes the electro-osmotic force. By increasing the amount of negative charge on the tethered vesicle, drift in the direction of electro-osmotic flow can be slowed; at high negative charge on the tethered vesicle, motion can be forced in the direction of electrophoresis. The balance between these forces can be visualized on a patterned supporting bilayer containing negatively charged lipids which themselves reorganize in an externally applied electric field to create a gradient of charge within a corralled region. The charge gradient at the surface creates a gradient of electro-osmotic flow, and vesicles carrying similar amounts of negative charge can be focused to a region perpendicular to the applied field where electrophoresis is balanced by electro-osmosis, away from the corral boundary. Electric fields are effective tools to direct tethered vesicles, concentrate them and to measure the tethered vesicle’s electrostatic properties. PMID:16489833
Radiation reaction on a classical charged particle: a modified form of the equation of motion.
Alcaine, Guillermo García; Llanes-Estrada, Felipe J
2013-09-01
We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.
Radiation reaction on a classical charged particle: A modified form of the equation of motion
NASA Astrophysics Data System (ADS)
Alcaine, Guillermo García; Llanes-Estrada, Felipe J.
2013-09-01
We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.
Electromagnetic Radiation Reaction in General Relativity.
NASA Astrophysics Data System (ADS)
O'Donnell, Nuala
Available from UMI in association with The British Library. This thesis examines the electromagnetic radiation reaction felt by a charged body falling freely in an external gravitational field in general relativity. The original objective was to find a new derivation of the radiation reaction force F^{i} of DeWitt and DeWitt^1 which was calculated for the special case of a point charge falling in slow motion in a weak, static gravitational field: F ^{i} = {2over 3}e^2R^{i}_{0j0 }v^{j}. This may be thought of as a local expression since it involves the particle's velocity v^{j } and the local Riemann curvature tensor R ^{i}_{0j0}. Its derivation involves integrals over the whole history of the particle, covering distances of approximately the length scale on which R^{i}_{0j0 } changes. This is different from calculations of the Abraham-Lorentz force of flat space-time involving integrals over distances only a few times the size of the charge. This work was motivated by the wish to find a "local" derivation of the local reaction force. Using Schutz's^2 local initial value method to solve the problem of a charged, rigid, spherically symmetric body moving in an external gravitational field of arbitrary metric. Calculations are done in a Riemann normal coordinate system ^3 and are only valid in a normal neighbourhood of the origin, where geodesics have not begun to cross one another. We solve Maxwell's equations for the self -force by making a slow-motion approximation and keeping terms to first order only in the Riemann tensor and velocity. It is surprising that we find no local radiation reaction. Consider two particles in a static spacetime with the same initial conditions at t = 0. Particle A is that of DeWitt and DeWitt; it feels a reaction force F^{i} = {2over 3}e^2R^{i }_{0j0}v^{j}. Particle B is accelerated from rest to the same small velocity; it feels no reaction force. The two particles therefore follow different trajectories. We conclude that there is a certain amount of history dependence in curved spacetime which is absent in flat spacetime where the Abraham-Lorentz reaction force acts equally on both particles. ftn ^1C. M. DeWitt and B. S. Brehme, Falling Charges, Phys., 1, 3 (1964). ^2B. F. Schutz, Statistical Formulation of Gravitational Radiation Reaction, Phys. Rev. D., 22, 249 (1980). ^3See for example A. Z. Petrov, Einstein Spaces, p.33, Pergamon Press (1969).
Three-dimensional control of crystal growth using magnetic fields
NASA Astrophysics Data System (ADS)
Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo
1993-07-01
Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.
Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones
NASA Technical Reports Server (NTRS)
Tsinganos, K.; Low, B. C.
1989-01-01
A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.
Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips.
Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui
2014-03-01
Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber.
Kondo, Hisami; Toyota, Hiroyasu; Kamiya, Takayuki; Yamashita, Kazunari; Hakomori, Tadashi; Imoto, Junko; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2017-01-01
External lubrication is a useful method which reduces the adhesion of powder to punches and dies by spraying lubricants during the tableting process. However, no information is available on whether the tablets prepared using an external lubrication system can be applicable for a film coating process. In this study, we evaluated the adhesion force of the film coating layer to the surface of tablets prepared using an external lubrication method, compared with those prepared using internal lubrication method. We also evaluated wettability, roughness and lubricant distribution state on the tablet surface before film coating, and investigated the relationship between peeling of the film coating layer and these tablet surface properties. Increasing lubrication through the external lubrication method decreased wettability of the tablet surface. However, no change was observed in the adhesion force of the film coating layer. On the other hand, increasing lubrication through the internal lubrication method, decreased both wettability of the tablet surface and the adhesion force of the film coating layer. The magnesium stearate distribution state on the tablet surface was assessed using an X-ray fluorescent analyzer and lubricant agglomerates were observed in the case of the internal lubrication method. However, the lubricant was uniformly dispersed in the external lubrication samples. These results indicate that the distribution state of the lubricant affects the adhesion force of the film coating layer, and external lubrication maintained sufficient lubricity and adhesion force of the film coating layer with a small amount of lubricant.
Role of hydrodynamic interactions in dynamics of semi-flexible polyelectrolytes
NASA Astrophysics Data System (ADS)
Kekre, Rahul
Experiments have shown that DNA molecules in capillary electrophoresis migrate across field lines if a pressure gradient is applied simultaneously. We suggest that this migration results from an electrically driven flow field around the polyelectrolyte, which generates additional contributions to the center-of-mass velocity if the overall polymer conformation is asymmetric. Numerical simulations and experiments have demonstrated that confined polymers migrate towards the center of the channel in response to both external forces and uniaxial flows. Yet, migration towards the walls has been observed with combinations of external force and flow. In this work, the kinetic theory for an elastic dumbbell developed by Ma and Graham [Phys. Fluids 17, 083103 (2005)] has been extended to account for the effects of an external body force. Further modifications account for counterion screening within a Debye-Huckel approximation for the specific case of applied electric field. The theory qualitatively reproduces results of both experiments for the migration of neutral polymers and polyelectrolytes. The favorable comparison supports the contention [Long et al., Phys. Rev. Lett. 76, 3858 (1996)] that the hydrodynamic interactions in polyelectrolytes decay algebraically, as 1/r 3, rather than exponentially. A coarse-grained polymer model, without explicit charges, is developed and integrated using Brownian-dynamics simulations in analogy with the kinetic theory. The novel feature of the simulations is the inclusion of hydrodynamic interactions induced by the electric field. This model quantitatively captures experimental observations [Zheng and Yeung, Anal. Chem. 75, 3675 (2003)] of DNA migration under combined electric and pressure-driven flow fields in absence of any adjusted parameters. In addition the model predicts dependence of electrophoretic velocity on the instantaneous length of the polyelectrolyte which has been verified by experiments of Lee et. al. [Electrophoresis 31, 2813 (2010)]. The model also predicts phenomenons that are yet to be verified experimentally. These include decrease in diffusivity and increase in radius of gyration of the polyelectrolyte in high electric fields due to internal dispersion. The resulting change in orientation distribution at high electric fields decreases the extent of migration. Preliminary results from microfluidic experiments are presented in this dissertation demonstrating the saturation of migration. This dissertation also includes comparison of results from lattice-Boltzmann and Brownian dynamics simulations of a linear bead-spring model of DNA for two cases; infinite dilution and confinement. We have systematically varied the parameters that may affect the accuracy of the lattice-Boltzmann simulations, including grid resolution, temperature, polymer mass, periodic boundary size and fluid viscosity. For the case of a single chain Lattice-Boltzmann results for the diffusion coefficient and Rouse mode relaxation times were within 1--2% from those obtained from Brownian-dynamics. Results from both methods are also compared for polymer migration in confined flows driven by a uniform shear or pressure gradient. Center-of-mass distribution obtained from Lattice-Boltzmann simulations agrees quantitatively with Brownian-dynamics results, contradicting previously published results. The mobility matrix for a confined polymer was derived by applying Faxen's correction to the flow-field generated by a point force bounded by two parallel plates. This formulation of the mobility matrix is symmetric and positive-definite for all physically accessible configurations of the polymer.
Spatially Synchronous Extinction of Species under External Forcing
NASA Astrophysics Data System (ADS)
Amritkar, R. E.; Rangarajan, Govindan
2006-06-01
More than 99% of the species that ever existed on the surface of the Earth are now extinct and their extinction on a global scale has been a puzzle. One may think that a species under an external threat may survive in some isolated locations leading to the revival of the species. Using a general model we show that, under a common external forcing, the species with a quadratic saturation term first undergoes spatial synchronization and then extinction. The effect can be observed even when the external forcing acts only on some locations provided the dynamics contains a synchronizing term. Absence of the quadratic saturation term can help the species to avoid extinction.
2010-06-01
identity has a long and storied tradition in psychological research, it was not until 1985 that Stuart Albert and David Whetten published their...Conflicts; and, Field Theory in Social Science, Washington, DC: American Psychological Association, 1997). 10 John P. Meyer, Jean M. Bartunek, and...occurs between identity and culture, highlighting the psychological importance for organizations to believe that they are a reflection of the things that
Advances in free-energy-based simulations of protein folding and ligand binding.
Perez, Alberto; Morrone, Joseph A; Simmerling, Carlos; Dill, Ken A
2016-02-01
Free-energy-based simulations are increasingly providing the narratives about the structures, dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review two recent successes. It is becoming practical: first, to fold small proteins with free-energy methods without knowing substructures and second, to compute ligand-protein binding affinities, not just their binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are doubling every 1.3 years--which is faster than Moore's law. Thus, these advances are not simply due to the availability of faster computers. Force fields, solvation models and simulation methodology have kept pace with computing advancements, and are now quite good. At the tip of the spear recently are GPU-based computing, improved fast-solvation methods, continued advances in force fields, and conformational sampling methods that harness external information. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Trosin, Barry James
2007-01-01
Active flow control was applied at the point of separation of an axisymmetric, backward-facing-step flow. The control was implemented by employing a Helmholtz resonator that was externally driven by an amplitude-modulated, acoustic disturbance from a speaker located upstream of the wind tunnel. The velocity field of the separating/reattaching flow region downstream of the step was characterized using hotwire velocity measurements with and without flow control. Conventional statistics of the data reveal that the separating/reattaching flow is affected by the imposed forcing. Triple decomposition along with conditional averaging was used to distinguish periodic disturbances from random turbulence in the fluctuating velocity component. A significant outcome of the present study is that it demonstrates that amplitude-modulated forcing of the separated flow alters the flow in the same manner as the more conventional method of periodic excitation.
NASA Astrophysics Data System (ADS)
Vázquez-Quesada, A.; Franke, T.; Ellero, M.
2017-03-01
In this work, an analytical model for the behavior of superparamagnetic chains under the effect of a rotating magnetic field is presented. It is postulated that the relevant mechanisms for describing the shape and breakup of the chains into smaller fragments are the induced dipole-dipole magnetic force on the external beads, their translational and rotational drag forces, and the tangential lubrication between particles. Under this assumption, the characteristic S-shape of the chain can be qualitatively understood. Furthermore, based on a straight chain approximation, a novel analytical expression for the critical frequency for the chain breakup is obtained. In order to validate the model, the analytical expressions are compared with full three-dimensional smoothed particle hydrodynamics simulations of magnetic beads showing excellent agreement. Comparison with previous theoretical results and experimental data is also reported.
Feedback-controlled radiation pressure cooling
NASA Astrophysics Data System (ADS)
Prior, Yehiam; Vilensky, Mark; Averbukh, Ilya Sh.
2008-03-01
We propose a new approach to laser cooling of micromechanical devices, which is based on the phenomenon of optical bistability. These devices are modeled as a Fabry-Perot resonator with one fixed and one oscillating mirror. The bistability may be induced by an external feedback loop. When excited by an external laser, the cavity field has two co-existing stable steady-states depending on the position of the moving mirror. If the latter moves slow enough, the field in the cavity adjusts itself adiabatically to the mirror's instantaneous position. The mirror experiences radiation pressure corresponding to the intensity value. A sharp transition between two values of the radiation pressure force happens twice per every period of the mirror oscillation at non-equivalent positions (hysteresis effect), which leads to a non-zero net energy loss. The cooling mechanism resembles Sisyphus cooling in which the cavity mode performs sudden transitions between two stable states. We provide a dynamical stability analysis of the coupled moving mirror -- cavity field system, and find the parameters for efficient cooling. Direct numerical simulations show that a bistable cavity provides much more efficient cooling compared to the regular one.
Electric Field Induced Interfacial Instabilities
NASA Technical Reports Server (NTRS)
Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-Lun; Onuki, Akira
1996-01-01
The study of the interface in a charge-free, nonpolar, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In zero gravity, the interface is unstable at all long wavelengths in the presence of a field applied across it. It is conjectured that this will cause the binary fluid to break up into domains small enough to be outside the instability condition. The resulting pattern formation, and the effects on the critical properties as the domains approach the correlation length are of acute interest. With direct observation, laser light scattering, and interferometry, the phenomena can be probed to gain further understanding of interfacial instabilities and the pattern formation which results, and dimensional crossover in critical systems as the critical fluctuations in a particular direction are suppressed by external forces.
Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk
NASA Astrophysics Data System (ADS)
Boghi, Andrea; Russo, Flavia; Gori, Fabio
2017-09-01
Magnetic nano drug targeting, through the use of an external magnetic field, is a new technique for the treatment of several diseases, which can potentially avoid the dispersion of drugs in undesired locations of the body. Nevertheless, due to the limitations on the intensity of the magnetic field applied, the hydrodynamic forces can reduce the effectiveness of the procedure. This technique is studied in this paper with the Computational Fluid Dynamics (CFD), focusing on the influence of the magnetic probe position, and the direction of the circulating electric current. A single rectangular coil is used to generate the external magnetic field. A patient-specific geometry of the coeliac trunk is reconstructed from DICOM images, with the use of VMTK. A new solver, coupling the Lagrangian dynamics of the nanoparticles with the Eulerian dynamics of the blood, is implemented in OpenFOAM to perform the simulations. The resistive pressure, the Womersley's profile for the inlet velocity and the magnetic field of a rectangular coil are implemented in the software as boundary conditions. The results show the influence of the position of the probe, as well as the limitations associated with the rectangular coil configuration.
Pulsed plasma thruster by applied a high current hollow cathode discharge
NASA Astrophysics Data System (ADS)
Watanabe, Masayuki; N. Nogera Team; T. Kamada Team
2013-09-01
The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.
Effect of attentional focus strategies on peak force and performance in the standing long jump.
Wu, Will F W; Porter, Jared M; Brown, Lee E
2012-05-01
Significant benefits in standing long jump performance have been demonstrated when subjects were provided verbal instructions that promoted an external focus of attention compared with an internal focus of attention, suggesting differences in ground reaction forces. The purpose of the present study was to evaluate peak force and jump performance between internal and external focus of attention strategies. Untrained subjects were assigned to both experimental conditions in which verbal instructions were provided to promote either an external or internal focus of attention. All subjects completed a total number of 5 standing long jumps. The results of the study demonstrated that the external focus of attention condition elicited significantly greater jump distance (153.6 ± 38.6 cm) than the internal focus of attention condition (139.5 ± 46.7 cm). There were no significant differences observed between conditions in peak force (1429.8 ± 289.1 N and 1453.7 ± 299.7 N, respectively). The results add to the growing body of literature describing the training and learning benefits of an external focus of attention. Practitioners should create standardized verbal instructions using an external focus of attention to maximize standing long jump performance.
Examining the Impact of External Influences on Police Use of Deadly Force over Time.
ERIC Educational Resources Information Center
White, Michael D.
2002-01-01
Used interrupted time-series analysis (ARIMA) to study the impact of legislation and judicial intervention on the use of deadly force by police officers in Philadelphia, Pennsylvania. Findings generally suggest that dynamic changes in the internal working environment can outweigh the influence of external mechanisms on deadly force use. Findings…
Holtzer, Gretchen L; Velegol, Darrell
2005-10-25
Differential electrophoresis experiments are often used to measure subpiconewton forces between two spheres of a heterodoublet. The experiments have been interpreted by solving the electrokinetic equations to obtain a simple Stokes law-type equation. However, for nanocolloids, the effects of Brownian motion alter the interpretation: (1) Brownian translation changes the rate of axial separation. (2) Brownian rotation reduces the alignment of the doublet with the applied electric field. (3) Particles can reaggregate by Brownian motion after they break, forming either heterodoublets or homodoublets, and because homodoublets cannot be broken by differential electrophoresis, this effectively terminates the experiment. We tackle points 1 and 2 using Brownian dynamics simulations (BDS) with electrophoresis as an external force, accounting for convective translation and rotation as well as Brownian translation and rotation. Our simulations identify the lower particle size limit of differential electrophoresis to be about 1 microm for desired statistical accuracy. Furthermore, our simulations predict that particles around 10 nm in size and at ambient conditions will break primarily by Brownian motion, with a negligible effect due to the electric field.
The nature of the laning transition in two dimensions
NASA Astrophysics Data System (ADS)
Glanz, T.; Löwen, H.
2012-11-01
If a binary colloidal mixture is oppositely driven by an external field, a transition towards a laned state occurs at sufficiently large drives, where particles driven alike form elongated structures (‘lanes’) characterized by a large correlation length ξ along the drive. Here we perform extensive Brownian dynamics computer simulations on a two-dimensional equimolar binary Yukawa system driven by a constant force that acts oppositely on the two species. We systematically address finite-size effects on lane formation by exploring large systems up to 262 144 particles under various boundary conditions. It is found that the correlation length ξ along the field depends exponentially on the driving force (or Peclet number). Conversely, in a finite system, ξ reaches a fraction of the system size at a driving force which is logarithmic in the system size, implying massive finite-size corrections. For a fixed finite drive, ξ does not diverge in the thermodynamic limit. Therefore, though laning has a signature as a sharp transition in a finite system, it is a smooth crossover in the thermodynamic limit.
Floating electrode dielectrophoresis.
Golan, Saar; Elata, David; Orenstein, Meir; Dinnar, Uri
2006-12-01
In practice, dielectrophoresis (DEP) devices are based on micropatterned electrodes. When subjected to applied voltages, the electrodes generate nonuniform electric fields that are necessary for the DEP manipulation of particles. In this study, electrically floating electrodes are used in DEP devices. It is demonstrated that effective DEP forces can be achieved by using floating electrodes. Additionally, DEP forces generated by floating electrodes are different from DEP forces generated by excited electrodes. The floating electrodes' capabilities are explained theoretically by calculating the electric field gradients and demonstrated experimentally by using test-devices. The test-devices show that floating electrodes can be used to collect erythrocytes (red blood cells). DEP devices which contain many floating electrodes ought to have fewer connections to external signal sources. Therefore, the use of floating electrodes may considerably facilitate the fabrication and operation of DEP devices. It can also reduce device dimensions. However, the key point is that DEP devices can integrate excited electrodes fabricated by microtechnology processes and floating electrodes fabricated by nanotechnology processes. Such integration is expected to promote the use of DEP devices in the manipulation of nanoparticles.
NASA Astrophysics Data System (ADS)
Hernández, Daniel; Boeck, Thomas; Karcher, Christian; Wondrak, Thomas
2018-01-01
Lorentz force velocimetry (LFV) is a contactless velocity measurement technique for electrically conducting fluids. When a liquid metal or a molten glass flows through an externally applied magnetic field, eddy currents and a flow-braking force are generated inside the liquid. This force is proportional to the velocity or flow rate of the fluid and, due to Newton’s third law, a force of the same magnitude but in opposite direction acts on the source of the applied magnetic field which in our case are permanent magnets. According to Ohm’s law for moving conductors at low magnetic Reynolds numbers, an electric potential is induced which ensures charge conservation. In this paper, we analyze the contribution of the induced electric potential to the total Lorentz force by considering two different scenarios: conducting walls of finite thickness and aspect ratio variation of the cross-section of the flow. In both the cases, the force component generated by the electric potential is always in the opposite direction to the total Lorentz force. This force component is sensitive to the electric boundary conditions of the flow of which insulating and perfectly conducting walls are the two limiting cases. In the latter case, the overall electric resistance of the system is minimized, resulting in a considerable increase in the measured Lorentz force. Additionally, this force originating from the electric potential also decays when the aspect ratio of the cross-section of the flow is changed. Hence, the sensitivity of the measurement technique is enhanced by either increasing wall conductivity or optimizing the aspect ratio of the cross-section of the flow.
