Sample records for external mixture formation

  1. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    PubMed

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  2. Mechanism of SOA formation determines magnitude of radiative effects

    NASA Astrophysics Data System (ADS)

    Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang

    2017-11-01

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of ‑0.05 W m‑2. When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is ‑0.07 W m‑2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.

  3. Mechanism of SOA formation determines magnitude of radiative effects

    DOE PAGES

    Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing; ...

    2017-11-13

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface areamore » and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.« less

  4. Mechanism of SOA formation determines magnitude of radiative effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface areamore » and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.« less

  5. Mechanism of SOA Formation Determines Magnitude of Radiative Effects

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Penner, J.; Lin, G.; Zhou, C.

    2017-12-01

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.

  6. Mechanism of SOA formation determines magnitude of radiative effects

    PubMed Central

    Penner, Joyce E.; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang

    2017-01-01

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of −0.05 W m−2. When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is −0.07 W m−2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing. PMID:29133426

  7. Mechanism of SOA formation determines magnitude of radiative effects.

    PubMed

    Zhu, Jialei; Penner, Joyce E; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang

    2017-11-28

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO 2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m -2 When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is -0.07 W m -2 , even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing. Copyright © 2017 the Author(s). Published by PNAS.

  8. Internal zone growth method for producing metal oxide metal eutectic composites

    DOEpatents

    Clark, Grady W.; Holder, John D.; Pasto, Arvid E.

    1980-01-01

    An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.

  9. Mathematics of thermal diffusion in an exponential temperature field

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqi; Bai, Wenyu; Diebold, Gerald J.

    2018-04-01

    The Ludwig-Soret effect, also known as thermal diffusion, refers to the separation of gas, liquid, or solid mixtures in a temperature gradient. The motion of the components of the mixture is governed by a nonlinear, partial differential equation for the density fractions. Here solutions to the nonlinear differential equation for a binary mixture are discussed for an externally imposed, exponential temperature field. The equation of motion for the separation without the effects of mass diffusion is reduced to a Hamiltonian pair from which spatial distributions of the components of the mixture are found. Analytical calculations with boundary effects included show shock formation. The results of numerical calculations of the equation of motion that include both thermal and mass diffusion are given.

  10. Coupling of demixing and magnetic ordering phase transitions probed by turbidimetric measurements in a binary mixture doped with magnetic nanoparticles.

    PubMed

    Hernández-Díaz, Lorenzo; Hernández-Reta, Juan Carlos; Encinas, Armando; Nahmad-Molinari, Yuri

    2010-05-19

    We present a novel study on the effect of a magnetic field applied on a binary mixture doped with magnetic nanoparticles close to its demixing transition. Turbidity measurements in the Faraday configuration show that the effect of applying an external field produces changes in the critical opalescence of the mixture that allow us to track an aggregation produced by critical Casimir forces and a reversible aggregation due to the formation of chain-like flocks in response to the external magnetic field. The observation of a crossover of the aggregation curves through optical signals is interpreted as the evolution from low to high power dispersion nuclei due to an increase in the radius of the condensation seed brought about by Casimir or magnetic interactions. Finally, evidence of an enhanced magnetocaloric effect due to the coupling between mixing and ordering phase transitions is presented which opens up a nonsolid state approach of designing refrigerating cycles and devices.

  11. Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    DeSalvo, B. J.; Patel, Krutik; Johansen, Jacob; Chin, Cheng

    2017-12-01

    We report on the formation of a stable quantum degenerate mixture of fermionic 6Li and bosonic 133Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.

  12. Immersion freezing of internally and externally mixed mineral dust species analyzed by stochastic and deterministic models

    NASA Astrophysics Data System (ADS)

    Wong, B.; Kilthau, W.; Knopf, D. A.

    2017-12-01

    Immersion freezing is recognized as the most important ice crystal formation process in mixed-phase cloud environments. It is well established that mineral dust species can act as efficient ice nucleating particles. Previous research has focused on determination of the ice nucleation propensity of individual mineral dust species. In this study, the focus is placed on how different mineral dust species such as illite, kaolinite and feldspar, initiate freezing of water droplets when present in internal and external mixtures. The frozen fraction data for single and multicomponent mineral dust droplet mixtures are recorded under identical cooling rates. Additionally, the time dependence of freezing is explored. Externally and internally mixed mineral dust droplet samples are exposed to constant temperatures (isothermal freezing experiments) and frozen fraction data is recorded based on time intervals. Analyses of single and multicomponent mineral dust droplet samples include different stochastic and deterministic models such as the derivation of the heterogeneous ice nucleation rate coefficient (J­­het), the single contact angle (α) description, the α-PDF model, active sites representation, and the deterministic model. Parameter sets derived from freezing data of single component mineral dust samples are evaluated for prediction of cooling rate dependent and isothermal freezing of multicomponent externally or internally mixed mineral dust samples. The atmospheric implications of our findings are discussed.

  13. Hydrogen combustion in tomorrow's energy technology

    NASA Astrophysics Data System (ADS)

    Peschka, W.

    The fundamental characteristics of hydrogen combustion and the current status of hydrogen energy applications technology are reviewed, with an emphasis on research being pursued at DFVLR. Topics addressed include reaction mechanisms and pollution, steady-combustion devices (catalytic heaters, H2/air combustors, H2/O2 rocket engines, H2-fueled jet engines, and gas and steam turbine processes), unsteady combustion (in internal-combustion engines with internal or external mixture formation), and feasibility studies of hydrogen-powered automobiles. Diagrams, drawings, graphs, and photographs are provided.

  14. Spontaneous formation of nanometer scale tubular vesicles in aqueous mixtures of lipid and block copolymer amphiphiles.

    PubMed

    Lim, Seng Koon; Wong, Andrew S W; de Hoog, Hans-Peter M; Rangamani, Padmini; Parikh, Atul N; Nallani, Madhavan; Sandin, Sara; Liedberg, Bo

    2017-02-08

    Many common amphiphiles self-assemble in water to produce heterogeneous populations of discrete and symmetric but polydisperse and multilamellar vesicles isolating the encapsulated aqueous core from the surrounding bulk. But when mixtures of amphiphiles of vastly different elastic properties co-assemble, their non-uniform molecular organization can stabilize lower symmetries and produce novel shapes. Here, using high resolution electron cryomicroscopy and tomography, we identify the spontaneous formation of a membrane morphology consisting of unilamellar tubular vesicles in dilute aqueous solutions of binary mixtures of two different amphiphiles of vastly different origins. Our results show that aqueous phase mixtures of a fluid-phase phospholipid and an amphiphilic block copolymer spontaneously assume a bimodal polymorphic character in a composition dependent manner: over a broad range of compositions (15-85 mol% polymer component), a tubular morphology co-exists with spherical vesicles. Strikingly, in the vicinity of equimolar compositions, an exclusively tubular morphology (L t ; diameter, ∼15 nm; length, >1 μm; core, ∼2.0 nm; wall, ∼5-6 nm) emerges in an apparent steady state. Theory suggests that the spontaneous stabilization of cylindrical vesicles, unaided by extraneous forces, requires a significant spontaneous bilayer curvature, which in turn necessitates a strongly asymmetric membrane composition. We confirm that such dramatic compositional asymmetry is indeed produced spontaneously in aqueous mixtures of a lipid and polymer through two independent biochemical assays - (1) reduction in the quenching of fluorophore-labeled lipids and (2) inhibition in the activity of externally added lipid-hydrolyzing phospholipase A2, resulting in a significant enrichment of the polymer component in the outer leaflet. Taken together, these results illustrate the coupling of the membrane shape with local composition through spontaneous curvature generation under conditions of asymmetric distribution of mixtures of disparate amphiphiles.

  15. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    PubMed

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    Aerosol optical properties of external and core-shell mixtures of aerosol species present in the atmosphere are calculated in this study for different relative humidities. Core-shell Mie calculations are performed using the values of radii, refractive indices and densities of aerosol species that act as core and shell, and the core-shell radius ratio. The single scattering albedo (SSA) is higher when the absorbing species (black carbon, BC) is the core, while for a sulfate core SSA does not vary significantly as the BC in the shell dominates the absorption. Absorption gets enhanced in core-shell mixing of absorbing and scattering aerosols when compared to their external mixture. Thus, SSA is significantly lower for a core-shell mixture than their external mixture. SSA is more sensitive to core-shell ratio than mode radius when BC is the core. The extinction coefficient, SSA and asymmetry parameter are higher for external mixing when compared to BC (core)-water soluble aerosol (shell), and water soluble aerosol (core)-BC (shell) mixtures in the relative humidity range of 0 to 90%. Spectral SSA exhibits the behaviour of the species which acts as a shell in core-shell mixing. The asymmetry parameter for an external mixture of water soluble aerosol and BC is higher than BC (core)-water soluble aerosol (shell) mixing and increases as function of relative humidity. The asymmetry parameter for the water soluble aerosol (core)-BC (shell) is independent of relative humidity as BC is hydrophobic. The asymmetry parameter of the core-shell mixture decreases when BC aerosols are involved in mixing, as the asymmetry parameter of BC is lower. Aerosol optical depth (AOD) of core-shell mixtures increases at a higher rate when the relative humidity exceeds 70% in continental clean and urban aerosol models, whereas AOD remains the same when the relative humidity exceeds 50% in maritime aerosol models. The SSA for continental aerosols varies for core-shell mixing of water soluble aerosol (core)-shell (BC) when compared to their external mixture, while the SSA for maritime aerosols does not vary significantly for different mixing scenarios because of the dominance of sea salt aerosols. Thus, these results confirm that aerosol mixing can modify the physical and optical characteristics of aerosols, which vary as a function of relative humidity. These calculations will be useful in parameterising the effect of core-shell vs. external mixing of aerosols in global climate models, and in the evaluation of aerosol radiative effects.

  16. Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.

    2015-07-01

    We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.

  17. Analytical solutions for coagulation and condensation kinetics of composite particles

    NASA Astrophysics Data System (ADS)

    Piskunov, Vladimir N.

    2013-04-01

    The processes of composite particles formation consisting of a mixture of different materials are essential for many practical problems: for analysis of the consequences of accidental releases in atmosphere; for simulation of precipitation formation in clouds; for description of multi-phase processes in chemical reactors and industrial facilities. Computer codes developed for numerical simulation of these processes require optimization of computational methods and verification of numerical programs. Kinetic equations of composite particle formation are given in this work in a concise form (impurity integrated). Coagulation, condensation and external sources associated with nucleation are taken into account. Analytical solutions were obtained in a number of model cases. The general laws for fraction redistribution of impurities were defined. The results can be applied to develop numerical algorithms considerably reducing the simulation effort, as well as to verify the numerical programs for calculation of the formation kinetics of composite particles in the problems of practical importance.

  18. Effects of water vapor on the oxidation behavior of alumina and chromia forming superalloys at temperatures between 700°C and 1000°C

    NASA Astrophysics Data System (ADS)

    Hance, Kivilcim Onal

    Several superalloys and Ni-Cr alloys were tested at temperatures between 700°C and 1000°C in dry air and in air/H2O mixtures, whereby the effects of water vapor on the formation of alumina and chromia scales were investigated. The experimental parameters included temperature of testing, composition of the reactive gases, thermal cycling and the composition of the underlying alloy. Water vapor affected the oxidation characteristics of alumina and chromia in different ways. Selective oxidation of Al was not favored in air/H 2O mixtures and at low reaction temperatures. The alloy composition was critical in developing and maintaining continuous protective scales. For alumina-forming systems, higher Al and Cr contents were found to be beneficial for improved resistance against attack. Significant additions of Hf to the alloys resulted in accelerated internal oxidation at 1000°C. Transient oxidation was more profound in air/H2O mixtures in comparison to dry air. The adherence of scales was adversely affected by water vapor at 1000°C. Water vapor did not affect the selective oxidation of Cr. The major impact of H2O on chromia scales was the accelerated formation of volatile Cr-species which makes the underlying alloy more vulnerable to attack by reactive gases. These reactions were not significant in dry air at 900°C and below. The transient oxidation was not adversely affected by water vapor on Ni-Cr systems. The scale spallation was more profound in dry air. The study showed that the main degradation mechanism for chromia in wet air was the formation of vapor Cr-species. On the contrary, scale spallation was more detrimental in dry air. Additions of Ce improved the adherence of chromia in each environment. Ce furthermore decreased the chromia formation rate in dry air. It was not clear if the element had the same effect in air/H2O. The presence of water vapor affected the morphology of chromia. The thin external TiO2 that developed over chromia on IN 738 reduced the vaporization of chromia. This indicated that the oxidation resistance of chromia formers can be improved by alloying with elements that would diffuse to the oxide/gas interface and develop an external scale.

  19. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    PubMed

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.

    PubMed

    Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario

    2014-11-01

    Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (Interagency Science Consultation Draft)

    EPA Science Inventory

    On February 26, 2010, the draft Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures document and the charge to external peer reviewers were released for external peer review and public comment. The draft document and t...

  2. Patterning in systems driven by nonlocal external forces.

    PubMed

    Luneville, L; Mallick, K; Pontikis, V; Simeone, D

    2016-11-01

    This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.

  3. Patterning in systems driven by nonlocal external forces

    NASA Astrophysics Data System (ADS)

    Luneville, L.; Mallick, K.; Pontikis, V.; Simeone, D.

    2016-11-01

    This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.

  4. The nonlinear model for emergence of stable conditions in gas mixture in force field

    NASA Astrophysics Data System (ADS)

    Kalutskov, Oleg; Uvarova, Liudmila

    2016-06-01

    The case of M-component liquid evaporation from the straight cylindrical capillary into N - component gas mixture in presence of external forces was reviewed. It is assumed that the gas mixture is not ideal. The stable states in gas phase can be formed during the evaporation process for the certain model parameter valuesbecause of the mass transfer initial equationsnonlinearity. The critical concentrations of the resulting gas mixture components (the critical component concentrations at which the stable states occur in mixture) were determined mathematically for the case of single-component fluid evaporation into two-component atmosphere. It was concluded that this equilibrium concentration ratio of the mixture components can be achieved by external force influence on the mass transfer processes. It is one of the ways to create sustainable gas clusters that can be used effectively in modern nanotechnology.

  5. Pressure resistance of copper benzene-1,3,5-tricarboxylate - carbon aerogel composites

    NASA Astrophysics Data System (ADS)

    Domán, Andrea; Nagy, Balázs; Nichele, Laura P.; Srankó, Dávid; Madarász, János; László, Krisztina

    2018-03-01

    The protective effect of a resorcinol - formaldehyde based carbon aerogel (CA) support was compared in two different forms of the hybrid made of copper benzene-1,3,5-tricarboxilate (HKUST-1) and CA. HKUST-1:CA with identical mass ratio (1:1). HKUST-1+CAis a physical mixture while in HKUST-1@CA the metal organic framework (MOF) crystals were grown on CA under solvothermal conditions. The effect of water vapour and the external pressure (25-200 bar) was investigated. TG/DTG data show that the prehistory of the samples has a strong influence on their thermal behaviour and nitrogen data suggest that part of the MOF grows in the wider pores of the HKUST-1@CA sample. Although there are no dramatic differences in the water adsorption isotherms, the physical mixture is slightly more proficient. In dry samples under compression the crystalline structure of the free HKUST-1 is well conserved. The nanoscale structure of the hybrids is sensitive to applied pressure and formation of mesopores of wide size distribution occurs. No significant difference was found between the corresponding CH4 adsorption isotherms of the composite samples, either in the as-prepared samples or after compression at 100 bar. After being exposed to high external pressure the CH4 uptake seems to be governed by the MOF.

  6. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.

    PubMed

    Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y

    2012-12-01

    Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Detection of cocrystal formation based on binary phase diagrams using thermal analysis.

    PubMed

    Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide

    2013-01-01

    Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.

  8. Ambient cure polyimide foams prepared from aromatic polyisocyanates, aromatic polycarboxylic compounds, furfuryl alcohol, and a strong inorganic acid

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Riccitiello, Salvatore R. (Inventor); Hamermesh, Charles L. (Inventor)

    1980-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, e.g., pyromellitic dianhydride, with an aromatic polyisocyanate, e.g., polymethylene polyphenylisocyanate (PAPI) in the presence of an inorganic acid and a lower molecular weight alcohol, e.g., dilute sulfuric acid or phosphoric acid and furfuryl alcohol. The exothermic reaction between the acid and the alcohol provides the heat necessary for the other reactants to polymerize without the application of any external heat. Such mixtures, therefore, are ideally suited for in situ foam formation, especially where the application of heat is not practical or possible.

  9. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.

    PubMed

    Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain; Haiges, Ralf; Jones, John-Paul; May, Robert B; Prakash, G K Surya; Olah, George A

    2015-04-24

    Due to the intermittent nature of most renewable energy sources, such as solar and wind, energy storage is increasingly required. Since electricity is difficult to store, hydrogen obtained by electrochemical water splitting has been proposed as an energy carrier. However, the handling and transportation of hydrogen in large quantities is in itself a challenge. We therefore present here a method for hydrogen storage based on a CO2 (HCO3 (-) )/H2 and formate equilibrium. This amine-free and efficient reversible system (>90 % yield in both directions) is catalyzed by well-defined and commercially available Ru pincer complexes. The formate dehydrogenation was triggered by simple pressure swing without requiring external pH control or the change of either the solvent or the catalyst. Up to six hydrogenation-dehydrogenation cycles were performed and the catalyst performance remained steady with high selectivity (CO free H2 /CO2 mixture was produced). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Submaximal exercise with self-contained breathing apparatus: the effects of hyperoxia and inspired gas density.

    PubMed

    Eves, Neil D; Petersen, Stewart R; Jones, Richard L

    2003-10-01

    The self-contained breathing apparatus (SCBA) used by firefighters, and other working in dangerous environments, adds an external resistance to expiration, which increases expiratory work during heavy exercise. Compressed air is typically used with the SCBA and we hypothesized that changing the inspired oxygen concentration and/or gas density with helium would reduce the external expiratory resistance. On separate days, 15 men completed four 30-min bouts of treadmill exercise dressed in protective clothing and breathing the test gases through the SCBA. Four different gas mixtures were assigned in random order: [compressed air (NOX: 21% O2, 79% N2), hyperoxia (HOX: 40% O2, 60% N2), normoxic-helium (HE-OX: 21% O2, 79% He), and helium-hyperoxia (HE-HOX: 40% O2, 60% He)]. Compared with NOX, the two helium mixtures (but not HOX), decreased the external breathing resistance and all three gas mixtures decreased the peak expired mask pressure and the ventilatory mass moved. Both hyperoxic mixtures decreased blood lactate and the rating of perceived exertion was decreased at 30 min with HE-HOX. These results demonstrate that the helium-based gas mixtures, and to a lesser extent HOX, reduce the expiratory work associated with the SCBA during strenuous exercise.

  11. Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects

    PubMed Central

    2017-01-01

    External magnetic fields can impact recombination yields of photoinduced electron transfer reactions by affecting the spin dynamics in transient, spin-correlated radical pair intermediates. For exciplex-forming donor–acceptor systems, this magnetic field effect (MFE) can be investigated sensitively by studying the delayed recombination fluorescence. Here, we investigate the effect of preferential solvation in microheterogeneous solvent mixtures on the radical pair dynamics of the system 9,10-dimethylanthracene (fluorophore)/N,N-dimethylaniline (quencher) by means of time-resolved magnetic field effect (TR-MFE) measurements, wherein the exciplex emission is recorded in the absence and the presence of an external magnetic field using time-correlated single photon counting (TCSPC). In microheterogeneous environments, the MFE of the exciplex emission occurs on a faster time scale than in iso-dielectric homogeneous solvents. In addition, the local polarity reported by the exciplex is enhanced compared to homogeneous solvent mixtures of the same macroscopic permittivity. Detailed analyses of the TR-MFE reveal that the quenching reaction directly yielding the radical ion pair is favored in microheterogeneous environments. This is in stark contrast to homogeneous media, for which the MFE predominantly involves direct formation of the exciplex, its subsequent dissociation to the magneto-sensitive radical pair, and re-encounters. These observations provide evidence for polar microdomains and enhanced caging, which are shown to have a significant impact on the reaction dynamics in microheterogeneous binary solvents. PMID:28263599

  12. Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects.

    PubMed

    Pham, Van Thi Bich; Hoang, Hao Minh; Grampp, Günter; Kattnig, Daniel R

    2017-03-30

    External magnetic fields can impact recombination yields of photoinduced electron transfer reactions by affecting the spin dynamics in transient, spin-correlated radical pair intermediates. For exciplex-forming donor-acceptor systems, this magnetic field effect (MFE) can be investigated sensitively by studying the delayed recombination fluorescence. Here, we investigate the effect of preferential solvation in microheterogeneous solvent mixtures on the radical pair dynamics of the system 9,10-dimethylanthracene (fluorophore)/N,N-dimethylaniline (quencher) by means of time-resolved magnetic field effect (TR-MFE) measurements, wherein the exciplex emission is recorded in the absence and the presence of an external magnetic field using time-correlated single photon counting (TCSPC). In microheterogeneous environments, the MFE of the exciplex emission occurs on a faster time scale than in iso-dielectric homogeneous solvents. In addition, the local polarity reported by the exciplex is enhanced compared to homogeneous solvent mixtures of the same macroscopic permittivity. Detailed analyses of the TR-MFE reveal that the quenching reaction directly yielding the radical ion pair is favored in microheterogeneous environments. This is in stark contrast to homogeneous media, for which the MFE predominantly involves direct formation of the exciplex, its subsequent dissociation to the magneto-sensitive radical pair, and re-encounters. These observations provide evidence for polar microdomains and enhanced caging, which are shown to have a significant impact on the reaction dynamics in microheterogeneous binary solvents.

  13. Magma Fragmentation

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge M.

    2015-05-01

    Magma fragmentation is the breakup of a continuous volume of molten rock into discrete pieces, called pyroclasts. Because magma contains bubbles of compressible magmatic volatiles, decompression of low-viscosity magma leads to rapid expansion. The magma is torn into fragments, as it is stretched into hydrodynamically unstable sheets and filaments. If the magma is highly viscous, resistance to bubble growth will instead lead to excess gas pressure and the magma will deform viscoelastically by fracturing like a glassy solid, resulting in the formation of a violently expanding gas-pyroclast mixture. In either case, fragmentation represents the conversion of potential energy into the surface energy of the newly created fragments and the kinetic energy of the expanding gas-pyroclast mixture. If magma comes into contact with external water, the conversion of thermal energy will vaporize water and quench magma at the melt-water interface, thus creating dynamic stresses that cause fragmentation and the release of kinetic energy. Lastly, shear deformation of highly viscous magma may cause brittle fractures and release seismic energy.

  14. Dendrimersomes Exhibit Lamellar-to-Sponge Phase Transitions.

    PubMed

    Wilner, Samantha E; Xiao, Qi; Graber, Zachary T; Sherman, Samuel E; Percec, Virgil; Baumgart, Tobias

    2018-05-15

    Lamellar to nonlamellar membrane shape transitions play essential roles in key cellular processes, such as membrane fusion and fission, and occur in response to external stimuli, including drug treatment and heat. A subset of these transitions can be modeled by means of thermally inducible amphiphile assemblies. We previously reported on mixtures of hydrogenated, fluorinated, and hybrid Janus dendrimers (JDs) that self-assemble into complex dendrimersomes (DMSs), including dumbbells, and serve as promising models for understanding the complexity of biological membranes. Here we show, by means of a variety of complementary techniques, that DMSs formed by single JDs or by mixtures of JDs undergo a thermally induced lamellar-to-sponge transition. Consistent with the formation of a three-dimensional bilayer network, we show that DMSs become more permeable to water-soluble fluorophores after transitioning to the sponge phase. These DMSs may be useful not only in modeling isotropic membrane rearrangements of biological systems but also in drug delivery since nonlamellar delivery vehicles can promote endosomal disruption and cargo release.

  15. Equivalence of internal and external mixture schemes of single scattering properties in vector radiative transfer

    PubMed Central

    Mukherjee, Lipi; Zhai, Peng-Wang; Hu, Yongxiang; Winker, David M.

    2018-01-01

    Polarized radiation fields in a turbid medium are influenced by single-scattering properties of scatterers. It is common that media contain two or more types of scatterers, which makes it essential to properly mix single-scattering properties of different types of scatterers in the vector radiative transfer theory. The vector radiative transfer solvers can be divided into two basic categories: the stochastic and deterministic methods. The stochastic method is basically the Monte Carlo method, which can handle scatterers with different scattering properties explicitly. This mixture scheme is called the external mixture scheme in this paper. The deterministic methods, however, can only deal with a single set of scattering properties in the smallest discretized spatial volume. The single-scattering properties of different types of scatterers have to be averaged before they are input to deterministic solvers. This second scheme is called the internal mixture scheme. The equivalence of these two different mixture schemes of scattering properties has not been demonstrated so far. In this paper, polarized radiation fields for several scattering media are solved using the Monte Carlo and successive order of scattering (SOS) methods and scattering media contain two types of scatterers: Rayleigh scatterers (molecules) and Mie scatterers (aerosols). The Monte Carlo and SOS methods employ external and internal mixture schemes of scatterers, respectively. It is found that the percentage differences between radiances solved by these two methods with different mixture schemes are of the order of 0.1%. The differences of Q/I, U/I, and V/I are of the order of 10−5 ~ 10−4, where I, Q, U, and V are the Stokes parameters. Therefore, the equivalence between these two mixture schemes is confirmed to the accuracy level of the radiative transfer numerical benchmarks. This result provides important guidelines for many radiative transfer applications that involve the mixture of different scattering and absorptive particles. PMID:29047543

  16. Fate and transport of linear alkylbenzenesulfonate in a sewage- contaminated aquifer: A comparison of natural-gradient pulsed tracer tests

    USGS Publications Warehouse

    Krueger, C.J.; Barber, L.B.; Metge, D.W.; Field, J.A.

    1998-01-01

    Two natural-gradient tracer tests were conducted to determine the transport and biodegradation behavior of linear alkylbenzenesulfonate (LAS) surfactant under in situ conditions in a sewage-contaminated aquifer. The tests were conducted in two biogeochemically distinct zones of the aquifer: (1) an aerobic uncontaminated zone (oxic zone) and (2) a moderately aerobic, sewage-contaminated zone (transition zone). Chromatographic separation of the surfactant mixture was observed in both zones and attributed to the retardation of the longer alkyl chain homologues during transport. No significant loss of IAS mass was observed for the oxic zone while 20% of the LAS mass injected into the transition zone was removed due to biodegradation. Biodegradation preferentially removed the longer alkyl chain homologues and the external isomers (i.e., 2- and 3-phenyl). The removal of LAS mass coincided with a decrease in dissolved oxygen concentrations, the appearance of LAS metabolites, and an increase in the number of free-living bacteria with a concomitant change in bacteria morphology. The formation of LAS metabolites accounted for 86% of the LAS mass removed in the transition zone. Over the duration of the test, sorption and biodegradation enriched the LAS mixture in the more water-soluble and biologically resistant components.Two natural-gradient tracer tests were conducted to determine the transport and biodegradation behavior of linear alkylbenzenesulfonate (LAS) surfactant under in situ conditions in a sewage-contaminated aquifer. The tests were conducted in two biogeochemically distinct zones of the aquifer: (1) an aerobic uncontaminated zone (oxic zone) and (2) a moderately aerobic, sewage-contaminated zone (transition zone). Chromatographic separation of the surfactant mixture was observed in both zones and attributed to the retardation of the longer alkyl chain homologues during transport. No significant loss of LAS mass was observed for the oxic zone while 20% of the LAS mass injected into the transition zone was removed due to biodegradation. Biodegradation preferentially removed the longer alkyl chain homologues and the external isomers (i.e., 2- and 3-phenyl). The removal of LAS mass coincided with a decrease in dissolved oxygen concentrations, the appearance of LAS metabolites, and an increase in the number of free-living bacteria with a concomitant change in bacteria morphology. The formation of LAS metabolites accounted for 86% of the LAS mass removed in the transition zone. Over the duration of the test, sorption and biodegradation enriched the LAS mixture in the more water-soluble and biologically resistant components.

  17. Dynamic oxidation behavior of TD-NiCr alloy with different surface pretreatments

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Tenney, D. R.; Herring, H. W.

    1975-01-01

    Oxidation tests of TD-NiCr alloy with different surface pretreatments were conducted in a Mach-5 arc-jet at 1200 C and 0.002 lb/sec flowing air environment. The mechanisms responsible for the observed oxidation behavior are examined. The presence of atomic oxygen in the air stream plays a significant role in determining the oxidation characteristic of the alloy. The rate of Cr2O3 vaporization by formation of volatile CrO3 is greatly enhanced by the flowing conditions. The typical microstructure of oxides formed in the dynamic tests consists of an external layer of NiO with a porous mushroom-type morphology, an intermediate layer of NiO and Cr2O3 oxide mixture, and a continuous inner layer of Cr2O3 in contact with the Cr-depleted alloy substrate. Three basic processes underlying the formation of mushroom-type NiO are identified and discussed. The oxidation rate is determined by the rate of vaporization of NiO. Surface pretreatment has a significant effect on the oxidation behavior of the alloy in the early stage of oxidation, but becomes less important as exposure time increases. Mechanical polishing induces surface recrystallization, but promotes the concurrence of external growth of NiO and internal oxidation of the alloy in the dynamic atmosphere.

  18. Abnormal characteristics of binary molecular clusters in DMSO–ethanol mixtures under external electric fields

    NASA Astrophysics Data System (ADS)

    Wu, Zhiyan; Huang, Kama

    2018-05-01

    For the nonlinearly phenomena on the dielectric properties of dimethyl sulfoxide (DMSO)-ethanol mixtures under a low intensity microwave field, we propose a conjecture that there exist some abnormal molecular clusters. To interpret the mechanism of abnormal phenomena and confirm our conjecture about the existence of abnormal molecular clusters, an in-depth investigation about the structure evolutions of (DMSO)m(C2H5OH)n (m = 0-4; n = 0-4; m + n ≤ 4) molecular clusters induced by external electric fields has been given by using density functional theory. The results show that there exist some binary molecular clusters with large cluster radii in mixtures, and some of them are unstable under exposure of electric fields. It implies that the existence of certain abnormal molecular clusters in DMSO-ethanol mixtures results in their abnormality of dielectric properties.

  19. A study of the mixing state of black carbon in urban zone

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Roger, J. C.; Despiau, S.; Putaud, J. P.; Dubovik, O.

    2004-02-01

    The knowledge of the mixing state of black carbon particle with other aerosol species is critical for adequate simulations of the direct radiative effect of black carbon particles and its effect on climate. This paper reports the investigation of the mixing state of black carbon aerosol in the urban zone. The study uses a combination of in situ and ground-based remote sensing observations conducted during the ESCOMPTE experiment, which took place in industrialized region in France in summer of 2001. The criteria we used for identifying mixing state relies on the known enhancement of absorption for aerosol composed by internal versus external mixtures of black carbon with weakly absorbing aerosol components. First, using in situ aerosol data, we performed Mie computations and reconstructed the single scattering albedo of aerosol for the two different mixing assumptions: black carbon mixed externally or internally with other aerosol species. Then, we compared the obtained values ωo,int and ωo,ext with the retrievals of ωo from independent AERONET Sun-photometric measurements. The aerosol single scattering albedo (ωo,aer.) derived from the AERONET photometer observations (with the mean value equal to 0.84 ± 0.04) was found to be close to ωo,ext reconstructed from in situ observation under assumptions of external mixture. This similarity between AERONET values and external mixture simulations was observed during all the days studied. Our conclusion on external mixture of black carbon aerosol with other particles in urban zone during ESCOMPTE (close to the pollution source) is coherent with observations made during other independent studies reported in a number of recent publications.

  20. Microlayered flow structure around an acoustically levitated droplet under a phase-change process.

    PubMed

    Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi

    2016-01-01

    The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction.

  1. Effect of nitric oxide on photochemical ozone formation in mixtures of air with molecular chlorine and with trichlorofluoromethane

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Wong, E. L.

    1978-01-01

    Ozone formation in a reaction chamber at room temperature and atmospheric pressure were studied for the photolysis of mixtures of NO with either Cl2 or CFCl3 in air. Both Cl2 + NO and CFCl3 + NO in air strongly inhibited O3 formation during the entire 3 to 4 hour reaction. A chemical mechanism that explains the results was presented. An important part of this mechanism was the formation and destruction of chlorine nitrate. Computations were performed with this same mechanism for CFCl3-NO-air mixtures at stratospheric temperatures, pressures, and concentrations. Results showed large reductions in steady-state O3 concentrations in these mixtures as compared with pure air.

