Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C
2015-09-01
In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kheirolomoom, Azadeh; Khorasheh, Farhad; Fazelinia, Hossein
2002-01-01
Immobilization of enzymes on nonporous supports provides a suitable model for investigating the effect of external mass transfer limitation on the reaction rate in the absence of internal diffusional resistance. In this study, deacylation of penicillin G was investigated using penicillin acylase immobilized on ultrafine silica particles. Kinetic studies were performed within the low-substrate-concentration region, where the external mass transfer limitation becomes significant. To predict the apparent kinetic parameters and the overall effectiveness factor, knowledge of the external mass transfer coefficient, k(L)a, is necessary. Although various correlations exist for estimation of k(L)a, in this study, an optimization scheme was utilized to obtain this coefficient. Using the optimum values of k(L)a, the initial reaction rates were predicted and found to be in good agreement with the experimental data.
Determination of external and internal mass transfer limitation in nitrifying microbial aggregates.
Wilén, Britt-Marie; Gapes, Daniel; Keller, Jürg
2004-05-20
In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. Copyright 2004 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Dotto, Guilherme Luiz; Meili, Lucas; Tanabe, Eduardo Hiromitsu; Chielle, Daniel Padoin; Moreira, Marcos Flávio Pinto
2018-02-01
The mass transfer process that occurs in the thin layer drying of papaya seeds was studied under different conditions. The external mass transfer resistance and the dependence of effective diffusivity ( D EFF ) in relation to the moisture ratio ( \\overline{MR} ) and temperature ( T) were investigated from the perspective of diffusive models. It was verified that the effective diffusivity was affected by the moisture content and temperature. A new correlation was proposed for drying of papaya seeds in order to describe these influences. Regarding the use of diffusive models, the results showed that, at conditions of low drying rates ( T ≤ 70 °C), the external mass transfer resistance, as well as the dependence of the effective diffusivity with respect to the temperature and moisture content should be considered. At high drying rates ( T > 90 °C), the dependence of the effective diffusivity with respect to the temperature and moisture content can be neglected, but the external mass transfer resistance was still considerable in the range of air velocities used in this work.
Zhou, L; Qu, Z G; Ding, T; Miao, J Y
2016-04-01
The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.
NASA Astrophysics Data System (ADS)
Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.
2016-04-01
The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.
Effect of mass transfer in a recirculation batch reactor system for immobilized penicillin amidase.
Park, J M; Choi, C Y; Seong, B L; Han, M H
1982-10-01
The effect of external mass transfer resistance on the overall reaction rate of the immobilized whole cell penicillin amidase of E. coli in a recirculation batch reactor was investigated. The internal diffusional resistance was found negligible as indicated by the value of effectiveness factor, 0.95. The local environmental change in a column due to the pH drop was successfully overcome by employing buffer solution. The reaction rate was measured by pH-stat method and was found to follow the simple Michaelis-Menten law at the initial stage of the reaction. The values of the net reaction rate experimentally determined were used to calculate the substrate concentration at the external surface of the catalyst pellet and then to calculate the mass transfer coefficient, k(L), at various flow rates and substrate concentrations. The correlation proposed by Chilton and Colburn represented adequately the experimental data. The linear change of log j(D) at low log N(Re) with negative slope was ascribed to the fact that the external mass transfer approached the state of pure diffusion in the limit of zero superficial velocity.
Mass transfer resistance in ASFF reactors for waste water treatment.
Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M
1996-01-01
Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.
Odorant transfer characteristics of white bread during baking.
Onishi, Masanobu; Inoue, Michiko; Araki, Tetsuya; Iwabuchi, Hisakatsu; Sagara, Yasuyuki
2011-01-01
The potent odorants in the crust and crumb of white bread were identified and quantified by gas chromatography-mass spectrometry and gas chromatography/olfactometry. The weight loss ratio of the samples baked at 220 °C was controlled in the range of 0-28%. The odorants were classified into 5 types by the transfer characteristics: i) All amounts of odorant transferred from the crust to external space (type-I). ii) All transferred from the crust to the crumb and external space (type-II). iii) Certain amount remaining in the crust and the rest transferred to the crumb and external space (type-III). iv) All transferred from the crumb to external space (type-IV). v) Certain amount remaining in the crumb and the rest transferred to the crust and external space (type-V). The odorants of type-IV were not apparent after the crust had formed. The results indicate that the crust could be a barrier to prevent the odorants from being transferred to external space.
NASA Astrophysics Data System (ADS)
Ahmadi Nadooshan, Afshin; Kalbasi, Rasool; Afrand, Masoud
2018-04-01
Perforated fins effects on the heat transfer rate of a circular tube are examined experimentally. An experimental system is set up through the wind tunnel and equipped with necessary measurement tools. Hot water passes through the finned tube and heat transfers to the fin-side air created using the wind tunnel with different velocities. Two fin sets of identical weight are installed on a circular tube with different outer diameters of 22 and 26 mm. The experiments are conducted at two different mass flow rates of the hot water and six Reynolds number of external air flow. Considering the four finned tubes and one no finned tube, a total of 60 tests are conducted. Results showed that with increasing the internal or external flow rates, the effect of larger cross-sectional area is greater. By opening holes on the fins, in addition to weight loss, the maximum heat transfer rate for perforated fins increases by 8.78% and 9.23% respectively for mass flow rates of 0.05 and 0.1 kg/s at low external Reynolds number. While, at high external Reynolds number, the holes reduces heat transfer by 8.4% and 10.6% for mass flow rates of 0.05 and 0.1 kg/s, respectively.
de Gooijer, C D; Wijffels, R H; Tramper, J
1991-07-01
The modeling of the growth of Nitrobacter agilis cell immobilized in kappa-carrageenan is presented. A detailed description is given of the modeling of internal diffusion and growth of cells in the support matrix in addition to external mass transfer resistance. The model predicts the substrate and biomass profiles in the support as well as the macroscopic oxygen consumption rate of the immobilized biocatalyst in time. The model is tested by experiments with continuously operated airlift loop reactors containing cells immobilized in kappa-carrageenan. The model describes experimental data very well. It is clearly shown that external mass transfer may not be neglected. Furthermore, a sensitivity analysis of the parameters at their values during the experiments revealed that apart from the radius of the spheres and the substrate bulk concentration, the external mass transfer resistance coefficient is the most sensitive parameter for our case.
Seidensticker, Sven; Zarfl, Christiane; Cirpka, Olaf A; Fellenberg, Greta; Grathwohl, Peter
2017-11-07
In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion. Which of these mechanisms controls the mass-transfer kinetics depends on partition coefficients, particle size, boundary conditions, and time. We have developed a semianalytical model accounting for both processes and performed batch experiments on the desorption kinetics of typical wastewater pollutants (phenanthrene, tonalide, and benzophenone) at different dissolved-organic-matter concentrations, which change the overall partitioning between microplastics and water. Initially, mass transfer is externally dominated, while finally, intraparticle diffusion controls release kinetics. Under boundary conditions typical for batch experiments (finite bath), desorption accelerates with increasing partition coefficients for intraparticle diffusion, while it becomes independent of partition coefficients if film diffusion prevails. On the contrary, under field conditions (infinite bath), the pollutant release controlled by intraparticle diffusion is not affected by partitioning of the compound while external mass transfer slows down with increasing sorption. Our results clearly demonstrate that sorption/desorption time scales observed in batch experiments may not be transferred to field conditions without an appropriate model accounting for both the mass-transfer mechanisms and the specific boundary conditions at hand.
Bibliography on augmentation of convective heat and mass transfer-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.
1983-12-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performancemore » evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.« less
Bibliography on augmentation of convective heat and mass transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergles, A.E.; Webb, R.L.; Junkhan, G.H.
1979-05-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation ofmore » passive techniques. Patents are not included as they will be the subject of a future topical report.« less
NASA Technical Reports Server (NTRS)
Kleinman, Leonid S.; Red, X. B., Jr.
1995-01-01
An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.
NASA Technical Reports Server (NTRS)
Kleinman, Leonid S.; Reed, X. B., Jr.
1995-01-01
An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.
Intrinsic kinetic parameters of substrate utilization by immobilized anaerobic sludge.
Zaiat, M; Vieira, L G; Foresti, E
1997-01-20
This article presents a method for evaluating the intrinsic kinetic parameters of the specific substrate utilization rate (r) equation and discusses the results obtained for anaerobic sludge-bed samples taken from a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. This method utilizes a differential reactor filled with polyurethane foam matrices containing immobilized anaerobic sludge which is subjected to a range of feeding substrate flow rates. The range of liquid superficial velocities thus obtained are used for generating data of observed specific substrate utilization rates (r(obs)) under a diversity of external mass transfer resistance conditions. The r(obs) curves are then adjusted to permit their extrapolation for the condition of no external mass transfer resistance, and the values determined are used as a test for the condition of absence of limitation of internal mass transfer. The intrinsic parameters r(max), the maximum specific substrate utilization rate, and K(s), the half-velocity coefficient, are evaluated from the r values under no external mass transfer resistance and no internal mass transfer limitation. The application of such a method for anaerobic sludge immobilized in polyurethane foam particles treating a glucose substrate at 30 degrees C resulted in intrinsic r(max) and K(s), respectively, of 0.330 mg chemical oxygen demand (COD) . mg(-1) volatile suspended solids (VSS) . h(-1) and 72 mg COD . L(-1). In comparison with the values found in the literature, intrinsic r(max) is significantly high and intrinsic K(s) is relatively low. (c) 1997 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Gui, Keting; Wang, Xiaobo
2016-02-01
The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.
Theoretical models for supercritical fluid extraction.
Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan
2012-08-10
For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.
Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.
Sulaymon, Abbas H; Ahmed, Kawther W
2008-01-15
For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.
Sljivić, M; Smiciklas, I; Plećas, I; Pejanović, S
2011-07-01
The kinetics of Cu2+ sorption on to zeolite, clay and diatomite was investigated as a function of initial metal concentrations. For consideration of the mass transfer phenomena, single resistance models based on both film and intraparticle diffusion were tested and compared. The obtained results suggested that the rate-limiting step in Cu2+ sorption strongly depended on the sorbent type, as well as on initial cation concentration. The decrease in external mass transfer coefficients with the increase in initial metal concentrations was in excellent agreement with expressions based on Sherwood and Schmidt dimensionless numbers. The internal diffusivities through zeolite particles were in the range 1.0 x 10(-11) to 1.0 x 10(-13) m2/min, depending on the Cu2+ concentration and the applied theoretical model.
The influence of mass transfer on solute transport in column experiments with an aggregated soil
NASA Astrophysics Data System (ADS)
Roberts, Paul V.; Goltz, Mark N.; Summers, R. Scott; Crittenden, John C.; Nkedi-Kizza, Peter
1987-06-01
The spreading of concentration fronts in dynamic column experiments conducted with a porous, aggregated soil is analyzed by means of a previously documented transport model (DFPSDM) that accounts for longitudinal dispersion, external mass transfer in the boundary layer surrounding the aggregate particles, and diffusion in the intra-aggregate pores. The data are drawn from a previous report on the transport of tritiated water, chloride, and calcium ion in a column filled with Ione soil having an average aggregate particle diameter of 0.34 cm, at pore water velocities from 3 to 143 cm/h. The parameters for dispersion, external mass transfer, and internal diffusion were predicted for the experimental conditions by means of generalized correlations, independent of the column data. The predicted degree of solute front-spreading agreed well with the experimental observations. Consistent with the aggregate porosity of 45%, the tortuosity factor for internal pore diffusion was approximately equal to 2. Quantitative criteria for the spreading influence of the three mechanisms are evaluated with respect to the column data. Hydrodynamic dispersion is thought to have governed the front shape in the experiments at low velocity, and internal pore diffusion is believed to have dominated at high velocity; the external mass transfer resistance played a minor role under all conditions. A transport model such as DFPSDM is useful for interpreting column data with regard to the mechanisms controlling concentration front dynamics, but care must be exercised to avoid confounding the effects of the relevant processes.
Diffusion and reaction within porous packing media: a phenomenological model.
Jones, W L; Dockery, J D; Vogel, C R; Sturman, P J
1993-04-25
A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion.
Microfluidic droplet-based liquid-liquid extraction.
Mary, Pascaline; Studer, Vincent; Tabeling, Patrick
2008-04-15
We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solute-fluorescein-from the external phase (extraction) and the opposite case, where droplets reject a solute-rhodamine-into the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe-2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.
NASA Technical Reports Server (NTRS)
Turner, E. R.; Wilson, M. D.; Hylton, L. D.; Kaufman, R. M.
1985-01-01
Progress in predictive design capabilities for external heat transfer to turbine vanes was summarized. A two dimensional linear cascade (previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils) was used to examine the effect of leading edge shower head film cooling on downstream heat transfer. The data were used to develop and evaluate analytical models. Modifications to the two dimensional boundary layer model are described. The results were used to formulate and test an effective viscosity model capable of predicting heat transfer phenomena downstream of the leading edge film cooling array on both the suction and pressure surfaces, with and without mass injection.
Influence of drying air parameters on mass transfer characteristics of apple slices
NASA Astrophysics Data System (ADS)
Beigi, Mohsen
2016-10-01
To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.
Modeling and simulation of an enzymatic reactor for hydrolysis of palm oil.
Bhatia, S; Naidu, A D; Kamaruddin, A H
1999-01-01
Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.
Direct Numerical Simulation of Fluid Flow and Mass Transfer in Particle Clusters
2018-01-01
In this paper, an efficient ghost-cell based immersed boundary method is applied to perform direct numerical simulation (DNS) of mass transfer problems in particle clusters. To be specific, a nine-sphere cuboid cluster and a random-generated spherical cluster consisting of 100 spheres are studied. In both cases, the cluster is composed of active catalysts and inert particles, and the mutual influence of particles on their mass transfer performance is studied. To simulate active catalysts the Dirichlet boundary condition is imposed at the external surface of spheres, while the zero-flux Neumann boundary condition is applied for inert particles. Through our studies, clustering is found to have negative influence on the mass transfer performance, which can be then improved by dilution with inert particles and higher Reynolds numbers. The distribution of active/inert particles may lead to large variations of the cluster mass transfer performance, and individual particle deep inside the cluster may possess a high Sherwood number. PMID:29657359
A simple 2D biofilm model yields a variety of morphological features.
Hermanowicz, S W
2001-01-01
A two-dimensional biofilm model was developed based on the concept of cellular automata. Three simple, generic processes were included in the model: cell growth, internal and external mass transport and cell detachment (erosion). The model generated a diverse range of biofilm morphologies (from dense layers to open, mushroom-like forms) similar to those observed in real biofilm systems. Bulk nutrient concentration and external mass transfer resistance had a large influence on the biofilm structure.
Carr, Elliot J; Pontrelli, Giuseppe
2018-04-12
We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules. We derive an analytical solution for the concentration in the sphere and in the surrounding medium that avoids any artificial truncation at a finite distance. The closed-form solution in each concentric layer is expressed in terms of a suitably-defined inverse Laplace transform that can be evaluated numerically. Concentration profiles and drug mass curves in the spherical layers and in the external environment are presented and the dependency of the solution on the mass transfer coefficient at the surface of the sphere analyzed. Copyright © 2018 Elsevier Inc. All rights reserved.
Substrate mass transfer: analytical approach for immobilized enzyme reactions
NASA Astrophysics Data System (ADS)
Senthamarai, R.; Saibavani, T. N.
2018-04-01
In this paper, the boundary value problem in immobilized enzyme reactions is formulated and approximate expression for substrate concentration without external mass transfer resistance is presented. He’s variational iteration method is used to give approximate and analytical solutions of non-linear differential equation containing a non linear term related to enzymatic reaction. The relevant analytical solution for the dimensionless substrate concentration profile is discussed in terms of dimensionless reaction parameters α and β.
Mass transfer parameters of celeriac during vacuum drying
NASA Astrophysics Data System (ADS)
Beigi, Mohsen
2017-04-01
An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.
Marin, Pricila; Borba, Carlos Eduardo; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando R; de Oliveira, Silvia Priscila Dias; Kroumov, Alexander Dimitrov
2014-01-01
Reactive blue 5G dye removal in a fixed-bed column packed with Dowex Optipore SD-2 adsorbent was modelled. Three mathematical models were tested in order to determine the limiting step of the mass transfer of the dye adsorption process onto the adsorbent. The mass transfer resistance was considered to be a criterion for the determination of the difference between models. The models contained information about the external, internal, or surface adsorption limiting step. In the model development procedure, two hypotheses were applied to describe the internal mass transfer resistance. First, the mass transfer coefficient constant was considered. Second, the mass transfer coefficient was considered as a function of the dye concentration in the adsorbent. The experimental breakthrough curves were obtained for different particle diameters of the adsorbent, flow rates, and feed dye concentrations in order to evaluate the predictive power of the models. The values of the mass transfer parameters of the mathematical models were estimated by using the downhill simplex optimization method. The results showed that the model that considered internal resistance with a variable mass transfer coefficient was more flexible than the other ones and this model described the dynamics of the adsorption process of the dye in the fixed-bed column better. Hence, this model can be used for optimization and column design purposes for the investigated systems and similar ones.
Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin
2013-02-01
A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.
An advanced model of heat and mass transfer in the protective clothing - verification
NASA Astrophysics Data System (ADS)
Łapka, P.; Furmański, P.
2016-09-01
The paper presents an advanced mathematical and numerical models of heat and mass transfer in the multi-layers protective clothing and in elements of the experimental stand subjected to either high surroundings temperature or high radiative heat flux emitted by hot objects. The model included conductive-radiative heat transfer in the hygroscopic porous fabrics and air gaps as well as conductive heat transfer in components of the stand. Additionally, water vapour diffusion in the pores and air spaces as well as phase transition of the bound water in the fabric fibres (sorption and desorption) were accounted for. The thermal radiation was treated in the rigorous way e.g.: semi-transparent absorbing, emitting and scattering fabrics were assumed a non-grey and all optical phenomena at internal or external walls were modelled. The air was assumed transparent. Complex energy and mass balance as well as optical conditions at internal or external interfaces were formulated in order to find exact values of temperatures, vapour densities and radiation intensities at these interfaces. The obtained highly non-linear coupled system of discrete equation was solve by the in-house iterative algorithm which was based on the Finite Volume Method. The model was then successfully partially verified against the results obtained from commercial software for simplified cases.
Thermal resistance model for CSP central receivers
NASA Astrophysics Data System (ADS)
de Meyer, O. A. J.; Dinter, F.; Govender, S.
2016-05-01
The receiver design and heliostat field aiming strategy play a vital role in the heat transfer efficiency of the receiver. In molten salt external receivers, the common operating temperature of the heat transfer fluid or molten salt ranges between 285°C to 565°C. The optimum output temperature of 565°C is achieved by adjusting the mass flow rate of the molten salt through the receiver. The reflected solar radiation onto the receiver contributes to the temperature rise in the molten salt by means of heat transfer. By investigating published work on molten salt external receiver operating temperatures, corresponding receiver tube surface temperatures and heat losses, a model has been developed to obtain a detailed thermographic representation of the receiver. The steady state model uses a receiver flux map as input to determine: i) heat transfer fluid mass flow rate through the receiver to obtain the desired molten salt output temperature of 565°C, ii) receiver surface temperatures iii) receiver tube temperatures iv) receiver efficiency v) pressure drop across the receiver and vi) corresponding tube strain per panel.
Study of acetic acid production by immobilized acetobacter cells: oxygen transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghommidh, C.; Navarro, J.M.; Durand, G.
1982-03-01
The immobilization of living Acetobacter cells by adsorption onto a large-surface-area ceramic support was studied in a pulsed flow reactor. The high oxygen transfer capability of the reactor enabled acetic acid production rates up to 10.4 g/L/h to be achieved. Using a simple mathematical model incorporating both internal and external mass transfer coefficients, it was shown that oxygen transfer in the microbial film controls the reactor productivity. (Refs. 10).
A model for allometric scaling of mammalian metabolism with ambient heat loss.
Kwak, Ho Sang; Im, Hong G; Shim, Eun Bo
2016-03-01
Allometric scaling, which represents the dependence of biological traits or processes on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer, which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value < 2/3. The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.
Kinetics and mass-transfer phenomena in anaerobic granular sludge.
Gonzalez-Gil, G; Seghezzo, L; Lettinga, G; Kleerebezem, R
2001-04-20
The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass. Copyright 2001 John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
Hand, David W.; Crittenden, John C.; Ali, Anisa N.; Bulloch, John L.; Hokanson, David R.; Parrem, David L.
1996-01-01
This thesis includes the development and verification of an adsorption model for analysis and optimization of the adsorption processes within the International Space Station multifiltration beds. The fixed bed adsorption model includes multicomponent equilibrium and both external and intraparticle mass transfer resistances. Single solute isotherm parameters were used in the multicomponent equilibrium description to predict the competitive adsorption interactions occurring during the adsorption process. The multicomponent equilibrium description used the Fictive Component Analysis to describe adsorption in unknown background matrices. Multicomponent isotherms were used to validate the multicomponent equilibrium description. Column studies were used to develop and validate external and intraparticle mass transfer parameter correlations for compounds of interest. The fixed bed model was verified using a shower and handwash ersatz water which served as a surrogate to the actual shower and handwash wastewater.
Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.
Chen, J Paul; Wang, Lin
2004-01-01
Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.
Xiu, G H; Jiang, L; Li, P
2001-07-05
A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. Copyright 2001 John Wiley & Sons, Inc.
Oxidation reactions of solid carbonaceous and resinous substances in supercritical water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koda, S.
Recent kinetic studies, particularly those by means of shadowgraphy and X-ray radiography, for supercritical water oxidation of solid carbonaceous and resinous substances have revealed the importance of the O{sub 2} mass transfer process over the intrinsic surface reaction at higher temperatures. The mass transfer processes, internal and external one, should be incorporated in designing SCWO processes for solid substances and related processes such as catalytic SCWO. Some model calculation efforts of late are briefly described. Finally, fundamental information required for future development is itemed.
Transient Numerical Modeling of Catalytic Channels
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the first case. Finally, the results show that different initial surface-species distribution leads to different steady-states under certain conditions. These results demonstrate the utility of a lumped two-phase model of a transient catalytic combustor with detailed chemistry.
Acoustic Multipurpose Cargo Transfer Bag
NASA Technical Reports Server (NTRS)
Baccus, Shelley
2015-01-01
The Logistics Reduction (LR) project within the Advanced Exploration Systems (AES) program is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) are designed to be the same external volume as a regular cargo transfer bag, the common logistics carrier for the International Space Station. After use as a cargo bag, the MCTB can be unzipped and unfolded to be reused. This Acoustic MCTBs transform into acoustic blankets after the initial logistics carrying objective is complete.
The nonlinear model for emergence of stable conditions in gas mixture in force field
NASA Astrophysics Data System (ADS)
Kalutskov, Oleg; Uvarova, Liudmila
2016-06-01
The case of M-component liquid evaporation from the straight cylindrical capillary into N - component gas mixture in presence of external forces was reviewed. It is assumed that the gas mixture is not ideal. The stable states in gas phase can be formed during the evaporation process for the certain model parameter valuesbecause of the mass transfer initial equationsnonlinearity. The critical concentrations of the resulting gas mixture components (the critical component concentrations at which the stable states occur in mixture) were determined mathematically for the case of single-component fluid evaporation into two-component atmosphere. It was concluded that this equilibrium concentration ratio of the mixture components can be achieved by external force influence on the mass transfer processes. It is one of the ways to create sustainable gas clusters that can be used effectively in modern nanotechnology.
Blackmore, S; Pedretti, D; Mayer, K U; Smith, L; Beckie, R D
2018-05-30
Accurate predictions of solute release from waste-rock piles (WRPs) are paramount for decision making in mining-related environmental processes. Tracers provide information that can be used to estimate effective transport parameters and understand mechanisms controlling the hydraulic and geochemical behavior of WRPs. It is shown that internal tracers (i.e. initially present) together with external (i.e. applied) tracers provide complementary and quantitative information to identify transport mechanisms. The analysis focuses on two experimental WRPs, Piles 4 and Pile 5 at the Antamina Mine site (Peru), where both an internal chloride tracer and externally applied bromide tracer were monitored in discharge over three years. The results suggest that external tracers provide insight into transport associated with relatively fast flow regions that are activated during higher-rate recharge events. In contrast, internal tracers provide insight into mechanisms controlling solutes release from lower-permeability zones within the piles. Rate-limited diffusive processes, which can be mimicked by nonlocal mass-transfer models, affect both internal and external tracers. The sensitivity of the mass-transfer parameters to heterogeneity is higher for external tracers than for internal tracers, as indicated by the different mean residence times characterizing the flow paths associated with each tracer. The joint use of internal and external tracers provides a more comprehensive understanding of the transport mechanisms in WRPs. In particular, the tracer tests support the notion that a multi-porosity conceptualization of WRPs is more adequate for capturing key mechanisms than a dual-porosity conceptualization. Copyright © 2018 Elsevier B.V. All rights reserved.
Konti, Aikaterini; Mamma, Diomi; Hatzinikolaou, Dimitios G; Kekos, Dimitris
2016-10-01
3-Chloro-1,2-propanediol (3-CPD) biodegradation by Ca-alginate immobilized Pseudomonas putida cells was performed in batch system, continuous stirred tank reactor (CSTR), and packed-bed reactor (PBR). Batch system exhibited higher biodegradation rates and 3-CPD uptakes compared to CSTR and PBR. The two continuous systems (CSTR and PBR) when compared at 200 mg/L 3-CPD in the inlet exhibited the same removal of 3-CPD at steady state. External mass-transfer limitations are found negligible at all systems examined, since the observable modulus for external mass transfer Ω ≪ 1 and the Biot number Bi > 1. Intra-particle diffusion resistance had a significant effect on 3-CPD biodegradation in all systems studied, but to a different extent. Thiele modulus was in the range of 2.5 in batch system, but it was increased at 11 when increasing cell loading in the beads, thus lowering significantly the respective effectiveness factor. Comparing the systems at the same cell loading in the beads PBR was less affected by internal diffusional limitations compared to CSTR and batch system, and, as a result, exhibited the highest overall effectiveness factor.
Removal of hexavalent chromium by biosorption process in rotating packed bed.
Panda, M; Bhowal, A; Datta, S
2011-10-01
Removal of hexavalent chromium ions from an aqueous solution by crude tamarind (Tamarindus indica) fruit shell was examined in a rotating packed bed contactor by continuously recirculating a given volume of solution through the bed. Reduction of Cr(VI) to Cr(III) within the biosorbent appeared to be the removal mechanism. Depletion rate of Cr(VI) from, and release of reduced Cr(III) ions into the aqueous phase, was influenced by mass transfer resistance besides pH and packing depth. A mathematical model considering the reduction reaction to be irreversible and incorporating intraparticle and external phase mass transfer resistances represented the experimental data adequately. The study indicated that the limitations of fixed bed contactor operating under terrestrial gravity in intensifying mass transfer rates for this system can be overcome with rotating packed bed due to liquid flow under centrifugal acceleration.
Optical mass memory system (AMM-13). AMM/DBMS interface control document
NASA Technical Reports Server (NTRS)
Bailey, G. A.
1980-01-01
The baseline for external interfaces of a 10 to the 13th power bit, optical archival mass memory system (AMM-13) is established. The types of interfaces addressed include data transfer; AMM-13, Data Base Management System, NASA End-to-End Data System computer interconnect; data/control input and output interfaces; test input data source; file management; and facilities interface.
Synthesis of Cobalt Powder by Reduction of Cobalt Oxide with Ethanol
NASA Astrophysics Data System (ADS)
Cetinkaya, S.; Eroglu, S.
2018-03-01
In this study, ethanol (C2H5OH) was used as a reducing agent for Co powder synthesis from Co3O4. It aimed to investigate the effects of temperature (700-900 K), reaction time (0-60 min), and gas flow rate on the reaction behavior of Co3O4 in ethanol flow. Mass measurement, x-ray diffraction, and scanning electron microscopy techniques were used to characterize the products. Single-phase Co powders with mean particle sizes of 0.51 μm and 0.70 μm were obtained within 10 min at 800 K and 900 K, respectively. Above 800 K, external mass transfer controlled the reduction process (Q a = 0.52 kJ/mole). Below 800 K, the process (Q a = 20.17 kJ/mole) was partly controlled by external mass transfer and partly by intrinsic chemical reaction kinetics. Significant C uptake was observed at 700 K and 750 K within 60 min. The reactions were discussed in the light of thermodynamic results, which predicted Co formation from Co3O4 and C2H5OH.
Influence of mass transfer resistance on overall nitrate removal rate in upflow sludge bed reactors.
Ting, Wen-Huei; Huang, Ju-Sheng
2006-09-01
A kinetic model with intrinsic reaction kinetics and a simplified model with apparent reaction kinetics for denitrification in upflow sludge bed (USB) reactors were proposed. USB-reactor performance data with and without sludge wasting were also obtained for model verification. An independent batch study showed that the apparent kinetic constants k' did not differ from the intrinsic k but the apparent Ks' was significantly larger than the intrinsic Ks suggesting that the intra-granule mass transfer resistance can be modeled by changes in Ks. Calculations of the overall effectiveness factor, Thiele modulus, and Biot number combined with parametric sensitivity analysis showed that the influence of internal mass transfer resistance on the overall nitrate removal rate in USB reactors is more significant than the external mass transfer resistance. The simulated residual nitrate concentrations using the simplified model were in good agreement with the experimental data; the simulated results using the simplified model were also close to those using the kinetic model. Accordingly, the simplified model adequately described the overall nitrate removal rate and can be used for process design.
NASA Astrophysics Data System (ADS)
Łapka, Piotr; Furmański, Piotr
2018-04-01
The paper presents verification and validation of an advanced numerical model of heat and moisture transfer in the multi-layer protective clothing and in components of the experimental stand subjected to either high surroundings temperature or high radiative heat flux emitted by hot objects. The developed model included conductive-radiative heat transfer in the hygroscopic porous fabrics and air gaps as well as conductive heat transfer in components of the stand. Additionally, water vapour diffusion in the pores and air spaces as well as phase transition of the bound water in the fabric fibres (sorption and desorption) were accounted for. All optical phenomena at internal or external walls were modelled and the thermal radiation was treated in the rigorous way, i.e., semi-transparent absorbing, emitting and scattering fabrics with the non-grey properties were assumed. The air was treated as transparent. Complex energy and mass balances as well as optical conditions at internal or external interfaces were formulated in order to find values of temperatures, vapour densities and radiation intensities at these interfaces. The obtained highly non-linear coupled system of discrete equations was solved by the Finite Volume based in-house iterative algorithm. The developed model passed discretisation convergence tests and was successfully verified against the results obtained applying commercial software for simplified cases. Then validation was carried out using experimental measurements collected during exposure of the protective clothing to high radiative heat flux emitted by the IR lamp. Satisfactory agreement of simulated and measured temporal variation of temperature at external and internal surfaces of the multi-layer clothing was attained.
Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M
2006-12-01
A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.
Removal of copper by oxygenated pyrolytic tire char: kinetics and mechanistic insights.
Quek, Augustine; Balasubramanian, Rajashekhar
2011-04-01
The kinetics of copper ion (Cu(II)) removal from aqueous solution by pyrolytic tire char was modeled using five different conventional models. A modification to these models was also developed through a modified equation that accounts for precipitation. Conventional first- and second-order reaction models did not fit the copper sorption kinetics well, indicating a lack of simple rate-order dependency on solute concentration. Instead, a reversible first-order rate reaction showed the best fit to the data, indicating a dependence on surface functional groups. Due to the varying solution pH during the sorption process, modified external and internal mass transfer models were employed. Results showed that the sorption of copper onto oxygenated chars was limited by external mass transfer and internal resistance with and without the modification. However, the modification of the sorption process produced very different results for unoxygenated chars, which showed neither internal nor external limitation to sorption. Instead, its slow sorption rate indicates a lack of surface functional groups. The sorption of Cu(II) by oxygenated and unoxygenated chars was also found to occur via three and two distinct stages, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.
Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir
2012-08-20
Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes. Copyright © 2012 Elsevier B.V. All rights reserved.
Flow and heat transfer enhancement in tube heat exchangers
NASA Astrophysics Data System (ADS)
Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.
2015-11-01
The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.
Heat and mass transfer boundary conditions at the surface of a heated sessile droplet
NASA Astrophysics Data System (ADS)
Ljung, Anna-Lena; Lundström, T. Staffan
2017-12-01
This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.
NASA Astrophysics Data System (ADS)
Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.
2010-01-01
Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.
Carrel, Maxence; Morales, Verónica L; Beltran, Mario A; Derlon, Nicolas; Kaufmann, Rolf; Morgenroth, Eberhard; Holzner, Markus
2018-05-01
This study investigates the functional correspondence between porescale hydrodynamics, mass transfer, pore structure and biofilm morphology during progressive biofilm colonization of a porous medium. Hydrodynamics and the structure of both the porous medium and the biofilm are experimentally measured with 3D particle tracking velocimetry and micro X-ray Computed Tomography, respectively. The analysis focuses on data obtained in a clean porous medium after 36 h of biofilm growth. Registration of the particle tracking and X-ray data sets allows to delineate the interplay between porous medium geometry, hydrodynamic and mass transfer processes on the morphology of the developing biofilm. A local analysis revealed wide distributions of wall shear stresses and concentration boundary layer thicknesses. The spatial distribution of the biofilm patches uncovered that the wall shear stresses controlled the biofilm development. Neither external nor internal mass transfer limitations were noticeable in the considered system, consistent with the excess supply of nutrient and electron acceptors. The wall shear stress remained constant in the vicinity of the biofilm but increased substantially elsewhere. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Perminov, A. V.; Nikulin, I. L.
2016-03-01
We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.
Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier
2016-10-01
Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nait Alla, Abderrahman; Feddaoui, M'barek; Meftah, Hicham
2015-12-01
The interactive effects of heat and mass transfer in the evaporation of ethylene and propylene glycol flowing as falling films on vertical channel was investigated. The liquid film falls along a left plate which is externally subjected to a uniform heat flux while the right plate is the dry wall and is kept thermally insulated. The model solves the coupled governing equations in both phases together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by Tridiagonal Matrix Algorithm. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied glycols and water in the same conditions is made. The results indicate that water evaporates in more intense way in comparison to glycols and the increase of gas flow rate tends to improve slightly the evaporation.
Adsorption of basic dyes on granular activated carbon and natural zeolite.
Meshko, V; Markovska, L; Mincheva, M; Rodrigues, A E
2001-10-01
The adsorption of basic dyes from aqueous solution onto granular activated carbon and natural zeolite has been studied using an agitated batch adsorber. The influence of agitation, initial dye concentration and adsorbent mass has been studied. The parameters of Langmuir and Freundlich adsorption isotherms have been determined using the adsorption data. Homogeneous diffusion model (solid diffusion) combined with external mass transfer resistance is proposed for the kinetic investigation. The dependence of solid diffusion coefficient on initial concentration and mass adsorbent is represented by the simple empirical equations.
Tao, Yang; Wang, Ping; Wang, Yilin; Kadam, Shekhar U; Han, Yongbin; Wang, Jiandong; Zhou, Jianzhong
2016-07-01
The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2-117.6 W/L for 5-15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.
2005-12-01
Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.
Sadeghi, Morteza; Mirzabeigi Kesbi, Omid; Mireei, Seyed Ahmad
2013-02-01
The investigation of drying kinetics and mass transfer phenomena is important for selecting optimum operating conditions, and obtaining a high quality dried product. Two analytical models, conventional solution of the diffusion equation and the Dincer and Dost model, were used to investigate mass transfer characteristics during combined microwave-convective drying of lemon slices. Air temperatures of 50, 55 and 60 °C, and specific microwave powers of 0.97 and 2.04 W g(-1) were the process variables. Kinetics curves for drying indicated one constant rate period followed by one falling rate period in convective and microwave drying methods, and only one falling rate period with the exception of a very short accelerating period at the beginning of microwave-convective treatments. Applying the conventional method, the effective moisture diffusivity varied from 2.4 × 10(-11) to 1.2 × 10(-9) m(2) s(-1). The Biot number, the moisture transfer coefficient, and the moisture diffusivity, respectively in the ranges of 0.2 to 3.0 (indicating simultaneous internal and external mass transfer control), 3.7 × 10(-8) to 4.3 × 10(-6) m s(-1), and 2.2 × 10(-10) to 4.2 × 10(-9) m(2) s(-1) were also determined using the Dincer and Dost model. The higher degree of prediction accuracy was achieved by using the Dincer and Dost model for all treatments. Therefore, this model could be applied as an effective tool for predicting mass transfer characteristics during the drying of lemon slices. Copyright © 2012 Society of Chemical Industry.
Numerical modelling of transient heat and moisture transport in protective clothing
NASA Astrophysics Data System (ADS)
Łapka, P.; Furmański, P.; Wisniewski, T. S.
2016-01-01
The paper presents a complex model of heat and mass transfer in a multi-layer protective clothing exposed to a flash fire and interacting with the human skin. The clothing was made of porous fabric layers separated by air gaps. The fabrics contained bound water in the fibres and moist air in the pores. The moist air was also present in the gaps between fabric layers or internal fabric layer and the skin. Three skin sublayers were considered. The model accounted for coupled heat transfer by conduction, thermal radiation and associated with diffusion of water vapour in the clothing layers and air gaps. Heat exchange due to phase transition of the bound water were also included in the model. Complex thermal and mass transfer conditions at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were assumed. Special attention was paid to modelling of thermal radiation which was coming from the fire, penetrated through protective clothing and absorbed by the skin. For the first time non-grey properties as well as optical phenomena at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were accounted for. A series of numerical simulations were carried out and the risk of heat injures was estimated.
Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges
2012-11-09
The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems to speed up the penetration of proteins into the particles. A stochastic model of the penetration of bulky proteins driven by a concentration gradient across an infinitely thin membrane of known porosity and pore size is suggested to explain this mechanism. Yet, under retained conditions, surface diffusion speeds up the mass transfer into the mesopores and levels the kinetic performance of particles built with either one or two porous shells. Copyright © 2012 Elsevier B.V. All rights reserved.
Investigation of internally finned LED heat sinks
NASA Astrophysics Data System (ADS)
Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei
2018-03-01
A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).
Fairey, Julian L; Wahman, David G; Lowry, Gregory V
2010-01-01
In situ capping of polychlorinated biphenyl (PCB)-contaminated sediments with a layer of activated carbon has been proposed, but several questions remain regarding the long-term effectiveness of this remediation strategy. Here, we assess the degree to which kinetic limitations, size exclusion effects, and electrostatic repulsions impaired PCB sorption to activated carbon. Sorption of 11 PCB congeners with activated carbon was studied in fixed bed reactors with organic-free water (OFW) and Suwannee River natural organic matter (SR-NOM), made by reconstituting freeze-dried SR-NOM at a concentration of 10 mg L(-1) as carbon. In the OFW test, no PCBs were detected in the column effluent over the 390-d study, indicating that PCB-activated carbon equilibrium sorption capacities may be achieved before breakthrough even at the relatively high hydraulic loading rate (HLR) of 3.1 m h(-1). However, in the SR-NOM fixed-bed test, partial PCB breakthrough occurred over the entire 320-d test (HLRs of 3.1-, 1.5-, and 0.8 m h(-1)). Simulations from a modified pore and surface diffusion model indicated that external (film diffusion) mass transfer was the dominant rate-limiting step but that internal (pore diffusion) mass transfer limitations were also present. The external mass transfer limitation was likely caused by formation of PCB-NOM complexes that reduced PCB sorption through a combination of (i) increased film diffusion resistance; (ii) size exclusion effects; and (iii) electrostatic repulsive forces between the PCBs and the NOM-coated activated carbon. However, the seepage velocities in the SR-NOM fixed bed test were about 1000 times higher than would be expected in a sediment cap. Therefore, additional studies are needed to assess whether the mass transfer limitations described here would be likely to manifest themselves at the lower seepage velocities observed in practice.
NASA Astrophysics Data System (ADS)
Shiri, Jalal
2018-06-01
Among different reference evapotranspiration (ETo) modeling approaches, mass transfer-based methods have been less studied. These approaches utilize temperature and wind speed records. On the other hand, the empirical equations proposed in this context generally produce weak simulations, except when a local calibration is used for improving their performance. This might be a crucial drawback for those equations in case of local data scarcity for calibration procedure. So, application of heuristic methods can be considered as a substitute for improving the performance accuracy of the mass transfer-based approaches. However, given that the wind speed records have usually higher variation magnitudes than the other meteorological parameters, application of a wavelet transform for coupling with heuristic models would be necessary. In the present paper, a coupled wavelet-random forest (WRF) methodology was proposed for the first time to improve the performance accuracy of the mass transfer-based ETo estimation approaches using cross-validation data management scenarios in both local and cross-station scales. The obtained results revealed that the new coupled WRF model (with the minimum scatter index values of 0.150 and 0.192 for local and external applications, respectively) improved the performance accuracy of the single RF models as well as the empirical equations to great extent.
Hoschek, Anna; Bühler, Bruno; Schmid, Andreas
2017-11-20
Gas-liquid mass transfer of gaseous reactants is a major limitation for high space-time yields, especially for O 2 -dependent (bio)catalytic reactions in aqueous solutions. Herein, oxygenic photosynthesis was used for homogeneous O 2 supply via in situ generation in the liquid phase to overcome this limitation. The phototrophic cyanobacterium Synechocystis sp. PCC6803 was engineered to synthesize the alkane monooxygenase AlkBGT from Pseudomonas putida GPo1. With light, but without external addition of O 2 , the chemo- and regioselective hydroxylation of nonanoic acid methyl ester to ω-hydroxynonanoic acid methyl ester was driven by O 2 generated through photosynthetic water oxidation. Photosynthesis also delivered the necessary reduction equivalents to regenerate the Fe 2+ center in AlkB for oxygen transfer to the terminal methyl group. The in situ coupling of oxygenic photosynthesis to O 2 -transferring enzymes now enables the design of fast hydrocarbon oxyfunctionalization reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Wulin; Watson, Valerie J; Logan, Bruce E
2016-08-16
Long-term operation of microbial fuel cells (MFCs) can result in substantial degradation of activated carbon (AC) air-cathode performance. To examine a possible role in fouling from organic matter in water, cathodes were exposed to high concentrations of humic acids (HA). Cathodes treated with 100 mg L(-1) HA exhibited no significant change in performance. Exposure to 1000 mg L(-1) HA decreased the maximum power density by 14% (from 1310 ± 30 mW m(-2) to 1130 ± 30 mW m(-2)). Pore blocking was the main mechanism as the total surface area of the AC decreased by 12%. Minimization of external mass transfer resistances using a rotating disk electrode exhibited only a 5% reduction in current, indicating about half the impact of HA adsorption was associated with external mass transfer resistance and the remainder was due to internal resistances. Rinsing the cathodes with deionized water did not restore cathode performance. These results demonstrated that HA could contribute to cathode fouling, but the extent of power reduction was relatively small in comparison to large mass of humics adsorbed. Other factors, such as biopolymer attachment, or salt precipitation, are therefore likely more important contributors to long-term fouling of MFC cathodes.
NASA Astrophysics Data System (ADS)
Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi
2016-05-01
An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.
NASA Astrophysics Data System (ADS)
Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi
2003-08-01
When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.
Liu, Xinyu; Pawliszyn, Janusz
2007-04-01
In this paper, we present results for the on-line determination of semivolatile organic compounds (SVOCs) in air using membrane extraction with a sorbent interface-ion mobility spectrometry (MESI-IMS) system with a preheated carrier (stripping) gas. The mechanism of the mass transfer of SVOCs across a membrane was initially studied. In comparison with the extraction of volatile analytes, the mass transfer resistance that originated from the slow desorption from the internal membrane surface during the SVOC extraction processes should be taken into account. A preheated carrier gas system was therefore built to facilitate desorption of analytes from the internal membrane surface. With the benefit of a temperature gradient existing between the internal and external membrane surfaces, an increase in the desorption rate of a specific analyte at the internal surface and the diffusion coefficient within the membrane could be achieved while avoiding a decrease of the distribution constant on the external membrane interface. This technique improved both the extraction rate and response times of the MESI-IMS system for the analysis of SVOCs. Finally, the MESI-IMS system was shown to be capable of on-site measurement by monitoring selected polynuclear aromatic hydrocarbons emitted from cigarette smoke.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...