Hansen, Matthew; Smith, Mackensie C; Crist, Rachael M; Clogston, Jeffrey D; McNeil, Scott E
2015-11-01
Polyethylene glycol (PEG) is an important tool for increasing the biocompatibility of nanoparticle therapeutics. Understanding how these potential nanomedicines will react after they have been introduced into the bloodstream is a critical component of the preclinical evaluation process. Hence, it is paramount that better methods for separating, characterizing, and analyzing these complex and polydisperse formulations are developed. We present a method for separating nominal 30-nm gold nanoparticles coated with various molecular weight PEG moieties that uses only phosphate-buffered saline as the mobile phase, without the need for stabilizing surfactants. The optimized asymmetric-flow field-flow fractionation technique using in-line multiangle light scattering, dynamic light scattering, refractive index, and UV-vis detectors allowed successful separation and detection of a mixture of nanoparticles coated with 2-, 5-, 10-, and 20-kDa PEG. The particles coated with the larger PEG species (10 and 20 kDa) were eluted at times significantly earlier than predicted by field-flow fractionation theory. This was attributed to a lower-density PEG shell for the higher molecular weight PEGylated nanoparticles, which allows a more fluid PEG surface that can be greater influenced by external forces. Hence, the apparent particle hydrodynamic size may fluctuate significantly depending on the overall density of the stabilizing surface coating when an external force is applied. This has considerable implications for PEGylated nanoparticles intended for in vivo application, as nanoparticle size is important for determining circulation times, accumulation sites, and routes of excretion, and highlights the importance and value of the use of secondary size detectors when one is working with complex samples in asymmetric-flow field-flow fractionation.
Force sharing and other collaborative strategies in a dyadic force perception task
Tatti, Fabio
2018-01-01
When several persons perform a physical task jointly, such as transporting an object together, the interaction force that each person experiences is the sum of the forces applied by all other persons on the same object. Therefore, there is a fundamental ambiguity about the origin of the force that each person experiences. This study investigated the ability of a dyad (two persons) to identify the direction of a small force produced by a haptic device and applied to a jointly held object. In this particular task, the dyad might split the force produced by the haptic device (the external force) in an infinite number of ways, depending on how the two partners interacted physically. A major objective of this study was to understand how the two partners coordinated their action to perceive the direction of the third force that was applied to the jointly held object. This study included a condition where each participant responded independently and another one where the two participants had to agree upon a single negotiated response. The results showed a broad range of behaviors. In general, the external force was not split in a way that would maximize the joint performance. In fact, the external force was often split very unequally, leaving one person without information about the external force. However, the performance was better than expected in this case, which led to the discovery of an unanticipated strategy whereby the person who took all the force transmitted this information to the partner by moving the jointly held object. When the dyad could negotiate the response, we found that the participant with less force information tended to switch his or her response more often. PMID:29474433
Spin-oscillator model for the unzipping of biomolecules by mechanical force.
Prados, A; Carpio, A; Bonilla, L L
2012-08-01
A spin-oscillator system models unzipping of biomolecules (such as DNA, RNA, or proteins) subject to an external force. The system comprises a macroscopic degree of freedom, represented by a one-dimensional oscillator, and internal degrees of freedom, represented by Glauber spins with nearest-neighbor interaction and a coupling constant proportional to the oscillator position. At a critical value F(c) of an applied external force F, the oscillator rest position (order parameter) changes abruptly and the system undergoes a first-order phase transition. When the external force is cycled at different rates, the extension given by the oscillator position exhibits a hysteresis cycle at high loading rates, whereas it moves reversibly over the equilibrium force-extension curve at very low loading rates. Under constant force, the logarithm of the residence time at the stable and metastable oscillator rest position is proportional to F-F(c) as in an Arrhenius law.
NASA Astrophysics Data System (ADS)
Hobza, Anthony; García-Cervera, Carlos J.; Müllner, Peter
2018-07-01
Magnetic shape memory alloys experience magnetic-field-induced torque due to magnetocrystalline anisotropy and shape anisotropy. In a homogeneous magnetic field, torque results in bending of long samples. This study investigates the torque on a single crystal of Ni-Mn-Ga magnetic shape memory alloy constrained with respect to bending in an external magnetic field. The dependence of the torque on external magnetic field magnitude, strain, and twin boundary structure was studied experimentally and with computer simulations. With increasing magnetic field, the torque increased until it reached a maximum near 700 mT. Above 200 mT, the torque was not symmetric about the equilibrium orientation for a sample with one twin boundary. The torque on two specimen with equal strain but different twin boundary structures varied systematically with the spatial arrangement of crystallographic twins. Numerical simulations show that twin boundaries suppress the formation of 180° domains if the direction of easy magnetization between two twin boundaries is parallel to a free surface and the magnetic field is perpendicular to that surface. For a particular twin microstructure, the torque decreases with increasing strain by a factor of six due to the mutual compensation of magnetocrystalline and shape anisotropy. When free rotation is suppressed such as in transducers of magneto-mechanical actuators, magnetic-field-induced torque creates strong bending forces, which may cause friction and failure under cyclic loading.
Impact of moisture variations on the circulation of the south-west monsoon
NASA Astrophysics Data System (ADS)
Kishtawal, C. M.; Pal, P. K.; Narayanan, M. S.; Manna, S. K.; Sharma, O. P.; Agarwal, Sangeeta; Upadhyaya, H. C.
1993-12-01
The impact of moisture anomalies on the circulation of the south-west Indian monsoon has been studied with a general circulation model. Newtonian relaxation is adopted to subject the model atmosphere under sustained moisture anomalies. The impact of negative anomalies of moisture was seen as a divergent circulation anomaly, while the positive anomaly was a stronger convergent anomaly. Although the humidity fields display a resilient behaviour, and relax back to normal patterns 1-2 days after the forcing terms in humidity are withdrawn, the circulation anomalies created by the moisture variation keeps growing. A feedback between positive moisture anomalies and low level convergence exists, which is terminated in the absence of external forcings.
Stability of magnetohydrodynamic Dean Flow as applied to centrifugally confined plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassam, A.B.
1999-10-01
Dean Flow is the azimuthal flow of fluid between static concentric cylinders. In a magnetized plasma, there may also be radial stratification of the pressure. The ideal magnetohydrodynamic stability of such a flow in the presence of a strong axial magnetic field and an added radial gravitational force is examined. It is shown that both the Kelvin{endash}Helmholtz instability and pressure-gradient-driven interchanges can be stabilized if the flow is driven by a unidirectional external force and if the plasma annulus is sufficiently thin (large aspect ratio). These results find application in schemes using centrifugal confinement of plasma for fusion. {copyright} {italmore » 1999 American Institute of Physics.}« less
Numerical Simulations of Plasma Based Flow Control Applications
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.
2005-01-01
A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.
Nonlinear gravitational self-force: Field outside a small body
NASA Astrophysics Data System (ADS)
Pound, Adam
2012-10-01
A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.
NASA Astrophysics Data System (ADS)
Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao
2017-05-01
In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node "Triprism" element is firstly proposed for transient eddy current analysis in electromagnetic field. In present "Triprism" element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a "Triprism" element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed "Triprism" element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.
Foraging at the Edge of Chaos: Internal Clock versus External Forcing
NASA Astrophysics Data System (ADS)
Nicolis, S. C.; Fernández, J.; Pérez-Penichet, C.; Noda, C.; Tejera, F.; Ramos, O.; Sumpter, D. J. T.; Altshuler, E.
2013-06-01
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
Murphy, Ryan J.; Liu, Hao; Iordachita, Iulian I.; Armand, Mehran
2017-01-01
Dexterous continuum manipulators (DCMs) have been widely adopted for minimally- and less-invasive surgery. During the operation, these DCMs interact with surrounding anatomy actively or passively. The interaction force will inevitably affect the tip position and shape of DCMs, leading to potentially inaccurate control near critical anatomy. In this paper, we demonstrated a 2D mechanical model for a tendon actuated, notched DCM with compliant joints. The model predicted deformation of the DCM accurately in the presence of tendon force, friction force, and external force. A partition approach was proposed to describe the DCM as a series of interconnected rigid and flexible links. Beam mechanics, taking into consideration tendon interaction and external force on the tip and the body, was applied to obtain the deformation of each flexible link of the DCM. The model results were compared with experiments for free bending as well as bending in the presence of external forces acting at either the tip or body of the DCM. The overall mean error of tip position between model predictions and all of the experimental results was 0.62±0.41mm. The results suggest that the proposed model can effectively predict the shape of the DCM. PMID:28989273
Solar and atmospheric forcing on mountain lakes.
Luoto, Tomi P; Nevalainen, Liisa
2016-10-01
We investigated the influence of long-term external forcing on aquatic communities in Alpine lakes. Fossil microcrustacean (Cladocera) and macrobenthos (Chironomidae) community variability in four Austrian high-altitude lakes, determined as ultra-sensitive to climate change, were compared against records of air temperature, North Atlantic Oscillation (NAO) and solar forcing over the past ~400years. Summer temperature variability affected both aquatic invertebrate groups in all study sites. The influence of NAO and solar forcing on aquatic invertebrates was also significant in the lakes except in the less transparent lake known to have remained uniformly cold during the past centuries due to summertime snowmelt input. The results suggest that external forcing plays an important role in these pristine ecosystems through their impacts on limnology of the lakes. Not only does the air temperature variability influence the communities but also larger-scale external factors related to atmospheric circulation patterns and solar activity cause long-term changes in high-altitude aquatic ecosystems, through their connections to hydroclimatic conditions and light environment. These findings are important in the assessment of climate change impacts on aquatic ecosystems and in greater understanding of the consequences of external forcing on lake ontogeny. Copyright © 2016 Elsevier B.V. All rights reserved.
Coastal upwelling and downwelling forcing of circulation in a semi-enclosed bay: Ria de Vigo
NASA Astrophysics Data System (ADS)
Barton, E. D.; Largier, J. L.; Torres, R.; Sheridan, M.; Trasviña, A.; Souza, A.; Pazos, Y.; Valle-Levinson, A.
2015-05-01
Semi-enclosed bays in upwelling regions are exposed to forcing related to winds, currents and buoyancy over the shelf. The influence of this external forcing is moderated by factors such as connectivity to the open ocean, shelter by surrounding topography, dimensions of the bay, and freshwater outflows. Such bays, preferred locations for ports, mariculture, marine industry, recreational activities and coastal settlement, present a range of characteristics, understanding of which is necessary to their rational management. Observations in such a semi-enclosed bay, the Ria de Vigo in Spain, are used to characterize the influence of upwelling and downwelling pulses on its circulation. In this location, near the northern limit of the Iberian upwelling system, upwelling events dominate during a short summer season and downwelling events the rest of the year. The ria response to the external forcing is central to nutrient supply and resultant plankton productivity that supports its high level of cultured mussel production. Intensive field studies in September 2006 and June 2007 captured a downwelling event and an upwelling event, respectively. Data from eight current profiler moorings and boat-based MiniBat/ADCP surveys provided an unprecedented quasi-synoptic view of the distribution of water masses and circulation patterns in any ria. In the outer ria, circulation was dominated by the introduction of wind-driven alongshore flow from the external continental shelf through the ria entrances and its interaction with the topography. In the middle ria, circulation was primarily related to the upwelling/downwelling cycle, with a cool, salty and dense lower layer penetrating to the inner ria during upwelling over the shelf. A warmer, lower salinity and less dense surface layer of coastal waters flowed inward during downwelling. Without external forcing, the inner ria responded primarily to tides and buoyancy changes related to land runoff. Under both upwelling and downwelling conditions, the flushing of the ria involved shelf responses to wind pulses. Their persistence for a few days was sufficient to allow waters from the continental shelf to penetrate the innermost ria. Longer term observations supported by numerical modeling are required to confirm the generality of such flushing events in the ria and determine their typical frequency, while comparative studies should explore how these scenarios fit into the range of conditions experienced in other semi-enclosed bays.
Transport characteristics of nanoparticle-based ferrofluids in a gel model of the brain
Basak, Soubir; Brogan, David; Dietrich, Hans; Ritter, Rogers; Dacey, Ralph G; Biswas, Pratim
2009-01-01
A current advance in nanotechnology is the selective targeting of therapeutics by external magnetic field-guided delivery. This is an important area of research in medicine. The use of magnetic forces results in the formation of agglomerated structures in the field region. The transport characteristics of these agglomerated structures are explored. A nonintrusive method based on in situ light-scattering techniques is used to characterize the velocity of such particles in a magnetic field gradient. A transport model for the chain-like agglomerates is developed based on these experimental observations. The transport characteristics of magnetic nanoparticle drug carriers are then explored in gel-based simulated models of the brain. Results of such measurements demonstrate decreased diffusion of magnetic nanoparticles when placed in a high magnetic field gradient. PMID:19421367
NASA Astrophysics Data System (ADS)
Torii, S.; Yuasa, K.
2004-10-01
Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.
NASA Astrophysics Data System (ADS)
Chau, S. W.; Hsu, K. L.; Lin, D. L.; Tzeng, C. C.
2007-04-01
The cathode erosion rate, arc root velocity and output power of a well-type cathode (WTC), non-transferred plasma torch operating in air are studied experimentally in this paper. An external solenoid to generate a magnetically driven arc and a circular swirler to produce a vortex flow structure are equipped in the studied torch system, which is designed to reduce the erosion rate at the cathode. A least square technique is applied to correlate the system parameters, i.e. current, axial magnetic field and mass flow rate, with the cathode erosion rate, arc root velocity and system power output. In the studied WTC torch system, the cathode erosion has a major thermal erosion component and a minor component due to the ion-bombardment effect. The cathode erosion increases with the increase of current due to the enhancement in both Joule heating and ion bombardment. The axial magnetic field can significantly reduce the cathode erosion by reducing the thermal loading of cathode materials at the arc root and improving the heat transfer to gas near the cathode. But, the rise in the mass flow rate leads to the deterioration of erosion, since the ion-bombardment effect prevails over the convective cooling at the cathode. The most dominant system parameter to influence the arc root velocity is the axial magnetic field, which is mainly contributed to the magnetic force driving the arc. The growth in current has a negative impact on increasing the arc root velocity, because the friction force acting at the spot due to a severe molten condition becomes the dominant component counteracting the magnetic force. The mass flow rate also suppresses the arc root velocity, as a result of which the arc root moves in the direction against that of the swirled working gas. All system parameters such as current, magnetic field and gas flow rate increase with the increase in the torch output power. The experimental evidences suggest that the axial magnetic field is the most important parameter to operate the straight-polarity WTC plasma torch at high output power with a limited cathode erosion rate. This emphasizes the importance of an external magnetic field on a WTC torch system for reducing the erosion at the cathode.
Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus
2017-05-10
To optically capture the topography of a hot measurement object with high precision, the light deflection by the inhomogeneous refractive index field-induced by the heat transfer from the measurement object to the ambient medium-has to be considered. We used the 2D background oriented schlieren method with illuminated wavelet background, an optical flow algorithm, and Ciddor's equation to quantify the refractive index field located directly above a red-glowing, hot measurement object. A heat transfer simulation has been implemented to verify the magnitude and the shape of the measured refractive index field. Provided that no forced external flow is disturbing the shape of the convective flow originating from the hot object, a laminar flow can be observed directly above the object, resulting in a sharply bounded, inhomogeneous refractive index field.
The lift force on a drop in unbounded plane Poiseuille flow
NASA Technical Reports Server (NTRS)
Wohl, P. R.
1976-01-01
The lift force on a deformable liquid sphere moving in steady, plane Poiseuille-Stokes flow and subjected to an external body force is calculated. The results are obtained by seeking a solution to Stokes' equations for the motion of the liquids inside and outside the slightly perturbed sphere surface, as expansions valid for small values of the ratio of the Weber number to the Reynolds number. When the ratio of the drop and external fluid viscosities is small, the lift exerted on a neutrally buoyant drop is found to be approximately one-tenth of the magnitude of the force reported by Wohl and Rubinow acting on the same drop in unbounded Poiseuille flow in a tube. The resultant trajectory of the drop is calculated and displayed as a function of the external body force.
Statistical analysis of sperm sorting
NASA Astrophysics Data System (ADS)
Koh, James; Marcos, Marcos
2017-11-01
The success rate of assisted reproduction depends on the proportion of morphologically normal sperm. It is possible to use an external field for manipulation and sorting. Depending on their morphology, the extent of response varies. Due to the wide distribution in sperm morphology even among individuals, the resulting distribution of kinematic behaviour, and consequently the feasibility of sorting, should be analysed statistically. In this theoretical work, Resistive Force Theory and Slender Body Theory will be applied and compared. Full name is Marcos.
Dehydration process in NaCl solutions under various external electric fields
NASA Astrophysics Data System (ADS)
Kadota, Kazunori; Shimosaka, Atsuko; Shirakawa, Yoshiyuki; Hidaka, Jusuke
2007-06-01
Ionic motions at solid-liquid interface in supersaturated NaCl solutions have been investigated by molecular dynamics (MD) simulation for understanding crystal growth processes. The density profile in the vicinity of the interfaces between NaCl(100) and the supersaturated NaCl solution was calculated. Diffusion coefficients of water molecules in the solution were estimated as a function of distance from the crystal interface. It turned out that the structure and dynamics of the solution in the interfaces was different from those of bulk solution owing to electric fields depending on the surface charge. Therefore, the electric field was applied to the supersaturated solutions and dehydration phenomenon occurring in the process of the crystal growth was discussed. As the electric field increased, it was observed that the Na+ keeping strongly hydration structure broke out by the electric force. In supersaturated concentration, the solution structure is significantly different from that of dilution and has a complicated structure with hydration ions and clusters of NaCl. If the electric fields were applied to the solutions, the breakout of hydration structure was not affected with increasing the supersaturated ratio. This reason is that the cluster structures are destroyed by the electric force. The situation depends on the electric field or crystal surface structure.
A Lorentz force actuated magnetic field sensor with capacitive read-out
NASA Astrophysics Data System (ADS)
Stifter, M.; Steiner, H.; Kainz, A.; Keplinger, F.; Hortschitz, W.; Sauter, T.
2013-05-01
We present a novel design of a resonant magnetic field sensor with capacitive read-out permitting wafer level production. The device consists of a single-crystal silicon cantilever manufactured from the device layer of an SOI wafer. Cantilevers represent a very simple structure with respect to manufacturing and function. On the top of the structure, a gold lead carries AC currents that generate alternating Lorentz forces in an external magnetic field. The free end oscillation of the actuated cantilever depends on the eigenfrequencies of the structure. Particularly, the specific design of a U-shaped structure provides a larger force-to-stiffness-ratio than standard cantilevers. The electrodes for detecting cantilever deflections are separately fabricated on a Pyrex glass-wafer. They form the counterpart to the lead on the freely vibrating planar structure. Both wafers are mounted on top of each other. A custom SU-8 bonding process on wafer level creates a gap which defines the equilibrium distance between sensing electrodes and the vibrating structure. Additionally to the capacitive read-out, the cantilever oscillation was simultaneously measured with laser Doppler vibrometry through proper windows in the SOI handle wafer. Advantages and disadvantages of the asynchronous capacitive measurement configuration are discussed quantitatively and presented by a comprehensive experimental characterization of the device under test.