  2. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive... is free from admixture with other substances. (2) Color additive mixtures for external drug use made...

  3. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive... is free from admixture with other substances. (2) Color additive mixtures for external drug use made...

  4. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive... is free from admixture with other substances. (2) Color additive mixtures for external drug use made...

  5. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive... is free from admixture with other substances. (2) Color additive mixtures for external drug use made...

  6. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive... is free from admixture with other substances. (2) Color additive mixtures for external drug use made...

  7. A Study on the Effect of Stratified Mixture Formation on Combustion Characteristics in a Constant Volume Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Lee, Kihyung; Lee, Changhee; Jeoung, Haeyoung

    It is well known that a lean burn engine caused by stratified mixture formation has many kinds of advantages to combustion characteristics, such as higher thermal efficiency and lower CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can achieve low fuel consumption, it produces much unburned hydrocarbon and soot because of inhomogeneity of the charge mixture in the combustion chamber. Therefore, it is necessary to investigate the effect of mixture formation on combustion characteristics in order to obtain the stable lean combustion. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The effect of mixture formation on the combustion characteristics in the chamber was examined experimentally. In addition, the effect of turbulence on stratified charge combustion process was observed by schlieren photography. From this study, as the swirl intensity increases, (Sv)max is rapidly enhanced and the period of combustion is shortened. We also find that the stratification degree can be quantified by using burning velocity and it was controlled by induced air pressure and turbulent intensity.

  8. SOA formation from photooxidation of naphthalene and methylnaphthalenes with m-xylene and surrogate mixtures

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Li; Li, Lijie; Tang, Ping; Cocker, David R.

    2018-05-01

    SOA formation is not well predicted in current models in urban area. The interaction among multiple anthropogenic volatile organic compounds is essential for the SOA formation in the complex urban atmosphere. Secondary organic aerosol (SOA) from the photooxidation of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene as well as individual polycyclic aromatic hydrocarbons (PAHs) mixed with m-xylene or an atmospheric surrogate mixture was explored in the UCR CE-CERT environmental chamber under urban relevant low NOx and extremely low NOx (H2O2) conditions. Addition of m-xylene suppressed SOA formation from the individual PAH precursor. A similar suppression effect on SOA formation was observed during the surrogate mixture photooxidation suggesting the importance of gas-phase chemical reactivity to SOA formation. The SOA growth rate for different PAH-m-xylene mixtures was strongly correlated with initial [HO2]/[RO2] ratio but negatively correlated with initial m-xylene/NO ratio. Decreasing SOA formation was observed for increasing m-xylene/PAHs ratios and increasing initial m-xylene/NO ratio. The SOA chemical composition characteristics such as f44 versus f43, H/C ratio, O/C ratio, and the oxidation state of the carbon OSbarc were consistent with a continuously aging with the SOA exhibiting characteristics of both individual precursors. SOA formation from PAHs was also suppressed within an atmospheric surrogate mixture compared to the SOA formed from individual PAHs, indicating that atmospheric reactivity directly influences SOA formation from PAHs.

  9. Fracture healing in mice under controlled rigid and flexible conditions using an adjustable external fixator.

    PubMed

    Röntgen, Viktoria; Blakytny, Robert; Matthys, Romano; Landauer, Mario; Wehner, Tim; Göckelmann, Melanie; Jermendy, Philipp; Amling, Michael; Schinke, Thorsten; Claes, Lutz; Ignatius, Anita

    2010-11-01

    Mice are increasingly used to investigate mechanobiology in fracture healing. The need exists for standardized models allowing for adjustment of the mechanical conditions in the fracture gap. We introduced such a model using rigid and flexible external fixators with considerably different stiffness (axial stiffnesses of 18.1 and 0.82 N/mm, respectively). Both fixators were used to stabilize a 0.5 mm osteotomy gap in the femur of C57BL/6 mice (each n = 8). Three-point bending tests, µCT, and histomorphometry demonstrated a different healing pattern after 21 days. Both fixations induced callus formation with a mixture of intramembranous and enchondral ossification. Under flexible conditions, the bending stiffness of the callus was significantly reduced, and a larger but qualitatively inferior callus with a significantly lower fraction of bone but a higher fraction of cartilage and soft tissue was formed. Monitoring of the animal movement and the ground reaction forces demonstrated physiological loading with no significant differences between the groups, suggesting that the differences in healing were not based on a different loading behavior. In summary, flexible external fracture fixation of the mouse femur led to delayed fracture healing in comparison to a more rigid situation. © 2010 Orthopaedic Research Society.

  10. Microlayered flow structure around an acoustically levitated droplet under a phase-change process

    PubMed Central

    Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi

    2016-01-01

    The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction. PMID:28725723

  11. Development of a Relative Potency Factor (Rpf) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of polycyclic aromatic hydrocarbon (PAH) mixtures that when finalized will appear on the Integrated Risk Information System (IRIS) database. ...

  12. Characterization of the external and internal flow structure of an aerated-liquid injector using X-ray radiography and fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peltier, Scott J.; Lin, Kuo-Cheng; Carter, Campbell D.

    In the present study, the internal flowfield of aerated-liquid fuel injectors is examined through x-ray radiography and x-ray fluorescence. An inside-out injector, consisting of a perforated aerating tube within an annular liquid stream, sprays into a quiescent environment at a fixed mass flow rate of water and nitrogen gas. The liquid is doped with bromine (in the form of NaBr) to create an x-ray fluorescence signal. This allows for reasonable absorption and fluorescence signals, and one or both diagnostics can be used to track the liquid distribution. The injector housing is fabricated from beryllium (Be), which allows the internal flowfieldmore » to be examined (as Be has relatively low x-ray attenuation coefficient). Two injector geometries are compared, illustrating the effects of aerating orifice size and location on the flow evolution. Time-averaged equivalent pathlength (EPL) and line-of-sight averaged density ρ(y) reveal the formation of the two-phase mixture, showing that the liquid film thickness along the injector walls is a function of the aerating tube geometry, though only upstream of the nozzle. These differences in gas and liquid distribution (between injectors with different aerating tube designs) are suppressed as the mixture traverses the nozzle contraction. The averaged liquid velocity (computed from the density and liquid mass flow rate) reveal a similar trend. This suggests that at least for the current configurations, the plume width, liquid mass distribution, and averaged liquid velocity for the time-averaged external spray are insensitive to the aerating tube geometry.« less

  13. The influence of Kr, CO2, and iso-C4H8 admixtures on the time of the formation of a stable flame front in mixtures of natural gas and isobutylene with oxygen and hydrogen with air under initiation with a spark discharge

    NASA Astrophysics Data System (ADS)

    Rubtsov, N. M.; Seplyarskii, B. S.; Chernysh, V. I.; Tsvetkov, G. I.

    2010-05-01

    High-speed color filming was used to study laminar spherical flame propagation at the initial stage in preliminarily mixed stoichiometric mixtures of natural gas and isobutylene with oxygen containing krypton and carbon dioxide and in hydrogen-air mixtures at atmospheric pressure in a bomb with a constant volume. Under experimental conditions ( T 0 = 298 K, p 0 = 100 torr, spark discharge energy E 0 = 0.91 J), the dilution of mixtures with Kr and CO2 increased the time of formation of a stable flame front by more than 10 times. The introduction of a small chemically active admixture (1.2% isobutylene) into a stoichiometric mixture of hydrogen and air sharply increased the time of formation of a stable flame front, which was evidence of an important role played by the chemical mechanism of the reaction in the formation of the combustion field.

  14. Solid-state synthesis of YAG powders through microwave coupling of oxide/carbon particulate mixtures

    DOE PAGES

    Wildfire, Christina; Sabolsky, Edward M.; Spencer, Michael J.; ...

    2017-06-14

    The rapid synthesis of yttrium aluminum garnet (Y 3Al 15O 12, YAG) powder was investigated through the use of microwave irradiation of the oxide precursor system. For this investigation, an external hybrid heating source was not used. Instead, the rapid heating of the precursor materials (yttria and alumina powders, which are typically transparent to 2.45 GHz microwaves) was initiated by mixing an intrinsic absorbing material (carbon) into the original oxide precursors. The effect of the carbon characteristics, such as carbon source, concentration, particle size, and agglomerate microstructure were evaluated on the efficiency of coupling and resultant oxide reaction. The microwavemore » power was varied to optimize the YAG conversion and eliminate intermediate phase formation. Interactions between the conductive carbon particles and the dielectric oxides within the microwave exposure produced local arching and micro-plasma formation within the powder bed, resulting in the rapid formation of the refractory YAG composition. This optimal conduction led to temperatures of 1000°C that could be achieved in less than 5 min resulting in the formation of > 90 vol% YAG. The understanding of a conductor/dielectric particulate system here, provided insight into possible application of similar systems where microwave irradiation could be used for enhanced solid-state formation, local melting events, and gas phase reactions with a composite powder media.« less

  15. Reversible formation of aminals: a new strategy to control the release of bioactive volatiles from dynamic mixtures.

    PubMed

    Godin, Guillaume; Levrand, Barbara; Trachsel, Alain; Lehn, Jean-Marie; Herrmann, Andreas

    2010-05-14

    Dynamic mixtures generated by reversible aminal formation of fragrance aldehydes with N,N-dibenzyl alkyldiamines in aqueous systems were found to be suitable delivery systems for the controlled release of bioactive volatiles.

  16. Spray drying of poorly soluble drugs from aqueous arginine solution.

    PubMed

    Ojarinta, Rami; Lerminiaux, Louise; Laitinen, Riikka

    2017-10-30

    Co-amorphous drug-amino acid mixtures have shown potential for improving the solid-state stability and dissolution behavior of amorphous drugs. In previous studies, however these mixtures have been produced mainly with small-scale preparation methods, or with methods that have required the use of organic solvents or other dissolution enhancers. In the present study, co-amorphous ibuprofen-arginine and indomethacin-arginine mixtures were spray dried from water. The mixtures were prepared at two drug-arginine molar ratios (1:1 and 1:2). The properties of the prepared mixtures were investigated with differential scanning calorimetry, X-ray powder diffractometry, Fourier-transform infrared spectroscopy and a 24h, non-sink, dissolution study. All mixtures exhibited a single glass transition temperature (T g ), evidence of the formation of homogenous single-phase systems. Fourier transform infrared spectroscopy revealed strong interactions (mainly salt formation) that account for the positive deviation between measured and estimated T g values. No crystallization was observed during a 1-year stability study in either 1:1 or 1:2 mixtures, but in the presence of moisture, handling difficulties were encountered. The formation of co-amorphous salts led to improved dissolution characteristics when compared to the corresponding physical mixtures or to pure crystalline drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Internal versus External Dose for Describing Ternary Metal Mixture (Ni, Cu, Cd) Chronic Toxicity to Lemna minor.

    PubMed

    Gopalapillai, Yamini; Hale, Beverley A

    2017-05-02

    Simultaneous determinations of internal dose ([M] tiss ) and external doses ([M] tot , {M 2+ } in solution) were conducted to study ternary mixture (Ni, Cu, Cd) chronic toxicity to Lemna minor in alkaline solution (pH 8.3). Also, concentration addition (CA) based on internal dose was evaluated as a tool for risk assessment of metal mixture. Multiple regression analysis of dose versus root growth inhibition, as well as saturation binding kinetics, provided insight into interactions. Multiple regressions were simpler for [M] tiss than [M] tot and {M 2+ }, and along with saturation kinetics to the internal biotic ligand(s) in the cytoplasm, they indicated that Ni-Cu-Cd competed for uptake into plant, but once inside, only Cu-Cd shared a binding site. Copper inorganic complexes (hydroxides, carbonates) played a role in metal bioavailability in single metal exposure but not in mixtures. Regardless of interactions, the current regulatory approach of using CA based on [M] tot can sufficiently predict mixture toxicity (∑TU close to 1), but CA based on [M] tiss was closest to unity across a range of doses. Internal dose integrates all metal-metal interactions in solution and during uptake into the organism, thereby providing a more direct metric describing toxicity.

  18. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  19. DIOXIN AND FURAN FORMATION ON FLY ASH FROM A MIXTURE OF CHLOROPHENOLS

    EPA Science Inventory

    To establish the relationship between specific chlorophenol (CP) congener distributions and polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) products this work investigated the formation of PCDDs/Fs from different CP mixtures passed over fly ash under selected reaction ...

  20. Combuster. [low nitrogen oxide formation

    NASA Technical Reports Server (NTRS)

    Mckay, R. A. (Inventor)

    1978-01-01

    A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.

  1. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  2. Demonstration of a rapidly-swept external cavity quantum cascade laser for rapid and sensitive quantification of chemical mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-02-13

    A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.

  3. Cluster formation and percolation in ethanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Gereben, Orsolya; Pusztai, László

    2017-10-01

    Results of systematic molecular dynamics studies of ethanol-water mixtures, over the entire concentration range, were reported previously that agree with experimental X-ray diffraction data. These simulated systems are analyzed in this work to examine cluster formation and percolation, using four different hydrogen bond definitions. Percolation analyses revealed that each mixture (even the one containing 80 mol% ethanol) is above the 3D percolation threshold, with fractal dimensions, df, between 2.6 and 2.9, depending on concentration. Monotype water cluster formation was also studied in the mixtures: 3D water percolation can be found in systems with less than 40 mol% ethanol, with fractal dimensions between 2.53 and 2.84. These observations can be put in parallel with experimental data on some thermodynamic quantities, such as the excess partial molar enthalpy and entropy.

  4. Multimode-singlemode-multimode optical fiber sensor coated with novolac resin for detecting liquid phase alcohol

    NASA Astrophysics Data System (ADS)

    Marfu'ah, Amalia, Niza Rosyda; Hatta, Agus Muhamad; Pratama, Detak Yan

    2018-04-01

    Alcohol sensor based on multimode-singlemode-multimode (MSM) optical fiber with novolac resin as the external medium is proposed and demonstrated experimentally. Novolac resin swells when it is exposed by the alcohol. This effect causes a change in the polymer density leading to the refractive index's variation. The transmission light of the sensor depends on the refractive index of external medium. Based on the results, alcohol sensor based on MSM optical fiber structure using novolac resin has a higher sensitivity compared to the sensor without using novolac resin in the mixture of alcohol and distilled water. Alcohol sensor based on MSM optical fiber structure using novolac resin in the mixture of alcohol and distilled water with a singlemode fiber length of 5 mm has a sensitivity of 0.028972 dBm per % V/V, and in the mixture of alcohol and sugar solution of 10% w/w has a sensitivity of 0.005005 dBm per % V/V.

  5. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  6. Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures.

    PubMed

    Munro, Sarah A; Lund, Steven P; Pine, P Scott; Binder, Hans; Clevert, Djork-Arné; Conesa, Ana; Dopazo, Joaquin; Fasold, Mario; Hochreiter, Sepp; Hong, Huixiao; Jafari, Nadereh; Kreil, David P; Łabaj, Paweł P; Li, Sheng; Liao, Yang; Lin, Simon M; Meehan, Joseph; Mason, Christopher E; Santoyo-Lopez, Javier; Setterquist, Robert A; Shi, Leming; Shi, Wei; Smyth, Gordon K; Stralis-Pavese, Nancy; Su, Zhenqiang; Tong, Weida; Wang, Charles; Wang, Jian; Xu, Joshua; Ye, Zhan; Yang, Yong; Yu, Ying; Salit, Marc

    2014-09-25

    There is a critical need for standard approaches to assess, report and compare the technical performance of genome-scale differential gene expression experiments. Here we assess technical performance with a proposed standard 'dashboard' of metrics derived from analysis of external spike-in RNA control ratio mixtures. These control ratio mixtures with defined abundance ratios enable assessment of diagnostic performance of differentially expressed transcript lists, limit of detection of ratio (LODR) estimates and expression ratio variability and measurement bias. The performance metrics suite is applicable to analysis of a typical experiment, and here we also apply these metrics to evaluate technical performance among laboratories. An interlaboratory study using identical samples shared among 12 laboratories with three different measurement processes demonstrates generally consistent diagnostic power across 11 laboratories. Ratio measurement variability and bias are also comparable among laboratories for the same measurement process. We observe different biases for measurement processes using different mRNA-enrichment protocols.

  7. Influence of oil type on the amounts of acrylamide generated in a model system and in French fries.

    PubMed

    Mestdagh, Frédéric J; De Meulenaer, Bruno; Van Poucke, Christof; Detavernier, Christ'l; Cromphout, Caroline; Van Peteghem, Carlos

    2005-07-27

    Acrylamide formation was studied by use of a new heating methodology, based on a closed stainless steel tubular reactor. Different artificial potato powder mixtures were homogenized and subsequently heated in the reactor. This procedure was first tested for its repeatability. By use of this experimental setup, it was possible to study the acrylamide formation mechanism in the different mixtures, eliminating some variable physical and chemical factors during the frying process, such as heat flux and water evaporation from and oil ingress into the food. As a first application of this optimized heating concept, the influence on acrylamide formation of the type of deep-frying oil was investigated. The results obtained from the experiments with the tubular reactor were compared with standardized French fry preparation tests. In both cases, no significant difference in acrylamide formation could be found between the various heating oils applied. Consequently, the origin of the deep-frying vegetable oils did not seem to affect the acrylamide formation in potatoes during frying. Surprisingly however, when artificial mixtures did not contain vegetable oil, significantly lower concentrations of acrylamide were detected, compared to oil-containing mixtures.

  8. Rapid gas hydrate formation process

    DOEpatents

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  9. Superfluid Boson-Fermion Mixture: Structure Formation and Collective Periodic Motion

    NASA Astrophysics Data System (ADS)

    Mitra, A.

    2018-01-01

    Multiple periodic domain formation due to a modulation instability in a boson-fermion mixture superfluid in the unitary regime has been studied. The periodicity of the structure evolves with time. At the early stage of evolution, bosonic domains show the periodic nature, whereas the periodicity in the fermionic (Cooper pair) domains appears at the late stage of evolution. The nature of interatomic interspecies interactions affects the domain formation. In a harmonic trap, the mixture executes an undamped oscillation. The frequency of the oscillation depends on the relative coupling strength between boson-fermion and fermion-fermion. The repulsive boson-fermion interaction reduces the oscillation frequency, whereas the attractive interaction enhances the frequency significantly.

  10. Antioxidant activity of flavonoids isolated from young green barley leaves toward biological lipid samples.

    PubMed

    Benedet, John A; Umeda, Hisao; Shibamoto, Takayuki

    2007-07-11

    Natural plant flavonoids, saponarin/lutonarin=4.5/1, isolated from young green barley leaves were examined for their antioxidant activity using cod liver oil, omega-3 fatty acids, phospholipids, and blood plasma. The saponarin/lutonarin (S/L) mixture inhibited malonaldehyde (MA) formation from cod liver oil by 76.47+/-0.11% at a level of 1 micromol and 85.88+/-0.12% at a level of 8 micromol. The S/L mixture inhibited MA formation from the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by 45.60+/-1.08 and 69.24+/-0.24%, respectively, at a level of 8 micromol. The S/L mixture inhibited MA formation from the phospholipids lecithin I and II by 43.08+/-0.72 and 69.16+/-2.92%, respectively, at a level of 8 micromol. It also inhibited MA formation from blood plasma by 62.20+/-0.11% at a level of 8 micromol. The antioxidant activities obtained from the S/L mixture were comparable to those obtained from alpha-tocopherol and butylated hydroxy toluene (BHT) in all lipids tested.

  11. THE FORMATION OF DETONATION IN SATURATED MIXTURES OF KNALLGAS-STEAM AND IN STOICHIOMETRIC MIXTURES OF DEUTERIUM-OXYGEN (HEAVY WATER). Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luker, J.A.; Adler, L.B.; Hobaica, E.C.

    1959-01-23

    The purpose of this investigation was to determine the reaction characteristics of satuated mixtures of knall gas (stoichiometric mixture of hydrogen and oxygen) --steam and mixtures of heavy knall gas (stoichm-ometric mixture of deuterion and oxygen) saturated with heavy water. These mixtues were studied experimentally over composition ranges from no reaction limit to enriched compositions which supported detonations. (auth)

  12. Improving the Scientific Foundation for Mixtures Joint Toxicity and Risk Assessment: Contributions from the SOT Mixtures Project

    EPA Science Inventory

    This paper summarizes the activities of the SOT (Society of Toxicology) Mixtures Program and the SOT Task Force. As such it provides the history leading to the formation of the SOT Mixtures Project, including its early activity and results and the 2005 Contemporary Concepts in T...

  13. Carbon particles

    DOEpatents

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  14. Carbon-particle generator

    DOEpatents

    Hunt, A.J.

    1982-09-29

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  15. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Li, Lijie; Chen, Chia-li; Kacarab, Mary; Peng, Weihan; Price, Derek; Xu, Jin; Cocker, David R.

    2018-04-01

    Emissions of certain low vapor pressure-volatile organic compounds (LVP-VOCs) are considered exempt to volatile organic compounds (VOC) regulations due to their low evaporation rates. However, these compounds may still play a role in ambient secondary organic aerosol (SOA) and ozone formation. The LVP-VOCs selected for this work are categorized as intermediate-volatility organic compounds (IVOCs) according to their vapor pressures and molecular formulas. In this study, the evaporation rates of 14 select IVOCs are investigated with half of them losing more than 95% of their mass in less than one month. Further, SOA and ozone formation are presented from 11 select IVOCs and 5 IVOC-containing generic consumer products under atmospherically relevant conditions using varying radical sources (NOx and/or H2O2) and a surrogate reactive organic gas (ROG) mixture. Benzyl alcohol (0.41), n-heptadecane (0.38), and diethylene glycol monobutyl ether (0.16) are determined to have SOA yields greater than 0.1 in the presence of NOx and a surrogate urban hydrocarbon mixture. IVOCs also influence ozone formation from the surrogate urban mixture by impacting radical levels and NOx availability. The addition of lab created generic consumer products has a weak influence on ozone formation from the surrogate mixture but strongly affects SOA formation. The overall SOA and ozone formation of the generic consumer products could not be explained solely by the results of the pure IVOC experiments.

  16. The Impact of Parents, Child Care Providers, Teachers, and Peers on Early Externalizing Trajectories

    PubMed Central

    Silver, Rebecca B.; Measelle, Jeffrey R.; Armstrong, Jeffrey M.; Essex, Marilyn J.

    2010-01-01

    This study utilized growth mixture modeling to examine the impact of parents, child care providers, teachers, and peers on the prediction of distinct developmental patterns of classroom externalizing behavior in elementary school. Among 241 children, three groups were identified. 84.6% of children exhibited consistently low externalizing behavior. The externalizing behavior of the Chronic High group (5.8%) remained elevated throughout elementary school; it increased over time in the Low Increasing group (9.5%). Negative relationships with teachers and peers in the kindergarten classroom increased the odds of having chronically high externalizing behavior. Teacher–child conflict increased the likelihood of a developmental pattern of escalating externalizing behavior. Boys were overrepresented in the behaviorally risky groups, and no sex differences in trajectory types were found. PMID:21094398

  17. Solid-State Characterization and Relative Formation Enthalpies To Evaluate Stability of Cocrystals of an Antidiabetic Drug.

    PubMed

    Duggirala, Naga Kiran; Frericks Schmidt, Heather L; Lei, Zhaohui; Zaworotko, Michael J; Krzyzaniak, Joseph F; Arora, Kapildev K

    2018-05-07

    The current study integrates formation enthalpy and traditional slurry experiments to quickly assess the physical stability of cocrystal drug substance candidates for their potential to support drug development. Cocrystals of an antidiabetic drug (GKA) with nicotinamide (NMA), vanillic acid (VLA), and ethyl vanillin (EVL) were prepared and characterized by powder X-ray diffractometry (PXRD), spectroscopic, and thermal techniques. The formation enthalpies of the cocrystals, and their physical mixtures (GKA + coformer) were measured by the differential scanning calorimetry (DSC) method reported by Zhang et al. [ Cryst. Growth Des. 2012 , 12 ( 8 ), 4090 - 4097 ]. The experimentally measured differences in the relative formation enthalpies obtained by integrating the heat flow of each cocrystal against the respective physical mixture were correlated to the physical stability of the cocrystals in the solid state. The relative formation enthalpies of all of the cocrystals studied suggest that the cocrystals are not physically stable at room temperature versus their physical mixtures. To further address relative stability, the cocrystals were slurried in 30% v/v aqueous ethanol, and it was observed that all of the cocrystals revert to GKA within 48 h at room temperature. The slurry experiments are consistent with the relative instability of the cocrystals with respect to their physical mixtures suggested by the DSC results.

  18. In situ measurements of the photochemical formation rates and optical properties of organic aerosols in CH4/CO2 mixtures.

    NASA Astrophysics Data System (ADS)

    Adamkovics, M.; Boering, K. A.

    2003-12-01

    The presence of photochemically-generated hazes has a significant impact on radiative transfer in planetary atmospheres. While the rates of particle formation have been inferred from photochemical or microphysical models constrained to match observations, these rates have not been determined experimentally. Thus, the fundamental kinetics of particle formation are not known and remain highly parameterized in planetary atmospheric models. We have developed instrumentation for measuring the formation rates and optical properties of organic aerosols produced by irradiating mixtures of precursor gases via in situ optical (633nm) scattering and online quadrupole mass spectrometry (1-200 amu). Results for the generation of particulate hydrocarbons from the irradiation of pure, gas-phase CH4 as well as CH4/CO2 mixtures with vacuum ultraviolet (120-160nm) light, along with simultaneous measurements of the evolution of higher gas-phase hydrocarbons will be presented.

  19. Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals.

    PubMed

    Zhang, Xiaoyu; Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu; Zhang, Wei; Zheng, Weitao; Yu, William W; Rogach, Andrey L

    2018-03-19

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr 3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr 3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr 3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m -2 and external quantum yield of 1.7 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Substitution reactions of carbon nanotube template

    NASA Astrophysics Data System (ADS)

    Li, Chi Pui; Chen, Ying; Gerald, John Fitz

    2006-05-01

    Substitution reactions between carbon nanotube (CNT) template and SiO with the formation of carbon rich silicon oxide nanowires (SiO-C-NWs) have been investigated using transmission electron microscopy and x-ray energy dispersive spectroscopy. The reaction was carried out by thermal annealing at 1200°C for 1h of a mixture of silicon monoxide (SiO) and iron (II) phthalocyanine, FeC32N8H16 (FePc) powders. Multiwalled CNTs were produced first via pyrolysis of FePc at a lower temperature (1000°C ). SiO vapors reacted with the CNTs at higher temperatures to produce amorphous SiO-C-NWs with a uniform diameter and a length in tens of micrometers. The special bamboolike structure of the CNTs allows the reaction to start from the external surface of the tubes and transform each CNT into a solid nanowire section by section.

  1. Exit examination: a survey of UK psychiatrists' views

    PubMed Central

    Hughes, Nicholas S.; Haselgrove, Angela; Tovey, Matthew S.; Khokhar, Waqqas A.; Husain, Muj; Osman-Hicks, Victoria C.

    2015-01-01

    Aims and method The Royal College of Psychiatrists is considering how best to introduce a post-MRCPsych-examination assessment (‘exit examination’) in anticipation of external pressures to ensure patient safety through the use of such assessments. The Psychiatric Trainees' Committee conducted an online survey to gather the views of psychiatrists regarding the possible format and content of this examination in the hope that this information can be used to design a satisfactory assessment. Results Of the 2082 individuals who started the survey, 1735 completed all sections (83.3%). Participants included consultants and trainees from a range of subspecialties. There was general agreement that the content and structure of the exit examination should include assessment of clinical and communication skills. Clinical implications UK psychiatrists believe that an exit assessment should focus on clinical and communication skills. It should assess both generic and subspecialty-specific competencies and incorporate a mixture of assessment techniques. PMID:26755972

  2. Laser generation of XeCl exciplex molecules in a longitudinal repetitively pulsed discharge in a Xe - CsCl mixture

    NASA Astrophysics Data System (ADS)

    Boichenko, A. M.; Klenovskii, M. S.

    2015-12-01

    By using the previously developed kinetic model, we have carried out simulations to study the possibility of laser generation of XeCl exciplex molecules in the working medium based on a mixture of Xe with CsCl vapours, excited by a longitudinal repetitively pulsed discharge. The formation mechanism of exciplex molecules in this mixture is fundamentally different from the formation mechanisms in the traditional mixtures of exciplex lasers. The conditions that make the laser generation possible are discussed. For these conditions, with allowance for available specific experimental conditions of the repetitively pulsed discharge excitation, we have obtained the calculated dependences of the power and efficiency of generation on the reflectivity of mirrors in a laser cavity.

  3. Communication: From close-packed to topologically close-packed: Formation of Laves phases in moderately polydisperse hard-sphere mixtures

    NASA Astrophysics Data System (ADS)

    Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.

    2018-05-01

    Particle size polydispersity can help to inhibit crystallization of the hard-sphere fluid into close-packed structures at high packing fractions and thus is often employed to create model glass-forming systems. Nonetheless, it is known that hard-sphere mixtures with modest polydispersity still have ordered ground states. Here, we demonstrate by computer simulation that hard-sphere mixtures with increased polydispersity fractionate on the basis of particle size and a bimodal subpopulation favors the formation of topologically close-packed C14 and C15 Laves phases in coexistence with a disordered phase. The generality of this result is supported by simulations of hard-sphere mixtures with particle-size distributions of four different forms.

  4. An investigation of indomethacin-nicotinamide cocrystal formation induced by thermal stress in the solid or liquid state.

    PubMed

    Lin, Hong-Liang; Zhang, Gang-Chun; Huang, Yu-Ting; Lin, Shan-Yang

    2014-08-01

    The impact of thermal stress on indomethacin (IMC)-nicotinamide (NIC) cocrystal formation with or without neat cogrinding was investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) microspectroscopy, and simultaneous DSC-FTIR microspectroscopy in the solid or liquid state. Different evaporation methods for preparing IMC-NIC cocrystals were also compared. The results indicated that even after cogrinding for 40 min, the FTIR spectra for all IMC-NIC ground mixtures were superimposable on the FTIR spectra of IMC and NIC components, suggesting there was no cocrystal formation between IMC and NIC after cogrinding. However, these IMC-NIC ground mixtures appear to easily undergo cocrystal formation after the application of DSC determination. Under thermal stress induced by DSC, the amount of cocrystal formation increased with increasing cogrinding time. Moreover, simultaneous DSC-FTIR microspectroscopy was a useful one-step technique to induce and clarify the thermal-induced stepwise mechanism of IMC-NIC cocrystal formation from the ground mixture in real time. Different solvent evaporation rates induced by thermal stress significantly influenced IMC-NIC cocrystal formation in the liquid state. In particular, microwave heating may promote IMC-NIC cocrystal formation in a short time. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Measurement Of Multiphase Flow Water Fraction And Water-cut

    NASA Astrophysics Data System (ADS)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  6. The effect of ignition location on explosion venting of hydrogen-air mixtures

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Guo, J.; Hu, K.; Xie, L.; Li, B.

    2017-07-01

    The effect of ignition location and vent burst pressure on the internal pressure-time history and external flame propagation was investigated for vented explosions of hydrogen-air mixtures in a small cylindrical vessel. A high-speed camera was used to record videos of the external flame while pressure transducers were used to record pressure-time histories. It was found that central ignition always leads to the maximum internal peak overpressure, and front ignition resulted in the lowest value of internal peak overpressure. The internal peak overpressures are increased corresponding to the increase in the vent burst pressure in the cases of central and rear ignition. Because of the effect of acoustic oscillations, the phenomenon of oscillations is observed in the internal pressure profile for the case of front ignition. The pressure oscillations for the cases of rear and central ignition are triggered by external explosions. The behavior of flames outside the chamber is significantly associated with the internal pressure of the chamber so that the velocity of the jet flame is closely related to the internal overpressure peak.