2017-01-01
The drying of dichloromethane with a molecular sieve 3A packed bed process is modeled and experimentally verified. In the process, the dichloromethane is dried in the liquid phase and the adsorbent is regenerated by water desorption with dried dichloromethane product in the vapor phase. Adsorption equilibrium experiments show that dichloromethane does not compete with water adsorption, because of size exclusion; the pure water vapor isotherm from literature provides an accurate representation of the experiments. The breakthrough curves are adequately described by a mathematical model that includes external mass transfer, pore diffusion, and surface diffusion. During the desorption step, the main heat transfer mechanism is the condensation of the superheated dichloromethane vapor. The regeneration time is shortened significantly by external bed heating. Cyclic steady-state experiments demonstrate the feasibility of this novel, zero-emission drying process. PMID:28539701
NASA Technical Reports Server (NTRS)
Spangelo, Sara; Dalle, Derek; Longmier, Benjamin
2015-01-01
This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.
Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo
2015-12-01
The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.
Solid Loss of Carrots During Simulated Gastric Digestion.
Kong, Fanbin; Singh, R Paul
2011-03-01
The knowledge of solid loss kinetics of foods during digestion is crucial for understanding the factors that constrain the release of nutrients from the food matrix and their fate of digestion. The objective of this study was to investigate the solid loss of carrots during simulated gastric digestion as affected by pH, temperature, viscosity of gastric fluids, mechanical force present in stomach, and cooking. Cylindrical carrot samples were tested by static soaking method and using a model stomach system. The weight retention, moisture, and loss of dry mass were determined. The results indicated that acid hydrolysis is critical for an efficient mass transfer and carrot digestion. Internal resistance rather than external resistance is dominant in the transfer of soluble solids from carrot to gastric fluid. Increase in viscosity of gastric fluid by adding 0.5% gum (w/w) significantly increased the external resistance and decreased mass transfer rate of carrots in static soaking. When mechanical force was not present, 61% of the solids in the raw carrot samples were released into gastric fluid after 4 h of static soaking in simulated gastric juice. Mechanical force significantly increased solid loss by causing surface erosion. Boiling increased the disintegration of carrot during digestion that may favor the loss of solids meanwhile reducing the amount of solids available for loss in gastric juice. Weibull function was successfully used to describe the solid loss of carrot during simulated digestion. The effective diffusion coefficients of solids were calculated using the Fick's second law of diffusion for an infinite cylinder, which are between 0.75 × 10(-11) and 8.72 × 10(-11) m(2)/s, depending on the pH of the gastric fluid.
A model for heat and mass input control in GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smartt, H.B.; Einerson, C.J.
1993-05-01
This work describes derivation of a control model for electrode melting and heat and mass transfer from the electrode to the work piece in gas metal arc welding (GMAW). Specifically, a model is developed which allows electrode speed and welding speed to be calculated for given values of voltage and torch-to-base metal distance, as a function of the desired heat and mass input to the weldment. Heat input is given on a per unit weld length basis, and mass input is given in terms of transverse cross-sectional area added to the weld bead (termed reinforcement). The relationship to prior workmore » is discussed. The model was demonstrated using a computer-controlled welding machine and a proportional-integral (PI) controller receiving input from a digital filter. The difference between model-calculated welding current and measured current is used as controller feedback. The model is calibrated for use with carbon steel welding wire and base plate with Ar-CO[sub 2] shielding gas. Although the system is intended for application during spray transfer of molten metal from the electrode to the weld pool, satisfactory performance is also achieved during globular and streaming transfer. Data are presented showing steady-state and transient performance, as well as resistance to external disturbances.« less
Risk of hydrocyanic acid release in the electroplating industry.
Piccinini, N; Ruggiero, G N; Baldi, G; Robotto, A
2000-01-07
This paper suggests assessing the consequences of hydrocyanic acid (HCN) release into the air by aqueous cyanide solutions in abnormal situations such as the accidental introduction of an acid, or the insertion of a cyanide in a pickling bath. It provides a well-defined source model and its resolution by methods peculiar to mass transport phenomena. The procedure consists of four stages: calculation of the liquid phase concentration, estimate of the HCN liquid-vapour equilibrium, determination of the mass transfer coefficient at the liquid-vapour interface, evaluation of the air concentration of HCN and of the damage distances. The results show that small baths operating at high temperatures are the major sources of risk. The building up of lethal air concentrations, on the other hand, is governed by the values of the mass transfer coefficient, which is itself determined by the flow dynamics and bath geometry. Concerning the magnitude of the risk, the fallout for external emergency planning is slight in all the cases investigated.
Fuzak, Julia K; Elkon, Benjamin D; Hampers, Louis C; Polage, Kathleen J; Milton, Jerrod D; Powers, Linda K; Percell-de'Shong, Karen; Wathen, Joseph E
2010-07-01
To report an experience with large-scale rapid transportation of hospitalized children, highlighting elements applicable to a disaster event. This was a retrospective study of the relocation of an entire pediatric inpatient population. Mitigation steps included postponement of elective procedures, implementation of planned discharges, and transfer of selected patients to satellite hospitals. Drills and simulations were used to estimate travel times and develop contingency plans. A transfer queue was modified as necessary to account for changing acuity. The Hospital Incident Command System was used. Thirteen critical care teams, 5 general crews, 2 vans, and 4 other vehicles transferred a total of 111 patients 8.5 miles in 11.6 hours. Patients were transferred along parallel (vs series) circuits, allowing simultaneous movement of patients from different areas. Sixty-four patients (including 32 infants) were considered critically ill; 24 of these patients required ventilator support, 3 required inhaled nitric oxide, 30 required continuous infusions, and 4 had an external ventricular drain. There were no adverse outcomes. Mass inpatient pediatric transfers can be managed rapidly and safely with parallel transfers. Preexisting agreements with regional pediatric teams are imperative. Disaster preparedness concepts, including preplanning, evacuation priorities, recovery analysis, and prevention/mitigation, can be applied to this event. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Specifics of heat and mass transfer in spherical dimples under the effect of external factors
NASA Astrophysics Data System (ADS)
Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.
2017-06-01
The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.
Hu, Ding; Xie, Shuqun; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian
2010-04-01
The development of external counterpulsation (ECP) local area network system and extensible markup language (XML)-based remote ECP medical information system conformable to digital imaging and communications in medicine (DICOM) standard has been improving the digital interchangeablity and sharability of ECP data. However, the therapy process of ECP is a continuous and longtime supervision which builds a mass of waveform data. In order to reduce the storage space and improve the transmission efficiency, the waveform data with the normative format of ECP data files have to be compressed. In this article, we introduced the compression arithmetic of template matching and improved quick fitting of linear approximation distance thresholding (LADT) in combimation with the characters of enhanced external counterpulsation (EECP) waveform signal. The DICOM standard is used as the storage and transmission standard to make our system compatible with hospital information system. According to the rules of transfer syntaxes, we defined private transfer syntax for one-dimensional compressed waveform data and stored EECP data into a DICOM file. Testing result indicates that the compressed and normative data can be correctly transmitted and displayed between EECP workstations in our EECP laboratory.
Comparison of different bioheat transfer models for assessment of burns injuries
NASA Astrophysics Data System (ADS)
Łapka, Piotr; Furmański, Piotr; Wiśniewski, Tomasz S.
2016-12-01
Two bioheat transfer models i.e.: the classical Pennes model and a more realistic two-equation model which accounted for blood vessel structure in the skin as well as heat transfer in the tissue and arteria blood were coupled with heat and mass transfer model in the protective multilayer garment. The clothing model included conductive-radiative heat transfer with water vapor diffusion in pores and air gaps as well as sorption and desorption of water in fibers. Thermal radiation was modeled rigorously e.g.: both the tissue and fabrics were assumed non-gray, absorbing, emitting and anisotropically scattering. Additionally different refractive indices of fabrics, air and tissue and resulting optical phenomena at separating interfaces were accounted for. Both bioheat models were applied for predicting skin temperature distributions and possibility of burns for different exposition times and radiative heat fluxes incident on external surface of the protective garment. Performed analyses revealed that heat transfer in the skin subjected to high heat flux is independent of the blood vessel structure.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) The Federal... project titled, ``Technology Transfer Center (TTC) External Customer Satisfaction Survey (NCI)'' was... will include multiple customer satisfaction surveys over the course of three years. At this time, only...
Samadi, Sara; Vaziri, Behrooz Mahmoodzadeh
2017-07-14
Solid extraction process, using the supercritical fluid, is a modern science and technology, which has come in vogue regarding its considerable advantages. In the present article, a new and comprehensive model is presented for predicting the performance and separation yield of the supercritical extraction process. The base of process modeling is partial differential mass balances. In the proposed model, the solid particles are considered twofold: (a) particles with intact structure, (b) particles with destructed structure. A distinct mass transfer coefficient has been used for extraction of each part of solid particles to express different extraction regimes and to evaluate the process accurately (internal mass transfer coefficient was used for the intact-structure particles and external mass transfer coefficient was employed for the destructed-structure particles). In order to evaluate and validate the proposed model, the obtained results from simulations were compared with two series of available experimental data for extraction of chamomile extract with supercritical carbon dioxide, which had an excellent agreement. This is indicative of high potentiality of the model in predicting the extraction process, precisely. In the following, the effect of major parameters on supercritical extraction process, like pressure, temperature, supercritical fluid flow rate, and the size of solid particles was evaluated. The model can be used as a superb starting point for scientific and experimental applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
...; Comment Request; Generic Submission of Technology Transfer Center (TTC) External Customer Satisfaction... Transfer Center (TTC) External Customer Satisfaction Surveys (NCI). Type of Information Collection Request... information on the satisfaction of TTC's external customers with TTC customer services; collect information of...
Bassani, Ilaria; Kougias, Panagiotis G; Angelidaki, Irini
2016-12-01
Biological biogas upgrading coupling CO 2 with external H 2 to form biomethane opens new avenues for sustainable biofuel production. For developing this technology, efficient H 2 to liquid transfer is fundamental. This study proposes an innovative setup for in-situ biogas upgrading converting the CO 2 in the biogas into CH 4 , via hydrogenotrophic methanogenesis. The setup consisted of a granular reactor connected to a separate chamber, where H 2 was injected. Different packing materials (rashig rings and alumina ceramic sponge) were tested to increase gas-liquid mass transfer. This aspect was optimized by liquid and gas recirculation and chamber configuration. It was shown that by distributing H 2 through a metallic diffuser followed by ceramic sponge in a separate chamber, having a volume of 25% of the reactor, and by applying a mild gas recirculation, CO 2 content in the biogas dropped from 42 to 10% and the final biogas was upgraded from 58 to 82% CH 4 content. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ultrasound-Assisted Hot Air Drying of Foods
NASA Astrophysics Data System (ADS)
Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique
This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.
Siochi, R Alfredo; Balter, Peter; Bloch, Charles D; Santanam, Lakshmi; Blodgett, Kurt; Curran, Bruce H; Engelsman, Martijn; Feng, Wenzheng; Mechalakos, Jim; Pavord, Dan; Simon, Tom; Sutlieff, Steven; Zhu, X Ronald
2010-12-04
The transfer of radiation therapy data among the various subsystems required for external beam treatments is subject to error. Hence, the establishment and management of a data transfer quality assurance program is strongly recommended. It should cover the QA of data transfers of patient specific treatments, imaging data, manually handled data and historical treatment records. QA of the database state (logical consistency and information integrity) is also addressed to ensure that accurate data are transferred.
Tendon transfer options about the shoulder in patients with brachial plexus injury.
Elhassan, Bassem; Bishop, Allen T; Hartzler, Robert U; Shin, Alexander Y; Spinner, Robert J
2012-08-01
The purpose of this study was to evaluate the early outcome of shoulder tendon transfer in patients with brachial plexus injury and to determine the factors associated with favorable outcomes. Fifty-two patients with traumatic brachial plexus injury and a paralytic shoulder were included in the study. All patients were evaluated at a mean of nineteen months (range, twelve to twenty-eight months) postoperatively. Twelve patients had a C5-6 injury, twenty-two had a C5-7 injury, five had a C5-8 injury, and thirteen had a C5-T1 injury. Transfer of the lower portion of the trapezius muscle was performed either in isolation or as part of multiple tendon transfers to improve shoulder function. Additional muscles transferred included the middle and upper portions of the trapezius, levator scapulae, upper portion of the serratus anterior, teres major, latissimus dorsi, and pectoralis major. All patients had a stable shoulder postoperatively. Shoulder external rotation improved substantially in all patients from no external rotation (hand-on-belly position) to a mean of 20° (p = 0.001). Patients who underwent additional transfers had marginal improvement of shoulder flexion, from a mean of 10° preoperatively to 60° postoperatively, and of shoulder abduction, from a mean of 10° to 50° (p = 0.01 for each). Mean pain on a visual analog scale improved from 6 points preoperatively to 2 points postoperatively. The mean Disabilities of the Arm, Shoulder and Hand (DASH) score improved from 59 to 47 points (p = 0.001). The mean Subjective Shoulder Value improved from 5% to 40% (p = 0.001). Greater age, higher body mass index, and more extensive nerve injury were associated with a poorer DASH score in a multivariate analysis (p = 0.003). Tendon transfers about the shoulder can improve shoulder function in patients with brachial plexus injury resulting in a paralytic shoulder. Significant improvement of shoulder external rotation but only marginal improvements of shoulder abduction and flexion can be achieved. The outcome can be expected to be better in patients with less severe nerve injury.
Electrode erosion properties of gas spark switches for fast linear transformer drivers
NASA Astrophysics Data System (ADS)
Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen
2017-12-01
Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.
Phase separated membrane bioreactor: Results from model system studies
NASA Astrophysics Data System (ADS)
Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.
Phase separated membrane bioreactor - Results from model system studies
NASA Technical Reports Server (NTRS)
Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.
1989-01-01
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial simulation.
Model system studies with a phase separated membrane bioreactor
NASA Technical Reports Server (NTRS)
Petersen, G. R.; Seshan, P. K.; Dunlop, Eric H.
1989-01-01
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.
2012-01-01
Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579
Double Versus Single Tendon Transfers to Improve Shoulder Function in Brachial Plexus Birth Palsy.
Greenhill, Dustin A; Smith, William R; Ramsey, F V; Kozin, Scott H; Zlotolow, Dan A
2017-03-27
In children with brachial plexus birth palsy (BPBP) undergoing tendon transfers to augment shoulder external rotation, it is unclear whether transfer of the latissimus dorsi with its combined latissimus dorsi and teres major (cLT) versus isolated teres major (iTM) tendon transfer yield different outcomes. Records of patients with BPBP who underwent shoulder tendon transfers to augment external rotation were retrospectively reviewed. Transfer type (cLT or iTM) was considered indiscriminate by virtue of surgeon preference. Modified Mallet Scale (mMS) and Active Movement Scale scores were recorded. Patients with <12 months' follow-up, C7 or lower palsy, humeral osteotomy, shoulder procedure(s) within 8 months, microsurgery within 1 year, or recurrent glenohumeral subluxation confirmed by postoperative imaging were excluded. Matched cohorts were identified within each tendon transfer group to yield similar preoperative shoulder function and glenohumeral alignment status. Outcomes for all tendon transfers as well as differences between cLT and iTM cohorts were analyzed. Among 121 cLT and 34 iTM transfers, 49 cLT and 14 iTM met the inclusion criteria. Subsequent matching of cohorts yielded 28 patients (14 cLT and 14 iTM). Average age at time of transfer was 3.0±1.4 years. Follow-up averaged 4.1±3.1 years. There were no statistically significant preoperative differences between cohorts, thus matching criteria were validated. Regardless of tendon(s) transferred, mMS external rotation improved (2.2 to 3.5, P<0.001), whereas mMS internal rotation decreased (3.8 to 3.2, P<0.001). When comparing matched cohorts, cLT transfer produced a greater mMS external rotation improvement than iTM (2.1 vs. 1.5, respectively; P=0.025). Loss of midline function (defined as mMS external rotation <3) occurred in 5 (35.7%) cLT and 2 (14.3%) iTM patients. Both cLT or iTM transfer are effective at augmenting shoulder external rotation in children with C5-C6 BPBP. Furthermore, cLT transfers may yield a larger improvement in external rotation in certain patients. However, both techniques slightly decrease shoulder internal rotation. Given that more total cLT patients lost midline function among matched cohorts, iTM transfer may still be considered when limited midline function is a concern. Level III.
Chaparadza, Allen; Hossenlopp, Jeanne M
2012-01-01
Atrazine removal from water by treated banana peels was studied. The effect of pH, contact time, initial atrazine concentration, and temperature were investigated. Batch experiments demonstrated that 15 g L(-1) adsorbent dosage removed 90-99% of atrazine from 1-150 ppm aqueous solutions. The removal was both pH and temperature dependent with the most atrazine removed between pH 7 and 8.2 and increased with increasing temperature. Equilibrium data fitted well to the Langmuir and Redlich-Peterson models in the concentration and temperature ranges investigated, with a maximum adsorption capacity of 14 mg g(-1). Simple mass transfer models were applied to the experimental data to examine the adsorption mechanism and it was found that both external mass transfer and intraparticle diffusion played important roles in the adsorption mechanisms. The enthalpy of atrazine adsorption was evaluated to be 67.8 ± 6.3 kJ mol(-l) with a Gibbs free energy of -5.7 ± 1.2 kJ mol(-1).
NASA Astrophysics Data System (ADS)
Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-04-01
This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.
Techniques for detumbling a disabled space base
NASA Technical Reports Server (NTRS)
Kaplan, M. H.
1973-01-01
Techniques and conceptual devices for carrying out detumbling operations are examined, and progress in the development of these concepts is discussed. Devices which reduce tumble to simple spin through active linear motion of a small mass are described, together with a Module for Automatic Dock and Detumble (MADD) that could perform an orbital transfer from the shuttle in order to track and dock at a preselected point on the distressed craft. Once docked, MADD could apply torques by firing thrustors to detumble the passive vehicle. Optimum combinations of mass-motion and external devices for various situation should be developed. The need for completely formulating the automatic control logic of MADD is also emphasized.
NASA Astrophysics Data System (ADS)
Zannouni, K.; El Abrach, H.; Dhahri, H.; Mhimid, A.
2017-06-01
The present paper reports a numerical study to investigate the drying of rectangular gypsum sample based on a diffusive model. Both vertical and low sides of the porous media are treated as adiabatic and impermeable surfaces plate. The upper face of the plate represents the permeable interface. The energy equation model is based on the local thermal equilibrium assumption between the fluid and the solid phases. The lattice Boltzmann method (LBM) is used for solving the governing differential equations system. The obtained numerical results concerning the moisture content and the temperature within a gypsum sample were discussed. A comprehensive analysis of the influence of the mass transfer coefficient, the convective heat transfer coefficient, the external temperature, the relative humidity and the diffusion coefficient on macroscopic fields are also investigated. They all presented results in this paper and obtained in the stable regime correspond to time superior than 4000 s. Therefore the numerical error is inferior to 2%. The experimental data and the descriptive information of the approach indicate an excellent agreement between the results of our developed numerical code based on the LBM and the published ones.
NASA Astrophysics Data System (ADS)
Williams, J.; Hibberd, S.; Power, H.; Riley, D. S.
2012-05-01
Motivated by applications in aero-engines, steady two-dimensional thin-film flow on the inside of a circular cylinder is studied when the film surface is subject to mass and momentum transfer from impacting droplets. Asymptotic analysis is used systematically to identify distinguished limits that incorporate these transfer effects at leading order and to provide a new mathematical model. Applying both analytical and numerical approaches to the model, a set of stable steady, two-dimensional solutions that fit within the rational framework is determined. A number of these solutions feature steep fronts and associated recirculating pools, which are undesirable in an aeroengine since oil may be stripped away from the steep fronts when there is a core flow external to the film, and recirculation may lead to oil degradation. The model, however, provides a means of investigating whether the formation of the steep fronts on the film surface and of internal recirculation pools can be delayed, or inhibited altogether, by designing jets to deliver prescribed distributions of oil droplets or by the judicious siting of oil sinks. Moreover, by studying pathlines, oil-residence times can be predicted and systems optimized.
Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets
NASA Technical Reports Server (NTRS)
Ruemmele, Warren P.; Bue, Grant C.; Orndoff, Evelyne; Tang, Henry
2010-01-01
This design of the liquid-cooling garment for NASA spacesuits allows the suit to remove metabolic heat from the human body more effectively, thereby increasing comfort and performance while reducing system mass. The garment is also more flexible, with fewer restrictions on body motion, and more effectively transfers thermal energy from the crewmember s body to the external cooling unit. This improves the garment s performance in terms of the maximum environment temperature in which it can keep a crewmember comfortable. The garment uses flexible, highly thermally conductive sheet material (such as graphite), coupled with cooling water lines of improved thermal conductivity to transfer the thermal energy from the body to the liquid cooling lines more effectively. The conductive sheets can be layered differently, depending upon the heat loads, in order to provide flexibility, exceptional in-plane heat transfer, and good through-plane heat transfer. A metal foil, most likely aluminum, can be put between the graphite sheets and the external heat source/sink in order to both maximize through-plane heat transfer at the contact points, and to serve as a protection to the highly conductive sheets. Use of a wicking layer draws excess sweat away from the crewmember s skin and the use of an outer elastic fabric ensures good thermal contact of the highly conductive underlayers with the skin. This allows the current state of the art to be improved by having cooling lines that can be more widely spaced to improve suit flexibility and to reduce weight. Also, cooling liquid does not have to be as cold to achieve the same level of cooling. Specific areas on the human body can easily be targeted for greater or lesser cooling to match human physiology, a warmer external environment can be tolerated, and spatial uniformity of the cooling garment can be improved to reduce vasoconstriction limits. Elements of this innovation can be applied to other embodiments to provide effective heat transfer over a flexible and surface-conformable fashion without the limitation of fluid freeze points.
Measurement of the oxygen mass transfer through the air-water interface.
Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas
2005-01-01
Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple technique for measuring oxygen diffusion parameters through the air-water solution surface has been developed. Derived equations enable the calculation of diffusion parameters of the surface layer at current conditions. These values of the parameters permit one to compare the resistances of the gas-liquid interface to oxygen mass transfer in the case of adsorption of different substances on the surface layer. This simple technique may be used for a determination of oxygen permeability of different water-solution surface layers. It enables one to measure the resistance to the oxygen permeability of all inflowing wastewater surface layers in the wastewater treatment plant, and to initiate a preliminary cleaning of this wastewater if required. Similarly, we can measure oxygen permeability of natural waterbodies. Especially in the case of pollution, it is important to know to what extent the oxygen permeability of the water surface layer has been decreased. Based on the tehnique presented in this research, fieldwork equipment will be developed.
NASA Astrophysics Data System (ADS)
Zhou, Ding-Wei
The emulsion liquid membrane (ELM) technique has been successfully applied on the removal of arsenic (As) from metallurgical wastewater and the removal of strontium (Sr) from radioactive wastewater. This study consisted of experimental work and mathematical modeling. Extraction of arsenic by an emulsion liquid membrane was firstly investigated. The liquid membrane used was composed of 2-ethylhexyl alcohol (2EHA) as the extractant, ECA4360J as the surfactant, and Exxsol D-80 solvent (or heptane) as the diluent. The sulfuric acid and sodium hydroxide solutions were used as the external and internal phases, respectively. The arsenic removal efficiency reached 92% within 15 minutes in one stage. Extraction and stripping chemistries were postulated and investigated. It was observed that extraction efficiency and rate increase with the increase of acidic strength and alkali strength in the external and internal phases, respectively. It was also observed that the removal selectivity of arsenic over copper is extremely high. Strontium-90 is one of the major radioactive metals appearing in nuclear wastewater. The emulsion liquid membrane process was investigated as a separation method by using the non-radioactive ^{87}Sr as its substitute. In our study, the membrane phase was composed of di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant, ECA4360J as the surfactant and Exxsol D-80 as the diluent. A sulfuric acid solution was used in the internal phase as the stripping agent. The pH range in the external phase was determined by the extraction isotherm. Under the most favorable operating condition, the strontium removal efficiency can reach 98% in two minutes. Mass transfer of the emulsion liquid membrane (ELM) system was modeled mathematically. Our model took into account the following: mass transfer of solute across the film between the external phase and the membrane phase, chemical equilibrium of the extraction reaction at the external phase-membrane interface, simultaneous diffusion of the solute-carrier complex inside the globule membrane phase and stripping of the complex at the membrane-internal phase interface, chemical equilibrium of the stripping reaction at the membrane-internal phase interface and leakage of the solute from the internal phase to the external phase. Resulting simultaneous partial differential equations were solved analytically by the Laplace transform method. Four dimensionless groups were found with special physical meanings to characterize the emulsion liquid membrane systems. It not only predicted the concentration of solute in the external phase versus time, but also gave the concentration profile inside the membrane globule and the interfacial concentration at the external-membrane phase interface at different time. The model predicted very well the experimental data obtained from the removal of arsenic and strontium by the emulsion liquid membranes.
Storage and growth of denitrifiers in aerobic granules: part I. model development.
Ni, Bing-Jie; Yu, Han-Qing
2008-02-01
A mathematical model, based on the Activated Sludge Model No.3 (ASM3), is developed to describe the storage and growth activities of denitrifiers in aerobic granules under anoxic conditions. In this model, mass transfer, hydrolysis, simultaneous anoxic storage and growth, anoxic maintenance, and endogenous decay are all taken into account. The model established is implemented in the well-established AQUASIM simulation software. A combination of completely mixed reactor and biofilm reactor compartments provided by AQUASIM is used to simulate the mass transport and conversion processes occurring in both bulk liquid and granules. The modeling results explicitly show that the external substrate is immediately utilized for storage and growth at feast phase. More external substrates are diverted to storage process than the primary biomass production process. The model simulation indicates that the nitrate utilization rate (NUR) of granules-based denitrification process includes four linear phases of nitrate reduction. Furthermore, the methodology for determining the most important parameter in this model, that is, anoxic reduction factor, is established. (c) 2007 Wiley Periodicals, Inc.
The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations
NASA Astrophysics Data System (ADS)
Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Quataert, Eliot; Murray, Norman
2017-10-01
We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range Mhalo ˜ 1010-1013 M⊙. By tracing cosmic inflows, galactic outflows, gas recycling and merger histories, we quantify the contribution of physically distinct sources of material to galaxy growth. We show that in situ star formation fuelled by fresh accretion dominates the early growth of galaxies of all masses, while the re-accretion of gas previously ejected in galactic winds often dominates the gas supply for a large portion of every galaxy's evolution. Externally processed material contributes increasingly to the growth of central galaxies at lower redshifts. This includes stars formed ex situ and gas delivered by mergers, as well as smooth intergalactic transfer of gas from other galaxies, an important but previously underappreciated growth mode. By z = 0, wind transfer, I.e. the exchange of gas between galaxies via winds, can dominate gas accretion on to ˜L* galaxies over fresh accretion and standard wind recycling. Galaxies of all masses re-accrete ≳50 per cent of the gas ejected in winds and recurrent recycling is common. The total mass deposited in the intergalactic medium per unit stellar mass formed increases in lower mass galaxies. Re-accretion of wind ejecta occurs over a broad range of time-scales, with median recycling times (˜100-350 Myr) shorter than previously found. Wind recycling typically occurs at the scale radius of the halo, independent of halo mass and redshift, suggesting a characteristic recycling zone around galaxies that scales with the size of the inner halo and the galaxy's stellar component.
External and Institutional Factors Affecting Community College Student-Transfer Activity.
ERIC Educational Resources Information Center
Banks, Debra L.
A study was conducted to identify the environmental conditions and relationships between external and institutional conditions that have a significant effect upon student transfer activity. A sample of 78 colleges in 15 states were selected from institutions participating in a national transfer project; 42% were located in Texas or California. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.
A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquidmore » films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.« less
Bargoin, K; Boissard, M; Kany, J; Grimberg, J
2016-12-01
Latissimus dorsi tendon transfer is a surgical option for treating irreparable posterosuperior rotator cuff tears, notably when attempting to reconstruct active external rotation. We hypothesized that the positioning of the transfer's point of fixation would differ depending on the desired elbow-to-body external rotation or external rotation with the elbow abducted. Seven shoulders from four whole frozen cadavers were used. We created two systems to install the subject in a semi-seated position to allow external rotation elbow to body and the arm abducted 90°. Traction sutures were positioned on the latissimus dorsi muscle and a massive tear of the rotator cuff was created. We tested six different transfer positions. Muscle contraction of the latissimus dorsi was stimulated using 10-N and 20-N suspended weights. The point of fixation of the latissimus dorsi on the humeral head had an influence on the elbow-to-body external rotation and with 90° abduction (P<0.001). The fixation point for a maximum external rotation with the elbow to the body was the anterolateral position (P<0.016). The fixation point for a maximum external rotation at 90° abduction was the position centered on the infraspinatus footprint (P<0.078). The optimal point of fixation differs depending on whether external rotation is restored at 0° or 90° abduction. Fundamental study, anatomic study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Morrison, G C; Weschler, C J; Bekö, G
2016-12-01
To better understand the dermal exposure pathway, we enhance an existing mechanistic model of transdermal uptake by including skin surface lipids (SSL) and consider the impact of clothing. Addition of SSL increases the overall resistance to uptake of SVOCs from air but also allows for rapid transfer of SVOCs to sinks like clothing or clean air. We test the model by simulating di-ethyl phthalate (DEP) and di-n-butyl phthalate (DnBP) exposures of six bare-skinned (Weschler et al. 2015, Environ. Health Perspect., 123, 928) and one clothed participant (Morrison et al. 2016, J. Expo. Sci. Environ. Epidemiol., 26, 113). The model predicts total uptake values that are consistent with the measured values. For bare-skinned participants, the model predicts a normalized mass uptake of DEP of 3.1 (μg/m 2 )/(μg/m 3 ), whereas the experimental results range from 1.0 to 4.3 (μg/m 2 )/(μg/m 3 ); uptake of DnBP is somewhat overpredicted: 4.6 (μg/m 2 )/(μg/m 3 ) vs. the experimental range of 0.5-3.2 (μg/m 2 )/(μg/m 3 ). For the clothed participant, the model predicts higher than observed uptake for both species. Uncertainty in model inputs, including convective mass transfer coefficients, partition coefficients, and diffusion coefficients, could account for overpredictions. Simulations that include transfer of skin oil to clothing improve model predictions. A dynamic model that includes SSL is more sensitive to changes that impact external mass transfer such as putting on and removing clothes and bathing. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Linhares, Bruno; Weber, Caroline Trevisan; Foletto, Edson Luiz; Paz, Diego Silva; Mazutti, Marcio A; Collazzo, Gabriela Carvalho
2013-01-01
Activated carbon prepared from yerba mate (Ilex paraguariensis) was used as adsorbent for the removal of tannery dye from aqueous solution. The activated carbon was characterized, and it showed a mesoporous texture, with surface area of 537.4 m2 g(-1). The initial dye concentration, contact time and pH influenced the adsorption capacity. The equilibrium data were in good agreement with both Langmuir and Freundlich isotherms. The adsorption kinetics of the tannery dye on activated carbon prepared from yerba mate followed a pseudo-second-order model. The adsorption process was found to be controlled by both external mass-transfer and intraparticle diffusion, but the external diffusion was the dominating process. This work highlights the potential application of activated carbon produced from yerba mate in the field of adsorption.
A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane
NASA Technical Reports Server (NTRS)
Heidmann, James D.; Rigby, David L.; Ameri, Ali A.
1999-01-01
A three-dimensional Navier-Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Glenn Research Center experiment and has both circular cross-section and shaped film cooling holes. This complex geometry is modeled using a multi-block grid which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges.
Generation and characterization of gas bubbles in liquid metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckert, S.; Gerbeth, G.; Witke, W.
1996-06-01
There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empiricalmore » nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer.« less
Gritti, Fabrice; Guiochon, Georges
2015-03-06
Previous data have shown that could deliver a minimum reduced plate height as small as 1.7. Additionally, the reduction of the mesopore size after C18 derivatization and the subsequent restriction for sample diffusivity across the Titan-C18 particles were found responsible for the unusually small value of the experimental optimum reduced velocity (5 versus 10 for conventional particles) and for the large values of the average reduced solid-liquid mass transfer resistance coefficients (0.032 versus 0.016) measured for a series of seven n-alkanophenones. The improvements in column efficiency made by increasing the average mesopore size of the Titan silica from 80 to 120Å are investigated from a quantitative viewpoint based on the accurate measurements of the reduced coefficients (longitudinal diffusion, trans-particle mass transfer resistance, and eddy diffusion) and of the intra-particle diffusivity, pore, and surface diffusion for the same series of n-alkanophenone compounds. The experimental results reveal an increase (from 0% to 30%) of the longitudinal diffusion coefficients for the same sample concentration distribution (from 0.25 to 4) between the particle volume and the external volume of the column, a 40% increase of the intra-particle diffusivity for the same sample distribution (from 1 to 7) between the particle skeleton volume and the bulk phase, and a 15-30% decrease of the solid-liquid mass transfer coefficient for the n-alkanophenone compounds. Pore and surface diffusion are increased by 60% and 20%, respectively. The eddy dispersion term and the maximum column efficiency (295000plates/m) remain virtually unchanged. The rate of increase of the total plate height with increasing the chromatographic speed is reduced by 20% and it is mostly controlled (75% and 70% for 80 and 120Å pore size) by the flow rate dependence of the eddy dispersion term. Copyright © 2015 Elsevier B.V. All rights reserved.
External Cooling Coupled to Reduced Extremity Pressure Device
NASA Technical Reports Server (NTRS)
Kuznetz, Lawrence H.
2011-01-01
Although suited astronauts are currently cooled with a Liquid Cooled Ventilation Garment (LCVG), which can remove up to 85 percent of body heat, their effectiveness is limited because cooling must penetrate layers of skin, muscle, fat, bone, and tissue to reach the bloodstream, where its effect is prominent. Vasoconstriction further reduces the effectiveness by limiting arterial flow when exposed to cold (the frostbite response), resulting in a time constant on the order of 20 minutes from application to maximum effect. This delay can be crucial in severe exposure to hypo- or hyper-thermic conditions, compromising homeostasis. The purpose of this innovation is to provide a lightweight, effective means of delivering heat or cold from an external source directly to the bloodstream. The effectiveness of this ECCREP (External Cooling Coupled to Reduced Extremity Pressure) device is based on not having to penetrate layers of skin, muscle, fat, and tissue, thereby avoiding the thermal lag associated with their mass and heat capacity. This is accomplished by means of an outer boot operating at a slightly reduced pressure than the rest of the body, combined with an inner boot cooled or heated by an external source via water or chemicals. Heat transfer from the external source to the foot takes place by means of circulating water or flexible heat pipes.
Lu, T; Saikaly, P E; Oerther, D B
2007-01-01
A comprehensive, simplified microbial biofilm model was developed to evaluate the impact of bioreactor operating parameters on changes in microbial population abundance. Biofilm simulations were conducted using three special cases: fully penetrated, internal mass transfer resistance and external mass transfer resistance. The results of model simulations showed that for certain operating conditions, competition for growth limiting nutrients generated oscillations in the abundance of planktonic and sessile microbial populations. These oscillations resulted in the violation of the competitive exclusion principle where the number of microbial populations was greater than the number of growth limiting nutrients. However, the operating conditions which impacted microbial community diversity were different for the three special cases. Comparing the results of model simulations for dispersed-growth, biofilms and bioflocs showed that oscillations and microbial community diversity were a function of competition as well as other key features of the ecosystem. The significance of the current study is that it is the first to examine competition as a mechanism for controlling microbial community diversity in biofilm reactors.
The different types of sperm morphology and behavior within a single species
Hirohashi, Noritaka; Iwata, Yoko
2013-01-01
Some coastal squids exhibit male dimorphism (large and small body size) that is linked to mating behaviors. Large “consort” males compete with other, rival males to copulate with a female, and thereby transfer their spermatophores to her internal site around the oviduct. Small “sneaker” males rush to a single female or copulating pair and transfer spermatophores to her external body surface around the seminal receptacle near the mouth. We previously found that in Loligo bleekeri, sneaker sperm are ~50% longer than consort sperm, and only the sneaker sperm, once ejaculated from the spermatophore (sperm mass), form a cluster because of chemoattraction toward their own respiratory CO2. Here, we report that sperm clusters are able to move en masse. Because a fraction of ejaculated sperm from a sneaker’s spermatophore are eventually located in the female’s seminal receptacle, we hypothesize that sperm clustering facilitates collective migration to the seminal receptacle or an egg micropyle. Sperm clustering is regarded as a cooperative behavior that may have evolved by sperm competition and/or physical and physiological constraints imposed by male mating tactics. PMID:24567779
Parametric laws to model urban pollutant dispersion with a street network approach
NASA Astrophysics Data System (ADS)
Soulhac, L.; Salizzoni, P.; Mejean, P.; Perkins, R. J.
2013-03-01
This study discusses the reliability of the street network approach for pollutant dispersion modelling in urban areas. This is essentially based on a box model, with parametric relations that explicitly model the main phenomena that contribute to the street canyon ventilation: the mass exchanges between the street and the atmosphere, the pollutant advection along the street axes and the pollutant transfer at street intersections. In the first part of the paper the focus is on the development of a model for the bulk transfer street/atmosphere, which represents the main ventilation mechanisms for wind direction that are almost perpendicular to the axis of the street. We then discuss the role of the advective transfer along the street axis on its ventilation, depending on the length of the street and the direction of the external wind. Finally we evaluate the performances of a box model integrating parametric exchange laws for these transfer phenomena. To that purpose we compare the prediction of the model to wind tunnel experiments of pollutant dispersion within a street canyon placed in an idealised urban district.
[Variations of respiratory parameters in healthy men].
Shishkin, G S; Ustiuzhaninova, N V
2006-01-01
The subjects of the study were 656 healthy men living in the south of West Siberia, in whom the basic parameters of gas exchange, lung ventilation, static lung volumes, and bronchial permeability were measured. The significance and incidence of non-pathological changes in the system of external respiration were defined on the basis of statistical and cluster analysis of these parameters. The study shows that individuals with functional changes can be divided into four groups with different characteristics: 1. Steady mobilization of the reserve tissue of the respiratory parts of the lungs as a physiological defense reaction to unfavorable ecological factors; 2. An increased airiness of the respiratory tissue as a sign of a compensatory reaction directed towards maintaining gas homeostasis in frequent and prominent overload of the system of external respiration; 3. Steady hyperventilation as a direct functional response of the organism to the slowing down of oxygen mass transfer in the respiratory parts of the lungs; 4. Restriction of external respiration due to respiratory diseases in the past. Despite differences in the origin, all the studied functional changes have one common feature, i.e. their association with a decrease in external respiratory reserve; all of them should be considered pulmonological risk manifestations.
Favre, Philippe; Loeb, Michael D; Helmy, Naeder; Gerber, Christian
2008-01-01
In patients with pseudoparesis of the shoulder resulting from irreparable rotator cuff tears, reverse shoulder arthroplasty (RSA) can restore active elevation, but external rotation remains less predictable. Latissimus dorsi transfer (LDT) has been shown to be effective in restoring external rotation in patients with posterosuperior tears of the rotator cuff. The aim of this study is to determine the capacity of the LDT to restore external rotation in combination with RSA and to investigate the mechanical advantage produced by 3 different insertion sites. A biomechanical model was created using a reverse total shoulder prosthesis with 3 different transfer insertions. Moment arms were measured for 2 static positions and 1 motion of the humerus. The moment arm analysis showed that LDT can improve active external rotation in the setting of a reverse prosthesis. An insertion site on the posterior side of the greater tuberosity (adjacent to the teres minor insertion) produced a greater external rotation moment arm.
Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface
NASA Technical Reports Server (NTRS)
Nema, V. K.; Sharma, O. P.
1986-01-01
To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.
NASA Astrophysics Data System (ADS)
Slodzian, Georges; Wu, Ting-Di; Duprat, Jean; Engrand, Cécile; Guerquin-Kern, Jean-Luc
2017-12-01
Dynamic transfer is an adaptive optical approach used for coupling a scanning ion probe with the mass spectrometer designed for analyzing sputtered ions emanating from the probe impact. Its tuning is of crucial importance for getting uniform signal collection over large scanning fields and therefore scanning images free of vignetting in a context of high mass resolution. Revisiting the optical design of the NanoSIMS 50 instrument, where the same set of lenses focuses the primary ion probe on the sample and collects secondary ions from the sample, led us to develop novel experimental procedures to achieve dynamic transfer tuning and overcome instrumental imperfections. It is the case for scanning distortion that may be induced by the octopole used for correcting probe astigmatism and may cause irreducible vignetting on scanning images. We show that it is possible to develop complete tuning procedures by compromising temporarily on the sharpness of the probe focus. Most importantly, we show that, in a context of high mass resolution, the transfer does not significantly disturb isotopic ratios over large scanned fields provided external coils are properly adjusted to compensate ambient magnetic fields. Deepening the procedures led us to demonstrate that the scanning center of the probe may not coincide with the imaging center of COOL, Coaxial Objective Lenses forming the probe and extracting secondary ions. We have checked that bringing those two centers into coincidence resulted in a better image quality over large fields. In the present work, we show how to handle the secondary beam in order to position it before it enters the spectrometer. That capability is essential for optimizing transmission at high mass resolution by aligning the secondary beam axis on a given entrance axis of the spectrometer. These results led us to propose several instrumental improvements including the crucial interest of an additional octopole upstream in the primary ion probe column to prevent scanning distortion when performing astigmatism correction and the possibility of offsetting primary beam deviating plates to bring scanning and imaging centers in coincidence.
Miles, Robin; Havstad, Mark; LeBlanc, Mary; ...
2015-09-15
External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m 2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten
In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less
Breath analysis using external cavity diode lasers: a review
NASA Astrophysics Data System (ADS)
Bayrakli, Ismail
2017-04-01
Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.
Compton-Scattering Cross Section on the Proton at High Momentum Transfer
NASA Astrophysics Data System (ADS)
Danagoulian, A.; Mamyan, V. H.; Roedelbronn, M.; Aniol, K. A.; Annand, J. R. M.; Bertin, P. Y.; Bimbot, L.; Bosted, P.; Calarco, J. R.; Camsonne, A.; Chang, C. C.; Chang, T.-H.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Degtyarenko, P.; de Jager, C. W.; Deur, A.; Dutta, D.; Egiyan, K.; Gao, H.; Garibaldi, F.; Gayou, O.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Hamilton, D. J.; Hansen, J.-O.; Hayes, D.; Higinbotham, D. W.; Hinton, W.; Horn, T.; Howell, C.; Hunyady, T.; Hyde, C. E.; Jiang, X.; Jones, M. K.; Khandaker, M.; Ketikyan, A.; Kubarovsky, V.; Kramer, K.; Kumbartzki, G.; Laveissière, G.; Lerose, J.; Lindgren, R. A.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; Meekins, D. G.; Meziani, Z.-E.; Michaels, R.; Moussiegt, P.; Nanda, S.; Nathan, A. M.; Nikolenko, D. M.; Nelyubin, V.; Norum, B. E.; Paschke, K.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Pomatsalyuk, R.; Punjabi, V. A.; Rachek, I.; Radyushkin, A.; Reitz, B.; Roche, R.; Ron, G.; Sabatié, F.; Saha, A.; Savvinov, N.; Shahinyan, A.; Shestakov, Y.; Širca, S.; Slifer, K.; Solvignon, P.; Stoler, P.; Tajima, S.; Sulkosky, V.; Todor, L.; Vlahovic, B.; Weinstein, L. B.; Wang, K.; Wojtsekhowski, B.; Voskanyan, H.; Xiang, H.; Zheng, X.; Zhu, L.
2007-04-01
Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s=5 11 and -t=2 7GeV2 with a statistical accuracy of a few percent. The scaling power for the s dependence of the cross section at fixed center-of-mass angle was found to be 8.0±0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.
Planning for Materials Processing in Space
NASA Technical Reports Server (NTRS)
1977-01-01
A systems design study to describe the conceptual evolution, the institutional interrelationshiphs, and the basic physical requirements to implement materials processing in space was conducted. Planning for a processing era, rather than hardware design, was emphasized. Product development in space was examined in terms of fluid phenomena, phase separation, and heat and mass transfer. The effect of materials processing on the environment was studied. A concept for modular, unmanned orbiting facilities using the modified external tank of the space shuttle is presented. Organizational and finding structures which would provide for the efficient movement of materials from user to space are discussed.
Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Rickman, S. L.; Iamello, C. J.
2016-01-01
Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.