Application of dGNSS in Alpine Ski Racing: Basis for Evaluating Physical Demands and Safety
Gilgien, Matthias; Kröll, Josef; Spörri, Jörg; Crivelli, Philip; Müller, Erich
2018-01-01
External forces, such as ground reaction force or air drag acting on athletes' bodies in sports, determine the sport-specific demands on athletes' physical fitness. In order to establish appropriate physical conditioning regimes, which adequately prepare athletes for the loads and physical demands occurring in their sports and help reduce the risk of injury, sport-and/or discipline-specific knowledge of the external forces is needed. However, due to methodological shortcomings in biomechanical research, data comprehensively describing the external forces that occur in alpine super-G (SG) and downhill (DH) are so far lacking. Therefore, this study applied new and accurate wearable sensor-based technology to determine the external forces acting on skiers during World Cup (WC) alpine skiing competitions in the disciplines of SG and DH and to compare these with those occurring in giant slalom (GS), for which previous research knowledge exists. External forces were determined using WC forerunners carrying a differential global navigation satellite system (dGNSS). Combining the dGNSS data with a digital terrain model of the snow surface and an air drag model, the magnitudes of ground reaction forces were computed. It was found that the applied methodology may not only be used to track physical demands and loads on athletes, but also to simultaneously investigate safety aspects, such as the effectiveness of speed control through increased air drag and ski–snow friction forces in the respective disciplines. Therefore, the component of the ground reaction force in the direction of travel (ski–snow friction) and air drag force were computed. This study showed that (1) the validity of high-end dGNSS systems allows meaningful investigations such as characterization of physical demands and effectiveness of safety measures in highly dynamic sports; (2) physical demands were substantially different between GS, SG, and DH; and (3) safety-related reduction of skiing speed might be most effectively achieved by increasing the ski–snow friction force in GS and SG. For DH an increase in the ski–snow friction force might be equally as effective as an increase in air drag force. PMID:29559918
NASA Astrophysics Data System (ADS)
Ma, He; Wu, Zhuangchun; Peng, Dongwen; Wang, Yaojin; Wang, Yiping; Yang, Ying; Yuan, Guoliang
2018-04-01
Four consecutive ferroelectric polarization switchings and an abnormal ring-like domain pattern can be introduced by a single tip bias of a piezoresponse force microscope in the (010) triglycine sulfate (TGS) crystal. The external electric field anti-parallel to the original polarization induces the first polarization switching; however, the surface charges of TGS can move toward the tip location and induce the second polarization switching once the tip bias is removed. The two switchings allow a ring-like pattern composed of the central domain with downward polarization and the outer domain with upward polarization. Once the two domains disappear gradually as a result of depolarization, the other two polarization switchings occur one by one at the TGS where the tip contacts. However, the backswitching phenomenon does not occur when the external electric field is parallel to the original polarization. These results can be explained according to the surface charges instead of the charges injected inside.
Zhang, Zhuhua; Liu, Xiaofei; Yu, Jin; Hang, Yang; Li, Yao; Guo, Yufeng; Xu, Ying; Sun, Xu; Zhou, Jianxin
2016-01-01
Low‐dimensional materials exhibit many exceptional properties and functionalities which can be efficiently tuned by externally applied force or fields. Here we review the current status of research on tuning the electronic and magnetic properties of low‐dimensional carbon, boron nitride, metal‐dichalcogenides, phosphorene nanomaterials by applied engineering strain, external electric field and interaction with substrates, etc, with particular focus on the progress of computational methods and studies. We highlight the similarities and differences of the property modulation among one‐ and two‐dimensional nanomaterials. Recent breakthroughs in experimental demonstration of the tunable functionalities in typical nanostructures are also presented. Finally, prospective and challenges for applying the tunable properties into functional devices are discussed. WIREs Comput Mol Sci 2016, 6:324–350. doi: 10.1002/wcms.1251 For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article. PMID:27818710
Operational durability of a giant ER valve for Braille display
NASA Astrophysics Data System (ADS)
Luning, Xu; Han, Li; Yufei, Li; Shen, Rong; Kunquan, Lu
2017-05-01
The compact configuration of giant ER (electrorheological) valves provides the possibility of realizing a full-page Braille display. The operational durability of ER valves is a key issue in fulfilling a Braille display. A giant ER valve was used to investigate the variations in pressure drops and critical pressure drops of the valves over a long period under some typical operational parameters. The results indicate that neither the pressure drops nor critical pressure drops of giant ER valves show apparent deterioration over a long period. Without ER fluid exchange, a blockage appears in the channel of the valve because the ER structures induced by an external electric field cannot be broken by the Brownian motion of hydraulic oil molecules when the external electric field is removed. Forcing ER fluid flow is an effective and necessary method to keep the channel of the valve unblocked. Thus the operational durability of the valve using giant ER fluids is able to meet the demands of Braille display.
Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication
Lantada, Andres Diaz; Bris, Carlos González; Morgado, Pilar Lafont; Maudes, Jesús Sanz
2012-01-01
Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID) technology (NFC). The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient's dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system's operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials. PMID:23112669
Stacked microbial desalination cells to enhance water desalination efficiency.
Chen, Xi; Xia, Xue; Liang, Peng; Cao, Xiaoxin; Sun, Haotian; Huang, Xia
2011-03-15
Microbial desalination cell (MDC) is a new method to obtain clean water from brackish water using electricity generated from organic matters by exoelectrogenic bacteria. Anions and cations, derived from salt solution filled in the desalination chamber between the anode and cathode, move to the anode and cathode chambers under the force of electrical field, respectively. On the basis of the primitive single-desalination-chambered MDC, stacked microbial desalination cells (SMDCs) were developed in order to promote the desalination rate in the present study. The effects of desalination chamber number and external resistance were investigated. Results showed that a remarkable increase in the total desalination rate (TDR) could be obtained by means of increasing the desalination cell number and reducing the external resistance, which caused the charge transfer efficiency increased since the SMDCs enabled more pairs of ions separated while one electron passed through the external circuit. The maximum TDR of 0.0252 g/h was obtained using a two-desalination-chambered SMDC with an external resistance of 10 Ω, which was 1.4 times that of single-desalination-chambered MDC. SMDCs proved to be an effective approach to increase the total water desalination rate if provided a proper desalination chamber number and external resistance.
Infinity and Newton's Three Laws of Motion
NASA Astrophysics Data System (ADS)
Lee, Chunghyoung
2011-12-01
It is shown that the following three common understandings of Newton's laws of motion do not hold for systems of infinitely many components. First, Newton's third law, or the law of action and reaction, is universally believed to imply that the total sum of internal forces in a system is always zero. Several examples are presented to show that this belief fails to hold for infinite systems. Second, two of these examples are of an infinitely divisible continuous body with finite mass and volume such that the sum of all the internal forces in the body is not zero and the body accelerates due to this non-null net internal force. So the two examples also demonstrate the breakdown of the common understanding that according to Newton's laws a body under no external force does not accelerate. Finally, these examples also make it clear that the expression `impressed force' in Newton's formulations of his first and second laws should be understood not as `external force' but as `exerted force' which is the sum of all the internal and external forces acting on a given body, if the body is infinitely divisible.
Unfolding of Proteins: Thermal and Mechanical Unfolding
NASA Technical Reports Server (NTRS)
Hur, Joe S.; Darve, Eric
2004-01-01
We have employed a Hamiltonian model based on a self-consistent Gaussian appoximation to examine the unfolding process of proteins in external - both mechanical and thermal - force elds. The motivation was to investigate the unfolding pathways of proteins by including only the essence of the important interactions of the native-state topology. Furthermore, if such a model can indeed correctly predict the physics of protein unfolding, it can complement more computationally expensive simulations and theoretical work. The self-consistent Gaussian approximation by Micheletti et al. has been incorporated in our model to make the model mathematically tractable by signi cantly reducing the computational cost. All thermodynamic properties and pair contact probabilities are calculated by simply evaluating the values of a series of Incomplete Gamma functions in an iterative manner. We have compared our results to previous molecular dynamics simulation and experimental data for the mechanical unfolding of the giant muscle protein Titin (1TIT). Our model, especially in light of its simplicity and excellent agreement with experiment and simulation, demonstrates the basic physical elements necessary to capture the mechanism of protein unfolding in an external force field.
Tuning bacterial hydrodynamics with magnetic fields
NASA Astrophysics Data System (ADS)
Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.
2017-06-01
Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.
Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Johnson, Scott M.
2010-01-01
The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.
NASA Astrophysics Data System (ADS)
Chubenko, Oksana; Baturin, Stanislav S.; Baryshev, Sergey V.
2016-09-01
The letter introduces a diagram that rationalizes tunneling atomic force microscopy (TUNA) observations of electron emission from polycrystalline diamonds as described in the recent publications [Chatterjee et al., Appl. Phys. Lett. 104, 171907 (2014); Harniman et al., Carbon 94, 386 (2015)]. The direct observations of electron emission from the grain boundary sites by TUNA could indeed be the evidence of electrons originating from grain boundaries under external electric fields. At the same time, from the diagram, it follows that TUNA and field emission schemes are complimentary rather than equivalent for results interpretation. It is further proposed that TUNA could provide better insights into emission mechanisms by measuring the detailed structure of the potential barrier on the surface of polycrystalline diamonds.
On the self-force in Bopp-Podolsky electrodynamics
NASA Astrophysics Data System (ADS)
Gratus, Jonathan; Perlick, Volker; Tucker, Robin W.
2015-10-01
In the classical vacuum Maxwell-Lorentz theory the self-force of a charged point particle is infinite. This makes classical mass renormalization necessary and, in the special relativistic domain, leads to the Abraham-Lorentz-Dirac equation of motion possessing unphysical run-away and pre-acceleration solutions. In this paper we investigate whether the higher-order modification of classical vacuum electrodynamics suggested by Bopp, Landé, Thomas and Podolsky in the 1940s, can provide a solution to this problem. Since the theory is linear, Green-function techniques enable one to write the field of a charged point particle on Minkowski spacetime as an integral over the particle’s history. By introducing the notion of timelike worldlines that are ‘bounded away from the backward light-cone’ we are able to prescribe criteria for the convergence of such integrals. We also exhibit a timelike worldline yielding singular fields on a lightlike hyperplane in spacetime. In this case the field is mildly singular at the event where the particle crosses the hyperplane. Even in the case when the Bopp-Podolsky field is bounded, it exhibits a directional discontinuity as one approaches the point particle. We describe a procedure for assigning a value to the field on the particle worldline which enables one to define a finite Lorentz self-force. This is explicitly derived leading to an integro-differential equation for the motion of the particle in an external electromagnetic field. We conclude that any worldline solutions to this equation belonging to the categories discussed in the paper have continuous four-velocities.
2013-06-14
ever-evolving contemporary nature of external and internal threats to the safety and security of the American homeland, it becomes increasingly...Major Justin P. Hurt, 146 pages. With the ever-evolving contemporary nature of external and internal threats to the safety and security of the American...HAZMAT Hazardous Materials HRF Homeland Response Force HSPD Homeland Security Presidential Directive JFHQ Joint Force
Micro-resonator-based electric field sensors with long durations of sensitivity
NASA Astrophysics Data System (ADS)
Ali, Amir R.
2017-05-01
In this paper, we present a new fabrication method for the whispering gallery mode (WGM) micro-sphere based electric field sensor that which allows for longer time periods of sensitivity. Recently, a WGM-based photonic electric field sensor was proposed using a coupled dielectric microsphere-beam. The external electric field imposes an electrtrostriction force on the dielectric beam, deflecting it. The beam, in turn compresses the sphere causing a shift in its WGM. As part of the fabrication process, the PDMS micro-beams and the spheres are curied at high-temperature (100oC) and subsequently poled by exposing to strong external electric field ( 8 MV/m) for two hours. The poling process allows for the deposition of surface charges thereby increasing the electrostriction effect. This methodology is called curing-then-poling (CTP). Although the sensors do become sufficiently sensitive to electric field, they start de-poling after a short period (within 10 minutes) after poling, hence losing sensitivity. In an attempt to mitigate this problem and to lock the polarization for a longer period, we use an alternate methodology whereby the beam is poled and cured simultaneously (curing-while-poling or CWP). The new fabrication method allows for the retention of polarization (and hence, sensitivity to electric field) longer ( 1500 minutes). An analysis is carried out along with preliminary experiments. Results show that electric fields as small as 100 V/m can be detected with a 300 μm diameter sphere sensor a day after poling.
On the Role of Entropy in the Protein Folding Process
NASA Astrophysics Data System (ADS)
Hoppe, Travis
2011-12-01
A protein's ultimate function and activity is determined by the unique three-dimensional structure taken by the folding process. Protein malfunction due to misfolding is the culprit of many clinical disorders, such as abnormal protein aggregations. This leads to neurodegenerative disorders like Huntington's and Alzheimer's disease. We focus on a subset of the folding problem, exploring the role and effects of entropy on the process of protein folding. Four major concepts and models are developed and each pertains to a specific aspect of the folding process: entropic forces, conformational states under crowding, aggregation, and macrostate kinetics from microstate trajectories. The exclusive focus on entropy is well-suited for crowding studies, as many interactions are nonspecific. We show how a stabilizing entropic force can arise purely from the motion of crowders in solution. In addition we are able to make a a quantitative prediction of the crowding effect with an implicit crowding approximation using an aspherical scaled-particle theory. In order to investigate the effects of aggregation, we derive a new operator expansion method to solve the Ising/Potts model with external fields over an arbitrary graph. Here the external fields are representative of the entropic forces. We show that this method reduces the problem of calculating the partition function to the solution of recursion relations. Many of the methods employed are coarse-grained approximations. As such, it is useful to have a viable method for extracting macrostate information from time series data. We develop a method to cluster the microstates into physically meaningful macrostates by grouping similar relaxation times from a transition matrix. Overall, the studied topics allow us to understand deeper the complicated process involving proteins.
Recent progress of particle migration in viscoelastic fluids.
Yuan, Dan; Zhao, Qianbin; Yan, Sheng; Tang, Shi-Yang; Alici, Gursel; Zhang, Jun; Li, Weihua
2018-02-13
Recently, research on particle migration in non-Newtonian viscoelastic fluids has gained considerable attention. In a viscoelastic fluid, three dimensional (3D) particle focusing can be easily realized in simple channels without the need for any external force fields or complex microchannel structures compared with that in a Newtonian fluid. Due to its promising properties for particle precise focusing and manipulation, this field has been developed rapidly, and research on the field has been shifted from fundamentals to applications. This review will elaborate the recent progress of particle migration in viscoelastic fluids, especially on the aspect of applications. The hydrodynamic forces on the micro/nano particles in viscoelastic fluids are discussed. Next, we elaborate the basic particle migration in viscoelasticity-dominant fluids and elasto-inertial fluids in straight channels. After that, a comprehensive review on the applications of viscoelasticity-induced particle migration (particle separation, cell deformability measurement and alignment, particle solution exchange, rheometry-on-a-chip and others) is presented; finally, we thrash out some perspectives on the future directions of particle migration in viscoelastic fluids.
Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics
NASA Astrophysics Data System (ADS)
Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham
Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.
Glogauer, M; Ferrier, J; McCulloch, C A
1995-11-01
The ability to apply controlled forces to the cell membrane may enable elucidation of the mechanisms and pathways involved in signal transduction in response to applied physical stimuli. We have developed a magnetic particle-electromagnet model that allows the application of controlled forces to the plasma membrane of substrate-attached fibroblasts. The system allows applied forces to be controlled by the magnitude of the magnetic field and by the surface area of cell membrane covered with collagen-coated ferric beads. Analysis by single-cell ratio fluorimetry of fura 2-loaded cells demonstrated large calcium transients (50-300 nM) in response to the magnetic force applications. Experiments using either the stretch-activated channel blocker gadolinium chloride or ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to eliminate external calcium ions, or addition of extracellular manganese ions, indicated that there was a calcium influx through putative stretch-activated channels. The probability of a calcium influx in single cells was increased by higher surface bead loading and the degree of cell spreading. Depolymerization of actin filaments by cytochalasin D increased the amplitude of calcium response twofold. The regulation of calcium flux by filamentous actin content and by cell spreading indicates a possible modulatory role for the cytoskeleton in channel sensitivity. Magnetic force application to beads on single cells provides a controlled model to study mechanisms and heterogeneity in physical force stimulation of cation-permeable channels.
Kochurin, Evgeny A; Zubarev, Nikolay M; Zubareva, Olga V
2013-08-01
The nonlinear dynamics of the interface between two deep dielectric fluids in the presence of a vertical electric field is studied. We consider the limit of a strong external electric field where electrostatic forces dominate over gravitational and capillary forces. The nonlinear integrodifferential equations for the interface motion are derived under the assumption of small interfacial slopes. It is shown in the framework of these equations that, in the generic case, the instability development leads to the formation of root singularities at the interface in a finite time. The interfacial curvature becomes infinite at singular points, while the slope angles remain relatively small. The curvature is negative in the vicinity of singularities if the ratio of the permittivities of the fluids exceeds the inverse ratio of their densities, and it is positive in the opposite case (we consider that the lower fluid is heavier than the upper one). In the intermediate case, the interface evolution equations describe the formation and sharpening of dimples at the interface. The results obtained are applicable for the description of the instability of the interface between two magnetic fluids in a vertical magnetic field.
Mechanical reinforcement for RACC cables in high magnetic background fields
NASA Astrophysics Data System (ADS)
Bayer, C. M.; Gade, P. V.; Barth, C.; Preuß, A.; Jung, A.; Weiß, K. P.
2016-02-01
Operable in liquid helium, liquid hydrogen or liquid nitrogen, high temperature superconductor (HTS) cables are investigated as future alternatives to low temperature superconductor (LTS) cables in magnet applications. Different high current HTS cable concepts have been developed and optimized in the last years—each coming with its own benefits and challenges. As the Roebel assembled coated conductor (RACC) is the only fully transposed HTS cable investigated so far, it is attractive for large scale magnet and accelerator magnet applications when field quality and alternating current (AC) losses are of highest importance. However, due to its filamentary character, the RACC is very sensitive to Lorentz forces. In order to increase the mechanical strength of the RACC, each of the HTS strands was covered by an additional copper tape. After investigating the maximum applicable transverse pressure on the strand composition, the cable was clamped into a stainless steel structure to reinforce it against Lorentz forces. A comprehensive test has been carried out in the FBI facility at 4.2 K in a magnetic field of up to 12 T. This publication discusses the maximum applicable pressure as well as the behaviour of the RACC cable as a function of an external magnetic field.
NASA Astrophysics Data System (ADS)
Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.
2004-12-01
A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.
Study on a new self-sensing magnetorheological elastomer bearing
NASA Astrophysics Data System (ADS)
Li, Rui; Zhou, Mengjiao; Wang, Minglian; Yang, Ping-an
2018-06-01
The complexity of a semi-active vibration isolation system results in the difficulty of realizing its role on impact load effectively. Thus, a new self-sensing bearing based on modified anisotropic magnetorheological elastomer (MRE) is proposed in this study. This self-sensing bearing was fabricated by dispersed multi-walled carbon nanotubes and carbonyl iron particles into polydimethylsiloxane matrix under a magnetic field. The working conditions of the bearing were analyzed and decoupled. An optimal structure size of the bearing was selected and used for setting up the experiment test system. The self-sensing characteristic of the MRE bearing under the multi-field coupling of load and magnetic fields was then investigated by this test system. Results showed that the resistance of the modified MRE, in which a preload was applied by the bearing, could change approximately 28%-56% under extrusion force, mechanical force, and external magnetic field. The vibration isolation performance was tested based on the self-sensing characteristic. The bearing had excellent mechanical properties, which could reduce at least 30% of vibration. Thus, the modified MRE of the magnetorheological elastomer bearing could be simultaneously used as an actuator and a sensor.
Bruno Garza, J L; Eijckelhof, B H W; Johnson, P W; Raina, S M; Rynell, P W; Huysmans, M A; van Dieën, J H; van der Beek, A J; Blatter, B M; Dennerlein, J T
2012-01-01
This study, a part of the PRedicting Occupational biomechanics in OFfice workers (PROOF) study, investigated whether there are differences in field-measured forces, muscle efforts, postures, velocities and accelerations across computer activities. These parameters were measured continuously for 120 office workers performing their own work for two hours each. There were differences in nearly all forces, muscle efforts, postures, velocities and accelerations across keyboard, mouse and idle activities. Keyboard activities showed a 50% increase in the median right trapezius muscle effort when compared to mouse activities. Median shoulder rotation changed from 25 degrees internal rotation during keyboard use to 15 degrees external rotation during mouse use. Only keyboard use was associated with median ulnar deviations greater than 5 degrees. Idle activities led to the greatest variability observed in all muscle efforts and postures measured. In future studies, measurements of computer activities could be used to provide information on the physical exposures experienced during computer use. Practitioner Summary: Computer users may develop musculoskeletal disorders due to their force, muscle effort, posture and wrist velocity and acceleration exposures during computer use. We report that many physical exposures are different across computer activities. This information may be used to estimate physical exposures based on patterns of computer activities over time.