  7. Global concentration additivity and prediction of mixture toxicities, taking nitrobenzene derivatives as an example.

    PubMed

    Li, Tong; Liu, Shu-Shen; Qu, Rui; Liu, Hai-Ling

    2017-10-01

    The toxicity of a mixture depends not only on the mixture concentration level but also on the mixture ratio. For a multiple-component mixture (MCM) system with a definite chemical composition, the mixture toxicity can be predicted only if the global concentration additivity (GCA) is validated. The so-called GCA means that the toxicity of any mixture in the MCM system is the concentration additive, regardless of what its mixture ratio and concentration level. However, many mixture toxicity reports have usually employed one mixture ratio (such as the EC 50 ratio), the equivalent effect concentration ratio (EECR) design, to specify several mixtures. EECR mixtures cannot simulate the concentration diversity and mixture ratio diversity of mixtures in the real environment, and it is impossible to validate the GCA. Therefore, in this paper, the uniform design ray (UD-Ray) was used to select nine mixture ratios (rays) in the mixture system of five nitrobenzene derivatives (NBDs). The representative UD-Ray mixtures can effectively and rationally describe the diversity in the NBD mixture system. The toxicities of the mixtures to Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). For each UD-Ray mixture, the concentration addition (CA) model was used to validate whether the mixture toxicity is additive. All of the UD-Ray mixtures of five NBDs are global concentration additive. Afterwards, the CA is employed to predict the toxicities of the external mixtures from three EECR mixture rays with the NOEC, EC 30 , and EC 70 ratios. The predictive toxicities are in good agreement with the experimental toxicities, which testifies to the predictability of the mixture toxicity of the NBDs. Copyright © 2017. Published by Elsevier Inc.

  8. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    PubMed

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  9. Solid-state thermal behavior and stability studies of theophylline-citric acid cocrystals prepared by neat cogrinding or thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Po-Chun; Lin, Hong-Liang; Wang, Shun-Li, E-mail: wangshunli@mail.ncyu.edu.tw

    To investigate the thermal behavior of cocrystal formed between anhydrous theophylline (TP) and anhydrous citric acid (CA) by neat manual cogrinding or thermal treatment, DSC and FTIR microspectroscopy with curve-fitting analysis were applied. The physical mixture and 60-min ground mixture were stored at 55{+-}0.5 Degree-Sign C/40{+-}2% RH condition to determine their stability behavior. Typical TP-CA cocrystals were prepared by slow solvent evaporation method. Results indicate that the cogrinding process could gradually induce the cocrystal formation between TP and CA. The IR spectral peak shift from 3495 to 3512 cm{sup -1} and the stepwise appearance of several new IR peaks atmore » 1731, 1712, 1676, 1651, 1557 and 1265 cm{sup -1} with cogrinding time suggest that the mechanism of TP-CA cocrystal formation was evidenced by interacting TP with CA through the intermolecular O-H{center_dot}{center_dot}{center_dot}O hydrogen bonding. The stability of 60-min ground mixture of TP-CA was confirmed at 55{+-}0.5 Degree-Sign C/40{+-}2% RH condition over a storage time of 60 days. - Garphical abstract: Cogrinding, thermal and solvent-evaporation methods might easily induce the theophylline-citric acid cocrystal formation. Highlights: Black-Right-Pointing-Pointer Cogrinding process could gradually induce the cocrystal formation between TP and CA. Black-Right-Pointing-Pointer The TP-CA cocrystal was formed through the intermolecular O-H{center_dot}{center_dot}{center_dot}O hydrogen bonding. Black-Right-Pointing-Pointer The 60-min TP-CA ground mixture was similar to the solvent-evaporated cocrystal. Black-Right-Pointing-Pointer The thermal-induced TP-CA cocrystal formation was confirmed by pre-heating the physical mixture to 152 Degree-Sign C. Black-Right-Pointing-Pointer The 60-min TP-CA ground mixture was stable at accelerated condition over a storage time of 60 days.« less

  10. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    USGS Publications Warehouse

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  11. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.

    PubMed

    Qin, Li-Tang; Chen, Yu-Han; Zhang, Xin; Mo, Ling-Yun; Zeng, Hong-Hu; Liang, Yan-Peng

    2018-05-01

    Antibiotics and pesticides may exist as a mixture in real environment. The combined effect of mixture can either be additive or non-additive (synergism and antagonism). However, no effective predictive approach exists on predicting the synergistic and antagonistic toxicities of mixtures. In this study, we developed a quantitative structure-activity relationship (QSAR) model for the toxicities (half effect concentration, EC 50 ) of 45 binary and multi-component mixtures composed of two antibiotics and four pesticides. The acute toxicities of single compound and mixtures toward Aliivibrio fischeri were tested. A genetic algorithm was used to obtain the optimized model with three theoretical descriptors. Various internal and external validation techniques indicated that the coefficient of determination of 0.9366 and root mean square error of 0.1345 for the QSAR model predicted that 45 mixture toxicities presented additive, synergistic, and antagonistic effects. Compared with the traditional concentration additive and independent action models, the QSAR model exhibited an advantage in predicting mixture toxicity. Thus, the presented approach may be able to fill the gaps in predicting non-additive toxicities of binary and multi-component mixtures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Using Factor Mixture Models to Evaluate the Type A/B Classification of Alcohol Use Disorders in a Heterogeneous Treatment Sample

    PubMed Central

    Hildebrandt, Tom; Epstein, Elizabeth E.; Sysko, Robyn; Bux, Donald A.

    2017-01-01

    Background The type A/B classification model for alcohol use disorders (AUDs) has received considerable empirical support. However, few studies examine the underlying latent structure of this subtyping model, which has been challenged as a dichotomization of a single drinking severity dimension. Type B, relative to type A, alcoholics represent those with early age of onset, greater familial risk, and worse outcomes from alcohol use. Method We examined the latent structure of the type A/B model using categorical, dimensional, and factor mixture models in a mixed gender community treatment-seeking sample of adults with an AUD. Results Factor analytic models identified 2-factors (drinking severity/externalizing psychopathology and internalizing psychopathology) underlying the type A/B indicators. A factor mixture model with 2-dimensions and 3-classes emerged as the best overall fitting model. The classes reflected a type A class and two type B classes (B1 and B2) that differed on the respective level of drinking severity/externalizing pathology and internalizing pathology. Type B1 had a greater prevalence of women and more internalizing pathology and B2 had a greater prevalence of men and more drinking severity/externalizing pathology. The 2-factor, 3-class model also exhibited predictive validity by explaining significant variance in 12-month drinking and drug use outcomes. Conclusions The model identified in the current study may provide a basis for examining different sources of heterogeneity in the course and outcome of AUDs. PMID:28247423

  13. Chirality- and sequence-selective successive self-sorting via specific homo- and complementary-duplex formations

    PubMed Central

    Makiguchi, Wataru; Tanabe, Junki; Yamada, Hidekazu; Iida, Hiroki; Taura, Daisuke; Ousaka, Naoki; Yashima, Eiji

    2015-01-01

    Self-recognition and self-discrimination within complex mixtures are of fundamental importance in biological systems, which entirely rely on the preprogrammed monomer sequences and homochirality of biological macromolecules. Here we report artificial chirality- and sequence-selective successive self-sorting of chiral dimeric strands bearing carboxylic acid or amidine groups joined by chiral amide linkers with different sequences through homo- and complementary-duplex formations. A mixture of carboxylic acid dimers linked by racemic-1,2-cyclohexane bis-amides with different amide sequences (NHCO or CONH) self-associate to form homoduplexes in a completely sequence-selective way, the structures of which are different from each other depending on the linker amide sequences. The further addition of an enantiopure amide-linked amidine dimer to a mixture of the racemic carboxylic acid dimers resulted in the formation of a single optically pure complementary duplex with a 100% diastereoselectivity and complete sequence specificity stabilized by the amidinium–carboxylate salt bridges, leading to the perfect chirality- and sequence-selective duplex formation. PMID:26051291

  14. Nonequilibrium boundary layer at a stagnation point for a hydrogen-helium stream over ablating graphite

    NASA Technical Reports Server (NTRS)

    Liu, T.-M.; Davy, W. C.

    1974-01-01

    The nonequilibrium axisymmetric stagnation point boundary layer over an ablating graphite surface is considered. The external stream is a high temperature mixture of hydrogen and helium. Variable thermodynamic and transport properties are assumed. Lennard-Jones potential model is used to calculate the transport coefficients of each species. Although the mixture rules for viscosity of the gas mixture are used, the weighting functions are more sophisticated than those commonly employed. For the conductivity of the mixture, generalized Wassiljewa coefficients are used. Seven species with 28 dissociation/recombination reactions are considered. Hansen's model for the dissociation rate constants is employed. The recombination rate constants are obtained by invoking detailed balance principles assisted by the JANAF thermodynamic data and the Hansen-Pearson thermodynamic data for C3.

  15. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    NASA Astrophysics Data System (ADS)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From spheroids to stereo-particles, ηd increases by about 30%. We believe these results may be useful for our understanding of the spatial distribution of mineral dust contained in an aerosol external mixture and to better quantify dust mass concentrations from polarization lidar experiments.

  16. Chiral domain formation from the mixture of achiral rod-like liquid crystal and tri boomerang-shaped molecule

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Hoon; Yoon, Tae-Hoon

    2013-08-01

    Spontaneous formation of chiral domains such as a helical filament and a bent-broom texture was observed from the mixture of a rod-like liquid crystal octylcyano-biphenyl (8CB) and a tri boomerang-shaped 2,4,6-triphenoxy-1,3,5-triazine (triphenoxy) molecule. Although the constituent molecules were achiral, their mixture showed the chiral domains with the equal fraction of the opposite handedness. No tilt of 8CB molecules in the smectic layer was observed, implying the chirality is not due to the polar packing and tilt of the molecules. In addition, the splay and bend elastic constant of 8CB was decreased after doping triphenoxy. A structural conformation of triphenoxy and an orientational coupling between 8CB and triphenoxy are considered to be related to the chiral domain formation.

  17. Decarboxylation of fatty acids with triruthenium dodecacarbonyl: Influence of the compound structure and analysis of the product mixtures

    USDA-ARS?s Scientific Manuscript database

    Recently, the decarboxylation of oleic acid (9(Z)-octadecenoic acid) catalyzed by triruthenium dodecacarbonyl, Ru3(CO)12, to give a mixture of heptadecenes with concomitant formation of other hydrocarbons, heptadecane and C17 alkylbenzenes, was reported. The product mixture, consisting of about 77% ...

  18. Comparison of Bovine Bone-Autogenic Bone Mixture Versus Platelet-Rich Fibrin for Maxillary Sinus Grafting: Histologic and Histomorphologic Study.

    PubMed

    Ocak, Hakan; Kutuk, Nukhet; Demetoglu, Umut; Balcıoglu, Esra; Ozdamar, Saim; Alkan, Alper

    2017-06-01

    Numerous grafting materials have been used to augment the maxillary sinus floor for long-term stability and success for implant-supported prosthesis. To enhance bone formation, adjunctive blood-born growth factor sources have gained popularity during the recent years. The present study compared the use of platelet-rich fibrin (PRF) and bovine-autogenous bone mixture for maxillary sinus floor elevation. A split-face model was used to apply 2 different filling materials for maxillary sinus floor elevation in 22 healthy adult sheep. In group 1, bovine and autogenous bone mixture; and in group 2, PRF was used. The animals were killed at 3, 6, and 9 months. Histologic and histomorphologic examinations revealed new bone formation in group 1 at the third and sixth months. In group 2, new bone formation was observed only at the sixth month, and residual PRF remnants were identified. At the ninth month, host bone and new bone could not be distinguished from each other in group 1, and bone formation was found to be proceeding in group 2. PRF remnants still existed at the ninth month. In conclusion, bovine bone and autogenous bone mixture is superior to PRF as a grafting material in sinus-lifting procedures.

  19. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils.

    PubMed

    Jiménez-Sotelo, Paola; Hernández-Martínez, Maylet; Osorio-Revilla, Guillermo; Meza-Márquez, Ofelia Gabriela; García-Ochoa, Felipe; Gallardo-Velázquez, Tzayhrí

    2016-07-01

    Avocado oil is a high-value and nutraceutical oil whose authentication is very important since the addition of low-cost oils could lower its beneficial properties. Mid-FTIR spectroscopy combined with chemometrics was used to detect and quantify adulteration of avocado oil with sunflower and soybean oils in a ternary mixture. Thirty-seven laboratory-prepared adulterated samples and 20 pure avocado oil samples were evaluated. The adulterated oil amount ranged from 2% to 50% (w/w) in avocado oil. A soft independent modelling class analogy (SIMCA) model was developed to discriminate between pure and adulterated samples. The model showed recognition and rejection rate of 100% and proper classification in external validation. A partial least square (PLS) algorithm was used to estimate the percentage of adulteration. The PLS model showed values of R(2) > 0.9961, standard errors of calibration (SEC) in the range of 0.3963-0.7881, standard errors of prediction (SEP estimated) between 0.6483 and 0.9707, and good prediction performances in external validation. The results showed that mid-FTIR spectroscopy could be an accurate and reliable technique for qualitative and quantitative analysis of avocado oil in ternary mixtures.

  20. Ultra-sensitive in-situ detection of near-infrared persistent luminescent tracer nanoagents in crude oil-water mixtures.

    PubMed

    Chuang, Yen-Jun; Liu, Feng; Wang, Wei; Kanj, Mazen Y; Poitzsch, Martin E; Pan, Zhengwei

    2016-06-15

    Current fluorescent nanoparticles-based tracer sensing techniques for oilfield applications suffer from insufficient sensitivity, with the tracer detection limit typically at the several hundred ppm level in untreated oil/water mixtures, which is mainly caused by the interference of the background fluorescence from the organic residues in crude oil under constant external excitation. Here we report the use of a persistent luminescence phenomenon, which enables an external excitation-free and thus background fluorescence-free measurement condition, for ultrahigh-sensitivity crude oil sensing. By using LiGa5O8:Cr(3+) near-infrared persistent luminescent nanoparticles as a tracer nanoagent, we achieved a tracer detection limit at the single-digit ppb level (down to 1 ppb concentration of nanoparticles) in high oil fraction (up to 65 wt.%) oil/water mixtures via a convenient, CCD camera-based imaging technique without any pretreatment or phase separation of the fluid samples. This detection limit is about four to five orders of magnitude lower than that obtained using conventional spectral methods. This study introduces a new type of tracer nanoagents and a new detection method for water tracer sensing in oil reservoir characterization and management.

  1. Enhanced Condensation Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  2. Optical Properties of Aerosol Types from Satellite and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Lin, Tang-Huang; Liu, Gin-Rong; Liu, Chian-Yi

    2014-05-01

    In this study, the properties of aerosol types are characterized from the aspects of remote sensing and in situ measurements. Particles of dust, smoke and anthropogenic pollutant are selected as the principal types in the study. The measurements of AERONET sites and MODIS data, during the dust storm and biomass burning events in the period from 2002 to 2008, suggest that the aerosol species can be discriminated sufficiently based on the dissimilarity of AE (Ångström exponent) and SSA (single scattering albedo) properties. However, the physicochemical characteristics of source aerosols can be altered after the external/internal combination along the pathway of transportation, thus induce error to the satellite retrievals. In order to eliminate from this kind of errors, the optical properties of mixed aerosols (external) are also simulated with the database of dust and soot aggregates in this study. The preliminary results show that SSA value (at 470 nm) of mineral dust may decay 5-11 % when external mixed with 15-30 % soot aggregates, then result in 11-22 % variation of reflectance observed from satellite which could lead to sufficiently large uncertainty on the retrieval of aerosol optical thickness. As a result, the effect of heterogeneous mixture should be taken into account for more accurate retrieval of aerosol properties, especially after the long-range transport. Keywords: Aerosol type, Ångström exponent, Single scattering albedo, AERONET, MODIS, External mixture

  3. A parametric experimental investigation of a scramjet nozzle at Mach 6 with Freon and argon or air used for exhaust simulation

    NASA Technical Reports Server (NTRS)

    Cubbage, James M.; Monta, William J.

    1991-01-01

    A parametric experimental investigation of a scramjet nozzle was conducted with a gas mixture used to simulate the scramjet engine exhaust flow at a free-stream Reynolds number of approximately 6.5 x 10(exp 6) per foot. External nozzle surface angles of 16, 20, and 24 deg were tested with a fixed-length ramp and for cowl internal surface angles of 6 and 12 deg. Pressure data on the external nozzle surface were obtained for mixtures of Freon and argon gases with a ratio of specific heats of about 1.23, which matches that of a scramjet exhaust. Forces and moments were determined by integration of the pressure data. Two nozzle configurations were also tested with air used to simulate the exhaust flow. On the external nozzle surface, lift and thrust forces for air exhaust simulation were approximately half of those for Freon-argon exhaust simulation and the pitching moment was approximately a third. These differences were primarily due to the difference in the ratios of specific heats between the two exhaust simulation gases. A 20 deg external surface angle produced the greatest thrust for a 6 deg cowl internal surface angle. A flow fence significantly increased lift and thrust forces over those for the nozzle without a flow fence.

  4. The equilibrium constant of complex formation in solution: A study utilizing a dielectric constant method

    NASA Astrophysics Data System (ADS)

    Loh, C. W.

    1980-03-01

    A method was developed for determining equilibrium constants, heat of reaction, and change in free energy and entropy during a 1:1 complex formation in solutions. The measurements were carried out on ternary systems containing two interacting solutes in an inert solvent. The procedures was applied to the investigation of hydrogen bond complex formations in two mixtures systems, phenol and pyridine in carbon tetrachloride, and 4, 5, 6, 7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) and alkyl acetate in styrene. The first mixture system was studied in order to compare the results with those obtained by other methods. Results for the second mixture system indicated strong association between molecules of TTFB and alkyl acetate and suggested that the blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles was due to competition for a limited number of adsorption sites on the membrane surface.

  5. Evaluation of the amount of nanoparticles emitted in welding fume from stainless steel using different shielding gases.

    PubMed

    Pacheco, R P; Gomes, J F; Miranda, R M; Quintino, M L

    2017-05-01

    The primary objective of this study was to correlate the emission of macro and nanoparticles released during the process of metal inert gas/metal active gas (MIG/MAG) of stainless steel with different gas mixtures. Using different gas mixtures with different heat inputs, it was possible to determine fume formation rates and surface areas of nanoparticles with alveolar lung deposition capacity. It was found, how the various transfer modes and the type of gas protection, in particular, the percentage of active elements in the chemical composition of the gas, affect the amount of fumes generated and also the generation of nanoparticles with a high capacity of deposition. The spray transfer mode always shows higher values of nanoparticles surface area, unlike the fume formation rates. Among the tested mixtures 82%Ar + 18%CO 2 generates higher emissions of nanoparticles as well as fume formation rates.

  6. Role of external torque in the formation of ion thermal internal transport barriers

    NASA Astrophysics Data System (ADS)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2012-04-01

    We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.

  7. Identifiability in N-mixture models: a large-scale screening test with bird data.

    PubMed

    Kéry, Marc

    2018-02-01

    Binomial N-mixture models have proven very useful in ecology, conservation, and monitoring: they allow estimation and modeling of abundance separately from detection probability using simple counts. Recently, doubts about parameter identifiability have been voiced. I conducted a large-scale screening test with 137 bird data sets from 2,037 sites. I found virtually no identifiability problems for Poisson and zero-inflated Poisson (ZIP) binomial N-mixture models, but negative-binomial (NB) models had problems in 25% of all data sets. The corresponding multinomial N-mixture models had no problems. Parameter estimates under Poisson and ZIP binomial and multinomial N-mixture models were extremely similar. Identifiability problems became a little more frequent with smaller sample sizes (267 and 50 sites), but were unaffected by whether the models did or did not include covariates. Hence, binomial N-mixture model parameters with Poisson and ZIP mixtures typically appeared identifiable. In contrast, NB mixtures were often unidentifiable, which is worrying since these were often selected by Akaike's information criterion. Identifiability of binomial N-mixture models should always be checked. If problems are found, simpler models, integrated models that combine different observation models or the use of external information via informative priors or penalized likelihoods, may help. © 2017 by the Ecological Society of America.

  8. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  9. Formation of a nanobubble and its effect on the structural ordering of water in a CH4-N2-CO2-H2O mixture.

    PubMed

    Kaur, Surinder Pal; Sujith, K S; Ramachandran, C N

    2018-04-04

    The replacement of methane (CH4) from its hydrate by a mixture of nitrogen (N2) and carbon dioxide (CO2) involves the dissociation of methane hydrate leading to the formation of a CH4-N2-CO2-H2O mixture that can significantly influence the subsequent steps of the replacement process. In the present work, we study the evolution of dissolved gas molecules in this mixture by applying classical molecular dynamics simulations. Our study shows that a higher CO2 : N2 ratio in the mixture enhances the formation of nanobubbles composed of N2, CH4 and CO2 molecules. To understand how the CO2 : N2 ratio affects nanobubble nucleation, the distribution of molecules in the bubble formed is examined. It is observed that unlike N2 and CH4, the density of CO2 in the bubble reaches a maximum at the surface of the bubble. The accumulation of CO2 molecules at the surface makes the bubble more stable by decreasing the excess pressure inside the bubble as well as surface tension at its interface with water. It is found that a frequent exchange of gas molecules takes place between the bubble and the surrounding liquid and an increase in concentration of CO2 in the mixture leads to a decrease in the number of such exchanges. The effect of nanobubbles on the structural ordering of water molecules is examined by determining the number of water rings formed per unit volume in the mixture. The role of nanobubbles in water structuring is correlated to the dynamic nature of the bubble arising from the exchange of gas molecules between the bubble and the liquid.

  10. Coherent inductive communications link for biomedical applications

    NASA Technical Reports Server (NTRS)

    Hogrefe, Arthur F. (Inventor); Radford, Wade E. (Inventor)

    1985-01-01

    A two-way coherent inductive communications link between an external transceiver and an internal transceiver located in a biologically implanted programmable medical device. Digitally formatted command data and programming data is transmitted to the implanted medical device by frequency shift keying the inductive communications link. Internal transceiver is powered by the inductive field between internal and external transceivers. Digitally formatted data is transmitted to external transceiver by internal transceiver amplitude modulating inductive field. Immediate verification of the establishment of a reliable communications link is provided by determining existence of frequency lock and bit phase lock between internal and external transceivers.

  11. Using special additions to preparation of the moulding mixture for casting steel parts of drive wheel type

    NASA Astrophysics Data System (ADS)

    Josan, A.; Pinca Bretotean, C.

    2015-06-01

    The paper presents the possibility of using special additions to the execution of moulding mixtures for steel castings, drive wheel type. Critical analysis of moulding technology leads to the idea that most defects appear due to using improper moulding mixture. Using a improper moulding mixture leads to penetration of steel in moulding mixture, resulting in the formation of adherences, due to inadequate refractarity of the mould and core mixtures. Using only the unique mixture to the moulding leads to increasing consumption of new sand, respectively to the increase of price of piece. Acording to the dates registered in the industrial practice is necessary to use the special additions to obtain the moulding mixtures, carbonaceous materials respectively.

  12. Terra Preta sanitation: re-discovered from an ancient Amazonian civilisation - integrating sanitation, bio-waste management and agriculture.

    PubMed

    Factura, H; Bettendorf, T; Buzie, C; Pieplow, H; Reckin, J; Otterpohl, R

    2010-01-01

    The recent discovery of the bio-waste and excreta treatment of a former civilisation in the Amazon reveals the possibility of a highly efficient and simple sanitation system. With the end product that was black soil they converted 10% of former infertile soil of the region: Terra Preta do Indio (black soil of the Indians). These soils are still very fertile 500 years after this civilisation had disappeared. Deriving from these concepts, Terra Preta Sanitation (TPS) has been re-developed and adopted. TPS includes urine diversion, addition of a charcoal mixture and is based on lactic-acid-fermentation with subsequent vermicomposting. No water, ventilation or external energy is required. Natural formation processes are employed to transform excreta into lasting fertile soil that can be utilised in urban agriculture. The authors studied the lacto-fermentation of faecal matter with a minimum of 4 weeks followed by vermicomposting. The results showed that lactic-acid fermentation with addition of a charcoal mixture is a suitable option for dry toilets as the container can be closed after usage. Hardly any odour occured even after periods of several weeks. Lactic-acid fermentation alone without addition of bulking agents such as paper and sliced-cut wood to raise the C/N ratio is creating a substrate that is not accepted by worms.

  13. Insight into Temperature Dependence of GTPase Activity in Human Guanylate Binding Protein-1

    PubMed Central

    Rahman, Safikur; Deep, Shashank; Sau, Apurba Kumar

    2012-01-01

    Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1. PMID:22859948

  14. The Design and Usage of the New Data Management Features in NASTRAN

    NASA Technical Reports Server (NTRS)

    Pamidi, P. R.; Brown, W. K.

    1984-01-01

    Two new data management features are installed in the April 1984 release of NASTRAN. These two features are the Rigid Format Data Base and the READFILE capability. The Rigid Format Data Base is stored on external files in card image format and can be easily maintained and expanded by the use of standard text editors. This data base provides the user and the NASTRAN maintenance contractor with an easy means for making changes to a Rigid Format or for generating new Rigid Formats without unnecessary compilations and link editing of NASTRAN. Each Rigid Format entry in the data base contains the Direct Matrix Abstraction Program (DMAP), along with the associated restart, DMAP sequence subset and substructure control flags. The READFILE capability allows an user to reference an external secondary file from the NASTRAN primary input file and to read data from this secondary file. There is no limit to the number of external secondary files that may be referenced and read.

  15. Ground-Based Aerosol Measurements

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to ...

  16. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  17. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  18. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  19. Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.

    PubMed

    Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian

    2016-05-01

    In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. Controlled drug release by polymer dissolution. II: Enzyme-mediated delivery device.

    PubMed

    Heller, J; Trescony, P V

    1979-07-01

    A novel, closed-loop drug delivery system was developed where the presence or absence of an external compound controls drug delivery from a bioerodible polymer. In the described delivery system, hydrocortisone was incorporated into a n-hexyl half-ester of a methyl vinyl ehter-maleic anhydride copolymer, and the polymer-drug mixture was fabricated into disks. These disks were then coated with a hydrogel containing immobilized urease. In a medium of constant pH and in the absence of external urea, the hydrocortisone release was that normally expected for that polymer at the given pH. With external urea, ammonium bicarbonate and ammonium hydroxide were generated within the hydrogel, which accelerated polymer erosion and drug release. The drug delivery rate increase was proportional to the amount of external urea and was reversible; that is, when external urea was removed, the drug release rate gradually returned to its original value.

  1. Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction

    NASA Astrophysics Data System (ADS)

    Harden, James L.; Guo, Hongyu; Bertrand, Martine; Shendruk, Tyler N.; Ramakrishnan, Subramanian; Leheny, Robert L.

    2018-01-01

    Colloidal suspensions transform between fluid and disordered solid states as parameters such as the colloid volume fraction and the strength and nature of the colloidal interactions are varied. Seemingly subtle changes in the characteristics of the colloids can markedly alter the mechanical rigidity and flow behavior of these soft composite materials. This sensitivity creates both a scientific challenge and an opportunity for designing suspensions for specific applications. In this paper, we report a novel mechanism of gel formation in mixtures of weakly attractive nanocolloids with modest size ratio. Employing a combination of x-ray photon correlation spectroscopy, rheometry, and molecular dynamics simulations, we find that gels are stable at remarkably weaker attraction in mixtures with size ratio near two than in the corresponding monodisperse suspensions. In contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures is triggered by microphase demixing of the species into dense regions of immobile smaller colloids surrounded by clusters of mobile larger colloids that is not predicted by mean-field thermodynamic considerations. These results point to a new route for tailoring nanostructured colloidal solids through judicious combination of interparticle interaction and size distribution.

  2. FTIR study of methanol decomposition on gold catalyst for fuel cells

    NASA Astrophysics Data System (ADS)

    Boccuzzi, F.; Chiorino, A.; Manzoli, M.

    The interaction of methanol (m), methanol-water (mw) and methanol-water-oxygen (mwo) on Au/TiO 2 catalyst has been investigated by in situ infrared spectroscopy (FTIR) and quadrupole mass spectrometry (QMS) at different temperatures. The aim of the work is to elucidate the nature and the abundance of the surface intermediates formed in different experimental conditions and to understand the mechanisms of methanol decomposition, of steam reforming and of combined reforming reactions. FTIR spectra run at room temperature in the different reaction mixtures show that differently coordinated methoxy species, that is on top species adsorbed on oxygen vacancy sites, on top species on uncoordinated Ti 4+ sites and bridged species on two Ti 4+ ions, are produced in all the mixtures. Quite strong formaldehyde and formate species adsorbed on gold are produced already at 403 K only in the combined reforming reaction mixture. At 473 K, on top species on uncoordinated Ti 4+ sites and methoxy species adsorbed on oxygen vacancy sites reduce their intensity and, at the same time, some formate species adsorbed on the support are produced in the steam reforming and combined reforming mixtures. At 523 K, on both methanol and methanol-water reaction mixtures, no more definite surface species are evidenced by FTIR on the catalysts, while in the methanol-water-oxygen mixture some residual methoxy and formate species are still present. Moreover, methanol is no more detected by QMS in the gas phase. A role of oxygen adsorbed on gold particles near oxygen vacancies of the support in the oxidative dehydrogenation of methanol is proposed.

  3. The thermochemical characteristics of solution of phenol and benzoic acid in water-dimethylsulfoxide and water-acetonitrile mixtures

    NASA Astrophysics Data System (ADS)

    Zakharov, A. G.; Voronova, M. I.; Batov, D. V.; Smirnova, K. V.

    2011-03-01

    The solution of phenol and benzoic acid in water-dimethylsulfoxide (DMSO) and water-acetonitrile (AN) mixtures was studied. As distinct from benzoic acid, the thermodynamic characteristics of solution of phenol sharply change at concentrations corresponding to a change in the character of cluster formation in water-DMSO and water-AN mixtures. Differences in the solvation of phenol and benzoic acid are explained by different mechanisms of the interaction of the solutes with clusters existing in binary mixtures.

  4. Perceptions on evaluative and formative functions of external supervision of Rwandan primary healthcare facilities: A qualitative study.

    PubMed

    Schriver, Michael; Cubaka, Vincent Kalumire; Itangishaka, Sylvere; Nyirazinyoye, Laetitia; Kallestrup, Per

    2018-01-01

    External supervision of primary healthcare facilities in low- and middle-income countries often has a managerial main purpose in which the role of support for professional development is unclear. To explore how Rwandan primary healthcare supervisors and providers (supervisees) perceive evaluative and formative functions of external supervision. Qualitative, exploratory study. Focus group discussions: three with supervisors, three with providers, and one mixed (n = 31). Findings were discussed with individual and groups of supervisors and providers. Evaluative activities occupied providers' understanding of supervision, including checking, correcting, marking and performance-based financing. These were presented as sources of motivation, that in self-determination theory indicate introjected regulation. Supervisors preferred to highlight their role in formative supervision, which may mask their own and providers' uncontested accounts that systematic performance evaluations predominated supervisors' work. Providers strongly requested larger focus on formative and supportive functions, voiced as well by most supervisors. Impact of performance evaluation on motivation and professional development is discussed. While external supervisors intended to support providers' professional development, our findings indicate serious problems with this in a context of frequent evaluations and performance marking. Separating the role of supporter and evaluator does not appear as the simple solution. If external supervision is to improve health care services, it is essential that supervisors and health centre managers are competent to support providers in a way that transparently accounts for various performance pressures. This includes delivery of proper formative supervision with useful feedback, maintaining an effective supervisory relationship, as well as ensuring providers are aware of the purpose and content of evaluative and formative supervision functions.

  5. Nanocomposite formation between alpha-glucosyl stevia and surfactant improves the dissolution profile of poorly water-soluble drug.

    PubMed

    Uchiyama, Hiromasa; Tozuka, Yuichi; Nishikawa, Masahiro; Takeuchi, Hirofumi

    2012-05-30

    The formation of a hybrid-nanocomposite using α-glucosyl stevia (Stevia-G) and surfactant was explored to improve the dissolution of flurbiprofen (FP). As reported previously, the dissolution amount of FP was enhanced in the presence of Stevia-G, induced by the formation of an FP and Stevia-G-associated nanostructure. When a small amount of sodium dodecyl sulfate (SDS) was present with Stevia-G, the amount of dissolved FP was extremely enhanced. This dissolution-enhancement effect was also observed with the cationic surfactant of dodecyl trimethyl ammonium bromide, but not with the non-ionic surfactant of n-octyl-β-D-maltopyranoside. To investigate the dissolution-enhancement effect of Stevia-G/SDS mixture, the pyrene I(1)/I(3) ratio was plotted versus the Stevia-G concentration. The pyrene I(1)/I(3) ratio of Stevia-G/SDS mixture had a sigmoidal curve at lower Stevia-G concentrations compared to the Stevia-G solution alone. These results indicate that the Stevia-G/SDS mixture provides a hydrophobic core around pyrene molecules at lower Stevia-G concentrations, leading to nanocomposite formation between Stevia-G and SDS. The nanocomposite of Stevia-G/SDS showed no cytotoxicity to Caco-2 cells at a mixture of 0.1% SDS and 1% Stevia-G solution, whereas 0.1% SDS solution showed high toxicity. These results suggest that the nanocomposite formation of Stevia-G/SDS may be useful way to enhance the dissolution of poorly water-soluble drugs without special treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Ecological Assembly of Chemical Mixtures

    EPA Science Inventory

    Human-environment interactions have a significant role in the formation of chemical mixtures in the environment and by extension in human tissues and fluids. These interactions, which include decisions to purchase and use products containing chemicals as well as behaviors and act...