Elhassan, Bassem T; Wagner, Eric R; Werthel, Jean-David
2016-08-01
Management of massive irreparable posterior-superior rotator cuff tear can be very challenging. This study reports the outcome of the lower trapezius transfer to reconstruct massive irreparable posterior-superior rotator cuff tear. Included were 33 patients with an average age of 53 years (range, 31-66 years). All patients had symptomatic massive irreparable rotator cuff tear that failed conservative or prior surgical treatment and underwent reconstruction with lower trapezius transfer prolonged by Achilles tendon allograft. The tear was considered irreparable based on the magnetic resonance imaging finding of ≥2 full-thickness rotator cuff tears associated with shortening and retraction of the tendon to the level of the glenoid and a high grade of fatty infiltration of the muscles. This was confirmed at the time of the surgery. At an average follow-up of 47 months, 32 patients had significant improvement in pain, subjective shoulder value, and Disabilities of the Arm, Shoulder and Hand score and shoulder range of motion, including flexion, 120°; abduction, 90°; and external rotation 50°. One patient, with a body mass index of 36 kg/m(2), required débridement for an infection and then later underwent shoulder fusion. Patients with >60° of preoperative flexion had more significant gains in their range of motion. Shoulder external rotation improved in all patients regardless of the extent of the preoperative loss of motion. Transfer of the lower trapezius prolonged with Achilles tendon allograft to reconstruct massive irreparable posterior-superior rotator cuff tear may lead to good outcome in most patients, specifically for those who have preoperative flexion of >60°. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin Keshavarz; Layeghi, Mohammad; Hemmati, Mansor
2013-03-01
Forced convective heat transfer from a vertical circular tube conveying deionized (DI) water or very dilute Ag-DI water nanofluids (less than 0.02% volume fraction) in a cross flow of air has been investigated experimentally. Some experiments have been performed in a wind tunnel and heat transfer characteristics such as thermal conductance, effectiveness, and external Nusselt number has been measured at different air speeds, liquid flow rates, and nanoparticle concentrations. The cross flow of air over the tube and the liquid flow in the tube were turbulent in all cases. The experimental results have been compared and it has been found that suspending Ag nanoparticles in the base fluid increases thermal conductance, external Nusselt number, and effectiveness. Furthermore, by increasing the external Reynolds number, the external Nusselt number, effectiveness, and thermal conductance increase. Also, by increasing internal Reynolds number, the thermal conductance and external Nusselt number enhance while the effectiveness decreases.
NASA Astrophysics Data System (ADS)
Chau, S. W.; Hsu, K. L.; Lin, D. L.; Tzeng, C. C.
2007-04-01
The cathode erosion rate, arc root velocity and output power of a well-type cathode (WTC), non-transferred plasma torch operating in air are studied experimentally in this paper. An external solenoid to generate a magnetically driven arc and a circular swirler to produce a vortex flow structure are equipped in the studied torch system, which is designed to reduce the erosion rate at the cathode. A least square technique is applied to correlate the system parameters, i.e. current, axial magnetic field and mass flow rate, with the cathode erosion rate, arc root velocity and system power output. In the studied WTC torch system, the cathode erosion has a major thermal erosion component and a minor component due to the ion-bombardment effect. The cathode erosion increases with the increase of current due to the enhancement in both Joule heating and ion bombardment. The axial magnetic field can significantly reduce the cathode erosion by reducing the thermal loading of cathode materials at the arc root and improving the heat transfer to gas near the cathode. But, the rise in the mass flow rate leads to the deterioration of erosion, since the ion-bombardment effect prevails over the convective cooling at the cathode. The most dominant system parameter to influence the arc root velocity is the axial magnetic field, which is mainly contributed to the magnetic force driving the arc. The growth in current has a negative impact on increasing the arc root velocity, because the friction force acting at the spot due to a severe molten condition becomes the dominant component counteracting the magnetic force. The mass flow rate also suppresses the arc root velocity, as a result of which the arc root moves in the direction against that of the swirled working gas. All system parameters such as current, magnetic field and gas flow rate increase with the increase in the torch output power. The experimental evidences suggest that the axial magnetic field is the most important parameter to operate the straight-polarity WTC plasma torch at high output power with a limited cathode erosion rate. This emphasizes the importance of an external magnetic field on a WTC torch system for reducing the erosion at the cathode.
Soldatov, A A
2012-01-01
Effect of hypoosmotic conditions of medium on oxygen regime of skeletal muscles of the stenohalin goby Gobius cobitus Pallas was studied under conditions of experiment. The control fish group was maintained at 12-14 %o, the experimental one - at 4.8-5.6 per thousand. Duration of the experiment - 44-45 days, water temperature - 15 +/- 1 degrees C, photoperiod - 12 day/12 night. It was established that under conditions of external hypoosmia there occurred hydration of the goby skeletal muscles and a decrease of their diffusion capability with respect to oxygen. The latter was accompanied by the tissue P(O2) decrease, which is indicated by low values of P(O2) in the venous blood outflowing from muscles. For the first 14-16 days of adaptation to the hypoosmotic medium there were restricted processes of mass transfer and oxygen utilization, which was associated with a decrease of the voluminous tissue blood flow and the blood oxygen concentration. These changes occurred on the background of the blood plasma hydration and a decrease of the number of circulated erythrocytes, and then they were completely compensated.
Hirohashi, Noritaka; Iwata, Yoko
2013-11-01
Some coastal squids exhibit male dimorphism (large and small body size) that is linked to mating behaviors. Large "consort" males compete with other, rival males to copulate with a female, and thereby transfer their spermatophores to her internal site around the oviduct. Small "sneaker" males rush to a single female or copulating pair and transfer spermatophores to her external body surface around the seminal receptacle near the mouth. We previously found that in Loligo bleekeri, sneaker sperm are ~50% longer than consort sperm, and only the sneaker sperm, once ejaculated from the spermatophore (sperm mass), form a cluster because of chemoattraction toward their own respiratory CO2. Here, we report that sperm clusters are able to move en masse. Because a fraction of ejaculated sperm from a sneaker's spermatophore are eventually located in the female's seminal receptacle, we hypothesize that sperm clustering facilitates collective migration to the seminal receptacle or an egg micropyle. Sperm clustering is regarded as a cooperative behavior that may have evolved by sperm competition and/or physical and physiological constraints imposed by male mating tactics.
Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line
NASA Technical Reports Server (NTRS)
Hartwig, Jason; Vera, Jerry
2015-01-01
Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.
Using White Dwarf Companions of Blue Stragglers to Constrain Mass Transfer Physics
NASA Astrophysics Data System (ADS)
Gosnell, Natalie M.; Leiner, Emily; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leigh, Nathan
2018-06-01
Complete membership studies of old open clusters reveal that 25% of the evolved stars follow pathways in stellar evolution that are impacted by binary evolution. Recent studies show that the majority of blue straggler stars, traditionally defined to be stars brighter and bluer than the corresponding main sequence turnoff, are formed through mass transfer from a giant star onto a main sequence companion, resulting in a white dwarf in a binary system with a blue straggler. We will present constraints on the histories and mass transfer efficiencies for two blue straggler-white dwarf binaries in open cluster NGC 188. The constraints are a result of measuring white dwarf cooling temperatures and surface gravities with HST COS far-ultraviolet spectroscopy. This information sets both the timeline for mass transfer and the stellar masses in the pre-mass transfer binary, allowing us to constrain aspects of the mass transfer physics. One system is formed through Case C mass transfer, leaving a CO-core white dwarf, and provides an interesting test case for mass transfer from an asymptotic giant branch star in an eccentric system. The other system formed through Case B mass transfer, leaving a He-core white dwarf, and challenges our current understanding of the expected regimes for stable mass transfer from red giant branch stars.
Mass storage technology in networks
NASA Astrophysics Data System (ADS)
Ishii, Katsunori; Takeda, Toru; Itao, Kiyoshi; Kaneko, Reizo
1990-08-01
Trends and features of mass storage subsystems in network are surveyed and their key technologies spotlighted. Storage subsystems are becoming increasingly important in new network systems in which communications and data processing are systematically combined. These systems require a new class of high-performance mass-information storage in order to effectively utilize their processing power. The requirements of high transfer rates, high transactional rates and large storage capacities, coupled with high functionality, fault tolerance and flexibility in configuration, are major challenges in storage subsystems. Recent progress in optical disk technology has resulted in improved performance of on-line external memories to optical disk drives, which are competing with mid-range magnetic disks. Optical disks are more effective than magnetic disks in using low-traffic random-access file storing multimedia data that requires large capacity, such as in archive use and in information distribution use by ROM disks. Finally, it demonstrates image coded document file servers for local area network use that employ 130mm rewritable magneto-optical disk subsystems.
The Transfer of Local Authority School Support Services to External Social Enterprises
ERIC Educational Resources Information Center
Hatcher, Richard
2015-01-01
This paper explores an emerging and largely unresearched sector of the school education market, the transfer of local authority support services to external social enterprises. It locates these new social enterprises as a consequence of government strategies to reduce public spending, shrink local government and create competitive markets in…
NASA Astrophysics Data System (ADS)
Zhu, Donghui; Bian, Yongning
2018-03-01
The shape of pipeline structure, fluid medium and flow state have important influence on the heat transfer and mass effect of fluid. In this paper, we investigated the mass transfer behavior of Non-Newtonian fluid CMC solution with 700ppm concentration in five different-sized axisymmetric wave-walled tubes for pulsatile flow. It is revealed that the effect of mass transfer is enhanced with the increase of oscillatory fractions P based on the PIV measurements. Besides, mass transfer rate was measured by the electrochemical method in the larger oscillatory points rate range. It is observed that mass transfer rate increases with the increase in P and reached the maximum mass transfer rate at the most optimal oscillatory fractions P opt. After reaching the optimal oscillatory fractions P opt, the mass transfer rate decreases with increasing P.
NASA Technical Reports Server (NTRS)
Cummings, J. W.; Foster, T. F.; Lockman, W. K.
1976-01-01
Data obtained from a heat transfer test conducted on an 0.006-scale space shuttle orbiter and external tank in the NASA-Ames Research Center 3.5-foot Hypersonic Wind Tunnel are presented. The purpose of this test was to obtain data under simulated return-to-launch-site abort conditions. Configurations tested were integrated orbiter and external tank, orbiter alone, and external tank alone at angles of attack of 0, + or - 30, + or - 60, + or - 90, and + or - 120 degrees. Runs were conducted at Mach numbers of 5.2 and 5.3 for Reynolds numbers of 1.0 and 4.0 million per foot, respectively. Heat transfer data were obtained from 75 orbiter and 75 external tank iron-constantan thermocouples.
Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field
NASA Astrophysics Data System (ADS)
Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao
2017-03-01
External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.
Rotary high power transfer apparatus
NASA Technical Reports Server (NTRS)
Jacobson, Peter E. (Inventor); Porter, Ryan S. (Inventor)
1987-01-01
An apparatus for reducing terminal-to-terminal circuit resistance and enhancing heat transfer in a rotary power transfer apparatus of the roll ring type comprising a connecting thimble for attaching an external power cable to a cone shaped terminal which is attached to a tab integral to an outer ring. An inner ring having a spherical recess mates with the spherical end of a tie connector. A cone shaped terminal is fitted to a second connecting thimble for attaching a second external power cable.
An Accretion Model for the Growth of Black Hole in Quasars
NASA Technical Reports Server (NTRS)
Lu, Ye; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.
Mass Transfer with Chemical Reaction.
ERIC Educational Resources Information Center
DeCoursey, W. J.
1987-01-01
Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)
ERIC Educational Resources Information Center
Khan, Abdul Azeez; Khader, Sheik Abdul
2014-01-01
E-learning or electronic learning platforms facilitate delivery of the knowledge spectrum to the learning community through information and communication technologies. The transfer of knowledge takes place from experts to learners, and externalization of the knowledge transfer is significant. In the e-learning environment, the learners seek…
Temperature modulation with an esophageal heat transfer device - a pediatric swine model study.
Kulstad, Erik B; Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Haryu, Todd; Waller, Donald; Azarafrooz, Farshid; Courtney, Daniel Mark
2015-01-01
An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1°C) would be possible. Three female Yorkshire swine averaging 23 kg were anesthetized with inhalational isoflurane prior to placement of the esophageal device, which was powered by a commercially available heat exchanger. Swine temperature was measured rectally and cooling and warming were performed by selecting the appropriate external heat exchanger mode. Temperature was recorded over time in order to calculate rates of temperature change. Histopathology of esophageal tissue was performed after study completion. Average swine baseline temperature was 38.3°C. Swine #1 exhibited a cooling rate of 3.5°C/hr; however, passive cooling may have contributed to this rate. External warming blankets maintained thermal equilibrium in swine #2 and #3, demonstrating maximum temperature decrease of 1.7°C/hr. Warming rates averaged 0.29°C/hr. Histopathologic analysis of esophageal tissue showed no adverse effects. An esophageal heat transfer device successfully modulated the temperature in a pediatric swine model. This approach to temperature modulation may offer a useful new modality to control temperature in conditions warranting temperature management (such as maintenance of normothermia, induction of hypothermia, fever control, or malignant hyperthermia).
NASA Astrophysics Data System (ADS)
Lucia, Umberto; Grisolia, Giulia; Ponzetto, Antonio; Deisboeck, Thomas S.
2018-01-01
Cellular homoeostasis involves a continuous interaction between the cell and its microenvironment. As such, active and passive transport of ions, nutrients, molecules and water are the basis for biochemical-physical cell life. These transport phenomena change the internal and external ionic concentrations, and, as a consequence, the cell membrane's electric potential and the pH. In this paper we focus on the relationship between these ion transport-induced pH and membrane voltage changes to highlight their impact on carcinogenesis. The preliminary results suggest a critical role for Cl- in driving tumour transformation towards a more malignant phenotype.
Strong interband Faraday rotation in 3D topological insulator Bi2Se3.
Ohnoutek, L; Hakl, M; Veis, M; Piot, B A; Faugeras, C; Martinez, G; Yakushev, M V; Martin, R W; Drašar, Č; Materna, A; Strzelecka, G; Hruban, A; Potemski, M; Orlita, M
2016-01-11
The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass.
NASA Astrophysics Data System (ADS)
Brekke, Stewart
2010-03-01
Every mass or mass group, from atoms and molecules to stars and galaxies,has no motion, is vibrating, rotating,or moving linearly, singularly or in some combination. When created, the excess energy of creation will generate a vibration, rotation and/or linear motion besides the mass or mass group. Curvilinear or orbital motion is linear motion in an external force field. External forces, such as photon, molecular or stellar collisions may over time modify the inital rotational, vibratory or linear motions of the mass of mass group. The energy equation for each mass or mass group is E=mc^2 + 1/2mv^2 + 1/2I2̂+ 1/2kx0^2 + WG+ WE+ WM.
43 CFR 3106.4-3 - Mass transfers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mass transfers. 3106.4-3 Section 3106.4-3... or Otherwise § 3106.4-3 Mass transfers. (a) A mass transfer may be utilized in lieu of the provisions... large number of Federal leases to the same transferee. (b) Three originally executed copies of the mass...
Hygrothermal behavior for a clay brick wall
NASA Astrophysics Data System (ADS)
Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.
2018-06-01
In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.
Hygrothermal behavior for a clay brick wall
NASA Astrophysics Data System (ADS)
Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.
2018-01-01
In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.
On the Feynman-Hellmann theorem in quantum field theory and the calculation of matrix elements
Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten; ...
2017-07-12
In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less
Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells
NASA Astrophysics Data System (ADS)
Mussa, Abdilbari Shifa; Klett, Matilda; Lindbergh, Göran; Lindström, Rakel Wreland
2018-05-01
The effects of external compression on the performance and ageing of NMC(1/3)/Graphite single-layer Li-ion pouch cells are investigated using a spring-loaded fixture. The influence of pressure (0.66, 0.99, 1.32, and 1.98 MPa) on impedance is characterized in fresh cells that are subsequently cycled at the given pressure levels. The aged cells are analyzed for capacity fade and impedance rise at the cell and electrode level. The effect of pressure distribution that may occur in large-format cells or in a battery pack is simulated using parallel connected cells. The results show that the kinetic and mass transport resistance increases with pressure in a fresh cell. An optimum pressure around 1.3 MPa is shown to be beneficial to reduce cyclable-lithium loss during cycling. The minor active mass losses observed in the electrodes are independent of the ageing pressure, whereas ageing pressure affects the charge transfer resistance of both NMC and graphite electrodes and the ohmic resistance of the cell. Pressure distribution induces current distribution but the enhanced current throughput at lower pressures cell does not accelerate its ageing. Conclusions from this work can explain some of the discrepancies in non-uniform ageing reported in the literature and indicate coupling between electrochemistry and mechanics.
Fuel Reforming Technologies (BRIEFING SLIDES)
2009-09-01
Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy
Conceptual models governing leaching behavior and their long-term predictive capability
Claassen, Hans C.
1981-01-01
Six models that may be used to describe the interaction of radioactive waste solids with aqueous solutions are as follows:Simple linear mass transfer;Simple parabolic mass transfer;Parabolic mass transfer with the formation of a diffusion-limiting surface layer at an arbitrary time;Initial parabolic mass transfer followed by linear mass transfer at an arbitrary time;Parabolic (or linear) mass transfer and concomitant surface sorption; andParabolic (or linear) mass transfer and concomitant chemical precipitation.Some of these models lead to either illogical or unrealistic predictions when published data are extrapolated to long times. These predictions result because most data result from short-term experimentation. Probably for longer times, processes will occur that have not been observed in the shorter experiments. This hypothesis has been verified by mass-transfer data from laboratory experiments using natural volcanic glass to predict the composition of groundwater. That such rate-limiting mechanisms do occur is reassuring, although now it is not possible to deduce a single mass-transfer limiting mechanism that could control the solution concentration of all components of all waste forms being investigated. Probably the most reasonable mechanisms are surface sorption and chemical precipitation of the species of interest. Another is limiting of mass transfer by chemical precipitation on the waste form surface of a substance not containing the species of interest, that is, presence of a diffusion-limiting layer. The presence of sorption and chemical precipitation as factors limiting mass transfer has been verified in natural groundwater systems, whereas the diffusion-limiting mechanism has not been verified yet.
Diffusional falsification of kinetic constants on Lineweaver-Burk plots.
Ghim, Y S; Chang, H N
1983-11-07
The effect of mass transfer resistances on the Lineweaver-Burk plots in immobilized enzyme systems has been investigated numerically and with analytical approximate solutions. While Hamilton, Gardner & Colton (1974) studied the effect of internal diffusion resistances in planar geometry, our study was extended to the combined effect of internal and external diffusion in cylindrical and spherical geometries as well. The variation of Lineweaver-Burk plots with respect to the geometries was minimized by modifying the Thiele modulus and the Biot number with the shape factor. Especially for a small Biot number all the three Lineweaver-Burk plots fell on a single line. As was discussed by Hamilton et al. (1974), the curvature of the line for large external diffusion resistances was small enough to be assumed linear, which was confirmed from the two approximate solutions for large and small substrate concentrations. Two methods for obtaining intrinsic kinetic constants were proposed: First, we obtained both maximum reaction rate and Michaelis constant by fitting experimental data to a straight line where external diffusion resistance was relatively large, and second, we obtained Michaelis constant from apparent Michaelis constant from the figure in case we knew maximum reaction rate a priori.
Hethnawi, Afif; Manasrah, Abdallah D; Vitale, Gerardo; Nassar, Nashaat N
2018-03-01
In this study, a fixed-bed column adsorption process was employed to remove organic pollutants from a real industrial wastewater effluent using polyethylenimine-functionalized pyroxene nanoparticles (PEI-PY) embedded into Diatomite at very low mass percentage. Various dynamic parameters (e.g., inlet concentration, inlet flow rate, bed height, and PEI-nanoparticle concentration in Diatomite, (%nps)) were investigated to determine the breakthrough behavior. The obtained breakthrough curves were fit with a convection-dispersion model to determine the characteristic parameters based on mass transfer phenomena. The axial dispersion coefficient (D L ) and group of dimensionless numbers; including Renold number (Re), Schmidt number (Sc), and Sherwood number (Sh) were all determined and correlated by Wilson-Geankoplis correlation that was used to estimate the external film diffusion coefficients (Kc) at 0.0015 < Re<55. Copyright © 2017 Elsevier Inc. All rights reserved.
Impact of kinetic mass transfer on free convection in a porous medium
NASA Astrophysics Data System (ADS)
Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.
2016-05-01
We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.
NASA Astrophysics Data System (ADS)
Saha, Dipendu
2009-02-01
The feasibility of drastically reducing the contactor size in mass transfer processes utilizing centrifugal field has generated a lot of interest in rotating packed bed (Higee). Various investigators have proposed correlations to predict mass transfer coefficients in Higee, but, none of the correlations was more than 20-30% accurate. In this work, artificial neural network (ANN) is employed for predicting mass transfer coefficient data. Results show that ANN provides better estimation of mass transfer coefficient with accuracy 5-15%.
Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport
NASA Astrophysics Data System (ADS)
Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak
2017-01-01
Three-dimensional (3D) micro/nanofluidic devices can accelerate progress in numerous fields such as tissue engineering, drug delivery, self-healing and cooling devices. However, efficient connections between networks of micro/nanochannels and external fluidic ports are key to successful applications of 3D micro/nanofluidic devices. Therefore, in this work, the extent of the role of reservoir geometry in interfacing with vascular (micro/nanochannel) networks, and in the enabling of connections with external fluidic ports while maintaining the compactness of devices, has been experimentally and theoretically investigated. A statistical modelling suggested that a branch-shaped reservoir demonstrates enhanced interfacing with vascular networks when compared to other regular geometries of reservoirs. Time-lapse dye flow experiments by capillary action through fabricated 3D micro/nanofluidic devices confirmed the connectivity of branch-shaped reservoirs with micro/nanochannel networks in fluidic devices. This demonstrated a ~2.2-fold enhancement of the volumetric flow rate in micro/nanofluidic networks when interfaced to branch-shaped reservoirs over rectangular reservoirs. The enhancement is due to a ~2.8-fold increase in the perimeter of the reservoirs. In addition, the mass transfer experiments exhibited a ~1.7-fold enhancement in solute flux across 3D micro/nanofluidic devices that interfaced with branch-shaped reservoirs when compared to rectangular reservoirs. The fabrication of 3D micro/nanofluidic devices and their efficient interfacing through branch-shaped reservoirs to an external fluidic port can potentially enable their use in complex applications, in which enhanced surface-to-volume interactions are desirable.
Controlling the Internal Heat Transfer Coefficient by the Characteristics of External Flows
NASA Astrophysics Data System (ADS)
Zhuromskii, V. M.
2018-01-01
The engineering-physical fundamentals of substance synthesis in a boiling apparatus are presented. We have modeled a system of automatic stabilization of the maximum internal heat transfer coefficient in such an apparatus by the characteristics of external flows on the basis of adaptive seeking algorithms. The results of operation of the system in the shop are presented.
Devices with extended area structures for mass transfer processing of fluids
TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.
2009-04-21
A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.
NASA Technical Reports Server (NTRS)
Walstad, D. G.
1975-01-01
Data are presented from heat transfer tests on an 0.0006-scale space shuttle vehicle in the Langley Research Center Nitrogen Tunnel. The purpose of this test was to obtain ascent heating data at a high hypersonic Mach number. Configurations tested were integrated orbiter and external tank, orbiter alone, and external tank alone. All configurations were tested with and without boundary layer transition. Testing was conducted at a Mach number of 19, a Reynolds number of 0.5 million per foot, and angles of attack of 0, + or - 5, and + or - 10 degrees. Heat transfer data was obtained from 77 orbiter and 90 external tank iron-constantan thermocouples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meru, Farzana; Juhász, Attila; Ilee, John D.
The young star Elias 2–27 has recently been observed to posses a massive circumstellar disk with two prominent large-scale spiral arms. In this Letter, we perform three-dimensional Smoothed Particle Hydrodynamics simulations, radiative transfer modeling, synthetic ALMA imaging, and an unsharped masking technique to explore three possibilities for the origin of the observed structures—an undetected companion either internal or external to the spirals, and a self-gravitating disk. We find that a gravitationally unstable disk and a disk with an external companion can produce morphology that is consistent with the observations. In addition, for the latter, we find that the companion couldmore » be a relatively massive planetary-mass companion (≲10–13 M {sub Jup}) and located at large radial distances (between ≈300–700 au). We therefore suggest that Elias 2–27 may be one of the first detections of a disk undergoing gravitational instabilities, or a disk that has recently undergone fragmentation to produce a massive companion.« less
Shin, Gunchul; Gomez, Adrian M; Al-Hasani, Ream; Jeong, Yu Ra; Kim, Jeonghyun; Xie, Zhaoqian; Banks, Anthony; Lee, Seung Min; Han, Sang Youn; Yoo, Chul Jong; Lee, Jong-Lam; Lee, Seung Hee; Kurniawan, Jonas; Tureb, Jacob; Guo, Zhongzhu; Yoon, Jangyeol; Park, Sung-Il; Bang, Sang Yun; Nam, Yoonho; Walicki, Marie C; Samineni, Vijay K; Mickle, Aaron D; Lee, Kunhyuk; Heo, Seung Yun; McCall, Jordan G; Pan, Taisong; Wang, Liang; Feng, Xue; Kim, Tae-Il; Kim, Jong Kyu; Li, Yuhang; Huang, Yonggang; Gereau, Robert W; Ha, Jeong Sook; Bruchas, Michael R; Rogers, John A
2017-02-08
In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source, limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin, flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable light-emitting diodes (LEDs), with the ability to operate at wavelengths ranging from UV to blue, green-yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Shin, Gunchul; Gomez, Adrian M.; Al-Hasani, Ream; Jeong, Yu Ra; Kim, Jeonghyun; Xie, Zhaoqian; Banks, Anthony; Lee, Seung Min; Han, Sang Youn; Yoo, Chul Jong; Lee, Jong-Lam; Lee, Seung Hee; Kurniawan, Jonas; Tureb, Jacob; Guo, Zhongzhu; Yoon, Jangyeol; Park, Sung-Il; Bang, Sang Yun; Nam, Yoonho; Walicki, Marie C.; Samineni, Vijay K.; Mickle, Aaron D.; Lee, Kunhyuk; Heo, Seung Yun; McCall, Jordan G.; Pan, Taisong; Wang, Liang; Feng, Xue; Kim, Taeil; Kim, Jong Kyu; Li, Yuhang; Huang, Yonggang; Gereau, Robert W.; Ha, Jeong Sook; Bruchas, Michael R.; Rogers, John A.
2017-01-01
Summary In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable LEDs, with the ability to operate at wavelengths ranging from ultraviolet to blue, green/yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications. PMID:28132830
Shoulder abduction and external rotation restoration with nerve transfer.
Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Vekris, Marios; Lykissas, Marios; Gkiatas, Ioannis; Mitsionis, Gregory; Beris, Alexander
2013-03-01
In upper brachial plexus palsy patients, loss of shoulder function and elbow flexion is obvious as the result of paralysed muscles innervated by the suprascapular, axillary and musculocutaneus nerve. Shoulder stabilisation, restoration of abduction and external rotation are important as more distal functions will be affected by the shoulder situation. Between 2005 and 2011, eleven patients with upper type brachial plexus palsy were operated on with triceps nerve branch transfer to anterior axillary nerve branch and spinal accessory nerve transfer to the suprascapular nerve for shoulder abduction and external rotation restoration. Nine patients met the inclusion criteria for the study. All patients were men with ages ranged from 21 to 35 years (average, 27.4 years). The interval between injury and surgery ranged from 4 to 11 months (average, 7.2 months). Atrophy of the supraspinatus, infraspinatus and deltoid muscle and subluxation at the glenohumeral joint was obvious in all patients preoperatively. During the pre-op examination all patients had at least muscle grading 4 on the triceps muscle. The mean post-operative value of shoulder abduction was 112.2° (range: 60-170°) while preoperatively none of the patients was able for abduction (p<0.001). The mean post-operative value of shoulder external rotation was 66° (range: 35-110°) while preoperatively none of them was able for external rotation (p<0.001). Postoperative values of shoulder abduction were significantly better that those of external rotation (p=0.0004). The postoperative average muscle grading for shoulder abduction according the MRC scale was 3.6±0.5 and for the shoulder external rotation was 3.2±0.4. Combined nerve transfer by using the spinal accessory nerve for suprascapular nerve neurotisation and one of the triceps nerve branches for axillary nerve and teres minor branch neurotisation is an excellent choice for shoulder abduction and external rotation restoration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Henseler, Jan Ferdinand; Nagels, Jochem; Nelissen, Rob G H H; de Groot, Jurriaan H
2014-04-01
The purpose of this study is to evaluate the muscle activity with surface electromyography (EMG) and the clinical outcome of the latissimus dorsi transfer. It remains unclear whether the clinical results of the latissimus dorsi transfer for massive posterosuperior rotator cuff tears are achieved either by active muscle contractions or by a passive tenodesis effect of the transfer. Eight patients were evaluated preoperatively and at 1 year (SD, 0.1) after the latissimus dorsi transfer. Clinical evaluation of outcomes included active range of motion, Constant score, and visual analog scale (VAS) for pain and activities of daily living (ADL). Muscle activity was recorded with EMG during directional isometric abduction and adduction tasks. The external rotation in adduction improved from 23° to 51° (P = .03). The external rotation in abduction improved from 10° to 70° (P = .02). The mean Constant score improved from 39 to 62 postoperatively (P = .01). The VAS for pain at rest improved from 3.3 preoperatively to 0.1 (P = .02). The VAS for ADL improved from 4.9 to 2.3 (P = .05). The transferred latissimus dorsi remained active in all cases, as reflected by increased latissimus dorsi EMG activity during abduction tasks. In addition, the latissimus dorsi EMG activity shifted from preoperative antagonistic co-activation in adduction to synergistic activation in abduction. The latissimus dorsi has synergistic muscle activity after transfer. Apart from a tenodesis effect, directional muscle activity seems relevant for improved clinical outcome and pain relief. A specific gain was observed for external rotation in elevated arm positions, a motion essential for ADL tasks. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Berland, Kristian; Einstein, T. L.; Hyldgaard, Per
2012-02-01
To manipulate the Cu(111) partially-filled Shockley surface state, we study its response to an external fieldootnotetextKB, TLE, PH; arXiv 1109:6706 E and physisorbed PAHs and quinone molecules. We use density-functional theory calculations with periodic-boundary conditions. The van der Waals density functional version vdW-DF2 accounts for the molecular adsorption. The issue that the Kohn-Sham wave functions couple to both sides of the Cu slab is handled with a decoupling scheme based on a rotation in Hilbert space. A convergence study reveals that to obtain a proper Shockley surface state, 6 Cu layers is sufficient, while 15 is optimal. We use 6 layers for the response to the molecules and 15 to external field. We find that the surface state displays isotropic dispersion (up to order k^6), free-electron like until the Fermi wave vector but with a significant quartic component beyond. The shift in band minimum and effective mass depend linearly on E, with a smaller fractional change in the latter. Charge transfer occurs beyond the outermost copper atoms, and most of the screening is due to bulk electrons. We find that the molecular physisorption increases the band minimum, with the effect the of a quinone being much stronger than the corresponding PAH.
A new look at the atomic level virial stress: on continuum-molecular system equivalence
NASA Astrophysics Data System (ADS)
Zhou, Min
2003-09-01
The virial stress is the most commonly used definition of stress in discrete particle systems. This quantity includes two parts. The first part depends on the mass and velocity (or, in some versions, the fluctuation part of the velocity) of atomic particles, reflecting an assertion that mass transfer causes mechanical stress to be applied on stationary spatial surfaces external to an atomic-particle system. The second part depends on interatomic forces and atomic positions, providing a continuum measure for the internal mechanical interactions between particles. Historic derivations of the virial stress include generalization from the virial theorem of Clausius (1870) for gas pressure and solution of the spatial equation of balance of momentum. The virial stress is stress-like a measure for momentum change in space. This paper shows that, contrary to the generally accepted view, the virial stress is not a measure for mechanical force between material points and cannot be regarded as a measure for mechanical stress in any sense. The lack of physical significance is both at the individual atom level in a time-resolved sense and at the system level in a statistical sense. It is demonstrated that the interatomic force term alone is a valid stress measure and can be identified with the Cauchy stress. The proof in this paper consists of two parts. First, for the simple conditions of rigid translation, uniform tension and tension with thermal oscillations, the virial stress yields clearly erroneous interpretations of stress. Second, the conceptual flaw in the generalization from the virial theorem for gas pressure to stress and the confusion over spatial and material equations of balance of momentum in theoretical derivations of the virial stress that led to its erroneous acceptance as the Cauchy stress are pointed out. Interpretation of the virial stress as a measure for mechanical force violates balance of momentum and is inconsistent with the basic definition of stress. The versions of the virial-stress formula that involve total particle velocity and the thermal fluctuation part of the velocity are demonstrated to be measures of spatial momentum flow relative to, respectively, a fixed reference frame and a moving frame with a velocity equal to the part of particle velocity not included in the virial formula. To further illustrate the irrelevance of mass transfer to the evaluation of stress, an equivalent continuum (EC) for dynamically deforming atomistic particle systems is defined. The equivalence of the continuum to discrete atomic systems includes (i) preservation of linear and angular momenta, (ii) conservation of internal, external and inertial work rates, and (iii) conservation of mass. This equivalence allows fields of work- and momentum-preserving Cauchy stress, surface traction, body force and deformation to be determined. The resulting stress field depends only on interatomic forces, providing an independent proof that as a measure for internal material interaction stress is independent of kinetic energy or mass transfer.
Capture of exocomets and the erosion of the Oort cloud due to stellar encounters in the Galaxy
NASA Astrophysics Data System (ADS)
Hanse, J.; Jílková, L.; Portegies Zwart, S. F.; Pelupessy, F. I.
2018-02-01
The Oort cloud (OC) probably formed more than 4 Gyr ago and has been moving with the Sun in the Galaxy since, exposed to external influences, most prominently to the Galactic tide and passing field stars. Theories suggest that other stars might possess exocomets distributed similarly to our OC. We study the erosion of the OC and the possibility for capturing exocomets during the encounters with such field stars. We carry out simulations of flybys, where both stars are surrounded by a cloud of comets. We measure how many exocomets are transferred to the OC, how many OC's comets are lost, and how this depends on the other star's mass, velocity and impact parameter. Exocomets are transferred to the OC only during relatively slow (≲0.5 km s-1) and close (≲105 au) flybys and these are expected to be extremely rare. Assuming that all passing stars are surrounded by a cloud of exocomets, we derive that the fraction of exocomets in the OC has been about 10-5-10-4. Finally, we simulate the OC for the whole lifetime of the Sun, taking into account the encounters and the tidal effects. The OC has lost 25-65 per cent of its mass, mainly due to stellar encounters, and at most 10 per cent (and usually much less) of its mass can be captured. However, exocomets are often lost shortly after the encounter that delivers them, due to the Galactic tide and consecutive encounters.
Communication and Cultural Change in University Technology Transfer
ERIC Educational Resources Information Center
Wright, David
2013-01-01
Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…
Mass transfer in white dwarf-neutron star binaries
NASA Astrophysics Data System (ADS)
Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.
2017-05-01
We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.
NASA Technical Reports Server (NTRS)
Alexander, Reginald; Stanley, Thomas Troy
2001-01-01
Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to all other systems, as is the case with SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA). In particular, the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results in high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately calculate the TPS mass of this type of vehicle several engineering disciplines and analytical tools must be used preferably in an environment that data is easily transferred and multiple iterations are easily facilitated.
Kubannek, F; Schröder, U; Krewer, U
2018-06-01
In this work we employ differential electrochemical mass spectrometry (DEMS) in combination with static and dynamic electrochemical techniques for the study of metabolic processes of electrochemically active bacteria. CO 2 production during acetate oxidation by electrode respiring bacteria was measured, in-vivo and online with a sensitivity of 6.5 ⋅ 10 -13 mol/s. The correlation of ion current and electrical current provides insight into the interaction of metabolic processes and extra-cellular electron transfer. In low-turnover CVs, two competing potential dependent electron transfer mechanisms were observed and formal potentials of two redox systems that are involved in complete oxidation of acetate to CO 2 were determined. By balancing charge and carbon flows during dynamic measurements, two significant storage mechanisms in electrochemically active bacteria were identified: 1) a charge storage mechanism that allows substrate oxidation to proceed at a constant rate despite of external current flowing in cathodic direction. 2) a carbon storage mechanism that allows the biofilm to take up acetate at an unchanged rate at very low potentials even though the oxidation to CO 2 stops. These storage capabilities allow a limited decoupling of electrical current and CO 2 production rate. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng
2016-08-01
A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.
The effects of dual-domain mass transfer on the tritium-helium-3 dating method.
Neumann, Rebecca B; Labolle, Eric M; Harvey, Charles F
2008-07-01
Diffusion of tritiated water (referred to as tritium) and helium-3 between mobile and immobile regions in aquifers (mass transfer) can affect tritium and helium-3 concentrations and hence tritium-helium-3 (3H/3He) ages that are used to estimate aquifer recharge and groundwater residence times. Tritium and helium-3 chromatographically separate during transport because their molecular diffusion coefficients differ. Simulations of tritium and helium-3 transport and diffusive mass transfer along stream tubes show that mass transfer can shift the 3H/3He age of the tritium and helium-3 concentration ([3H + 3He]) peak to dates much younger than the 1963 peak in atmospheric tritium. Furthermore, diffusive mass-transfer can cause the 3H/3He age to become younger downstream along a stream tube, even as the mean water-age must increase. Simulated patterns of [3H + 3He] versus 3H/3He age using a mass transfer model appear consistent with a variety of field data. These results suggest that diffusive mass transfer should be considered, especially when the [3H + 3He] peak is not well defined or appears younger than the atmospheric peak. 3H/3He data provide information about upstream mass-transfer processes that could be used to constrain mass-transfer models; however, uncritical acceptance of 3H/3He dates from aquifers with immobile regions could be misleading.
Influence of the boundary conditions on heat and mass transfer in spacer-filled channels
NASA Astrophysics Data System (ADS)
Ciofalo, M.; La Cerva, M. F.; Di Liberto, M.; Tamburini, A.
2017-11-01
The purpose of this study is to discuss some problems which arise in heat or mass transfer in complex channels, with special reference to the spacer-filled channels adopted in membrane processes. Among the issues addressed are the consistent definition of local and mean heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different processes involving geometrically complex channels
What Is Technology Transfer? | Poster
The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.
Aerodynamic and heat transfer analysis of the low aspect ratio turbine
NASA Astrophysics Data System (ADS)
Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.
1987-06-01
The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.
Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel
2017-05-26
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
NASA Astrophysics Data System (ADS)
Dallai, R.; Gottardo, M.; Mercati, D.; Machida, R.; Mashimo, Y.; Matsumura, Y.; Beutel, R. G.
2013-06-01
A remarkable external sperm transfer is described for the first time in a species of a group of winged insects (Pterygota), the enigmatic Zoraptera. Mating and sperm transfer of two species of the order were examined in detail, documented, and compared with each other and with patterns described for other species belonging to the order. The behavior differs strikingly in Zorotypus impolitus and Zorotypus magnicaudelli. A copula is performed by males and females of the latter, as it is also the case in other zorapteran species and generally in pterygote insects. In striking contrast to this, males of Z. impolitus do not copulate but deposit small (100 μm in diameter) spermatophores externally on the abdomen of the female. Each spermatophore contains only one giant spermatozoon (3 mm long and 3 μm wide), a unique feature in the entire Hexapoda. External sperm transfer in Pterygota is a highly unusual case of evolutionary reversal. The very small relict group Zoraptera displays a uniform general morphology but exhibits very different reproductive structures and patterns of mating behavior. This may be an extreme form of a more general situation in insects, with a specific form of selection resulting in an accelerated rate of evolution in the reproductive system.
Training specificity and transfer in time and distance estimation.
Healy, Alice F; Tack, Lindsay Anderson; Schneider, Vivian I; Barshi, Immanuel
2015-07-01
Learning is often specific to the conditions of training, making it important to identify which aspects of the testing environment are crucial to be matched in the training environment. In the present study, we examined training specificity in time and distance estimation tasks that differed only in the focus of processing (FOP). External spatial cues were provided for the distance estimation task and for the time estimation task in one condition, but not in another. The presence of a concurrent alphabet secondary task was manipulated during training and testing in all estimation conditions in Experiment 1. For distance as well as for time estimation in both conditions, training of the primary estimation task was found to be specific to the presence of the secondary task. In Experiments 2 and 3, we examined transfer between one estimation task and another, with no secondary task in either case. When all conditions were equal aside from the FOP instructions, including the presence of external spatial cues, Experiment 2 showed "transfer" between tasks, suggesting that training might not be specific to the FOP. When the external spatial cues were removed from the time estimation task, Experiment 3 showed no transfer between time and distance estimations, suggesting that external task cues influenced the procedures used in the estimation tasks.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan
2015-08-01
Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh
2011-04-14
Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours,more » underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.« less
NASA Astrophysics Data System (ADS)
Buljubasich, L.; Blümich, B.; Stapf, S.
2011-09-01
An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.
Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.
Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi
2014-08-12
By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.
Sajjadi, Baharak; Asgharzadehahmadi, Seyedali; Asaithambi, Perumal; Raman, Abdul Aziz Abdul; Parthasarathy, Rajarathinam
2017-01-01
This paper aims at investigating the influence of acoustic streaming induced by low-frequency (24kHz) ultrasound irradiation on mass transfer in a two-phase system. The main objective is to discuss the possible mass transfer improvements under ultrasound irradiation. Three analyses were conducted: i) experimental analysis of mass transfer under ultrasound irradiation; ii) comparative analysis between the results of the ultrasound assisted mass transfer with that obtained from mechanically stirring; and iii) computational analysis of the systems using 3D CFD simulation. In the experimental part, the interactive effects of liquid rheological properties, ultrasound power and superficial gas velocity on mass transfer were investigated in two different sonicators. The results were then compared with that of mechanical stirring. In the computational part, the results were illustrated as a function of acoustic streaming behaviour, fluid flow pattern, gas/liquid volume fraction and turbulence in the two-phase system and finally the mass transfer coefficient was specified. It was found that additional turbulence created by ultrasound played the most important role on intensifying the mass transfer phenomena compared to that in stirred vessel. Furthermore, long residence time which depends on geometrical parameters is another key for mass transfer. The results obtained in the present study would help researchers understand the role of ultrasound as an energy source and acoustic streaming as one of the most important of ultrasound waves on intensifying gas-liquid mass transfer in a two-phase system and can be a breakthrough in the design procedure as no similar studies were found in the existing literature. Copyright © 2016. Published by Elsevier B.V.
Development of a gravity-independent wastewater bioprocessor for advanced life support in space
NASA Technical Reports Server (NTRS)
Nashashibi-Rabah, Majda; Christodoulatos, Christos; Korfiatis, George P.; Janes, H. W. (Principal Investigator)
2005-01-01
Operation of aerobic biological reactors in space is controlled by a number of challenging constraints, mainly stemming from mass transfer limitations and phase separation. Immobilized-cell packed-bed bioreactors, specially designed to function in the absence of gravity, offer a viable solution for the treatment of gray water generated in space stations and spacecrafts. A novel gravity-independent wastewater biological processor, capable of carbon oxidation and nitrification of high-strength aqueous waste streams, is presented. The system, consisting of a fully saturated pressurized packed bed and a membrane oxygenation module attached to an external recirculation loop, operated continuously for over one year. The system attained high carbon oxidation efficiencies often exceeding 90% and ammonia oxidation reaching approximately 60%. The oxygen supply module relies on hydrophobic, nonporous, oxygen selective membranes, in a shell and tube configuration, for transferring oxygen to the packed bed, while keeping the gaseous and liquid phases separated. This reactor configuration and operating mode render the system gravity-independent and suitable for space applications.
NASA Astrophysics Data System (ADS)
Jahangir, Ifat; Uddin, M. Ahsan; Singh, Amol K.; Koley, Goutam; Chandrashekhar, M. V. S.
2017-10-01
We demonstrate a large area MoS2/graphene barristor, using a transfer-free method for producing 3-5 monolayer (ML) thick MoS2. The gate-controlled diodes show good rectification, with an ON/OFF ratio of ˜103. The temperature dependent back-gated study reveals Richardson's coefficient to be 80.3 ± 18.4 A/cm2/K and a mean electron effective mass of (0.66 ± 0.15)m0. Capacitance and current based measurements show the effective barrier height to vary over a large range of 0.24-0.91 eV due to incomplete field screening through the thin MoS2. Finally, we show that this barristor shows significant visible photoresponse, scaling with the Schottky barrier height. A response time of ˜10 s suggests that photoconductive gain is present in this device, resulting in high external quantum efficiency.
NASA Astrophysics Data System (ADS)
Griffioen, Jasper
1998-10-01
The concept of first-order mass transfer between mobile and immobile regions, which mathematically simplifies the concept of Fickian diffusion in stagnant areas, has often been used to describe physical nonequilibrium transport of solutes into natural porous media. This study compares the two concepts, using analytical expressions describing cyclic mass transfer into and out of stagnant layers. The results show that the first-order mass transfer concept cannot describe continuous diffusion into the immobile zone during period of net outward diffusion if the immobile zone has not filled completely during the period of net inward diffusion. This sets phenomenological limitations to the first-order mass transfer concept when short periods of relative time are involved; these limitations have to be compared with the practical limitations to the Fickian diffusion concept.
Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Sass, J.