Control of Meridional Flow in Circular Cylinders by a Travelling Axial Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Ramachandran, N.; Volz, M. P.
1999-01-01
Convective flow in a Bridgman or float zone configuration significantly affects the interface shape and segregation phenomena. While the primary causative factor for this flow is buoyancy induced convection in an enclosed Bridgman melt, the presence of a free surface gives rise to surface tension driven flows in the floating zone processing of melts. It is of interest to curtail these flows in order to realize near quiescent growth conditions that have shown to result in crystals with good longitudinal and radial homogeneity and thereby of better overall quality. While buoyancy effects can be reduced by careful processing in a low gravity (space) environment, the reduction of Marangoni flows due to surface tension variations is not that straight forward. Attempts have been made with some limited success with the use of external fields to affect the melt thermo-fluid behavior. The use of a static magnetic field that reduces convective contamination through the effects of a non-intrusively induced, dissipative Lorentz force in an electrically conducting melt is one such approach. Experiments have shown that axial fields of the order of 5 Tesla can significantly eliminate convection and yield close to diffusion limited crystal growth conditions. The generation and use of such high magnetic fields require substantial hardware and incur significant costs for its operation. Lately, the use of rotating magnetic fields has been tested in semiconductor crystal growth. The method is fairly well known and commonly used in metal processing but its adaptation to crystal growth of semiconductors is fairly recent. The elegance of the technique rests in its low power requirement (typically 10-20 milli-Tesla at 50-400 Hz) and its efficacy in curtailing deleterious temperature fluctuations in the melt. A rotating magnetic field imposes a rotational force and thereby induces a circulation within the melt that tends to dominate other sporadic convective effects. Thus a known low level of convective flow is introduced into the system. A new novel variation of the Lorentz force mechanism is proposed and investigated in this study. Since one of the desired process conditions in melt crystal growth is the minimization of convective effects, this investigation examines the use of an external field of magnetic origin to counteract existing convective flow within the melt. This is accomplished by utilizing a running or traveling axial magnetic wave in the system. The concept is similar to the use of vibrational means in order to induce streaming flows that oppose buoyant or surface tension driven convection in the system. The rotation direction as well as the magnitude (strength) of this circulation can be easily controlled by external inputs thus affording a direct means of controlling the developing shape of the crystallizing front (interface). The theoretical model of this technique is fully developed and presented in this paper. Results from the solution of the developed governing equations and boundary conditions are also presented. An experimental demonstration of the concept is presented through the suppression of natural convective flow in a mercury column. Implications to crystal growth systems will be fully explored in the final manuscript.
Midsole material-related force control during heel-toe running.
Kersting, Uwe G; Brüggemann, Gert-Peter
2006-01-01
The impact maximum and rearfoot eversion have been used as indicators of load on internal structures in running. The midsole hardness of a typical running shoe was varied systematically to determine the relationship between external ground reaction force (GRF), in-shoe force, and kinematic variables. Eight subjects were tested during overground running at 4 m/s. Rearfoot movement as well as in-shoe forces and external GRF varied nonsystematically with midsole hardness. Kinematic parameters such as knee flexion and foot velocity at touchdown (TD), also varied nonsystematically with altered midsole hardness. Results demonstrate that considerable variations of in-shoe loading occur that were not depicted by external GRF measurements alone. Individuals apparently use different strategies of mechanical and neuromuscular adaptation in response to footwear modifications. In conclusion, shoe design effects on impact forces or other factors relating to injuries depend on the individual and therefore cannot be generalized.
Self-similar solutions of stationary Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Shi, Zuoshunhua
2018-02-01
In this paper, we mainly study the existence of self-similar solutions of stationary Navier-Stokes equations for dimension n = 3 , 4. For n = 3, if the external force is axisymmetric, scaling invariant, C 1 , α continuous away from the origin and small enough on the sphere S2, we shall prove that there exists a family of axisymmetric self-similar solutions which can be arbitrarily large in the class Cloc3 , α (R3 0). Moreover, for axisymmetric external forces without swirl, corresponding to this family, the momentum flux of the flow along the symmetry axis can take any real number. However, there are no regular (U ∈ Cloc3 , α (R3 0)) axisymmetric self-similar solutions provided that the external force is a large multiple of some scaling invariant axisymmetric F which cannot be driven by a potential. In the case of dimension 4, there always exists at least one self-similar solution to the stationary Navier-Stokes equations with any scaling invariant external force in L 4 / 3 , ∞ (R4).
Ellis, Richard G; Sumner, Bonnie J; Kram, Rodger
2014-09-01
There remains substantial debate as to the specific contributions of individual muscles to center of mass accelerations during walking and running. To gain insight, we altered the demand for muscular propulsion and braking by applying external horizontal impeding and aiding forces near the center of mass as subjects walked and ran on a treadmill. We recorded electromyographic activity of the gluteus maximus (superior and inferior portions), the gluteus medius, biceps femoris, semitendinosus/membrinosus, vastus medialis, lateral and medial gastrocnemius and soleus. We reasoned that activity in a propulsive muscle would increase with external impeding force and decrease with external aiding force whereas activity in a braking muscle would show the opposite. We found that during walking the gastrocnemius and gluteus maximus provide propulsion while the vasti are central in providing braking. During running, we found that the gluteus maximus, vastus medialis, gastrocnemius and soleus all contribute to propulsion. Copyright © 2014 Elsevier B.V. All rights reserved.
Defects formation and wave emitting from defects in excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni
2016-05-01
Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.
A better way of fitting clips? A comparative study with respect to physical workload.
Gaudez, Clarisse; Wild, Pascal; Aublet-Cuvelier, Agnès
2015-11-01
The clip fitting task is a frequently encountered assembly operation in the car industry. It can cause upper limb pain. During task laboratory simulations, upper limb muscular activity and external force were compared for 4 clip fitting methods: with the bare hand, with an unpowered tool commonly used at a company and with unpowered and powered prototype tools. None of the 4 fitting methods studied induced a lower overall workload than the other three. Muscle activity was lower at the dominant limb when using the unpowered tools and at the non-dominant limb with the bare hand or with the powered tool. Fitting clips with the bare hand required a higher external force than fitting with the three tools. Evaluation of physical workload was different depending on whether external force or muscle activity results were considered. Measuring external force only, as recommended in several standards, is insufficient for evaluating physical workload. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid.
Lopes, J Henrique; Azarpeyvand, Mahdi; Silva, Glauber T
2016-01-01
In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N objects suspended in an inviscid fluid are theoretically analyzed. We utilize the partial-wave expansion method with translational addition theorem and re-expansion of multipole series to solve the related multiple scattering problem. We show that the acoustic interaction force and torque can be obtained using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets' radii are comparable to the wavelength (i.e., Mie scattering regime). The results show that the acoustic interaction forces present an oscillatory spatial distribution which follows the pattern formed by interference between the external and rescattered waves. In addition, acoustic interaction torques arise on the absorbing droplets whenever a nonsymmetric wavefront is formed by the external and rescattered waves' interference.
Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips
Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui
2014-01-01
Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. PMID:24753736
Power, muscular work, and external forces in cycling.
de Groot, G; Welbergen, E; Clijsen, L; Clarijs, J; Cabri, J; Antonis, J
1994-01-01
Cycling performance is affected by the interaction of a number of variables, including environment, mechanical, and human factors. Engineers have focused on the development of more efficient bicycles. Kinesiologists have examined cycling performance from a human perspective. This paper summarizes only certain aspects of human ergonomics of cycling, especially those which are important for the recent current research in our departments. Power is a key to performance of physical work. During locomotion an imaginary flow of energy takes place from the metabolism to the environment, with some efficiency. The 'useful' mechanical muscle power output might be used to perform movements and to do work against the environment. The external power is defined as the sum of joint powers, each calculated as the product of the joint (net) moment and angular velocity. This definition of external power is closely related to the mean external power as applied to exercise physiology: the sum of joint powers reflects all mechanical power which in principle can be used to fulfil a certain task. In this paper, the flow of energy for cycling is traced quantitatively as far as possible. Studies on the total lower limb can give insight into the contribution of individual muscles to external power. The muscle velocity (positive or negative) is obtained from the positions and orientations of body segments and a bar linkage model of the lower limb. The muscle activity can be measured by electromyography. In this way, positive and negative work regions in individual muscles are identified. Synergy between active agonistic/antagonistic muscle groups occurs in order to deliver external power. Maximum power is influenced by body position, geometry of the bicycle and pedalling rate. This has to be interpreted in terms of the length-tension and force-velocity-power relationships of the involved muscles. Flat road and uphill cycling at different saddle-tube angles is simulated on an ergometer. The measured pedal forces (magnitude and direction) are only dependent on the intersegmental orientation of saddle tube, crank position, upper and lower leg, and foot. The changed direction of the gravitational force with respect to the saddle-tube does not interfere with the co-ordinated force production pattern. During locomotory cycling at constant speed the external power is mainly used to overcome the aerodynamic friction force. This force and the rolling resistance are determined by coasting down experiments, yielding the external power.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Eichhorn, R.; Reimann, P.
2004-04-01
We consider a Brownian particle whose motion is confined to a ``meandering'' pathway and which is driven away from thermal equilibrium by an alternating external force. This system exhibits absolute negative mobility, i.e. when an external static force is applied the particle moves in the direction opposite to that force. We reveal the physical mechanism behind this ``donkey-like'' behavior, and derive analytical approximations that are in excellent agreement with numerical results.
Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction
NASA Astrophysics Data System (ADS)
Kumar, Punit; Singh, Shiv; Ahmad, Nafees
2018-05-01
Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.
Why do naked singularities form in gravitational collapse? II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Pankaj S.; Goswami, Rituparno; Dadhich, Naresh
We examine physical features that could lead to formation of a naked singularity rather than black hole, as end state of spherical collapse. Generalizing earlier results on dust collapse to general type I matter fields, it is shown that collapse always creates black hole if shear vanishes or density is homogeneous. It follows that nonzero shear is a necessary condition for singularity to be visible to external observers, when trapped surface formation is delayed by shearing forces or inhomogeneity within the collapsing cloud.
Effective Forces Between Colloidal Particles
NASA Technical Reports Server (NTRS)
Tehver, Riina; Banavar, Jayanth R.; Koplik, Joel
1999-01-01
Colloidal suspensions have proven to be excellent model systems for the study of condensed matter and its phase behavior. Many of the properties of colloidal suspensions can be investigated with a systematic variation of the characteristics of the systems and, in addition, the energy, length and time scales associated with them allow for experimental probing of otherwise inaccessible regimes. The latter property also makes colloidal systems vulnerable to external influences such as gravity. Experiments performed in micro-ravity by Chaikin and Russell have been invaluable in extracting the true behavior of the systems without an external field. Weitz and Pusey intend to use mixtures of colloidal particles with additives such as polymers to induce aggregation and form weak, tenuous, highly disordered fractal structures that would be stable in the absence of gravitational forces. When dispersed in a polarizable medium, colloidal particles can ionize, emitting counterions into the solution. The standard interaction potential in these charged colloidal suspensions was first obtained by Derjaguin, Landau, Verwey and Overbeek. The DLVO potential is obtained in the mean-field linearized Poisson-Boltzmann approximation and thus has limited applicability. For more precise calculations, we have used ab initio density functional theory. In our model, colloidal particles are charged hard spheres, the counterions are described by a continuum density field and the solvent is treated as a homogeneous medium with a specified dielectric constant. We calculate the effective forces between charged colloidal particles by integrating over the solvent and counterion degrees of freedom, taking into account the direct interactions between the particles as well as particle-counterion, counterion-counterion Coulomb, counterion entropic and correlation contributions. We obtain the effective interaction potential between charged colloidal particles in different configurations. We evaluate two- and three-body forces in the bulk as well as study the influence of soft walls. We qualitatively explain the effects of the walls on the forces and demonstrate that many-body effects are negligible in our system. With adjustments in the parameters, the DLVO pair-potential can describe the results quantitatively. Besides electrostatic interactions, entropic depletion effects that arise from (hard-core) exclusion play an important role in determining the behavior of multi-component colloidal suspensions. A standard theory for depletion forces is due to Asakura and Oosawa and is based on the ideal gas approximation. To go beyond this approximation, we have studied entropic forces in molecular dynamics simulations of systems of hard spheres (the effects of the solvent have been ignored). The effective depletion forces for these systems can be found either from equilibrium distribution functions or from direct momentum transfer calculations. Our results obtained by either method show qualitative differences from the Asakura-Oosawa forces, indicating a longer range, higher value at contact and most importantly a more complicated structure, comprising of several maxima and minima. Our calculations include the determination of effective forces between two spheres, a hard sphere and a wall, and the behavior of a hard sphere near a step-edge and a corner. We also demonstrate that such entropic forces do not necessarily satisfy pairwise additivity.
Tibiofemoral contact forces during walking, running and sidestepping.
Saxby, David J; Modenese, Luca; Bryant, Adam L; Gerus, Pauline; Killen, Bryce; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Lloyd, David G
2016-09-01
We explored the tibiofemoral contact forces and the relative contributions of muscles and external loads to those contact forces during various gait tasks. Second, we assessed the relationships between external gait measures and contact forces. A calibrated electromyography-driven neuromusculoskeletal model estimated the tibiofemoral contact forces during walking (1.44±0.22ms(-1)), running (4.38±0.42ms(-1)) and sidestepping (3.58±0.50ms(-1)) in healthy adults (n=60, 27.3±5.4years, 1.75±0.11m, and 69.8±14.0kg). Contact forces increased from walking (∼1-2.8 BW) to running (∼3-8 BW), sidestepping had largest maximum total (8.47±1.57 BW) and lateral contact forces (4.3±1.05 BW), while running had largest maximum medial contact forces (5.1±0.95 BW). Relative muscle contributions increased across gait tasks (up to 80-90% of medial contact forces), and peaked during running for lateral contact forces (∼90%). Knee adduction moment (KAM) had weak relationships with tibiofemoral contact forces (all R(2)<0.36) and the relationships were gait task-specific. Step-wise regression of multiple external gait measures strengthened relationships (0.20
Parallel manipulation of individual magnetic microbeads for lab-on-a-chip applications
NASA Astrophysics Data System (ADS)
Peng, Zhengchun
Many scientists and engineers are turning to lab-on-a-chip systems for faster and cheaper analysis of chemical reactions and biomolecular interactions. A common approach that facilitates the handling of reagents and biomolecules in these systems utilizes micro/nano beads as the solid carrier. Physical manipulation, such as assembly, transport, sorting, and tweezing, of beads on a chip represents an essential step for fully utilizing their potentials in a wide spectrum of bead-based analysis. Previous work demonstrated manipulation of either an ensemble of beads without individual control, or single beads but lacks the capability for parallel operation. Parallel manipulation of individual beads is required to meet the demand for high-throughput and location-specific analysis. In this work, we introduced two methods for parallel manipulation of individual magnetic microbeads, which can serve as effective lab-on-a-chip platforms and/or efficient analytic tools. The first method employs arrays of soft ferromagnetic patterns fabricated inside a microfluidic channel and subjected to an external magnetic field. We demonstrated that the system can be used to assemble individual beads (1-3 mum) from a flow of suspended beads into a regular array on the chip, hence improving the integrated electrochemical detection of biomolecules bound to the bead surface. By rotating the external field, the assembled microbeads can be remotely controlled with synchronized, high-speed circular motion around individual soft magnets on the chip. We employed this manipulation mode for efficient sample mixing in continuous microflow. Furthermore, we discovered a simple but effective way of transporting the microbeads on the chip by varying the strength of the local bias field within a revolution of the external field. In addition, selective transport of microbeads with different size was realized, providing a platform for effective on-chip sample separation and offering the potential for multiplexing capability. The second method integrates magnetic and dielectrophoretic manipulations of the same microbeads. The device combines tapered conducting wires and fingered electrodes to generate desirable magnetic and electric fields, respectively. By externally programming the magnetic attraction and dielectrophoretic repulsion forces, out-of-plane oscillation of the microbeads across the channel height was realized. This manipulation mode can facilitate the interaction between the beads with multiple layers of sample fluid inside the channel. We further demonstrated the tweezing of microbeads in liquid with high spatial resolutions, i.e., from submicrometer to nanometer range, by fine-tuning the net force from magnetic attraction and dielectrophoretic repulsion of the beads. The highresolution control of the out-of-plane motion of the microbeads led to the invention of massively parallel biomolecular tweezers. We believe the maturation of bead-based microtweezers will revolutionize the state-of-art tools currently used for single cell and single molecule studies.
Fabricating Atom-Sized Gaps by Field-Aided Atom Migration in Nanoscale Junctions
NASA Astrophysics Data System (ADS)
Liu, Ran; Bi, Jun-Jie; Xie, Zhen; Yin, Kaikai; Wang, Dunyou; Zhang, Guang-Ping; Xiang, Dong; Wang, Chuan-Kui; Li, Zong-Liang
2018-05-01
The gap sizes between electrodes generated by typical methods are generally much larger than the dimension of a common molecule when fabricating a single-molecule junction, which dramatically suppresses the yield of single-molecule junctions. Based on the ab initio calculations, we develop a strategy named the field-aided method to accurately fabricate an atomic-sized gap between gold nanoelectrodes. To understand the mechanism of this strategy, configuration evolutions of gold nanojunction in stretching and compressing processes are calculated. The numerical results show that, in the stretching process, the gold atoms bridged between two electrodes are likely to form atomic chains. More significantly, lattice vacant positions can be easily generated in stretching and compressing processes, which make field-aided gap generation possible. In field-aided atom migration (FAAM), the external field can exert driving force, enhance the initial energy of the system, and decrease the barrier in the migration path, which makes the atom migration feasible. Conductance and stretching and compressing forces, as measurable variables in stretching and compressing processes, present very useful signals for determining the time to perform FAAM. Following this desirable strategy, we successfully fabricate gold nanogaps with a dimension of 0.38 ±0.05 nm in the experiment, as our calculation simulates.
Memory effects in active particles with exponentially correlated propulsion
NASA Astrophysics Data System (ADS)
Sandford, Cato; Grosberg, Alexander Y.
2018-01-01
The Ornstein-Uhlenbeck particle (OUP) model imagines a microscopic swimmer propelled by an active force which is correlated with itself on a finite time scale. Here we investigate the influence of external potentials on an ideal suspension of OUPs, in both one and two spatial dimensions, with particular attention paid to the pressure exerted on "confining walls." We employ a mathematical connection between the local density of OUPs and the statistics of their propulsion force to demonstrate the existence of an equation of state in one dimension. In higher dimensions we show that active particles generate a nonconservative force field in the surrounding medium. A simplified far-from-equilibrium model is proposed to account for OUP behavior in the vicinity of potentials. Building on this, we interpret simulations of OUPs in more complicated situations involving asymmetrical and spatially curved potentials, and characterize the resulting inhomogeneous stresses in terms of competing active length scales.
Magnetoconvection and universality of heat transport enhancement
NASA Astrophysics Data System (ADS)
Lim, Zi Li; Chong, Kai Leong; Xia, Ke-Qing
2017-11-01
We numerically investigate how a vertical external magnetic field affects the convective flow in a Rayleigh-Benard turbulent convection. We observed an enhancement of heat transport under certain range of the Hartmann number Ha that characterizes the strength of the stabilizing Lorentz force. Heat transport enhancement caused by a stabilizing force is also observed in several other systems. We find that the heat transport behaviour in the present system may also be understood in terms of an interplay between the stabilizing and destabilizing forces of the system and the observed optimum heat transport enhancement can be explained by an optimal coupling between thermal boundary layer and the momentum boundary layer. Therefore, the observed behaviour in magnetoconvection appears to belong to the same universality class of stabilizing-destabilizing (SD) flows reported recently. This work was supported by the Research Grants Council (RGC) of HKSAR (No. CUHK14301115) and a NSFC/RGC Joint Research Project (Ref. N_CUHK437/15).
Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Burks, Robert T; Tashjian, Robert Z
2012-09-01
Lateral offset center of rotation (COR) reduces the incidence of scapular notching and potentially increases external rotation range of motion (ROM) after reverse total shoulder arthroplasty (rTSA). The purpose of this study was to determine the biomechanical effects of changing COR on abduction and external rotation ROM, deltoid abduction force, and joint stability. A biomechanical shoulder simulator tested cadaveric shoulders before and after rTSA. Spacers shifted the COR laterally from baseline rTSA by 5, 10, and 15 mm. Outcome measures of resting abduction and external rotation ROM, and abduction and dislocation (lateral and anterior) forces were recorded. Resting abduction increased 20° vs native shoulders and was unaffected by COR lateralization. External rotation decreased after rTSA and was unaffected by COR lateralization. The deltoid force required for abduction significantly decreased 25% from native to baseline rTSA. COR lateralization progressively eliminated this mechanical advantage. Lateral dislocation required significantly less force than anterior dislocation after rTSA, and both dislocation forces increased with lateralization of the COR. COR lateralization had no influence on ROM (adduction or external rotation) but significantly increased abduction and dislocation forces. This suggests the lower incidence of scapular notching may not be related to the amount of adduction deficit after lateral offset rTSA but may arise from limited impingement of the humeral component on the lateral scapula due to a change in joint geometry. Lateralization provides the benefit of increased joint stability, but at the cost of increasing deltoid abduction forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Present-day deformation across the Basin and Range Province, western United States
Thatcher, W.; Foulger, G.R.; Julian, B.R.; Svarc, J.; Quilty, E.; Bawden, G.W.
1999-01-01
The distribution of deformation within the Basin and Range province was determined from 1992, 1996, and 1998 surveys of a dense, 800-kilometer- aperture, Global Positioning System network, Internal deformation generally follows the pattern of Holocene fault distribution and is concentrated near the western extremity of the province, with lesser amounts focused near the eastern boundary. Little net deformation occurs across the central 500 kilometers of the network in western Utah and eastern Nevada. Concentration of deformation adjacent to the rigid Sierra Nevada block indicates that external plate-driving forces play an important role in driving deformation, modulating the extensional stress field generated by internal buoyancy forces that are due to lateral density gradients and topography near the province boundaries.
NASA Astrophysics Data System (ADS)
Koochi, Ali; Hosseini-Toudeshky, Hossein; Abadyan, Mohamadreza
2018-03-01
Herein, a corrected theoretical model is proposed for modeling the static and dynamic behavior of electrostatically actuated narrow-width nanotweezers considering the correction due to finite dimensions, size dependency and surface energy. The Gurtin-Murdoch surface elasticity in conjunction with the modified couple stress theory is employed to consider the coupling effect of surface stresses and size phenomenon. In addition, the model accounts for the external force corrections by incorporating the impact of narrow width on the distribution of Casimir attraction, van der Waals (vdW) force and the fringing field effect. The proposed model is beneficial for the precise modeling of the narrow nanotweezers in nano-scale.
Permanent-magnet multipole with adjustable strength
Halbach, K.
1982-09-20
Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.
Permanent magnet multipole with adjustable strength
Halbach, Klaus
1985-01-01
Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.
Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring
NASA Astrophysics Data System (ADS)
Yang, Zhang; Chong, Kang; Wang, Qingtao; Lei, Cheng; Zheng, Caiping
2011-02-01
At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.
Nonequilibrium Fluctuations and Enhanced Diffusion of a Driven Particle in a Dense Environment
NASA Astrophysics Data System (ADS)
Illien, Pierre; Bénichou, Olivier; Oshanin, Gleb; Sarracino, Alessandro; Voituriez, Raphaël
2018-05-01
We study the diffusion of a tracer particle driven out of equilibrium by an external force and traveling in a dense environment of arbitrary density. The system evolves on a discrete lattice and its stochastic dynamics is described by a master equation. Relying on a decoupling approximation that goes beyond the naive mean-field treatment of the problem, we calculate the fluctuations of the position of the tracer around its mean value on a lattice of arbitrary dimension, and with different boundary conditions. We reveal intrinsically nonequilibrium effects, such as enhanced diffusivity of the tracer induced by both the crowding interactions and the external driving. We finally consider the high-density and low-density limits of the model and show that our approximation scheme becomes exact in these limits.
Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets
NASA Astrophysics Data System (ADS)
Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.
2017-09-01
We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.
NASA Astrophysics Data System (ADS)
Chun, Myung-Suk; Chun, Byoungjin; Lee, Ji-Young; Complex Fluids Team
2016-11-01
We investigate the externally time-dependent pulsatile electrokinetic viscous flows by extending the previous simulations concerning the electrokinetic microfluidics for different geometries. The external body force originated from between the nonlinear Poisson-Boltzmann field and the flow-induced electric field is employed in the Cauchy momentum equation, and then the Nernst-Planck equation in connection with the net current conservation is coupled. Our explicit model allows one to quantify the effects of the oscillating frequency and conductance of the Stern layer, considering the shear thinning effect and the strong electric double layer interaction. This presentation reports the new results regarding the implication of optimum frequency pressure pulsations toward realizing mechanical to electrical energy transfer with high conversion efficiencies. These combined factors for different channel dimension are examined in depth to obtain possible enhancements of streaming current, with taking advantage of pulsating pressure field. From experimental verifications by using electrokinetic power chip, it is concluded that our theoretical framework can serve as a useful basis for micro/nanofluidics design and potential applications to the enhanced energy conversion. NRF of Korea (No.2015R1A2A1A15052979) and KIST (No.2E26490).
Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao
2015-01-01
Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs. PMID:25784160
Review: magnetically assisted resistance spot welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y. B.; Li, D. L.; Lin, Z. Q.
2016-02-25
Currently, the use of advanced high strength steels (AHSSs) is the most cost effective means of reducing vehicle body weight and maintaining structural integrity at the same time. However, AHSSs present a big challenge to the traditional resistance spot welding (RSW) widely applied in automotive industries because the rapid heating and cooling procedures during RSW produce hardened weld microstructures, which lower the ductility and fatigue properties of welded joints and raise the probability of interfacial failure under external loads. Changing process parameters or post-weld heat treatment may reduce the weld brittleness, but those traditional quality control methods also increase energymore » consumption and prolong cycle time. In recent years, a magnetically assisted RSW (MA-RSW) method was proposed, in which an externally applied magnetic field would interact with the conduction current to produce a Lorentz force that would affect weld nugget formation. This paper is a review of an experimental MA-RSW platform, the mode of the external magnetic field and the mechanism that controls nugget shape, weld microstructures and joint performance. In conclusion, the advantages of the MA-RSW method in improving the weldability of AHSSs are given, a recent application of the MA-RSW process to light metals is described and the outlook for the MA-RSW process is presented.« less
NASA Astrophysics Data System (ADS)
Rubio, Rafael M.; Salamanca, Juan J.
2018-07-01
The dynamics of external force free motion of pendulums on surfaces of constant Gaussian curvature is addressed when the pivot moves along a geodesic obtaining the Lagrangian of the system. As an application it is possible the study of elastic and quantum pendulums.
Measurement of external forces and torques on a large pointing system
NASA Technical Reports Server (NTRS)
Morenus, R. C.
1980-01-01
Methods of measuring external forces and torques are discussed, in general and as applied to the Large Pointing System wind tunnel tests. The LPS tests were in two phases. The first test was a preliminary test of three models representing coelostat, heliostat, and on-gimbal telescope configurations. The second test explored the coelostat configuration in more detail. The second test used a different setup for measuring external loads. Some results are given from both tests.
Liang, Wenfeng; Zhao, Yuliang; Liu, Lianqing; Wang, Yuechao; Dong, Zaili; Li, Wen Jung; Lee, Gwo-Bin; Xiao, Xiubin; Zhang, Weijing
2014-01-01
Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP) force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell) sample from red blood cells (RBCs) with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK) chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for efficient and effective purification of Raji cells from RBCs.
Effects Of Electric Field On Hydrocarbon-Fueled Flames
NASA Technical Reports Server (NTRS)
Yuan, Z.-G.; Hegde, U.
2003-01-01
It has been observed that flames are susceptible to electric fields that are much weaker than the breakdown field strength of the flame gases. When an external electric field is imposed on a flame, the ions generated in the flame reaction zone drift in the direction of the electric forces exerted on them. The moving ions collide with the neutral species and change the velocity distribution in the affected region. This is often referred to as ionic wind effect. In addition, the removal of ions from the flame reaction zone can alter the chemical reaction pathway of the flame. On the other hand, the presence of space charges carried by moving ions affects the electric field distribution. As a result, the flame often changes its shape, location and color once an external electric field is applied. The interplay between the flame movement and the change of electric field makes it difficult to determine the flame location for a given configuration of electrodes and fuel source. In normal gravity, the buoyancy-induced flow often complicates the problem and hinders detailed study of the interaction between the flame and the electric field. In this work, the microgravity environment established at the 2.2 Second Drop Tower at the NASA Glenn Research Center is utilized to effectively remove the buoyant acceleration. The interaction between the flame and the electric field is studied in a one-dimensional domain. A specially designed electrode makes flame current measurements possible; thus, the mobility of ions, ion density, and ionic wind effect can be evaluated.
Predicting Flutter and Forced Response in Turbomachinery
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John
2005-01-01
TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.
Magnetically adjustable intraocular lens.
Matthews, Michael Wayne; Eggleston, Harry Conrad; Pekarek, Steven D; Hilmas, Greg Eugene
2003-11-01
To provide a noninvasive, magnetic adjustment mechanism to the repeatedly and reversibly adjustable, variable-focus intraocular lens (IOL). University of Missouri-Rolla, Rolla, and Eggleston Adjustable Lens, St. Louis, Missouri, USA. Mechanically adjustable IOLs have been fabricated and tested. Samarium and cobalt rare-earth magnets have been incorporated into the poly(methyl methacrylate) (PMMA) optic of these adjustable lenses. The stability of samarium and cobalt in the PMMA matrix was examined with leaching studies. Operational force testing of the magnetic optics with emphasis on the rotational forces of adjustment was done. Prototype optics incorporating rare-earth magnetic inserts were consistently produced. After 32 days in solution, samarium and cobalt concentration reached a maximum of 5 ppm. Operational force measurements indicate that successful adjustments of this lens can be made using external magnetic fields with rotational torques in excess of 0.6 ounce inch produced. Actual lenses were remotely adjusted using magnetic fields. The magnetically adjustable version of this IOL is a viable and promising means of handling the common issues of postoperative refractive errors without the requirement of additional surgery. The repeatedly adjustable mechanism of this lens also holds promise for the developing eyes of pediatric patients and the changing needs of all patients.
Degradation of the performance of an epoxy-impregnated REBCO solenoid due to electromagnetic forces
NASA Astrophysics Data System (ADS)
Matsuda, T.; Okamura, T.; Hamada, M.; Matsumoto, S.; Ueno, T.; Piao, R.; Yanagisawa, Y.; Maeda, H.
2018-03-01
Recently, degradation of a high-field REBCO coil due to strong electromagnetic forces, has been identified. This issue is related to a conductor movement, forming a kink in the conductor body, and hence epoxy impregnation should be effective to prevent it. The purpose of this paper is to examine the effect of epoxy impregnation on the electromagnetic force-induced degradation of a REBCO coil. We made an epoxy impregnated solenoid coil and charged it at 4.2 K in an external field of 11 T. A notable characteristic behavior, which is different from that of a dry or paraffin impregnated coil, was observed in the coil's performance. The coil did not show any normal voltage below 408 A, at 65% on the coil load line, but it showed a sudden voltage jump at 408 A, resulted from a sudden fracture of the REBCO conductor. The outward bending, combined with a strong circumferential stress, caused the REBCO layer to fracture. Although epoxy impregnation is effective to suppress a conductor movement inside the winding, avoiding self-supported sites at a coil edge is required to eliminate degradation of the thin and flexible REBCO conductor.
NASA Astrophysics Data System (ADS)
Hu, Chia-Ren
2004-03-01
We present classical macroscopic, microscopic, and quantum mechanical arguments to show that in a metallic or electron/hole-doped semiconducting sheet thinner than the screening length, a displacement current applied normal to it can induce a spinomotive force along it. The magnitude is weak but clearly detectable. The classical arguments are purely electromagnetic. The quantum argument, based on the Dirac equation, shows that the predicted effect originates from the spin-orbit interaction, but not of the usual kind. That is, it relies on an external electric field, whereas the usual S-O interaction involves the electric field generated by the ions. Because the Dirac equation incorporatesThomas precession, which is due to relativistic kinematics, the quantum prediction is a factor of two smaller than the classical prediction. Replacing the displacement current by a charge current, and one obtains a new source for the spin-Hall effect. Classical macroscopic argument also predicts its existence, but the other two views are controversial.
Structure simulation with calculated NMR parameters - integrating COSMOS into the CCPN framework.
Schneider, Olaf; Fogh, Rasmus H; Sternberg, Ulrich; Klenin, Konstantin; Kondov, Ivan
2012-01-01
The Collaborative Computing Project for NMR (CCPN) has build a software framework consisting of the CCPN data model (with APIs) for NMR related data, the CcpNmr Analysis program and additional tools like CcpNmr FormatConverter. The open architecture allows for the integration of external software to extend the abilities of the CCPN framework with additional calculation methods. Recently, we have carried out the first steps for integrating our software Computer Simulation of Molecular Structures (COSMOS) into the CCPN framework. The COSMOS-NMR force field unites quantum chemical routines for the calculation of molecular properties with a molecular mechanics force field yielding the relative molecular energies. COSMOS-NMR allows introducing NMR parameters as constraints into molecular mechanics calculations. The resulting infrastructure will be made available for the NMR community. As a first application we have tested the evaluation of calculated protein structures using COSMOS-derived 13C Cα and Cβ chemical shifts. In this paper we give an overview of the methodology and a roadmap for future developments and applications.
Study of a magnetorheological fluid submitted to a uniform magnetic field
NASA Astrophysics Data System (ADS)
Fonseca, H. A.; Gonzalez, E.; Restrepo, J.
2017-12-01
In this work, the rheological and hyperfine properties of a magnetorheological fluid (MRF) under the action of a uniform external magnetic field are analysed. Powders of native mineral magnetite of micrometric particle size, after a pulverization process, form the solute of these fluids. The sizes of these samples are selected by sieving in order to obtain sizes of around 20µm and 45µm. The powders are characterized by means of Mössbauer spectroscopy to analyse their stoichiometry giving rise to a non-stoichiometric magnetite Fe2.96O4 in addition to a hematite component. Result of viscosity and shear stress in the low-speed regime were analysed using the Hershel Buckley method. In particular, the case of surface tension it decreases with the application of a uniform magnetic flux density, which is understood in terms of a phase separation due to the formation of mesoscopic structures, thus decreasing the cohesion force and increasing the adhesion force.
Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors
NASA Astrophysics Data System (ADS)
Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.
2018-01-01
The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.
Coupled loads analysis for Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Eldridge, J.
1992-01-01
Described here is a method for determining the transient response of, and the resultant loads in, a system exposed to predicted external forces. In this case, the system consists of four racks mounted on the inside of a space station resource node module (SSRNMO) which is mounted in the payload bay of the space shuttle. The predicted external forces are forcing functions which envelope worst case forces applied to the shuttle during liftoff and landing. This analysis, called a coupled loads analysis, is used to couple the payload and shuttle models together, determine the transient response of the system, and then recover payload loads, payload accelerations, and payload to shuttle interface forces.
Straube, Arthur V; Tierno, Pietro
2014-06-14
We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA
2008-10-21
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-10-10
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-03-21
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
NASA Astrophysics Data System (ADS)
Rouse, I.; Willitsch, S.
2018-04-01
An ion held in a radio-frequency trap interacting with a uniform buffer gas of neutral atoms develops a steady-state energy distribution characterized by a power-law tail at high energies instead of the exponential decay characteristic of thermal equilibrium. We have previously shown that the Tsallis statistics frequently used as an empirical model for this distribution is a good approximation when the ion is heated due to a combination of micromotion interruption and exchange of kinetic energy with the buffer gas [Rouse and Willitsch, Phys. Rev. Lett. 118, 143401 (2017), 10.1103/PhysRevLett.118.143401]. Here, we extend our treatment to include the heating due to additional motion of the ion caused by external forces, including the "excess micromotion" induced by uniform electric fields and rf phase offsets. We show that this also leads to a Tsallis distribution with a potentially different power-law exponent from that observed in the absence of this additional forced motion, with the difference increasing as the ratio of the mass of the neutral atoms to that of the ion decreases. Our results indicate that unless the excess micromotion is minimized to a very high degree, then even a system with very light neutrals and a heavy ion does not exhibit a thermal distribution.
Bobbing and kicks in electromagnetism and gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gralla, Samuel E.; Harte, Abraham I.; Wald, Robert M.
2010-05-15
We study systems analogous to binary black holes with spin in order to gain some insight into the origin and nature of 'bobbing' motion and 'kicks' that occur in this system. Our basic tool is a general formalism for describing the motion of extended test bodies in an external electromagnetic field in curved spacetime and possibly subject to other forces. We first show that bobbing of exactly the type as observed in numerical simulations of the binary black hole system occurs in a simple system consisting of two spinning balls connected by an elastic band in flat spacetime. This bobbingmore » may be understood as arising from the difference between a spinning body's 'lab frame centroid' and its true center of mass, and is purely 'kinematical' in the sense that it will appear regardless of the forces holding two spinning bodies in orbit. Next, we develop precise rules for relating the motion of charged bodies in a stationary external electromagnetic field in flat spacetime with the motion of bodies in a weakly curved stationary spacetime. We then consider the system consisting of two orbiting charges with magnetic dipole moment and spin at a level of approximation corresponding to 1.5 post-Newtonian order. Here we find that considerable amounts of momentum are exchanged between the bodies and the electromagnetic field; however, the bodies store this momentum entirely as ''hidden'' mechanical momentum, so that the interchange does not give rise to any net bobbing. The net bobbing that does occur is due solely to the kinematical spin effect, and we therefore argue that the net bobbing of the electromagnetic binary is not associated with possible kicks. We believe that this conclusion holds in the gravitational case as well.« less
Out-of-plane three-stable-state ferroelectric switching: Finding the missing middle states
NASA Astrophysics Data System (ADS)
Lee, Jin Hong; Chu, Kanghyun; Kim, Kwang-Eun; Seidel, Jan; Yang, Chan-Ho
2016-03-01
By realizing a nonvolatile third intermediate ferroelectric state through anisotropic misfit strain, we demonstrate electrical switching among three stable out-of-plane polarizations in bismuth ferrite thin films grown on (110) pc-oriented gadolinium scandate substrates (where pc stands for pseudocubic) by the use of an asymmetric external electric field at the step edge of a bottom electrode. We employ phenomenological Landau theory, in conjunction with electrical poling experiments using piezoresponse force microscopy, to understand the role of anisotropic misfit strain and an in-plane electric field in stabilization of multiple ferroelectric states and their competition. Our finding provides a useful insight into multistep ferroelectric switching in rhombohedral ferroelectrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubarev, N. M., E-mail: nick@iep.uran.ru; Zubareva, O. V.
The dynamics of a bubble in a dielectric liquid under the influence of a uniform external electric field is considered. It is shown that in the situation where the boundary motion is determined only by electrostatic forces, the special regime of fluid motion can be realized for which the velocity and electric field potentials are linearly related. In the two-dimensional case, the corresponding equations are reduced to an equation similar in structure to the well-known Laplacian growth equation, which, in turn, can be reduced to a finite number of ordinary differential equations. This allows us to obtain exact solutions formore » asymmetric bubble deformations resulting in the formation of a finite-time singularity (cusp)« less
Dual-keel electrodynamic maglev system
He, Jianliang; Wang, Zian; Rote, Donald M.; Coffey, Howard T.; Hull, John R.; Mulcahy, Thomas M.; Cal, Yigang
1996-01-01
A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.