  7. LOX/hydrocarbon fuel carbon formation and mixing data analysis

    NASA Technical Reports Server (NTRS)

    Fang, J.

    1983-01-01

    By applying the Priem-Heidmann Generalized-Length vaporization correlation, the computer model developed by the present study predicts the spatial variation of propellant vaporization rate using the injector cold flow results to define the streamtubes. The calculations show that the overall and local propellant vaporization rate and mixture ratio change drastically as the injection element type or the injector operating condition is changed. These results are compared with the regions of carbon formation observed in the photographic combustion testing. The correlation shows that the fuel vaporization rate and the local mixture ratio produced by the injector element have first order effects on the degree of carbon formation.

  8. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  9. Theophylline-nicotinamide cocrystal formation in physical mixture during storage.

    PubMed

    Ervasti, Tuomas; Aaltonen, Jaakko; Ketolainen, Jarkko

    2015-01-01

    Pharmaceutically relevant properties, such as solubility and dissolution rate, of active pharmaceutical ingredients can be enhanced by cocrystal formation. Theophylline and nicotinamide are known to form cocrystals, for example if subjected to solid-state grinding. However, under appropriate conditions, cocrystals can also form in physical mixtures without any mechanical activation. The purpose of this work was to study whether theophylline and nicotinamide could form cocrystals spontaneously, without mechanical activation. Crystalline theophylline and nicotinamide powders were gently mixed manually in a 1:1 molar ratio and stored at different relative humidity and temperature conditions. The solid state of the samples was analyzed by differential scanning calorimetry, Raman spectroscopy and X-ray powder diffractometry. Three different variations of theophylline were used as starting materials, e.g., two size fractions of theophylline anhydrate (large 710 μm-1 mm and small 180-355 μm), and monohydrate (recrystallized from water). As a reference, anhydrous theophylline-nicotinamide cocrystals were prepared by solid-state grinding. The results of this study indicate that theophylline-nicotinamide cocrystals can form without any mechanical activation from physical mixtures of theophylline and nicotinamide during storage. For anhydrous samples, storage humidity was found to be a critical parameter for cocrystal formation. Increasing temperature was also found to have an accelerating effect on the transformation. The effect of particle size of anhydrous theophylline on the transformation rate could not be completely resolved; DSC and Raman indicated slightly faster transformation with a physical mixture prepared from large size fraction of anhydrous theophylline, but the differences were only minor. Cocrystal formation was also observed in the physical mixture prepared from theophylline monohydrate, but the rate was not as high as with samples prepared from anhydrous material. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. HCN and chromophore formation on Jupiter

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ishikawa, Yoji

    1987-01-01

    Reaction paths for the formation of HCN and chromophores on Jupiter are suggested. The reactions involve photolysis of ammonia/acetylene mixtures. Experimental data supporting these pathways are reported.

  11. AN EXPERIMENTAL STUDY OF THE EFFECTS OF CHEMICALLY DISPERSED OIL ON FEATHER STRUCTURE AND WATERPROOFING IN COMMON MURRES ( URIA AALGE).

    PubMed

    Whitmer, Emily R; Elias, Becky A; Harvey, Danielle J; Ziccardi, Michael H

    2018-04-01

    Following an oil spill in the marine environment, chemical dispersants, which increase oil droplet formation and distribution into the water column, are assumed to provide a net benefit to seabirds by reducing the risk of exposure to oil on the water surface. However, few data are available regarding acute, external impacts of exposure to dispersed oil. We evaluated the effects of known concentrations of dispersant and crude oil in artificial seawater on live Common Murres ( Uria aalge). Waterproofing and microscopic feather geometry were evaluated over time and compared to pre-exposure values. Birds exposed to a high concentration of dispersant experienced an immediate, life-threatening loss of waterproofing and buoyancy, both of which resolved within 2 d. Birds exposed to oil, or a dispersant and oil mixture, experienced dose-dependent waterproofing impairment without resolution over 2 d. Alterations in feather geometry were observed in oil-exposed or dispersant- and oil-exposed birds and were associated with increased odds of waterproofing impairment compared to control birds. At a given contaminant concentration, there were no significant differences in waterproofing between oil-exposed and dispersant- and oil-exposed birds. We found that acute, external effects of oil and dispersed oil exposure are comparable and dose-dependent. Our results also indicate that a zero-risk assumption should not be used when seabirds are present within the dispersant application zone.

  12. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

    NASA Astrophysics Data System (ADS)

    Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo

    2017-11-01

    Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.

  13. NMRI Measurements of Flow of Granular Mixtures

    NASA Technical Reports Server (NTRS)

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  14. Conformation and structural changes of diblock copolymers with octopus-like micelle formation in the presence of external stimuli

    NASA Astrophysics Data System (ADS)

    Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.

    2014-04-01

    External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.

  15. Negative Compressibility and Inverse Problem for Spinning Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasily Geyko and Nathaniel J. Fisch

    2013-01-11

    A spinning ideal gas in a cylinder with a smooth surface is shown to have unusual properties. First, under compression parallel to the axis of rotation, the spinning gas exhibits negative compressibility because energy can be stored in the rotation. Second, the spinning breaks the symmetry under which partial pressures of a mixture of gases simply add proportional to the constituent number densities. Thus, remarkably, in a mixture of spinning gases, an inverse problem can be formulated such that the gas constituents can be determined through external measurements only.

  16. An improved external recycle reactor for determining gas-solid reaction kinetics

    NASA Technical Reports Server (NTRS)

    Miller, Irvin M.; Hoyt, Ronald F.

    1987-01-01

    These improvements in the recycle system effectively eliminate initial concentration variation by two modifications: (1) a vacuum line connection to the recycle loop which permits this loop to be evacuated and then filled with the test gas mixture to slightly above atmospheric pressure; and (2) a bypass line across the reactor which permits the reactor to be held under vacuum while the rest of the recycle loop is filled with test gas. A three-step procedure for bringing the feed gas mixture into contact with the catalyst at time zero is described.

  17. A novel technique to study pore-forming peptides in a natural membrane.

    PubMed

    Vedovato, Natascia; Rispoli, Giorgio

    2007-09-01

    The biophysical characteristics and the pore formation dynamics of synthetic or naturally occurring peptides forming membrane-spanning channels were investigated by using isolated photoreceptor rod outer segments (OS) recorded in whole-cell configuration. Once blocking the two OS endogenous conductances (the cGMP channels by light and the Na(+):Ca(2+),K(+) exchanger by removing one of the transported ion species from both sides of the membrane, i.e. K(+), Na(+) or Ca(2+)), the OS membrane resistance (R ( m )) was typically larger than 1 GOmega in the presence of 1 mM external Ca(2+). Therefore, any exogenous current could be studied down to the single channel level. The peptides were applied to (and removed from) the extracellular OS side in approximately 50 ms with a computer-controlled microperfusion system, in which every perfusion parameter, as the rate of solution flow, the temporal sequence of solution changes or the number of automatic, self-washing cycles were controlled by a user-friendly interface. This technique was then used to determine the biophysical properties and the pore formation dynamics of antibiotic peptaibols, as the native alamethicin mixture, the synthesized major component of the neutral fraction (F50/5) of alamethicin, and the synthetic trichogin GA IV.

  18. Measurement and description of underlying dimensions of comorbid mental disorders using Factor Mixture Models: results of the ESEMeD project.

    PubMed

    Almansa, Josué; Vermunt, Jeroen K; Forero, Carlos G; Vilagut, Gemma; De Graaf, Ron; De Girolamo, Giovanni; Alonso, Jordi

    2011-06-01

    Epidemiological studies on mental health and mental comorbidity are usually based on prevalences and correlations between disorders, or some other form of bivariate clustering of disorders. In this paper, we propose a Factor Mixture Model (FMM) methodology based on conceptual models aiming to measure and summarize distinctive disorder information in the internalizing and externalizing dimensions. This methodology includes explicit modelling of subpopulations with and without 12 month disorders ("ill" and "healthy") by means of latent classes, as well as assessment of model invariance and estimation of dimensional scores. We applied this methodology with an internalizing/externalizing two-factor model, to a representative sample gathered in the European Study of the Epidemiology of Mental Disorders (ESEMeD) study -- which includes 8796 individuals from six countries, and used the CIDI 3.0 instrument for disorder assessment. Results revealed that southern European countries have significantly higher mental health levels concerning internalizing/externalizing disorders than central countries; males suffered more externalizing disorders than women did, and conversely, internalizing disorders were more frequent in women. Differences in mental-health level between socio-demographic groups were due to different proportions of healthy and ill individuals and, noticeably, to the ameliorating influence of marital status on severity. An advantage of latent model-based scores is that the inclusion of additional mental-health dimensional information -- other than diagnostic data -- allows for greater precision within a target range of scores. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2004-06-01

    Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.

  20. Navier-Stokes analysis of cold scramjet-afterbody flows

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.; Eleshaky, Mohamed E.

    1989-01-01

    The progress of two efforts in coding solutions of Navier-Stokes equations is summarized. The first effort concerns a 3-D space marching parabolized Navier-Stokes (PNS) code being modified to compute the supersonic mixing flow through an internal/external expansion nozzle with multicomponent gases. The 3-D PNS equations, coupled with a set of species continuity equations, are solved using an implicit finite difference scheme. The completed work is summarized and includes code modifications for four chemical species, computing the flow upstream of the upper cowl for a theoretical air mixture, developing an initial plane solution for the inner nozzle region, and computing the flow inside the nozzle for both a N2/O2 mixture and a Freon-12/Ar mixture, and plotting density-pressure contours for the inner nozzle region. The second effort concerns a full Navier-Stokes code. The species continuity equations account for the diffusion of multiple gases. This 3-D explicit afterbody code has the ability to use high order numerical integration schemes such as the 4th order MacCormack, and the Gottlieb-MacCormack schemes. Changes to the work are listed and include, but are not limited to: (1) internal/external flow capability; (2) new treatments of the cowl wall boundary conditions and relaxed computations around the cowl region and cowl tip; (3) the entering of the thermodynamic and transport properties of Freon-12, Ar, O, and N; (4) modification to the Baldwin-Lomax turbulence model to account for turbulent eddies generated by cowl walls inside and external to the nozzle; and (5) adopting a relaxation formula to account for the turbulence in the mixing shear layer.

  1. Distributed Time-Varying Formation Robust Tracking for General Linear Multiagent Systems With Parameter Uncertainties and External Disturbances.

    PubMed

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-05-18

    This paper investigates the time-varying formation robust tracking problems for high-order linear multiagent systems with a leader of unknown control input in the presence of heterogeneous parameter uncertainties and external disturbances. The followers need to accomplish an expected time-varying formation in the state space and track the state trajectory produced by the leader simultaneously. First, a time-varying formation robust tracking protocol with a totally distributed form is proposed utilizing the neighborhood state information. With the adaptive updating mechanism, neither any global knowledge about the communication topology nor the upper bounds of the parameter uncertainties, external disturbances and leader's unknown input are required in the proposed protocol. Then, in order to determine the control parameters, an algorithm with four steps is presented, where feasible conditions for the followers to accomplish the expected time-varying formation tracking are provided. Furthermore, based on the Lyapunov-like analysis theory, it is proved that the formation tracking error can converge to zero asymptotically. Finally, the effectiveness of the theoretical results is verified by simulation examples.

  2. The effect of particle morphology on the physical stability of pharmaceutical powder mixtures

    NASA Astrophysics Data System (ADS)

    Swaminathan, Vidya

    Pharmaceutical powder mixtures are composed of particles that physically interact, precluding the formation of random mixtures. Mixtures based on particle interactions are termed ordered mixtures. The objective of this study was to determine the effect of the morphological characteristics of the components, surface texture and shape, along with size, on the formation of stable mixtures. Morphological parameters were obtained from image analysis measurements. Surface roughness was quantified using the ratio of the perimeter of the particle to that of an ideal shape (circle or square) having the same area; shape was described using the aspect ratio. The stability of mixtures of micronized aspirin with carriers of different surface roughness was determined by measuring the extent of drug adhering to the carrier after subjecting the mixtures to vibration. A lesser extent of segregation of drug from highly textured carriers relative to smoother textured carriers was observed. This was postulated to be due to a larger concentration of surface asperities on the coarser carriers which constitute potentially strong adhesion sites. The electrostatic charge on the powders was measured; differences in the response of the mixtures to the addition of magnesium stearate were attributed to electrostatic charge effects. The effect of varying the aspect ratio of the carrier and drug on segregation in polydisperse mixtures was determined from the coefficient of variation of the drug in the mixture as a function of mixing time. Reducing the size of the carrier resulted in poor homogeneity due to weak carrier-drug interactions. The variation in drug content resulting from a change in the shape of the carriers was smaller than that caused by size differences. The segregation rate constant in mixtures having dissimilarly shaped components was larger than in mixtures having components of similar shape. The effects of magnesium stearate concentration and lubrication time on the content uniformity of polydisperse mixtures were evaluated from a full factorial experiment. The segregation response of ordered and random mixtures to the addition of magnesium stearate was compared. The moisture sorption behavior of commercial magnesium stearate and the resulting morphological changes were evaluated.

  3. Perceptions on evaluative and formative functions of external supervision of Rwandan primary healthcare facilities: A qualitative study

    PubMed Central

    Schriver, Michael; Cubaka, Vincent Kalumire; Itangishaka, Sylvere; Nyirazinyoye, Laetitia; Kallestrup, Per

    2018-01-01

    Background External supervision of primary healthcare facilities in low- and middle-income countries often has a managerial main purpose in which the role of support for professional development is unclear. Aim To explore how Rwandan primary healthcare supervisors and providers (supervisees) perceive evaluative and formative functions of external supervision. Design Qualitative, exploratory study. Data Focus group discussions: three with supervisors, three with providers, and one mixed (n = 31). Findings were discussed with individual and groups of supervisors and providers. Results Evaluative activities occupied providers’ understanding of supervision, including checking, correcting, marking and performance-based financing. These were presented as sources of motivation, that in self-determination theory indicate introjected regulation. Supervisors preferred to highlight their role in formative supervision, which may mask their own and providers’ uncontested accounts that systematic performance evaluations predominated supervisors’ work. Providers strongly requested larger focus on formative and supportive functions, voiced as well by most supervisors. Impact of performance evaluation on motivation and professional development is discussed. Conclusion While external supervisors intended to support providers’ professional development, our findings indicate serious problems with this in a context of frequent evaluations and performance marking. Separating the role of supporter and evaluator does not appear as the simple solution. If external supervision is to improve health care services, it is essential that supervisors and health centre managers are competent to support providers in a way that transparently accounts for various performance pressures. This includes delivery of proper formative supervision with useful feedback, maintaining an effective supervisory relationship, as well as ensuring providers are aware of the purpose and content of evaluative and formative supervision functions. PMID:29462144

  4. Storage effect on viability and biofunctionality of human adipose tissue-derived stromal cells.

    PubMed

    Falah, Mizied; Rayan, Anwar; Srouji, Samer

    2015-09-01

    In our recent studies, the transplantation of human adipose tissue-derived stromal cells (ASCs) has shown promise for treatment of diseases related to bone and joint disorders. For the current clinical applications, ASCs were formulated and suspended in PlasmaLyte A supplemented with heparin, glucose and human serum albumin, balanced to pH 7.4 with sodium bicarbonate. This cell solution constitutes 20% of the overall transplanted mixture and is supplemented with hyaluronic acid (60%) and OraGraft particles (20%). We intended to investigate the effect of this transplantation mixture on the viability and biofunctionality of ASCs in bone formation. Freshly harvested cells were resuspended and incubated in the indicated mixture for up to 48 h at 4°C. Cell viability was assessed using trypan blue and AlamarBlue, and cell functionality was determined by quantifying their adhesion rate in vitro and bone formation in an ectopic mouse model. More than 80% of the ASCs stored in the transplantation mixture were viable for up to 24 h. Cell viability beyond 24 h in storage decreased to approximately 50%. In addition, an equal degree of bone formation was observed between the cells transplanted following incubation in transplantation mixture for up to 24 h and zero-time non-incubated cells (control). The viability and functionality of ASCs stored in the presented formulation will make such cell therapy accessible to larger and more remote populations. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Mechanisms underlying perceptual learning of contrast detection in adults with anisometropic amblyopia

    PubMed Central

    Huang, Chang-Bing; Lu, Zhong-Lin; Zhou, Yifeng

    2010-01-01

    What underlies contrast sensitivity improvements in adults with anisometropic amblyopia following perceptual learning in grating contrast detection? In this paper, we adopted the external noise approach (Z.-L. Lu & B. A. Dosher, 1998) to identify the mechanisms underlying perceptual learning in adults with anisometropic amblyopia. By measuring contrast thresholds in a range of external noise conditions at two performance levels (79.3% and 70.7%), we found that a mixture of internal additive noise reduction and external noise exclusion underlay training induced contrast sensitivity improvements in adults with anisometropic amblyopia. In comparison, normal adults exhibited only small amount of external noise exclusion under the same training conditions. The results suggest that neural plasticity may be more robust in amblyopia, lending further support of perceptual learning as a potential treatment for adult amblyopia. PMID:20053087

  6. Fact or artifact: the representativeness of ESI-MS for complex natural organic mixtures.

    PubMed

    Novotny, Nicole R; Capley, Erin N; Stenson, Alexandra C

    2014-04-01

    Because mass spectrometers provide their own dispersion and resolution of analytes, electrospray ionization mass spectrometry (ESI-MS) has become a workhorse for the characterization of complex mixtures from aerosols to crude oil. Unfortunately, ESI mass spectra commonly contain multimers, adducts and fragments. For the characterization of complex mixtures of unknown initial composition, this presents a significant concern. Mixed-multimer formation could potentially lead to results that bare no resemblance to the original mixture. Conversely, ESI-MS has continually reflected subtle differences between natural organic matter mixtures that are in agreement with prediction or theory. Knowing the real limitations of the technique is therefore critical to avoiding both over-interpretation and unwarranted skepticism. Here, data were collected on four mass spectrometers under a battery of conditions. Results indicate that formation of unrepresentative ions cannot entirely be ruled out, but non-covalent multimers do not appear to make a major contribution to typical natural organic matter spectra based on collision-induced dissociation results. Multimers also appear notably reduced when a cooling gas is present in the accumulation region of the mass spectrometer. For less complex mixtures, the choice of spray solvent can make a difference, but generally spectrum cleanliness (i.e. representativeness) comes at the price of increased selectivity. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Quantitative assessment of pheromone-induced Dauer formation in Caenorhabditis elegans.

    PubMed

    Neal, Scott J; Kim, Kyuhyung; Sengupta, Piali

    2013-01-01

    Environmental conditions experienced during early larval stages dictate the developmental trajectory of the nematode C. elegans. Favorable conditions such as low population density, abundant food, and lower temperatures allow reproductive growth, while stressful conditions promote entry of second-stage (L2) larvae into the alternate dauer developmental stage. Population density is signaled by the concentration and composition of a complex mixture of small molecules that is produced by all stages of animals, and is collectively referred to as dauer pheromone; pheromone concentration is a major trigger for dauer formation. Here, we describe a quantitative dauer formation assay that provides a measure of the potency of single or mixtures of pheromone components in regulating this critical developmental decision.

  8. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in this subpart as safe and suitable for use in color additive mixtures for coloring externally... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is the crystalline material obtained from fish scales and consists principally of the two purines...

  9. Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection diesel engine by using linear raman spectroscopy.

    PubMed

    Taschek, Marco; Egermann, Jan; Schwarz, Sabrina; Leipertz, Alfred

    2005-11-01

    Optimum fuel preparation and mixture formation are core issues in the development of modern direct-injection (DI) Diesel engines, as these are crucial for defining the border conditions for the subsequent combustion and pollutant formation process. The local fuel/air ratio can be seen as one of the key parameters for this optimization process, as it allows the characterization and comparison of the mixture formation quality. For what is the first time to the best of our knowledge, linear Raman spectroscopy is used to detect the fuel/air ratio and its change along a line of a few millimeters directly and nonintrusively inside the combustion bowl of a DI Diesel engine. By a careful optimization of the measurement setup, the weak Raman signals could be separated successfully from disturbing interferences. A simultaneous measurement of the densities of air and fuel was possible along a line of about 10 mm length, allowing a time- and space-resolved measurement of the local fuel/air ratio. This could be performed in a nonreacting atmosphere as well as during fired operating conditions. The positioning of the measurement volume next to the interaction point of one of the spray jets with the wall of the combustion bowl allowed a near-wall analysis of the mixture formation process for a six-hole nozzle under varying injection and engine conditions. The results clearly show the influence of the nozzle geometry and preinjection on the mixing process. In contrast, modulation of the intake air temperature merely led to minor changes of the fuel concentration in the measurement volume.

  10. Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Taschek, Marco; Egermann, Jan; Schwarz, Sabrina; Leipertz, Alfred

    2005-11-01

    Optimum fuel preparation and mixture formation are core issues in the development of modern direct-injection (DI) Diesel engines, as these are crucial for defining the border conditions for the subsequent combustion and pollutant formation process. The local fuel/air ratio can be seen as one of the key parameters for this optimization process, as it allows the characterization and comparison of the mixture formation quality. For what is the first time to the best of our knowledge, linear Raman spectroscopy is used to detect the fuel/air ratio and its change along a line of a few millimeters directly and nonintrusively inside the combustion bowl of a DI Diesel engine. By a careful optimization of the measurement setup, the weak Raman signals could be separated successfully from disturbing interferences. A simultaneous measurement of the densities of air and fuel was possible along a line of about 10 mm length, allowing a time- and space-resolved measurement of the local fuel/air ratio. This could be performed in a nonreacting atmosphere as well as during fired operating conditions. The positioning of the measurement volume next to the interaction point of one of the spray jets with the wall of the combustion bowl allowed a near-wall analysis of the mixture formation process for a six-hole nozzle under varying injection and engine conditions. The results clearly show the influence of the nozzle geometry and preinjection on the mixing process. In contrast, modulation of the intake air temperature merely led to minor changes of the fuel concentration in the measurement volume.

  11. Surface mediated assembly of small, metastable gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities. Electronic supplementary information (ESI) available: Further details on stored plating solution preparation, film characterization, solution processing, MOF crystal FIB reconstruction and stability are available. See DOI: 10.1039/c3nr01708g

  12. Synergism and antagonism in extracting local anesthetics from aqueous media with mixtures of solvents

    NASA Astrophysics Data System (ADS)

    Sukhanov, P. T.; Chibisova, T. V.; Korenman, Ya. I.

    2014-12-01

    The extraction of local anesthetics from aqueous media with mixtures of solvent is examined and its synergistic and antagonistic effects are determined. Synergism parameters, separation factors, constants for the formation of anesthetic complexes, and solvate numbers are calculated.

  13. Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures

    NASA Astrophysics Data System (ADS)

    Islam, Saidul; Bučar, Dejan-Krešimir; Powner, Matthew W.

    2017-06-01

    A central problem for the prebiotic synthesis of biological amino acids and nucleotides is to avoid the concomitant synthesis of undesired or irrelevant by-products. Additionally, multistep pathways require mechanisms that enable the sequential addition of reactants and purification of intermediates that are consistent with reasonable geochemical scenarios. Here, we show that 2-aminothiazole reacts selectively with two- and three-carbon sugars (glycolaldehyde and glyceraldehyde, respectively), which results in their accumulation and purification as stable crystalline aminals. This permits ribonucleotide synthesis, even from complex sugar mixtures. Remarkably, aminal formation also overcomes the thermodynamically favoured isomerization of glyceraldehyde into dihydroxyacetone because only the aminal of glyceraldehyde separates from the equilibrating mixture. Finally, we show that aminal formation provides a novel pathway to amino acids that avoids the synthesis of the non-proteinogenic α,α-disubstituted analogues. The common physicochemical mechanism that controls the proteinogenic amino acid and ribonucleotide assembly from prebiotic mixtures suggests that these essential classes of metabolite had a unified chemical origin.

  14. External front instabilities induced by a shocked particle ring.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2014-10-01

    The dispersion of a cylindrical particle ring by a blast or shock wave induces the formation of coherent structures which take the form of particle jets. A blast wave, issuing from the discharge of a planar shock wave at the exit of a conventional shock tube, is generated in the center of a granular medium ring initially confined inside a Hele-Shaw cell. With the present experimental setup, under impulsive acceleration, a solid particle-jet formation is observed in a quasi-two-dimensional configuration. The aim of the present investigation is to observe in detail the formation of very thin perturbations created around the external surface of the dispersed particle layer. By means of fast flow visualization with an appropriate recording window, we focus solely on the first instants during which the external particle ring becomes unstable. We find that the critical area of the destabilization of the external ring surface is constant regardless of the acceleration of the initial layer. Moreover, we observe in detail the external front perturbation wavelength, rendered dimensionless by the initial ring perimeter, and follow its evolution with the initial particle layer acceleration. We report this quantity to be constant regardless of the evolution of the initial particle layer acceleration. Finally, we can reasonably assert that external front perturbations depend solely on the material of the particles.

  15. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin-saccharin cocrystals via solid-state grinding process.

    PubMed

    Zhang, Gang-Chun; Lin, Hong-Liang; Lin, Shan-Yang

    2012-07-01

    The cocrystal formation of indomethacin (IMC) and saccharin (SAC) by mechanical cogrinding or thermal treatment was investigated. The formation mechanism and stability of IMC-SAC cocrystal prepared by cogrinding process were explored. Typical IMC-SAC cocrystal was also prepared by solvent evaporation method. All the samples were identified and characterized by using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) microspectroscopy with curve-fitting analysis. The physical stability of different IMC-SAC ground mixtures before and after storage for 7 months was examined. The results demonstrate that the stepwise measurements were carried out at specific intervals over a continuous cogrinding process showing a continuous growth in the cocrystal formation between IMC and SAC. The main IR spectral shifts from 3371 to 3,347 cm(-1) and 1693 to 1682 cm(-1) for IMC, as well as from 3094 to 3136 cm(-1) and 1718 to 1735 cm(-1) for SAC suggested that the OH and NH groups in both chemical structures were taken part in a hydrogen bonding, leading to the formation of IMC-SAC cocrystal. A melting at 184 °C for the 30-min IMC-SAC ground mixture was almost the same as the melting at 184 °C for the solvent-evaporated IMC-SAC cocrystal. The 30-min IMC-SAC ground mixture was also confirmed to have similar components and contents to that of the solvent-evaporated IMC-SAC cocrystal by using a curve-fitting analysis from IR spectra. The thermal-induced IMC-SAC cocrystal formation was also found to be dependent on the temperature treated. Different IMC-SAC ground mixtures after storage at 25 °C/40% RH condition for 7 months had an improved tendency of IMC-SAC cocrystallization. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Reversible Self-Assembly of Water-Soluble Gold(I) Complexes.

    PubMed

    Aguiló, Elisabet; Moro, Artur J; Gavara, Raquel; Alfonso, Ignacio; Pérez, Yolanda; Zaccaria, Francesco; Guerra, Célia Fonseca; Malfois, Marc; Baucells, Clara; Ferrer, Montserrat; Lima, João Carlos; Rodríguez, Laura

    2018-02-05

    The reaction of the gold polymers containing bipyridyl and terpyridyl units, [Au(C≡CC 15 H 10 N 3 )] n and [Au(C≡CC 10 H 7 N 2 )] n , with the water-soluble phosphines 1,3,5-triaza-7-phosphatricyclo[3.3.1.13.7]decane and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane gives rise to the formation of four gold(I) alkynyl complexes that self-assemble in water (H 2 O) and dimethyl sulfoxide (DMSO), through different intermolecular interactions, with an impact on the observed luminescence displayed by the supramolecular assemblies. A detailed analysis carried out by NMR studies performed in different DMSO/deuterated H 2 O mixtures indicates the presence of two different assembly modes in the aggregates: (i) chain assemblies, which are based mainly on aurophilic interactions, and (ii) stacked assemblies, which are based on Au···π and π···π interactions. These different supramolecular environments can also be detected by their intrinsic optical properties (differences in absorption and emission spectra) and are predicted by the changes in the relative binding energy from density functional theory calculations carried out in DMSO and H 2 O. Small-angle X-ray scattering (SAXS) experiments performed in the same mixture of solvents are in agreement with the formation of aggregates in all cases. The aromatic units chosen, bipyridine and terpyridine, allow the use of external stimuli to reversibly change the aggregation state of the supramolecular assemblies. Interaction with the Zn 2+ cation is observed to disassemble the aggregates, while encapsulating agents competing for Zn 2+ complexation revert the process to the aggregation stage, as verified by SAXS and NMR. The adaptive nature of the supramolecular assemblies to the metal-ion content is accompanied by significant changes in the absorption and emission spectra, signaling the aggregation state and also the content on Zn 2+ .

  17. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Copper powder. 73.1647 Section 73.1647 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... use in color additive mixtures for coloring externally applied drugs. (b) Specifications. Copper...

  18. STS-121: Discovery Mission Management Team Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing opened with Bruce Buckingham (NASA Public Affairs) introducing John Shannon (Chairman, Mission Management Team, JSC), John Chapman (External Tank Project Manager), Mike Leinbach (Shuttle Launch Director), and 1st Lt. Kaleb Nordgren (USAF 45th Weather Squadron). John Shannon reported that the team for hydrogen loading was proceeding well and the external tank detanking was completed. During detanking the inspection team cracked foam caused by condensation and ice formation as the tank expanded and contracted. Aerothermal analysis and analysis fro ice formation will be completed before launch. John Chapman explained the mechanics of the external tank design, the foam cracking, bracket design, etc. Mike Leinbach discussed the inspection teams and their inspection final inspection for ice formation before and after external tank filling. The inspection team of eight very experienced personnel also use telescopes with cameras to find any problems before launch. Kaleb Nordgren discussed weather and said there was a 40% chance of weather prohibiting launch. The floor was the opened for questions from the press.

  19. Plasma-catalyzed fuel reformer

    DOEpatents

    Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

    2013-06-11

    A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

  20. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    PubMed

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree of counterion binding (β = 0.854), indicating the importance of the counterions.

  1. COMPONENT-BASED AND WHOLE-MIXTURE TECHNIQUES FOR ADDRESSING THE TOXICITY OF DRINKING-WATER DISINFECTION BY-PRODUCT MIXTURES

    EPA Science Inventory

    Chemical disinfection of water is of direct public health benefit as it results in decreased waterborne illness. The chemicals used to disinfect water react with naturally occurring organic matter, bromide and iodide in the source water, resulting in the formation of disinfection...

  2. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Bismuth oxychloride. 73.1162 Section 73.1162 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... subpart as safe in color additive mixtures for coloring externally applied drugs. (b) Specifications. The...

  3. An Alternative Model of Philanthropy

    ERIC Educational Resources Information Center

    Green, Madeleine F.; Bezbatchenko, Annie W.

    2014-01-01

    This article begins by observing that foundations come in all shapes and sizes. The mission and grant-making philosophy of any foundation are determined by an unscientific mixture of its history, changing external realities, and leaders. The article then continues by describing The Teagle Foundation, a small, philanthropic organization with about…

  4. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... filter breather cap. (4) Manifold inlet (carburetor spacer, etc.). V. External Exhaust Emission Control...

  5. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... filter breather cap. (4) Manifold inlet (carburetor spacer, etc.). V. External Exhaust Emission Control...

  6. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5) Engine coolant...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... filter breather cap. (4) Manifold inlet (carburetor spacer, etc.). V. External Exhaust Emission Control...

  7. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... filter breather cap. (4) Manifold inlet (carburetor spacer, etc.). V. External Exhaust Emission Control...

  8. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... filter breather cap. (4) Manifold inlet (carburetor spacer, etc.). V. External Exhaust Emission Control...