2007-01-01
Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.
Enhancing the absorption and energy transfer process via quantum entanglement
NASA Astrophysics Data System (ADS)
Zong, Xiao-Lan; Song, Wei; Zhou, Jian; Yang, Ming; Yu, Long-Bao; Cao, Zhuo-Liang
2018-07-01
The quantum network model is widely used to describe the dynamics of excitation energy transfer in photosynthesis complexes. Different from the previous schemes, we explore a specific network model, which includes both light-harvesting and energy transfer process. Here, we define a rescaled measure to manifest the energy transfer efficiency from external driving to the sink, and the external driving fields are used to simulate the energy absorption process. To study the role of initial state in the light-harvesting and energy transfer process, we assume the initial state of the donors to be two-qubit and three-qubit entangled states, respectively. In the two-qubit initial state case, we find that the initial entanglement between the donors can help to improve the absorption and energy transfer process for both the near-resonant and large-detuning cases. For the case of three-qubit initial state, we can see that the transfer efficiency will reach a larger value faster in the tripartite entanglement case compared to the bipartite entanglement case.
MASS TRANSPORT EFFECTS ON THE KINETICS OF NITROBENZENE REDUCTION BY IRON METAL. (R827117)
To evaluate the importance of external mass transport on the overall rates of
contaminant reduction by iron metal (Fe0), we have compared measured
rates of surface reaction for nitrobenzene (ArNO2) to estimated rates
of external mass transport...
NASA Astrophysics Data System (ADS)
Meinke, Insa
2017-06-01
In this article the comparability of knowledge transfer activities is discussed by accounting for external impacts. It is shown that factors which are neither part of the knowledge transfer activity nor part of the participating institution may have significant impact on the potential usefulness of knowledge transfer activities. Differences in the potential usefulness are leading to different initial conditions of the knowledge transfer activities. This needs to be taken into account when comparing different knowledge transfer activities, e.g., in program evaluations. This study is focusing on regional climate services at the German Baltic Sea coast. It is based on two surveys and experiences with two identical web tools applied on two regions with different spatial coverage. The results show that comparability among science based knowledge transfer activities is strongly limited through several external impacts. The potential usefulness and thus the initial condition of a particular knowledge transfer activity strongly depends on (1) the perceived priority of the focused topic, (2) the used information channels, (3) the conformity between the research agenda of service providing institutions and information demands in the public, as well as (4) on the spatial coverage of a service. It is suggested to account for the described external impacts for evaluations of knowledge transfer activities. The results show that the comparability of knowledge transfer activities is limited and challenge the adequacy of quantitative measures in this context. Moreover, as shown in this case study, in particular regional climate services should be individually evaluated on a long term perspective, by potential user groups and/or by its real users. It is further suggested that evaluation criteria should be co-developed with these stakeholder groups.
Two bodies with high eccentricity around the cataclysmic variable QS Vir
NASA Astrophysics Data System (ADS)
Almeida, Leonardo A.; Jablonski, Francisco
2011-11-01
QS Vir is an eclipsing cataclysmic variable with 3.618 hrs orbital period. This system has the interesting characteristics that it does not show mass transfer between the components through the L1 Lagrangian point and shows a complex orbital period variation history. Qian et al. (2010) associated the orbital period variations to the presence of a giant planet in the system plus angular momentum loss via magnetic braking. Parsons et al. (2010) obtained new eclipse timings and observed that the orbital period variations associated to a hypothetical giant planet disagree with their measurements and concluded that the decrease in orbital period is part of a cyclic variation with period ~16 yrs. In this work, we present 28 new eclipse timings of QS Vir and suggest that the orbital period variations can be explained by a model with two circumbinary bodies. The best fitting gives the lower limit to the masses M1 sin(i) ~ 0.0086 M⊙ and M2 sin(i) ~ 0.054 M⊙ orbital periods P1 ~ 14.4 yrs and P2 ~ 16.99 yrs, and eccentricities e1 ~ 0.62 and e2~0.92 for the two external bodies. Under the assumption of coplanarity among the two external bodies and the inner binary, we obtain a giant planet with ~0.009 M⊙ and a brown dwarf with ~ 0.056 M⊙ around the eclipsing binary QS Vir.
Mass and heat transfer in crushed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carley, J.F.; Straub, J.S.; Ott, L.L.
1984-04-01
Heat and mass transfer between gases and oil-shale particles are both important for all proposed retorting processes. Past studies of transfer in packed beds, which have disagreed substantially in their results, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse shapes and widely ranging sizes. To resolve these questions, we have made 349 runs in which we measured mass-transfer rates from naphthalene particles of diverse shapes buried in packed beds through which air was passed at room temperature. This technique permits calculation of the mass-transfer coefficient for each activemore » particle in the bed rather than, as in most past studies, for the bed as a whole. The data were analyzed in two ways: (1) by the traditional correlation of Colburn j/sub D/ vs Reynolds number and (2) by multiple regression of the mass-transfer coefficient on air rate, traditional correlation of Colburn j/sub D/ vs Reynolds number and (3) by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: (1) local Reynolds number should be based on active particle size rather than average size for the bed; (2) no appreciable differences were seen between shallow beds and deep ones; (3) mass transfer was 26% faster for spheres and lozenges buried in shale than for all-sphere beds; (4) orientation of lozenges in shale beds has little effect on mass-transfer rate; (5) a useful summarizing equation for either mass or heat transfer in shale beds is log j.epsilon = -.0747 - .6344 log Re + .0592 log/sup 2/Re where j = either j/sub D/ or j/sub H/, the Chilton-Colburn j-factors for mass and heat transfer, Re = the Reynolds number defined for packed beds, and epsilon = the void fraction in the bed. 12 references, 15 figures.« less
Hackländer, T; Kleber, K; Schneider, H; Demabre, N; Cramer, B M
2004-08-01
To build an infrastructure that enables radiologists on-call and external users a teleradiological access to the HTML-based image distribution system inside the hospital via internet. In addition, no investment costs should arise on the user side and the image data should be sent renamed using cryptographic techniques. A pure HTML-based system manages the image distribution inside the hospital, with an open source project extending this system through a secure gateway outside the firewall of the hospital. The gateway handles the communication between the external users and the HTML server within the network of the hospital. A second firewall is installed between the gateway and the external users and builds up a virtual private network (VPN). A connection between the gateway and the external user is only acknowledged if the computers involved authenticate each other via certificates and the external users authenticate via a multi-stage password system. All data are transferred encrypted. External users get only access to images that have been renamed to a pseudonym by means of automated processing before. With an ADSL internet access, external users achieve an image load frequency of 0.4 CT images per second. More than 90 % of the delay during image transfer results from security checks within the firewalls. Data passing the gateway induce no measurable delay. Project goals were realized by means of an infrastructure that works vendor independently with any HTML-based image distribution systems. The requirements of data security were realized using state-of-the-art web techniques. Adequate access and transfer speed lead to a widespread acceptance of the system on the part of external users.
Electric propulsion for geostationary orbit insertion
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Curran, Francis M.; Myers, Roger M.
1995-01-01
Solar electric propulsion (SEP) technology is already being used for geostationary satellite stationkeeping to increase payload mass. By using this same technology to perform part of the orbit transfer additional increases in payload mass can be achieved. Advanced chemical and N2H4 arcjet systems are used to increase the payload mass by performing stationkeeping and part of the orbit transfer. Four mission options are analyzed which show the impact of either sharing the orbit transfer between chemical and SEP systems or having either complete the transfer alone. Results show that for an Atlas 2AS payload increases in net mass (geostationary satellite mass less wet propulsion system mass) of up to 100 kg can be achieved using advanced chemical for the transfer and advanced N2H4 arcjets for stationkeeping. An additional 100 kg can be added using advanced N2H4 arcjets for part of a 40 day orbit transfer.
NASA Astrophysics Data System (ADS)
Kim, Nae-Hyun
2016-12-01
R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.
Wei, Wenjuan; Mandin, Corinne; Ramalho, Olivier
2018-03-01
Semi-volatile organic compounds (SVOCs) in indoor environments can partition among the gas phase, airborne particles, settled dust, and available surfaces. The mass transfer parameters of SVOCs, such as the mass transfer coefficient and the partition coefficient, are influenced by indoor environmental factors. Subsequently, indoor SVOC concentrations and thus occupant exposure can vary depending on environmental factors. In this review, the influence of six environmental factors, i.e., indoor temperature, humidity, ventilation, airborne particle concentration, source loading factor, and reactive chemistry, on the mass transfer parameters and indoor concentrations of SVOCs was analyzed and tentatively quantified. The results show that all mass transfer parameters vary depending on environmental factors. These variations are mostly characterized by empirical equations, particularly for humidity. Theoretical calculations of these parameters based on mass transfer mechanisms are available only for the emission of SVOCs from source surfaces when airborne particles are not present. All mass transfer parameters depend on the temperature. Humidity influences the partition of SVOCs among different phases and is associated with phthalate hydrolysis. Ventilation has a combined effect with the airborne particle concentration on SVOC emission and their mass transfer among different phases. Indoor chemical reactions can produce or eliminate SVOCs slowly. To better model the dynamic SVOC concentration indoors, the present review suggests studying the combined effect of environmental factors in real indoor environments. Moreover, interactions between indoor environmental factors and human activities and their influence on SVOC mass transfer processes should be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents
ERIC Educational Resources Information Center
Hofer, Franz
2005-01-01
Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…
Gmeiner, Matthias; Topakian, Raffi; Göschl, Manuel; Wurm, Sarah; Holzinger, Anita; van Ouwerkerk, Willem J R; Holl, Kurt
2015-09-01
An accessory to suprascapular nerve (XIN-SSN) transfer is considered in patients with obstetric brachial plexus lesion who fail to recover active shoulder external rotation. The aim of this study was to evaluate the quality of extraplexal suprascapular nerve neurotization and to perform a detailed analysis of the infraspinatus muscle (IM) and shoulder external rotation. A XIN-SSN transfer was performed in 14 patients between 2000 and 2007. Patients had been operated at the age of 3.7 ± 2.8 years. Follow-up examinations were conducted up to 8.5 ± 2.5 years. Magnetic resonance imaging was performed to investigate muscle trophism. Fatty muscle degeneration of the IM was classified according to the Goutallier classification. We conducted nerve conduction velocity studies of the suprascapular nerve and needle electromyography of the IM to assess pathologic spontaneous activity and interference patterns. Active glenohumeral shoulder external rotation and global shoulder function were evaluated using the Mallet score. Postoperatively, growth of the IM increased equally on the affected and unaffected sides, although significant differences of muscle thickness persisted over time. There was only grade 1 or 2 fatty degeneration pre- and postoperatively. Electromyography of the IM revealed a full interference pattern in all except one patient, and there was no pathological spontaneous activity. Glenohumeral external rotation as well as global shoulder function increased significantly. Our results indicate that the anastomosis after XIN-SSN transfer is functional and that successful reinnervation of the infraspinatus muscle may enable true glenohumeral active external rotation.
Cooled, temperature controlled electrometer
Morgan, John P.
1992-01-01
A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.
Cooled, temperature controlled electrometer
Morgan, John P.
1992-08-04
A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.
Ungerman, Andrew J; Heindel, Theodore J
2007-01-01
This study compares the power demand and gas-liquid volumetric mass transfer coefficient, kLa, in a stirred tank reactor (STR) (T = 0.211 m) using different impeller designs and schemes in a carbon monoxide-water system, which is applicable to synthesis gas (syngas) fermentation. Eleven different impeller schemes were tested over a range of operating conditions typically associated with the "after large cavity" region (ALC) of a Rushton-type turbine (D/T = 0.35). It is found that the dual Rushton-type impeller scheme exhibits the highest volumetric mass transfer rates for all operating conditions; however, it also displays the lowest mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) for all conditions due to its high power consumption. Dual impeller schemes with an axial flow impeller as the top impeller show improved mass transfer rates without dramatic increases in power draw. At high gas flow rates, dual impeller schemes with a lower concave impeller have kLa values similar to those of the Rushton-type dual impeller schemes but show improved mass transfer performance. It is believed that the mass transfer performance can be further enhanced for the bottom concave impeller schemes by operating at conditions beyond the ALC region defined for Rushton-type impellers because the concave impeller can handle higher gas flow rates prior to flooding.
Modified L'Episcopo tendon transfers for irreparable rotator cuff tears: 5-year follow-up.
Gerhardt, Christian; Lehmann, Lars; Lichtenberg, Sven; Magosch, Peter; Habermeyer, Peter
2010-06-01
Patients with posterosuperior cuff tears lose functional external rotation of the shoulder. Latissimus dorsi and teres major transfer is performed to restore external rotation. Twenty patients with a mean age was 55.8 +/- 6 years underwent this procedure and were examined at averages of 24.7 (n = 17) and 70.6 (n = 13) months. Two patients did not improve presumably because of failure of the transfer. The Constant and Murley score increased from 55.6 to 90.4 after 2 years and to 87.9 after 5 years. The mean active flexion increased from 119.4 degrees to 169.3 degrees and reached 170 degrees after 5 years, and mean external rotation increased from 12 degrees to 35 degrees , finally reaching 23 degrees . The grade of cuff arthritis progressed from initially Grade 1 in 17% and Grade 2 in 28% to Grade 2 in 8%, Grade 3 in 69%, and Grade 4 in 15% at final followup. The acromiohumeral distance increased from 4.5 mm to 6 mm and decreased to 3.8 mm after 5 years. Electromyographic analysis showed activity during isometric internal and external rotation in the transferred muscle in all patients. The L'Episcopo procedure can restore shoulder function, but cuff arthropathy may progress. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Planform structure and heat transfer in turbulent free convection over horizontal surfaces
NASA Astrophysics Data System (ADS)
Theerthan, S. Ananda; Arakeri, Jaywant H.
2000-04-01
This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.
Mass and heat transfer in crushed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carley, J.F.; Ott, L.L.; Swecker, J.L.
1995-03-01
Studies of heat and mass transfer in packed beds, which disagree substantially in their findings, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse irregular shapes and sizes. The authors, in 349 runs, measured mass-transfer rates front naphthalene particles buried in packed beds by passing through air at room temperature. An exact catalog between convection of heat and mass makes it possible to infer heat-transfer coefficients from measured mass-transfer coefficients and fluid properties. Some beds consisted of spheres, naphthalene and inert, of the same, contrasting or distributed sizes. Inmore » some runs, naphthalene spheres were buried in beds of crushed shale, some in narrow screen ranges and others with a wide size range. In others, naphthalene lozenges of different shapes were buried in beds of crushed shale in various bed axis orientations. This technique permits calculation of the mass-transfer coefficient for each active particle in the bed rather than, as in most past studies, for the bed as a whole. The data are analyzed by the traditional correlation of Colburn j{sub D} vs. Reynolds number and by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: local Reynolds number should be based on the active-particle size, not the average for the whole bed; differences between shallow and deep beds are not appreciable; mass transfer is 26% faster for spheres and lozenges buried in shale than in all-sphere beds; orientation of lozenges in shale beds has little or no effect on mass-transfer rate; and for mass or heat transfer in shale beds, log(j{center_dot}{epsilon}) = {minus}0.0747 - 0.6344 log N{sub Re} + 0. 0592 log {sup 2} N{sub Re}.« less
Effect of operating temperature on styrene mass transfer characteristics in a biotrickling filter.
Parnian, Parham; Zamir, Seyed Morteza; Shojaosadati, Seyed Abbas
2017-05-01
To study the effect of operating temperature on styrene mass transfer from gas to liquid phase in biotrickling filters (BTFs), overall mass transfer coefficient (K L a) was calculated through fitting test data to a general mass balance model under abiotic conditions. Styrene was used as the volatile organic compound and the BTF was packed with a mixture of pall rings and pumice. Operating temperature was set at 30°C and 50°C for mesophilic and thermophilic conditions, respectively. K L a values increased from 54 to 70 h -1 at 30°C and from 60 to 90 h -1 at 50°C, respectively, depending on the countercurrent gas to liquid flow ratio that varied in the range of 7.5-32. Evaluation of styrene mass transfer capacity (MTC) showed that liquid-phase mass transfer resistance decreased as the flow ratio increased at constant temperature. MTC also decreased with an increase in operating temperature. Both gas-liquid partition coefficient and K L a increased with increasing temperature; however the effect on gas-liquid partition coefficient was more significant and served to increase mass transfer limitations. Thermophilic biofiltration on the one hand increases mass transfer limitations, but on the other hand may enhance the biodegradation rate in favor of enhancing BTFs' performance.
Zhang, Yong; Li, Kuiling; Wang, Jun; Hou, Deyin; Liu, Huijuan
2017-09-01
To understand the mass transfer behaviors in hollow fiber membrane contactors, ozone fluxes affected by various conditions and membranes were investigated. For physical absorption, mass transfer rate increased with liquid velocity and the ozone concentration in the gas. Gas flow rate was little affected when the velocity was larger than the critical value, which was 6.1 × 10 -3 m/s in this study. For chemical absorption, the flux was determined by the reaction rate between ozone and the absorbent. Therefore, concentration, species, and pH affected the mass transfer process markedly. For different absorbents, the order of mass transfer rate was the same as the reaction rate constant, which was phenol, sodium nitrite, hydrogen peroxide, and oxalate. Five hydrophobic membranes with various properties were employed and the mass transfer behavior can be described by the Graetz-Lévèque equation for the physical absorption process. The results showed the process was controlled by liquid film and the gas phase conditions, and membrane properties did not affect the ozone flux. For the chemical absorption, gas film, membrane and liquid film affected the mass transfer together, and none of them were negligible.
Local Mass and Heat Transfer on a Turbine Blade Tip
Jin, P.; Goldstein, R. J.
2003-01-01
Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less
Nonequilibrium electrokinetic effects in beds of ion-permselective particles.
Leinweber, Felix C; Tallarek, Ulrich
2004-12-21
Electrokinetic transport of fluorescent tracer molecules in a bed of porous glass beads was investigated by confocal laser scanning microscopy. Refractive index matching between beads and the saturating fluid enabled a quantitative analysis of intraparticle and extraparticle fluid-side concentration profiles. Kinetic data were acquired for the uptake and release of electroneutral and counterionic tracer under devised conditions with respect to constant pressure-driven flow through the device and the effect of superimposed electrical fields. Transport of neutral tracer is controlled by intraparticle mass transfer resistance which can be strongly reduced by electroosmotic flow, while steady-state distributions and bead-averaged concentrations are unaffected by the externally applied fields. Electrolytes of low ionic strength caused the transport through the charged (mesoporous) beads to become highly ion-permselective, and concentration polarization is induced in the bulk solution due to the superimposed fields. The depleted concentration polarization zone comprises extraparticle fluid-side mass transfer resistance. Ionic concentrations in this diffusion boundary layer decrease at increasing field strength, and the flux densities approach an upper limit. Meanwhile, intraparticle transport of counterions by electromigration and electroosmosis continues to increase and finally exceeds the transport from bulk solution into the beads. A nonequilibrium electrical double layer is induced which consists of mobile and immobile space charge regions in the extraparticle bulk solution and inside a bead, respectively. These electrical field-induced space charges form the basis for nonequilibrium electrokinetic phenomena. Caused by the underlying transport discrimination (intraparticle electrokinetic vs extraparticle boundary-layer mass transfer), the dynamic adsorption capacity for counterions can be drastically reduced. Further, the extraparticle mobile space charge region leads to nonlinear electroosmosis. Flow patterns can become highly chaotic, and electrokinetic instability mixing is shown to increase lateral dispersion. Under these conditions, the overall axial dispersion of counterionic tracer can be reduced by more than 2 orders of magnitude, as demonstrated by pulse injections.
Leinweber, Felix C; Tallarek, Ulrich
2005-11-24
We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
Chen, Changyao; Zanette, Damian H.; Czaplewski, David A.; ...
2017-05-26
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. Themore » fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.« less
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Changyao; Zanette, Damian H.; Czaplewski, David A.
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. Themore » fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.« less
VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)
NASA Astrophysics Data System (ADS)
Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.
2016-02-01
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in qad as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution. (3 data files).
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Rosner, Daniel E.
1986-01-01
A formulation previously developed to predict and correlate the thermophoretically-augmented submicron particle mass transfer rate to cold surfaces is found to account for the thermophoretically reduced particle mass transfer rate to overheated surfaces such that thermophoresis brings about a 10-decade reduction below the convective mass transfer rate expected by pure Brownian diffusion and convection alone. Thermophoretic blowing is shown to produce effects on particle concentration boundary-layer (BL) structure and wall mass transfer rates similar to those produced by real blowing through a porous wall. The applicability of the correlations to developing BL-situations is demonstrated by a numerical example relevant to wet-steam technology.
Irradiation-driven Mass Transfer Cycles in Compact Binaries
NASA Astrophysics Data System (ADS)
Büning, A.; Ritter, H.
2005-08-01
We elaborate on the analytical model of Ritter, Zhang, & Kolb (2000) which describes the basic physics of irradiation-driven mass transfer cycles in semi-detached compact binary systems. In particular, we take into account a contribution to the thermal relaxation of the donor star which is unrelated to irradiation and which was neglected in previous studies. We present results of simulations of the evolution of compact binaries undergoing mass transfer cycles, in particular also of systems with a nuclear evolved donor star. These computations have been carried out with a stellar evolution code which computes mass transfer implicitly and models irradiation of the donor star in a point source approximation, thereby allowing for much more realistic simulations than were hitherto possible. We find that low-mass X-ray binaries (LMXBs) and cataclysmic variables (CVs) with orbital periods ⪉ 6hr can undergo mass transfer cycles only for low angular momentum loss rates. CVs containing a giant donor or one near the terminal age main sequence are more stable than previously thought, but can possibly also undergo mass transfer cycles.
Cruise control for segmented flow.
Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel
2012-11-21
Capitalizing on the benefits of microscale segmented flows, e.g., enhanced mixing and reduced sample dispersion, so far requires specialist training and accommodating a few experimental inconveniences. For instance, microscale gas-liquid flows in many current setups take at least 10 min to stabilize and iterative manual adjustments are needed to achieve or maintain desired mixing or residence times. Here, we report a cruise control strategy that overcomes these limitations and allows microscale gas-liquid (bubble) and liquid-liquid (droplet) flow conditions to be rapidly "adjusted" and maintained. Using this strategy we consistently establish bubble and droplet flows with dispersed phase (plug) velocities of 5-300 mm s(-1), plug lengths of 0.6-5 mm and continuous phase (slug) lengths of 0.5-3 mm. The mixing times (1-5 s), mass transfer times (33-250 ms) and residence times (3-300 s) can therefore be directly imposed by dynamically controlling the supply of the dispersed and the continuous liquids either from external pumps or from local pressurized reservoirs. In the latter case, no chip-external pumps, liquid-perfused tubes or valves are necessary while unwanted dead volumes are significantly reduced.
NASA Astrophysics Data System (ADS)
Berland, K.; Einstein, T. L.; Hyldgaard, P.
2012-01-01
The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wave functions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.
NASA Astrophysics Data System (ADS)
Berland, Kristian; Hyldgaard, Per; Einstein, T. L.
2011-03-01
We study the response of the Cu(111) Shockley surface state to an external electrical field E by combining a density-functional theory calculation for a finite slab geometry with an analysis of the Kohn-Sham wavefunctions to obtain a well-converged characterization. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We find that the shift in band minimum and effective mass depend linearly on E. Most change in electrostatic potential profile, and charge transfer occurs outside the outermost copper atoms, and most of the screening is due to bulk electrons. Our analysis is facilitated by a method used to decouple the Kohn-Sham states due to the finite slab geometry, using a rotation in Hilbert space. We discuss applications to tuning the Fermi wavelength and so the many patterns attributed to metallic surface states. Supported by (KB and PH) Swedish Vetenskapsrådet VR 621-2008-4346 and (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471.
Yu, Yaqin; Lu, Xiwu
2017-09-01
The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera , Methanolinea , Thermogymnomonas , Methanoregula , Methanomethylovorans , and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F 420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.
Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels
NASA Astrophysics Data System (ADS)
Houhou, H.; Yuan, W.; Wang, G.
2017-05-01
This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.
NASA Astrophysics Data System (ADS)
Uno, M.; Nakamura, H.; Iwamori, H.
2011-12-01
Individual parcel of regional metamorphic rock records physico-chemical conditions such as P-T path, mass transfer and deformation with the Lagrangian specification. On the other hand, a metamorphic belt as an ensemble of such parcels may provide a large-scale flow field of energy (e.g., temperature, entropy) and mass (including both solid and fluid phases with elements and isotopes) with the Eulerian specification. However, there is so far few model that integrates all the variables stated above. Phase petrology provides mostly the intensive variables (e.g., P-T path), whereas geochemistry provides mostly the extensive variables (time-integrated mass transfer), and these two have been treated separately. Here we combine phase petrology and geochemistry from a scale of mineral grain, and solve them under a simultaneous and consistent set of thermodynamic and mass balance equation. For this sake, the Sanbagawa metamorphic belt in Japan has been surveyed. To understand the nature of fluid during rehydration, we analyzed both basic rocks and pelitic rocks that record retrograde reactions. Major and trace element compositions of each mineral, and bulk rock chemistry have been analyzed with EPMA, LA-ICP-MS, XRF and ICP-MS, respectively. Retrograde P-T path and the extent of rehydration of each rock have been obtained by applying the Gibbs' method (e.g. Spear, 1993; Okamoto&Toriumi, 2001) to amphiboles. Trace element budget along a specific P-T path were calculated by equating differential mass balance equation for major and trace elements as follows; XfluiddMfluid = ⊙MsolidXsolid + ⊙XsoliddMsolid Where the X and M denotes compositions and modes of minerals and dX and dM are their changes along a specific P-T change. The mineral compositions (Xsolid), mineral modes (Msolid), mineral growths (dMsolid) for zoned minerals (amphibole and/or garnet) and fluid compositions (Xfluid) were derived from the results of Gibbs' method, X-ray map and fluid/mineral partition coefficients, respectively. Thus, the unknowns are dMs, and the equations are solved for them. As a result, the mass transfer during the specific P-T change (Xfluid dMfluid) can be specified. It is revealed that fluid mobile elements such as LIL elements, Sr and Pb are mostly proportional to LOI (loss on ignition). LOI and extent of rehydration is proportional in the Sanbagawa belt (Okamoto&Toriumi, 2005), thus the observed enrichment of LILE, Sr and Pb are interpreted to be associated with rehydration. The Sr isotope ratios of the basic shists also increase with LOI, implying that the differences in bulk rock chemistry are not attributed to differences in mineral modes,but addition and/or reaction with external source of fluids with high 87Sr/86Sr. The estimated fluid composition is similar to calculated compositions of slab-derived fluids (Nakamura et al., 2008). From mass balance calculation, trace element budget associated with rehydration reactions and their spatial distribution will be presented, and the mechanisms of mass and fluid transfer will be discussed.
Brown, Stephen H M; Carr, John Austin; Ward, Samuel R; Lieber, Richard L
2012-08-01
Abdominal wall muscles have a unique morphology suggesting a complex role in generating and transferring force to the spinal column. Studying passive mechanical properties of these muscles may provide insights into their ability to transfer force among structures. Biopsies from rectus abdominis (RA), external oblique (EO), internal oblique (IO), and transverse abdominis (TrA) were harvested from male Sprague-Dawley rats, and single muscle fibers and fiber bundles (4-8 fibers ensheathed in their connective tissue matrix) were isolated and mechanically stretched in a passive state. Slack sarcomere lengths were measured and elastic moduli were calculated from stress-strain data. Titin molecular mass was also measured from single muscle fibers. No significant differences were found among the four abdominal wall muscles in terms of slack sarcomere length or elastic modulus. Interestingly, across all four muscles, slack sarcomere lengths were quite long in individual muscle fibers (>2.4 µm), and demonstrated a significantly longer slack length in comparison to fiber bundles (p < 0.0001). Also, the extracellular connective tissue matrix provided a stiffening effect and enhanced the resistance to lengthening at long muscle lengths. Titin molecular mass was significantly less in TrA compared to each of the other three muscles (p < 0.0009), but this difference did not correspond to hypothesized differences in stiffness. Copyright © 2012 Orthopaedic Research Society.
Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae
2008-07-01
Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.
Gritti, Fabrice; Omamogho, Jesse; Guiochon, Georges
2011-10-07
The recent successful breakthrough of sub-3 μm shell particles in HPLC has triggered considerable research efforts toward the design of new brands of core-shell particles. We investigated the mass transfer mechanism of a few analytes in narrow-bore columns packed with prototype 1.7 μm shell particles, made of 1.0, 1.2, and 1.4 μm solid nonporous cores surrounded by porous shells 350, 250, and 150 nm thick, respectively. Three probe solutes, uracil, naphthalene, and insulin, were chosen to assess the kinetic performance of these columns. Inverse size exclusion chromatography, peak parking experiments, and the numerical integration of the experimental peak profiles were carried out in order to measure the external, internal, and total column porosities, the true bulk diffusion coefficients of these analytes, the height equivalent to a theoretical plate, the longitudinal diffusion term, and the trans-particle mass transfer resistance term. The residual eddy diffusion term was measured by difference. The results show the existence of important trans-column velocity biases (7%) possibly due to the presence of particle multiplets in the slurry mixture used during the packing process. Our results illustrates some of the difficulties encountered by scientists preparing and packing shell particles into narrow-bore columns. Copyright © 2011 Elsevier B.V. All rights reserved.
Dursun, Arzu Y; Tepe, Ozlem; Dursun, Gülbeyi
2013-01-01
Carbonised beet pulp (BPC) produced from agricultural solid waste by-product in sugar industry was used as adsorbent for the removal of Remazol Turquoise Blue-G 133 (RTB-G 133) dye in this study. The kinetics and equilibrium of sorption process were investigated with respect to pH, temperature and initial dye concentration. Adsorption studies with real textile wastewater were also performed. The results showed that adsorption was a strongly pH-dependent process, and optimum pH was determined as 1.0. The maximum dye adsorption capacity was obtained as 47.0 mg g(-1)at the temperature of 25 °C at this pH value. The Freundlich and Langmuir adsorption models were used for describing the adsorption equilibrium data of the dye, and isotherm constants were evaluated depending on sorption temperature. Equilibrium data of RTB-G 133 sorption fitted very well to the Freundlich isotherm. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye and adsorption kinetics followed the pseudo second-order type kinetic model. The thermodynamic analysis indicated that the sorption process was exothermic and spontaneous in nature.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
NASA Astrophysics Data System (ADS)
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
doctoral student since 2007. Jason's area of expertise is heat and mass transfer, including the design , analysis, and testing of heat and mass transfer devices and processes. Research Interests Membrane Thermal energy storage Heat and mass transfer enhancements Combined cooling, heat, and power (CCHP
Extermophylic microorganisms: issue of interplanetary transfer on external spacecraft surfaces.
NASA Astrophysics Data System (ADS)
Novikova, N.; Deshevaya, E.; Polykarpov, N.; Svistunova, Y.; Grigoriev, A.
Interplanetary transfer of terrestrial microbes capable of surviving in extreme environments and planetary protection from accidental biocontamination by them are the issues of major practical rather than hypothetical value The natural resistance of microbes to extreme environments and a possibility of their transfer beyond geographical barriers of Earth on external spacecraft surfaces have brought forward a need in profound research into the likelihood of their survival in outer space Hardware and a program have been developed at the State Scientific Research Center of the Russian Federation -- Institute for Biomedical Problems with the goal of carrying out a space experiment Biorisk The experiment was aimed at assessing the possibility of long-term comparable with the duration of the Martian flight survival of microorganisms in outer space on materials used in space industry Samples of materials were contaminated with test cultures of bacteria Bacillus and fungi Aspergillus Penicillium Cladosporium known to be common residents of various environments on Earth and resistant to multiple alternation of high and low temperatures Materials used in the construction of external spacecraft surfaces such as steel aluminium alloy heat-insulating coating were chosen as test samples for the experiment Containers with materials and test microorganisms were placed on the external side of the Russian segment of the ISS Unique data have been accumulated after a 204 day exposure on the external side of the ISS which have proved that
Vortical ciliary flows actively enhance mass transport in reef corals.
Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman
2014-09-16
The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.
Collaborating with EPA through the Federal Technology Transfer Act
Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.
Plath, Johannes E; Seiberl, Wolfgang; Beitzel, Knut; Minzlaff, Philipp; Schwirtz, Ansgar; Imhoff, Andreas B; Buchmann, Stefan
2014-08-01
The purpose of this study was to investigate coactivation (CoA) testing as a clinical tool to monitor motor learning after latissimus dorsi tendon transfer. We evaluated 20 patients clinically with the American Shoulder and Elbow Surgeons (ASES) and University of California-Los Angeles (UCLA) outcomes scores, visual analog scale, active external rotation (aER), and isometric strength testing in abduction and external rotation. Measurements of aER were performed while the latissimus dorsi was activated in its new function of external rotation with concomitant activation (coactivation) of its native functions (adduction and extension). Bilateral surface electromyographic (EMG) activity was recorded during aER measurements and the strength testing procedure (EMG activity ratio: with/without CoA). Patients were divided into two groups (excellent/good vs fair/poor) according to the results of the ASES and UCLA scores. The mean follow-up was 57.8 ± 25.2 months. Subdivided by clinical scores, the superior outcome group lost aER with CoA, whereas the inferior outcome group gained aER (UCLA score: -2.2° ± 7.4° vs +4.3° ± 4.1°; P = .031). Patients with inferior outcomes in the ASES score showed higher latissimus dorsi EMG activity ratios (P = .027), suggesting an inadequate motor learning process. Isometric strength testing revealed that the latissimus dorsi transfer had significantly greater activity compared with the contralateral side (external rotation, P = .008; abduction, P = .006) but did not have comparable strength (external rotation, P = .017; abduction, P = .009). Patients with inferior clinical results were more likely to be dependent on CoA to gain external rotation. Therefore, CoA testing may be used as a tool to evaluate the status of postoperative motor learning after latissimus dorsi transfer. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
The role of intra-NAPL diffusion on mass transfer from MGP residuals
NASA Astrophysics Data System (ADS)
Shafieiyoun, Saeid; Thomson, Neil R.
2018-06-01
An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients ( 6 cm/day) can result in diffusion-limited dissolution.
International Space Station (ISS) Water Transfer Hardware Logistics
NASA Technical Reports Server (NTRS)
Shkedi, Brienne D.
2006-01-01
Water transferred from the Space Shuttle to the International Space Station (ISS) is generated as a by-product from the Shuttle fuel cells, and is generally preferred over the Progress which has to launch water from the ground. However, launch mass and volume are still required for the transfer and storage hardware. Some of these up-mass requirements have been reduced since ISS assembly began due to changes in the storage hardware (CWC). This paper analyzes the launch mass and volume required to transfer water from the Shuttle and analyzes the up-mass savings due to modifications in the CWC. Suggestions for improving the launch mass and volume are also provided.
Development of a thermal and structural analysis procedure for cooled radial turbines
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Deanna, Russell G.
1988-01-01
A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine is considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analyses. An inviscid, quasi three-dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous one-dimensional internal flow code for the momentum and energy equation. These boundary conditions are input to a three-dimensional heat conduction code for calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results from this case are included.
Development of a thermal and structural analysis procedure for cooled radial turbines
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Deanna, Russell G.
1988-01-01
A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine are considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analysis. The inviscid, quasi three dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous three dimensional internal flow cade for the momentum and energy equation. These boundary conditions are input to a three dimensional heat conduction code for the calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results are given.
NASA Astrophysics Data System (ADS)
Ewertowski, Marek; Pleskot, Krzysztof; Tomczyk, Aleksandra
2015-04-01
The extensive recession of Svalbard's glaciers exposed areas containing large amount of dead-ice covered by relatively thin - usually less than a couple of meters - veneer of debris. This landscape can be very dynamic, mainly due to the mass movement processes and dead-ice melting. Continuous redistribution of sediments causes several phases of debris transfer and relief inversion. Hence, the primary glacial deposits released from ice are subsequently transferred by mass movement processes, until they finally reach more stable position. Investigations of dynamics of the mass movement and the way in which they alter the property of glacigenic sediments are therefore cruicial for proper understanding of sedimentary records of previous glaciations. The main objectives of this study were to: (1) quantify short-term dynamic of mass wasting processes; (2) investigate the transformation of the sediment's characteristic by mass wasting processes; (3) asses the contribution of different process to the overall dynamic of proglacial landscape. We focused on the mass-wasting processes in the forelands of two glaciers, Ebbabreen and Ragnarbreen, located near the Petuniabukta at the northern end of the Billefjorden, Spitsbergen. Repetitive topographic scanning was combined with sedimentological analysis of: grain size, clast shape in macro and micro scale and thin sections. Debris falls, slides, rolls and flows were the most important processes leading to reworking of glacigenic sediments and altering their properties. Contribution of different processes to the overall dynamic of the landforms was related mainly to the local conditions. Four different morphological types of sites were identified: (1) near vertical ice-cliffs covered with debris, transformed mainly due to dead-ice backwasting and debris falls and slides, (2) steep debris slopes with exposed ice-cores dominated by debris slides, (3) gentle sediment-mantled slopes transformed due to debris flows, and (4) non-active debris-mantled areas transformed only by dead-ice downwasting. The amount of volume loss due to the active mass movement processes and dead-ice melting (including both backwasting and downwasting) was up to more than 1.8 m a-1. In comparison, the amount of volume loss due to the dead-ice downwasting only was significantly lower at a maximum of 0.3 m a-1. The spatial and temporal distribution of volume changes, however, was quite diverse and for the most part related to local geomorphic conditions (e.g. slope gradient, occurrence of streams, and meltwater channels). We proposed a simplified model of spatio-temporal switching between stable and active conditions within the forelands of the studied glaciers. Transformations of landforms were attributed to the period of deglaciation and debris cover development. Stage 1 - shortly after deglaciation when the debris cover is thin (thinner than the permafrost active layer's thickness) mass movement processes become fairly common. They are facilitated by the dead-ice melting and steepness of the slopes. This stage can be observed in many lateral moraines, which are characterised by steep slopes, abundance of active mass movement processes, and by consequence a high degree of transformation. Stage 2 - ongoing mass-wasting processes lead to the transfer of sediments from steep slopes to more stable positions. As the thickness of the sediments increases, the debris cover starts to protect the dead-ice from melting and also contribute to the decrease in slope gradient. Thus, the resulting landscape is relatively stable and in equilibrium with current climatic and topographic conditions. This stage characterises most parts of the frontal (end) moraine complex of the studied glaciers; thus, their transformation rates are either very low or close to zero. Stage 3 - some parts of this stable landscape can be subsequently transformed again into an unstable state, mainly due to the effect of external factors such as streams or meltwater channels. This can lead to the development of mass movement processes and further slope instability, which could facilitate subsequent generation of debris flows. Stages described above can occur in a sort of spatio-temporal cycle, and, depending on local and external factors, the changes between stabilization of landforms and activation of mass flows can be repeated several times for any given area until the dead-ice is completely melted.
Heat and Mass Transfer in an L Shaped Porous Medium
NASA Astrophysics Data System (ADS)
Salman Ahmed, N. J.; Azeem; Yunus Khan, T. M.
2017-08-01
This article is an extension to the heat transfer in L-shaped porous medium by including the mass diffusion. The heat and mass transfer in the porous domain is represented by three coupled partial differential equations representing the fluid movement, energy transport and mass transport. The equations are converted into algebraic form of equations by the application of finite element method that can be conveniently solved by matrix method. An iterative approach is adopted to solve the coupled equations by setting suitable convergence criterion. The results are discussed in terms of heat transfer characteristics influenced by physical parameters such as buoyancy ratio, Lewis number, Rayleigh number etc. It is found that these physical parameters have significant effect on heat and mass transfer behavior of L-shaped porous medium.
Electrical characterization of non‐Fickian transport in groundwater and hyporheic systems
Singha, Kamini; Pidlisecky, Adam; Day-Lewis, Frederick D.; Gooseff, Michael N.
2008-01-01
Recent work indicates that processes controlling solute mass transfer between mobile and less mobile domains in porous media may be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods are sensitive to changes in bulk electrical conductivity (bulk EC) and therefore sample EC in both the mobile and immobile domains. Consequently, the conductivity difference between direct geochemical samples and remotely sensed electrical geophysical measurements may provide an indication of mass transfer rates and mobile and immobile porosities in situ. Here we present (1) an overview of a theoretical framework for determining parameters controlling mass transfer with electrical resistivity in situ; (2) a review of a case study estimating mass transfer processes in a pilot‐scale aquifer storage recovery test; and (3) an example application of this method for estimating mass transfer in watershed settings between streams and the hyporheic corridor. We demonstrate that numerical simulations of electrical resistivity studies of the stream/hyporheic boundary can help constrain volumes and rates of mobile‐immobile mass transfer. We conclude with directions for future research applying electrical geophysics to understand field‐scale transport in aquifer and fluvial systems subject to rate‐limited mass transfer.
Air sparging: Air-water mass transfer coefficients
NASA Astrophysics Data System (ADS)
Braida, Washington J.; Ong, Say Kee
1998-12-01
Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhixia; Zhang, Liang; Saha, Kaushik
The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performedmore » for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.« less
Assessment of Masses of the External Ear With Diffusion-Weighted MR Imaging.
Razek, Ahmed Abdel Khalek Abdel
2018-02-01
To assess masses of the external ear with diffusion-weighted MR imaging. Retrospective analysis of 43 consecutive patients with soft tissue mass of the external ear. They underwent single shot diffusion-weighted MR imaging of the ear. The apparent diffusion coefficient (ADC) value of the mass of the external ear was calculated. The final diagnosis was performed by biopsy. The ADC value correlated with the biopsy results. The mean ADC value of malignancy (=27) of external ear (0.95 ± 0.19 × 10 mm/s) was significantly lower (p = 0.001) than that of benign (n = 16) lesions (1.49 ± 0.08 × 10 mm/s). The cutoff ADC used for differentiation of malignancy from benign lesions was 1.18 × 10 mm/s with an area under the curve of 0.959, an accuracy of 93%, a sensitivity of 92%, and specificity of 93%. There was a significant difference in the ADC of well and moderately differentiated malignancy versus poorly and undifferentiated squamous cell carcinoma (p = 0.001), and stages I and II versus stages III and IV (p = 0.04) of squamous cell carcinoma. ADC value is a non-invasive promising imaging parameter that can be used for differentiation of malignancy of the external ear from benign lesions, and grading and staging of squamous cell carcinoma of the external ear.
Buljubasich, L; Blümich, B; Stapf, S
2011-09-01
An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H2O2. Copyright © 2011 Elsevier Inc. All rights reserved.
Shi, Lewis L; Cahill, Kirk E; Ek, Eugene T; Tompson, Jeffrey D; Higgins, Laurence D; Warner, Jon J P
2015-10-01
In patients with rotator cuff dysfunction, reverse shoulder arthroplasty can restore active forward flexion, but it does not provide a solution for the lack of active external rotation because of infraspinatus and the teres minor dysfunction. A modified L'Episcopo procedure can be performed in the same setting wherein the latissimus dorsi and teres major tendons are transferred to the lateral aspect of proximal humerus in an attempt to restore active external rotation. (1) Do latissimus dorsi and teres major tendon transfers with reverse shoulder arthroplasty improve external rotation function in patients with posterosuperior rotator cuff dysfunction? (2) Do patients experience less pain and have improved outcome scores after surgery? (3) What are the complications associated with reverse shoulder arthroplasty with latissimus dorsi and teres major transfer? Between 2007 and 2010, we treated all patients undergoing shoulder arthroplasty who had a profound external rotation lag sign and advanced fatty degeneration of the posterosuperior rotator cuff (infraspinatus plus teres minor) with this approach. A total of 21 patients (mean age 66 years; range, 58-82 years) were treated this way and followed for a minimum of 2 years (range, 26-81 months); none was lost to followup, and all have been seen in the last 5 years. We compared pre- and postoperative ranges of motion, pain, and functional status; scores were drawn from chart review. We also categorized major and minor complications. Active forward flexion improved from 56° ± 36° to 120° ± 38° (mean difference: 64° [95% confidence interval {CI}, 45°-83°], p < 0.001). Active external rotation with the arm adducted improved from 6° ± 16° to 38° ± 14° (mean difference: 30° [95% CI, 21°-39°], p < 0.001); active external rotation with the arm abducted improved from 19° ± 25° to 74° ± 22° (mean difference: 44° [95% CI, 22°-65°], p < 0.001). Pain visual analog score improved from 8.4 ± 2.3 to 1.7 ± 2.1 (mean difference: -6.9 [95% CI, -8.7 to -5.2], p < 0.001), and Single Assessment Numeric Evaluation score improved from 28% ± 21% to 80% ± 24% (mean difference: 46% [95% CI, 28%-64%], p < 0.001). There were six major complications, five of which were treated operatively. Overall, three patients' latissimus and teres major transfer failed based on persistent lack of external rotation. In patients with posterior and superior cuff deficiency, reverse shoulder arthroplasty combined with latissimus dorsi and teres major transfer through a single deltopectoral incision can reliably increase active forward flexion and external rotation. Patients experience pain relief and functional improvement but have a high rate of complications; therefore, we recommend the procedure be limited to patients indicated for reverse who have profound external rotation loss and a high grade of infraspinatus/teres minor fatty atrophy. Level IV, therapeutic study.