A study of the round jet/plane wall flow field
NASA Technical Reports Server (NTRS)
Foss, J. F.; Kleis, S. J.
1971-01-01
Impingement angles, between the axisymmetric jet axis and the plane wall, from zero to 15 degrees have been examined for nozzle heights of 0.75, 1.0, 1.5 and 2.0 diameters and for: (1) a fully developed pipe flow, and (2) a relatively uniform exit velocity condition. Velocity measurements have been used to define isotach contours and to determine mass, momentum and energy flux values for the near field (within five diameters) of the jet. Surface pressure measurements have been used to define surface pressure forces and jet centerline trajectories. The geometric and flow conditions examined and the interpretation of the results have been motivated by the externally blown flap STOL aircraft application.
A nonlinear theory for fibre-reinforced magneto-elastic rods
NASA Astrophysics Data System (ADS)
Ciambella, Jacopo; Favata, Antonino; Tomassetti, Giuseppe
2018-01-01
We derive a model for the finite motion of a fibre-reinforced magneto-elastic rod. The reinforcing particles are assumed weakly and uniformly magnetized, rigid and firmly embedded into the elastomeric matrix. We deduce closed-form expressions of the quasi-static motion of the rod in terms of the external magnetic field and of the body forces. The dependences of the motion on the shape of the inclusions, their orientation, their anisotropic magnetic properties and the Young modulus of the matrix are analysed and discussed. Two case studies are presented, in which the rod is used as an actuator suspended in a cantilever configuration. This work can foster new applications in the field of soft-actuators.
Malaria vaccine development and how external forces shape it: an overview.
Lorenz, Veronique; Karanis, Gabriele; Karanis, Panagiotis
2014-06-30
The aim of this paper is to analyse the current status and scientific value of malaria vaccine approaches and to provide a realistic prognosis for future developments. We systematically review previous approaches to malaria vaccination, address how vaccine efforts have developed, how this issue may be fixed, and how external forces shape vaccine development. Our analysis provides significant information on the various aspects and on the external factors that shape malaria vaccine development and reveal the importance of vaccine development in our society.
Linear response and correlation of a self-propelled particle in the presence of external fields
NASA Astrophysics Data System (ADS)
Caprini, Lorenzo; Marini Bettolo Marconi, Umberto; Vulpiani, Angelo
2018-03-01
We study the non-equilibrium properties of non interacting active Ornstein-Uhlenbeck particles (AOUP) subject to an external nonuniform field using a Fokker-Planck approach with a focus on the linear response and time-correlation functions. In particular, we compare different methods to compute these functions including the unified colored noise approximation (UCNA). The AOUP model, described by the position of the particle and the active force acting on it, is usually mapped into a Markovian process, describing the motion of a fictitious passive particle in terms of its position and velocity, where the effect of the activity is transferred into a position-dependent friction. We show that the form of the response function of the AOUP depends on whether we put the perturbation on the position and keep unperturbed the active force in the original variables or perturb the position and maintain unperturbed the velocity in the transformed variables. Indeed, as a result of the change of variables the perturbation on the position becomes a perturbation both on the position and on the fictitious velocity. We test these predictions by considering the response for three types of convex potentials: quadratic, quartic and double-well potential. Moreover, by comparing the response of the AOUP model with the corresponding response of the UCNA model we conclude that although the stationary properties are fairly well approximated by the UCNA, the non equilibrium properties are not, an effect which is not negligible when the persistence time is large.
Gauged $B-L$ number and neutron–antineutron oscillation: long-range forces mediated by baryophotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addazi, Andrea; Berezhiani, Zurab; Kamyshkov, Yuri
Transformation of a neutron to an antineutron n→n~ has not yet been experimentally observed. In principle, it can occur with free neutrons in the vacuum or with neutrons bound inside the nuclei. In a nuclear medium the neutron and the antineutron have different potentials and for that reason n–n~ conversion in nuclei is heavily suppressed. This transformation can also be suppressed for free neutrons in the presence of an environmental vector field that distinguishes the neutron from the antineutron. We consider the case of a gauge field coupled to the $B-L$ charge of the particles ($B-L$ photon), and we showmore » that discovery of n–n~ oscillation in experiment will lead to few order of magnitudes stronger limits on its coupling constant than present limits from the tests of the equivalence principle. If n–n~ oscillation will be discovered via nuclear instability, but not in free neutron oscillations at a corresponding level, this would indicate the presence of such environmental fifth forces. In the latter case the $B-L$ potential can be measurable by varying the external magnetic field for achieving the resonance conditions for n–n~ conversion. As for neutron–mirror neutron oscillation, such potentials should have no effect once the fifth forces are associated to a common quantum number $(B - L) - (B' - L')$ shared by the ordinary and mirror particles.« less
NASA Astrophysics Data System (ADS)
Wiederhold, A.; Boeck, T.; Resagk, C.
2017-08-01
We report a method to detect and to measure the size and velocity of elongated bubbles or drops in a dispersed two-phase flow. The difference of the magnetic susceptibilities between two phases causes a force on the interface between both phases when it is exposed to an external magnetic field. The force is measured with a state-of-the-art electromagnetic compensation balance. While the front and the back of the bubble pass the magnetic field, two peaks in the force signal appear, which can be used to calculate the velocity and geometry parameters of the bubble. We achieve a substantial advantage over other bubble detection techniques because this technique is contactless, non-invasive, independent of the electrical conductivity and can be applied to opaque or aggressive fluids. The measurements are performed in an inclined channel with air bubbles and paraffin oil drops in water. The bubble length is in the range of 0.1-0.25 m and the bubble velocity lies between 0.02-0.22 m s-1. Furthermore we show that it is possible to apply this measurement principle for nondestructive testing (NDT) of diamagnetic and paramagnetic materials like metal, plastics or glass, provided that defects are in the range of 10‒2 m. This technique opens up new possibilities in industrial applications to measure two-phase flow parameters and in material testing.
Gauged $B-L$ number and neutron–antineutron oscillation: long-range forces mediated by baryophotons
Addazi, Andrea; Berezhiani, Zurab; Kamyshkov, Yuri
2017-05-11
Transformation of a neutron to an antineutron n→n~ has not yet been experimentally observed. In principle, it can occur with free neutrons in the vacuum or with neutrons bound inside the nuclei. In a nuclear medium the neutron and the antineutron have different potentials and for that reason n–n~ conversion in nuclei is heavily suppressed. This transformation can also be suppressed for free neutrons in the presence of an environmental vector field that distinguishes the neutron from the antineutron. We consider the case of a gauge field coupled to the $B-L$ charge of the particles ($B-L$ photon), and we showmore » that discovery of n–n~ oscillation in experiment will lead to few order of magnitudes stronger limits on its coupling constant than present limits from the tests of the equivalence principle. If n–n~ oscillation will be discovered via nuclear instability, but not in free neutron oscillations at a corresponding level, this would indicate the presence of such environmental fifth forces. In the latter case the $B-L$ potential can be measurable by varying the external magnetic field for achieving the resonance conditions for n–n~ conversion. As for neutron–mirror neutron oscillation, such potentials should have no effect once the fifth forces are associated to a common quantum number $(B - L) - (B' - L')$ shared by the ordinary and mirror particles.« less
NASA Astrophysics Data System (ADS)
Botsz, Huang; Satake, Shinsuke; Kanno, Ryutaro; Narushima, Yoshiro; Sakakibara, Satoru; Ohdachi, Satoshi
2014-10-01
In the LHD experiments in which m/n = 1/1 resonant magnetic perturbation (RMP) amplitude is ramped up, it is observed that the perturbed field is initially shielded, and when the amplitude exceeds a threshold value, the field penetrates into the plasma and m/n/ = 1/1 magnetic island appears. It is also found that the threshold amplitude depends on the magnetic field configuration of LHD, that is, on the magnetic axis position. It is expected that the poloidal force balance between the electromagnetic force and the drug force from poloidal rotation determines the threshold of island formation. Since neoclassical poloidal viscosity (NPV) in LHD strongly depends on the magnetic axis position, we investigate the relationship between NPV and the threshold amplitude of m/n = 1/1 RMP to penetrate by using drift-kinetic simulation code FORTEC-3D. ExB poloidal rotation determined from the ambipolar radial flux condition is taken into account in the evaluation of NPV. We mainly focus on the situation that the external magnetic perturbation is compensated by the plasma response and therefore the effect of RMP on the total NPV is shielded. However, by using a simple model to express the penetrated magnetic perturbation, we will also study the dependence of NPV on the RMP amplitude.
NASA Technical Reports Server (NTRS)
Herman, Cila
1996-01-01
Boiling is an effective mode of heat transfer since high heat flux levels are possible driven by relatively small temperature differences. The high heat transfer coefficients associated with boiling have made the use of these processes increasingly attractive to aerospace engineering. Applications of this type include compact evaporators in the thermal control of aircraft avionics and spacecraft environments, heat pipes, and use of boiling to cool electronic equipment. In spite of its efficiency, cooling based on liquid-vapor phase change processes has not yet found wide application in aerospace engineering due to specific problems associated with the low gravity environment. After a heated surface has reached the superheat required for the initiation of nucleate boiling, bubbles will start forming at nucleation sites along the solid interface by evaporation of the liquid. Bubbles in contact with the wall will continue growing by this mechanism until they detach. In terrestrial conditions, bubble detachment is determined by the competition between body forces (e.g. buoyancy) and surface tension forces that act to anchor the bubble along the three phase contact line. For a given body force potential and a balance of tensions along the three phase contact line, bubbles must reach a critical size before the body force can cause them to detach from the wall. In a low gravity environment the critical bubble size for detachment is much larger than under terrestrial conditions, since buoyancy is a less effective means of bubble removal. Active techniques of heat transfer enhancement in single phase and phase change processes by utilizing electric fields have been the subject of intensive research during recent years. The field of electrohydrodynamics (EHD) deals with the interactions between electric fields, flow fields and temperature fields. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 as compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The goal of our research is to experimentally investigate the potential of EHD and the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions.
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios
2017-07-01
We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.
Solitary waves in the nonlinear Dirac equation in the presence of external driving forces
Mertens, Franz G.; Cooper, Fred; Quintero, Niurka R.; ...
2016-01-05
In this paper, we consider the nonlinear Dirac (NLD) equation in (1 + 1) dimensions with scalar–scalar self interaction g 2/κ + 1 (Ψ¯Ψ) κ + 1 in the presence of external forces as well as damping of the form f(x) - iμγ 0Ψ, where both f and Ψ are two-component spinors. We develop an approximate variational approach using collective coordinates (CC) for studying the time dependent response of the solitary waves to these external forces. This approach predicts intrinsic oscillations of the solitary waves, i.e. the amplitude, width and phase all oscillate with the same frequency. The translational motionmore » is also affected, because the soliton position oscillates around a mean trajectory. For κ = 1 we solve explicitly the CC equations of the variational approximation for slow moving solitary waves in a constant external force without damping and find reasonable agreement with solving numerically the CC equations. Finally, we then compare the results of the variational approximation with no damping with numerical simulations of the NLD equation for κ = 1, when the components of the external force are of the form f j = r j exp(–iΚx) and again find agreement if we take into account a certain linear excitation with specific wavenumber that is excited together with the intrinsic oscillations such that the momentum in a transformed NLD equation is conserved.« less
Reasons for deficiencies in health information laws in Iran.
Moghaddasi, Hamid; Hosseini, Azamol-sadat; Sajjadi, Samad; Nikookalam, Maryam
2014-01-01
Laws, regulations, and guidelines are necessary external stimuli that influence the management of health data. They serve as external mechanisms for the reinforcement and quality improvement of health information. Despite their inevitable significance, such laws have not yet been sufficiently formulated in Iran. The current study explores reasons for inadequacies in the health information laws. In this descriptive study, health-related laws and regulations from the United States, the United Kingdom, and Iran were first collected, using a review of the literature and available data. Then, bearing in mind the significant deficiencies in health information laws in Iran, the researchers asked a group of managers and policy makers in the healthcare field to complete a questionnaire to explore the reasons for such deficiencies. A test-retest method was used to determine the reliability of the questionnaire. Descriptive statistics and tables were then used to analyze the data. Experts' opinion on reasons for deficiencies in health information laws and regulations in Iran are divided into four principal groups: cultural conditions of the community, the status of the health information system, characteristics of managers and policy makers in the healthcare field, and awareness level among public beneficiaries about laws. The health departments or ministries in developed countries have brought about suitable changes in their affiliated organizations by developing external data enhancement mechanisms such as information-related laws and standards, and accreditation of healthcare organizations. At the same time, healthcare organizations, under obligations imposed by the external forces, try to elevate the quality of information. Therefore, this study suggests that raising healthcare managers' awareness of the importance of passing health information laws, as an effective external mechanism, is essential.
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten S.; Frederiksen, Jorgen S.; Sisson, Janice M.; Osbrough, Stacey L.
2017-05-01
Changes in the characteristics of Southern Hemisphere (SH) storms, in all seasons, during the second half of the twentieth century, have been related to changes in the annual cycle of SH baroclinic instability. In particular, significant negative trends in baroclinic instability, as measured by the Phillips Criterion, have been found in the region of the climatological storm tracks; a zonal band of significant positive trends occur further poleward. Corresponding to this decrease/increase in baroclinic instability there is a decrease/increase in the growth rate of storm formation at these latitudes over this period, and in some cases a preference for storm formation further poleward than normal. Based on model output from a multi-model ensemble (MME) of coupled atmosphere-ocean general circulation models, it is shown that these trends are the result of external radiative forcing, including anthropogenic greenhouse gases, ozone, aerosols and land-use change. The MME is used in an analysis of variance method to separate the internal (natural) variability in the Phillips Criterion from influences associated with anomalous external radiative forcing. In all seasons, the leading externally forced mode has a significant trend and a loading pattern highly correlated with the pattern of trends in the Phillips Criterion. The covariance between the externally forced component of SH rainfall and the leading external mode strongly resembles the MME pattern of SH rainfall trends. A comparison between similar analyses of MME simulations using the second half of the twenty-first century of the Representative Concentration Pathways (RCP) RCP8.5 and RCP4.5 scenarios show that trends in the Phillips Criterion and rainfall are projected to continue and intensify under increasing anthropogenic greenhouse gas concentrations.
NASA Astrophysics Data System (ADS)
Qi, Xiao-Hua; Yan, Hui-Jie; Yang, Liang; Hua, Yue; Ren, Chun-Sheng
2017-08-01
In this work, a driven voltage consisting of AC high voltage with a superimposed positive pulse bias voltage ("AC+ Positive pulse bias" voltage) is adopted to study the performance of a surface dielectric barrier discharge plasma actuator under atmospheric conditions. To compare the performance of the actuator driven by single-AC voltage and "AC+ Positive pulse bias" voltage, the actuator-induced thrust force and power consumption are measured as a function of the applied AC voltage, and the measured results indicate that the thrust force can be promoted significantly after superimposing the positive pulse bias voltage. The physical mechanism behind the thrust force changes is analyzed by measuring the optical properties, electrical characteristics, and surface potential distribution. Experimental results indicate that the glow-like discharge in the AC voltage half-cycle, next to the cycle where a bias voltage pulse has been applied, is enhanced after applying the positive pulse bias voltage, and this perhaps is the main reason for the thrust force increase. Moreover, surface potential measurement results reveal that the spatial electric field formed by the surface charge accumulation after positive pulse discharge can significantly affect the applied external electric field, and this perhaps can be responsible for the experimental phenomenon that the decrease of thrust force is delayed by pulse bias voltage action after the filament discharge occurs in the glow-like discharge region. The schlieren images further verify that the actuator-induced airflow velocity increases with the positive pulse voltage.
Sensitivity of river discharge to the quality of external meteorological forcings
NASA Astrophysics Data System (ADS)
Materia, S.; Dirmeyer, P.; Guo, Z.; Alessandri, A.; Navarra, A.
2009-09-01
Large-scale river routing models are essential tools to close the hydrological cycle in fully coupled climate models. Moreover, the availability of a realistic routing scheme is a powerful instrument to assess the validity of land surface parameterization, which has been recognized to be a crucial component of the global climate. This study is dedicated to assess the sensitivity of river discharge to the variation of external meteorological forcing. The Land Surface Scheme created at the Center for Ocean, Land and Atmosphere Studies (COLA), the SSiB model, was constrained with different meteorological fields. The resulting surface and sub-surface runoffs were used as forcing data for the HD River Routing Scheme. As expected, river flow is mainly sensitive to precipitation variability, but changes in radiative forcing affect discharge as well, presumably due to the interaction with evaporation. Also, this analysis provided an estimate of the sensitivity of river discharge to precipitation variations. A few areas, like Central and Eastern Asia, Southern and Central Europe and the majority of the US, show a magnified response of river discharge to a given percentage change in precipitation. Hence, an amplified effect of droughts following the reduction in precipitation, as it is indicated by many climate scenarios, may occur in places such as the Mediterranean. Conversely, increasing summer precipitation foreseen in Southern and Eastern Asia may amplify floods in one the poorest and most populated regions in the world. These results can be used for the definition and assessment of new strategies for land use and water management in the near future.
Perotti, Luigi E; Ponnaluri, Aditya V S; Krishnamoorthi, Shankarjee; Balzani, Daniel; Ennis, Daniel B; Klug, William S
2017-11-01
Quantitative measurement of the material properties (eg, stiffness) of biological tissues is poised to become a powerful diagnostic tool. There are currently several methods in the literature to estimating material stiffness, and we extend this work by formulating a framework that leads to uniquely identified material properties. We design an approach to work with full-field displacement data-ie, we assume the displacement field due to the applied forces is known both on the boundaries and also within the interior of the body of interest-and seek stiffness parameters that lead to balanced internal and external forces in a model. For in vivo applications, the displacement data can be acquired clinically using magnetic resonance imaging while the forces may be computed from pressure measurements, eg, through catheterization. We outline a set of conditions under which the least-square force error objective function is convex, yielding uniquely identified material properties. An important component of our framework is a new numerical strategy to formulate polyconvex material energy laws that are linear in the material properties and provide one optimal description of the available experimental data. An outcome of our approach is the analysis of the reliability of the identified material properties, even for material laws that do not admit unique property identification. Lastly, we evaluate our approach using passive myocardium experimental data at the material point and show its application to identifying myocardial stiffness with an in silico experiment modeling the passive filling of the left ventricle. Copyright © 2017 John Wiley & Sons, Ltd.
Correcting Biases in a lower resolution global circulation model with data assimilation
NASA Astrophysics Data System (ADS)
Canter, Martin; Barth, Alexander
2016-04-01
With this work, we aim at developping a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias. First, through a preliminary run, we estimate the bias of the model and its possible sources. Then, we establish a forcing term which is directly added inside the model's equations. We create an ensemble of runs and consider the forcing term as a control variable during the assimilation of observations. We then use this analysed forcing term to correct the bias of the model. Since the forcing is added inside the model, it acts as a source term, unlike external forcings such as wind. This procedure has been developed and successfully tested with a twin experiment on a Lorenz 95 model. It is currently being applied and tested on the sea ice ocean NEMO LIM model, which is used in the PredAntar project. NEMO LIM is a global and low resolution (2 degrees) coupled model (hydrodynamic model and sea ice model) with long time steps allowing simulations over several decades. Due to its low resolution, the model is subject to bias in area where strong currents are present. We aim at correcting this bias by using perturbed current fields from higher resolution models and randomly generated perturbations. The random perturbations need to be constrained in order to respect the physical properties of the ocean, and not create unwanted phenomena. To construct those random perturbations, we first create a random field with the Diva tool (Data-Interpolating Variational Analysis). Using a cost function, this tool penalizes abrupt variations in the field, while using a custom correlation length. It also decouples disconnected areas based on topography. Then, we filter the field to smoothen it and remove small scale variations. We use this field as a random stream function, and take its derivatives to get zonal and meridional velocity fields. We also constrain the stream function along the coasts in order not to have currents perpendicular to the coast. The randomly generated stochastic forcing are then directly injected into the NEMO LIM model's equations in order to force the model at each timestep, and not only during the assimilation step. Results from a twin experiment will be presented. This method is being applied to a real case, with observations on the sea surface height available from the mean dynamic topography of CNES (Centre national d'études spatiales). The model, the bias correction, and more extensive forcings, in particular with a three dimensional structure and a time-varying component, will also be presented.