  9. Laboratory investigation of a novel method to accelerate healing in asphalt mixtures using thermal treatment.

    DOT National Transportation Integrated Search

    2009-08-01

    Asphalt binders have an inherent ability to reverse damage in the form of micro-cracks that is caused : due to the repeated action of external loads. This reversal occurs during rest periods between load : cycles. The phenomenon of crack reversal is ...

  10. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a mixture of smoke plus marine aerosol is also explored.

  11. ZnO-based regenerable sulfur sorbents for fluid-bed/transport reactor applications

    DOEpatents

    Slimane, Rachid B.; Abbasian, Javad; Williams, Brett E.

    2004-09-21

    A method for producing regenerable sulfur sorbents in which a support material precursor is mixed with isopropanol and a first portion of deionized water at an elevated temperature to form a sol mixture. A metal oxide precursor comprising a metal suitable for use as a sulfur sorbent is dissolved in a second portion of deionized water, forming a metal salt solution. The metal salt solution and the sol mixture are mixed with a sol peptizing agent while heating and stirring, resulting in formation of a peptized sol mixture. The metal oxide precursor is dispersed substantially throughout the peptized sol mixture, which is then dried, forming a dry peptized sol mixture. The dry peptized sol mixture is then calcined and the resulting calcined material is then converted to particles.

  12. High-temperature potentiometric oxygen sensor with internal reference

    DOEpatents

    Routbort, Jules L [Hinsdale, IL; Singh, Dileep [Naperville, IL; Dutta, Prabir K [Worthington, OH; Ramasamy, Ramamoorthy [North Royalton, OH; Spirig, John V [Columbus, OH; Akbar, Sheikh [Hilliard, OH

    2011-11-15

    A compact oxygen sensor is provided, comprising a mixture of metal and metal oxide an enclosure containing said mixture, said enclosure capable of isolating said mixture from an environment external of said enclosure, and a first wire having a first end residing within the enclosure and having a second end exposed to the environment. Also provided is a method for the fabrication of an oxygen sensor, the method comprising confining a metal-metal oxide solid mixture to a container which consists of a single material permeable to oxygen ions, supplying an electrical conductor having a first end and a second end, whereby the first end resides inside the container as a reference (PO.sub.2).sup.ref, and the second end resides outside the container in the atmosphere where oxygen partial pressure (PO.sub.2).sup.ext is to be measured, and sealing the container with additional single material such that grain boundary sliding occurs between grains of the single material and grains of the additional single material.

  13. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  14. Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  15. The H I chronicles of LITTLE THINGS blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Ashley, Trisha Lynn

    Star formation occurs when the gas (mostly atomic hydrogen; H I) in a galaxy becomes disturbed, forming regions of high density gas, which then collapses to form stars. In dwarf galaxies it is still uncertain which processes contribute to star formation and how much they contribute to star formation. Blue compact dwarf (BCD) galaxies are low mass, low shear, gas rich galaxies that have high star formation rates when compared to other dwarf galaxies. What triggers the dense burst of star formation in BCDs but not other dwarfs is not well understood. It is often suggested that BCDs may have their starburst triggered by gravitational interactions with other galaxies, dwarf-dwarf galaxy mergers, or consumption of intergalactic gas. However, there are BCDs that appear isolated with respect to other galaxies, making an external disturbance unlikely. Here, I study six apparently isolated BCDs from the LITTLE THINGS sample in an attempt to understand what has triggered their burst of star formation. LITTLE THINGS is an H I survey of 41 dwarf galaxies. Each galaxy has high angular and velocity resolution H I data from the Very Large Array (VLA) telescope and ancillary stellar data. I use these data to study the detailed morphology and kinematics of each galaxy, looking for signatures of starburst triggers. In addition to the VLA data, I have collected Green Bank Telescope data for the six BCDs. These high sensitivity, low resolution data are used to search the surrounding area of each galaxy for extended emission and possible nearby companion galaxies. The VLA data show evidence that each BCD has likely experienced some form of external disturbance despite their apparent isolation. These external disturbances potentially seen in the sample include: ongoing/advanced dwarf-dwarf mergers, an interaction with an unknown external object, and external gas consumption. The GBT data result in no nearby, separate H I companions at the sensitivity of the data. These data therefore suggest that even though these BCDs appear isolated, they have not been evolving in isolation. It is possible that these external disturbances may have triggered the starbursts that defines them as BCDs.

  16. Examining the Latent Structure of Anxiety Sensitivity in Adolescents using Factor Mixture Modeling

    PubMed Central

    Allan, Nicholas P.; MacPherson, Laura; Young, Kevin C.; Lejuez, Carl W.; Schmidt, Norman B.

    2014-01-01

    Anxiety sensitivity has been implicated as an important risk factor, generalizable to most anxiety disorders. In adults, factor mixture modeling has been used to demonstrate that anxiety sensitivity is best conceptualized as categorical between individuals. That is, whereas most adults appear to possess normative levels of anxiety sensitivity, a small subset of the population appears to possess abnormally high levels of anxiety sensitivity. Further, those in the high anxiety sensitivity group are at increased risk of having high levels of anxiety and of having an anxiety disorder. This study was designed to determine whether these findings extend to adolescents. Factor mixture modeling was used to examine the best fitting model of anxiety sensitivity in a sample of 277 adolescents (M age = 11.0, SD = .81). Consistent with research in adults, the best fitting model consisted of two classes, one containing adolescents with high levels of anxiety sensitivity (n = 25), and another containing adolescents with normative levels of anxiety sensitivity (n = 252). Examination of anxiety sensitivity subscales revealed that the social concerns subscale was not important for classification of individuals. Convergent and discriminant validity of anxiety sensitivity classes were found in that membership in the high anxiety sensitivity class was associated with higher mean levels of anxiety symptoms, controlling for depression and externalizing problems, and was not associated with higher mean levels of depression or externalizing symptoms controlling for anxiety problems. PMID:24749756

  17. Pressure-temperature phase behavior of mixtures of natural sphingomyelin and ceramide extracts.

    PubMed

    Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Seddon, John M; Law, Robert V; Brooks, Nicholas J

    2015-03-31

    Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(β)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.

  18. Formation and decomposition of siderite for CO2 treatment

    NASA Astrophysics Data System (ADS)

    Y Mora, E.; Sarmiento, A.; Vera, E.; Drozd, V.; Durigyn, A.; Saxena, S.

    2017-12-01

    In this research work, we studied the conditions for formation and decomposition of siderite FeCO3 from hematite Fe2O3 along with carbon dioxide CO2 at suitable thermodynamic conditions. As reductant agents were used mixtures of two elements, metallic iron and graphite. Best levels of carbonation were found in mixtures with bigger amounts of metallic iron. It was demonstrated that CO2 capture capacity by hematite depends of temperature, CO2 pressure, and reaction time. Temperatures between 100 and 150°C, pressures between 10 and 30bar and reaction times between 1 and 4h were adjusted for analyse the carbonation behaviour; siderite formation was improved by increases of these three variables. There was no carbonation without water in the mixtures, due to kinetic limitations. CO2 capture capacity was calculated from Rietveld refinement results. Using vacuum system and Dielectric Barrier Discharge, DBD plasma, the siderite was decomposed at 300°C, and 320°C respectively. Techniques as X-ray diffraction, and surface area analysis were employed to study the material.

  19. Experimental study on the flame behaviors of premixed methane/air mixture in horizontal rectangular ducts

    NASA Astrophysics Data System (ADS)

    Chen, Dongliang; Sun, Jinhua; Chen, Sining; Liu, Yi; Chu, Guanquan

    2007-01-01

    In order to explore the flame propagation characteristics and tulip flame formation mechanism of premixed methane/air mixture in horizontal rectangular ducts, the techniques of Schlieren and high-speed video camera are used to study the flame behaviors of the premixed gases in a closed duct and opened one respectively, and the propagation characteristics in both cases and the formation mechanism of the tulip flame are analyzed. The results show that, the propagation flame in a closed duct is prior to form a tulip flame structure than that in an opened duct, and the tulip flame structure formation in a closed duct is related to the flame propagation velocity decrease. The sharp decrease of the flame propagation velocity is one of the reasons to the tulip flame formation, and the decrease of the flame propagation velocity is due to the decrease of the burned product flow velocity mainly.

  20. Formation and stability of twisted ribbons in mixtures of rod-like fd-virus and non-adsorbing polymer

    NASA Astrophysics Data System (ADS)

    Dogic, Z.; Didonna, B.; Bryning, M.; Lubensky, T. C.; Yodh, A. G.; Janmey, P. A.

    2003-03-01

    We are investigating the behavior of mixtures of monodisperse fd-virus rods and non-adsorbing polymer. We observe the formation of isolated smectic disks. The single smectic disk is of a monolayer of aligned rods while its thickness equal to the length of a single rod. As disks coalesce they undergo shape transformations from flat structures to elongated twisted ribbons. A theoretical model is formulated wherein the chirality of the molecule favors the formation of the elongated ribbon structure while the line tension favors formation of untwisted disks. To check the validity of the theoretical model line tension and twist constants are experimentally measured. The line tension is deduced from thermal fluctuations of the interface. The twist constant is determined by unwinding the twisted ribbons using optical tweezers. This work is partially supported by NSF grants DMR-0203378, the PENN MRSEC, DMR-0079909, and NASA grant NAG8-2172.

  1. Preparation and Characterization of Cabamazepine Cocrystal in Polymer Solution.

    PubMed

    Zhang, Hao; Zhu, Ying; Qiao, Ning; Chen, Yang; Gao, Linghuan

    2017-12-01

    In this study, we attempted to prepare carbamazepine (CBZ) cocrystal through the solution method in ethanol-water solvent mixture (volume ratio 1:1) and polyvinyl pyrrolidone (PVP) solution. Nicotinamide (NIC) and saccharin (SAC) were selected as cocrystal coformers. Cocrystal screening products were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction (PXRD) techniques. Characterization results show that in ethanol-water solvent mixture, pure CBZ-NIC cocrystal can be prepared, while CBZ-SAC cocrystal cannot be obtained. The addition of PVP can inhibit CBZ-NIC cocrystal formation and facilitate CBZ-SAC cocrystal formation.

  2. Preparation and Characterization of Carbamazepine Cocrystal in Polymer Solution

    PubMed Central

    Zhang, Hao; Zhu, Ying; Chen, Yang; Gao, Linghuan

    2017-01-01

    In this study, we attempted to prepare carbamazepine (CBZ) cocrystal through the solution method in ethanol-water solvent mixture (volume ratio 1:1) and polyvinyl pyrrolidone (PVP) solution. Nicotinamide (NIC) and saccharin (SAC) were selected as cocrystal coformers. Cocrystal screening products were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction (PXRD) techniques. Characterization results show that in ethanol-water solvent mixture, pure CBZ-NIC cocrystal can be prepared, while CBZ-SAC cocrystal cannot be obtained. The addition of PVP can inhibit CBZ-NIC cocrystal formation and facilitate CBZ-SAC cocrystal formation. PMID:29194387

  3. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m-Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts different compounds have on aerosol formation in different urban regions.

  4. Step-wise potential development across the lipid bilayer under external electric fields

    NASA Astrophysics Data System (ADS)

    Majhi, Amit Kumar

    2018-04-01

    Pore formation across the bilayers under external electric field is an important phenomenon, which has numerous applications in biology and bio-engineering fields. However, it is not a ubiquitous event under all field applications. To initiate a pore in the bilayer a particular threshold electric field is required. The electric field alters the intrinsic potential distribution across the bilayer as we as it enhances total potential drop across the bilayer, which causes the pore formation. The intrinsic potential profile has a maximum peak value, which is 0.8 V and it gets enhanced under application of external field, 0.43 V/nm. The peak value becomes 1.4 V when a pore appears in the bilayer and it continues to evolve as along as the external electric field remains switched on.

  5. COMPONENT-BASED AND WHOLE-MIXTURE TECHNIQUES FOR ADDRESSING THE TOXICITY OF DRINKING WATER DISINFECTION BYPRODUCT MIXTURES

    EPA Science Inventory

    ABSTRACT

    Chemical disinfection of water is of direct public health benefit as it results in decreased waterborne illness. The chemicals used to disinfect water react with naturally occurring organic matter and bromide in the source water, resulting in the formation of a m...

  6. Spectroscopic and thermodynamic study of charge transfer interaction between vitamin B 6 and p-chloranil in aqueous ethanol mixtures of varying composition

    NASA Astrophysics Data System (ADS)

    Datta, Kakali; Roy, Dalim Kumar; Mukherjee, Asok K.

    2008-07-01

    Charge transfer complexes of 1:1 stoichiometry have been found to form between vitamin B 6 (pyridoxine hydrochloride) and a series of electron acceptors including p-chloranil. Since vitamin B 6 is soluble in water while the electron acceptors are insoluble in water but soluble in ethanol, the medium chosen for study is water-ethanol mixture. From the trends in the CT absorption bands the vertical ionization potential of vitamin B 6 has been determined to be 8.12 eV. The enthalpy and entropy of formation of the complex between p-chloranil and vitamin B 6 have been determined by estimating the formation constant ( K) spectroscopically at four different temperatures in 75% ethanol-water mixture. Again, the magnitude of K has been found to decrease noticeably with decrease in dielectric constant of the medium (as the percentage of ethanol in the aqueous-ethanol mixture is increased). A plausible explanation for this has been given in terms of hydrolysis of pyridoxine hydrochloride.

  7. FORMATION OF POLYKETONES IN IRRADIATED TOLUENE/PROPYLENE/NOX/AIR MIXTURES

    EPA Science Inventory

    A laboratory study was carried out to investigate the formation of polyketones in secondary organic aerosol from photooxidation of the aromatic hydrocarbon toluene, a major constituent of automobile exhaust. The laboratory experiments consisted of irradiating toluene/propylene...

  8. Divergent syntheses of iodinated isobenzofuranones and isochromenones by iodolactonization of 2-alkynylbenzoic acids in ionic liquids.

    PubMed

    Mancuso, Raffaella; Pomelli, Christian C; Malafronte, Francesco; Maner, Asif; Marino, Nadia; Chiappe, Cinzia; Gabriele, Bartolo

    2017-06-07

    The regiochemical outcome of the iodolactonization of 2-alkynylbenzoic acids, carried out at 100 °C in ionic liquids (ILs) as unconventional solvents and with molecular iodine as the iodine source, in the absence of external bases, was found to be strongly dependent on the nature of the IL medium. In particular, while the use of N-ethyl-N-methylmorpholinium dicyanamide (Mor 1,2 N(CN) 2 ) promoted the stereoselective formation of (E)-3-(iodomethylene)isobenzofuran-1(3H)-ones, through an anti-5-exo-dig cyclization route, the use of 1-ethyl-3-methylimidazolium ethyl sulfate (EmimEtSO 4 ) tended to favor the 6-endo-dig cyclization mode, with preferential or selective formation of 4-iodo-1H-isochromen-1-ones. In any case, the IL solvent could be easily recycled after extraction of the product from the reaction mixture with diethyl ether. DFT calculations have been carried out to clarify the role of the IL's nature in favoring either the anti-5-exo-dig cyclization route or the 6-endo-dig mode. In the case of iodocyclization of 2-ethynylbenzoic acid, only the 5-exo-dig mode was observed in both EmimEtSO 4 and Mor 1,2 N(CN) 2 solvents. The structures of two representative products have been confirmed by X-ray diffraction analysis.

  9. Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals.

    PubMed

    Ardao, Inés; Magnin, Delphine; Agathos, Spiros N

    2015-10-01

    Microbial laccases are powerful enzymes capable of degrading lignin and other recalcitrant compounds including endocrine disrupting chemicals (EDCs). Efficient EDC removal on an industrial scale requires robust, stable, easy to handle and cost-effective immobilized biocatalysts. In this direction, magnetic biocatalysts are attractive due to their easy separation through an external magnetic field. Recently, a bioinspired immobilization technique that mimics the natural biomineralization reactions in diatoms has emerged as a fast and versatile tool for generating robust, cheap, and highly stable (nano) biocatalysts. In this work, bioinspired formation of a biotitania matrix is triggered on the surface of magnetic particles in the presence of laccase in order to produce laccase-biotitania (lac-bioTiO2 ) biocatalysts suitable for environmental applications using a novel, fast and versatile enzyme entrapment technique. Highly active lac-bioTiO2 particles have been produced and the effect of different parameters (enzyme loading, titania precursor concentration, pH, duration of the biotitania formation, and laccase adsorption steps) on the apparent activity yield of these biocatalysts were evaluated, the concentration of the titania precursor being the most influential. The lac-bioTiO2 particles were able to catalyze the removal of bisphenol A, 17α-ethinylestradiol and diclofenac in a mixture of six model EDCs and retained 90% of activity after five reaction cycles and 60% after 10 cycles. © 2015 Wiley Periodicals, Inc.

  10. Valorisation of different types of boron-containing wastes for the production of lightweight aggregates.

    PubMed

    Kavas, T; Christogerou, A; Pontikes, Y; Angelopoulos, G N

    2011-01-30

    Four boron-containing wastes (BW), named as Sieve (SBW), Dewatering (DBW), Thickener (TBW) and Mixture (MBW) waste, from Kirka Boron plant in west Turkey were investigated for the formation of artificial lightweight aggregates (LWA). The characterisation involved chemical, mineralogical and thermal analyses as well as testing of their bloating behaviour by means of heating microscopy. It was found that SBW and DBW present bloating behaviour whereas TBW and MBW do not. Following the above results two mixtures M1 and M2 were prepared with (in wt.%): 20 clay mixture, 40 SBW, 40 DBW and 20 clay mixture, 35 SBW, 35 DBW, 10 quartz sand, respectively. Two different firing modes were applied: (a) from room temperature till 760 °C and (b) abrupt heating at 760 °C. The obtained bulk density for M1 and M2 pellets is 1.2g/cm(3) and 0.9 g/cm(3), respectively. The analysis of microstructure with electron microscopy revealed a glassy phase matrix and an extended formation of both interconnected and isolated, closed pores. The results indicate that SBW and DBW boron-containing wastes combined with a clay mixture and quartz sand can be valorised for the manufacturing of lightweight aggregates. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Salinity-dependent diatom biosilicification implies an important role of external ionic strength

    PubMed Central

    Vrieling, Engel G.; Sun, Qianyao; Tian, Mingwen; Kooyman, Patricia J.; Gieskes, Winfried W. C.; van Santen, Rutger A.; Sommerdijk, Nico A. J. M.

    2007-01-01

    The role of external ionic strength in diatom biosilica formation was assessed by monitoring the nanostructural changes in the biosilica of the two marine diatom species Thalassiosira punctigera and Thalassiosira weissflogii that was obtained from cultures grown at two distinct salinities. Using physicochemical methods, we found that at lower salinity the specific surface area, the fractal dimensions, and the size of mesopores present in the biosilica decreased. Diatom biosilica appears to be denser at the lower salinity that was applied. This phenomenon can be explained by assuming aggregation of smaller coalescing silica particles inside the silica deposition vesicle, which would be in line with principles in silica chemistry. Apparently, external ionic strength has an important effect on diatom biosilica formation, making it tempting to propose that uptake of silicic acid and other external ions may take place simultaneously. Uptake and transport of reactants in the proximity of the expanding silica deposition vesicle, by (macro)pinocytosis, are more likely than intracellular stabilization and transport of silica precursors at the high concentrations that are necessary for the formation of the siliceous frustule components. PMID:17563373

  12. Lack of enhanced photocatalytic formation of iodine on particulate semiconductor mixtures.

    PubMed

    Karunakaran, C; Anilkumar, P; Vinayagamoorthy, P

    2012-12-01

    Under UV-A light illumination, formation of iodine from iodide ion on the surfaces of anatase TiO(2), ZnO, Fe(2)O(3), CeO(2), MoO(3), Bi(2)O(3), and Nb(2)O(5) increases with the concentration of iodide ion, airflow rate and light intensity and conform to the Langmuir-Hinshelwood kinetic model. Measurement of the particle size of the semiconductor oxides by light scattering method and deduction of the same from the determined specific surface area show that the oxide particles agglomerate in suspension. However, mixtures of any two listed particulate semiconductors do not show enhanced photocatalytic formation of iodine indicating absence of interparticle charge transfer. The results are rationalized. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen, preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1979-01-01

    The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times.

  14. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, A

    With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, wasmore » proposed utilizing the kinetic fitting of the coupled differential equations.« less

  15. Aminonitriles - Possible role in chemical evolution

    NASA Technical Reports Server (NTRS)

    Chadha, M. S.; Molton, P. M.; Ponnamperuma, C.

    1975-01-01

    The formation of HCN, ammonium cyanide, alkylnitriles, aminoacetonitrile and its C- and N-methyl homologs was demonstrated earlier in a simulated Jovian atmosphere. The polymeric material resulting in these experiments was shown to give glycine, alanine, sarcosine, aspartic acid and some imino dibasic acids on acid hydrolysis, suggesting thereby the participation of the monomeric nitriles in the formation of the polymeric product(s). Further examination of products resulting from semicorona and arc discharge through a mixture of methane and ammonia has provided evidence for the formation of alkylaminopropionitriles as a complex mixture and also some pyridyl and pyrimidyl type heterocyclic compounds. A gas chromatograph/mass spectrometer examination of the heterocyclics showed resemblance with those found in some carbonaceous chondrites. The significance of these findings in relation to chemical evolution is discussed.

  16. The influence of water-ethanol mixture on the thermodynamics of complex formation between 18-crown-6 ether and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.; Terekhova, I. V.; Kumeev, R. S.

    2012-08-01

    The influence of water-ethanol mixture composition on the complex formation between 18-crown-6 ether and L-phenylalanine was studied by titration calorimetry at Т = 298.15 K. The standard thermodynamic parameters (ΔrGо, ΔrHо, ТΔrSо) of formation of [Phe18C6] molecular complex were calculated from data obtained by means of the microcalorimetric system TAM III (TA Instruments, USA) at X(EtOH) = 0.0/0.6 mol fraction. The stability of [Phe18C6] and the mechanism of complexation in water were investigated using the 1Н and 13С NMR spectroscopy. The increase of EtOH concentration results in an increase of the complex stability and of the exothermicity of complexation.

  17. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  18. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  19. Lichenysin-geminal amino acid-based surfactants: Synergistic action of an unconventional antimicrobial mixture.

    PubMed

    Coronel-León, Jonathan; Pinazo, Aurora; Pérez, Lourdes; Espuny, Mª José; Marqués, Ana Mª; Manresa, Angeles

    2017-01-01

    Recently it has been demonstrated that catanionic mixtures of oppositely charged surfactants have improved physicochemical-biological properties compared to the individual components. Isotherms of mixtures of an anionic biosurfactant (lichenysin) and a cationic aminoacid surfactant (C 3 (LA) 2 ) indicate a strong interaction suggesting the formation of a new "pseudo-surfactant". The antimicrobial properties of the mixture lichenysin and C 3 (LA) 2 M80:20, indicate a synergistic effect of the components. The mechanism of action on the bacterial envelope was assessed by flow cytometry and Transmission Electron Microscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. 21 CFR 74.1304 - FD&C Red No. 4.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-insoluble matter, not more than 0.2 percent. 5-Amino-2,4-dimethyl-1-benzenesulfonic acid, sodium salt, not... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR...-naphthalenesulfonic acid. (2) Color additive mixtures for use in externally applied drugs made with FD&C Red No. 4 may...

  1. 21 CFR 74.1304 - FD&C Red No. 4.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-insoluble matter, not more than 0.2 percent. 5-Amino-2,4-dimethyl-1-benzenesulfonic acid, sodium salt, not... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR...-naphthalenesulfonic acid. (2) Color additive mixtures for use in externally applied drugs made with FD&C Red No. 4 may...

  2. Analysis of compressive strength in flatwise and edgewise direction to characterize Al-7000 aluminium foam

    NASA Astrophysics Data System (ADS)

    Sutarno, Soepriyanto, Syoni; Korda, Akhmad A.; Dirgantara, Tatacipta

    2015-09-01

    The physical mechanical properties of Al-7000 aluminium foam product and processing has been evaluated in this study. The characterization through the compressive testing refers to flatwise direction provided more confident result than edgewise direction. This experiment may correlate with formation of side products of calcia alumina and alumina silica that involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) may role to strengthen of cell wall of aluminium foam and to improve the viscosity of melting metal. The Al-7000 aluminium foam indicated a decrease of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture.

  3. Reaction of iron with hydrogen chloride-oxygen mixtures at 550 C

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.

    1986-01-01

    The reaction of iron with 1 percent HCl/0-50 percent O2/Ar has been studied at 550 C with thermogravimetry to monitor kinetics and scanning electron microscopy to characterize product morphologies. In addition, the volatile species were identified with an atmospheric pressure sampling mass spectrometer. The reaction of 1 percent HCl/Ar produces FeCl2. The reactions of 1 percent HCl/1, 10, 50 percent O2/Ar produce Fe2O3, Fe3O4, FeCl2, and FeCl3. In each case condensed phase chlorides form at the oxide/metal interface where the oxygen potential is low. The 10 and 50 percent oxygen mixtures have kinetics in the first 3 hr similar to pure oxidation with some deviations due to iron-chloride formation. The 1 percent oxygen mixture shows enhanced reaction rates over oxidation, very likely due to the formation of a porous scale.

  4. A mixture approach to the acoustic properties of a macroscopically inhomogeneous porous aluminum in the equivalent fluid approximation.

    PubMed

    Sacristan, C J; Dupont, T; Sicot, O; Leclaire, P; Verdière, K; Panneton, R; Gong, X L

    2016-10-01

    The acoustic properties of an air-saturated macroscopically inhomogeneous aluminum foam in the equivalent fluid approximation are studied. A reference sample built by forcing a highly compressible melamine foam with conical shape inside a constant diameter rigid tube is studied first. In this process, a radial compression varying with depth is applied. With the help of an assumption on the compressed pore geometry, properties of the reference sample can be modelled everywhere in the thickness and it is possible to use the classical transfer matrix method as theoretical reference. In the mixture approach, the material is viewed as a mixture of two known materials placed in a patchwork configuration and with proportions of each varying with depth. The properties are derived from the use of a mixing law. For the reference sample, the classical transfer matrix method is used to validate the experimental results. These results are used to validate the mixture approach. The mixture approach is then used to characterize a porous aluminium for which only the properties of the external faces are known. A porosity profile is needed and is obtained from the simulated annealing optimization process.

  5. Effects of single- and multi-strain probiotics on biofilm formation and in vitro adhesion to bladder cells by urinary tract pathogens.

    PubMed

    Chapman, C M C; Gibson, G R; Rowland, I

    2014-06-01

    There is increasing evidence that probiotic bacteria can inhibit and/or prevent urinary tract infections. Possible mechanisms include prevention of adhesion of pathogens to the bladder epithelium and inhibition of biofilm formation. Currently there is interest in the comparative efficacy of single probiotics vs. strain mixtures. We have therefore tested the inhibitory activity of four single probiotics and four probiotic mixtures towards the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. Inhibition of biofilm formation by cell-free supernatants was tested using the Crystal Violet assay, while prevention of pathogen adhesion to host cells was tested by using bladder cancer cells as a model for the human urinary tract. Under pH-controlled conditions, there was no significant inhibition of biofilm formation by any treatment. Without pH control, 5/8 treatments significantly inhibited biofilm production by E. coli, while 5/8 treatments inhibited production by E. faecalis. Using data from all Crystal Violet assays, there was no significant difference in the ability of single- and multi-strain probiotics to inhibit biofilm formation. In the cell culture assays, all treatments were able to significantly reduce numbers of pathogenic cells adhering to host cells by 2.5-3.5 logs. No significant difference was observed between the displacement caused by single strains and mixtures for either pathogen. Inhibition of biofilm seems to be a major mechanism of urinary tract pathogen exclusion, related to, and possibly dependent upon, the probiotic ability to reduce environmental pH. Exclusion via competition of binding sites is a possible in vivo mechanism for these probiotics. If an additive or synergistic effect exists between strains within a mixture, it does not manifest itself in a greater effect through these two inhibitory mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

    NASA Astrophysics Data System (ADS)

    Sareen, Neha; Carlton, Annmarie G.; Surratt, Jason D.; Gold, Avram; Lee, Ben; Lopez-Hilfiker, Felipe D.; Mohr, Claudia; Thornton, Joel A.; Zhang, Zhenfa; Lim, Yong B.; Turpin, Barbara J.

    2016-11-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS-MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus, formation of pyruvate/oxalate suggests the potential for aqueous processing of these ambient mixtures to form SOAAQ.

  7. Sandblasting nozzle

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)

    1981-01-01

    A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.

  8. An Experimental Investigation of Potential Icing of the Space Shuttle External Tank,

    DTIC Science & Technology

    1982-09-01

    PEG 4000, a PEG 1000/400 mixture, and PEG 6000. The number corresponds to the molecular weight of the compound. 2 4.65m Foam Inslation Side 8 ob o 4m(l...Level Emiseivity panel (PEG coated) (Uncoated) Emissivity Panel Left Right 1 4.4 -28.8 -31.6 4.7 -12.2 -15.3 2 4.4 -20.2 -22.2 4.7 -12.8 -13.4 3 4.3...constant dry bulb temperature of 60*F. PEG was tested on one half of side A of the panel. A mixture of 450 g of molecular weight 4000 PEG and 400 g of H20

  9. Scintillating Cocktail Mixtures and the Role of Water on the Optophysical Properties.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordaro, Joseph Gabriel; Feng, Patrick L.; Mengesha, Wondwosen

    2015-10-01

    Two types of water - containing liquid scinti llation mixtures were prepared in the present work. In the first, m ixtures of 2 - phenylethanol, water, diphenyl phosphate, sodium phenyl phosphate dibasic dihydrate, and the dye 2,5 - diphenyloxazole (PPO) have been investigated as liquid scintillators. In th e second system, nonionic and mixed surfactant systems were investigated in conjunction with water and small amounts of toluene. In both cases, increasing amounts of water led to reductions in the scintillation light yield. Understanding what factors contr ibute to this phenomenon is the focus of this report. Changes in the solutionmore » microphase structure, diminishing aromatic content of the cocktail mixtures, and inefficient energy transfer to the dye a ppear to be responsible for the decreased light yield as more water is added . In the 2 - phenylethanol system, the observed experimental results are consistent with the formation of a bicontinuous microemulsion at higher water concentrations, which incorporates PPO and shields it from the quenching effects of the increasing polar matrix. Evidence for this proposed phase chan ge c ome s from light scattering data, photo - and x - ray luminescence measurements, and optical transparency measurements . In the surfactant - based system, the quenching effect of water was found to be less than both commercially - available dioxane - naphthalene mixtures used for scintillation counting as well as the 2 - phenylethanol mixtures described above. The effect of different surfactant mixtures and concentrations were studied, revealing a benefic ial effect upon the scintillation light yield for mixed surfactant mixtures. These results are interpreted in the context of r eactive radical species formation following water ionization , which leads to light - yield quenching in aqueous systems . The presenc e of surfactant(s) in these mixtures enables the formation of organic - rich regions that are spatially separated from the reactive radicals. This hypothesis is consistent with subsequent experiments that showed reduced light - yield quenching in the presence of radical - trapping additives. A notable result from these surfactant studies was the preparation of an aqueous scintillator that was transparent and showed neutron/gamma pulse - shape discrimination. Section II below provides background information on the s ignificance of this finding. The combined work described herein has implications on other efforts to make water - based solution scintillators -- without aromatic content an efficient mechanism for ionizing radiation to sensitize emission from a dye is limited.« less

  10. The nature of the laning transition in two dimensions

    NASA Astrophysics Data System (ADS)

    Glanz, T.; Löwen, H.

    2012-11-01

    If a binary colloidal mixture is oppositely driven by an external field, a transition towards a laned state occurs at sufficiently large drives, where particles driven alike form elongated structures (‘lanes’) characterized by a large correlation length ξ along the drive. Here we perform extensive Brownian dynamics computer simulations on a two-dimensional equimolar binary Yukawa system driven by a constant force that acts oppositely on the two species. We systematically address finite-size effects on lane formation by exploring large systems up to 262 144 particles under various boundary conditions. It is found that the correlation length ξ along the field depends exponentially on the driving force (or Peclet number). Conversely, in a finite system, ξ reaches a fraction of the system size at a driving force which is logarithmic in the system size, implying massive finite-size corrections. For a fixed finite drive, ξ does not diverge in the thermodynamic limit. Therefore, though laning has a signature as a sharp transition in a finite system, it is a smooth crossover in the thermodynamic limit.