Pilot Emergency Tutoring System for F-4 Aircraft Fuel System Malfunction Using Means-Ends Analysis
1990-06-01
pulled , and wing transfer pressure is normal. What operator do you choose? For example: type look_at INDICATOR for looked_at(INDICATOR) type set...cb internal wing transfer is pulled , and wing transfer pressure is normal. What operator do you choose? For example: type look_at INDICATOR for...at, external transfer is off, internal wing transfer is stop trans, refuel probe is extended, cb internal wing transfer is pulled ,and wing
Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.
2011-12-01
The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and dechlorination kinetics were reflected in a transient, spatially heterogeneous bioavailability number and dissolution enhancement. In agreement with the literature, source zone architecture largely determined the impact of mass transfer on potential dissolution enhancement, with bioavailability decreasing the most at high ganglia to pool ratios. The results of this study suggest that if mass transfer rate limitations are not considered in designing bioremediation applications at DNAPL source zones, the enhancement of DNAPL depletion and the overall effectiveness of enhanced bioremediation may be significantly overestimated.
Capillary electrophoresis electrospray ionization mass spectrometry interface
Smith, Richard D.; Severs, Joanne C.
1999-01-01
The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwo, J.P.; Jardine, P.M.; Yeh, G.T.
Matrix diffusion, a diffusive mass transfer process,in the structured soils and geologic units at ORNL, is believe to be an important subsurface mass transfer mechanism; it may affect off-site movement of radioactive wastes and remediation of waste disposal sites by locally exchanging wastes between soil/rock matrix and macropores/fractures. Advective mass transfer also contributes to waste movement but is largely neglected by researchers. This report presents the first documented 2-D multiregion solute transport code (MURT) that incorporates not only diffusive but also advective mass transfer and can be applied to heterogeneous porous media under transient flow conditions. In this report, theoreticalmore » background is reviewed and the derivation of multiregion solute transport equations is presented. Similar to MURF (Gwo et al. 1994), a multiregion subsurface flow code, multiplepore domains as suggested by previous investigators (eg, Wilson and Luxmoore 1988) can be implemented in MURT. Transient or steady-state flow fields of the pore domains can be either calculated by MURF or by modelers. The mass transfer process is briefly discussed through a three-pore-region multiregion solute transport mechanism. Mass transfer equations that describe mass flux across pore region interfaces are also presented and parameters needed to calculate mass transfer coefficients detailed. Three applications of MURT (tracer injection problem, sensitivity analysis of advective and diffusive mass transfer, hillslope ponding infiltration and secondary source problem) were simulated and results discussed. Program structure of MURT and functions of MURT subroutiness are discussed so that users can adapt the code; guides for input data preparation are provided in appendices.« less
Quantification of the Mass Transfer at Fluid Interfaces in Microfluidic Channels
NASA Astrophysics Data System (ADS)
Wismeth, Carina; Manhart, Michael; Niessner, Reinhard; Baumann, Thomas
2017-04-01
Mass transfer rates at interfaces in a complex porous media are relevant in many environmental applications and control the functions of natural filter systems in subsurface environments. The mass transfer at fluid interfaces is associated with interface convection caused by local inhomogeneities in interface tension and hydrodynamic instabilities at the interface. If there is a surface tension gradient along the surface a shear stress jump is generated that results in fluid motion along the surface that is called Marangoni effect. These spontaneous convection currents can lead to an increased mass transfer of the transition component at the phase boundary and to an increased mixing of the phases. Therefore compensatory currents at the interface can have a significant influence on the subsurface transport of contaminants in the groundwater area, especially in the vadose zone. Using microfluidic channels and advanced experimental techniques it is possible to measure the fluid flow and mass transfer rates directly and to quantify the effect of the Marangoni convection on the mass transfer at interfaces between a non-aqueous liquid and water with high temporal and spatial resolution. The use of fluorescent particles as well as the recording and analysis of their trajectories is intended to visualize interfacial processes and to quantify the mass transfer at fluid phase boundaries. Concentration gradients at the interface are analysed by spectroscopic methods and allow an assessment of the enrichment and depletion at the phase boundaries. Extensive test series provide the experimental basis for quantifying and analysing the impact of the Marangoni effect on the mass transfer rates at interfaces in porous media in subsurface aquatic environments. Within this research project we concentrate on the effect of Marangoni convection on the mass transfer near an 1-octanol-water interface, which serves as a well defined proxy for non-aqueous phase liquids in porous media. Experiments and a numerical simulation are closely coupled to provide a generic data set with high reproducibility and used to obtain highly resolved three-dimensional data of mass transfer in two- and three-phase systems to foster the understanding of subsurface transport, especially in the vadose zone.
Xie, Mingjie; Wu, Yaoxing; Little, John C; Marr, Linsey C
2016-01-01
This work focuses on the mass content of plasticizers in children's backpacks and toys, and their mass transfer from product surfaces to cotton wipes. The mass content of plasticizers in six backpacks and seven toys was measured by extracting them in tetrahydrofuran. Bis(2-ethylhexyl) terephthalate (DEHT) was the most common plasticizer, dominating the composition of plasticizers in four backpacks (average mass content in product polyvinyl chloride, 5.38 ± 1.98%-25.5 ± 3.54%) and six plastic toys (8.17 ± 1.85%-21.2 ± 1.11%). The surface of each product was wiped with three dry and three wet (by isopropanol) cotton wipes, so as to evaluate the mass transfer of plasticizers to clothing and human skin, respectively. DEHT was the most common plasticizer detected on wipe samples. There were strong correlations (backpacks r=0.90; plastic toys r=0.96) between average mass transfer of DEHT to wet wipes and its average mass content in the product. The mass transfers of the five dominant plasticizers in one backpack to both dry and wet wipes were also correlated (both r=1.00) with their mass contents. These results suggest that the mass transfer of plasticizers from products to clothing or human skin is strongly associated with their mass content.
Mass transfer effects in a gasification riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, Ronald W.; Li, Tingwen; Nicoletti, Phillip
2013-07-01
In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) risermore » reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.« less
Controls and variability of solute and sedimentary fluxes in Arctic and sub-Arctic Environments
NASA Astrophysics Data System (ADS)
Dixon, John
2015-04-01
Six major factors consistently emerge as controls on the spatial and temporal variability in sediment and solute fluxes in cold climates. They are climatic, geologic, physiographic or relief, biologic, hydrologic, and regolith factors. The impact of these factors on sediment and solute mass transfer in Arctic and sub-Arctic environments is examined. Comparison of non-glacierized Arctic vs. subarctic drainage basins reveals the effects of these controls. All drainage basins exhibit considerable variability in rates of sediment and solute fluxes. For the non-glacierized drainage basins there is a consistent increase in sediment mass transfer by slope processes and fluvial processes as relief increases. Similarly, a consistent increase in sediment mass transfer by slope and fluvial processes is observed as total precipitation increases. Similar patterns are also observed with respect to solute transport and relief and precipitation. Lithologic factors are most strongly observed in the contrast between volcanic vs. plutonic igneous bedrock substrates. Basins underlain by volcanic rocks display greater mass transfers than those underlain by plutonic rocks. Biologic influences are most strongly expressed by variations in extent of vegetation cover and the degree of human interference, with human impacted basins generating greater fluxes. For glacierized basins the fundamental difference to non-glacierized basins is an overall increase in mean annual mass transfers of sediment and a generally smaller magnitude solute transfer. The principal role of geology is observed with respect to lithology. Catchments underlain by limestone demonstrate substantially greater solute mass transfers than sediment transfer. The influence of relief is seen in the contrast in mass transfers between upland and lowland drainage basins with upland basins generating greater sediment and solute transfers than lowland basins. For glacierized basins the effects of biology and regolith appear to be largely overridden by the hydrologic impacts of glacierization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
Wang, Chao; Xu, Zhijie; Lai, Canhai; ...
2018-03-27
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
Plasma-catalyzed fuel reformer
Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele
2013-06-11
A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.
ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Hongwei; Chen, Xuefei; Han, Zhanwen
2015-10-10
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. Formore » intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in q{sub ad} as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution.« less
Membrane-Mediated Extraction and Biodegradation of Volatile Organic Compounds From Air
2005-01-01
side boundary-layer mass transfer resistance is a significant fraction of the total mass transfer resistance ( Raghunath , 1992). In some cases where...Sci. 59: 53–72. Raghunath , B., and S.–T. Hwang (1992). “Effect of boundary layer mass transfer resistance in the pervaporation of dilute organics
Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2013-04-01
Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tang, Bing; Song, Haoliang; Bin, Liying; Huang, Shaosong; Zhang, Wenxiang; Fu, Fenglian; Zhao, Yiliang; Chen, Qianyu
2017-10-01
The work aims at illustrating the profile of DO and its mass transferring process in a biofilm reactor packed with a novel semi-suspended bio-carrier, and further revealing the main factors that influence the mass transferring coefficient of DO within the biofilm. Results showed that the biofilm was very easy to attach and grow on the semi-suspended bio-carrier, which obviously changed the DO profile inside and outside the biofilm. The semi-suspended bio-carrier caused three different mass transfer zones occurring in the bioreactor, including the zones of bulk solution, boundary layer and biofilm, in which, the boundary layer zone had an obvious higher mass transfer resistance. Increasing the aeration rate might improve the hydrodynamic conditions in the bioreactor and accelerate the mass transfer of DO, but it also detached the biofilm from the surface of bio-carrier, which reduced the consumption of DO, and accordingly, decreased the DO gradient in the bioreactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping
2018-04-01
Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.
Mass transfer in a 1370 C (2500 F) lithium thermal convection loop
NASA Technical Reports Server (NTRS)
Scheuermann, C. M.
1974-01-01
Experimental results from a test to evaluate interstitial element mass transfer effects on T-111, ASTAR 811C, and ASTAR 1211C after 5000 hours in flowing lithium at 1370 C (2500 F) are presented. No gross corrosion effects were observed. However, hafnium and nitrogen transfer to cooler regions within the loop were noted. Oxygen was in general removed from test specimens, but there was no evidence to indicate that it was a major factor in the mass transfer process. Carbon and hydrogen transfer were not detected.
Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap
NASA Astrophysics Data System (ADS)
Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.
2015-05-01
The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.
Sample Handling in Extreme Environments
NASA Technical Reports Server (NTRS)
Avellar, Louisa; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph
2013-01-01
Harsh environments, such as that on Venus, preclude the use of existing equipment for functions that involve interaction with the environment. The operating limitations of current high temperature electronics are well below the actual temperature and pressure found on Venus (460 deg C and 92 atm), so proposed lander configurations typically include a pressure vessel where the science instruments are kept at Earth-like temperature and pressure (25 deg C and 1 atm). The purpose of this project was to develop and demonstrate a method for sample transfer from an external drill to internal science instruments for a lander on Venus. The initial concepts were string and pneumatically driven systems; and the latter system was selected for its ability to deliver samples at very high speed. The pneumatic system was conceived to be driven by the pressure difference between the Venusian atmosphere and the inside of the lander. The pneumatic transfer of a small capsule was demonstrated, and velocity data was collected from the lab experiment. The sample transfer system was modeled using CAD software and prototyped using 3D printing. General structural and thermal analyses were performed to approximate the proposed system's mass and effects on the temperature and pressure inside of the lander. Additionally, a sampler breadboard for use on Titan was tested and functionality problems were resolved.
Pillai, Karthik V.; Gray, Patrick J.; Tien, Chun-Chieh; Bleher, Reiner; Sung, Li-Piin
2016-01-01
Concomitant with the development of polymer nanocomposite (PNC) technologies across numerous industries is an expanding awareness of the uncertainty with which engineered nanoparticles embedded within these materials may be released into the external environment, particularly liquid media. Recently there has been an interest in evaluating potential exposure to nanoscale fillers from PNCs, but existing studies often rely upon uncharacterized, poor quality, or proprietary materials, creating a barrier to making general mechanistic conclusions about release phenomena. In this study we employed semiconductor nanoparticles (quantum dots, QDs) as model nanofillers to quantify potential release into liquid media under specific environmental conditions. QDs of two sizes were incorporated into low-density polyethylene by melt compounding and the mixtures were extruded as free-standing fluorescent films. These films were subjected to tests under conditions intended to accelerate potential release of embedded particles or dissolved residuals into liquid environments. Using inductively-coupled plasma mass spectrometry and laser scanning confocal microscopy, it was found that the acidity of the external medium, exposure time, and small differences in particle size (on the order of a few nm) all play pivotal roles in release kinetics. Particle dissolution was found to play a major if not dominant role in the release process. This paper also presents the first evidence that internally embedded nanoparticles contribute to the mass transfer, an observation made possible via the use of a model system that was deliberately designed to probe the complex relationships between nanoparticle-enabled plastics and the environment. PMID:27529026
Capillary-Condenser-Pumped Heat-Transfer Loop
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1989-01-01
Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.
The Accuracy of Two-Way Satellite Time Transfer Calibrations
2005-01-01
20392, USA Abstract Results from successive calibrations of Two-Way Satellite Time and Frequency Transfer ( TWSTFT ) operational equipment at...USNO and five remote stations using portable TWSTFT equipment are analyzed for internal and external errors, finding an average random error of ±0.35...most accurate means of operational long-distance time transfer are Two-Way Satellite Time and Frequency Transfer ( TWSTFT ) and carrier-phase GPS
Mass media and heterogeneous bounds of confidence in continuous opinion dynamics
NASA Astrophysics Data System (ADS)
Pineda, M.; Buendía, G. M.
2015-02-01
This work focuses on the effects of an external mass media on continuous opinion dynamics with heterogeneous bounds of confidence. We modified the original Deffuant et al. and Hegselmann and Krause models to incorporate both, an external mass media and a heterogeneous distribution of confidence levels. We analysed two cases, one where only two bounds of confidence are taken into account, and other where each individual of the system has her/his own characteristic level of confidence. We found that, in the absence of mass media, diversity of bounds of confidence can improve the capacity of the systems to reach consensus. We show that the persuasion capacity of the external message is optimal for intermediate levels of heterogeneity. Our simulations also show the existence, for certain parameter values, of a counter-intuitive effect in which the persuasion capacity of the mass media decreases if the mass media intensity is too large. We discuss similarities and differences between the two heterogeneous versions of these continuous opinion dynamic models under the influence of mass media.
NASA Astrophysics Data System (ADS)
Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin
2016-09-01
Here we synthesize data from previous field and laboratory studies describing how rates of nutrient uptake and metabolite exchange (mass transfer) are related to form drag and bottom stresses (momentum transfer). Reanalysis of this data shows that rates of mass transfer are highly correlated (r2 ≥ 0.9) with the root of the bottom stress (τbot0.4) under both waves and currents and only slightly higher under waves (~10%). The amount of mass transfer that can occur per unit bottom stress (or form drag) is influenced by morphological features ranging anywhere from millimeters to meters in scale; however, surface-scale roughness (millimeters) appears to have little effect on actual nutrient uptake by living reef communities. Although field measurements of nutrient uptake by natural reef communities agree reasonably well with predictions based on existing mass-momentum transfer relationships, more work is needed to better constrain these relationships for more rugose and morphologically complex communities.
Generalized Fluid System Simulation Program (GFSSP) - Version 6
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul
2015-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.
Generalized Fluid System Simulation Program, Version 6.0
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.
2013-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.
Generalized Fluid System Simulation Program, Version 5.0-Educational
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.
Mayor, T S; Couto, S; Psikuta, A; Rossi, R M
2015-12-01
The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and temperature fields in the microclimates were found to strongly depend on the characteristics of the external boundary layer forming along the clothing and on the distribution of temperature in the clothing. The local heat transfer rates obtained in the microclimate are in marked contrast with those found in the literature for enclosures with constant-temperature active walls. These results stress the importance of coupling the calculation of the internal and the external flows and of the heat transfer convective and radiative components, when analyzing the way heat is transported to/from the body.
NASA Astrophysics Data System (ADS)
Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.
2016-05-01
A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes, results in lower values of Δ t (the temperature difference between internal and external coolant) for a given heat load.
Yun, Xiao; Quarini, Giuseppe L
2017-03-13
We demonstrate a method for the study of the heat and mass transfer and of the freezing phenomena in a subcooled brine environment. Our experiment showed that, under the proper conditions, ice can be produced when water is introduced to a bath of cold brine. To make ice form, in addition to having the brine and water mix, the rate of heat transfer must bypass that of mass transfer. When water is introduced in the form of tiny droplets to the brine surface, the mode of heat and mass transfer is by diffusion. The buoyancy stops water from mixing with the brine underneath, but as the ice grows thicker, it slows down the rate of heat transfer, making ice more difficult to grow as a result. When water is introduced inside the brine in the form of a flow, a number of factors are found to influence how much ice can form. Brine temperature and concentration, which are the driving forces of heat and mass transfer, respectively, can affect the water-to-ice conversion ratio; lower bath temperatures and brine concentrations encourage more ice to form. The flow rheology, which can directly affect both the heat and mass transfer coefficients, is also a key factor. In addition, the flow rheology changes the area of contact of the flow with the bulk fluid.
Enhanced Condensation Heat Transfer
NASA Astrophysics Data System (ADS)
Rose, John Winston
The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jia, E-mail: lijia@wipm.ac.cn
2014-10-07
We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current ismore » present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.« less
Ariane, Mostapha; Kassinos, Stavros; Velaga, Sitaram; Alexiadis, Alessio
2018-04-01
In this paper, the mass transfer coefficient (permeability) of boundary layers containing motile cilia is investigated by means of discrete multi-physics. The idea is to understand the main mechanisms of mass transport occurring in a ciliated-layer; one specific application being inhaled drugs in the respiratory epithelium. The effect of drug diffusivity, cilia beat frequency and cilia flexibility is studied. Our results show the existence of three mass transfer regimes. A low frequency regime, which we called shielding regime, where the presence of the cilia hinders mass transport; an intermediate frequency regime, which we have called diffusive regime, where diffusion is the controlling mechanism; and a high frequency regime, which we have called convective regime, where the degree of bending of the cilia seems to be the most important factor controlling mass transfer in the ciliated-layer. Since the flexibility of the cilia and the frequency of the beat changes with age and health conditions, the knowledge of these three regimes allows prediction of how mass transfer varies with these factors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermophysical fundamentals of cyclonic recirculating heating devices
NASA Astrophysics Data System (ADS)
Karpov, S. V.; Zagoskin, A. A.
2017-10-01
This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.
Plamondon, André; Larivière, Christian; Delisle, Alain; Denis, Denys; Gagnon, Denis
2012-01-01
The objective of this study was to measure the effect size of three important factors in manual material handling, namely expertise, lifting height and weight lifted. The effect of expertise was evaluated by contrasting 15 expert and 15 novice handlers, the effect of the weight lifted with a 15-kg box and a 23-kg box and the effect of lifting height with two different box heights: ground level and a 32 cm height. The task consisted of transferring a series of boxes from a conveyor to a hand trolley. Lifting height and weight lifted had more effect size than expertise on external back loading variables (moments) while expertise had low impact. On the other hand, expertise showed a significant effect of posture variables on the lumbar spine and knees. All three factors are important, but for a reduction of external back loading, the focus should be on the lifting height and weight lifted. The objective was to measure the effect size of three important factors in a transfer of boxes from a conveyor to a hand trolley. Lifting height and weight lifted had more effect size than expertise on external back loading variables but expertise was a major determinant in back posture.
Woods, Jason; Kozubal, Eric
2018-02-06
Liquid desiccant heat and mass exchangers are a promising technology for efficient humidity control in buildings. Many researchers have investigated these exchangers, often using numerical models to predict their performance. However, there is a lack of information in the literature on the magnitude of the heat and mass transfer resistances, both for the dehumidifier (which absorbs moisture from the air) and the regenerator (which heats the liquid desiccant to re-concentrate it). This article focuses on internally-cooled, 3-fluid exchangers in a parallel plate geometry. Water heats or cools a desiccant across a plate, and the desiccant absorbs or releases water intomore » an airstream through a membrane. A sensitivity analysis was used to estimate the importance of each of the heat and mass transfer resistances (air, membrane, desiccant, plate, water), and how it changes with different design geometries. The results show that, for most designs, the latent and sensible heat transfer of the dehumidifier is dominated by the air mass transfer resistance and air heat transfer resistance, respectively. The air mass transfer resistance is also important for the regenerator, but much less so; the change in the desiccant equilibrium humidity ratio due to a change in either temperature or desiccant mass fraction is much higher at the regenerator's higher temperatures. This increases the importance of (1) getting heat from the water to the desiccant/membrane interface, and (2) diffusing salt ions quickly away from the desiccant/membrane interface. The membrane heat transfer and water heat transfer resistances were found to be the least important. These results can help inform decisions about what simplifying assumptions to make in numerical models, and can also help in designing these exchangers by understanding which resistances are most important.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Jason; Kozubal, Eric
Liquid desiccant heat and mass exchangers are a promising technology for efficient humidity control in buildings. Many researchers have investigated these exchangers, often using numerical models to predict their performance. However, there is a lack of information in the literature on the magnitude of the heat and mass transfer resistances, both for the dehumidifier (which absorbs moisture from the air) and the regenerator (which heats the liquid desiccant to re-concentrate it). This article focuses on internally-cooled, 3-fluid exchangers in a parallel plate geometry. Water heats or cools a desiccant across a plate, and the desiccant absorbs or releases water intomore » an airstream through a membrane. A sensitivity analysis was used to estimate the importance of each of the heat and mass transfer resistances (air, membrane, desiccant, plate, water), and how it changes with different design geometries. The results show that, for most designs, the latent and sensible heat transfer of the dehumidifier is dominated by the air mass transfer resistance and air heat transfer resistance, respectively. The air mass transfer resistance is also important for the regenerator, but much less so; the change in the desiccant equilibrium humidity ratio due to a change in either temperature or desiccant mass fraction is much higher at the regenerator's higher temperatures. This increases the importance of (1) getting heat from the water to the desiccant/membrane interface, and (2) diffusing salt ions quickly away from the desiccant/membrane interface. The membrane heat transfer and water heat transfer resistances were found to be the least important. These results can help inform decisions about what simplifying assumptions to make in numerical models, and can also help in designing these exchangers by understanding which resistances are most important.« less
NASA Astrophysics Data System (ADS)
Khan, Kashif Ali; Butt, Asma Rashid; Raza, Nauman
2018-03-01
In this study, an endeavor is to observe the unsteady two-dimensional boundary layer flow with heat and mass transfer behavior of Casson fluid past a stretching sheet in presence of wall mass transfer by ignoring the effects of viscous dissipation. Chemical reaction of linear order is also invoked here. Similarity transformation have been applied to reduce the governing equations of momentum, energy and mass into non-linear ordinary differential equations; then Homotopy analysis method (HAM) is applied to solve these equations. Numerical work is done carefully with a well-known software MATHEMATICA for the examination of non-dimensional velocity, temperature, and concentration profiles, and then results are presented graphically. The skin friction (viscous drag), local Nusselt number (rate of heat transfer) and Sherwood number (rate of mass transfer) are discussed and presented in tabular form for several factors which are monitoring the flow model.
Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications.
Puértolas, E; Luengo, E; Álvarez, I; Raso, J
2012-01-01
The mass transfer phenomenon occurs in many operations of the food industry with the purpose of obtaining a given substance of interest, removing water from foods, or introducing a given substance into the food matrix. Pretreatments that modify the permeability of the cell membranes, such as grinding, heating, or enzymatic treatment, enhance the mass transfer. However, these techniques may require a significant amount of energy and can cause losses of valuable food compounds. Pulsed electric field (PEF) technology is a nonthermal processing method that causes permeabilization of cell membranes using low energy requirements and minimizing quality deterioration of the food compounds. Many practical applications of PEF for enhancing mass transfer in the food industry have been investigated. The purpose of this chapter is to give an overview of the state of the art of application of PEF for improving mass transfer in the food industry.
Effect of an external magnetic field on the mass attenuation coefficients of p-Si and n-Si
NASA Astrophysics Data System (ADS)
Yılmaz, D.; Önder, P.
2018-05-01
In this study, the mass attenuation coefficients of p-Si and n-Si semiconductor samples have been determined in an external magnetic field. The semiconductor samples were located to the external magnetic field of intensities 0.2 T, 0.4 T, 0.6 T and 0.8 T. The samples were bombarded by 59.5 keV, 80.1 keV, 121.8 keV and 244.7 keV gamma-rays emitted from Am241, Ba133 and Eu152 radioactive sources. The transmitted photons were detected by a CdTe detector. It was observed that the mass attenuation coefficients of p-Si and n-Si semiconductor samples decrease with increasing gamma-ray energy. Also, the mass attenuation coefficients of the samples increase with applying magnetic field intensity.
Lao, Yexing; Yang, Cuiping; Zou, Wei; Gan, Manquan; Chen, Ping; Su, Weiwei
2012-05-01
The cryptand Kryptofix 2.2.2 is used extensively as a phase-transfer reagent in the preparation of [18F]fluoride-labelled radiopharmaceuticals. However, it has considerable acute toxicity. The aim of this study was to develop and validate a method for rapid (within 1 min), specific and sensitive quantification of Kryptofix 2.2.2 at trace levels. Chromatographic separations were carried out by rapid-resolution liquid chromatography (Agilent ZORBAX SB-C18 rapid-resolution column, 2.1 × 30 mm, 3.5 μm). Tandem mass spectra were acquired using a triple quadrupole mass spectrometer equipped with an electrospray ionization interface. Quantitative mass spectrometric analysis was conducted in positive ion mode and multiple reaction monitoring mode for the m/z 377.3 → 114.1 transition for Kryptofix 2.2.2. The external standard method was used for quantification. The method met the precision and efficiency requirements for PET radiopharmaceuticals, providing satisfactory results for specificity, matrix effect, stability, linearity (0.5-100 ng/ml, r(2)=0.9975), precision (coefficient of variation < 5%), accuracy (relative error < ± 3%), sensitivity (lower limit of quantification=0.5 ng) and detection time (<1 min). Fluorodeoxyglucose (n=6) was analysed, and the Kryptofix 2.2.2 content was found to be well below the maximum permissible levels approved by the US Food and Drug Administration. The developed method has a short analysis time (<1 min) and high sensitivity (lower limit of quantification=0.5 ng/ml) and can be successfully applied to rapid quantification of Kryptofix 2.2.2 at trace levels in fluorodeoxyglucose. This method could also be applied to other [18F]fluorine-labelled radiopharmaceuticals that use Kryptofix 2.2.2 as a phase-transfer reagent.
Method and Apparatus for Predicting Unsteady Pressure and Flow Rate Distribution in a Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok K. (Inventor)
2009-01-01
A method and apparatus for analyzing steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics, external body forces such as gravity and centrifugal force and conjugate heat transfer. In some embodiments, a graphical user interface provides for the interactive development of a fluid network simulation having nodes and branches. In some embodiments, mass, energy, and specific conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. In some embodiments, contained herein are data objects for computing thermodynamic and thermophysical properties for fluids. In some embodiments, the systems of equations describing the fluid network are solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods.
ERIC Educational Resources Information Center
McClelland, J. A. G.
2011-01-01
Articulated bodies with an internal energy source require to be coupled to an external mass in order to accelerate themselves but the typical text book assertion that the net force is provided by the external mass is not correct. Arguments are presented demonstrating that the assertion is incorrect and reasons are suggested for the persistence of…
NASA Astrophysics Data System (ADS)
O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.
2016-10-01
The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.
Dissipative structures induced by spin-transfer torques in nanopillars
NASA Astrophysics Data System (ADS)
León, Alejandro O.; Clerc, Marcel G.; Coulibaly, Saliya
2014-02-01
Macroscopic magnetic systems subjected to external forcing exhibit complex spatiotemporal behaviors as result of dissipative self-organization. Pattern formation from a uniform magnetization state, induced by the combination of a spin-polarized current and an external magnetic field, is studied for spin-transfer nano-oscillator devices. The system is described in the continuous limit by the Landau-Lifshitz-Gilbert equation. The bifurcation diagram of the quintessence parallel state, as a function of the external field and current, is elucidated. We have shown analytically that this state exhibits a spatial supercritical quintic bifurcation, which generates in two spatial dimensions a family of stationary stripes, squares, and superlattice states. Analytically, we have characterized their respective stabilities and bifurcations, which are controlled by a single dimensionless parameter. This scenario is confirmed numerically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO2) capture to predict the CO2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive and reactive massmore » transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru
2016-11-14
The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, k L , and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, k L for the wind-driven wavy gas-liquid interface is generally proportional to Sc -0.5 , and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking.
Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru
2016-01-01
The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, kL, and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, kL for the wind-driven wavy gas-liquid interface is generally proportional to Sc−0.5, and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking. PMID:27841325
Britto-Costa, Pedro H; Ruotolo, Luís Augusto M
2013-01-01
Porous electrodes have been successfully used for metal electrodeposition from diluted aqueous solution due to their high porosity and specific surface area, which lead to high mass transfer rates. This work studies the mass transfer of copper electrodeposition on reticulated vitreous carbon in a flow reactor without membrane. The flow configuration, otherwise the filter-press electrochemical reactors, was designed in order to minimize the pressure drop. The mass transfer coefficient was determined by voltammetric and galvanostatic electrodeposition. In the voltammetric experiments a Luggin capillary was used to measure the current-potential curves and to determine the limiting current (and, consequently, the mass transfer coefficient). In the galvanostatic experiments the concentration-time curves were obtained and considering a limiting current kinetics model, the mass transfer coefficient (k(m)) was determined for different flow velocities. The results showed that both methods give similar values of k(m), thus the voltammetric method can be recommended because it is faster and simpler. Finally, the reactor performance was compared with others from literature, and it was observed that the proposed reactor design has high Sherwood numbers similar to other reactor configurations using membranes and reticulated vitreous carbon electrodes.
A Proteomic View at the Biochemistry of Syntrophic Butyrate Oxidation in Syntrophomonas wolfei
Schmidt, Alexander; Müller, Nicolai; Schink, Bernhard; Schleheck, David
2013-01-01
In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT), a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224) was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB) and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF224) to a menaquinone cycle and further via a b-type cytochrome to an externally oriented formate dehydrogenase. Hence, an ATP hydrolysis-driven proton-motive force across the cytoplasmatic membrane would provide the energy input for the electron potential shift necessary for formate formation. PMID:23468890
NASA Astrophysics Data System (ADS)
Olajuwon, B. I.; Oyelakin, I. S.
2012-12-01
The paper investigates convection heat and mass transfer in power law fluid flow with non relaxation time past a vertical porous plate in presence of a chemical reaction, heat generation, thermo diffu- sion and thermal diffusion. The non - linear partial differential equations governing the flow are transformed into ordinary differential equations using the usual similarity method. The resulting similarity equations are solved numerically using Runge-Kutta shooting method. The results are presented as velocity, temperature and concentration profiles for pseudo plastic fluids and for different values of parameters governing the prob- lem. The skin friction, heat transfer and mass transfer rates are presented numerically in tabular form. The results show that these parameters have significant effects on the flow, heat transfer and mass transfer.
Potential approaches to the management of third-party impacts from groundwater transfers
NASA Astrophysics Data System (ADS)
Skurray, James H.; Pannell, David J.
2012-08-01
Groundwater extraction can have varied and diffuse effects. Negative external effects may include costs imposed on other groundwater users and on surrounding ecosystems. Environmental damages are commonly not reflected in market transactions. Groundwater transfers have the potential to cause spatial redistribution, concentration, and qualitative transformation of the impacts from pumping. An economically and environmentally sound groundwater transfer scheme would ensure that marginal costs from trades do not exceed marginal benefits, accounting for all third-party impacts, including those of a non-monetary nature as well as delayed effects. This paper proposes a menu of possible management strategies that would help preclude unacceptable impacts by restricting transfers with certain attributes, ideally ensuring that permitted transfers are at least welfare-neutral. Management tools would require that transfers limit or reduce environmental impacts, and provide for the compensation of financial impacts. Three management tools are described. While these tools can limit impacts from a given level of extraction, they cannot substitute for sustainable overall withdrawal limits. Careful implementation of transfer limits and exchange rates, and the strategic use of management area boundaries, may enable a transfer system to restrict negative externalities mainly to monetary costs. Provision for compensation of these costs could be built into the system.
Incomplete mass transfer processes in 28Si +93Nb reaction
NASA Astrophysics Data System (ADS)
Tripathi, R.; Sodaye, S.; Ramachandran, K.; Sharma, S. K.; Pujari, P. K.
Cross sections of reaction products were measured in 28Si +93Nb reaction using recoil catcher technique involving by off-line gamma-ray spectrometry at beam energies of 105 and 155MeV. At Elab = 155MeV, the contribution from different incomplete mass transfer processes is investigated. Results of the present studies show the contribution from deep inelastic collision (DIC), massive transfer or incomplete fusion (ICF) and quasi-elastic transfer (QET). The contribution from massive transfer reactions was confirmed from the fractional yield of the reaction products in the forward catcher foil. The present results are different from those from the reactions with comparatively higher entrance channel mass asymmetry with lighter projectiles, for which dominant transfer processes are ICF and QET which involve mass transfer predominantly from projectile to target. The N/Z values of the products close to the target mass were observed to be in a wide range, starting from N/Z of the target (93Nb) and extending slightly below the N/Z of the composite system, consistent with the contribution from DIC and QET reactions. At Elab = 105MeV, a small contribution from QET was observed in addition to complete fusion.
Pechurkin, N S; Shuvaev, A N
2015-01-01
The paper presents the idea of transparent evolution through the long-term reaction of the planet Earth on the external flow of radiant energy from the Sun. Due to limitations of matter on Earth, as well as on any other planet, the continuous pumping flow of radiant energy was shown to lead to cyclization and transport of substance on emerging gradients. The evolution of energy-matter interaction follows the path of capturing and transferring more energy by the fewer matter, i.e., the path of growth of the amount of energy used by each unit mass. For this indicator, the least effective mass transfer is a simple mass transfer as vortices of gases, in the gradients of temperature and pressure, which occurred on the primary surface of the planet. A long-term natural selection related to the accumulation of water on the planet has played a special role in developing the interaction of energy and matter. Phase transformations (ice, water, vapor) and mechanical transfers are the most common energy-matter processes. Based on water cycles, cyclic transports and transformations, chemical transformation of substances became possible developing over time into a biological transformation. This kind of the interaction of energy and matter is most efficient. In particular, during photosynthesis the energy of our star "is captured and utilized" in the most active part of the spectrum of its radiation. In the process of biological evolution of heterotrophs, a rise (by a factor of hundreds) in the coefficient that characterizes the intensity of energy exchange from protozoa to mammals is most illustratory. The development and the current dominance of humans as the most energy-using active species in capturing the energy and meaningful organization of its new flows especially on the basis of organic debris of former biospheres is admirable, but quite natural from the energy positions. In the course of technological evolution of humankind, the measure of the intensity of energy for homoeothermic (warm-blooded) animals has increased 20 times, based on the process energy used by the "average" inhabitant of the world. Thus, the victory of our species in planetary evolution is easy to fit into the mainstream of evolution through energy-matter interactions: multiple growth of star energy was used to transform the matter on the surface of the irradiated planet.
Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device
NASA Astrophysics Data System (ADS)
Veidenbergs, Ivars; Blumberga, Dagnija; Vigants, Edgars; Kozuhars, Grigorijs
2010-01-01
The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the
NASA Astrophysics Data System (ADS)
Kainulainen, J.; Juvela, M.; Alves, J.
2007-06-01
The giant molecular clouds (GMCs) of external galaxies can be mapped with sub-arcsecond resolution using multiband observations in the near-infrared. However, the interpretation of the observed reddening and attenuation of light, and their transformation into physical quantities, is greatly hampered by the effects arising from the unknown geometry and the scattering of light by dust particles. We examine the relation between the observed near-infrared reddening and the column density of the dust clouds. In this paper we particularly assess the feasibility of deriving the mass function of GMCs from near-infrared color excess data. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions. We include the scattered light in the models and calculate near-infrared color maps from the simulated data. The color maps are compared with the true line-of-sight density distributions of the models. We extract clumps from the color maps and compare the observed mass function to the true mass function. For the physical configuration chosen in this study, essentially a face-on geometry, the observed mass function is a non-trivial function of the true mass function with a large number of parameters affecting its exact form. The dynamical range of the observed mass function is confined to 103.5dots 105.5 M_⊙ regardless of the dynamical range of the true mass function. The color maps are more sensitive in detecting the high-mass end of the mass function, and on average the masses of clouds are underestimated by a factor of ˜ 10 depending on the parameters describing the dust distribution. A significant fraction of clouds is expected to remain undetected at all masses. The simulations show that the cloud mass function derived from JHK color excess data using simple foreground screening geometry cannot be regarded as a one-to-one tracer of the underlying mass function.
Formation of black hole x-ray binaries in globular clusters
NASA Astrophysics Data System (ADS)
Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl; Rasio, Frederic
2018-01-01
We explore the formation of mass-transferring binary systems containing black holes within globular clusters. We show that it is possible to form mass-transferring binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in globular clusters spanning a large range in present-day properties. We show that the presence of mass-transferring black hole systems has little correlation with the total number of black holes within the cluster at any time. In addition to mass-transferring binaries retained within their host clusters at late times, we also examine the black hole and neutron star binaries that are ejected from their host clusters. These ejected systems may contribute to the low-mass x-ray binary population in the galactic field.
The permeability of EUDRAGIT RL and HEMA-MMA microcapsules to glucose and inulin.
Douglas, J A; Sefton, M V
1990-10-05
Measurement of the rate of glucose diffusion from EUDGRAGIT RL and HEMA-MMA microcapsules coupled with a Thiele modulus/Biot number analysis of the glucose utilization rate suggests that pancreatic islets and CHO (Chinese hamster ovary) cells (at moderate to high cell densities) should not be adversely affected by the diffusion restrictions associated with these capsule membranes. The mass transfer coefficients for glucose at 20 degrees C were of the same order of magnitude for both capsules, based on release measurements: approximately 5 x 10(-6) cm/s for EUDRAGIT RL and approximately 2 x 10(-6) for HEMA-MMA. Inulin release from EUDRAGIT RL was slower than for glucose (mass transfer coefficient 14 +/- 4 x 10(-8) cm/s). The Thiele moduli were much less than 1, either for a single islet at the center of a capsule or CHO cells uniformly distributed throughout a capsule at 10(-6) cells/ mL, so that diffusion restrictions within the cells in EUDRAGIT RL or 800 microm HEMA-MMA capsules should be negligible. The ratio of external to internal diffusion resistance (Biot number) was less than 1, so that at most, only a small diffusion effect on glucose utilization should be expected (i.e., the overall effectiveness factors were greater than 0.8). These calculations were consistent with experimental observation of encapsulated islet behavior but not fully with CHO cell behavior. Permeability restricted cell viability and growth is potentially a major limitation of encapsulated cells; further analysis is warranted.
Improvement of water transport mechanisms during potato drying by applying ultrasound.
Ozuna, César; Cárcel, Juan A; García-Pérez, José V; Mulet, Antonio
2011-11-01
The drying rate of vegetables is limited by internal moisture diffusion and convective transport mechanisms. The increase of drying air temperature leads to faster water mobility; however, it provokes quality loss in the product and presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during convective drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve convective drying of potato and quantify the influence of the applied power in the water transport mechanisms. Drying kinetics of potato cubes were increased by the ultrasonic application. The influence of power ultrasound was dependent on the ultrasonic power (from 0 to 37 kW m(-3) ), the higher the applied power, the faster the drying kinetic. The diffusion model considering external resistance to mass transfer provided a good fit of drying kinetics. From modelling, it was observed a proportional and significant (P < 0.05) influence of the applied ultrasonic power on the identified kinetic parameters: effective moisture diffusivity and mass transfer coefficient. The ultrasonic application during drying represents an interesting alternative to traditional convective drying by shortening drying time, which may involve an energy saving concerning industrial applications. In addition, the ultrasonic effect in the water transport is based on mechanical phenomena with a low heating capacity, which is highly relevant for drying heat sensitive materials and also for obtaining high-quality dry products. Copyright © 2011 Society of Chemical Industry.
Radially Magnetized Protoplanetary Disk: Vertical Profile
NASA Astrophysics Data System (ADS)
Russo, Matthew; Thompson, Christopher
2015-11-01
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.
Star formation in a hierarchical model for Cloud Complexes
NASA Astrophysics Data System (ADS)
Sanchez, N.; Parravano, A.
The effects of the external and initial conditions on the star formation processes in Molecular Cloud Complexes are examined in the context of a schematic model. The model considers a hierarchical system with five predefined phases: warm gas, neutral gas, low density molecular gas, high density molecular gas and protostars. The model follows the mass evolution of each substructure by computing its mass exchange with their parent and children. The parent-child mass exchange depends on the radiation density at the interphase, which is produced by the radiation coming from the stars that form at the end of the hierarchical structure, and by the external radiation field. The system is chaotic in the sense that its temporal evolution is very sensitive to small changes in the initial or external conditions. However, global features such as the star formation efficience and the Initial Mass Function are less affected by those variations.
NASA Astrophysics Data System (ADS)
Esrael, D.; Kacem, M.; Benadda, B.
2017-07-01
We investigate how the simulation of the venting/soil vapour extraction (SVE) process is affected by the mass transfer coefficient, using a model comprising five partial differential equations describing gas flow and mass conservation of phases and including an expression accounting for soil saturation conditions. In doing so, we test five previously reported quations for estimating the non-aqueous phase liquid (NAPL)/gas initial mass transfer coefficient and evaluate an expression that uses a reference NAPL saturation. Four venting/SVE experiments utilizing a sand column are performed with dry and non-saturated sand at low and high flow rates, and the obtained experimental results are subsequently simulated, revealing that hydrodynamic dispersion cannot be neglected in the estimation of the mass transfer coefficient, particularly in the case of low velocities. Among the tested models, only the analytical solution of a convection-dispersion equation and the equation proposed herein are suitable for correctly modelling the experimental results, with the developed model representing the best choice for correctly simulating the experimental results and the tailing part of the extracted gas concentration curve.
Disentangling oil weathering using GC x GC. 2. Mass transfer calculations.
Arey, J Samuel; Nelson, Robert K; Plata, Desiree L; Reddy, Christopher M
2007-08-15
Hydrocarbon mass transfers to the atmosphere and water column drive the early weathering of oil spills and also control the chemical exposures of many coastal wildlife species. However, in the field, mass transfer rates of individual hydrocarbons to air and water are often uncertain. In the Part 1 companion to this paper, we used comprehensive two-dimensional gas chromatography (GC x GC) to identify distinct signatures of evaporation and dissolution encoded in the compositional evolution of weathered oils. In Part 2, we further investigate patterns of mass removal in GC x GC chromatograms using a mass transfer model. The model was tailored to conditions at a contaminated beach on Buzzards Bay, MA, after the 2003 Bouchard 120 oil spill. The model was applied to all resolved hydrocarbon compounds in the C11-C24 boiling range, based on their GC x GC-estimated vapor pressures and aqueous solubilities. With no fitted parameters, the model successfully predicted GC x GC chromatogram patterns of mass removal associated with evaporation, water-washing, and diffusion-limited transport. This enabled a critical field evaluation of the mass transfer model and also allowed mass apportionment estimates of hundreds of individual hydrocarbon compounds to air and water. Ultimately, this method should improve assessments of wildlife exposures to oil spill hydrocarbons.
NASA Astrophysics Data System (ADS)
Ding, Fei; Han, Xu; Luo, Zhen; Zhang, Nong
2012-12-01
In this paper, a new hydraulically interconnected suspension (HIS) system is proposed for the implementation of a resistance control for the pitch and bounce modes of tri-axle heavy trucks. A lumped-mass half-truck model is established using the free-body diagram method. The equations of motion of a mechanical and hydraulic coupled system are developed by incorporating the hydraulic strut forces into the mechanical subsystem as externally applied forces. The transfer matrix method (TMM) is used to evaluate the impedance matrix of the hydraulic subsystem consisting of models of fluid pipes, damper valves, accumulators, and three-way junctions. The TMM is further applied to find the quantitative relationships between the hydraulic strut forces and boundary flow of the mechanical-fluid interactive subsystem. The modal analysis method is employed to perform the vibration analysis between the trucks with the conventional suspension and the proposed HIS. Comparison analysis focuses on free vibration with identified eigenvalues and eigenvectors, isolation vibration capacity, and force vibration in terms of the power spectrum density responses. The obtained results show the effectiveness of the proposed HIS system in reducing the pitch motion of sprung mass and simultaneously maintaining the ride comfort. The pitch stiffness is increased while the bounce stiffness is slightly softened. The peak values of sprung mass and wheel hop motions are greatly reduced, and the vibration decay rate of sprung mass is also significantly increased.