Computational modeling of magnetic particle margination within blood flow through LAMMPS
NASA Astrophysics Data System (ADS)
Ye, Huilin; Shen, Zhiqiang; Li, Ying
2017-11-01
We develop a multiscale and multiphysics computational method to investigate the transport of magnetic particles as drug carriers in blood flow under influence of hydrodynamic interaction and external magnetic field. A hybrid coupling method is proposed to handle red blood cell (RBC)-fluid interface (CFI) and magnetic particle-fluid interface (PFI), respectively. Immersed boundary method (IBM)-based velocity coupling is used to account for CFI, which is validated by tank-treading and tumbling behaviors of a single RBC in simple shear flow. While PFI is captured by IBM-based force coupling, which is verified through movement of a single magnetic particle under non-uniform external magnetic field and breakup of a magnetic chain in rotating magnetic field. These two components are seamlessly integrated within the LAMMPS framework, which is a highly parallelized molecular dynamics solver. In addition, we also implement a parallelized lattice Boltzmann simulator within LAMMPS to handle the fluid flow simulation. Based on the proposed method, we explore the margination behaviors of magnetic particles and magnetic chains within blood flow. We find that the external magnetic field can be used to guide the motion of these magnetic materials and promote their margination to the vascular wall region. Moreover, the scaling performance and speedup test further confirm the high efficiency and robustness of proposed computational method. Therefore, it provides an efficient way to simulate the transport of nanoparticle-based drug carriers within blood flow in a large scale. The simulation results can be applied in the design of efficient drug delivery vehicles that optimally accumulate within diseased tissue, thus providing better imaging sensitivity, therapeutic efficacy and lower toxicity.
Asymmetric adaptation in human walking using the Tethered Pelvic Assist Device (TPAD).
Vashista, Vineet; Reisman, Darcy S; Agrawal, Sunil K
2013-06-01
Human nervous system is capable of modifying motor commands in response to alterations in walking conditions. Previous research has shown that external perturbations that induce gait asymmetry can lead to adaptation in gait parameters. Such strategies have also been shown to temporarily restore gait symmetry in subjects with post stroke hemiparesis. This work aims to develop an experimental paradigm to induce gait asymmetry in human subjects by applying external asymmetric forces on the pelvis through the Tethered Pelvic Assist Device (TPAD). These external forces on the pelvis have the potential to influence the swing and the stance phases of both legs. Eight healthy subjects participated in the experiment where a higher resistive force was applied on the pelvis during the swing phase of the left leg as compared to the right leg. We hypothesized that such asymmetrically applied forces on the pelvis will lead to asymmetric adaptation in the human walking.
Surface effects on friction-induced fluid heating in nanochannel flows.
Li, Zhigang
2009-02-01
We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
Parise, M.
2018-05-18
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
The natural oscillation of two types of ENSO events based on analyses of CMIP5 model control runs
NASA Astrophysics Data System (ADS)
Xu, Kang; Su, Jingzhi; Zhu, Congwen
2014-07-01
The eastern- and central-Pacific El Niño-Southern Oscillation (EP- and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode, but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-ENSO, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai; Ng, Cho-Kuen; Rivetta, Claudio
2017-10-01
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parise, M.
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
NASA Astrophysics Data System (ADS)
Parise, M.
2018-05-01
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effective tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.
Prediction of the Lorentz Force Detuning and Pressure Sensitivity for a Pillbox Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parise, M.
2018-04-23
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Magnetic core shell nanoparticles trapping in a microdevice generating high magnetic gradient.
Teste, Bruno; Malloggi, Florent; Gassner, Anne-Laure; Georgelin, Thomas; Siaugue, Jean-Michel; Varenne, Anne; Girault, Hubert; Descroix, Stéphanie
2011-03-07
Magnetic core shell nanoparticles (MCSNPs) 30 nm diameter with a magnetic weight of 10% are usually much too small to be trapped in microfluidic systems using classical external magnets. Here, a simple microchip for efficient MCSNPs trapping and release is presented. It comprises a bed of micrometric iron beads (6-8 μm diameter) packed in a microchannel against a physical restriction and presenting a low dead volume of 0.8 nL. These beads of high magnetic permeability are used to focus magnetic field lines from an external permanent magnet and generate local high magnetic gradients. The nanoparticles magnetic trap has been characterised both by numerical simulations and fluorescent MCSNPs imaging. Numerical simulations have been performed to map both the magnetic flux density and the magnetic force, and showed that MCSNPs are preferentially trapped at the iron bead magnetic poles where the magnetic force is increased by 3 orders of magnitude. The trapping efficiency was experimentally determined using fluorescent MCSNPs for different flow rates, different iron beads and permanent magnet positions. At a flow rate of 100 μL h(-1), the nanoparticles trapping/release can be achieved within 20 s with a preconcentration factor of 4000.
Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field
NASA Astrophysics Data System (ADS)
Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi
High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.
Thermal-mechanical coupling effect on initial stage oxidation of Si(100) surface
NASA Astrophysics Data System (ADS)
Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Izumi, Satoshi
2018-04-01
The initial stage oxidation of biaxially strained Si(100) at temperatures ranging from 300 K to 1200 K has been investigated by Reactive Force Field Molecular Dynamics simulations. We reported that the oxidation process involving the reaction rate and the amount of absorbed O atoms could be enhanced by the coupling effect of higher temperatures and larger external tension. By fitting the simulation results, the relationship between absorbed oxygen and the coupling of temperature and strain was obtained. In probing the mechanism, we observed that there was a ballistic transport of O atoms, displaying an enhancement of inward penetration by external tension. Since such an inward transport was favored by thermal actuation, more O atoms penetrated into deeper layers when the 9% strained Si oxidized at 1200 K. Moreover, the evolution of stress in the surface region during the oxidation process was discussed, as well as the related oxide structure and the film quality. These present results may provide a way to understand the thermally-mechanically coupled chemical reactions and propose an effective approach to optimize microscale component processing in the electronic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, Andrea; Bonitz, Michael; Dufty, James
The idea of treating quantum systems by semiclassical representations using effective quantum potentials (forces) has been successfully applied in equilibrium by many authors, see e.g. [D. Bohm, Phys. Rev. 85 (1986) 166 and 180; D.K. Ferry, J.R. Zhou, Phys. Rev. B 48 (1993) 7944; A.V. Filinov, M. Bonitz, W. Ebeling, J. Phys. A 36 (2003) 5957 and references cited therein]. Here, this idea is extended to nonequilibrium quantum systems in an external field. A gauge-invariant quantum kinetic theory for weakly inhomogeneous charged particle systems in a strong electromagnetic field is developed within the framework of nonequilibrium Green's functions. The equationmore » for the spectral density is simplified by introducing a classical (local) form for the kinetics. Nonlocal quantum effects are accounted for in this way by replacing the bare external confinement potential with an effective quantum potential. The equation for this effective potential is identified and solved for weak inhomogeneity in the collisionless limit. The resulting nonequilibrium spectral function is used to determine the density of states and the modification of the Born collision operator in the kinetic equation for the Wigner function due to quantum confinement effects.« less
Active turbulence in a gas of self-assembled spinners
Kokot, Gašper; Das, Shibananda; Winkler, Roland G.; Aranson, Igor S.; Snezhko, Alexey
2017-01-01
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale. PMID:29158382
Extension of Gibbs-Duhem equation including influences of external fields
NASA Astrophysics Data System (ADS)
Guangze, Han; Jianjia, Meng
2018-03-01
Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.
Constantin, Dragoş E; Fahrig, Rebecca; Keall, Paul J
2011-07-01
Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29n-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the inline configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72n and 2.01 n-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34n and 0.35n-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.
Constantin, Dragoş E.; Fahrig, Rebecca; Keall, Paul J.
2011-01-01
Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29π-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72π and 2.01π-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34π and 0.35π-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field. PMID:21859019
NASA Astrophysics Data System (ADS)
Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter
2016-06-01
Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.
Heat and momentum transfer for magnetoconvection in a vertical external magnetic field
NASA Astrophysics Data System (ADS)
Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg
2016-11-01
The scaling theory of Grossmann and Lohse for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively. LIMTECH Research Alliance and Research Training Group GK 1567 on Lorentz Force Velocimetry, funded by the Deutsche Forschungsgemeinschaft.
Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice
Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub
2015-01-01
Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635
Bundle, Matthew W; Ernst, Carrie L; Bellizzi, Matthew J; Wright, Seth; Weyand, Peter G
2006-11-01
For both different individuals and modes of locomotion, the external forces determining all-out sprinting performances fall predictably with effort duration from the burst maximums attained for 3 s to those that can be supported aerobically as trial durations extend to roughly 300 s. The common time course of this relationship suggests a metabolic basis for the decrements in the force applied to the environment. However, the mechanical and neuromuscular responses to impaired force production (i.e., muscle fatigue) are generally considered in relation to fractions of the maximum force available, or the maximum voluntary contraction (MVC). We hypothesized that these duration-dependent decrements in external force application result from a reliance on anaerobic metabolism for force production rather than the absolute force produced. We tested this idea by examining neuromuscular activity during two modes of sprint cycling with similar external force requirements but differing aerobic and anaerobic contributions to force production: one- and two-legged cycling. In agreement with previous studies, we found greater peak per leg aerobic metabolic rates [59% (+/-6 SD)] and pedal forces at VO2 peak [30% (+/-9)] during one- vs. two-legged cycling. We also determined downstroke pedal forces and neuromuscular activity by surface electromyography during 15 to 19 all-out constant load sprints lasting from 12 to 400 s for both modes of cycling. In support of our hypothesis, we found that the greater reliance on anaerobic metabolism for force production induced compensatory muscle recruitment at lower pedal forces during two- vs. one-legged sprint cycling. We conclude that impaired muscle force production and compensatory neuromuscular activity during sprinting are triggered by a reliance on anaerobic metabolism for force production.
NASA Astrophysics Data System (ADS)
Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.
2018-07-01
We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.
Weight, gravitation, inertia, and tides
NASA Astrophysics Data System (ADS)
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-11-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.
Field-induced magnetic phase transitions and metastable states in Tb 3 Ni
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubkin, A. F.; Wu, L. S.; Nikitin, S. E.
In this study we report the detailed study of magnetic phase diagrams, low-temperature magnetic structures, and the magnetic field effect on the electrical resistivity of the binary intermetallic compoundmore » $${\\mathrm{Tb}}_{3}\\mathrm{Ni}$$. The incommensurate magnetic structure of the spin-density-wave type described with magnetic superspace group $$P{112}_{1}/a{1}^{{'}}(ab0)0ss$$ and propagation vector $${\\mathbf{k}}_{\\mathrm{IC}}=\\left[0.506,0.299,0\\right]$$ was found to emerge just below Néel temperature $${T}_{\\mathrm{N}}=61$$ K. Further cooling below 58 K results in the appearance of multicomponent magnetic states: (i) a combination of $${\\mathbf{k}}_{1}=\\left[\\frac{1}{2},\\frac{1}{2},0\\right]$$ and $${\\mathbf{k}}_{\\mathrm{IC}}$$ in the temperature range 51 < T < 58 K; (ii) a mixed magnetic state of $${\\mathbf{k}}_{\\mathrm{IC}}, {\\mathbf{k}}_{1}$$, and $${\\mathbf{k}}_{2}=\\left[\\frac{1}{2},\\frac{1}{4},0\\right]$$ with the partially locked-in incommensurate component in the temperature range 48 < T < 51 K; and (iii) a low-temperature magnetic structure that is described by the intersection of two isotropy subgroups associated with the irreducible representations of two coupled primary order parameters (OPs) $${\\mathbf{k}}_{2}=\\left[\\frac{1}{2},\\frac{1}{4},0\\right]$$ and $${\\mathbf{k}}_{3}=\\left[\\frac{1}{2},\\frac{1}{3},0\\right]$$ and involves irreducible representations of the secondary OPs $${\\mathbf{k}}_{1}=\\left[\\frac{1}{2},\\frac{1}{2},0\\right]$$ and $${\\mathbf{k}}_{4}=\\left[\\frac{1}{2},0,0\\right]$$ below 48 K. An external magnetic field suppresses the complex low-temperature antiferromagnetic states and induces metamagnetic transitions towards a forced ferromagnetic state that are accompanied by a substantial magnetoresistance effect due to the magnetic superzone effect. Finally, the forced ferromagnetic state induced after application of an external magnetic field along the $b$ and $c$ crystallographic axes was found to be irreversible below 3 and 8 K, respectively.« less
Field-induced magnetic phase transitions and metastable states in Tb 3 Ni
Gubkin, A. F.; Wu, L. S.; Nikitin, S. E.; ...
2018-04-26
In this study we report the detailed study of magnetic phase diagrams, low-temperature magnetic structures, and the magnetic field effect on the electrical resistivity of the binary intermetallic compoundmore » $${\\mathrm{Tb}}_{3}\\mathrm{Ni}$$. The incommensurate magnetic structure of the spin-density-wave type described with magnetic superspace group $$P{112}_{1}/a{1}^{{'}}(ab0)0ss$$ and propagation vector $${\\mathbf{k}}_{\\mathrm{IC}}=\\left[0.506,0.299,0\\right]$$ was found to emerge just below Néel temperature $${T}_{\\mathrm{N}}=61$$ K. Further cooling below 58 K results in the appearance of multicomponent magnetic states: (i) a combination of $${\\mathbf{k}}_{1}=\\left[\\frac{1}{2},\\frac{1}{2},0\\right]$$ and $${\\mathbf{k}}_{\\mathrm{IC}}$$ in the temperature range 51 < T < 58 K; (ii) a mixed magnetic state of $${\\mathbf{k}}_{\\mathrm{IC}}, {\\mathbf{k}}_{1}$$, and $${\\mathbf{k}}_{2}=\\left[\\frac{1}{2},\\frac{1}{4},0\\right]$$ with the partially locked-in incommensurate component in the temperature range 48 < T < 51 K; and (iii) a low-temperature magnetic structure that is described by the intersection of two isotropy subgroups associated with the irreducible representations of two coupled primary order parameters (OPs) $${\\mathbf{k}}_{2}=\\left[\\frac{1}{2},\\frac{1}{4},0\\right]$$ and $${\\mathbf{k}}_{3}=\\left[\\frac{1}{2},\\frac{1}{3},0\\right]$$ and involves irreducible representations of the secondary OPs $${\\mathbf{k}}_{1}=\\left[\\frac{1}{2},\\frac{1}{2},0\\right]$$ and $${\\mathbf{k}}_{4}=\\left[\\frac{1}{2},0,0\\right]$$ below 48 K. An external magnetic field suppresses the complex low-temperature antiferromagnetic states and induces metamagnetic transitions towards a forced ferromagnetic state that are accompanied by a substantial magnetoresistance effect due to the magnetic superzone effect. Finally, the forced ferromagnetic state induced after application of an external magnetic field along the $b$ and $c$ crystallographic axes was found to be irreversible below 3 and 8 K, respectively.« less
Hydrogel Actuation by Electric Field Driven Effects
NASA Astrophysics Data System (ADS)
Morales, Daniel Humphrey
Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of the applied electric field. We extend the use of ionoprinting to develop multi-responsive bilayer gel systems capable of more complex shape transformation. The localized crosslinked regions determine the bending axis as the gel responds to the external environment. The bending can be tuned to reverse direction isothermally by changing the solvent quality or by changing the temperature at a fixed concentration. The multi-responsive behavior is caused by the volume transitions of a non-ionic, thermos-sensitive hydrogel coupled with a superabsorbent ionic hydrogel. Lastly, electric field driven microparticle assembly, using dielectrophoretic (DEP) forces, organized colloidal microparticles within a hydrogel matrix. The use of DEP forces enables rapid, efficient and precise control over the colloidal distribution. The resulting supracolloidal endoskeleton structures impart directional bending as the hydrogel shrinks. We compare the ordered particles structures to random particle distributions in affecting the hydrogel sheet bending response. This study demonstrates a universal technique for imparting directional properties in hydrogels towards new generations of hybrid soft materials.
The atomic simulation environment-a Python library for working with atoms.
Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob; Castelli, Ivano E; Christensen, Rune; Dułak, Marcin; Friis, Jesper; Groves, Michael N; Hammer, Bjørk; Hargus, Cory; Hermes, Eric D; Jennings, Paul C; Bjerre Jensen, Peter; Kermode, James; Kitchin, John R; Leonhard Kolsbjerg, Esben; Kubal, Joseph; Kaasbjerg, Kristen; Lysgaard, Steen; Bergmann Maronsson, Jón; Maxson, Tristan; Olsen, Thomas; Pastewka, Lars; Peterson, Andrew; Rostgaard, Carsten; Schiøtz, Jakob; Schütt, Ole; Strange, Mikkel; Thygesen, Kristian S; Vegge, Tejs; Vilhelmsen, Lasse; Walter, Michael; Zeng, Zhenhua; Jacobsen, Karsten W
2017-07-12
The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.
Self-organizing magnetic beads for biomedical applications
NASA Astrophysics Data System (ADS)
Gusenbauer, Markus; Kovacs, Alexander; Reichel, Franz; Exl, Lukas; Bance, Simon; Özelt, Harald; Schrefl, Thomas
2012-03-01
In the field of biomedicine magnetic beads are used for drug delivery and to treat hyperthermia. Here we propose to use self-organized bead structures to isolate circulating tumor cells using lab-on-chip technologies. Typically blood flows past microposts functionalized with antibodies for circulating tumor cells. Creating these microposts with interacting magnetic beads makes it possible to tune the geometry in size, position and shape. We developed a simulation tool that combines micromagnetics and discrete particle dynamics, in order to design micropost arrays made of interacting beads. The simulation takes into account the viscous drag of the blood flow, magnetostatic interactions between the magnetic beads and gradient forces from external aligned magnets. We developed a particle-particle particle-mesh method for effective computation of the magnetic force and torque acting on the particles.
Substructure program for analysis of helicopter vibrations
NASA Technical Reports Server (NTRS)
Sopher, R.
1981-01-01
A substructure vibration analysis which was developed as a design tool for predicting helicopter vibrations is described. The substructure assembly method and the composition of the transformation matrix are analyzed. The procedure for obtaining solutions to the equations of motion is illustrated for the steady-state forced response solution mode, and rotor hub load excitation and impedance are analyzed. Calculation of the mass, damping, and stiffness matrices, as well as the forcing function vectors of physical components resident in the base program code, are discussed in detail. Refinement of the model is achieved by exercising modules which interface with the external program to represent rotor induced variable inflow and fuselage induced variable inflow at the rotor. The calculation of various flow fields is discussed, and base program applications are detailed.
The atomic simulation environment—a Python library for working with atoms
NASA Astrophysics Data System (ADS)
Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob; Castelli, Ivano E.; Christensen, Rune; Dułak, Marcin; Friis, Jesper; Groves, Michael N.; Hammer, Bjørk; Hargus, Cory; Hermes, Eric D.; Jennings, Paul C.; Bjerre Jensen, Peter; Kermode, James; Kitchin, John R.; Leonhard Kolsbjerg, Esben; Kubal, Joseph; Kaasbjerg, Kristen; Lysgaard, Steen; Bergmann Maronsson, Jón; Maxson, Tristan; Olsen, Thomas; Pastewka, Lars; Peterson, Andrew; Rostgaard, Carsten; Schiøtz, Jakob; Schütt, Ole; Strange, Mikkel; Thygesen, Kristian S.; Vegge, Tejs; Vilhelmsen, Lasse; Walter, Michael; Zeng, Zhenhua; Jacobsen, Karsten W.
2017-07-01
The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple ‘for-loop’ construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.