  11. Experimental study on flame pattern formation and combustion completeness in a radial microchannel

    NASA Astrophysics Data System (ADS)

    Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru

    2007-12-01

    Combustion behavior in a radial microchannel with a gap of 2.0 mm and a diameter of 50 mm was experimentally investigated. In order to simulate the heat recirculation, which is an essential strategy in microscale combustion devices, positive temperature gradients along the radial flow direction were given to the microchannel by an external heat source. A methane-air mixture was supplied from the center of the top plate through a 4.0 mm diameter delivery tube. A variety of flame patterns, including a stable circular flame and several unstable flame patterns termed unstable circular flame, single and double pelton-like flames, traveling flame and triple flame, were observed in the experiments. The regime diagram of all these flame patterns is presented in this paper. Some characteristics of the various flame patterns, such as the radii of stable and unstable circular flames, major combustion products and combustion efficiencies of all these flame patterns, were also investigated. Furthermore, the effect of the heat recirculation on combustion stability was studied by changing the wall temperature levels.

  12. The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/β-glycerophosphate hydrogel: in vitro and in vivo.

    PubMed

    Sun, Bin; Ma, Wei; Su, Fang; Wang, Yi; Liu, Jiaqiang; Wang, Dongshen; Liu, Hongchen

    2011-09-01

    Type I collagen was added to the composite chitosan solution in a ratio of 1:2 to build a physical cross-linked self-forming chitosan/collagen/β-GP hydrogel. Osteogenic properties of this novel injectable hydrogel were evaluated. Gelation time was about 8 min which offered enough time for handling a mixture containing cells and the subsequent injection. Scanning electronic microscopy (SEM) observations indicated good spreading of bone marrow mesenchymal stem cells (BMSCs) in this hydrogel scaffold. Mineral nodules were found in the dog-BMSCs inoculated hydrogel by SEM after 28 days. After subcutaneous injection into nude mouse dorsum for 4 weeks, partial bone formation was observed in the chitosan/collagen/β-GP hydrogel loaded with pre-osteodifferentiated dog-BMSCs, which indicated that chitosan/collagen/β-GP hydrogel composite could induce osteodifferentiation in BMSCs without exposure to a continual supply of external osteogenic factors. In conclusion, the novel chitosan/collagen/β-GP hydrogel composite should prove useful as a bone regeneration scaffold.

  13. Star formation in a hierarchical model for Cloud Complexes

    NASA Astrophysics Data System (ADS)

    Sanchez, N.; Parravano, A.

    The effects of the external and initial conditions on the star formation processes in Molecular Cloud Complexes are examined in the context of a schematic model. The model considers a hierarchical system with five predefined phases: warm gas, neutral gas, low density molecular gas, high density molecular gas and protostars. The model follows the mass evolution of each substructure by computing its mass exchange with their parent and children. The parent-child mass exchange depends on the radiation density at the interphase, which is produced by the radiation coming from the stars that form at the end of the hierarchical structure, and by the external radiation field. The system is chaotic in the sense that its temporal evolution is very sensitive to small changes in the initial or external conditions. However, global features such as the star formation efficience and the Initial Mass Function are less affected by those variations.

  14. Lack of promotional effects of groundwater contaminant mixtures on the induction of preneoplastic foci in rat liver.

    PubMed

    Benjamin, S A; Yang, R S; Tessari, J D; Chubb, L W; Brown, M D; Dean, C E; Keefe, T J

    1999-10-01

    F344 rats were exposed to drinking water mixtures of seven of the most common groundwater contaminants associated with hazardous waste sites [arsenic, benzene, chloroform, chromium, lead, phenol, and trichloroethylene (TCE)] as the full mixture or submixtures of the organic and/or inorganic chemicals. The lowest concentrations (1x) of the individual chemicals were environmentally realistic and below what would be expected to induce significant short-term toxicity. This study was intended to determine if previously reported increases in localized hepatocellular proliferation in response to these chemicals might be correlated with increased risk for hepatocarcinogenesis. Rats were exposed via a drinking water solution to the full seven- chemical mixture (at 1x and 10x concentrations), submixtures of the organic or inorganic chemicals (at 10x concentrations), a mixture of TCE, lead, and chloroform (TLC submixture at 10x and 100x concentrations), or deionized water as a control. The rats were evaluated for promotion of placental glutathione-S-transferase (GST-P) positive preneoplastic liver cell foci after diethylnitrosamine (DEN) initiation and partial hepatectomy. Focus formation, cell proliferation, and apoptosis were evaluated after exposure to DEN or saline controls, the chemical mixtures or deionized water controls, or combinations of these treatments. The total number and area of GST-P positive foci in DEN-treated rats exposed to the full seven-chemical mixture was increased as compared with the DEN-water controls, but this was statistically significant only for total focus area in the 1x dose group. In DEN-treated rats, the inorganic or TLC submixtures resulted in a significant reduction in number and area of GST-P positive foci. Focus area also was decreased in the organic submixture-treated group, but not significantly. Hepatocellular proliferation was not significantly changed in the chemical mixture saline groups as compared with the mixture water controls. After DEN treatment, however, cell proliferation was significantly decreased after the 10x seven-chemical and organic mixture treatments and the 100x TLC mixture treatment. Different groups showed either increased or decreased apoptotic rates which did not correlate well with proliferation rates or focus formation. Mixtures of these seven chemicals, therefore, did not appear to act as promoters of hepatic foci at environmentally relevant concentrations, and some mixture combinations appeared to decrease promotional activity.

  15. Orienting attention to visual or verbal/auditory imagery differentially impairs the processing of visual stimuli.

    PubMed

    Villena-González, Mario; López, Vladimir; Rodríguez, Eugenio

    2016-05-15

    When attention is oriented toward inner thoughts, as spontaneously occurs during mind wandering, the processing of external information is attenuated. However, the potential effects of thought's content regarding sensory attenuation are still unknown. The present study aims to assess if the representational format of thoughts, such as visual imagery or inner speech, might differentially affect the sensory processing of external stimuli. We recorded the brain activity of 20 participants (12 women) while they were exposed to a probe visual stimulus in three different conditions: executing a task on the visual probe (externally oriented attention), and two conditions involving inward-turned attention i.e. generating inner speech and performing visual imagery. Event-related potentials results showed that the P1 amplitude, related with sensory response, was significantly attenuated during both task involving inward attention compared with external task. When both representational formats were compared, the visual imagery condition showed stronger attenuation in sensory processing than inner speech condition. Alpha power in visual areas was measured as an index of cortical inhibition. Larger alpha amplitude was found when participants engaged in an internal thought contrasted with the external task, with visual imagery showing even more alpha power than inner speech condition. Our results show, for the first time to our knowledge, that visual attentional processing to external stimuli during self-generated thoughts is differentially affected by the representational format of the ongoing train of thoughts. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Formation of Secondary Organic Aerosol from Irradiated a-Pinene/Tolueme/NOx Mixtures and the Effect of Isoprene and Sulfur Dioxide

    EPA Science Inventory

    Secondary organic aerosol (SOA) was generated by irradiating a series of a-pinene/toluene/NOx mixtures in the absence and presence of isoprene or sulfur dioxide. The purpose of the experiment was to evaluate the extent to which chemical perturbations to this base-case (a-pinene/...

  17. Ultrasound assisted in-situ formation of carbon/sulfur cathodes

    DOEpatents

    Pol, Vilas G.; Weng, Wei; Amine, Khalil

    2017-08-29

    A process of preparing an E-carbon nanocomposite includes contacting a porous carbon substrate with an E-containing material to form a mixture; and sonicating the mixture to form the E-carbon nanocomposite; where E is S, Se, Se.sub.xS.sub.y, or Te, x is greater than 0; and y is greater than 0.

  18. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Onasch, T. B.; Canagaratna, M.; Jayne, J. T.; Kimmel, J.; Yu, X.-Y.; Alexander, M. L.; Worsnop, D. R.; Davidovits, P.

    2008-12-01

    We present the first single particle results obtained using an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS). The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area (MCMA) as part of the MILAGRO field study in March of 2006. The instrument was operated as a standard AMS from 12-30 March, acquiring average chemical composition and size distributions for the ambient aerosol, and in single particle mode from 27-30 March. Over a 75-h sampling period, 12 853 single particle mass spectra were optically triggered, saved, and analyzed. The correlated optical and chemical detection allowed detailed examination of single particle collection and quantification within the LS-ToF-AMS. The single particle data enabled the mixing states of the ambient aerosol to be characterized within the context of the size-resolved ensemble chemical information. The particulate mixing states were examined as a function of sampling time and most of the particles were found to be internal mixtures containing many of the organic and inorganic species identified in the ensemble analysis. The single particle mass spectra were deconvolved, using techniques developed for ensemble AMS data analysis, into HOA, OOA, NH4NO3, (NH4)2SO4, and NH4Cl fractions. Average single particle mass and chemistry measurements are shown to be in agreement with ensemble MS and PTOF measurements. While a significant fraction of ambient particles were internal mixtures of varying degrees, single particle measurements of chemical composition allowed the identification of time periods during which the ambient ensemble was externally mixed. In some cases the chemical composition of the particles suggested a likely source. Throughout the full sampling period, the ambient ensemble was an external mixture of combustion-generated HOA particles from local sources (e.g. traffic), with number concentrations peaking during morning rush hour (04:00-08:00 LT) each day, and more processed particles of mixed composition from nonspecific sources. From 09:00-12:00 LT all particles within the ambient ensemble, including the locally produced HOA particles, became coated with NH4NO3 due to photochemical production of HNO3. The number concentration of externally mixed HOA particles remained low during daylight hours. Throughout the afternoon the OOA component dominated the organic fraction of the single particles, likely due to secondary organic aerosol formation and condensation. Single particle mass fractions of (NH4)2SO4 were lowest during the day and highest during the night. In one instance, gas-to-particle condensation of (NH4)2SO4 was observed on all measured particles within a strong SO2 plume arriving at T1 from the northwest. Particles with high NH4Cl mass fractions were identified during early morning periods. A limited number of particles (~5% of the total number) with mass spectral features characteristic of biomass burning were also identified.

  19. Regulation of oxygen vacancy types on SnO{sub 2} (110) surface by external strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z. H.; Min, Y. M.; Liu, X. X.

    2016-05-15

    In tin dioxide nanostructures, oxygen vacancies (OVs) play an important role in their optical properties and thus regulation of both OV concentration and type via external strain is crucial to exploration of more applications. First-principle calculations of SnO{sub 2} (110) surface disclose that asymmetric deformations induced by external strain not only lead to its intrinsic surface elastic changes, but also result in different OV formation energy. In the absence of external strain, the energetically favorable oxygen vacancies(EFOV) appear in the bridging site of second layer. When -3.5% external strain is applied along y direction, the EFOV moves into plane site.more » This can be ascribed that the compressed deformation gives rise to redistribution of electronic wave function near OVs, therefore, formation of newly bond structures. Our results suggest that different type OVs in SnO{sub 2} surface can be controlled by strain engineering.« less

  20. Communication: Control of chemical reactions using electric field gradients.

    PubMed

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  1. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  2. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  3. Design and Optimization of a Chemometric-Assisted Spectrophotometric Determination of Telmisartan and Hydrochlorothiazide in Pharmaceutical Dosage Form

    PubMed Central

    Lakshmi, KS; Lakshmi, S

    2010-01-01

    Two chemometric methods were developed for the simultaneous determination of telmisartan and hydrochlorothiazide. The chemometric methods applied were principal component regression (PCR) and partial least square (PLS-1). These approaches were successfully applied to quantify the two drugs in the mixture using the information included in the UV absorption spectra of appropriate solutions in the range of 200-350 nm with the intervals Δλ = 1 nm. The calibration of PCR and PLS-1 models was evaluated by internal validation (prediction of compounds in its own designed training set of calibration) and by external validation over laboratory prepared mixtures and pharmaceutical preparations. The PCR and PLS-1 methods require neither any separation step, nor any prior graphical treatment of the overlapping spectra of the two drugs in a mixture. The results of PCR and PLS-1 methods were compared with each other and a good agreement was found. PMID:21331198

  4. Design and optimization of a chemometric-assisted spectrophotometric determination of telmisartan and hydrochlorothiazide in pharmaceutical dosage form.

    PubMed

    Lakshmi, Ks; Lakshmi, S

    2010-01-01

    Two chemometric methods were developed for the simultaneous determination of telmisartan and hydrochlorothiazide. The chemometric methods applied were principal component regression (PCR) and partial least square (PLS-1). These approaches were successfully applied to quantify the two drugs in the mixture using the information included in the UV absorption spectra of appropriate solutions in the range of 200-350 nm with the intervals Δλ = 1 nm. The calibration of PCR and PLS-1 models was evaluated by internal validation (prediction of compounds in its own designed training set of calibration) and by external validation over laboratory prepared mixtures and pharmaceutical preparations. The PCR and PLS-1 methods require neither any separation step, nor any prior graphical treatment of the overlapping spectra of the two drugs in a mixture. The results of PCR and PLS-1 methods were compared with each other and a good agreement was found.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, Shivaraj D.; Tsori, Yoav, E-mail: tsori@bgu.ac.il

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phasemore » or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.« less

  6. Electrochemical separation and concentration of sulfur containing gases from gas mixtures

    DOEpatents

    Winnick, Jack

    1981-01-01

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  7. Formation and decomposition of CO2-filled ice.

    PubMed

    Massani, B; Mitterdorfer, C; Loerting, T

    2017-10-07

    Recently it was shown that CO 2 -filled ice is formed upon compression of CO 2 -clathrate hydrate. Here we show two alternative routes of its formation, namely, by decompression of CO 2 /ice VI mixtures at 250 K and by isobaric heating of CO 2 /high-density amorphous ice mixtures at 0.5-1.0 GPa above 200 K. Furthermore, we show that filled ice may either transform into the clathrate at an elevated pressure or decompose to "empty" hexagonal ice at ambient pressure and low temperature. This complements the literature studies in which decomposition to ice VI was favoured at high pressures and low temperatures.

  8. Formation and decomposition of CO2-filled ice

    NASA Astrophysics Data System (ADS)

    Massani, B.; Mitterdorfer, C.; Loerting, T.

    2017-10-01

    Recently it was shown that CO2-filled ice is formed upon compression of CO2-clathrate hydrate. Here we show two alternative routes of its formation, namely, by decompression of CO2/ice VI mixtures at 250 K and by isobaric heating of CO2/high-density amorphous ice mixtures at 0.5-1.0 GPa above 200 K. Furthermore, we show that filled ice may either transform into the clathrate at an elevated pressure or decompose to "empty" hexagonal ice at ambient pressure and low temperature. This complements the literature studies in which decomposition to ice VI was favoured at high pressures and low temperatures.

  9. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways.

    PubMed

    Kerwin, Bruce A

    2008-08-01

    Polysorbates 20 and 80 (Tween 20 and Tween 80) are used in the formulation of biotherapeutic products for both preventing surface adsorption and as stabilizers against protein aggregation. The polysorbates are amphipathic, nonionic surfactants composed of fatty acid esters of polyoxyethylene sorbitan being polyoxyethylene sorbitan monolaurate for polysorbate 20 and polyoxyethylene sorbitan monooleate for polysorbate 80. The polysorbates used in the formulation of biopharmaceuticals are mixtures of different fatty acid esters with the monolaurate fraction of polysorbate 20 making up only 40-60% of the mixture and the monooleate fraction of polysorbate 80 making up >58% of the mixture. The polysorbates undergo autooxidation, cleavage at the ethylene oxide subunits and hydrolysis of the fatty acid ester bond. Autooxidation results in hydroperoxide formation, side-chain cleavage and eventually formation of short chain acids such as formic acid all of which could influence the stability of a biopharmaceutical product. Oxidation of the fatty acid moiety while well described in the literature has not been specifically investigated for polysorbate. This review focuses on the chemical structure of the polysorbates, factors influencing micelle formation and factors and excipients influencing stability and degradation of the polyoxyethylene and fatty acid ester linkages.

  10. Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Schoonen, Martin A.

    2017-06-01

    The formation of hydroxyl radicals was studied in mixed pyrite-chalcopyrite dispersions in water using the conversion rate of adenine as a proxy for hydroxyl radical formation rate. Experiments were conducted as a function of pH, presence of phosphate buffer, surface loading, and pyrite-to-chalcopyrite ratio. The results indicate that hydroxyl radical formation rate in mixed systems is non-linear with respect to the rates in the pure endmember dispersions. The only exception is a set of experiments in which phosphate buffer is used. In the presence of phosphate buffer, the hydroxyl radical formation is suppressed in mixtures and the rate is close to that predicted based on the reaction kinetics of the pure endmembers. The non-linear hydroxyl radical formation in dispersions containing mixtures of pyrite and chalcopyrite is likely the result of two complementary processes. One is the fact that pyrite and chalcopyrite form a galvanic couple. In this arrangement, chalcopyrite oxidation is accelerated, while pyrite passes electrons withdrawn from chalcopyrite to molecular oxygen, the oxidant. The incomplete reduction of molecular oxygen leads to the formation of hydrogen peroxide and hydroxyl radical. The galvanic coupling appears to be augmented by the fact that chalcopyrite generates a significant amount of hydrogen peroxide upon dispersal in water. This hydrogen peroxide is then available for conversion to hydroxyl radical, which appears to be facilitated by pyrite as chalcopyrite itself produces only minor amounts of hydroxyl radical. In essence, pyrite is a ;co-factor; that facilitates the conversion of hydrogen peroxide to hydroxyl radical. This conversion reaction is a surface-mediated reaction. Given that hydroxyl radical is one of the most reactive species in nature, the formation of hydroxyl radicals in aqueous systems containing chalcopyrite and pyrite has implications for the stability of organic molecules, biomolecules, the viability of microbes, and exposure to dust containing the two metal sulfides may present a health burden.

  11. Impacts of the mixing state and chemical composition on the cloud condensation nuclei (CCN) activity in Beijing during winter, 2016

    NASA Astrophysics Data System (ADS)

    Ren, J.; Zhang, F.

    2017-12-01

    Abstract.Understanding aerosol chemical composition and mixing state on CCN activity in polluted urban area is crucial to determine NCCN accurately and thus to quantify aerosol indirect effects. Aerosol hrgroscopicity, size-resolved cloud condensation nuclei (CCN) concentration and chemical composition are measured under polluted and background conditions in Beijing based on the Air Pollution and Human Health (APHH) field campaign in winter 2016. The CCN number concentration (NCCN) is predicted by using κ-Köhler theory from the PNSD and five simplified of the mixing state and chemical composition. The assumption of EIS (sulfate, nitrate and SOA internally mixed, and POA and BC externally mixed with size-resolved chemical composition) shows the best closure to predict NCCN with the ratio of predicted to measured NCCN of 0.96-1.12 both in POL and BG conditions. Under BG conditions, IB (internal mixture with bulk chemical composition) scheme achieves the best CCN closure during any periods of a day. In polluted days, EIS and IS (internal mixture with size-resolved chemical composition) scheme may achieve better closure than IB scheme due to the heterogeneity in particles composition across different size. ES (external mixture with size-resolved chemical composition) and EB (external mixture with bulk chemical composition) scheme markedly underestimate the NCCN with the ratio of predicted to measured NCCN of 0.6-0.8. In addition, we note that assumptions of size-resolved composition (IS or ES) show very limited promotes by comparing with the assumptions of bulk composition (IB or EB), furthermore, the prediction becomes worse by using size-resolved assumption in clean days. The predicted NCCN during eve-rush periods shows the most sensitivity to the five different assumptions, with ratios of the predicted and measured NCCN ranging from 0.5 to 1.4, reflecting great impacts from evening traffic and cooking sources. The result from the sensitivity examination of predict NCCN to particles mixing state and organic volume fractions with the aging of organic particles suggests that the mixing state of particles plays a minor role when the κorg exceeds 0.1. Our study could provide new dataset to evaluate the CCN parameterization in models in those heavily polluted regions with large fraction of POA and BC.

  12. Visible Near-infrared Spectral Evolution of Irradiated Mixed Ices and Application to Kuiper Belt Objects and Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Poston, Michael J.; Mahjoub, Ahmed; Ehlmann, Bethany L.; Blacksberg, Jordana; Brown, Michael E.; Carlson, Robert W.; Eiler, John M.; Hand, Kevin P.; Hodyss, Robert; Wong, Ian

    2018-04-01

    Understanding the history of Kuiper Belt Objects and Jupiter Trojans will help to constrain models of solar system formation and dynamical evolution. Laboratory simulations of a possible thermal and irradiation history of these bodies were conducted on ice mixtures while monitoring their spectral properties. These simulations tested the hypothesis that the presence or absence of sulfur explains the two distinct visible near-infrared spectral groups observed in each population and that Trojans and KBOs share a common formation location. Mixed ices consisting of water, methanol, and ammonia, in mixtures both with and without hydrogen sulfide, were deposited and irradiated with 10 keV electrons. Deposition and initial irradiation were performed at 50 K to simulate formation at 20 au in the early solar system, then heated to Trojan-like temperatures and irradiated further. Finally, irradiation was concluded and resulting samples were observed during heating to room temperature. Results indicated that the presence of sulfur resulted in steeper spectral slopes. Heating through the 140–200 K range decreased the slopes and total reflectance for both mixtures. In addition, absorption features at 410, 620, and 900 nm appeared under irradiation, but only in the H2S-containing mixture. These features were lost with heating once irradiation was concluded. While the results reported here are consistent with the hypothesis, additional work is needed to address uncertainties and to simulate conditions not included in the present work.

  13. Association to HeLa cells and surface behavior of exogenous gangliosides studied with a fluorescent derivative of GM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masserini, M.; Giuliani, A.; Palestini, P.

    1990-01-23

    Cultured HeLa cells were incubated with pyrene-GM1/{sup 3}H-radiolabeled GM1 ganglioside (1:4 M/M) mixtures for various times. The process of association of pyrene-GM1 with cells was qualitatively and quantitatively the same as that of {sup 3}H-GM1. The pyrene-GM1 and {sup 3}H-GM1 proportions in the various forms of association with cells were similar to that of the starting ganglioside mixture. After 2-h incubation, the association of ganglioside with cells was well established whereas almost no metabolic processing had occurred. During a 24-h incubation, pyrene- and {sup 3}H-GM1 underwent similar metabolic processing and gave rise to catabolic (GM2 and GM3) and anabolic (GDla)more » derivatives. Fluorescence spectroscopy experiments carried out with the excimer formation technique on subcellular fractions containing plasma membranes showed that exogenous ganglioside was, in part, associated with the cells in a micellar form removable by trypsin treatment, and in part inserted in a seemingly molecular dispersion. Addition of Ca{sup 2+} salts caused aggregation of the ganglioside, as indicated by the increase of the excimer:monomer fluorescence ratio. The phenomenon was Ca{sup 2+} concentration dependent (maximum at 10 mM), and subsequent addition of EDTA has no effect. The saccharide portion of exogenously incorporated pyrene-GM1 was available to interact with external ligands, as shown by its ability to bind cholera toxin whose addition reduced the collision rate among the ganglioside lipid moieties.« less

  14. Rapid and sensitive quantification of isotopic mixtures using a rapidly-swept external cavity quantum cascade laser

    DOE PAGES

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-05-23

    A rapidly-swept external-cavity quantum cascade laser with an open-path Herriott cell is used to quantify gas-phase chemical mixtures of D 2O and HDO at a rate of 40 Hz (25-ms measurement time). The chemical mixtures were generated by evaporating D 2O liquid near the open-path Herriott cell, allowing the H/D exchange reaction with ambient H 2O to produce HDO. Fluctuations in the ratio of D 2O and HDO on timescales of <1 s due to the combined effects of plume transport and the H/D exchange chemical reaction are observed. Noise-equivalent concentrations (1σ) (NEC) of 147.0 ppbv and 151.6 ppbv inmore » a 25-ms measurement time are determined for D 2O and HDO, respectively, with a 127-m optical path. These NECs are improved to 23.0 and 24.0 ppbv with a 1-s averaging time for D 2O and HDO, respectively. NECs <200 ppbv are also estimated for N2O, 1,1,1,2–tetrafluoroethane (F134A), CH 4, acetone and SO 2 for a 25-ms measurement time. Finally, the isotopic precision for measurement of the [D 2O]/[HDO] concentration ratio of 33‰ and 5‰ is calculated for the current experimental conditions for measurement times of 25 ms and 1 s, respectively.« less

  15. Examining the latent structure of anxiety sensitivity in adolescents using factor mixture modeling.

    PubMed

    Allan, Nicholas P; MacPherson, Laura; Young, Kevin C; Lejuez, Carl W; Schmidt, Norman B

    2014-09-01

    Anxiety sensitivity has been implicated as an important risk factor, generalizable to most anxiety disorders. In adults, factor mixture modeling has been used to demonstrate that anxiety sensitivity is best conceptualized as categorical between individuals. That is, whereas most adults appear to possess normative levels of anxiety sensitivity, a small subset of the population appears to possess abnormally high levels of anxiety sensitivity. Further, those in the high anxiety sensitivity group are at increased risk of having high levels of anxiety and of having an anxiety disorder. This study was designed to determine whether these findings extend to adolescents. Factor mixture modeling was used to examine the best fitting model of anxiety sensitivity in a sample of 277 adolescents (M age = 11.0 years, SD = 0.81). Consistent with research in adults, the best fitting model consisted of 2 classes, 1 containing adolescents with high levels of anxiety sensitivity (n = 25) and another containing adolescents with normative levels of anxiety sensitivity (n = 252). Examination of anxiety sensitivity subscales revealed that the social concerns subscale was not important for classification of individuals. Convergent and discriminant validity of anxiety sensitivity classes were found in that membership in the high anxiety sensitivity class was associated with higher mean levels of anxiety symptoms, controlling for depression and externalizing problems, and was not associated with higher mean levels of depression or externalizing symptoms controlling for anxiety problems. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. Health effects of acid aerosols formed by atmospheric mixtures.

    PubMed Central

    Kleinman, M T; Phalen, R F; Mautz, W J; Mannix, R C; McClure, T R; Crocker, T T

    1989-01-01

    Under ambient conditions, sulfur and nitrogen oxides can react with photochemical products and airborne particles to form acidic vapors and aerosols. Inhalation toxicological studies were conducted, exposing laboratory animals, at rest and during exercise, to multicomponent atmospheric mixtures under conditions favorable to the formation of acidic reaction products. Effects of acid and ozone mixtures on early and late clearance of insoluble radioactive particles in the lungs of rats appeared to be dominated by the oxidant component (i.e., the mixture did cause effects that were significantly different from those of ozone alone). Histopathological evaluations showed that sulfuric acid particles alone did not cause inflammatory responses in centriacinar units of rat lung parenchyma (expressed in terms of percent lesion area) but did cause significant damage (cell killing followed by a wave of cell replication) in nasal respiratory epithelium, as measured by uptake of tritiated thymidine in the DNA of replicating cells. Mixtures of ozone and nitrogen dioxide, which form nitric acid, caused significant inflammatory responses in lung parenchyma (in excess of effects seen in rats exposed to ozone alone), but did not damage nasal epithelium. Mixtures containing acidic sulfate particles, ozone, and nitrogen dioxide damaged both lung parenchyma and nasal epithelia. In rats exposed at rest, the response of the lung appeared to be dominated by the oxidant gas-phase components, while responses in the nose were dominated by the acidic particles. In rats exposed at exercise, however, mixtures of ozone and sulfuric acid particles significantly (2.5-fold) elevated the degree of lung lesion formation over that seen in rats exposed to ozone alone under an identical exercise protocol. PMID:2707193

  17. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Heterogeneous structure and solvation dynamics of DME/water binary mixtures: A combined spectroscopic and simulation investigation

    NASA Astrophysics Data System (ADS)

    Das Mahanta, Debasish; Rana, Debkumar; Patra, Animesh; Mukherjee, Biswaroop; Mitra, Rajib Kumar

    2018-05-01

    Water is often found in (micro)-heterogeneous environments and therefore it is necessary to understand their H-bonded network structure in such altered environments. We explore the structure and dynamics of water in its binary mixture with relatively less polar small biocompatible amphiphilic molecule 1,2-Dimethoxyethane (DME) by a combined spectroscopic and molecular dynamics (MD) simulation study. Picosecond (ps) resolved fluorescence spectroscopy using coumarin 500 as the fluorophore establishes a non-monotonic behaviour of the mixture. Simulation studies also explore the various possible H-bond formations between water and DME. The relative abundance of such different water species manifests the heterogeneity in the mixture.

  19. Unbinding Transition of Probes in Single-File Systems

    NASA Astrophysics Data System (ADS)

    Bénichou, Olivier; Démery, Vincent; Poncet, Alexis

    2018-02-01

    Single-file transport, arising in quasi-one-dimensional geometries where particles cannot pass each other, is characterized by the anomalous dynamics of a probe, notably its response to an external force. In these systems, the motion of several probes submitted to different external forces, although relevant to mixtures of charged and neutral or active and passive objects, remains unexplored. Here, we determine how several probes respond to external forces. We rely on a hydrodynamic description of the symmetric exclusion process to obtain exact analytical results at long times. We show that the probes can either move as a whole, or separate into two groups moving away from each other. In between the two regimes, they separate with a different dynamical exponent, as t1 /4. This unbinding transition also occurs in several continuous single-file systems and is expected to be observable.

  20. Method for forming synthesis gas using a plasma-catalyzed fuel reformer

    DOEpatents

    Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele

    2015-04-28

    A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.

  1. Development of a droplet digital PCR assay for population analysis of aflatoxigenic and atoxigenic Aspergillus flavus mixtures in soil

    USDA-ARS?s Scientific Manuscript database

    Application of atoxigenic strains to compete against aflatoxigenic strains of A. flavus strains has emerged as one of the practical strategy for reducing aflatoxins contamination in food. Droplet digital PCR (ddPCR) is a new DNA quantification platform without an external DNA calibrator. For ddPCR, ...

  2. 21 CFR 74.1711 - D&C Yellow No. 11.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... listed in part 73 of this chapter as safe for use in color additive mixtures for coloring externally... part per million. Total color, not less than 96 percent. (c) Uses and restrictions. D&C Yellow No. 11... COLOR ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1711 D&C Yellow No. 11. (a) Identity. (1) The color...

  3. Qualitative Analysis of Fourteen White Solids and Two Mixtures Using Household Chemicals.

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria; Allen, DeeDee; Solomon, Sally; Brook, Bryan; Ciraolo, Justine; Daly, Shawn; Jackson, Leia

    2001-01-01

    Describes a laboratory experiment in which students identify 11 white solids readily available in drugstores and supermarkets. Investigates solubility, pH, copper reduction, evolution of carbon dioxide bubbles, formation of starch-iodine complex, and formation of an insoluble hydroxide. (YDS)

  4. A versatile laboratory cryogenic plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrov, V.M.; Marevichev, I.P.; Petrova, Y.B.

    1983-07-01

    The Institute of Theoretical and Experimental physics has designed a versatile cryogenic plant (VCP) which can liquefy helium, hydrogen, neon, and can extract neon from a gaseous neon-helium mixture. It can also be used as a refrigerator for cryostating external objects. The versatile cryogenic plant is schematicized and the refrigerating capacity and VCP control panel are detailed. Characteristic features which distinguish the VCP from other plants are specified. The processes involved in the liquefaction of helium, hydrogen, or neon, and the cryostating and cooling of an external object are explained. The use of the plant showed it to be economic,more » reliable, and convenient to operate.« less

  5. Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character

    PubMed Central

    Rice, James W.; Fu, Jinxia; Suuberg, Eric M.

    2010-01-01

    To better characterize the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the anthracene (1) + pyrene (2) system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at 404 K at x1 = 0.22. A model based on eutectic formation can be used to predict the enthalpy of fusion associated with the mixture. For mixtures that contain x1 < 0.90, the enthalpy of fusion is near that of pure pyrene. This and X-ray diffraction results indicate that mixtures of anthracene and pyrene have pyrene-like crystal structures and energetics until the composition nears that of pure anthracene. Solid-vapor equilibrium studies show that mixtures of anthracene and pyrene form solid azeotropes at x1 of 0.03 and 0.14. Additionally, mixtures at x1 = 0.99 sublime at the vapor pressure of pure anthracene, suggesting that anthracene behavior is not significantly influenced by x2 = 0.01 in the crystal structure. PMID:21116474

  6. CONTRIBUTIONS OF TOLUENE AND Α -PINENE TO SOA FORMED IN AN IRRADIATED TOLUENE/Α-PINENE/NOX/AIR MIXTURE: COMPARISON OF RESULTS USING 14C CONTENT AND SOA ORGANIC TRACER METHODS

    EPA Science Inventory

    An organic tracer method, recently proposed for estimating individual contributions of toluene and α-pinene to secondary organic aerosol (SOA) formation, was evaluated by conducting a laboratory study where a binary hydrocarbon mixture, containing the anthropogenic aromatic hydro...