ALMA Detection of Bipolar Outflows: Evidence for Low-mass Star Formation within 1 pc of Sgr A*
NASA Astrophysics Data System (ADS)
Yusef-Zadeh, F.; Wardle, M.; Kunneriath, D.; Royster, M.; Wootten, A.; Roberts, D. A.
2017-12-01
We report the discovery of 11 bipolar outflows within a projected distance of 1 pc from Sgr A* based on deep ALMA observations of 13CO, H30α, and SiO (5-4) lines with subarcsecond and ˜1.3 km s-1 resolutions. These unambiguous signatures of young protostars manifest as approaching and receding lobes of dense gas swept up by the jets created during the formation and early evolution of stars. The lobe masses and momentum transfer rates are consistent with young protostellar outflows found throughout the disk of the Galaxy. The mean dynamical age of the outflow population is estimated to be {6.5}-3.6+8.1× {10}3 years. The rate of star formation is ˜5 × 10-4 {M}⊙ yr-1 assuming a mean stellar mass of ˜0.3 {M}⊙ . This discovery provides evidence that star formation is taking place within clouds surprisingly close to Sgr A*, perhaps due to events that compress the host cloud, creating condensations with sufficient self-gravity to resist tidal disruption by Sgr A*. Low-mass star formation over the past few billion years at this level would contribute significantly to the stellar mass budget in the central few parsecs of the Galaxy. The presence of many dense clumps of molecular material within 1 pc of Sgr A* suggests that star formation could take place in the immediate vicinity of supermassive black holes in the nuclei of external galaxies.
2015-08-01
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink”, International Journal of Heat and Mass Transfer 48 (2005) 3615-3627. 3. Cao...from Pin Fins Situated in an Oncoming Longitudinal Flow Which Turns to Crossflow”, International Journal of Heat and Mass Transfer, Vol. 25 No. 5...Flow Forced Convection”, International Journal of Heat and Mass Transfer, Vol. 39, No. 2, pp. 311-317, 1996. 11. Khan, W., Culham, J., and Yovanovich
Smooth information flow in temperature climate network reflects mass transport
NASA Astrophysics Data System (ADS)
Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan
2017-03-01
A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field. Their close relation illustrates that although the information transferred due to the causal influence is not a physical quantity, the information transfer is tied to the transfer of mass and energy.
NASA Astrophysics Data System (ADS)
Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.
2018-06-01
The current paper seeks to demonstrate the general applicability of the authors' recently developed treatment of surface renewal during decarburization of Fe-C-S alloys and its effect on the mass transport of phosphorus in the metal phase. The proposed model employs a quantitative model of CO bubble nucleation in the metal to predict the rate of surface renewal, which can then in turn be used to predict the mass-transfer coefficient for phosphorus. A model of mixed transport control in the slag and metal phases was employed to investigate the dephosphorization kinetics between a liquid iron alloy and oxidizing slag. Based on previous studies of the mass-transfer coefficient of FeO in the slag, it was possible to separate the mass transfer coefficient of phosphorus in metal phase, km , from the overall mass-transfer coefficient k_{{o}} . Using this approach, km was investigated under a wide range of conditions and shown to be represented reasonably by the mechanism proposed. The mass-transfer model was tested against results from the literature over a wide range of conditions. The analysis showed that the FeO content in the slag, silicon in the metal and the experimental temperature have strong impact on, km , almost entirely because of their effect on decarburization behavior.
NASA Astrophysics Data System (ADS)
Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.
2018-02-01
The current paper seeks to demonstrate the general applicability of the authors' recently developed treatment of surface renewal during decarburization of Fe-C-S alloys and its effect on the mass transport of phosphorus in the metal phase. The proposed model employs a quantitative model of CO bubble nucleation in the metal to predict the rate of surface renewal, which can then in turn be used to predict the mass-transfer coefficient for phosphorus. A model of mixed transport control in the slag and metal phases was employed to investigate the dephosphorization kinetics between a liquid iron alloy and oxidizing slag. Based on previous studies of the mass-transfer coefficient of FeO in the slag, it was possible to separate the mass transfer coefficient of phosphorus in metal phase, km , from the overall mass-transfer coefficient k_{{o}} . Using this approach, km was investigated under a wide range of conditions and shown to be represented reasonably by the mechanism proposed. The mass-transfer model was tested against results from the literature over a wide range of conditions. The analysis showed that the FeO content in the slag, silicon in the metal and the experimental temperature have strong impact on, km , almost entirely because of their effect on decarburization behavior.
NASA Technical Reports Server (NTRS)
Rose, W. C.
1973-01-01
The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.
NASA Astrophysics Data System (ADS)
Yamamoto, Tatsumi; Kawasaki, Hiroyuki; Mori, Hidetoshi
2017-11-01
Loop type bubble columns have good performance of liquid circulation and mass transfer by airlift effect, where the liquid circulation time is an important measurable characteristic parameter. This parameter is affected by the column construction, the aspect ratio of the column, the cross-sectional area ratio of down comer to riser (R), and the superficial gas velocity in the riser (UGR). In this work, the mean gas holdup and the liquid circulation time (TC) have been measured in four types of loop airlift type bubble column: concentric tube internal loop airlift type, rectangular internal loop airlift type, external loop airlift type, external loop airlift with separator. Air and tap water were used as gas and liquid phase, respectively. The results have demonstrated that the mean gas holdup in riser increases in proportion to UGR, and that it in downcomer changes according to the geometric parameters of each bubble column. TC has been found to conform to an empirical equation which depends on UGR and the length of draft tube or division plate in the region of 0.33 < R < 1.
External tank processing from barge to pad
NASA Technical Reports Server (NTRS)
Carpenter, J. E.
1985-01-01
Delivery and launch readiness events for the External Tanks (ET) are discussed. The ET is off-loaded at the KSC Barge Turning Basin and towed to the Vertical Assembly Building (VAB), High Bay Transfer Aisle. It is erected vertically and placed in the ET Checkout Area of High Bay 2 or 4 for standalone checkout. At the completion of checkout the ET is transferred to storage or to the Integration Area of High Bay 1 or 3 for SRB and Orbiter Mate. A Systems Integration Test performed with the Orbiter and Solid Rocket Booster is described. Final checkout activities are also described.
CFD Application to Flow-Accelerated Corrosion in Feeder Bends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietralik, John M.; Smith, Bruce A.W.
2006-07-01
Feeder piping in CANDU{sup R} plants experiences a thinning degradation mechanism called Flow-Accelerated Corrosion (FAC). The piping is made of carbon steel and has high water flow speeds. Although the water chemistry is highly alkaline with room-temperature pH in a range of 10.0-10.5, the piping has FAC rates exceeding 0.1 mm/year in some locations, e.g., in bends. One of the most important parameters affecting the FAC rate is the mass transfer coefficient for convective mass transport of ferrous ions. The ions are created at the pipe wall as a result of corrosion, diffuse through the oxide layer, and are transportedmore » from the oxide-layer/water interface to the bulk water by mass transport. Consequently, the local flow characteristics contribute to the highly turbulent convective mass transfer. Plant data and laboratory experiments indicate that the mass transfer step dominates FAC under feeder conditions. In this study, the flow and mass transfer in a feeder bend under operating conditions were simulated using the Fluent{sup TM} computer code. Because the flow speed is very high, with the Reynolds numbers in a range of several millions, and because the geometry is complex, experiments in a 1:1 scale were conducted with the main objective to validate flow simulations. The experiments measured pressure at several key locations and visualized the flow. The flow and mass transfer models were validated using available friction-factor and mass transfer correlations and literature experiments on mass transfer in a bend. The validation showed that the turbulence model that best predicts the experiments is the realizable k-{epsilon} model. Other two-equation turbulence models, as well as one-equation models and Reynolds stress models were tried. The near-wall treatment used the non-equilibrium wall functions. The wall functions were modified for surface roughness when necessary. A comparison of the local mass transfer coefficient with measured FAC rate in plant specimens shows very good agreement. Visualization experiments indicate secondary flows in the bends. No boundary layer separation was observed in experiments or in simulations. (authors)« less
The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; themore » importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.« less
Du, Jian; Cao, Yuan; Liu, Guodong; Zhao, Jian; Li, Xuezhi; Qu, Yinbo
2017-04-01
Cellulose conversion decreases significantly with increasing solid concentrations during enzymatic hydrolysis of insoluble lignocellulosic materials. Here, mass transfer limitation was identified as a significant determining factor of this decrease by studying the hydrolysis of delignified corncob residue in shake flask, the most used reaction vessel in bench scale. Two mass transfer efficiency-related factors, mixing speed and flask filling, were shown to correlate closely with cellulose conversion at solid loadings higher than 15% DM. The role of substrate characteristics in mass transfer performance was also significant, which was revealed by the saccharification of two corn stover substrates with different pretreatment methods at the same solid loading. Several approaches including premix, fed-batch operation, and particularly the use of horizontal rotating reactor were shown to be valid in facilitating cellulose conversion via improving mass transfer efficiency at solid concentrations higher than 15% DM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Accreting Black Hole Binaries in Globular Clusters
NASA Astrophysics Data System (ADS)
Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.
2018-01-01
We explore the formation of mass-transferring binary systems containing black holes (BHs) within globular clusters (GC). We show that it is possible to form mass-transferring BH binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in GCs spanning a large range in present-day properties. All mass-transferring BH binaries found in our models at late times are dynamically created. The BHs in these systems experienced a median of ∼30 dynamical encounters within the cluster before and after acquiring the donor. Furthermore, we show that the presence of mass-transferring BH systems has little correlation with the total number of BHs within the cluster at any time. This is because the net rate of formation of BH–non-BH binaries in a cluster is largely independent of the total number of retained BHs. Our results suggest that the detection of a mass-transferring BH binary in a GC does not necessarily indicate that the host cluster contains a large BH population.
Influence of Wind Pressure on the Carbonation of Concrete
Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun
2015-01-01
Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth. PMID:28793462
Saponification reaction system: a detailed mass transfer coefficient determination.
Pečar, Darja; Goršek, Andreja
2015-01-01
The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.
Influence of Wind Pressure on the Carbonation of Concrete.
Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun
2015-07-24
Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.
J. A. Mardini; A. S. Lavine; V. K. Dhir
1996-01-01
Abstract--An experimental and analytical study of heat and mass transfer in wooden dowels during a simulated fire is presented in this paper. The goal of this study is to understand the processes of heat and mass transfer in wood during wildland fires. A mathematical model is developed to describe the processes of heating, drying and pyrolysis of wood until ignition...
Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.
Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre
2017-04-01
Problems related to hydrogen sulfide may be serious for both network stakeholders and the public in terms of health, sustainability of the sewer structure and urban comfort. H 2 S emission models are generally theoretical and simplified in terms of environmental conditions. Although air transport characteristics in sewers must play a role in the fate of hydrogen sulfide, only a limited number of studies have investigated this issue. The aim of this study was to better understand H 2 S liquid to gas transfer by highlighting the link between the mass transfer coefficient and the turbulence in the air flow and the water flow. For experimental safety reasons, O 2 was taken as a model compound. The oxygen mass transfer coefficients were obtained using a mass balance in plug flow. The mass transfer coefficient was not impacted by the range of the interface air-flow velocity values tested (0.55-2.28 m·s -1 ) or the water velocity values (0.06-0.55 m·s -1 ). Using the ratio between k L,O 2 to k L,H 2 S , the H 2 S mass transfer behavior in a gravity pipe in the same hydraulic conditions can be predicted.
Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka
2017-06-01
The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.
On the perihelion precession as a Machian effect
NASA Technical Reports Server (NTRS)
Eby, P. B.
1977-01-01
A Lagrangian is constructed which gives Newtonian gravity in the lowest-order approximation in an isotropic universe and also predicts the correct advance of the perihelion with the proper choice of a constant governing the ratio of inertial to gravitational mass. The situation considered is that of a test particle orbiting a central body with external mass at rest and distributed isotropically at large distances from the central body. In the theory developed, the perihelion advance is due to a small contribution to the test-particle inertial mass by the central attracting body rather than to a failure of the inverse-square law of attraction. Some interesting Machian features of this theory are that: (1) the local value of the gravitational constant is determined by the mass distribution of the external matter; (2) the orbits are fixed, and the perihelion advances unambiguously with respect to the external-mass distribution; (3) there are no vestiges of absolute space; (4) the perihelion precession arises from the inertial interaction of the test particle with the central mass; (5) the local rest mass is really determined by the mass distribution of the rest of the universe; and (6) a limited form of the equivalence principle is inherent in one of the equations.
Externalities in a life cycle model with endogenous survival☆
Kuhn, Michael; Wrzaczek, Stefan; Prskawetz, Alexia; Feichtinger, Gustav
2011-01-01
We study socially vs individually optimal life cycle allocations of consumption and health, when individual health care curbs own mortality but also has a spillover effect on other persons’ survival. Such spillovers arise, for instance, when health care activity at aggregate level triggers improvements in treatment through learning-by-doing (positive externality) or a deterioration in the quality of care through congestion (negative externality). We combine an age-structured optimal control model at population level with a conventional life cycle model to derive the social and private value of life. We then examine how individual incentives deviate from social incentives and how they can be aligned by way of a transfer scheme. The age-patterns of socially and individually optimal health expenditures and the transfer rate are derived. Numerical analysis illustrates the working of our model. PMID:28298810
NASA Technical Reports Server (NTRS)
Walstad, D. G.
1976-01-01
Ascent heating data were obtained at conditions simulating real gas effects at hypersonic Mach numbers. The configurations tested were Orbiter alone, external tank alone, and mated Orbiter and external tank. A boundary layer trip investigation was conducted for all configurations. The test was conducted at Mach 6 and Reynolds number of one half million per foot for 0 deg and -5 deg angle-of-attack. Selected thermocouples were chosen from the Orbiter and external tank to be used for obtaining heat transfer measurements. A maximum of 42 thermocouples could be measured by the facility data acquisition at one time and no attempt was made to record the excess thermocouples located on the model. Photographs of the test configurations are shown.
Method for forming synthesis gas using a plasma-catalyzed fuel reformer
Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele
2015-04-28
A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.
Modified coaxial wire method for measurement of transfer impedance of beam position monitors
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.
2018-05-01
The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.
Heat and mass transfer correlations for liquid droplet of a pure fuel in combustion
NASA Astrophysics Data System (ADS)
Dgheim, J.; Chesneau, X.; Pietri, L.; Zeghmati, B.
The authors report a numerical analysis of heat and mass transfers, which govern the combustion of a fuel droplet assimilated to a sphere. The results are presented in the form of temperature, mass-fraction, Nusselt and Sherwood number profiles. The following heat and mass transfers correlations are developed: ; , which account for the effects of natural convection and the physical properties of the gas phase. These correlations agree with the results of detailed numerical analysis as well as the experimental data involving a single droplet.
Mass Transfer Cooling Near The Stagnation Point
NASA Technical Reports Server (NTRS)
Roberts, Leonard
1959-01-01
A simplified analysis is made of mass transfer cooling, that is, injection of a foreign gas, near the stagnation point for two-dimensional and axisymmetric bodies. The reduction in heat transfer is given in terms of the properties of the coolant gas and it is shown that the heat transfer may be reduced considerably by the introduction of a gas having appropriate thermal and diffusive properties. The mechanism by which heat transfer is reduced is discussed.
Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.
Ledoux, Erwan; Brunel, Nicolas
2011-01-01
We investigate the dynamics of recurrent networks of excitatory (E) and inhibitory (I) neurons in the presence of time-dependent inputs. The dynamics is characterized by the network dynamical transfer function, i.e., how the population firing rate is modulated by sinusoidal inputs at arbitrary frequencies. Two types of networks are studied and compared: (i) a Wilson-Cowan type firing rate model; and (ii) a fully connected network of leaky integrate-and-fire (LIF) neurons, in a strong noise regime. We first characterize the region of stability of the "asynchronous state" (a state in which population activity is constant in time when external inputs are constant) in the space of parameters characterizing the connectivity of the network. We then systematically characterize the qualitative behaviors of the dynamical transfer function, as a function of the connectivity. We find that the transfer function can be either low-pass, or with a single or double resonance, depending on the connection strengths and synaptic time constants. Resonances appear when the system is close to Hopf bifurcations, that can be induced by two separate mechanisms: the I-I connectivity and the E-I connectivity. Double resonances can appear when excitatory delays are larger than inhibitory delays, due to the fact that two distinct instabilities exist with a finite gap between the corresponding frequencies. In networks of LIF neurons, changes in external inputs and external noise are shown to be able to change qualitatively the network transfer function. Firing rate models are shown to exhibit the same diversity of transfer functions as the LIF network, provided delays are present. They can also exhibit input-dependent changes of the transfer function, provided a suitable static non-linearity is incorporated.
Numerical study of heat and mass transfer in inertial suspensions in pipes.
NASA Astrophysics Data System (ADS)
Niazi Ardekani, Mehdi; Brandt, Luca
2017-11-01
Controlling heat and mass transfer in particulate suspensions has many important applications such as packed and fluidized bed reactors and industrial dryers. In this work, we study the heat and mass transfer within a suspension of spherical particles in a laminar pipe flow, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve temperature equation both inside and outside of the particles. Tracers that follow the fluid streamlines are considered to investigate mass transfer within the suspension. Different particle volume fractions 5, 15, 30 and 40% are simulated for different pipe to particle diameter ratios: 5, 10 and 15. The preliminary results quantify the heat and mass transfer enhancement with respect to a single-phase laminar pipe flow. We show in particular that the heat transfer from the wall saturates for volume fractions more than 30%, however at high particle Reynolds numbers (small diameter ratios) the heat transfer continues to increase. Regarding the dispersion of tracer particles we show that the diffusivity of tracers increases with volume fraction in radial and stream-wise directions however it goes through a peak at 15% in the azimuthal direction. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).
Heat and Mass Transfer of Ammonia Gas Absorption into Falling Liquid Film on a Horizontal Tube
NASA Astrophysics Data System (ADS)
Inoue, Norihiro; Yabuuchi, Hironori; Goto, Masao; Koyama, Shigeru
Heat and mass transfer coefficients during ammonia gas absorption into a falling liquid film formed by distilled water on a horizontal tube were obtained experimentally. The test absorber consists of 200 mm i.d., 600 mm long stainless steel shell, a 1 7.3 mm o.d., 14.9 mm i.d. stainless steel test tube with 600 mm working length mounted along the axis of shell, and a 12.7 mm o.d. pipe manifold of supplying the absorbent. In this paper, it was clear that heat and mass transfer coefficient could be enhanced by increasing the flow rate of absorbent and temperature difference between inlet absorbent and ammonia gas, also heat driven by the temperature difference have an effect on heat transfer of the fa1ling liquid film and mass transfer of vapor side. And the new correlation of heat transfer in dimensionless form was proposed by the temperature difference which was considered heat driven of vapor and liquid film side using a interface temperature of vapor and liquid phase. The new correlations of mass transfer on a interface of vapor and liquid phase in dimensionless form were proposed by using effect factors could be suppose from absorption phenomena.
Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube
NASA Astrophysics Data System (ADS)
Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il
2017-05-01
In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.
NASA Astrophysics Data System (ADS)
Abd Elazem, Nader Y.; Ebaid, Abdelhalim
2017-12-01
In this paper, the effect of partial slip boundary condition on the heat and mass transfer of the Cu-water and Ag-water nanofluids over a stretching sheet in the presence of magnetic field and radiation. Such partial slip boundary condition has attracted much attention due to its wide applications in industry and chemical engineering. The flow is basically governing by a system of partial differential equations which are reduced to a system of ordinary differential equations. This system has been exactly solved, where exact analytical expression has been obtained for the fluid velocity in terms of exponential function, while the temperature distribution, and the nanoparticles concentration are expressed in terms of the generalized incomplete gamma function. In addition, explicit formulae are also derived from the rates of heat transfer and mass transfer. The effects of the permanent parameters on the skin friction, heat transfer coefficient, rate of mass transfer, velocity, the temperature profile, and concentration profile have been discussed through tables and graphs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nalezinski, S.; Ruehm, W.; Wirth, E.
1996-05-01
Transfer factors from feed to meat (5{sub {integral}}), taken from literature for monogastric animals and ruminants have been correlated to their corresponding animal body mass (m{sub b}). Taking all data into account, a close relationship between both transfer factor and body mass becomes evident, yielding a regression function of (T{sub {integral}} = 8.0 x m{sub b}{sup {minus}0.91}) (r = -0.97). For monogastric animals (including poultry), the corresponding relationships are T{sub {integral}} = 1.9 x m{sub b}{sup {minus}0.72} (r = 0.78). The equations offer the opportunity to estimate the transfer factor for individual animals more precisely taking individual body masses intomore » account. They are of interest for animals, on which no or only poor data concerning radiocesium transfer factors are available. The determination of radiocesium transfer factors are reduced to a simple weighing process. 17 refs., 1 fig., 2 tabs.« less
KSC Tech Transfer News, Volume 5, No. 1
NASA Technical Reports Server (NTRS)
Buckingham, Bruce (Editor)
2012-01-01
In October 2011, the White House released a presidential memorandum titled "Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses." It emphasized the importance of technology transfer as a driver of successful innovation to fuel economic growth, create jobs, and make U.S. industries more competitive in a global market. In response to this memorandum, NASA developed a 5-year plan for accelerating its own technology transfer activities. This plan outlines key objectives for enhancing NASA's ability to increase the rate, volume, and quality of technology transfers to industry, academia, and other Government agencies. By doing so, we are increasing the economic impact and public benefit of Federal technology investments. In addition, NASA established technology transfer as a key element of one of its Agency High Priority Performance Goals: "Enable bold new missions and make new technologies available to Government agencies and U.S. industry."What does this mean to you? In the broadest sense, NASA defines technology transfer as the utilization of NASA's technological assets- technologies, innovations, unique facilities and equipment, and technical expertise- by public and private sectors to benefit the Nation. So, if your job involves developing new technologies, writing new software, creating innovative ways to do business, performing research, or developing new technical capabilities, you could be contributing to Kennedy Space Center's (KSC) technology transfer activities by creating the technological assets that may one day be used by external partners. Furthermore, anytime you provide technical expertise to external partners, you're participating in technology transfer. The single most important step you can take to support the technology transfer process is to report new technologies and innovations ro the Technology Transfer Office. This is the critical first step in fueling the technology transfer pipeline. This is also a requirement for all Federal employees (see NPD 2091.1 B) and most NASA contractors. Detailed information on when, where, and how ro report new technology is provided on the following page. In addition, it's important that all detailed-oriented discussions about technology between NASA and external partners are documented or that they occur under formal agreements such as Space Act Agreements and Nondisclosure Agreements. Our office can assist you in putting these agreements into place, protecting NASA's interests, and providing the means to accurately measure the Agency's technology transfer activities. Technology transfer is everyone's responsibility. We need your help to ensure that NASA remains the leader in Federal technology transfer, and that the great work done at KSC provides the maximum economic and societal benefit to the Nation.
Cohen, Wayne R; Hayes-Gill, Barrie
2014-06-01
To evaluate the performance of external electronic fetal heart rate and uterine contraction monitoring according to maternal body mass index. Secondary analysis of prospective equivalence study. Three US urban teaching hospitals. Seventy-four parturients with a normal term pregnancy. The parent study assessed performance of two methods of external fetal heart rate monitoring (abdominal fetal electrocardiogram and Doppler ultrasound) and of uterine contraction monitoring (electrohystero-graphy and tocodynamometry) compared with internal monitoring with fetal scalp electrode and intrauterine pressure transducer. Reliability of external techniques was assessed by the success rate and positive percent agreement with internal methods. Bland-Altman analysis determined accuracy. We analyzed data from that study according to maternal body mass index. We assessed the relationship between body mass index and monitor performance with linear regression, using body mass index as the independent variable and measures of reliability and accuracy as dependent variables. There was no significant association between maternal body mass index and any measure of reliability or accuracy for abdominal fetal electrocardiogram. By contrast, the overall positive percent agreement for Doppler ultrasound declined (p = 0.042), and the root mean square error from the Bland-Altman analysis increased in the first stage (p = 0.029) with increasing body mass index. Uterine contraction recordings from electrohysterography and tocodynamometry showed no significant deterioration related to maternal body mass index. Accuracy and reliability of fetal heart rate monitoring using abdominal fetal electrocardiogram was unaffected by maternal obesity, whereas performance of ultrasound degraded directly with maternal size. Both electrohysterography and tocodynamometry were unperturbed by obesity. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.
O'Grady, Kathleen M; Power, Hollie A; Olson, Jaret L; Morhart, Michael J; Harrop, A Robertson; Watt, M Joe; Chan, K Ming
2017-10-01
Upper trunk obstetric brachial plexus injury can cause profound shoulder and elbow dysfunction. Although neuroma excision with interpositional sural nerve grafting is the current gold standard, distal nerve transfers have a number of potential advantages. The goal of this study was to compare the clinical outcomes and health care costs between nerve grafting and distal nerve transfers in children with upper trunk obstetric brachial plexus injury. In this prospective cohort study, children who underwent triple nerve transfers were followed with the Active Movement Scale for 2 years. Their outcomes were compared to those of children who underwent nerve graft reconstruction. To assess health care use, a cost analysis was also performed. Twelve patients who underwent nerve grafting were compared to 14 patients who underwent triple nerve transfers. Both groups had similar baseline characteristics and showed improved shoulder and elbow function following surgery. However, the nerve transfer group displayed significantly greater improvement in shoulder external rotation and forearm supination 2 years after surgery (p < 0.05). The operative time and length of hospital stay were significantly lower (p < 0.05), and the overall cost was approximately 50 percent less in the nerve transfer group. Triple nerve transfer for upper trunk obstetric brachial plexus injury is a feasible option, with better functional shoulder external rotation and forearm supination, faster recovery, and lower cost compared with traditional nerve graft reconstruction. Therapeutic, II.
NASA Astrophysics Data System (ADS)
EL-RAHEB, M.; WAGNER, P.
2002-02-01
Transmission of sound across 2-D truss-like periodic double panels separated by an air gap and in contact with an acoustic fluid on the external faces is analyzed. Each panel is made of repeated cells. Combining the transfer matrices of the unit cell forms a set of equations for the overall elastic frequency response. The acoustic pressure in the fluids is expressed using a source boundary element method. Adding rigid reflecting end caps confines the air in the gap between panels which influences sound transmission. Measured values of transmission loss differ from the 2-D model by the wide low-frequency dip of the mass-spring-mass or “msm” resonance also termed the “air gap resonance”. In this case, the panels act as rigid masses and the air gap acts as an adiabatic air spring. Results from the idealized 3-D and 2-D models, incorporating rigid cavities and elastic plates, reveal that the “msm” dip is absent in 2-D models radiating into a semi-infinite medium. The dip strengthens as aspect ratio approaches unity. Even when the dip disappears in 2-D, TL rises more steeply for frequencies above the “msm” frequency.
NASA Astrophysics Data System (ADS)
Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei
2014-04-01
A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.
Unsteady Heat Transfer Behavior of Reinforced Concrete Wall of Cold Storage
NASA Astrophysics Data System (ADS)
Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki
The authors had already clarified that the heat transfer behaviors between internal and external insulated reinforced concrete wall of cold storage are different each others when inside and outside temperature of wall is flactuating. From that conclusion, we must consider the application method of wall insulation of cold storages in actual design. The theme of the paper is to get the analyzing method and unsteady heat transfer characteristics of concrete walls of cold storage during daily variation of outside temperature of walls, and to give the basis for efficient design and cost optimization of insulate wall of cold storage. The difference of unsteady heat transfer characteristics between internal and external insulate wall, when outside temperature of the wall follewed daily varation, was clarified in experiment and in situ measurement of practical cold storage. The analyzing method with two dimentional unsteady FEM was introduced. Using this method, it is possible to obtain the time variation of heat flux, which is important basic factor for practical design of cold storage, through the wall.
Lacny, Sarah; Zarrabi, Mahmood; Martin-Misener, Ruth; Donald, Faith; Sketris, Ingrid; Murphy, Andrea L; DiCenso, Alba; Marshall, Deborah A
2016-09-01
To examine the cost-effectiveness of a nurse practitioner-family physician model of care compared with family physician-only care in a Canadian nursing home. As demand for long-term care increases, alternative care models including nurse practitioners are being explored. Cost-effectiveness analysis using a controlled before-after design. The study included an 18-month 'before' period (2005-2006) and a 21-month 'after' time period (2007-2009). Data were abstracted from charts from 2008-2010. We calculated incremental cost-effectiveness ratios comparing the intervention (nurse practitioner-family physician model; n = 45) to internal (n = 65), external (n = 70) and combined internal/external family physician-only control groups, measured as the change in healthcare costs divided by the change in emergency department transfers/person-month. We assessed joint uncertainty around costs and effects using non-parametric bootstrapping and cost-effectiveness acceptability curves. Point estimates of the incremental cost-effectiveness ratio demonstrated the nurse practitioner-family physician model dominated the internal and combined control groups (i.e. was associated with smaller increases in costs and emergency department transfers/person-month). Compared with the external control, the intervention resulted in a smaller increase in costs and larger increase in emergency department transfers. Using a willingness-to-pay threshold of $1000 CAD/emergency department transfer, the probability the intervention was cost-effective compared with the internal, external and combined control groups was 26%, 21% and 25%. Due to uncertainty around the distribution of costs and effects, we were unable to make a definitive conclusion regarding the cost-effectiveness of the nurse practitioner-family physician model; however, these results suggest benefits that could be confirmed in a larger study. © 2016 John Wiley & Sons Ltd.
Qu, Xingda; Nussbaum, Maury A
2009-01-01
The purpose of this study was to identify the effects of external loads on balance control during upright stance, and to examine the ability of a new balance control model to predict these effects. External loads were applied to 12 young, healthy participants, and effects on balance control were characterized by center-of-pressure (COP) based measures. Several loading conditions were studied, involving combinations of load mass (10% and 20% of individual body mass) and height (at or 15% of stature above the whole-body COM). A balance control model based on an optimal control strategy was used to predict COP time series. It was assumed that a given individual would adopt the same neural optimal control mechanisms, identified in a no-load condition, under diverse external loading conditions. With the application of external loads, COP mean velocity in the anterior-posterior direction and RMS distance in the medial-lateral direction increased 8.1% and 10.4%, respectively. Predicted COP mean velocity and RMS distance in the anterior-posterior direction also increased with external loading, by 11.1% and 2.9%, respectively. Both experimental COP data and model-based predictions provided the same general conclusion, that application of larger external loads and loads more superior to the whole body center of mass lead to less effective postural control and perhaps a greater risk of loss of balance or falls. Thus, it can be concluded that the assumption about consistency in control mechanisms was partially supported, and it is the mechanical changes induced by external loads that primarily affect balance control.
Modelling of nitrogen oxides distribution in the hearth of gas-fired industrial furnace
NASA Astrophysics Data System (ADS)
Zhubrin, S.; Glazov, V.; Guzhov, S.
2017-11-01
A model is proposed for calculating the formation and transportation of nitrogen oxides in the combustion chamber of an industrial furnace heated by gaseous fuels burning. The calculations use a three-dimensional stationary description of turbulent flow and mixing of fuel and oxidizer flows in the presence of heat transfer, mass transfer, and momentum between them transfer. Simulation of the spatial pattern of nitrogen oxides formation in the working space of the furnace is performed in the programming and computing suite SCAN. It is shown that the temperature non-uniformity over the hearth surface is not too pronounced due to the organization of the inclined flow inlet in the direction of the hearth, which is a desirable feature of the furnace operation. The highest concentration of combustion products is observed in the zone of maximum temperatures. In addition, the existence of two zones of the highest generation of oxides has been determined. The first zone is located approximately in the center of the hearth, and the second is located on the far external surface of the furnace. The possibility of using the developed model in the SCAN complex for carrying out parametric studies and engineering calculations, as well as for modification in the direction of adjusting and adapting the model to the regime-constructive features of specific energy technological devices, is noted.
Mass transfer cycles in cataclysmic variables
NASA Technical Reports Server (NTRS)
King, A. R.; Frank, J.; Kolb, U.; Ritter, H.
1995-01-01
It is well known that in cataclysmic variables the mass transfer rate must fluctuate about the evolutionary mean on timescales too long to be directly observable. We show that limit-cycle behavior can occur if the radius change of the secondary star is sensitive to the instantaneous mass transfer rate. The only reasonable way in which such a dependence can arise is through irradiation of this star by the accreting component. The system oscillates between high states, in which irradiation causes slow expansion of the secondary and drives an elevated transfer rate, and low states, in which this star contracts.
Heat transfer in a tank with a cryogenic fluid under conditions of external heating
NASA Astrophysics Data System (ADS)
Notkin, V. L.
Heat transfer in the gas layer of a horizontal cylindrical tank with a fluctuating level of boiling liquid nitrogen is investigated experimentally. Criterial equations for heat transfer in the gas cavity of the tank are obtained. A procedure is proposed for calculating heat fluxes, temperature fields, and cryogenic fluid evaporation during the filling and draining of the tank.
Tiwari, Akhilesh; Kondjoyan, Alain; Fontaine, Jean-Pierre
2012-07-01
The phenomenon of heat and mass transfer by condensation of water vapour from humid air involves several key concepts in aerobic bioreactors. The high performance of bioreactors results from optimised interactions between biological processes and multiphase heat and mass transfer. Indeed in various processes such as submerged fermenters and solid-state fermenters, gas/liquid transfer need to be well controlled, as it is involved at the microorganism interface and for the control of the global process. For the theoretical prediction of such phenomena, mathematical models require heat and mass transfer coefficients. To date, very few data have been validated concerning mass transfer coefficients from humid air inflows relevant to those bioprocesses. Our study focussed on the condensation process of water vapour and developed an experimental set-up and protocol to study the velocity profiles and the mass flux on a small size horizontal flat plate in controlled environmental conditions. A closed circuit wind tunnel facility was used to control the temperature, hygrometry and hydrodynamics of the flow. The temperature of the active surface was controlled and kept isothermal below the dew point to induce condensation, by the use of thermoelectricity. The experiments were performed at ambient temperature for a relative humidity between 35-65% and for a velocity of 1.0 ms⁻¹. The obtained data are analysed and compared to available theoretical calculations on condensation mass flux.
Efficient vibration mode analysis of aircraft with multiple external store configurations
NASA Technical Reports Server (NTRS)
Karpel, M.
1988-01-01
A coupling method for efficient vibration mode analysis of aircraft with multiple external store configurations is presented. A set of low-frequency vibration modes, including rigid-body modes, represent the aircraft. Each external store is represented by its vibration modes with clamped boundary conditions, and by its rigid-body inertial properties. The aircraft modes are obtained from a finite-element model loaded by dummy rigid external stores with fictitious masses. The coupling procedure unloads the dummy stores and loads the actual stores instead. The analytical development is presented, the effects of the fictitious mass magnitudes are discussed, and a numerical example is given for a combat aircraft with external wing stores. Comparison with vibration modes obtained by a direct (full-size) eigensolution shows very accurate coupling results. Once the aircraft and stores data bases are constructed, the computer time for analyzing any external store configuration is two to three orders of magnitude less than that of a direct solution.
Seebacher, F
2000-03-21
Thermally-induced changes in heart rate and blood flow in reptiles are believed to be of selective advantage by allowing animal to exert some control over rates of heating and cooling. This notion has become one of the principal paradigms in reptilian thermal physiology. However, the functional significance of changes in heart rate is unclear, because the effect of heart rate and blood flow on total animal heat transfer is not known. I used heat transfer theory to determine the importance of heat transfer by blood flow relative to conduction. I validated theoretical predictions by comparing them with field data from two species of lizard, bearded dragons (Pogona barbata) and lace monitors (Varanus varius). Heart rates measured in free-ranging lizards in the field were significantly higher during heating than during cooling, and heart rates decreased with body mass. Convective heat transfer by blood flow increased with heart rate. Rates of heat transfer by both blood flow and conduction decreased with mass, but the mass scaling exponents were different. Hence, rate of conductive heat transfer decreased more rapidly with increasing mass than did heat transfer by blood flow, so that the relative importance of blood flow in total animal heat transfer increased with mass. The functional significance of changes in heart rate and, hence, rates of heat transfer, in response to heating and cooling in lizards was quantified. For example, by increasing heart rate when entering a heating environment in the morning, and decreasing heart rate when the environment cools in the evening a Pogona can spend up to 44 min longer per day with body temperature within its preferred range. It was concluded that changes in heart rate in response to heating and cooling confer a selective advantage at least on reptiles of mass similar to that of the study animals (0. 21-5.6 kg). Copyright 2000 Academic Press.
Sakate, Daisuke; Iwazaki, Yoshiki; Kon, Yoshiaki; Yokoyama, Takaomi; Ohata, Masaki
2018-01-01
The mass transfer of additive elements during the sintering of barium titanate (BaTiO 3 ) ceramic was examined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the present study. An analytical sample consisting of two pellets of BaTiO 3 with different concentrations of additive elements of manganese (Mn) and holmium (Ho) as well as silicon (Si) as a sintering reagent was prepared and measured by LA-ICP-MS with small laser irradiated diameter of 10 μm to evaluate the distributions and concentrations of additive elements in order to examine their mass transfers. As results, enrichments of Mn and Si as an additive element and a sintering reagent, respectively, were observed on the adhesive surface between two BaTiO 3 pellets, even though Ho did not show a similar phenomenon. The mass transfers of additive elements of Mn and Ho were also examined, and Mn seemed to show a larger mass transfer than that of Ho during the sintering process for BaTiO 3 ceramics. The results obtained in this study shows the effectives of LA-ICP-MS for the future improvement of MLCCs.
A microscale turbine driven by diffusive mass flux.
Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke
2015-10-07
An external diffusive mass flux is shown to be able to generate a mechanical torque on a microscale object based on anisotropic diffusiophoresis. In light of this finding, we propose a theoretical prototype micro-turbine driven purely by diffusive mass flux, which is in strong contrast to conventional turbines driven by convective mass flows. The rotational velocity of the proposed turbine is determined by the external concentration gradient, the geometry and the diffusiophoretic properties of the turbine. This scenario is validated by performing computer simulations. Our finding thus provides a new type of chemo-mechanical response which could be used to exploit existing chemical energies at small scales.
Habitat and logistic support requirements for the initiation of a space manufacturing enterprise
NASA Technical Reports Server (NTRS)
Vajk, J. P.; Engel, J. H.; Shettler, J. A.
1979-01-01
A detailed scenario for the initiation of a space manufacturing enterprise using lunar materials to construct solar power satellites (SPS) was developed, with particular attention to habitat design and logistic support requirements. If SPS's can be constructed exclusively from lunar materials, the entire enterprise can be initiated in a 7 year period of launch activity (beginning as early as 1985) using the Space Shuttle and a low-cost, Shuttle-derived heavy lift vehicle. If additional chemical feedstocks must be imported from earth in significant quantities, it may be necessary to bring the next-generation launch vehicle (single-stage-to-orbit) into operation by 1991. The scenario presented features use of the mass-driver reaction engine for orbit-to-orbit transfer of cargos and makes extensive use of the expendable Shuttle external propellant tanks.
Simulation of Patterned Glass Film Formation in the Evaporating Colloidal Liquid under IR Heating
NASA Astrophysics Data System (ADS)
Kolegov, K. S.
2018-02-01
The paper theoretically studies the method of evaporative lithography in combination with external infrared heating. This method makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask. The heated particles are sintered easier, so there are no cracks in the obtained structure, unlike the structure obtained employing the standard method of evaporative lithography. The paper puts forward a modification of the mathematical model which allows to describe not only heat and mass transfer at the initial stage of the process, but also the phase transition of colloidal solution into glass. Aqueous latex is taken as an example. The resulting final form of solid film is in good agreement with the experimental data of other authors.
Modeling of the adsorption breakthrough behaviors of Pb2+ in a fixed bed of ETS-10 adsorbent.
Lv, Lu; Zhang, Yan; Wang, Kean; Ray, Ajay K; Zhao, X S
2008-09-01
On the basis of experimental breakthrough curves of lead ion adsorption on ETS-10 particles in a fixed-bed column, we simulated the breakthrough curves using the two-phase homogeneous diffusion model (TPHDM). Three important model parameters, namely the external mass-transfer coefficient (k(f)), effective intercrystal diffusivity (D(e)), and axial dispersion coefficient (D(L)), were optimally found to be 8.33x10(-5) m/s, 2.57x10(-10) m(2)/s, and 1.93x10(-10) m(2)/s, respectively. A good agreement was observed between the numerical simulation and the experimental results. Sensitivity analysis revealed that the value of D(e) dictates the model performance while the magnitude of k(f) primarily affects the initial breakthrough point of the breakthrough curves.
NASA Astrophysics Data System (ADS)
Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-04-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.
Externally Induced Evaporation of Young Stellar Disks: The Case for HST 10 in Orion's Trapezium.
NASA Astrophysics Data System (ADS)
Johnstone, D.; Hollenbach, D.; Storzer, H.; Bally, J.; Sutherland, R.
1996-12-01
The Trapezium region in Orion is composed of a few high-mass stars, responsible for the ionization of the surrounding gas, and a plethora of low-mass stars with disks. Observations at infrared, optical, and radio wavelengths have led to the discovery of extended ionized envelopes around many of the young low-mass stars requiring evaporation rates dot M ~ 10(-7) Modot/yr. In this poster we explain these observations through a model for the evaporation of disks around young low-mass stars by an external source of high energy photons. In particular, the externally produced ultraviolet continuum longward of the Lyman limit is used to heat the disk surface and produce a warm neutral flow. The model results in an offset ionization front, where the neutral flow encounters Lyman continuum radiation, and a mass-loss rate which is fixed due to the self-regulating nature of FUV heating. Applying this model to the Trapezium region evaporating objects, particularly HST 10, produces a satisfactory solution to both the mass-loss rate and the size of the ionized envelopes. The resulting short destruction times for these disks constrain the gestation period for planet embryos around stars in dense clusters.
NASA Astrophysics Data System (ADS)
Brusseau, Mark L.; Guo, Zhilin
2018-01-01
It is evident based on historical data that groundwater contaminant plumes persist at many sites, requiring costly long-term management. High-resolution site-characterization methods are needed to support accurate risk assessments and to select, design, and operate effective remediation operations. Most subsurface characterization methods are generally limited in their ability to provide unambiguous, real-time delineation of specific processes affecting mass-transfer, transformation, and mass removal, and accurate estimation of associated rates. An integrated contaminant elution and tracer test toolkit, comprising a set of local-scale groundwater extraction-and injection tests, was developed to ameliorate the primary limitations associated with standard characterization methods. The test employs extended groundwater extraction to stress the system and induce hydraulic and concentration gradients. Clean water can be injected, which removes the resident aqueous contaminant mass present in the higher-permeability zones and isolates the test zone from the surrounding plume. This ensures that the concentrations and fluxes measured within the isolated area are directly and predominantly influenced by the local mass-transfer and transformation processes controlling mass removal. A suite of standard and novel tracers can be used to delineate specific mass-transfer and attenuation processes that are active at a given site, and to quantify the associated mass-transfer and transformation rates. The conceptual basis for the test is first presented, followed by an illustrative application based on simulations produced with a 3-D mathematical model and a brief case study application.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence; Smith, Justin
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow ormore » simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by« less
NASA Astrophysics Data System (ADS)
Finster, Felix; Murro, Simone; Röken, Christian
2016-07-01
We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.
Effects of Mass Media and Cultural Drift in a Model for Social Influence
NASA Astrophysics Data System (ADS)
Mazzitello, Karina I.; Candia, Julián; Dossetti, Víctor
In the context of an extension of Axelrod's model for social influence, we study the interplay and competition between the cultural drift, represented as random perturbations, and mass media, introduced by means of an external homogeneous field. Unlike previous studies [J. C. González-Avella et al., Phys. Rev. E 72, 065102(R) (2005)], the mass media coupling proposed here is capable of affecting the cultural traits of any individual in the society, including those who do not share any features with the external message. A noise-driven transition is found: for large noise rates, both the ordered (culturally polarized) phase and the disordered (culturally fragmented) phase are observed, while, for lower noise rates, the ordered phase prevails. In the former case, the external field is found to induce cultural ordering, a behavior opposite to that reported in previous studies using a different prescription for the mass media interaction. We compare the predictions of this model to statistical data measuring the impact of a mass media vasectomy promotion campaign in Brazil.