Casimir effect and radiative heat transfer between Chern Insulators
NASA Astrophysics Data System (ADS)
Rodriguez Lopez, Pablo; Grushin, Adolfo; Tse, Wang-Kong; Dalvit, Diego
2015-03-01
Chern Insulators are a class of two-dimensional topological materials. Their electronic properties are different from conventional materials, and lead to interesting new physics as quantum Hall effect in absence of an external magnetic field. Here we will review some of their special properties and, in particular, we will discuss the radiative heat transfer and the Casimir effect between two planar Chern Insulators sheets. Finally, we will see how to control the intensity and sign of this Casimir force and the requirements to observe a repulsive Casimir force in the lab with those materials. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 302005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com
2013-02-15
We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has alsomore » been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived. - Highlights: Black-Right-Pointing-Pointer We study the effect of acceleration on the Dirac electron in the presence of an electromagnetic field, where the acceleration induces an electric field. Black-Right-Pointing-Pointer Spin currents appear due to the total effective electric field via the total spin-orbit interaction. Black-Right-Pointing-Pointer We derive the expression for the spin dependent force and the spin Hall current, which is zero for a particular acceleration. Black-Right-Pointing-Pointer The role of the momentum space Berry curvature in an accelerating system is discussed. Black-Right-Pointing-Pointer An expression for the spin polarization for time dependent acceleration is derived.« less
Mei, Ye; Simmonett, Andrew C.; Pickard, Frank C.; DiStasio, Robert A.; Brooks, Bernard R.; Shao, Yihan
2015-01-01
In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Löwdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to compute the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in 8 small molecules and water pentamer are found to be highly anisotropic for most atoms. Overall, the results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development; (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles. PMID:25945749
Magnetic propulsion of microspheres at liquid-glass interfaces
NASA Astrophysics Data System (ADS)
Helgesen, Geir
2018-02-01
Bio-coated, magnetic microspheres have many applications in biotechnology and medical technology as a tool to separate and extract cells or molecules in a water solution by applying external strong magnetic field gradients. However, magnetic microspheres with or without attached cargo can also be separated in the liquid solution if they are exposed to alternating or rotating, relatively weak magnetic fields. Microspheres that have a higher density than the liquid will approach the bottom surface of the sample cell, and then a combination of viscous and surface frictional forces can propel the magnetic microspheres along the surface in a direction perpendicular to the axis of field rotation. Experiments demonstrating this type of magnetic propulsion are shown, and the forces active in the process are discussed. The motion of particles inside sample cells that were tilted relative to the horizontal direction was studied, and the variation of propulsion velocity as a function of tilt angle was used to find the values of different viscous and mechanical parameters of motion. Propulsion speeds of up to 5 μm/s were observed and were found to be caused by a partly rolling and partly slipping motion of rotating microspheres with a slipping coefficient near 0.6.
NASA Astrophysics Data System (ADS)
Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi
2003-08-01
When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.
A local model of warped magnetized accretion discs
NASA Astrophysics Data System (ADS)
Paris, J. B.; Ogilvie, G. I.
2018-06-01
We derive expressions for the local ideal magnetohydrodynamic (MHD) equations for a warped astrophysical disc using a warped shearing box formalism. A perturbation expansion of these equations to first order in the warping amplitude leads to a linear theory for the internal local structure of magnetized warped discs in the absence of magnetorotational instability (MRI) turbulence. In the special case of an external magnetic field oriented normal to the disc surface, these equations are solved semi-analytically via a spectral method. The relatively rapid warp propagation of low-viscosity Keplerian hydrodynamic warped discs is diminished by the presence of a magnetic field. The magnetic tension adds a stiffness to the epicyclic oscillations, detuning the natural frequency from the orbital frequency and thereby removing the resonant forcing of epicyclic modes characteristic of hydrodynamic warped discs. In contrast to a single hydrodynamic resonance, we find a series of Alfvénic-epicyclic modes which may be resonantly forced by the warped geometry at critical values of the orbital shear rate q and magnetic field strength. At these critical points large internal torques are generated and anomalously rapid warp propagation occurs. As our treatment omits MRI turbulence, these results are of greatest applicability to strongly magnetized discs.
Mei, Ye; Simmonett, Andrew C.; Pickard, IV, Frank C.; ...
2015-05-06
In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed in this study using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Lowdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to computemore » the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in eight small molecules and water pentamer are found to be highly anisotropic for most atoms. In conclusion, the overall results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development and (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles.« less
Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Tashjian, Robert Z; Burks, Robert T
2012-04-01
No clear recommendations exist regarding optimal humeral component version and deltoid tension in reverse total shoulder arthroplasty (TSA). A biomechanical shoulder simulator tested humeral versions (0°, 10°, 20° retroversion) and implant thicknesses (-3, 0, +3 mm from baseline) after reverse TSA in human cadavers. Abduction and external rotation ranges of motion as well as abduction and dislocation forces were quantified for native arms and arms implanted with 9 combinations of humeral version and implant thickness. Resting abduction angles increased significantly (up to 30°) after reverse TSA compared with native shoulders. With constant posterior cuff loads, native arms externally rotated 20°, whereas no external rotation occurred in implanted arms (20° net internal rotation). Humeral version did not affect rotational range of motion but did alter resting abduction. Abduction forces decreased 30% vs native shoulders but did not change when version or implant thickness was altered. Humeral center of rotation was shifted 17 mm medially and 12 mm inferiorly after implantation. The force required for lateral dislocation was 60% less than anterior and was not affected by implant thickness or version. Reverse TSA reduced abduction forces compared with native shoulders and resulted in limited external rotation and abduction ranges of motion. Because abduction force was reduced for all implants, the choice of humeral version and implant thickness should focus on range of motion. Lateral dislocation forces were less than anterior forces; thus, levering and inferior/posterior impingement may be a more probable basis for dislocation (laterally) than anteriorly directed forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnobaeva, L. A., E-mail: kla1983@mail.ru; Siberian State Medical University Moscowski Trakt 2, Tomsk, 634050; Shapovalov, A. V.
Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA molecule is investigated. Such waves have an important role in the regulation of important biological processes in living systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the frameworkmore » of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker– Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine–Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker–Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum.« less
Modeling dynamic behavior of superconducting maglev systems under external disturbances
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He
2017-08-01
For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.
[Research progresses on ergonomics assessment and measurement methods for push-pull behavior].
Zhao, Yan; Li, Dongxu; Guo, Shengpeng
2011-10-01
Pushing and pulling (P&P) is a common operating mode of operator's physical works, and plays an important role in evaluation of human behavior health and operation performance. At present, there are many research methods of P&P, and this article is a state-of-art review of the classification of P&P research methods, the various impact factors in P&P program, technical details of internal/external P&P force measurement and evaluation, the limitation of current research methods and the future developments in the ergonomics field.
Li, Cheng Guo; Lee, Kwang; Lee, Chang Yeol; Dangol, Manita; Jung, Hyungil
2012-08-28
A minimally invasive blood-extraction system is fabricated by the integration of an elastic self-recovery actuator and an ultrahigh-aspect-ratio microneedle. The simple elastic self-recovery actuator converts finger force to elastic energy to provide power for blood extraction and transport without requiring an external source of power. This device has potential utility in the biomedical field within the framework of complete micro-electromechanical systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An object oriented Python interface for atomistic simulations
NASA Astrophysics Data System (ADS)
Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.
2016-01-01
Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten S.; Ying, Kairan; Grainger, Simon; Zheng, Xiaogu
2018-04-01
Models from the coupled model intercomparison project phase 5 (CMIP5) dataset are evaluated for their ability to simulate the dominant slow modes of interannual variability in the Northern Hemisphere atmospheric circulation 500 hPa geopotential height in the twentieth century. A multi-model ensemble of the best 13 models has then been used to identify the leading modes of interannual variability in components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. Modes in the intraseasonal component are related to intraseasonal variability in the North Atlantic, North Pacific and North American, and Eurasian regions and are little affected by the larger radiative forcing of the Representative Concentration Pathways 8.5 (RCP8.5) scenario. The leading modes in the slow-internal component are related to the El Niño-Southern Oscillation, Pacific North American or Tropical Northern Hemisphere teleconnection, the North Atlantic Oscillation, and the Western Pacific teleconnection pattern. While the structure of these slow-internal modes is little affected by the larger radiative forcing of the RCP8.5 scenario, their explained variance increases in the warmer climate. The leading mode in the slow-external component has a significant trend and is shown to be related predominantly to the climate change trend in the well mixed greenhouse gas concentration during the historical period. This mode is associated with increasing height in the 500 hPa pressure level. A secondary influence on this mode is the radiative forcing due to stratospheric aerosols associated with volcanic eruptions. The second slow-external mode is shown to be also related to radiative forcing due to stratospheric aerosols. Under RCP8.5 there is only one slow-external mode related to greenhouse gas forcing with a trend over four times the historical trend.
Liu, Ping; Wang, Jianquan; Xu, Yan; Ao, Yingfang
2015-04-01
The aim of this study was to determine the in situ forces and length patterns of the fibular collateral ligament (FCL) and kinematics of the knee under various loading conditions. Six fresh-frozen cadaveric knees were used (mean age 46 ± 14.4 years; range 20-58). In situ forces and length patterns of FCL and kinematics of the knee were determined under the following loading conditions using a robotic/universal force-moment sensor testing system: no rotation, varus (10 Nm), external rotation (5 Nm), and internal rotation (5 Nm) at 0°, 15°, 30°, 60º, 90°, and 120° of flexion, respectively. Under no rotation loading, the distances between the centres of the FCL attachments decreased as the knee flexed. Under varus loading, the force in FCL peaked at 15° of flexion and decreased with further knee flexion, while distances remained nearly constant and the varus rotation increased with knee flexion. Using external rotation, the force in the FCL also peaked at 15° flexion and decreased with further knee flexion, the distances decreased with flexion, and external rotation increased with knee flexion. Using internal rotation load, the force in the FCL was relatively small across all knee flexion angles, and the distances decreased with flexion; the amount of internal rotation was fairly constant. FCL has a primary role in preventing varus and external rotation at 15° of flexion. The FCL does not perform isometrically following knee flexion during neutral rotation, and tibia rotation has significant effects on the kinematics of the FCL. Varus and external rotation laxity increased following knee flexion. By providing more realistic data about the function and length patterns of the FCL and the kinematics of the intact knee, improved reconstruction and rehabilitation protocols can be developed.
Using neutral beams as a light ion beam probe (invited)
Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.; ...
2014-08-05
By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasilov, Sergei V.; Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov; Kernbichler, Winfried
2014-09-15
The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such thatmore » the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.« less
Using neutral beams as a light ion beam probe (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi, E-mail: chenxi@fusion.gat.com; Heidbrink, W. W.; Van Zeeland, M. A.
By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less
Using neutral beams as a light ion beam probe (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.
By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less
External Influences on Modeled and Observed Cloud Trends
NASA Technical Reports Server (NTRS)
Marvel, Kate; Zelinka, Mark; Klein, Stephen A.; Bonfils, Celine; Caldwell, Peter; Doutriaux, Charles; Santer, Benjamin D.; Taylor, Karl E.
2015-01-01
Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 (Coupled Model Intercomparison Project - Phase 5) model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP (International Satellite Cloud Climatology Project) and PATMOS-x (Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres - Extended). The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.
Hu, Yi; Cheng, Xuanhong; Daniel Ou-Yang, H
2013-01-01
Fluorescence correlation spectroscopy (FCS) is one of the most sensitive methods for enumerating low concentration nanoparticles in a suspension. However, biological nanoparticles such as viruses often exist at a concentration much lower than the FCS detection limit. While optically generated trapping potentials are shown to effectively enhance the concentration of nanoparticles, feasibility of FCS for enumerating field-enriched nanoparticles requires understanding of the nanoparticle behavior in the external field. This paper reports an experimental study that combines optical trapping and FCS to examine existing theoretical predictions of particle concentration. Colloidal suspensions of polystyrene (PS) nanospheres and HIV-1 virus-like particles are used as model systems. Optical trapping energies and statistical analysis are used to discuss the applicability of FCS for enumerating nanoparticles in a potential well produced by a force field.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2003-12-16
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2007-02-20
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-02-07
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
NASA Astrophysics Data System (ADS)
Schmith, Torben; Thejll, Peter; Johansen, Søren
2016-04-01
We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.
NASA Technical Reports Server (NTRS)
Lyell, M. J.; Roh, Michael
1991-01-01
With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.
Non-cooperative Brownian donkeys: A solvable 1D model
NASA Astrophysics Data System (ADS)
Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.
2003-12-01
A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.
Regularity in an environment produces an internal torque pattern for biped balance control.
Ito, Satoshi; Kawasaki, Haruhisa
2005-04-01
In this paper, we present a control method for achieving biped static balance under unknown periodic external forces whose periods are only known. In order to maintain static balance adaptively in an uncertain environment, it is essential to have information on the ground reaction forces. However, when the biped is exposed to a steady environment that provides an external force periodically, uncertain factors on the regularity with respect to a steady environment are gradually clarified using learning process, and finally a torque pattern for balancing motion is acquired. Consequently, static balance is maintained without feedback from ground reaction forces and achieved in a feedforward manner.
Propagation of the state change induced by external forces in local interactions
NASA Astrophysics Data System (ADS)
Lu, Jianjun; Tokinaga, Shozo
2016-10-01
This paper analyses the propagation of the state changes of agents that are induced by external forces applied to a plane. In addition, we propose two models for the behavior of the agents placed on a lattice plane, both of which are affected by local interactions. We first assume that agents are allowed to move to another site to maximise their satisfaction. Second, we utilise a model in which the agents choose activities on each site. The results show that the migration (activity) patterns of agents in both models achieve stability without any external forces. However, when we apply an impulsive external force to the state of the agents, we then observe the propagation of the changes in the agents' states. Using simulation studies, we show the conditions for the propagation of the state changes of the agents. We also show the propagation of the state changes of the agents allocated in scale-free networks and discuss the estimation of the agents' decisions in real state changes. Finally, we discuss the estimation of the agents' decisions in real state temporal changes using economic and social data from Japan and the United States.
Triggered dynamics in a model of different fault creep regimes
Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina
2014-01-01
The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397
Evolution of a Gaussian laser beam in warm collisional magnetoplasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari, M. J.; Jafari Milani, M. R., E-mail: mrj.milani@gmail.com; Niknam, A. R.
2016-07-15
In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. Itmore » is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).« less
Sheng, Zhigao; Feng, Qiyuan; Zhou, Haibiao; Dong, Shuai; Xu, Xueli; Cheng, Long; Liu, Caixing; Hou, Yubin; Meng, Wenjie; Sun, Yuping; Nakamura, Masao; Tokura, Yoshinori; Kawasaki, Masashi; Lu, Qingyou
2018-06-13
Constituent atoms and electrons determine matter properties together, and they can form long-range ordering respectively. Distinguishing and isolating the electronic ordering out from the lattice crystal is a crucial issue in contemporary materials science. However, the intrinsic structure of a long-range electronic ordering is difficult to observe because it can be easily affected by many external factors. Here, we present the observation of electronic multiple ordering (EMO) and its dynamics at the micrometer scale in a manganite thin film. The strong internal couplings among multiple electronic degrees of freedom in the EMO make its morphology robust against external factors and visible via well-defined boundaries along specific axes and cleavage planes, which behave like a multiple-ordered electronic crystal. A strong magnetic field up to 17.6 T is needed to completely melt such EMO at 7 K, and the corresponding formation, motion, and annihilation dynamics are imaged utilizing a home-built high-field magnetic force microscope. The EMO is parasitic within the lattice crystal house, but its dynamics follows its own rules of electronic correlation, therefore becoming distinguishable and isolatable as the electronic ordering. Our work provides a microscopic foundation for the understanding and control of the electronic ordering and the designs of the corresponding devices.
Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces.
Berman, Yonatan; Ben-Jacob, Eshel; Zhang, Xin; Shapira, Yoash
2016-01-01
Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors' long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors-the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.
Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces
Berman, Yonatan; Zhang, Xin; Shapira, Yoash
2016-01-01
Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors’ long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI), an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors—the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress. PMID:27031230
The onset of chaos in orbital pilot-wave dynamics.
Tambasco, Lucas D; Harris, Daniel M; Oza, Anand U; Rosales, Rodolfo R; Bush, John W M
2016-10-01
We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.
Nonstationary time series prediction combined with slow feature analysis
NASA Astrophysics Data System (ADS)
Wang, G.; Chen, X.
2015-01-01
Almost all climate time series have some degree of nonstationarity due to external driving forces perturbations of the observed system. Therefore, these external driving forces should be taken into account when reconstructing the climate dynamics. This paper presents a new technique of combining the driving force of a time series obtained using the Slow Feature Analysis (SFA) approach, then introducing the driving force into a predictive model to predict non-stationary time series. In essence, the main idea of the technique is to consider the driving forces as state variables and incorporate them into the prediction model. To test the method, experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted. The results showed improved and effective prediction skill.
Observation and manipulation of magnetic domains in sol gel derived thin films of spinel ferrites
NASA Astrophysics Data System (ADS)
Datar, Ashwini A.; Mathe, Vikas L.
2017-12-01
Thin films of spinel ferrites, namely zinc substituted nickel, cobalt ferrite, and manganese substituted cobalt ferrite, were synthesized using sol-gel derived spin-coating techniques. The films were characterized using x-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy techniques for the analysis of structural, morphological and vibrational band transition properties, which confirm the spinel phase formation of the films. The magnetic force microscopy (MFM) technique was used to observe the magnetic domain structure present in the synthesized films. Further, the films were subjected to an external DC magnetic field of 2 kG to orient the magnetic domains and analyzed using an ex situ MFM technique.
Dual-keel electrodynamic maglev system
He, J.L.; Wang, Z.; Rote, D.M.; Coffey, H.T.; Hull, J.R.; Mulcahy, T.M.; Cal, Y.
1996-12-24
A propulsion and stabilization system is disclosed with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle. 6 figs.
Imaging the magnetic nanodomains in Nd 2 Fe 14 B
Huang, Lunan; Taufour, Valentin; Lamichhane, T. N.; ...
2016-03-08
Here, we study magnetic domains in Nd 2Fe 14B single crystals using high resolution magnetic force microscopy (MFM). Previous MFM studies and small angle neutron scattering experiments suggested the presence of nanoscale domains in addition to optically detected micrometer-scale ones. We find, in addition to the elongated, wavy nanodomains reported by a previous MFM study, that the micrometer-sized, star-shaped fractal pattern is constructed of an elongated network of nanodomains ~20 nm in width, with resolution-limited domain walls thinner than 2 nm. While the microscopic domains exhibit significant resilience to an external magnetic field, some of the nanodomains are sensitive tomore » the magnetic field of the MFM tip.« less
Application of largest Lyapunov exponent analysis on the studies of dynamics under external forces
NASA Astrophysics Data System (ADS)
Odavić, Jovan; Mali, Petar; Tekić, Jasmina; Pantić, Milan; Pavkov-Hrvojević, Milica
2017-06-01
Dynamics of driven dissipative Frenkel-Kontorova model is examined by using largest Lyapunov exponent computational technique. Obtained results show that besides the usual way where behavior of the system in the presence of external forces is studied by analyzing its dynamical response function, the largest Lyapunov exponent analysis can represent a very convenient tool to examine system dynamics. In the dc driven systems, the critical depinning force for particular structure could be estimated by computing the largest Lyapunov exponent. In the dc+ac driven systems, if the substrate potential is the standard sinusoidal one, calculation of the largest Lyapunov exponent offers a more sensitive way to detect the presence of Shapiro steps. When the amplitude of the ac force is varied the behavior of the largest Lyapunov exponent in the pinned regime completely reflects the behavior of Shapiro steps and the critical depinning force, in particular, it represents the mirror image of the amplitude dependence of critical depinning force. This points out an advantage of this technique since by calculating the largest Lyapunov exponent in the pinned regime we can get an insight into the dynamics of the system when driving forces are applied. Additionally, the system is shown to be not chaotic even in the case of incommensurate structures and large amplitudes of external force, which is a consequence of overdampness of the model and the Middleton's no passing rule.