  7. Poster 6: Influence of traces elements in the organic chemistry of upper atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Mathe, Christophe; Carrasco, Nathalie; Trainer, Melissa G.; Gautier, Thomas; Gavilan, Lisseth; Dubois, David; Li, Xiang

    2016-06-01

    In the upper atmosphere of Titan, complex chemistry leads to the formation of organic aerosols. Since the work of Khare et al. in 1984, several experiments investigated the formation of Titan aerosols, so called tholins, in the laboratory. It has been suggested that nitrogen-containing compounds may contribute significantly to the aerosols formation process. In this study, we focused on the influence of pyridine, the simplest nitrogenous aromatic hydrocarbon, on the chemistry of Titan's atmosphere and on aerosol formation. To assess the effect of pyridine on aerosol formation chemistry, we used two different experimental setups : a capacitively coupled radio-frequency (electronic impact), and a VUV Deuterium lamp (photochemistry) in a collaboration between LATMOS (Guyancourt) and NASA-GSFC (Greenbelt), respectively. Aerosols produced with both setups were first analyzed using a FTIR-ATR (Fourier Transform Infrared spectroscopy - Attenuated Total Reflection) with a spectral range of 4000-800 cm-1 to characterize their optical properties. Next the samples were analysed using a Bruker Autoflex Speed MALDI mass spectrometer with a m/z range up to 2000 Da in order to infer their composition. Infrared spectroscopy analysis showed that tholins produced with a nitrogen-methane gas mixture (95:5) and nitrogenpyridine gas mixture (99:250ppm) present very similar spectra features. Tholins produced with a mixture of nitrogenmethane-pyridine (99:1:250ppm) do not present aliphatic CH2 or CH3 vibrational signatures. This could indicate a cyclic polymerization by a pyridine skeleton. Mass spectrometry is still in progress to confirm this.

  8. Hot-corrosion of AISI 1020 steel in a molten NaCl/Na2SO4 eutectic at 700°C

    NASA Astrophysics Data System (ADS)

    Badaruddin, Mohammad; Risano, Ahmad Yudi Eka; Wardono, Herry; Asmi, Dwi

    2017-01-01

    Hot-corrosion behavior and morphological development of AISI 1020 steel with 2 mg cm-2 mixtures of various NaCl/Na2SO4 ratios at 700°C were investigated by means of weight gain measurements, Optical Microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The weight gain kinetics of the steel with mixtures of salt deposits display a rapid growth rates, compared with the weight gain kinetics of AISI 1020 steel without salt deposit in dry air oxidation, and follow a steady-state parabolic law for 49 h. Chloridation and sulfidation produced by a molten NaCl/Na2SO4 on the steel induced hot-corrosion mechanism attack, and are responsible for the formation of thicker scale. The most severe corrosion takes place with the 70 wt.% NaCl mixtures in Na2SO4. The typical Fe2O3 whisker growth in outer part scale was attributed to the FeCl3 volatilization. The formation of FeS in the innermost scale is more pronounced as the content of Na2SO4 in the mixture is increased.

  9. Naproxen-imprinted xerogels in the micro- and nanospherical formsby emulsion technique.

    PubMed

    Ornelas, Mariana; Azenha, Manuel; Pereira, Carlos; Silva, A Fernando

    2015-11-27

    Naproxen-imprinted xerogels in the microspherical and nanospherical forms were prepared by W/O emulsion and microemulsion, respectively. The work evolved from a sol–gel mixture previously reported for bulk synthesis. It was relatively simple to convert the original sol–gel mixture to one amenable to emulsion technique. The microspheres thus produced presented mean diameter of 3.7 μm, surface area ranging 220–340 m2/g, selectivity factor 4.3 (against ibuprofen) and imprinting factor 61. A superior capacity (9.4 μmol/g) was found, when comparing with imprints obtained from similar pre-gelification mixtures. However, slow mass transfer kinetics was deduced from column efficiency results. Concerning the nanospherical format, which constituted the first example of the production of molecularly imprinted xerogels in that format by microemulsion technique, adapting the sol–gel mixture was troublesome. In the end, nanoparticles with diameter in the order of 10 nm were finally obtained, exhibiting good indications of an efficient molecular imprinting process. Future refinements are necessary to solve serious aggregation issues, before moving to more accurate characterization of the binding characteristics or to real applications of the nanospheres.

  10. Phase behaviour in complementary DNA-coated gold nanoparticles and fd-viruses mixtures: a numerical study.

    PubMed

    Chiappini, Massimiliano; Eiser, Erika; Sciortino, Francesco

    2017-01-01

    A new gel-forming colloidal system based on a binary mixture of fd-viruses and gold nanoparticles functionalized with complementary DNA single strands has been recently introduced. Upon quenching below the DNA melt temperature, such a system results in a highly porous gel state, that may be developed in a new functional material of tunable porosity. In order to shed light on the gelation mechanism, we introduce a model closely mimicking the experimental one and we explore via Monte Carlo simulations its equilibrium phase diagram. Specifically, we model the system as a binary mixture of hard rods and hard spheres mutually interacting via a short-range square-well attractive potential. In the experimental conditions, we find evidence of a phase separation occurring either via nucleation-and-growth or via spinodal decomposition. The spinodal decomposition leads to the formation of small clusters of bonded rods and spheres whose further diffusion and aggregation leads to the formation of a percolating network in the system. Our results are consistent with the hypothesis that the mixture of DNA-coated fd-viruses and gold nanoparticles undergoes a non-equilibrium gelation via an arrested spinodal decomposition mechanism.

  11. Kinetics of Cr/Mo-rich precipitates formation for 25Cr-6.9Ni-3.8Mo-0.3N super duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Byun, Sang-Ho; Kang, Namhyun; Lee, Tae-Ho; Ahn, Sang-Kon; Lee, Hae Woo; Chang, Woong-Seong; Cho, Kyung-Mox

    2012-04-01

    The amount and composition of Cr-rich (σ) and Mo-rich (χ) precipitates in super duplex stainless steels was analyzed. An isothermal heat treatment was conducted at temperatures ranging from 700 °C to 1000 °C for up to 10 days. A time-temperature transformation (TTT) diagram was constructed for the mixture of σ and χ phases. The mixture of the σ and χ phases exhibited the fastest rate of formation at approximately 900 °C. Minor phases, such as Cr2N, M23C6, and M7C3, were also detected using a transmission electron microscopy (TEM). Also, a continuous cooling transformation (CCT) diagram was constructed for the mixture of σ and χ phases using the Johnson-Mehl-Avrami equation. Compared with the known CCT diagram of the σ phase, this study revealed faster kinetics with an order of magnitude difference and a new CCT diagram was also developed for a mixture of σ and χ phases. The calculated fraction of σ and χ phases obtained at a cooling speed of 0.5 °C/s was in good agreement with the experimental data.

  12. Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char-dolomite mixtures and calcined dolomite in a fixed-bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadri, K.; Shamsi, A.

    1998-10-01

    A distillation fraction of a coal-derived liquid (tar) was cracked over a char-dolomite mixture, calcined dolomite, and silicon carbide in a fixed-bed reactor. The char-dolomite mixture (FWC) was produced from Pittsburgh No. 8 coal and dolomite in a Foster Wheeler carbonizer. The experiments were conducted under nitrogen and simulated coal gas (SCG), which was a mixture of CO, CO{sub 2}, H{sub 2}S, CH{sub 4}, N{sub 2}, and steam, at 1 and 17 atm. The conversion over these materials under nitrogen was much higher at 17 atm than at 1 atm. At higher pressures, tar molecules were trapped in the poresmore » of the bed material and underwent secondary reactions, resulting in the formation of excess char. However, when nitrogen was replaced by SCG, the reactions that induce char formation were suppressed, thus increasing the yield of gaseous products. The analysis of the gaseous products and the spent bed materials for organic and inorganic carbons suggested that the product distribution can be altered by changing the carrier gas, temperature, and pressure.« less

  13. Electrophoretic deposition of silicon substituted hydroxyapatite coatings from n-butanol-chloroform mixture.

    PubMed

    Xiao, Xiu Feng; Liu, Rong Fang; Tang, Xiao Lian

    2008-01-01

    Silicon Substituted Hydroxyapatite (Si-HA) coatings were prepared on titanium substrates by electrophoretic deposition (EPD). The stability of Si-HA suspension in n-butanol and chloroform mixture has been studied by electricity conductivity and sedimentation test. The microstructure, shear strength and bioactivity in vitro has been tested. The stability of Si-HA suspension containing n-butanol and chloroform mixture as medium is better than that of pure n-butanol as medium. The good adhesion of the particles with the substrate and good cohesion between the particles were obtained in n-butanol and chloroform mixture. Adding triethanolamine (TEA) as additive into the suspension is in favor of the formation of uniform and compact Si-HA coatings on the titanium substrates by EPD. The shear strength of the coatings can reach 20.43 MPa after sintering at 700 degrees C for 2 h, when the volume ratio of n-butanol: chloroform is 2:1 and the concentration of TEA is 15 ml/L. Titanium substrates etched in H(2)O(2)/NH(3) solution help to improve the shear strength of the coatings. After immersion in simulated body fluid for 7 days, Si-HA coatings have the ability to induce the bone-like apatite formation.

  14. Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Tran, Buu N.; Joseph, Jeffrey C.; Force, Michael; Briggs, Robert G.; Vuitton, Veronique; Ferris, James P.

    2005-09-01

    Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.

  15. Interplay between social debate and propaganda in an opinion formation model

    NASA Astrophysics Data System (ADS)

    Gimenez, M. C.; Revelli, J. A.; Lama, M. S. de la; Lopez, J. M.; Wio, H. S.

    2013-01-01

    We introduce a simple model of opinion dynamics in which a two-state agent modified Sznajd model evolves due to the simultaneous action of stochastic driving and a periodic signal. The stochastic effect mimics a social temperature, so the agents may adopt decisions in support for or against some opinion or position, according to a modified Sznajd rule with a varying probability. The external force represents a simplified picture by which society feels the influence of the external effects of propaganda. By means of Monte Carlo simulations we have shown the dynamical interplay between the social condition or mood and the external influence, finding a stochastic resonance-like phenomenon when we depict the noise-to-signal ratio as a function of the social temperature. In addition, we have also studied the effects of the system size and the external signal strength on the opinion formation dynamics.

  16. Shear Stress-Normal Stress (Pressure) Ratio Decides Forming Callus in Patients with Diabetic Neuropathy

    PubMed Central

    Noguchi, Hiroshi; Takehara, Kimie; Ohashi, Yumiko; Suzuki, Ryo; Yamauchi, Toshimasa; Kadowaki, Takashi; Sanada, Hiromi

    2016-01-01

    Aim. Callus is a risk factor, leading to severe diabetic foot ulcer; thus, prevention of callus formation is important. However, normal stress (pressure) and shear stress associated with callus have not been clarified. Additionally, as new valuables, a shear stress-normal stress (pressure) ratio (SPR) was examined. The purpose was to clarify the external force associated with callus formation in patients with diabetic neuropathy. Methods. The external force of the 1st, 2nd, and 5th metatarsal head (MTH) as callus predilection regions was measured. The SPR was calculated by dividing shear stress by normal stress (pressure), concretely, peak values (SPR-p) and time integral values (SPR-i). The optimal cut-off point was determined. Results. Callus formation region of the 1st and 2nd MTH had high SPR-i rather than noncallus formation region. The cut-off value of the 1st MTH was 0.60 and the 2nd MTH was 0.50. For the 5th MTH, variables pertaining to the external forces could not be determined to be indicators of callus formation because of low accuracy. Conclusions. The callus formation cut-off values of the 1st and 2nd MTH were clarified. In the future, it will be necessary to confirm the effect of using appropriate footwear and gait training on lowering SPR-i. PMID:28050567

  17. Biodegradation and toxicity of a maize herbicide mixture: mesotrione, nicosulfuron and S-metolachlor.

    PubMed

    Carles, Louis; Joly, Muriel; Bonnemoy, Frédérique; Leremboure, Martin; Donnadieu, Florence; Batisson, Isabelle; Besse-Hoggan, Pascale

    2018-04-21

    The prediction of chemical mixture toxicity is a major concern regarding unintentional mixture of pesticides from agricultural lands treated with various such compounds. We focused our work on a mixture of three herbicides commonly applied on maize crops within a fortnight, namely mesotrione (β-triketone), nicosulfuron (sulfonylurea) and S-metolachlor (chloroacetanilide). The metabolic pathways of mesotrione and nicosulfuron were qualitatively and quantitatively determined with a bacterial strain (Bacillus megaterium Mes11). This strain was isolated from an agricultural soil and able to biotransform both these herbicides. Although these pathways were unaffected in the case of binary or ternary herbicide mixtures, kinetics of nicosulfuron disappearance and also of mesotrione and nicosulfuron metabolite formation was strongly modulated. The toxicity of the parent compounds and metabolites was evaluated for individual compounds and mixtures with the standardized Microtox® test. Synergistic interactions were evidenced for all the parent compound mixtures. Synergistic, antagonistic or additive toxicity was obtained depending on the metabolite mixture. Overall, these results emphasize the need to take into account the active ingredient and metabolites all together for the determination of environmental fate and toxicity of pesticide mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Scientific Team Effectiveness and the External CEO: A Study of Biotechnology University Spin-Offs

    ERIC Educational Resources Information Center

    van der Steen, Marianne; Englis, Paula Danskin; Englis, Basil G.

    2013-01-01

    This paper presents an empirical exploration of the effectiveness of scientific teams and the role of an external CEO in the spin-off formation process. The paper contributes to the literature by focusing on the role of the experienced or "external" entrepreneur (their commercial resources and capabilities) in the early phase of spin-off…

  19. [Keloid scars of the external ear: a non solved problem].

    PubMed

    Bejarano Serrano, M; Parri Ferrandis, F J; García Smith, N I; Martínez-Herrada, S; Manzanares Quintela, A; Albert Cazalla, A

    2014-01-01

    The external ear is a location with high risk of keloid scar formation. Its incidence is growing since general use of piercings and performance of plastic surgery of the external ear. The external ear keloid can be a devasting process for adolescent population which is worried about their appearance. Our aim is to attract attention about the risk of keloid scars of the external ear, reviewing our experience. After dismissing radiotherapy, corticoid infiltration and surgical removal are the most used options, with a high recurrence risk. We have reviewed traumatic, surgical and piercing wounds of the external ear, with a subsequent keloid formation treated in our outpatient clinic, collecting data about wound etiology, treatment and results. During the last 10 years we have found 11 keloid scars, 2 of them improved with topical corticosteroid. Treatment has been surgical in 9 cases, 4 of them with skin graft: 5 recovered and 4 recurred; 2 of them were reoperated. 2 of them were treated with intralesional corticosteroid solely, one recovered and the other one had improved. Treatment management of keloid scars is complex and there isn't a procedure with superior results than the others. Risk of complication must be explained within adolescent population.

  20. Vortex Formation During Unsteady Boundary-Layer Separation

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.

  1. The use of ordered mixtures for improving the dissolution rate of low solubility compounds.

    PubMed

    Nyström, C; Westerberg, M

    1986-03-01

    The dissolution rate of micronized griseofulvin has been investigated, both for the agglomerated raw material and the material formulated as an ordered mixture, by means of the USP XX paddle method. During the experiments, which were performed at sink condition and constant temperature, the effects of adding a surfactant and of agitation were tested. The ordered mixture with sodium chloride gave a fast dissolution rate, practically independent of the test parameters. Micronized griseofulvin alone gave dissolution profiles that were improved by adding polysorbate 80 and by increased agitation, but the dissolution rates obtained were much lower than those for the ordered mixture. It was concluded that the rate limiting step in the dissolution of griseofulvin as the raw material is the penetration of the dissolution medium into the agglomerates. With an ordered mixture, these agglomerates were deaggregated during the mixing process, producing a system in which the entire external surface area of the primary particles was exposed to the dissolution medium. This conclusion was supported by calculation of the contact surface areas taking part in the dissolution process for the systems tested. The procedure developed in this study could be applied to preformulation work where a cohesive, low solubility drug of hydrophobic nature is to be formulated.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar, E-mail: gude@cee.msstate.edu

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, andmore » ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.« less

  3. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    PubMed

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society

  4. Experimental Investigation of Organic Synthesis in Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1998-01-01

    Seafloor hydrothermal systems may be the most likely locations on the early Earth for the emergence of life. Because of the disequilibrium inherent in such dynamic, mixing environments, abundant chemical energy would have been available for formation of the building blocks of life. In addition, theoretical studies suggest that organic compounds in these conditions would reach metastable states, due to kinetic barriers to the formation of stable equilibrium products (CO2 and methane). The speciation of organic carbon in metastable states is highly dependent on the oxidation state, pH, temperature, pressure and bulk composition of the system. The goal of our research is to investigate the effects of a number external variables on the formation, transformation, and stability of organic compounds at hydrothermal conditions. We have begun experimental work to attempt to control the oxidation state of simulated hydrothermal systems by using buffers composed of mineral powders and gas mixtures. We are also beginning to test the stability of organic compounds under these conditions. The experiments are being performed using the hydrothermal bomb apparatus at the U.S. Geological Survey in Menlo Park, CA and the supercritical water oxidizer (SCWO) at NASA Ames Research Center in Moffet Field, CA. The amino acids decomposed rapidly. Even after the approximately 15 minutes between addition of the amino acids and the first sampling, no amino acids were detected in the PPM system by GC- MS, while in the FeFeO system the amino acids were present at a level of less than 50% of original. Carboxylic acids, ammonia, and CO2 were the main products, along with some unidentified compounds. The ratios of carboxylic acids and concentrations of other products seem to have remained stable during the experiments, consistent with observations of other metastable systems and theoretical predictions.

  5. In-situ process for recovering hydrocarbons from a diatomite-type formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1984-12-04

    An in-situ process for recovering hydrocarbons from a diatomite-type formation which comprises contacting the diatomite formation with a C/sub 4/-C/sub 10/ alcohol and thereafter displacing the hydrocarbon-alcohol mixture with an aqueous alkaline solution towards a production well. The aqueous alkaline solution can be displaced with additional solution or another suitable medium such as a connate water drive.

  6. Aqueous flooding methods for tertiary oil recovery

    DOEpatents

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  7. Structure formation in binary mixtures of surfactants: vesicle opening-up to bicelles and octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    Micelle formation in binary mixtures of surfactants is studied using a coarse-grained molecular simulation. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle, the bicelle, is typically formed. It is found that cup-shaped vesicles and bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and critical micelle concentration. The obtained octopus shape of micelles agree with those observed in the cryo-TEM images reported in [S. Jain and F. S. Bates, Macromol. 37, 1511 (2004).]. Two types of connection structures between the worm-like micelles and the bicelles are revealed.

  8. Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer M.; Grassian, V. H.; Young, M. A.; Kleiber, P. D.

    2015-03-01

    Visible light scattering phase function and linear polarization profiles of mineral dust components processed with organic acids and humic material are measured, and results are compared to T-matrix simulations of the scattering properties. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acids. Clear differences in light scattering properties are observed for all three processed samples when compared to the unprocessed dust or organic salt products. Results for quartz processed with humic acid sodium salt (NaHA) indicate the presence of both internally mixed quartz-NaHA particles and externally mixed NaHA aerosol. Simulations of light scattering suggest that the processed quartz particles become more moderate in shape due to the formation of a coating of humic material over the mineral core. Experimental results for calcite reacted with acetic acid are consistent with an external mixture of calcite and the reaction product, calcium acetate. Modeling of the light scattering properties does not require any significant change to the calcite particle shape distribution although morphology changes cannot be ruled out by our data. It is expected that calcite reacted with oxalic acid will produce internally mixed particles of calcite and calcium oxalate due to the low solubility of the product salt. However, simulations of the scattering for the calcite-oxalic acid system result in rather poor fits to the data when compared to the other samples. The poor fit provides a less accurate picture of the impact of processing in the calcite-oxalic acid system.

  9. Production of refractory chamotte particle-reinforced geopolymer composite

    NASA Astrophysics Data System (ADS)

    Kovářík, T.; Kullová, L.; Rieger, D.

    2016-04-01

    Geopolymer resins are obtained by alkaline activation of aluminosilicate sources where raw calcined clays are one of the suitable potentialities. Besides the fact that chemical composition has an essential effect on final properties of the geopolymer binder, the type of filler strongly affected resulting properties of such granular composite. However, very few comparative studies have been done on detail description of composite systems: binder - granular filler, in relation to aggregate gradation design and rheology properties of the mixture. The aim of this work is to develop and describe granular composite concerning workability of the mixture and kinetics of geopolymerization/polycondensation through flow behaviour. The rheological measurements indicated that initial viscosities of the mixtures and their evolution are different for various proportions of the filler. Moreover, it was demonstrated that increase in complex viscosity responds to the creation of chemical bonds and the formation of structural network. Finally, a correlation of the mechanism of geopolymer formation was carried out by differential scanning calorimetry (DSC).

  10. Laboratory experiments of crater formation on ice-rock mixture targets

    NASA Astrophysics Data System (ADS)

    Hiraoka, K.; Arakawa, M.; Yoshikawa, K.; Nakamura, A. M.

    Surfaces of ice-rock mixture are common among planetary bodies in outer solar system, such as the satellites of the giant planets, comet nuclei, and so on. In order to study the effect of the presence of volatiles in crater formation on these bodies, we performed impact experiments using a two-stage light-gas gun and a gas gun at Hokkaido University. The targets were ice-rock mixtures (diameter = 10 or 30cm, height = 5cm) with 0 wt.% to 50 wt.% rock. Projectiles were ice cylinders (diameter = 15mm, height = 10mm) or corn-shaped nylon ones and the impact velocities were varied from about 300m/s to 3500m/s. We will show an anti-correlation between the crater volume and the rock content, and will make a comparison with previous works (Lange and Ahrens 1982; Koschny and Grun 2001). Ejecta size and velocity measured on high-speed video images will be presented and will be discussed by a comparison with a spallation model (Melosh 1984).

  11. Mechanism of chemical activation of sodium chloride in the presence of amino acids.

    PubMed

    Rahn, Anja K K; Yaylayan, Varoujan A

    2015-01-01

    Sodium chloride has been shown to promote chlorination of glycerol during thermal processing. However, the detailed mechanism of this reaction is not well understood. Preliminary experiments have indicated that the reaction mixture should contain an amino acid and it should be dissolved thoroughly in water in order to induce chlorination. These observations are consistent with the process of dissociation of sodium chloride and its re-association with amino acid and eventual formation of the chlorinating agent in the form of the hydrochloride salt. Release of HCl from this salt can be manifested in chlorination and hydrolytic reactions occurring during thermal processing. The generation of HCl at room temperature from a mixture of sodium chloride and glycine was confirmed through spectrophotometric monitoring of the pH. Hydrolytic and chlorination reactions were demonstrated through monitoring of formation of HMF and chlorinated products under pyrolytic conditions using glucose or sucrose and amino acid mixtures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Pectin extraction from lemon by-product with acidified date juice: rheological properties and microstructure of pure and mixed pectin gels.

    PubMed

    Masmoudi, M; Besbes, S; Ben Thabet, I; Blecker, C; Attia, H

    2010-04-01

    The microstructure and the rheological properties of lemon-pectin mixtures were studied and compared to those of pure lemon (high methoxyl: HM) and date (low methoxyl: LM) pectins. Rheological properties were carried out in the presence of 30%, 45% and 60% sucrose, and increasing calcium concentrations (0-0.1%). The presence of date with lemon pectin led to a gel formation at 45% sucrose and in the presence of calcium, which was not the case for lemon pectin alone under the same conditions. It is suggested that lemon and date pectins interacted, leading to gel formations at different gelling temperatures, which were strongly dependent on degree of methylation. These results were confirmed by scanning electron microscopy, which revealed inhomogeneous gels where dense aggregated network and loose, open network areas were present. Addition of calcium to pectin mixture gels led to stronger and faster gel formation.

  13. Ionic Liquids as templating agents in formation of uranium-containing nanomaterials

    DOEpatents

    Visser, Ann E; Bridges, Nicholas J

    2014-06-10

    A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.

  14. Formation of the racemic compound of ephedrine base from a physical mixture of its enantiomers in the solid, liquid, solution, or vapor state.

    PubMed

    Duddu, S P; Grant, D J

    1992-08-01

    Physical mixtures (conglomerates) of the two enantiomers of ephedrine base, each containing 0.5% (w/w) of water, were observed to be converted to the 1:1 racemic compound in the solid, liquid, solution, or vapor state. From a geometrically mixed racemic conglomerate of particle size 250-300 microns (50-60 mesh), the formation of the racemic compound follows second-order kinetics (first order with respect to each enantiomer), with a rate constant of 392 mol-1 hr-1 at 22 degrees C. The reaction appears to proceed via the vapor phase as indicated by the growth of the crystals of the racemic compound between diametrically separated crystals of the two enantiomers in a glass petri dish. The observed kinetics of conversion in the solid state are explained by a homogeneous reaction model via the vapor and/or liquid states. Formation of the racemic compound from the crystals of ephedrine enantiomers in the solution state may explain why Schmidt et al. (Pharm. Res. 5:391-395, 1988) observed a consistently lower aqueous solubility of the mixture than of the pure enantiomers. The solid phase in equilibrium with the solution at the end of the experiment was found to be the racemic compound, whose melting point and heat of fusion are higher than those of the enantiomers. An association reaction, of measurable rate, between the opposite enantiomers in a binary mixture in the solid, liquid, solution, or vapor state to form the racemic compound may be more common than is generally realized.

  15. A Study of Soil and Duricrust Models for Mars

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    This project includes analysis of the Mars Pathfinder soil data (spectral, chemical and magnetic) together with analog materials and the products of laboratory alteration experiments in order to describe possible mechanisms for the formation of soil, duricrust and rock coatings on Mars. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments for changes in binding and spectroscopic properties that are related to what could be expected for duricrusts on Mars. The smectite-based mixture exhibited significantly greater changes (1) in its binding properties throughout the wet/dry cycling experiments than did the palagonite-based mixture, and (2) in its spectral properties following grinding and resieving of the hardened material than did the palagonite-based mixture.

  16. [THE VIRTUAL CYTOLOGIC SLIDES FOR EXTERNAL EVALUATION OF QUALITY OF IMPLEMENTATION OF CYTOLOGIC ANALYSES IN CLINICAL DIAGNOSTIC LABORATORIES: POSSIBILITIES AND PERSPECTIVES].

    PubMed

    Djangirova, T V; Shabalova, I P; Pronichev, A N; Polyakov, E V

    2015-08-01

    The article considers application of technology of analysis of cytological slides in external quality control of clinical diagnostic laboratories. The advantages of virtual slides are demonstrated against other applied technologies of external evaluation of quality i.e. slide plate and digital micro-photography. The conditions of formation of virtual slides for external evaluation of quality of clinical diagnostic laboratories. The technology of their application is described. The success of practical application of considered technology in the Federal system of external evaluation of quality is emphasized.

  17. Differential School Contextual Effects for Math and English: Integrating the Big-Fish-Little-Pond Effect and the Internal/External Frame of Reference

    ERIC Educational Resources Information Center

    Parker, Philip D.; Marsh, Herbert W.; Ludtke, Oliver; Trautwein, Ulrich

    2013-01-01

    The internal/external frame of reference and the big-fish-little-pond effect are two major models of academic self-concept formation which have considerable theoretical and empirical support. Integrating the domain specific and compensatory processes of the internal/external frame of reference model with the big-fish-little-pond effect suggests a…

  18. Construction of monomer-free, highly crosslinked, water-compatible polymers.

    PubMed

    Dailing, E A; Lewis, S H; Barros, M D; Stansbury, J W

    2014-12-01

    Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. © International & American Associations for Dental Research.

  19. Complementarity among four highly productive grassland species depends on resource availability.

    PubMed

    Roscher, Christiane; Schmid, Bernhard; Kolle, Olaf; Schulze, Ernst-Detlef

    2016-06-01

    Positive species richness-productivity relationships are common in biodiversity experiments, but how resource availability modifies biodiversity effects in grass-legume mixtures composed of highly productive species is yet to be explicitly tested. We addressed this question by choosing two grasses (Arrhenatherum elatius and Dactylis glomerata) and two legumes (Medicago × varia and Onobrychis viciifolia) which are highly productive in monocultures and dominant in mixtures (the Jena Experiment). We established monocultures, all possible two- and three-species mixtures, and the four-species mixture under three different resource supply conditions (control, fertilization, and shading). Compared to the control, community biomass production decreased under shading (-56 %) and increased under fertilization (+12 %). Net diversity effects (i.e., mixture minus mean monoculture biomass) were positive in the control and under shading (on average +15 and +72 %, respectively) and negative under fertilization (-10 %). Positive complementarity effects in the control suggested resource partitioning and facilitation of growth through symbiotic N2 fixation by legumes. Positive complementarity effects under shading indicated that resource partitioning is also possible when growth is carbon-limited. Negative complementarity effects under fertilization suggested that external nutrient supply depressed facilitative grass-legume interactions due to increased competition for light. Selection effects, which quantify the dominance of species with particularly high monoculture biomasses in the mixture, were generally small compared to complementarity effects, and indicated that these species had comparable competitive strengths in the mixture. Our study shows that resource availability has a strong impact on the occurrence of positive diversity effects among tall and highly productive grass and legume species.

  20. Stoichiometry and possible mechanism of SiH/sub 4/-O/sub 2/ explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J.R.; Famil-Ghiriha, J.; Ring, M.A.

    1987-04-01

    The products of silane-O/sub 2/ mixture explosions vary with mixture composition. For O/sub 2/-rich mixtures (>70% O/sub 2/), the products are H/sub 2/O and SiO/sub 2/. As the mixtures become richer in silane, H/sub 2/ replaces H/sub 2/O as a final product. For very SiH/sub 4/-rich mixtures (>70% SiH/sub 4/), the products are H/sub 2/, SiO/sub x/, and Si. The fact that silane is totally consumed in silane-rich mixtures (70-90% silane) demonstrates that solid particle formation (SiO/sub 2/, SiO, and Si) occurs very rapidly and that the accompanying heat release is essential to drive the reactions to completion. It ismore » also clear that the explosion of a silane-rich mixture is primarily a thermal explosion of silane. Effects due to problems associated with upper pressure limit measurements and mechanistic aspects of the SiH/sub 4/-O/sub 2/ explosion reaction are discussed.« less

  1. 75 FR 25269 - Proposed Collection; Comment Request; A Generic Submission for Formative Research, Pretesting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Request; A Generic Submission for Formative Research, Pretesting, and Stakeholder Measures at NCI SUMMARY... Generic Submission for Formative Research, Pre-testing, and Stakeholder Measures at NCI. Type of... external stakeholders with this collaboration. This customer satisfaction research helps ensure the...

  2. Features of the propagation of laminar spherical flames initiated by a spark discharge in mixtures of methane, pentane, and hydrogen with air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Rubtsov, N. M.; Seplyarskii, B. S.; Troshin, K. Ya.; Chernysh, V. I.; Tsvetkov, G. I.

    2011-10-01

    Using high-speed digital color cinematography, we studied the propagation of a laminar spherical flame in stoichiometric mixtures of hydrogen, methane, and pentane with air in the presence of additives at atmospheric pressure in constant-volume reactors, and derived quantitative data on the time of formation of a stable flame front. Cellular flames caused by gas-dynamic instability attributable to convective flows arising during the afterburning of gas were observed in hydrocarbon-air stoichiometric mixtures diluted with inert additives. It was found that the effect of additives of carbon dioxide and argon (>10%) and minor additives of CCl4 on the combustion of hydrocarbons, and of propylene on the combustion of hydrogen-rich mixtures, lead to periods of delay in the development of a laminar spherical flame; in addition, additives of propylene promote the combustion of hydrogen poor mixtures.