V3885 Sagittarius: A Comparison With a Range of Standard Model Accretion Disks
NASA Technical Reports Server (NTRS)
Linnell, Albert P.; Godon, Patrick; Hubeny, Ivan; Sion, Edward M; Szkody, Paula; Barrett, Paul E.
2009-01-01
A chi-squared analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7M(solar mass), and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg, is a literature consensus, and is subsequently supported by chi-squared analysis. The mass transfer rate is the remaining parameter to set the accretion disk T(sub eff) profile, and the Hipparcos parallax constrains that parameter to mas transfer = (5.0 +/- 2.0) x 10(exp -9) M(solar mass)/yr by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57,000 +/- 5000 K WD. The model thus provides realistic constraints on mass transfer and T(sub eff) for a large mass transfer system above the period gap.
NASA Astrophysics Data System (ADS)
Weiner, Andre; Bothe, Dieter
2017-10-01
This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.
IMPLICATIONS FOR THE FORMATION OF BLUE STRAGGLER STARS FROM HST ULTRAVIOLET OBSERVATIONS OF NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnell, Natalie M.; Mathieu, Robert D.; Geller, Aaron M.
We present results of a Hubble Space Telescope (HST) far-ultraviolet (FUV) survey searching for white dwarf (WD) companions to blue straggler stars (BSSs) in open cluster NGC 188. The majority of NGC 188 BSSs (15 of 21) are single-lined binaries with properties suggestive of mass-transfer formation via Roche lobe overflow, specifically through an asymptotic giant branch star transferring mass to a main sequence secondary, yielding a BSS binary with a WD companion. In NGC 188, a BSS formed by this mechanism within the past 400 Myr will have a WD companion that is hot and luminous enough to be directlymore » detected as a FUV photometric excess with HST. Comparing expected BSS FUV emission to observed photometry reveals four BSSs with WD companions above 12,000 K (younger than 250 Myr) and three WD companions with temperatures between 11,000 and 12,000 K. These BSS+WD binaries all formed through recent mass transfer. The location of the young BSSs in an optical color–magnitude diagram (CMD) indicates that distance from the zero-age main sequence does not necessarily correlate with BSS age. There is no clear CMD separation between mass transfer-formed BSSs and those likely formed through other mechanisms, such as collisions. The seven detected WD companions place a lower limit on the mass-transfer formation frequency of 33%. We consider other possible formation mechanisms by comparing properties of the BSS population to theoretical predictions. We conclude that 14 BSS binaries likely formed from mass transfer, resulting in an inferred mass-transfer formation frequency of approximately 67%.« less
VOLATILIZATION OF ALKYLBENZENES FROM WATER.
Rathbun, R.E.; Tai, D.Y.
1985-01-01
Volatilization is a physical process of importance in determining the fate of many organic compounds in streams and rivers. This process is frequently described by the conceptual-two-film model. The model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the water and air films are related to an overall mass-transfer coefficient for volatilization through the Henry's law constant.
NASA Astrophysics Data System (ADS)
Câmara, L. D. T.
2015-09-01
The solvent-gradient simulated moving bed process (SG-SMB) is the new tendency in the performance improvement if compared to the traditional isocratic solvent conditions. In such SG-SMB separation process the modulation of the solvent strength leads to significant increase in the purities and productivity followed by reduction in the solvent consumption. A stepwise modelling approach was utilized in the representation of the interconnected chromatographic columns of the system combined with lumped mass transfer models between the solid and liquid phase. The influence of the solvent modifier was considered applying the Abel model which takes into account the effect of modifier volume fraction over the partition coefficient. The modelling and simulations were carried out and compared to the experimental SG-SMB separation of the amino acids phenylalanine and tryptophan. A lumped mass transfer kinetic model was applied for both the modifier (ethanol) as well as the solutes. The simulation results showed that such simple and global mass transfer models are enough to represent all the mass transfer effect between the solid adsorbent and the liquid phase. The separation performance can be improved reducing the interaction or the mass transfer kinetic effect between the solid adsorbent phase and the modifier. The simulations showed great agreement fitting the experimental data of the amino acids concentrations both at the extract as well as at the raffinate.
Pricing landfill externalities: emissions and disamenity costs in Cape Town, South Africa.
Nahman, Anton
2011-01-01
The external (environmental and social) costs of landfilling (e.g. emissions to air, soil and water; and 'disamenities' such as odours and pests) are difficult to quantify in monetary terms, and are therefore not generally reflected in waste disposal charges or taken into account in decision making regarding waste management options. This results in a bias against alternatives such as recycling, which may be more expensive than landfilling from a purely financial perspective, but preferable from an environmental and social perspective. There is therefore a need to quantify external costs in monetary terms, so that different disposal options can be compared on the basis of their overall costs to society (financial plus external costs). This study attempts to estimate the external costs of landfilling in the City of Cape Town for different scenarios, using the benefits transfer method (for emissions) and the hedonic pricing method (for disamenities). Both methods (in particular the process of transferring and adjusting estimates from one study site to another) are described in detail, allowing the procedures to be replicated elsewhere. The results show that external costs are currently R111 (in South African Rands, or approximately US$16) per tonne of waste, although these could decline under a scenario in which energy is recovered, or in which the existing urban landfills are replaced with a new regional landfill. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mass Transfer Testing of a 12.5-cm Rotor Centrifugal Contactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. H. Meikrantz; T. G. Garn; J. D. Law
2008-09-01
TRUEX mass transfer tests were performed using a single stage commercially available 12.5 cm centrifugal contactor and stable cerium (Ce) and europium (Eu). Test conditions included throughputs ranging from 2.5 to 15 Lpm and rotor speeds of 1750 and 2250 rpm. Ce and Eu extraction forward distribution coefficients ranged from 13 to 19. The first and second stage strip back distributions were 0.5 to 1.4 and .002 to .004, respectively, throughout the dynamic test conditions studied. Visual carryover of aqueous entrainment in all organic phase samples was estimated at < 0.1 % and organic carryover into all aqueous phase samplesmore » was about ten times less. Mass transfer efficiencies of = 98 % for both Ce and Eu in the extraction section were obtained over the entire range of test conditions. The first strip stage mass transfer efficiencies ranged from 75 to 93% trending higher with increasing throughput. Second stage mass transfer was greater than 99% in all cases. Increasing the rotor speed from 1750 to 2250 rpm had no significant effect on efficiency for all throughputs tested.« less
Method for removing metal vapor from gas streams
Ahluwalia, R.K.; Im, K.H.
1996-04-02
A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.
Method for removing metal vapor from gas streams
Ahluwalia, R. K.; Im, K. H.
1996-01-01
A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.
The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.
Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert
2008-01-01
Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. After leaving the Vehicle Assembly Building, the external tank seen here points its way toward the Turn Basin and the Banana River. The tank will be loaded onto the waiting barge and transferred to the Michoud Space Systems Assembly Facility near New Orleans where redesign of the external tank is underway for Return to Flight.
Internal and External Focus of Attention in a Novice Form Sport
ERIC Educational Resources Information Center
Lawrence, Gavin P.; Gottwald, Vicky M.; Hardy, James; Khan, Michael A.
2011-01-01
In the current experiment, we examined optimal focus for novices during a movement sequence in which performance was measured on accurate movement form/technique. A novel gymnastics routine was practiced under either an internal skill-relevant, internal skill-irrelevant, external, or no attention focus. Retention and transfer tests were then…
2010-09-29
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, External Fuel Tank-122 is lifted high over the transfer aisle of the Vehicle Assembly Building during operations to transfer it into a test cell. ET-122, the Space Shuttle Program's last external fuel tank was delivered to Kennedy's Turn Basin from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After testing, ET-122 eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Dimitri Gerondidakis
NASA Astrophysics Data System (ADS)
Abdulhameed, M.; Vieru, D.; Roslan, R.
2017-10-01
This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological analysis and medical diagnosis.
Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.
Neuron-Inspired Fe3O4/Conductive Carbon Filament Network for High-Speed and Stable Lithium Storage.
Hao, Shu-Meng; Li, Qian-Jie; Qu, Jin; An, Fei; Zhang, Yu-Jiao; Yu, Zhong-Zhen
2018-05-17
Construction of a continuous conductance network with high electron-transfer rate is extremely important for high-performance energy storage. Owing to the highly efficient mass transport and information transmission, neurons are exactly a perfect model for electron transport, inspiring us to design a neuron-like reaction network for high-performance lithium-ion batteries (LIBs) with Fe 3 O 4 as an example. The reactive cores (Fe 3 O 4 ) are protected by carbon shells and linked by carbon filaments, constituting an integrated conductance network. Thus, once the reaction starts, the electrons released from every Fe 3 O 4 cores are capable of being transferred rapidly through the whole network directly to the external circuit, endowing the nanocomposite with tremendous rate performance and ultralong cycle life. After 1000 cycles at current densities as high as 1 and 2 A g -1 , charge capacities of the as-synthesized nanocomposite maintain 971 and 715 mA h g -1 , respectively, much higher than those of reported Fe 3 O 4 -based anode materials. The Fe 3 O 4 -based conductive network provides a new idea for future developments of high-rate-performance LIBs.
Wei, Zi; Shen, Yi; Liu, Dong; Liu, Fuqiang
2017-04-04
Greater levels of solar energy storage provide an effective solution to the inherent nature of intermittency, and can substantially improve reliability, availability, and quality of the renewable energy source. Here we demonstrated an all-vanadium (all-V) continuous-flow photoelectrochemical storage cell (PESC) to achieve efficient and high-capacity storage of solar energy, through improving both photocurrent and photocharging depth. It was discovered that forced convective flow of electrolytes greatly enhanced the photocurrent by 5 times comparing to that with stagnant electrolytes. Electrochemical impedance spectroscopy (EIS) study revealed a great reduction of charge transfer resistance with forced convective flow of electrolytes as a result of better mass transport at U-turns of the tortuous serpentine flow channel of the cell. Taking advantage of the improved photocurrent and diminished charge transfer resistance, the all-V continuous-flow PESC was capable of producing ~20% gain in state of charge (SOC) under AM1.5 illumination for ca. 1.7 hours without any external bias. This gain of SOC was surprisingly three times more than that with stagnant electrolytes during a 25-hour period of photocharge.
Transfer of Orbital and Spin angular momentum from non-paraxial optical vortex to atomic BEC
NASA Astrophysics Data System (ADS)
Bhowmik, Anal; Mondal, Pradip Kumar; Majumder, Sonjoy; Deb, Bimalendu
2017-04-01
Allen and co-workers first brought up the realization that optical vortex can carry well defined orbital angular momentum (OAM) associated with its spatial mode. Spin angular momentum (SAM) of the light, associated with the polarization, interacts with the internal electronic motion of the atom. The exchange of orbital angular momentum (OAM) between optical vortex and the center-of-mass (CM) motion of an atom or molecule is well known in paraxial approximation. We show that, how the total angular momentum (TAM) of non-paraxial optical vortex is shared with atom, in terms of OAM and SAM. Both the angular momenta are now possible to be transferred to the internal electronic and external CM motion of atom. Here we have studied how the Rabi frequencies of the excitations of two-photon Raman transitions with respect to focusing angles. Also, we investigate the properties of the vortex superposed state for a Bose-Einstein condensate condensate by a single non-paraxial vortex beam. The density distribution of the vortex-antivortex superposed state has a petal structure which is determined by the quantum circulations and proportion of the vortex and antivortex.
NASA Astrophysics Data System (ADS)
Piva, Stephano P. T.; Pistorius, P. Chris; Webler, Bryan A.
2018-05-01
During high-temperature confocal scanning laser microscopy (HT-CSLM) of liquid steel samples, thermal Marangoni flow and rapid mass transfer between the sample and its surroundings occur due to the relatively small sample size (diameter around 5 mm) and large temperature gradients. The resulting evaporation and steel-slag reactions tend to change the chemical composition in the metal. Such mass transfer effects can change observed nonmetallic inclusions. This work quantifies oxide-metal-gas mass transfer of solutes during HT-CSLM experiments using computational simulations and experimental data for (1) dissolution of MgO inclusions in the presence and absence of slag and (2) Ca, Mg-silicate inclusion changes upon exposure of a Si-Mn-killed steel to an oxidizing gas atmosphere.
Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow
NASA Astrophysics Data System (ADS)
Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi
2016-11-01
The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.
Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua
2015-08-04
Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.
Heat Transfer of Confined Impinging Air-water Mist Jet
NASA Astrophysics Data System (ADS)
Chang, Shyy Woei; Su, Lo May
This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.
Fuel conditioning facility zone-to-zone transfer administrative controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C. L.
2000-06-21
The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container typesmore » for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion.« less
Adiabatic Mass Loss Model in Binary Stars
NASA Astrophysics Data System (ADS)
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.
Moosmann, Bjoern; Roth, Nadine; Hastedt, Martin; Jacobsen-Bauer, Andrea; Pragst, Fritz; Auwärter, Volker
2015-05-01
Hair analysis for drugs and drugs of abuse is increasingly applied in child protection cases. To determine the potential risk to a child living in a household where drugs are consumed, not only can the hair of the parents be analyzed but also the hair of the child. In the case of hair analysis for cannabinoids, the differentiation between external contamination and systemic uptake is particularly difficult, since the drug is quite often handled extensively prior to consumption (e.g. when preparing a joint) and smoke causes a further risk for an external contamination. Δ9-tetrahydrocannabinolic acid A (THCA-A), the non-psychoactive biogenetic precursor of Δ9-tetrahydrocannabinol (THC), is a suitable marker for external contamination since it is not incorporated into the hair matrix through the bloodstream in relevant amounts. In the presented study, hair samples from 41 children, 4 teenagers, and 34 drug-consuming parents were analyzed for THCA-A, THC and cannabinol (CBN) applying methanolic extraction and a fully validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method (Method 1). For comparison, a part of the samples was also analyzed applying alkaline hydrolysis followed by liquid/liquid extraction and gas chromatography-mass spectrometry (GC-M)S (Method 2), or by headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) (Method 3). Furthermore, 458 seized marihuana samples and 180 seized hashish samples were analyzed for the same cannabinoids by gas-chromatography-flame ionization detector (GC-FID). In all but one of the hair samples, the concentration of THCA-A was higher than the concentration of THC and in 14 cases no THC could be detected despite the presence of THCA-A, suggesting that in almost all cases a significant external contamination had occurred. Within-family comparison showed a higher THCA-A/THC ratio in hair of children than of their consuming caregivers. Mean and median of this ratio of all hair samples (6.7 and 4.2) were between those of marihuana (11.0 and 8.3) and hashish (2.8 and 2.1) with a large variation in all samples. Comparison of the Methods 1 to 3 showed clearly that the choice of the analytical procedure has a strong influence on the quantitative results, mainly because of decarboxylation of THCA-A during hair hydrolysis by NaOH and other analytical steps, which lead to artifactually elevated THC concentrations. In conclusion, these findings suggest that the major part of the cannabinoids detected in the hair samples from children arose from an external contamination through 'passive' transfer by e.g. contaminated hands or surfaces and not from inhalation or deposition of side stream smoke. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ogorzalek Loo, Rachel R.; Mitchell, Charles; Stevenson, Tracy I.; Loo, Joseph A.; Andrews, Philip C.
1997-12-01
Diffusive transfer was examined as a blotting method to transfer proteins from polyacrylamide gels to membranes for ultraviolet matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The method is well-suited for transfers from isoelectric focusing (IEF) gels. Spectra have been obtained for 11 pmol of 66 kDa albumin loaded onto an IEF gel and subsequently blotted to polyethylene. Similarly, masses of intact carbonic anhydrase and hemoglobin were obtained from 14 and 20 pmol loadings. This methodology is also compatible with blotting high molecular weight proteins, as seen for 6 pmol of the 150 kDa monoclonal antibody anti-[beta]-galactosidase transferred to Goretex. Polypropylene, Teflon, Nafion and polyvinylidene difluoride (PVDF) also produced good spectra following diffusive transfer. Only analysis from PVDF required that the membrane be kept wet prior to application of matrix. Considerations in mass accuracy for analysis from large-area membranes with continuous extraction and delayed extraction were explored, as were remedies for surface charging. Vapor phase CNBr cleavage was applied to membrane-bound samples for peptide mapping.
NASA Astrophysics Data System (ADS)
Zhang, Hui-Yong; Li, Jun-Ming; Sun, Ji-Liang; Wang, Bu-Xuan
2016-01-01
A theoretical model is developed for condensation heat transfer of binary refrigerant mixtures in mini-tubes with diameter about 1.0 mm. Condensation heat transfer of R410A and R32/R134a mixtures at different mass fluxes and saturated temperatures are analyzed, assuming that the phase flow pattern is annular flow. The results indicate that there exists a maximum interface temperature at the beginning of condensation process for azeotropic and zeotropic mixtures and the corresponding vapor quality to the maximum value increases with mass flux. The effects of mass flux, heat flux, surface tension and tube diameter are analyzed. As expected, the condensation heat transfer coefficients increase with mass flux and vapor quality, and increase faster in high vapor quality region. It is found that the effects of heat flux and surface tension are not so obvious as that of tube diameter. The characteristics of condensation heat transfer of zeotropic mixtures are consistent to those of azeotropic refrigerant mixtures. The condensation heat transfer coefficients increase with the concentration of the less volatile component in binary mixtures.
Modeling of the Inter-phase Mass Transfer during Cosolvent-Enhanced NAPL Remediation
NASA Astrophysics Data System (ADS)
Agaoglu, B.; Scheytt, T. J.; Copty, N. K.
2012-12-01
This study investigates the factors influencing inter-phase mass transfer during cosolvent-enhanced NAPL remediation and the ability of the REV (Representative Elementary Volume) modeling approach to simulate these processes. The NAPLs considered in this study consist of pure toluene, pure benzene and known mixtures of these two compounds, while ethanol-water mixtures were selected as the remedial flushing solutions. Batch tests were performed to identify both the equilibrium and non-equilibrium properties of the multiphase system. A series of column flushing experiments involving different NAPLs were conducted for different ethanol contents in the flushing solution and for different operational parameters. Experimental results were compared to numerical simulations obtained with the UTCHEM multiphase flow simulator (Delshad et al., 1996). Results indicate that the velocity of the flushing solution is a major parameter influencing the inter-phase mass transport processes at the pore scale. Depending on the NAPL composition and porous medium properties, the remedial solution may follow preferential flow paths and be subject to reduced contact with the NAPL. This leads to a steep decrease in the apparent mass transfer coefficient. Correlations of the apparent time-dependent mass transfer coefficient as a function of flushing velocity are developed for various porous media. Experimental results also show that the NAPL mass transfer coefficient into the cosolvent solution increases when the NAPL phase becomes mobile. This is attributed to the increase in pore scale contact area between NAPL and the remedial solution when NAPL mobilization occurs. These results suggest the need to define a temporal and spatially variable mass transfer coefficient of the NAPL into the cosolvent solution to reflect the occurrence of subscale preferential flow paths and the transient bypassing of the NAPL mass. The implications of these findings on field scale NAPL remediation with cosolvents are discussed.
NASA Astrophysics Data System (ADS)
Govindarajan, A.; Vijayalakshmi, R.; Ramamurthy, V.
2018-04-01
The main aim of this article is to study the combined effects of heat and mass transfer to radiative Magneto Hydro Dynamics (MHD) oscillatory optically thin dusty fluid in a saturated porous medium channel. Based on certain assumptions, the momentum, energy, concentration equations are obtained.The governing equations are non-dimensionalised, simplified and solved analytically. The closed analytical form solutions for velocity, temperature, concentration profiles are obtained. Numerical computations are presented graphically to show the salient features of various physical parameters. The shear stress, the rate of heat transfer and the rate of mass transfer are also presented graphically.
A Review of Microbubble and its Applications in Ozonation
NASA Astrophysics Data System (ADS)
Shangguan, Yufei; Yu, Shuili; Gong, Chao; Wang, Yue; Yang, Wangzhen; Hou, Li-an
2018-03-01
Ozonation has been demonstrated to be an effective technology for the oxidation of organic matters in water treatment. But the low solubility and low mass transfer efficiency limit the application. Microbubble technology has the potential of enhancing gas-liquid mass transfer efficiency, thus it can be applied in ozonation process. The applications of microbubble ozonation have shown advantages over macro bubble ozonation in mass transfer and reaction rate. Microbubble ozonation will be a promising treatment both in water and wastewater treatment.
About Mass Transfer in Capillaries of Biological Systems under Influence of Vibrations
NASA Astrophysics Data System (ADS)
Prisniakov, K.
Vibrations accompany the flight of the manned spacecraft both at a stage of a orbital injection to an orbit, and during long flights (as noise), rendering undesirable physiological influence on crew, reducing serviceability and creating constant discomfort. The report represents attempt to predict a state of the cosmonaut in conditions of influence of vibrations for the period of start and stay in Space, being based on researches of mass transfer processes in capillary systems. For this purpose the original researches on heat and mass transfer processes with evaporation of liquids in capillary - porous structures in conditions of vibration actions and changes of a direction of action of gravitation are generalized. Report demonstrates the existence of modes at which increased or lowered mass transfer is achieved on border of separation "liquid - gas". The possible mechanism of influence of vibrations on evaporation of a liquid in capillaries is examined. The magnitudes of frequencies and amplitudes are submitted at which minimax characteristics are observed. The opportunity of application of the developed mathematical model of heat and mass transfer in capillary - porous structures to forecasting influence of vibrations for biological processes in capillaries of alive essences is analyzed. Such approach is justified on the mechanical nature of harmful influence of vibrations on an organism of the person. In addition the range of vibration frequencies which arise during space flights, corresponds to own resonant frequencies of a human body and his separate organs. Comparison of these resonant frequencies of a body of the person (5-80 Hertz) with vibration frequencies of optimum modes of heat and mass transfer in capillary - porous structures (20-40 Hertz) is shown their ranges of coverage. It gives the basis to assume existence of similar effects in capillaries of human body. It is supposed, that the difficulty of breath, change of a rhythm of breath, the subsequent weariness under vibration action are attributable to infringements of normal mass transfer between the inhaled air and blood. The opportunity of use of the received laws is discussed for assessment of influence of gravitational fields on intensity mass transfer in capillaries of biosystems also.
NASA Astrophysics Data System (ADS)
Haworth, Thomas J.; Facchini, Stefano; Clarke, Cathie J.; Cleeves, L. Ilsedore
2017-06-01
We model the radiatively driven flow from IM Lup - a large protoplanetary disc expected to be irradiated by only a weak external radiation field (at least 104 times lower than the ultraviolet field irradiating the Orion Nebula Cluster proplyds). We find that material at large radii (>400 au) in this disc is sufficiently weakly gravitationally bound that significant mass-loss can be induced. Given the estimated values of the disc mass and accretion rate, the viscous time-scale is long (˜10 Myr) so the main evolutionary behaviour for the first Myr of the disc's lifetime is truncation of the disc by photoevaporation, with only modest changes effected by viscosity. We also produce approximate synthetic observations of our models, finding substantial emission from the flow that can explain the CO halo observed about IM Lup out to ≥1000 au. Solutions that are consistent with the extent of the observed CO emission generally imply that IM Lup is still in the process of having its disc outer radius truncated. We conclude that IM Lup is subject to substantial external photoevaporation, which raises the more general possibility that external irradiation of the largest discs can be of significant importance even in low mass star forming regions.
NASA Astrophysics Data System (ADS)
Gavrilov, S. N.; Krivtsov, A. M.; Tsvetkov, D. V.
2018-05-01
We consider unsteady heat transfer in a one-dimensional harmonic crystal surrounded by a viscous environment and subjected to an external heat supply. The basic equations for the crystal particles are stated in the form of a system of stochastic differential equations. We perform a continualization procedure and derive an infinite set of linear partial differential equations for covariance variables. An exact analytic solution describing unsteady ballistic heat transfer in the crystal is obtained. It is shown that the stationary spatial profile of the kinetic temperature caused by a point source of heat supply of constant intensity is described by the Macdonald function of zero order. A comparison with the results obtained in the framework of the classical heat equation is presented. We expect that the results obtained in the paper can be verified by experiments with laser excitation of low-dimensional nanostructures.
1999-02-09
KENNEDY SPACE CENTER, FLA. -- An external tank is suspended in the transfer aisle of the Vehicle Assembly Building before being placed into its storage compartment. The largest and heaviest element of the Space Shuttle, an external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer for the three Space Shuttle main engines (SSMEs) in the orbiter during liftoff and ascent. When the SSMEs are shut down, the external tank is jettisoned, breaking up as it enters the Earth's atmopshere and impacting in a remote ocean area. It is not recovered
Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; ...
2015-01-19
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting inmore » nearly lossless transmission.« less
NASA Technical Reports Server (NTRS)
Lu, Y.; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole (BH) harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify the accretion rate in the disk and separate the accretion flows of the disk into three different phases, like an S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of the S-shaped instability, and the faint or 'dormant' quasars are simply these systems in the lower branch. The middle branch is the transition state, which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solution (ADIOS) configuration in the stable lower branch of the S-shaped instability, and the Eddington accretion rate is used to constrain the accretion rate in the highly active phase. The mass ratio between a BH and its host galactic bulge is a natural consequence of an ADIOS. Our model also demonstrates that a seed BH approx. 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a BH with a final mass of approx. 2 x 10(exp 8) solar masses.
NASA Astrophysics Data System (ADS)
Yudov, Yu. V.
2018-03-01
A model is presented of the interphasic heat and mass transfer in the presence of noncondensable gases for the KORSAR/GP design code. This code was developed by FGUP NITI and the special design bureau OKB Gidropress. It was certified by Rostekhnadzor in 2009 for numerical substantiation of the safety of reactor installations with VVER reactors. The model is based on the assumption that there are three types of interphasic heat and mass transfer of the vapor component: vapor condensation or evaporation on the interphase under any thermodynamic conditions of the phases, pool boiling of the liquid superheated above the saturation temperature at the total pressure, and spontaneous condensation in the volume of gas phase supercooled below the saturation temperature at the vapor partial pressure. Condensation and evaporation on the interphase continuously occur in a two-phase flow and control the time response of the interphase heat and mass transfer. Boiling and spontaneous condensation take place only at the metastable condition of the phases and run at a quite high speed. The procedure used for calculating condensation and evaporation on the interphase accounts for the combined diffusion and thermal resistance of mass transfer in all regimes of the two-phase flow. The proposed approach accounts for, in a natural manner, a decrease in the rate of steam condensation (or generation) in the presence of noncondensing components in the gas phase due to a decrease (or increase) in the interphase temperature relative to the saturation temperature at the vapor partial pressure. The model of the interphase heat transfer also accounts for the processes of dissolution or release of noncondensing components in or from the liquid. The gas concentration at the interphase and on the saturation curve is calculated by the Henry law. The mass transfer coefficient in gas dissolution is based on the heat and mass transfer analogy. Results are presented of the verification of the interphase heat and mass transfer used in the KORSAR/GP code based on the data on film condensation of steam-air flows in vertical pipes. The proposed model was also tested by solving a problem of nitrogen release from a supersaturated water solution.
Chouvenc, P; Vessot, S; Andrieu, J; Vacus, P
2005-01-01
The principal aim of this study is to extend to a pilot freeze-dryer equipped with a non-instantaneous isolation valve the previously presented pressure rise analysis (PRA) model for monitoring the product temperature and the resistance to mass transfer of the dried layer during primary drying. This method, derived from the original MTM method previously published, consists of interrupting rapidly (a few seconds) the water vapour flow from the sublimation chamber to the condenser and analysing the resulting dynamics of the total chamber pressure increase. The valve effect on the pressure rise profile observed during the isolation valve closing period was corrected by introducing in the initial PRA model a valve characteristic function factor which turned out to be independent of the operating conditions. This new extended PRA model was validated by implementing successively the two types of valves and by analysing the pressure rise kinetics data with the corresponding PRA models in the same operating conditions. The coherence and consistency shown on the identified parameter values (sublimation front temperature, dried layer mass transfer resistance) allowed validation of this extended PRA model with a non-instantaneous isolation valve. These results confirm that the PRA method, with or without an instantaneous isolation valve, is appropriate for on-line monitoring of product characteristics during freeze-drying. The advantages of PRA are that the method is rapid, non-invasive, and global. Consequently, PRA might become a powerful and promising tool not only for the control of pilot freeze-dryers but also for industrial freeze-dryers equipped with external condensers.
Efficient quantum state transfer in an engineered chain of quantum bits
NASA Astrophysics Data System (ADS)
Sandberg, Martin; Knill, Emanuel; Kapit, Eliot; Vissers, Michael R.; Pappas, David P.
2016-03-01
We present a method of performing quantum state transfer in a chain of superconducting quantum bits. Our protocol is based on engineering the energy levels of the qubits in the chain and tuning them all simultaneously with an external flux bias. The system is designed to allow sequential adiabatic state transfers, resulting in on-demand quantum state transfer from one end of the chain to the other. Numerical simulations of the master equation using realistic parameters for capacitive nearest-neighbor coupling, energy relaxation, and dephasing show that fast, high-fidelity state transfer should be feasible using this method.
Correlating mechanical work with energy consumption during gait throughout pregnancy.
Krkeljas, Zarko; Moss, Sarah Johanna
2015-11-20
Measures of mechanical work may be useful in evaluating efficiency of walking during pregnancy. Various adaptations in the body during pregnancy lead to altered gait, consequently contributing to the total energy cost of walking. Measures of metabolic energy expenditure may not be reliable for measuring energetic cost of gait during pregnancy as pregnancy results in numerous metabolic changes resulting from foetal development. Therefore, the aim of this study is to determine if mechanical work prediction equations correlate with the metabolic energy cost of gait during pregnancy. Thirty-five (35) women (27.5 ± 6.1 years) gave informed consent for participation in the study at different weeks of gestation pregnancy. Gas exchange and gait data were recorded while walking at a fixed self-selected walking speed. External (Wext) work was estimated assuming no energy transfer between segments, while internal work (Wint) assumed energy transfer between segments. Hence total energy of the body (Wtot) was calculated based on the segmental changes relative to the surrounding, and relative to the centre of mass of the whole body. Equations for mechanical work were correlated with net and gross O2 rate, and O2 cost. External, internal and total mechanical energy showed significant positive relationship with gross O2 rate (r = 0.48, r = 0.35; and r = 0.49 respectively), and gross O2 cost (r = 0.42; r = 0.70, and r = 0.62, respectively). In contrast, external, internal and total mechanical energy had no significant relationship with net O2 rate (r = 0.19, r = 0.24, and r = 0.24, respectively). Net O2 cost was significant related Wext (r = 0.49) Wint (r = 0.66) and Wtot (r = 0.62). Energy recovery improved with increase in gait speed. Measures of mechanical work, when adjusted for resting energy expenditure, and walking speed may be useful in comparing metabolic energy consumption between women during pregnancy, or assessment or gait changes of the same individual throughout pregnancy.
Munasinghe, Pradeep Chaminda; Khanal, Samir Kumar
2012-10-01
In this study, the volumetric mass transfer coefficients (Ka) for CO were examined in a composite hollow fiber (CHF) membrane bioreactor. The mass transfer experiments were conducted at various inlet gas pressures (from 5 to 30 psig (34.5-206.8 kPa(g))) and recirculation flow rates (300, 600, 900, 1200 and 1500 mL/min) through CHF module. The highest Ka value of 946.6 1/h was observed at a recirculation rate of 1500 mL/min and at an inlet gas pressure of 30 psig(206.8 kPa(g)). The findings of this study confirm that the use of CHF membranes is effective and improves the efficiency CO mass transfer into the aqueous phase. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qureshi, M. Zubair Akbar; Ali, Kashif; Iqbal, M. Farooq; Ashraf, Muhammad; Ahmad, Shazad
2017-01-01
The numerical study of heat and mass transfer for an incompressible magnetohydrodynamics (MHD) nanofluid flow containing spherical shaped nanoparticles through a channel with moving porous walls is presented. Further, another endeavour is to study the effect of two types of fluids, namely the metallic nanofluid (Au + water) and metallic-oxides nanofluid (TiO2 + water) are studied. The phenomena of spherical metallic and metallic-oxides nanoparticles have been also mathematically modelled by using the Hamilton-Crosser model. The influence of the governing parameters on the flow, heat and mass transfer aspects of the problem is discussed. The outcome of the investigation may be beneficial to the application of biotechnology and industrial purposes. Numerical solutions for the velocity, heat and mass transfer rate at the boundary are obtained and analysed.
Couette flow of an incompressible fluid in a porous channel with mass transfer
NASA Astrophysics Data System (ADS)
Niranjana, N.; Vidhya, M.; Govindarajan, A.
2018-04-01
The present discussion deals with the study of couette flow through a porous medium of a viscous incompressible fluid between two infinite horizontal parallel porous flat plates with heat and mass transfer. The stationary plate and the plate in uniform motion are subjected to transverse sinusoidal injection and uniform suction of the fluid. Due to this type of injection velocity, the flow becomes three dimensional. The analytical solutions of the nonlinear partial differential equations of this problem are obtained by using perturbation technique. Expressions for the velocity, temperature fields and the rate of heat and mass transfers are obtained. Effects of the following parameters Schmidt number (Sc), Modified Grashof number (Gm) on the velocity, temperature and concentration fields are obtained numerically and depicted through graphs. The rate of heat and mass transfer are also analyzed.
Ghoshal, Subhasis; Pasion, Catherine; Alshafie, Mohammed
2004-04-01
Semi-rigid films or skins form at the interface of crude oil and water as a result of the accumulation of asphaltene and resin fractions when the water-immiscible crude oil is contacted with water for a period of time or "aged". The time varying patterns of area-independent mass transfer coefficients of two compounds, benzene and naphthalene, for dissolution from crude oil and gasoline were determined. Aqueous concentrations of the compounds were measured in the eluent from flow-through reactors, where a nondispersed oil phase and constant oil-water interfacial area were maintained. For Brent Blend crude oil and for gasoline amended with asphaltenes and resins, a rapid decrease in both benzene and naphthalene mass transfer coefficients over the first few days of aging was observed. The mass transfer coefficients of the two target solutes were reduced by up to 80% over 35 d although the equilibrium partition coefficients were unchanged. Aging of gasoline, which has negligible amounts of asphaltene and resin, did not result in a change in the solute mass transfer coefficients. The study demonstrates that formation of crude oil-water interfacial films comprised of asphaltenes and resins contribute to time-dependent decreases in rates of release of environmentally relevant solutes from crude oils and may contribute to the persistence of such solutes at crude oil-contaminated sites. It is estimated that the interfacial film has an extremely low film mass transfer coefficient in the range of 10(-6) cm/min.
2004-04-28
KENNEDY SPACE CENTER, FLA. - With employees walking alongside, the external tank atop its transporter turns the corner from the Vehicle Assembly Building toward the Turn Basin and the Banana River. The tank will be loaded onto the waiting barge and transferred to the Michoud Space Systems Assembly Facility near New Orleans where redesign of the external tank is underway for Return to Flight.
2004-04-28
KENNEDY SPACE CENTER, FLA. - Atop a transporter, the external tank seen here turns the corner from the Vehicle Assembly Building toward the Turn Basin and the Banana River. The tank will be loaded onto the waiting barge and transferred to the Michoud Space Systems Assembly Facility near New Orleans where redesign of the external tank is underway for Return to Flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. With employees walking alongside, the external tank atop its transporter turns the corner from the Vehicle Assembly Building toward the Turn Basin and the Banana River. The tank will be loaded onto the waiting barge and transferred to the Michoud Space Systems Assembly Facility near New Orleans where redesign of the external tank is underway for Return to Flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Atop a transporter, the external tank seen here turns the corner from the Vehicle Assembly Building toward the Turn Basin and the Banana River. The tank will be loaded onto the waiting barge and transferred to the Michoud Space Systems Assembly Facility near New Orleans where redesign of the external tank is underway for Return to Flight.
ERIC Educational Resources Information Center
Belenky, Daniel M.; Schalk, Lennart
2014-01-01
Research in both cognitive and educational psychology has explored the effect of different types of external knowledge representations (e.g., manipulatives, graphical/pictorial representations, texts) on a variety of important outcome measures. We place this large and multifaceted research literature into an organizing framework, classifying three…
Kucharska, Agnieszka; Covaci, Adrian; Vanermen, Guido; Voorspoels, Stefan
2015-02-01
In this study, we investigated the hypothesis whether externally adsorbed and internally deposited flame retardants (FRs) in hair could be distinguished. To this extent, hair samples collected from one volunteer were exposed under controlled conditions to phosphate FR (PFR) and polybrominated diphenyl ether (PBDE) standards to mimic external contamination. Afterwards, suitable washing procedures to selectively remove contaminants from the hair surface were investigated. The samples were measured by GC-(ECNI)-MS for PBDEs and LC-(ESI+)-MS/MS for PFRs. All investigated compounds were transferred onto the hair surface. One of the most important finding was that dust particles are not mandatory to transfer compounds on the hair surface and to be able to measure high levels of compounds in human hair. To assess different protocols to selectively remove external contamination, the exposed hair samples were washed in different media before analysis: water, methanol, hexane:dichloromethane (1:1, v/v), acetone and shampoo. Results indicated that there is no washing medium able to entirely and exclusively remove external contamination. Among investigated media, methanol removed a meaningful part of the external contamination (42-105%), but the removal efficiencies differed among compounds. We therefore concluded that hair should not be washed prior to analysis and in case of visible contamination (e.g. with cosmetic products), water would be the recommended agent. Organic solvents should not be used for the washing step. Although it is impossible to distinguish external from internal exposure, hair samples may be used as valuable biomarker of human exposure, providing a measure of integral exposure. To the best of our knowledge, this is the first study which has used externally exposed hair samples to PBDEs and PFRs. Copyright © 2014 Elsevier B.V. All rights reserved.
A Critical Test of Nd isotopes as a Paleocirculation Proxy in the Southwest Atlantic
NASA Astrophysics Data System (ADS)
Wu, Y.; Goldstein, S. L.; Pena, L.; Hartman, A. E.; Rijkenberg, M. J. A.; de Baar, H. J. W.
2016-12-01
The application of Nd isotopes as a paleo-ocean circulation tracer assumes that Nd isotope ratios (ɛNd) effectively fingerprint different water masses and approximate expected values from water mass mixing. The Southwest Atlantic, with the major water masses involved in the Atlantic Meridional Ocean Circulation (southward flowing North Atlantic Deep Water, northward flowing Antarctic Intermediate Water and Antarctic Bottom Water), is one of the best places on Earth to evaluate how well Nd isotope ratios act like a conservative water mass tracer in the modern ocean. Seawater profiles and core-top sediments from 17 stations were sampled in the Southwest Atlantic in the South Atlantic Meridional GEOTRACES cruise (GA02 Leg 3; RRS James Cook 057) between Tierra del Fuego and the Equator. Along the cruise track, along with the possibility of "boundary exchange", there are several additional potential sources that could add external Nd to seawater and disturb the "quasi-conservative" behavior of ɛNd. For example, it transects the continental shelf in the far south, the Rio Grande Rise, volcanic seamounts, and the major geological age boundaries of South America. It also crosses the major Southern Hemisphere wind zones, allowing us to test the impacts of eolian dust input, as well as inputs from major rivers. Our results on seawater ɛNd show strikingly that the Southwest Atlantic transect confirms "quasi-conservative" behavior of ɛNd in intermediate and deep water. Shallow depths show local impacts but these are not transferred to intermediate and deep water.
The awakening of a classical nova from hibernation.
Mróz, Przemek; Udalski, Andrzej; Pietrukowicz, Paweł; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Poleski, Radosław; Kozłowski, Szymon; Skowron, Jan; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał
2016-09-29
Cataclysmic variable stars-novae, dwarf novae, and nova-likes-are close binary systems consisting of a white dwarf star (the primary) that is accreting matter from a low-mass companion star (the secondary). From time to time such systems undergo large-amplitude brightenings. The most spectacular eruptions, with a ten-thousandfold increase in brightness, occur in classical novae and are caused by a thermonuclear runaway on the surface of the white dwarf. Such eruptions are thought to recur on timescales of ten thousand to a million years. In between, the system's properties depend primarily on the mass-transfer rate: if it is lower than a billionth of a solar mass per year, the accretion becomes unstable and the matter is dumped onto the white dwarf during quasi-periodic dwarf nova outbursts. The hibernation hypothesis predicts that nova eruptions strongly affect the mass-transfer rate in the binary, keeping it high for centuries after the event. Subsequently, the mass-transfer rate should significantly decrease for a thousand to a million years, starting the hibernation phase. After that the nova awakes again-with accretion returning to the pre-eruption level and leading to a new nova explosion. The hibernation model predicts cyclical evolution of cataclysmic variables through phases of high and low mass-transfer. The theory gained some support from the discovery of ancient nova shells around the dwarf novae Z Camelopardalis and AT Cancri, but direct evidence for considerable mass-transfer changes prior, during and after nova eruptions has not hitherto been found. Here we report long-term observations of the classical nova V1213 Cen (Nova Centauri 2009) covering its pre- and post-eruption phases and precisely documenting its evolution. Within the six years before the explosion, the system revealed dwarf nova outbursts indicative of a low mass-transfer rate. The post-nova is two orders of magnitude brighter than the pre-nova at minimum light with no trace of dwarf nova behaviour, implying that the mass-transfer rate increased considerably as a result of the nova explosion.
Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions.
Peng, Ying; Hansen, Brett J; Quist, Hannah; Zhang, Zhiping; Wang, Miao; Hawkins, Aaron R; Austin, Daniel E
2011-07-15
We present the design and results for a new radio-frequency ion trap mass analyzer, the coaxial ion trap, in which both toroidal and quadrupolar trapping regions are created simultaneously. The device is composed of two parallel ceramic plates, the facing surfaces of which are lithographically patterned with concentric metal rings and covered with a thin film of germanium. Experiments demonstrate that ions can be trapped in either region, transferred from the toroidal to the quadrupolar region, and mass-selectively ejected from the quadrupolar region to a detector. Ions trapped in the toroidal region can be transferred to the quadrupole region using an applied ac signal in the radial direction, although it appears that the mechanism of this transfer does not involve resonance with the ion secular frequency, and the process is not mass selective. Ions in the quadrupole trapping region are mass analyzed using dipole resonant ejection. Multiple transfer steps and mass analysis scans are possible on a single population of ions, as from a single ionization/trapping event. The device demonstrates better mass resolving power than the radially ejecting halo ion trap and better sensitivity than the planar quadrupole ion trap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervin, Shahab; Asadirad, Mojtaba; Materials Science and Engineering Program, University of Houston, Houston, Texas 77204
This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strainmore » in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.« less
Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.
1995-01-01
Solar electric propulsion (SEP) technology is currently being used for geostationary satellite station keeping to increase payload mass. Analyses show that advanced electric propulsion technologies can be used to obtain additional increases in payload mass by using these same technologies to perform part of the orbit transfer. In this work three electric propulsion technologies are examined at two power levels for an Atlas 2AS class spacecraft. The on-board chemical propulsion apogee engine fuel is reduced to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns which will minimize the electric propulsion transfer time. Results show that for a 1550 kg Atlas 2AS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150 to 800 kg are possible using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.
Mass transfer in thin films under counter-current gas: experiments and numerical study
NASA Astrophysics Data System (ADS)
Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant
2016-11-01
Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.
NASA Astrophysics Data System (ADS)
Farges, Bérangère; Duchez, David; Dussap, Claude-Gilles; Cornet, Jean-François
2012-01-01
In microgravity, one of the major challenge encountered in biological life support systems (BLSS) is the gas-liquid transfer with, for instance, the necessity to provide CO2 (carbon source, pH control) and to recover the evolved O2 in photobioreactors used as atmosphere bioregenerative systems.This paper describes first the development of a system enabling the accurate characterization of the mass transfer limiting step for a PTFE membrane module used as a possible efficient solution to the microgravity gas-liquid transfer. This original technical apparatus, together with a technical assessment of membrane permeability to different gases, is associated with a balance model, determining thus completely the CO2 mass transfer problem between phases. First results are given and discussed for the CO2 mass transfer coefficient kLCO obtained in case of absorption experiments at pH 8 using the hollow fiber membrane module. The consistency of the proposed method, based on a gas and liquid phase balances verifying carbon conservation enables a very accurate determination of the kLCO value as a main limiting step of the whole process. Nevertheless, further experiments are still needed to demonstrate that the proposed method could serve in the future as reference method for mass transfer coefficient determination if using membrane modules for BLSS in reduced or microgravity conditions.
14 CFR 133.27 - Availability, transfer, and surrender of certificate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... certificate. 133.27 Section 133.27 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... ROTORCRAFT EXTERNAL-LOAD OPERATIONS Certification Rules § 133.27 Availability, transfer, and surrender of..., 1964, as amended by Amdt. 133-9, 51 FR 40708, Nov. 7, 1986; Amdt. 133-11, 54 FR 39294, Sept. 25, 1989] ...
ERIC Educational Resources Information Center
Schonborn, Konrad J.; Bogeholz, Susanne
2009-01-01
Recent curriculum reform promotes core competencies such as desired "content knowledge" and "communication" for meaningful learning in biology. Understanding in biology is demonstrated when pupils can apply acquired knowledge to new tasks. This process requires the transfer of knowledge and the subordinate process of translation across external…
40 CFR 63.685 - Standards: Tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... in paragraph (c)(2)(i) of this section when a tank is used as an interim transfer point to transfer... fixed-roof tank equipped with an internal floating roof in accordance with the requirements specified in paragraph (e) of this section; (2) A tank equipped with an external floating roof in accordance with the...
2004-10-14
KENNEDY SPACE CENTER, FLA. - External Tank 118 (ET-118) is slowly moved above the transporter in the transfer aisle of the Vehicle Assembly Building before being lowered. The tank will be transferred to NASA’s Michoud Assembly Facility in New Orleans. The tank is being installed with an improved bipod fitting, which connects the external fuel tank to the Shuttle during launch. The new design, a significant milestone in the effort to return the Shuttle to safe flight, replaces the foam that was used to prevent ice buildup on the tank’s bipod fittings with four rod-shaped heaters. The heaters are being retrofitted on the 11 existing tanks and incorporated into the manufacture of all new tanks.
2004-10-14
KENNEDY SPACE CENTER, FLA. - Workers in the transfer aisle of the Vehicle Assembly Building check the progress of External Tank 118 (ET-118) as it is lowered onto the transporter below it. The tank will be transferred to NASA’s Michoud Assembly Facility in New Orleans. The tank is being installed with an improved bipod fitting, which connects the external fuel tank to the Shuttle during launch. The new design, a significant milestone in the effort to return the Shuttle to safe flight, replaces the foam that was used to prevent ice buildup on the tank’s bipod fittings with four rod-shaped heaters. The heaters are being retrofitted on the 11 existing tanks and incorporated into the manufacture of all new tanks.
1986-06-04
turbulence as a means of increasing the external heat transfer coefficient. To evaluate the various evaporator des igns, each evaporator in turn was plumbed...water was pumped through the i ns ide surface while air flowed around t he outs i de . The amount of heat being transferred could be calculated by...intercept, (infinite wate r flow), the inside heat transfer coefficient can be de termined. The heat transfer res istances of the evaporator material
Biomechanical effect of latissimus dorsi tendon transfer for irreparable massive cuff tear.
Oh, Joo Han; Tilan, Justin; Chen, Yu-Jen; Chung, Kyung Chil; McGarry, Michelle H; Lee, Thay Q
2013-02-01
The purpose of this study was to determine the biomechanical effects of latissimus dorsi transfer in a cadaveric model of massive posterosuperior rotator cuff tear. Eight cadaveric shoulders were tested at 0°, 30°, and 60° of abduction in the scapular plane with anatomically based muscle loading. Humeral rotational range of motion and the amount of humeral rotation due to muscle loading were measured. Glenohumeral kinematics and contact characteristics were measured throughout the range of motion. After testing in the intact condition, the supraspinatus and infraspinatus were resected. The cuff tear was then repaired by latissimus dorsi transfer. Two muscle loading conditions were applied after latissimus transfer to simulate increased tension that may occur due to limited muscle excursion. A repeated-measures analysis of variance was used for statistical analysis. The amount of internal rotation due to muscle loading and maximum internal rotation increased with massive cuff tear and was restored with latissimus transfer (P < .05). At maximum internal rotation, the humeral head apex shifted anteriorly, superiorly, and laterally at 0° of abduction after massive cuff tear (P < .05); this abnormal shift was corrected with latissimus transfer (P < .05). However, at 30° and 60° of abduction, latissimus transfer significantly altered kinematics (P < .05) and latissimus transfer with increased muscle loading increased contact pressure, especially at 60° of abduction. Latissimus dorsi transfer is beneficial in restoring humeral internal/external rotational range of motion, the internal/external rotational balance of the humerus, and glenohumeral kinematics at 0° of abduction. However, latissimus dorsi transfer with simulated limited excursion may lead to an overcompensation that can further deteriorate normal biomechanics, especially at higher abduction angles. Published by Mosby, Inc.
The enrichment of chlorogenic acid from Eucommia ulmoides leaves extract by mesoporous carbons.
Qin, Guotong; Ma, Jing; Wei, Wei; Li, Jaja; Yue, Fangqing
2018-06-15
Herein, we report an efficient separation and enrichment method for chlorogenic acid from crude extracts of Eucommia ulmoides leaves using carbon adsorbents. The effects of the pore structure of the carbon adsorbents on the adsorption capacity were studied. Of the four adsorbents investigated, mesoporous carbon (MC3) showed the highest adsorption capacity (294 mg/g of carbon) for chlorogenic acid due to its high mesopore volume. The static adsorption of CGA on carbon can be accurately described using the Freundlich equation. The kinetics of adsorption follow a pseudo-second-order process. External mass transfer was the controlling step of the adsorption process. Dynamic adsorption on MC3 demonstrated that chlorogenic acid began to break through after 28 bed volumes of extract was loaded. This mesoporous carbon-treatment procedure is safe, economic and has the potential to be scaled up for commercial application. Copyright © 2018 Elsevier B.V. All rights reserved.
Generalized Roche potential for misaligned binary systems - Properties of the critical lobe
NASA Technical Reports Server (NTRS)
Avni, Y.; Schiller, N.
1982-01-01
The paper considers the Roche potential for binary systems where the stellar rotation axis is not aligned with the orbital revolution axis. It is shown that, as the degree of misalignment varies, internal Lagrangian points and external Lagrangian points may switch their roles. A systematic method to identify the internal Lagrangian point and to calculate the volume of the critical lobe is developed, and numerical results for a wide range of parameters of binary systems with circular orbits are presented. For binary systems with large enough misalignment, discrete changes occur in the topological structure of the equipotential surfaces as the orbital phase varies. The volume of the critical lobe has minima, as a function of orbital phase, at the two instances when the secondary crosses the equatorial plane of the primary. In semidetached systems, mass transfer may be confined to the vicinity of these two instances.
Modular Chemical Process Intensification: A Review.
Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas
2017-06-07
Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grunwaldt, Jan-Dierk; Baiker, Alfons
2007-02-02
x-ray absorption spectroscopy is a well-suited technique to uncover the structure of heterogeneous catalysts under reaction conditions. Different aspects of in situ cell design suitable for dynamic and catalytic studies are discussed. In addition, criteria are presented that allow estimating the influence external and internal mass transfer. Starting with studies on gas-solid reactions, including structure-activity relationships, this concept is extended to liquid-solid reactions, reactions at high pressure and in supercritical fluids. The following examples are discussed in more detail: partial oxidation of methane over Pt-Rh/Al2O3, reduction of a Cu/ZnO catalyst, alcohol oxidation over Bi-promoted Pd/Al2O3 in liquid phase and overmore » Pd/Al2O3 in supercritical CO2, and batch reactions (e.g. CO2-fixation over zinc-based catalysts)« less
Sub-GeV dark matter detection with electron recoils in carbon nanotubes
NASA Astrophysics Data System (ADS)
Cavoto, G.; Luchetta, F.; Polosa, A. D.
2018-01-01
Directional detection of Dark Matter particles (DM) in the MeV mass range could be accomplished by studying electron recoils in large arrays of parallel carbon nanotubes. In a scattering process with a lattice electron, a DM particle might transfer sufficient energy to eject it from the nanotube surface. An external electric field is added to drive the electron from the open ends of the array to the detection region. The anisotropic response of this detection scheme, as a function of the orientation of the target with respect to the DM wind, is calculated, and it is concluded that no direct measurement of the electron ejection angle is needed to explore significant regions of the light DM exclusion plot. A compact sensor, in which the cathode element is substituted with a dense array of parallel carbon nanotubes, could serve as the basic detection unit.
Magnetic fields and radiative shocks in protogalaxies and the origin of globular clusters
NASA Technical Reports Server (NTRS)
Shapiro, Paul R.; Clocchiatti, Alejandro; Kang, Hyesung
1992-01-01
The paper examines the hypothesis that globular clusters formed from gravitational instability in dense sheets of gas produced behind radiative shocks inside protogalaxies, such as those produced by the collision of subgalactic mass fragments partaking of the virial motions within the protogalaxy, in order to determine the differences which result if a magnetic field is present in the preshock medium. The MHD conservation equations are solved along with rate equations for nonequilibrium ionization, recombination, molecular formation and dissociation, and the equations of radiative transfer for steady-state shocks of velocity 300 km/s in a gas of preshock densities of 0.1-1 cu cm, and magnetic field strengths of 0.1-6 micro-G. The magnetic field is found to limit the degree of postshock compression and, thereby, to reduce the level of external radiation flux required to suppress H2 formation and cooling.
Modular Chemical Process Intensification: A Review
Kim, Yong-ha; Park, Lydia K.; Yiacoumi, Sotira; ...
2016-06-24
Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. Dramatic improvements such as these lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. Thismore » article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.« less
Influence of magnetic field on chemically reactive blood flow through stenosed bifurcated arteries
NASA Astrophysics Data System (ADS)
Hossain, Khan Enaet; Haque, Md. Mohidul
2017-06-01
Dynamic response of mass transfer in chemically reactive blood flow through bifurcated arteries under the stenotic condition is numerically studied in the present of a uniform magnetic field. The blood flowing through the artery is assumed an incompressible, fully developed and Newtonian. The nonlinear unsteady flow phenomena are governed by the Navier-Stokes and concentration equations. All these equations together with the appropriate boundary conditions describing the present biomechanical problem are transformed by using a radial transformation and the numerical results are obtained using a finite difference technique. Effects of stenosed bifurcation and externally applied magnetic field on the blood flow with chemical reaction are discussed with the help of graph. All the flow characteristics are found to be affected by the presence of chemical reaction and exposure of magnetic field of different intensities. Finally some important findings of the problem are concluded in this work.
NASA Astrophysics Data System (ADS)
Zheng, Donghong; Che, Defu
2007-08-01
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10-3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.
Mass transfer equation for proteins in very high-pressure liquid chromatography.
Gritti, Fabrice; Guiochon, Georges
2009-04-01
The mass transfer kinetics of human insulin was investigated on a 50 mm x 2.1 mm column packed with 1.7 microm BEH-C(18) particles, eluted with a water/acetonitrile/trifluoroacetic acid (TFA) (68/32/0.1, v/v/v) solution. The different contributions to the mass transfer kinetics, e.g., those of longitudinal diffusion, eddy dispersion, the film mass transfer resistance, cross-particle diffusivity, adsorption-desorption kinetics, and transcolumn differential sorption, were incorporated into a general mass transfer equation designed to account for the mass transfer kinetics of proteins under high pressure. More specifically, this equation includes the effects of pore size exclusion, pressure, and temperature on the band broadening of a protein. The flow rate was first increased from 0.001 to 0.250 mL/min, the pressure drop increasing from 2 to 298 bar, and the column being placed in stagnant air at 296.5 K, in order to determine the effective diffusivity of insulin through the porous particles, the mass transfer rate constants, and the adsorption equilibrium constant in the low-pressure range. Then, the column inlet pressure was increased by using capillary flow restrictors downstream the column, at the constant flow rate of 0.03 mL/min. The column temperature was kept uniform by immersing the column in a circulating water bath thermostatted at 298.7 and 323.15 K, successively. The results showed that the surface diffusion coefficient of insulin decreases faster than its bulk diffusion coefficient with increasing average column pressure. This is consistent with the adsorption energy of insulin onto the BEH-C(18) surface increasing strongly with increasing pressure. In contrast, given the precision of the height equivalent to a theoretical plate (HETP) measurement (+/-12%), the adsorption kinetics of insulin appears to be rather independent of the pressure. On average, the adsorption rate constant of insulin is doubled from about 40 to 80 s(-1) when the temperature increases from 298.7 to 323.15 K.
Convective mass transfer around a dissolving bubble
NASA Astrophysics Data System (ADS)
Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric
2017-11-01
Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.
Solis, Kyle Jameson; Martin, James E.
2012-11-01
Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one wouldmore » expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.« less
NASA Astrophysics Data System (ADS)
Hino, Hisato; Hoshino, Satoshi; Fujisawa, Tomoharu; Maruyama, Shigehisa; Ota, Jun
Currently, container ships move cargo with minimal participation from external trucks. However, there is slack time between the departure of container ships and the completion of cargo handling by container ships without the participation of external trucks; therefore, external trucks can be used to move cargo without delaying the departure time. In this paper, we propose a solution involving the control algorithms of transfer cranes (TCs) because the efficiency of yard operations depends largely on the productivity of TCs. TCs work according to heuristic rules using the forecasted arrival times of internal and external trucks. Simulation results show that the proposed method can reduce the waiting time of external trucks and meet the departure time of container ships.
Lung tumor tracking in fluoroscopic video based on optical flow
Xu, Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.
2008-01-01
Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied. PMID:19175094
Lung tumor tracking in fluoroscopic video based on optical flow.
Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Alexander, Brian; Jiang, Steve B
2008-12-01
Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (approximately 0.7 mm) in the best case and 2.8 pixels (approximately 1.4 mm) in the worst case for the five patients studied.
SYMPATHETIC PARTIAL AND FULL FILAMENT ERUPTIONS OBSERVED IN ONE SOLAR BREAKOUT EVENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Yuandeng; Liu Yu; Su Jiangtao, E-mail: ydshen@ynao.ac.cn
2012-05-01
We report two sympathetic solar eruptions including a partial and a full flux rope eruption in a quadrupolar magnetic region where a large and a small filament resided above the middle and the east neutral lines, respectively. The large filament first rose slowly at a speed of 8 km s{sup -1} for 23 minutes; it then accelerated to 102 km s{sup -1}. Finally, this filament erupted successfully and caused a coronal mass ejection. During the slow rising phase, various evidence for breakout-like external reconnection has been identified at high and low temperature lines. The eruption of the small filament startedmore » around the end of the large filament's slow rising. This filament erupted partially, and no associated coronal mass ejection could be detected. Based on a potential field extrapolation, we find that the topology of the three-dimensional coronal field above the source region is composed of three low-lying lobes and a large overlying flux system, and a null point located between the middle lobe and the overlying antiparallel flux system. We propose a possible mechanism within the framework of the magnetic breakout model to interpret the sympathetic filament eruptions, in which the magnetic implosion mechanism is thought to be a possible link between the sympathetic eruptions, and the external reconnection at the null point transfers field lines from the middle lobe to the lateral lobes and thereby leads to the full (partial) eruption of the observed large (small) filament. Other possible mechanisms are also discussed briefly. We conclude that the structural properties of coronal fields are important for producing sympathetic eruptions.« less
Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.
Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick
2012-06-01
Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.
Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix
2016-09-01
The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mass transfer from an oscillating microsphere.
Zhu, Jiahua; Zheng, Feng; Laucks, Mary L; Davis, E James
2002-05-15
The enhancement of mass transfer from single oscillating aerocolloidal droplets having initial diameters approximately 40 microm has been measured using electrodynamic levitation to trap and oscillate a droplet evaporating in nitrogen gas. The frequency and amplitude of the oscillation were controlled by means of ac and dc fields applied to the ring electrodes of the electrodynamic balance (EDB). Elastic light scattering was used to size the droplet. It is shown that the mass transfer process for a colloidal or aerocolloidal particle oscillating in the Stokes flow regime is governed by a Peclet number for oscillation and a dimensionless oscillation parameter that represents the ratio of the diffusion time scale to the oscillation time scale. Evaporation rates are reported for stably oscillating droplets that are as much as five times the rate for evaporation in a stagnant gas. The enhancement is substantially larger than that predicted by quasi-steady-flow mass transfer.
Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.
Yang, Zongbo; Cheng, Jun; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa
2016-09-01
A novel swing gas aerator was developed to generate small bubbles for improving the mass transfer coefficient and microalgal growth rate in a raceway pond. A high-speed photography system (HSP) was used to measure the bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure the mass transfer coefficient and mixing time. Bubble generation time and diameter decreased by 21% and 9%, respectively, when rubber gas aerators were swung in the microalgae solution. When water pump power and gas aeration rate increased in a raceway pond with swing gas aerators and oscillating baffles (SGAOB), bubble generation time and diameter decreased but solution velocity and mass transfer coefficient increased. The mass transfer coefficient increased by 25% and the solution velocity increased by 11% when SGAOB was used, and the microalgal biomass yield increased by 18%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop
2017-09-01
A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fem Formulation for Heat and Mass Transfer in Porous Medium
NASA Astrophysics Data System (ADS)
Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan
2017-08-01
Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.
Mathurin; Faye; Brunot; Tabet; Wells; Fuche
2000-10-15
A new combination of a dual EI/CI ion source with a quadrupole ion trap mass spectrometer has been realized in order to efficiently produce negative ions in the reaction cell. Analysis of volatile compounds was performed under negative ion chemical ionization (NICI) during a reaction period where selected reactant negative ions, previously produced in the external ion source, were allowed to interact with molecules, introduced by hyphenated techniques such as gas chromatography. The O2*-, CH3O-, and Cl- reactant ions were used in this study to ensure specific ion/molecule interactions such as proton transfer, nucleophilic displacement, or charge exchange processes, respectively leading to even-electron species, i.e., deprotonated [M - H]- molecules, diagnostic [M - R]- ions, or odd-electron M*- molecular species. The reaction orientation depends on the thermochemistry of reactions within kinetic controls. First analytical results are presented here for the trace-level detection of several contaminants under NICI/Cl- conditions. Phosphorus-containing compounds (malathion, ethyl parathion, and methyl parathion as representative for pesticides) and nitro-containing compounds (2,4,6-trinitrotoluene for explosive material) have been chosen in order to explore the analytical ability of this promising instrumental coupling.
Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R
2008-06-15
Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.
ON THE NATURE OF THE TERTIARY COMPANION TO FW TAU: ALMA CO OBSERVATIONS AND SED MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caceres, Claudio; Hardy, Adam; Schreiber, Matthias R.
2015-06-20
It is thought that planetary mass companions may form through gravitational disk instabilities or core accretion. Identifying such objects in the process of formation would provide the most direct test for the competing formation theories. One of the most promising candidates for a planetary mass object still in formation is the third object in the FW Tau system. We present here ALMA cycle 1 observations confirming the recently published 1.3 mm detection of a dust disk around this third object and present for the first time a clear detection of a single peak {sup 12}CO (2–1) line, providing direct evidencemore » for the simultaneous existence of a gas disk. We perform radiative transfer modeling of the third object in FW Tau and find that current observations are consistent with either a brown dwarf embedded in an edge-on disk or a planet embedded in a low inclination disk, which is externally irradiated by the binary companion. Further observations with ALMA, aiming for high SNR detections of non-contaminated gas lines, are required to conclusively unveil the nature of the third object in FW Tau.« less
Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.
Radziuk, Darya; Möhwald, Helmuth
2016-04-04
Inadequate access to pure water and sanitation requires new cost-effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide-spread application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulation and parametric study of a film-coated controlled-release pharmaceutical.
Borgquist, Per; Zackrisson, Gunnar; Nilsson, Bernt; Axelsson, Anders
2002-04-23
Pharmaceutical formulations can be designed as Multiple Unit Systems, such as Roxiam CR, studied in this work. The dose is administrated as a capsule, which contains about 100 individual pellets, which in turn contain the active drug remoxipride. Experimental data for a large number of single pellets can be obtained by studying the release using microtitre plates. This makes it possible to study the release of the individual subunits making up the total dose. A mathematical model for simulating the release of remoxipride from single film-coated pellets is presented including internal and external mass transfer hindrance apart from the most important film resistance. The model can successfully simulate the release of remoxipride from single film-coated pellets if the lag phase of the experimental data is ignored. This was shown to have a minor influence on the release rate. The use of the present model is demonstrated by a parametric study showing that the release process is film-controlled, i.e. is limited by the mass transport through the polymer coating. The model was used to fit the film thickness and the drug loading to the experimental release data. The variation in the fitted values was similar to that obtained in the experiments.
Analysis of factors affecting gas exchange in intravascular blood gas exchanger.
Niranjan, S C; Clark, J W; San, K Y; Zwischenberger, J B; Bidani, A
1994-10-01
A mathematical model of an intravascular hollow-fiber gas-exchange device, called IVOX, has been developed using a Krogh cylinder-like approach with a repeating unit structure comprised of a single fiber with gas flowing through its lumen surrounded by a coaxial cylinder of blood flowing in the opposite direction. Species mass balances on O2 and CO2 result in a nonlinear coupled set of convective-diffusion parabolic partial differential equations that are solved numerically using an alternating-direction implicit finite-difference method. Computed results indicated the presence of a large resistance to gas transport on the external (blood) side of the hollow-fiber exchanger. Increasing gas flow through the device favored CO2 removal from but not O2 addition to blood. Increasing blood flow over the device favored both CO2 removal as well as O2 addition. The rate of CO2 removal increased linearly with the transmural PCO2 gradient imposed across the device. The effect of fiber crimping on blood phase mass transfer resistance was evaluated indirectly by varying species blood diffusivity. Computed results indicated that CO2 excretion by IVOX can be significantly enhanced with improved bulk mixing of vena caval blood around the IVOX fibers.
NASA Astrophysics Data System (ADS)
Abobda, L. T.; Woafo, P.
2014-12-01
The study of a ferromagnetic mass, fixed on a spring and subjected to an electromagnet powered by a Van der Pol (VDP) oscillator and by a Hindmarsh-Rose (HR) oscillator is performed, to serve as an electromechanical devices, but also to mimic the action of a natural pacemaker and nerves on a cardiac assist device or artificial heart. The excitation with the VDP oscillator shows in the mechanical part the transition from harmonic, periodic, biperiodic up to bursting oscillations, high displacement without pull-in instability in the free dynamics regime. Under DC plus square wave excitation, there is a coexistence of the bursting oscillations of the free dynamics and the one of the modulated dynamics. Considering the action of a HR oscillator, it is found transition from spikes, bursting oscillations, relaxation spikes, multiperiodic and sinusoidal oscillations under DC or DC plus square wave excitation. These electrical behaviors are transferred to the mechanical part which can then adopt spiking or bursting dynamics as the HR oscillator. For this electromechanical model, the VDP oscillator is more efficient than the HR oscillator to induce pulsatile pumping function with higher amplitude and to react to external influences without pull-in.
Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer
NASA Technical Reports Server (NTRS)
Pai, P. F.; Lee, S.-Y.
2003-01-01
This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finch, Charlie T.; Zacharias, Norbert; Wycoff, Gary L., E-mail: finch@usno.navy.mi
2010-06-15
Presented here are the details of the astrometric reductions from the x, y data to mean right ascension (R.A.), declination (decl.) coordinates of the third U.S. Naval Observatory CCD Astrograph Catalog (UCAC3). For these new reductions we used over 216,000 CCD exposures. The Two-Micron All-Sky Survey (2MASS) data are used extensively to probe for coordinate and coma-like systematic errors in UCAC data mainly caused by the poor charge transfer efficiency of the 4K CCD. Errors up to about 200 mas have been corrected using complex look-up tables handling multiple dependences derived from the residuals. Similarly, field distortions and sub-pixel phasemore » errors have also been evaluated using the residuals with respect to 2MASS. The overall magnitude equation is derived from UCAC calibration field observations alone, independent of external catalogs. Systematic errors of positions at the UCAC observing epoch as presented in UCAC3 are better corrected than in the previous catalogs for most stars. The Tycho-2 catalog is used to obtain final positions on the International Celestial Reference Frame. Residuals of the Tycho-2 reference stars show a small magnitude equation (depending on declination zone) that might be inherent in the Tycho-2 catalog.« less
Samgina, Tatyana Yu; Gorshkov, Vladimir A; Artemenko, Konstantin A; Vorontsov, Egor A; Klykov, Oleg V; Ogourtsov, Sergey V; Zubarev, Roman A; Lebedev, Albert T
2012-04-01
Identification of species constituting Rana esculenta complex represents a certain problem as two parental species Rana ridibunda and Rana lessonae form their hybrid R. esculenta, while external signs and sizes of the members of this complex are intersected. However the composition of skin secretion consisting mainly of peptides is different for the species of the complex. LC-MS/MS is an ideal analytical tool for the quantitative and qualitative analysis of these peptides. The results covering elemental composition of these peptides, their levels in the secretion, as well as their belonging to a certain family of peptides may be visualized by means of 2D mass maps. The proposed approach proved itself to be a perspective tool for the reliable identification of all 3 species constituting R. esculenta complex. Easy distinguishing between the species may be achieved using 2D maps as fingerprints. Besides this approach may be used to study hybridogenesis and mechanisms of hemiclonal transfer of genetic information, when rapid and reliable identification of species involved in the process is required. Copyright © 2012 Elsevier Inc. All rights reserved.
Modeling pH-zone refining countercurrent chromatography: a dynamic approach.
Kotland, Alexis; Chollet, Sébastien; Autret, Jean-Marie; Diard, Catherine; Marchal, Luc; Renault, Jean-Hugues
2015-04-24
A model based on mass transfer resistances and acid-base equilibriums at the liquid-liquid interface was developed for the pH-zone refining mode when it is used in countercurrent chromatography (CCC). The binary separation of catharanthine and vindoline, two alkaloids used as starting material for the semi-synthesis of chemotherapy drugs, was chosen for the model validation. Toluene/CH3CN/water (4/1/5, v/v/v) was selected as biphasic solvent system. First, hydrodynamics and mass transfer were studied by using chemical tracers. Trypan blue only present in the aqueous phase allowed the determination of the parameters τextra and Pe for hydrodynamic characterization whereas acetone, which partitioned between the two phases, allowed the determination of the transfer parameter k0a. It was shown that mass transfer was improved by increasing both flow rate and rotational speed, which is consistent with the observed mobile phase dispersion. Then, the different transfer parameters of the model (i.e. the local transfer coefficient for the different species involved in the process) were determined by fitting experimental concentration profiles. The model accurately predicted both equilibrium and dynamics factors (i.e. local mass transfer coefficients and acid-base equilibrium constant) variation with the CCC operating conditions (cell number, flow rate, rotational speed and thus stationary phase retention). The initial hypotheses (the acid-base reactions occurs instantaneously at the interface and the process is mainly governed by mass transfer) are thus validated. Finally, the model was used as a tool for catharanthine and vindoline separation prediction in the whole experimental domain that corresponded to a flow rate between 20 and 60 mL/min and rotational speeds from 900 and 2100 rotation per minutes. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Papa, Marco
The effect of secondary flows on mass transfer from a simulated gas turbine blade and hubwall is investigated. Measurements performed using naphthalene sublimation provide non-dimensional mass transfer coefficients, in the form of Sherwood numbers, that can be converted to heat transfer coefficients through the use of an analogy. Tests are conducted in a linear cascade composed of five blades having the profile of a first stage rotor blade of a high-pressure turbine aircraft engine. Detailed mass transfer maps on the airfoil and endwall surfaces allow the identification of significant flow features that are in good agreement with existing secondary flow models. These results are well-suited for validation of numerical codes, as they are obtained with an accurate technique that does not suffer from conduction or radiation errors and allows the imposition of precise boundary conditions. The performance of a RANS (Reynolds Averaged Navier-Stokes) numerical code that simulates the flow and heat/mass transfer in the cascade using the SST (Shear Stress Transport) k-o model is evaluated through a comparison with the experimental results. Tests performed with a modified blade leading edge show that the introduction of a fillet at the junction with the endwall reduces the effects of the horseshoe vortex in the first part of the passage, while no measurable changes in mass transfer are observed further downstream. Air injected through a slot located upstream of the cascade simulates the engine wheelspace coolant injection between the stator and the rotor. Local mass transfer data obtained injecting naphthalene-free and naphthalene-saturated air are reduced to derive maps of cooling effectiveness on the blade and endwall. Oil dot tests show the surface flow on the endwall. The surface downstream of the gap is coplanar to the upstream surface in the baseline configuration and is shifted to form a forward and backward facing step to investigate the effects of component misalignments. Sufficiently high injection rates alter the structure of the secondary flows and significantly improve the cooling performance.
NASA Astrophysics Data System (ADS)
Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas
2016-05-01
External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.
LUT Reveals a New Mass-transferring Semi-detached Binary
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Zhou, X.; Zhu, L.-Y.; Zejda, M.; Soonthornthum, B.; Zhao, E.-G.; Zhang, J.; Zhang, B.; Liao, W.-P.
2015-12-01
GQ Dra is a short-period eclipsing binary in a double stellar system that was discovered by Hipparcos. Complete light curves in the UV band were obtained with the Lunar-based Ultraviolet Telescope in 2014 November and December. Photometric solutions are determined using the W-D (Wilson and Devinney) method. It is discovered that GQ Dra is a classical Algol-type semi-detached binary where the secondary component is filling the critical Roche lobe. An analysis of all available times of minimum light suggests that the orbital period is increasing continuously at a rate of \\dot{P}=+3.48(+/- 0.23)× {10}-7 days yr-1. This could be explained by mass transfer from the secondary to the primary, which is in agreement with the semi-detached configuration with a lobe-filling secondary. By assuming a conservation of mass and angular momentum, the mass transfer rate is estimated as \\dot{m}=9.57(+/- 0.63)× {10}-8 {M}⊙ {{yr}}-1. All of these results reveal that GQ Dra is a mass-transferring semi-detached binary in a double system that was formed from an initially detached binary star. After the massive primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration with two sub-giant or giant component stars.
Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo
A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of amore » free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.« less
Visualization of natural convection heat transfer on a sphere
NASA Astrophysics Data System (ADS)
Lee, Dong-Young; Chung, Bum-Jin
2017-12-01
Natural convection heat transfer phenomena on spheres were investigated by adopting mass transfer experiments based on analogy concept. The diameters of spheres were varied from 0.01 m to 0.12 m, which correspond to the Rayleigh numbers of 1.69×108-2.91×1011. The measured mass transfer coefficients agreed well with the existing correlations. The copper electroplating patterns on the spheres visualized the local heat transfer depending on angular distance. The streak plating patterns were observed on the upper part of the sphere, resulting from the wavy flow patterns caused by the instability.
Spontaneous External Endometriosis in a Gorilla (Gorilla gorilla)
Doré, Monique; Lagacé, Andre
1985-01-01
The present report describes a case of external endometriosis in a 28 year old female gorilla (Gorilla gorilla). Microscopical examination of a pelvic mass observed at necropsy revealed ovarian tissue together with uterine glands and stroma, fibrous tissue and many siderophages. Theories of pathogenesis of external endometriosis are briefly reviewed. ImagesFigure 1 and 2. PMID:17422589
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, John W.
2013-01-01
Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.
Analysis of mass transfer characteristics in a tubular membrane using CFD modeling.
Yang, Jixiang; Vedantam, Sreepriya; Spanjers, Henri; Nopens, Ingmar; van Lier, Jules B
2012-10-01
In contrast to the large amount of research into aerobic membrane bioreactors, little work has been reported on anaerobic membrane bioreactors (AMBRs). As to the application of membrane bioreactors, membrane fouling is a key issue. Membrane fouling generally occurs more seriously in AMBRs than in aerobic membrane bioreactors. However, membrane fouling could be managed through the application of suitable shear stress that can be introduced by the application of a two-phase flow. When the two-phase flow is applied in AMBRs, little is known about the mass transfer characteristics, which is of particular importance, in tubular membranes of AMBRs. In our present work, we have employed fluid dynamic modeling to analyze the mass transfer characteristics in the tubular membrane of a side stream AMBR in which, gas-lift two-phase flow was applied. The modeling indicated that the mass transfer capacity at the membrane surface at the noses of gas bubbles was higher than the mass transfer capacity at the tails of the bubbles, which is in contrast to the results when water instead of sludge is applied. At the given mass transfer rate, the filterability of the sludge was found to have a strong influence on the transmembrane pressure at a steady flux. In addition, the model also showed that the shear stress in the internal space of the tubular membrane was mainly around 20 Pa but could be as high as about 40 Pa due to gas bubble movements. Nonetheless, at these shear stresses a stable particle size distribution was found for sludge particles. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa
2016-01-01
A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater.
Ahmadi, Hamid; Bolinius, Damien Johann; Jahnke, Annika; MacLeod, Matthew
2016-12-01
Plant leaves play an important role in the fate of hydrophobic organic contaminants (HOCs) in the environment. Yet much remains unknown about the permeability of leaves by HOCs. In this pilot study we measured (i) the kinetics of mass transfer of three polycyclic aromatic hydrocarbons (PAHs) and six polychlorinated biphenyls between a spiked and an unspiked sheet of polydimethylsiloxane (PDMS) in direct contact with each other for 24 h and (ii) kinetics of mass transfer of two PAHs through leaves and low-density polyethylene (LDPE) in a passive dosing experiment by inserting these matrices between the two sheets of PDMS for 48 h. The kinetics of mass transfer of fluoranthene between PDMS sheets in direct contact were a factor of 12 slower than those reported in the literature. The kinetics of mass transfer of fluorene and phenanthrene through leaves were within the range of those previously reported for 2,4-dichlorophenoxyacetic acid through isolated cuticles. Our results provide a proof-of-concept demonstration that the passive dosing method applied in this study can be used to measure the mass transfer coefficients of organic chemicals through leaves. Key recommendations for future experiments are to load the PDMS at the highest feasible concentrations to avoid working at analyte levels close to the limit of detection, to keep the leaves moist and to minimize potential pathways for contamination of the PDMS sheets by exposure to laboratory air. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Growth of Central Black Hole and the Ionization Instability of Quasar Disk
NASA Technical Reports Server (NTRS)
Lu, Ye; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases, like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability, and the faint or 'dormant' quasars are simply the system in the lower branch. The middle branch is the transition state which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solutions (ADIOS) configuration in the stable lower branch of S-shaped instability, and Eddington accretion rate is used to constrain the accretion rate in each phase. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole (BH) similar to those found in spiral galaxies today is needed to produce a BH with a final mass 2 x 10(exp 8) solar mases.
Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad
2015-07-21
Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms for condensate collection which would ensure continuous operation of the EFE system and which can scalably be applied to industrial condensers. This work provides a comprehensive physical model of the EFE condensation process and offers guidelines for the design of EFE systems to maximize heat transfer.
The mechanism of thermal-gradient mass transfer in the sodium hydroxide-nickel system
NASA Technical Reports Server (NTRS)
May, Charles E
1958-01-01
"Thermal-gradient mass transfer" was investigated in the molten sodium hydroxide-nickel system. Possible mechanisms (physical, electrochemical, and chemical) are discussed in terms of experimental and theoretical evidence. Experimental details are included in appendixes.
Evidence for Coherent Transfer of para-Hydrogen-Induced Polarization at Low Magnetic Fields.
Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Kaptein, Robert; Vieth, Hans-Martin; Ivanov, Konstantin L
2013-08-01
We have investigated the mechanism of para-hydrogen-induced polarization (PHIP) transfer from the original strongly aligned protons to other nuclei at low external magnetic fields. Although it is known that PHIP is efficiently transferred at low fields, the nature of the transfer mechanism, that is, coherent spin mixing or cross-relaxation, is not well established. Polarization transfer kinetics for individual protons of styrene was, for the first time, measured and modeled theoretically. Pronounced oscillations were observed indicating a coherent transfer mechanism. Spin coherences were excited by passing through an avoided level crossing of the nuclear spin energy levels. Transfer at avoided level crossings is selective with respect to spin order. Our work provides evidence that the coherent PHIP transfer mechanism is dominant at low magnetic fields.
Local endwall heat/mass-transfer distributions in pin fin channels
NASA Astrophysics Data System (ADS)
Lau, S. C.; Kim, Y. S.; Han, J. C.
1987-10-01
Naphthalene sublimination experiments were conducted to study the effects of the pin configuration, the pin length-to-diameter ratio, and the entrance length on local endwall heat/mass transfer in a channel with short pin fins (pin length-to-diameter ratios of 0.5 and 1.0). The detailed distributions of the local endwall heat/mass-transfer coefficient were obtained for staggered and aligned arrays of pin fins, for the spanwise pin spacing-to-diameter ratio of 2.5, and for streamwise pin spacing-to-diameter ratios of 1.25 and 2.5. The Reynolds numbers were kept at about 33,000. Overall- and row-averaged Nusselt numbers compared very well with those from previous heat-transfer studies.
NASA Astrophysics Data System (ADS)
Sheremet, M. A.; Shishkin, N. I.
2012-07-01
Mathematical simulation of the nonstationary regimes of heat-and-mass transfer in a ventilated rectangular cavity with heat-conducting walls of finite thickness in the presence of a heat-generating element of constant temperature has been carried out with account for the radiative heat transfer in the Rosseland approximation. As mechanisms of energy transfer in this cavity, the combined convection and the thermal radiation in the gas space of the cavity and the heat conduction in the elements of its fencing solid shell were considered. The mathematical model formulated in the dimensionless stream function-vorticity vector-temperature-concentration variables was realized numerically with the use of the finite-difference method. The streamline, temperature-field, and concentration distributions reflecting the influence of the Rayleigh number (Ra = 104, 105, 106), the nonstationarity (0 < τ ≤ 1000), and the optical thickness of the medium (τλ = 50, 100, 200) on the regimes of the gas flow and the heat-and-mass transfer in the cavity have been obtained.
NASA Astrophysics Data System (ADS)
Abdel-Rahman, W.; Podgorsak, E. B.
2010-05-01
A clear understanding of energy transfer and energy absorption in photon interactions with matter is essential for the understanding of radiation dosimetry and development of new dosimetry techniques. The concepts behind the two quantities have been enunciated many years ago and described in many scientific papers, review articles, and textbooks. Data dealing with energy transfer and energy absorption as well as the associated mass energy transfer coefficient and the mass energy absorption coefficient are readily available in web-based tabular forms. However, tables, even when available in detailed and easy to access form, do not lend themselves to serve as visual aid to promote better understanding of the dosimetric quantities related to energy transfer and energy absorption as well as their relationship to the photon energy and absorber atomic number. This paper uses graphs and illustrations, in addition to well-known mathematical relationships, to guide the reader in a systematic manner through the various stages involved in the derivation of energy absorbed in medium and its associated quantity, the mass energy absorption coefficient, from the mass attenuation coefficient.
Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage With a 180 Degree Turn
NASA Technical Reports Server (NTRS)
Rigby, David L.
1999-01-01
Numerical results are presented for flow in a rotating internal passage with a 180 degree turn and ribbed walls. Reynolds numbers ranging from 5200 to 7900, and Rotation numbers of 0.0 and 0.24 were considered. The straight sections of the channel have a square cross section, with square ribs spaced one hydraulic diameter (D) apart on two opposite sides. The ribs have a height of 0.1D and are not staggered from one side to the other. The full three dimensional Reynolds Averaged Navier-Stokes equations are solved combined with the Wilcox k-omega turbulence model. By solving an additional equation for mass transfer, it is possible to isolate the effect of buoyancy in the presence of rotation. That is, heat transfer induced buoyancy effects can be eliminated as in naphthalene sublimation experiments. Heat transfer, mass transfer and flow field results are presented with favorable agreement with available experimental data. It is shown that numerically predicting the reattachment between ribs is essential to achieving an accurate prediction of heat/mass transfer. For the low Reynolds numbers considered, the standard turbulence model did not produce reattachment between ribs. By modifying the wall boundary condition on omega, the turbulent specific dissipation rate, much better agreement with the flow structure and heat/ mass transfer was achieved. It is beyond the scope of the present work to make a general recommendation on the omega wall boundary condition. However, the present results suggest that the omega boundary condition should take into account the proximity to abrupt changes in geometry.
Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array
NASA Astrophysics Data System (ADS)
O'Neill, William J.
This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.
An Experiment to Introduce Mass Transfer Concepts Using a Commercial Hollow Fiber Blood Oxygenator
ERIC Educational Resources Information Center
McIver, Keith; Merrill, Thomas; Farrell, Stephanie
2017-01-01
A commercial hollow fiber blood oxygenation laboratory experiment was used to introduce lower level engineering students to mass balances in a two-phase system. Using measured values of concentration and flow rate, students calculated the rate of mass transfer from the gas phase and into the liquid phase, and compared the two values to determine…
Reflections on "A Review of Trends in Serious Gaming"
ERIC Educational Resources Information Center
Tobias, Sigmund; Fletcher, J. D.
2012-01-01
This article briefly summarizes findings from a review of 95 empirical studies of games used in instruction. The article suggests that such efforts are best assessed as transfer from game play to performance on external tasks that are targeted by the instruction. Review findings suggest that such transfer may be expected only if the cognitive…
Effect of acoustic streaming on the mass transfer from a sublimating sphere
NASA Astrophysics Data System (ADS)
Kawahara, N.; Yarin, A. L.; Brenn, G.; Kastner, O.; Durst, F.
2000-04-01
The effect of the acoustic streaming on the mass transfer from the surface of a sphere positioned in an ultrasonic acoustic levitator is studied both experimentally and theoretically. Acoustic levitation using standing ultrasonic waves is an experimental tool for studying the heat and mass transfer from small solid or liquid samples, because it allows an almost steady positioning of a sample at a fixed location in space. However, the levitator introduces some difficulties. One of the main problems with acoustic levitation is that an acoustic streaming is induced near the sample surface, which affects the heat and mass transfer rates, as characterized by increased Nusselt and Sherwood numbers. The transfer rates are not uniform along the sample surface, and the aim of the present study is to quantify the spatial Sherwood number distribution over the surface of a sphere. The experiments are based on the measurement of the surface shape of a sphere layered with a solid substance as a function of time using a charge-coupled device (CCD) camera with backlighting. The sphere used in this research is a glass sphere layered with a volatile solid substance (naphthalene or camphor). The local mass transfer from the surface both with and without an ultrasonic acoustic field is investigated in order to evaluate the effect of the acoustic streaming. The experimental results are compared with predictions following from the theory outlined [A. L. Yarin, M. Pfaffenlehner, and C. Tropea, J. Fluid Mech. 356, 65 (1998); A. L. Yarin, G. Brenn, O. Kastner, D. Rensink, and C. Tropea, ibid. 399, 151 (1999)] which describes the acoustic field and the resulting acoustic streaming, and the mass transfer at the surface of particles and droplets located in an acoustic levitator. The results are also compared with the experimental data and with the theoretical predictions of Burdukov and Nakoryakov [J. Appl. Mech. Tech. Phys. 6, 51 (1965)], which are valid only in the case of spherical particles much smaller than the sound wavelength. Good agreement between experiment and the theory of Yarin et al. is demonstrated. The time-averaged heat and mass transfer rates over a sphere surface are greatest at the sphere's equator and least at its poles in the experiment as predicted by the theory (the ultrasonic standing wave spans the vertical axis passing through the poles). The measured distribution of the mass transfer rate over the sphere surface also agrees with the theoretical predictions, which shows that in strong acoustic fields sublimation (or evaporation) results from the acoustic streaming.
Yoneda, Yusuke; Noji, Tomoyasu; Katayama, Tetsuro; Mizutani, Naoto; Komori, Daisuke; Nango, Mamoru; Miyasaka, Hiroshi; Itoh, Shigeru; Nagasawa, Yutaka; Dewa, Takehisa
2015-10-14
Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 α-polypeptides with a molar ratio of A647/LH2 ≃ 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Förster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.
Nande, Rounak; Greco, Adelaide; Gossman, Michael S; Lopez, Jeffrey P; Claudio, Luigi; Salvatore, Marco; Brunetti, Arturo; Denvir, James; Howard, Candace M; Claudio, Pier Paolo
2013-06-01
Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes. Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.
NASA Astrophysics Data System (ADS)
Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.
2017-12-01
The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.
Experimental assessment of heat and mass transfer of modular nozzles of cooling towers
NASA Astrophysics Data System (ADS)
Merentsov, N. A.; Lebedev, V. N.; Golovanchikov, A. B.; Balashov, V. A.; Nefed'eva, E. E.
2018-01-01
Data of experimental study of hydrodynamics, heat and mass transfer of modular nozzles of cooling towers and some comparative characteristics of the packed device with nozzles, which have wide industrial application, are given in the article.
New method for mass transfer across the surface of non-spherical particles in turbulence
NASA Astrophysics Data System (ADS)
Oehmke, T.; Variano, E. A.
2016-12-01
We present a method for making model particles that allow for the interfacial mass transfer rate to be measured. This is similar to traditional use of gypsum plaster used to measure erosion rates on the timescale of weeks to years. Our new method is useful for measuring erosion rates on the timescale of minutes. We use this to measure the manner in which particle shape affects its rate of dissolution in turbulent flow. The related questions are relevant to mass transfer in turbulence, e.g. in cases of marine biology and pollution by microplastics.
Mass transfer apparatus and method for separation of gases
Blount, Gerald C.
2015-10-13
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E
2015-07-01
This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.
Mass transfer apparatus and method for separation of gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.