  3. Cucurbit[7]uril as a tool in the green synthesis of gold nanoparticles.

    PubMed

    Premkumar, Thathan; Geckeler, Kurt E

    2010-12-03

    A simple, green, one-pot synthesis of gold nanoparticles was achieved through the reaction of an aqueous mixture of potassium tetrachloroaurate(III) and the macrocycle cucurbit[7]uril in the presence of sodium hydroxide at room temperature without introducing any kind of traditional reducing agents and/or external energy. The as-prepared gold nanoparticles showed catalytic activity for the reduction reaction of 4-nitrophenol in the presence of NaBH(4), which has been established by visual inspection and UV/Vis spectroscopy. This report is the first for the preparation of gold nanoparticles using cucurbit[7]uril in aqueous media through chemical reduction without employing conventional reducing agents and/or external energy.

  4. Influence of heavy metals on the formation and the distribution behavior of PAH and PCDD/F during simulated fires.

    PubMed

    Wobst, M; Wichmann, H; Bahadir, M

    2003-04-01

    Combustion experiments were performed with an artificial fire load (polystyrene and quartz powder) in a laboratory scale incinerator in the presence of gaseous HCl to simulate accidental fire conditions. The aim of this investigation was to trace back the alterations of the formation and the distribution behavior of PAH and PCDD/PCDF to the presence of CuO or a mixture of metal oxides (CdO, CuO, Fe(2)O(3), PbO, MoO(3), ZnO). The total amount of the 16 PAH target compounds was reduced by the factor of 5-9 when the mixture of metal oxides was present rather than merely CuO. PAH patterns as well as their distribution behavior were significantly influenced by these oxides. In general, transportation inside the installation was enhanced for most of the 16 analyzed PAH. Only fluorene and dibenzo[a,h]anthracene were transported to a smaller extent. In contrast to PAH, total concentrations of PCDD were increased by factor 9 and of PCDF by factor 10, respectively, when CuO was present. Adding the mixture of metal oxides resulted in an increase of PCDD by factor 14 and of PCDF by factor 7. CuO and the mixture of metal oxides had a different influence on the PCDD/F homologue patterns. For instance, the HxCDF to OCDF ratio after incineration without any metal oxide was 1 to 6, whereas addition of CuO or the mixture of the metal oxides shifted the HxCDF to OCDF ratios towards 1 to 40 or 1 to 17, respectively. Combustion along with CuO increased transportation of higher chlorinated PCDF congeners, whereas the mixture of the metal oxides caused a strong decrease of PCDF distribution throughout the system.

  5. Pulverized coal fuel injector

    DOEpatents

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  6. Low Temperature Fluorine Chemistry of Electronegative Elements.

    DTIC Science & Technology

    1980-07-15

    mixtures were prepared in a stainless steel vacuum line well-passivated with chlorine trifluoride (Matheson 98%). In most cases gas mixtures were prepared...niversit% of Tennessee." Knoxville, Tennessee 37916 Matrix Reactions of Fluorine with Chlorine , Bromine, and Iodine. Infrared Detlection of the XF 2, X2F...stainless sieel vacuum line well-passivated with chlorine trifluoride in the formation of these new mixed halogen species. (Matheson. 98.0%). Research

  7. Numerical investigations on unstable direct contact condensation of cryogenic fluids

    NASA Astrophysics Data System (ADS)

    Jayachandran, K. N.; Arnab, Roy; Parthasarathi, Ghosh

    2017-02-01

    A typical problem of Direct Contact Condensation (DCC) occurs at the liquid oxygen (LOX) booster turbopump exit of oxidiser rich staged combustion cycle based semi-cryogenic rocket engines, where the hot gas mixture (predominantly oxygen and small amounts of combustion products) that runs the turbine mixes with LOX from the pump exit. This complex multiphase phenomena leads to the formation of solid CO2 & H2O, which is undesirable for the functioning of the main LOX turbopump. As a starting point for solving this complex problem, in this study, the hot gas mixture is taken as pure oxygen and hence, DCC of pure oxygen vapour jets in subcooled liquid oxygen is simulated using the commercial CFD package ANSYS CFX®. A two fluid model along with the thermal phase change model is employed for capturing the heat and mass transfer effects. The study mainly focuses on the subsonic DCC bubbling regime, which is reported as unstable with bubble formation, elongation, necking and collapsing effects. The heat transfer coefficients over a period of time have been computed and the various stages of bubbling have been analysed with the help of vapour volume fraction and pressure profiles. The results obtained for DCC of oxygen vapour-liquid mixtures is in qualitative agreement with the experimental results on DCC of steam-water mixtures.

  8. Ground-Based Aerosol Measurements | Science Inventory ...

    EPA Pesticide Factsheets

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo

  9. Soot formation and burnout in flames

    NASA Technical Reports Server (NTRS)

    Prado, B.; Bittner, J. D.; Neoh, K.; Howard, J. B.

    1980-01-01

    The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered.

  10. THE EFFECTS OF EQUIVALENCE RATIO ON THE FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOOT IN PREMIXED ETHANE FLAMES. (R825412)

    EPA Science Inventory

    Abstract

    The formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, ...

  11. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    NASA Astrophysics Data System (ADS)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion tests, the combined sulfate attack tests captured performance risks and complex damage mechanisms associated with the SCC pore structure and constituent materials. Sodium sulfate attack with wetting-drying cycles and/or partial immersion under temperate-hot conditions synergistically caused significant damage to specimens, especially to quaternary cementitious systems having very fine pore structure, due to the build-up of salt crystals and sulfate reaction products. The deleterious effects of sulfate reaction products and salt crystallization on all cementitious systems were more severe under the combined sodium sulfate and freezing-thawing exposure, with a potential of sudden brittle failure. Laboratory experiments in the current work documented evidence for the occurrence of thaumasite sulfate attack (TSA) in cementitious systems containing limestone filler, not only under cold but also under temperate-hot conditions, which made specimens more vulnerable to damage in the combined sulfate attack tests. The field-like combined exposure of sodium sulfate, cyclic environments and flexural loading had synergistic effects on SCC specimens and caused the coexistence of multiple-complex degradation mechanisms (sulfate attack, TSA, stress-corrosion, salt crystallization, surface scaling and corrosion of surface steel fibres) depending on the mixture design variables. The current thesis demonstrates that relying only on sulfate immersion tests to evaluate the performance of cement-based materials can be risky. It also shows that linear and deterministic modeling of the performance of concrete structures under external sulfate attack is unrealistic. Fuzzy and adaptive-neuro fuzzy inference systems developed in the current thesis accurately and rationally predicted the serviceability, deterioration in engineering properties and time to failure of the SCC mixtures under the various sulfate attack exposure regimes adopted in the integrated testing approach. A durability evaluation factor from multiple performance criteria was created for the ammonium sulfate exposure. Environmental charts were developed to determine the level of aggression associated with sodium sulfate attack from temperature, RH and degree of wetting-drying expected in service. This novel modeling approach showed promising success in handling complex durability topics such as the sulfate attack of concrete, which involves non-linearity, ambiguity and interface with operator approximation. The current thesis provides needed fundamental knowledge on the durability of a wide scope of SCC mixtures to various sulfate attack exposure scenarios. It elucidates complex deterioration mechanisms and failure modes of cement-based materials under multi-mechanistic aging processes. It also proposes carefully engineered integrated sulfate attack tests that replicate various sulfate attack exposure regimes, which could be refined and standardized in the future. In addition, the current work introduced original knowledge-based smart models capable of handling uncertainty and providing reliable predictions for the behaviour of concrete under external sulfate attack. The models do not require conducting exhaustive laboratory experiments and/or making assumptions, thus facilitating the selection of optimum concrete mixtures for a specified exposure. Overall, this research should effectively contribute to the development of performance-based standards and specifications for, and improvement of durability-based design and life-cycle analysis of concrete structures subjected to external sulfate attack. Keywords. Sulfate attack, self-consolidating concrete, integrated testing, composite cements, air-entrainment, hybrid fibres, full immersion, cations, pH, wetting-drying, partial immersion, freezing-thawing, cyclic cold-hot conditions, flexural loading, thaumasite, salt crystallization, fuzzy, neuro-fuzzy, systems.

  12. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  13. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies

    PubMed Central

    Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A.; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A.; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A.; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-01-01

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars. PMID:27759033

  14. Defects formation and wave emitting from defects in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni

    2016-05-01

    Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.

  15. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies.

    PubMed

    Chen, Yan-Mei; Shi, Yong; Tremonti, Christy A; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-10-19

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Here, based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (<1 kpc) to form new stars.

  16. Sedimentation of a two-dimensional colloidal mixture exhibiting liquid-liquid and gas-liquid phase separation: a dynamical density functional theory study.

    PubMed

    Malijevský, Alexandr; Archer, Andrew J

    2013-10-14

    We present dynamical density functional theory results for the time evolution of the density distribution of a sedimenting model two-dimensional binary mixture of colloids. The interplay between the bulk phase behaviour of the mixture, its interfacial properties at the confining walls, and the gravitational field gives rise to a rich variety of equilibrium and non-equilibrium morphologies. In the fluid state, the system exhibits both liquid-liquid and gas-liquid phase separation. As the system sediments, the phase separation significantly affects the dynamics and we explore situations where the final state is a coexistence of up to three different phases. Solving the dynamical equations in two-dimensions, we find that in certain situations the final density profiles of the two species have a symmetry that is different from that of the external potentials, which is perhaps surprising, given the statistical mechanics origin of the theory. The paper concludes with a discussion on this.

  17. Degradation in the efficiency of glass Resistive Plate Chambers operated without external gas supply

    NASA Astrophysics Data System (ADS)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.; Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.

    2015-06-01

    Resistive plate chambers (RPC) are particle detectors commonly used by the high energy physics community. Their normal operation requires a constant flow of gas mixture to prevent self-poisoning which reduces the chamber's capability to detect particles. We studied how quickly the efficiency of two RPCs drops when operated in sealed mode, i.e. without refreshing the gas mixture. The test aim is to determine how RPCs could be used as particle detectors in non-laboratory applications, such as those exploiting muon tomography for geological imaging or homeland security. The two sealed RPCs were operated in proportional mode for a period of more than three months, and their efficiencies were recorded continuously and analysed in 8-hours intervals. The results show that the efficiency drops on average by 0.79 ± 0.01 % every 24 hours of operation and returns close to the initial value after purging the old gas mixture and flushing the chambers with fresh gas.

  18. On a Heat Exchange Problem under Sharply Changing External Conditions

    NASA Astrophysics Data System (ADS)

    Khishchenko, K. V.; Charakhch'yan, A. A.; Shurshalov, L. V.

    2018-02-01

    The heat exchange problem between carbon particles and an external environment (water) is stated and investigated based on the equations of heat conducting compressible fluid. The environment parameters are supposed to undergo large and fast variations. In the time of about 100 μs, the temperature of the environment first increases from the normal one to 2400 K, is preserved at this level for about 60 μs, and then decreases to 300 K during approximately 50 μs. At the same periods of time, the pressure of the external environment increases from the normal one to 67 GPa, is preserved at this level, and then decreases to zero. Under such external conditions, the heating of graphite particles of various sizes, their phase transition to the diamond phase, and the subsequent unloading and cooling almost to the initial values of the pressure and temperature without the reverse transition from the diamond to the graphite phase are investigated. Conclusions about the maximal size of diamond particles that can be obtained in experiments on the shock compression of the mixture of graphite with water are drawn.

  19. Calculation of Thermodynamic Parameters and Degree of Ionization of Nitrogen and Its Mixtures with Argon in Typical Single-Bubble Sonoluminescence Conditions

    NASA Astrophysics Data System (ADS)

    Borisenok, V. A.; Medvedev, A. B.

    2017-12-01

    The results of numerical simulation of the behavior of a system consisting of a spherical bubble filled with nitrogen or its mixtures with argon and surrounding water under external influence typical of experimental study of single-bubble sonoluminescence are presented. Comparison of the results of calculations and experiments shows that gas heated at the bubble compression stage cannot be regarded as the only source of radiation. This circumstance requires the presence of other, basic, sources. In the polarization model, this is the channel of electrical breakdown in a liquid. Possible electrical effects accompanying the liquid-solid phase transformation in water near the moment of the maximum compression of the bubble are assumed.

  20. Scattering Properties of Heterogeneous Mineral Particles with Absorbing Inclusions

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2015-01-01

    We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented poly-disperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz-Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures.

  1. Process for applying a superconductive powder to a wide variety of substrates

    NASA Astrophysics Data System (ADS)

    Hooker, Matthew W.; Wise, Stephanie A.; Tran, Sang Q.

    1992-12-01

    A fine superconducting powder such as YBa2Cu3O(7-x), wherein x is less than one, is blended into a liquid mixture comprising an epoxy resin and a thinner. This liquid mixture with the blended superconducting powder is coated onto a substrate. Next, the thinner is evaporated and the remaining coating cured, resulting in a coating of cured epoxy resin having superconducting powder suspended therein. This coating exhibits the Meissner effect, i.e., it expels a magnetic flux which protects the substrate from external magnetic interference. Since the coated substrate need only be heated for evaporation and curing at relatively low temperatures compared to firing, the superconducting coating can be applied to a wide variety of different materials.

  2. Reactivity induced at 25 K by low-energy electron irradiation of condensed NH3-CH3COOD (1 : 1) mixture.

    PubMed

    Lafosse, Anne; Bertin, Mathieu; Domaracka, Alicja; Pliszka, Damian; Illenberger, Eugen; Azria, Roger

    2006-12-21

    Chemical reactivity is observed following electron irradiation of a binary mixture of ammonia (NH(3)) and acetic acid (CH(3)COOD) at 25 K, without any subsequent thermal activation, as evidenced by vibrational high resolution electron energy loss spectroscopy (HREELS). Analysis of the HREEL spectra and comparison with infrared and Raman data of different molecules are compatible with glycine formation in its zwitterionic form. The onset for electron induced reaction is found to be at about approximately 13 eV. The mechanisms may involve NH radicals interaction with CH(3)COOD molecules. Then glycine formation does not imply any displacement of reactants, so that it involves only NH(3) and CH(3)COOD neighboring molecules.

  3. Intensification process of air-hydrogen mixture burning in the variable cross section channel by means of the air jet

    NASA Astrophysics Data System (ADS)

    Zamuraev, V. P.; Kalinina, A. P.

    2018-03-01

    The paper presents the results of numerical modeling of a transonic region formation in the flat channel. Hydrogen flows into the channel through the holes in the wall. The jet of compressed air is localized downstream the holes. The transonic region formation is formed by the burning of heterogeneous hydrogen-air mixture. It was considered in the framework of the simplified chemical kinetics. The interesting feature of the regime obtained is the following: the distribution of the Mach numbers is qualitatively similar to the case of pulse-periodic energy sources. This mode is a favorable prerequisite for the effective fuel combustion in the expanding part of the channel when injecting fuel into this part.

  4. Analysis of high injection pressure and ambient temperature on biodiesel spray characteristics using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal

    2017-09-01

    Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.

  5. Phase-coexistence and thermal hysteresis in samples comprising adventitiously doped MnAs nanocrystals: programming of aggregate properties in magnetostructural nanomaterials.

    PubMed

    Zhang, Yanhua; Regmi, Rajesh; Liu, Yi; Lawes, Gavin; Brock, Stephanie L

    2014-07-22

    Small changes in the synthesis of MnAs nanoparticles lead to materials with distinct behavior. Samples prepared by slow heating to 523 K (type-A) exhibit the characteristic magnetostructural transition from the ferromagnetic hexagonal (α) to the paramagnetic orthorhombic (β) phase of bulk MnAs at Tp = 312 K, whereas those prepared by rapid nucleation at 603 K (type-B) adopt the β structure at room temperature and exhibit anomalous magnetic properties. The behavior of type-B nanoparticles is due to P-incorporation (up to 3%), attributed to reaction of the solvent (trioctylphosphine oxide). P-incorporation results in a decrease in the unit cell volume (∼1%) and shifts Tp below room temperature. Temperature-dependent X-ray diffraction reveals a large region of phase-coexistence, up to 90 K, which may reflect small differences in Tp from particle-to-particle within the nearly monodisperse sample. The large coexistence range coupled to the thermal hysteresis results in process-dependent phase mixtures. As-prepared type-B samples exhibiting the β structure at room temperature convert to a mixture of α and β after the sample has been cooled to 77 K and rewarmed to room temperature. This change is reflected in the magnetic response, which shows an increased moment and a shift in the temperature hysteresis loop after cooling. The proportion of α present at room temperature can also be augmented by application of an external magnetic field. Both doped (type-B) and undoped (type-A) MnAs nanoparticles show significant thermal hysteresis narrowing relative to their bulk phases, suggesting that formation of nanoparticles may be an effective method to reduce thermal losses in magnetic refrigeration applications.

  6. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.

    PubMed

    Herrero, M Antonia; Kremsner, Jennifer M; Kappe, C Oliver

    2008-01-04

    The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.

  7. DCMDN: Deep Convolutional Mixture Density Network

    NASA Astrophysics Data System (ADS)

    D'Isanto, Antonio; Polsterer, Kai Lars

    2017-09-01

    Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.

  8. Formation of the center of ignition in a CH3Cl-Cl2 mixture under the action of UV light

    NASA Astrophysics Data System (ADS)

    Begishev, I. R.; Belikov, A. K.; Komrakov, P. V.; Nikitin, I. S.

    2016-07-01

    The dependence of temperature on time is investigated using a microthermocouple at different distances from a UV light source in a mixture of chlorine and chloromethane. These relationships give an idea of the size and location of a center of photoignition. It is found that if the size of the reaction vessel in the direction of the luminous flux is much greater than the dimensions of the ignition center, the thermal expansion of a reacting gas mixture has a huge impact on such photoignition parameters as the critical concentration limits and the critical intensity of UV radiation. It is found that by increasing the length of the vessel, some chlorinated combustible mixtures lose the ability to ignite when exposed to UV light.

  9. Molecular Approach to the Synergistic Effect on Astringency Elicited by Mixtures of Flavanols.

    PubMed

    Ramos-Pineda, Alba María; García-Estévez, Ignacio; Brás, Natércia F; Martín Del Valle, Eva M; Dueñas, Montserrat; Escribano Bailón, María Teresa

    2017-08-09

    The interactions between salivary proteins and wine flavanols (catechin, epicatechin, and mixtures thereof) have been studied by HPLC-DAD, isothermal titration microcalorimetry, and molecular dynamics simulations. Chromatographic results suggest that the presence of these flavanol mixtures could facilitate the formation of precipitates to the detriment of soluble aggregates. Comparison between the thermodynamic parameters obtained showed remarkably higher negative values of ΔG in the system containing the mixture of both flavanols in comparison to the systems containing individual flavanols, indicating a more favorable scenario in the mixing system. Also, the apparent binding constants were higher in this system. Furthermore, molecular dynamics simulations suggested a faster and greater cooperative binding of catechin and epicatechin to IB7 14 peptides when both types of flavanols are present simultaneously in solution.

  10. The mathematics of a successful deconvolution: a quantitative assessment of mixture-based combinatorial libraries screened against two formylpeptide receptors.

    PubMed

    Santos, Radleigh G; Appel, Jon R; Giulianotti, Marc A; Edwards, Bruce S; Sklar, Larry A; Houghten, Richard A; Pinilla, Clemencia

    2013-05-30

    In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays.

  11. A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.

    NASA Astrophysics Data System (ADS)

    Ho, Chi Ming

    1995-01-01

    Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth rates of the appropriate mixtures, the positive and negative effects of preferential diffusion and flame stretch on the developing flame are clearly demonstrated.

  12. Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili

    2018-03-01

    The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.

  13. Surface mediated assembly of small, metastable gold nanoclusters.

    PubMed

    Pettibone, John M; Osborn, William A; Rykaczewski, Konrad; Talin, A Alec; Bonevich, John E; Hudgens, Jeffrey W; Allendorf, Mark D

    2013-07-21

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.

  14. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  15. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  16. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P. Nandha; Mishra, Sandeep K.; Kannan, S., E-mail: para_kanna@yahoo.com

    2015-11-15

    A series of magnesium doped non-stoichiometric calcium deficient apatites were synthesized through an aqueous precipitation route. The resultant structural changes during heat treatment were investigated by X-ray diffraction, Raman and FT-IR spectroscopy and Rietveld refinement. The results confirmed the formation of biphasic mixtures comprising Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and β-Ca{sub 3}(PO{sub 4}){sub 2} after heat treatment at 1000 °C with the preferential occupancy of Mg{sup 2+} at the crystal lattice of β-Ca{sub 3}(PO{sub 4}){sub 2}. The concentration of Mg{sup 2+} uptake in β-Ca{sub 3}(PO{sub 4}){sub 2} is limited till reaching the stoichiometric ratio of (Ca+Mg)/P=1.67 and beyond this stoichiometricmore » value [(Ca+Mg)/P>1.67], Mg{sup 2+} precipitates as Mg(OH){sub 2} and thereafter gets converted to MgO during heat treatment. Any kind of Mg{sup 2+} uptake in the crystal lattice of Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} is discarded from the investigation. - Highlights: • Aqueous co-precipitation of calcium deficient apatites with excess magnesium (Mg{sup 2+}) additions. • Heat treatments beyond 800 °C results in the formation of biphasic apatite mixtures. • Mg{sup 2+} gets accommodated at the β-Ca{sub 3}(PO{sub 4}){sub 2} lattice of biphasic mixtures. • Mg{sup 2+} additions exceeding stoichiometric value (Ca/P>1.67) results in its formation as MgO. • Mg{sup 2+} occupancy at β-Ca{sub 3}(PO{sub 4}){sub 2} lattice delays its allotropic conversion α-Ca{sub 3}(PO{sub 4}){sub 2} till 1350 °C.« less

  17. Surface acidity and solid-state compatibility of excipients with an acid-sensitive API: case study of atorvastatin calcium.

    PubMed

    Govindarajan, Ramprakash; Landis, Margaret; Hancock, Bruno; Gatlin, Larry A; Suryanarayanan, Raj; Shalaev, Evgenyi Y

    2015-04-01

    The objectives of this study were to measure the apparent surface acidity of common excipients and to correlate the acidity with the chemical stability of an acid-sensitive active pharmaceutical ingredient (API) in binary API-excipient powder mixtures. The acidity of 26 solid excipients was determined by two methods, (i) by measuring the pH of their suspensions or solutions and (ii) the pH equivalent (pHeq) measured via ionization of probe molecules deposited on the surface of the excipients. The chemical stability of an API, atorvastatin calcium (AC), in mixtures with the excipients was evaluated by monitoring the appearance of an acid-induced degradant, atorvastatin lactone, under accelerated storage conditions. The extent of lactone formation in AC-excipient mixtures was presented as a function of either solution/suspension pH or pHeq. No lactone formation was observed in mixtures with excipients having pHeq > 6, while the lactone levels were pronounced (> 0.6% after 6 weeks at 50°C/20% RH) with excipients exhibiting pHeq < 3. The three pHeq regions (> 6, 3-6, and < 3) were consistent with the reported solution pH-stability profile of AC. In contrast to the pHeq scale, lactone formation did not show any clear trend when plotted as a function of the suspension/solution pH. Two mechanisms to explain the discrepancy between the suspension/solution pH and the chemical stability data were discussed. Acidic excipients, which are expected to be incompatible with an acid-sensitive API, were identified based on pHeq measurements. The incompatibility prediction was confirmed in the chemical stability tests using AC as an example of an acid-sensitive API.

  18. Cytotoxic and antibacterial activity of the mixture of olive oil and lime cream in vitro conditions.

    PubMed

    Sumer, Zeynep; Yildirim, Gulay; Sumer, Haldun; Yildirim, Sahin

    2013-01-01

    The mixture of olive oil and lime cream has been traditionally used to treat external burns in the region of Hatay/Antakya and middle Anatolia. Olive oil and lime cream have been employed by many physicians to treat many ailments in the past. A limited number of studies have shown the antibacterial effect of olive oil and that it does not have any toxic effect on the skin. But we did not find any reported studies on the mixture of olive oil and lime cream. The aim of this paper is to investigate the cytotoxic and antibacterial activity of olive oil and lime cream individually or/and in combination in vitro conditions, by using disk-diffusion method and in cell culture. The main purpose in using this mixture is usually to clear burns without a trace. Agar overlay, MTT (Cytotoxicity assay) and antibacterial susceptibility tests were used to investigate the cytotoxic and antibacterial activity of olive oil and lime cream. We found that lime cream has an antibacterial activity but also cytotoxic on the fibroblasts. On the other hand olive oil has limited or no antibacterial effect and it has little or no cytotoxic on the fibroblasts. When we combined lime cream and olive oil, olive oil reduced its cytotoxic impact. These results suggest that mixture of olive oil and lime cream is not cytotoxic and has antimicrobial activity.

  19. Analytical and numerical studies of Bose-Fermi mixtures in a one-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Dehkharghani, A. S.; Bellotti, F. F.; Zinner, N. T.

    2017-07-01

    In this paper we study a mixed system of bosons and fermions with up to six particles in total. All particles are assumed to have the same mass. The two-body interactions are repulsive and are assumed to have equal strength in both the Bose-Bose and the Fermi-Boson channels. The particles are confined externally by a harmonic oscillator one-body potential. For the case of four particles, two identical fermions and two identical bosons, we focus on the strongly interacting regime and analyze the system using both an analytical approach and density matrix renormalization group calculations using a discrete version of the underlying continuum Hamiltonian. This provides us with insight into both the ground state and the manifold of excited states that are almost degenerate for large interaction strength. Our results show great variation in the density profiles for bosons and fermions in different states for strongly interacting mixtures. By moving to slightly larger systems, we find that the ground state of balanced mixtures of four to six particles tends to separate bosons and fermions for strong (repulsive) interactions. On the other hand, in imbalanced Bose-Fermi mixtures we find pronounced odd-even effects in systems of five particles. These few-body results suggest that question of phase separation in one-dimensional confined mixtures are very sensitive to system composition, both for the ground state and the excited states.

  20. Photodissociation Dye Laser Studies and High Pressure Discharge Conditioning Studies

    DTIC Science & Technology

    1976-11-01

    overnight to complete the formation of the Grignard reagent . The mixture was then cooled to room temperature and the solution was decanted ’.rom the...the Grignard reagent . A solution of the commercially available bromodiphenyl- methane (12.35 g) in the minimum quantity of dry benzene was then added...fairly rapidly into the reformed Hrignard reagent . A moderate exotherm was noted during this addition. The mixture was refluxed for two hours

  1. Rust Inhibitor And Fungicide For Cooling Systems

    NASA Technical Reports Server (NTRS)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  2. Internal and External Factors Affecting Teachers' Adoption of Formative Assessment to Support Learning

    ERIC Educational Resources Information Center

    Izci, Kemal

    2016-01-01

    Assessment forms an important part of instruction. Assessment that aims to support learning is known as formative assessment and it contributes student's learning gain and motivation. However, teachers rarely use assessment formatively to aid their students' learning. Thus reviewing the factors that limit or support teachers' practices of…

  3. Internal and External Factors Affecting Teachers' Adoption of Formative Assessment to Support Learning

    ERIC Educational Resources Information Center

    Izci, Kemal

    2016-01-01

    Assessment forms an important part of instruction. Assessment that aims to support learning is known as formative assessment and it contributes student's learning gain and motivation. However, teachers rarely use assessment formatively to aid their students' learning. Thus, reviewing the factors that limit or support teachers' practices of…

  4. Effects of Bout Duration on Players' Internal and External Loads During Small-Sided Games in Young Soccer Players.

    PubMed

    Köklü, Yusuf; Alemdaroğlu, Utku; Cihan, Hamit; Wong, Del P

    2017-11-01

    To investigate the effects of different bout durations on internal and external loads of young soccer players during different small-sided games (SSGs). Fifteen young male soccer players (average age 17 ± 1 y) participated in 2 vs 2, 3 vs 3, and 4 vs 4 SSGs. All games lasted 12 min playing time in total, but each SSG format further consisted of 4 bout durations: continuous (CON: 1 bout × 12 min) or interval with short (SBD: 6 bouts  × 2 min), medium (MBD: 3 bouts × 4 min), or long (LBD: 2 bouts × 6 min) bout durations. During the SSGs, heart-rate (HR) responses and distance covered in different speed zones (walking and low-intensity, moderate-intensity, and high-intensity running) were measured. Rating of perceived exertion (RPE) and blood lactate (La - ) were determined at the end of each SSG. The SBD format elicited significantly lower %HR max responses compared to LBD and CON in all formats (P < .05). The SBD format also showed significantly shorter distances covered in walking and greater distances covered in moderate-intensity running, as well as significantly greater total distance covered compared to LBD and CON in all formats (P < .05). In addition, LBD produced significantly lower La - and RPE responses than SBD and CON in all formats (P < .05). These results suggest that coaches and sport scientists who want to achieve higher internal loads could use SBD and CON timing protocols, while those who want to achieve higher external loads might prefer to use SBD and MBD when planning all SSG formats.

  5. A Technique for the Microstructural Examination of Polycrystalline Graphites

    DTIC Science & Technology

    1959-02-01

    dichromate in concentrated phosphoric acid . This etchsnt reacted quite readily with the graphite surface, yet at a rate that was...formation of lamellar compounds, and carbide formation at high temperatues . Of the three classes of reaction, oxidation seems to...reagents and conditions were directed toward preliminary studies of such chemical oxidants as potassium dichromate-phosphoric acid mixtures

  6. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions.

    PubMed

    Sánchez-García, M; Alburquerque, J A; Sánchez-Monedero, M A; Roig, A; Cayuela, M L

    2015-09-01

    A composting study was performed to assess the impact of biochar addition to a mixture of poultry manure and barley straw. Two treatments: control (78% poultry manure + 22% barley straw, dry weight) and the same mixture amended with biochar (3% dry weight), were composted in duplicated windrows during 19 weeks. Typical monitoring parameters and gaseous emissions (CO2, CO, CH4, N2O and H2S) were evaluated during the process as well as the agronomical quality of the end-products. Biochar accelerated organic matter degradation and ammonium formation during the thermophilic phase and enhanced nitrification during the maturation phase. Our results suggest that biochar, as composting additive, improved the physical properties of the mixture by preventing the formation of clumps larger than 70 mm. It favoured microbiological activity without a relevant impact on N losses and gaseous emissions. It was estimated that biochar addition at 3% could reduce the composting time by 20%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Solid-state thermal behavior and stability studies of theophylline-citric acid cocrystals prepared by neat cogrinding or thermal treatment

    NASA Astrophysics Data System (ADS)

    Hsu, Po-Chun; Lin, Hong-Liang; Wang, Shun-Li; Lin, Shan-Yang

    2012-08-01

    To investigate the thermal behavior of cocrystal formed between anhydrous theophylline (TP) and anhydrous citric acid (CA) by neat manual cogrinding or thermal treatment, DSC and FTIR microspectroscopy with curve-fitting analysis were applied. The physical mixture and 60-min ground mixture were stored at 55±0.5 °C/40±2% RH condition to determine their stability behavior. Typical TP-CA cocrystals were prepared by slow solvent evaporation method. Results indicate that the cogrinding process could gradually induce the cocrystal formation between TP and CA. The IR spectral peak shift from 3495 to 3512 cm-1 and the stepwise appearance of several new IR peaks at 1731, 1712, 1676, 1651, 1557 and 1265 cm-1 with cogrinding time suggest that the mechanism of TP-CA cocrystal formation was evidenced by interacting TP with CA through the intermolecular O-H···O hydrogen bonding. The stability of 60-min ground mixture of TP-CA was confirmed at 55±0.5 °C/40±2% RH condition over a storage time of 60 days.

  8. Direct and Nondirect Marathon Group Therapy and Internal---External Control

    ERIC Educational Resources Information Center

    Kilmann, Peter R.

    1974-01-01

    Investigates whether direct and nondirect therapist techniques within a 23-hour marathon format would differentially induce client shifts in locus of control. The no-treatment control group experienced a significant shift toward externality, while the marathon subjects did not fluctuate significantly from pretherapy to posttherapy. (Author)

  9. Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods

    NASA Astrophysics Data System (ADS)

    Jadrich, Ryan; Schweizer, Kenneth S.

    2011-12-01

    The relationship between kinetic arrest, connectivity percolation, structure and phase separation in protein, nanoparticle, and colloidal suspensions is a rich and complex problem. Using a combination of integral equation theory, connectivity percolation methods, naïve mode coupling theory, and the activated dynamics nonlinear Langevin equation approach, we study this problem for isotropic one-component fluids of spheres and variable aspect ratio rigid rods, and also percolation in rod-sphere mixtures. The key control parameters are interparticle attraction strength and its (short) spatial range, total packing fraction, and mixture composition. For spherical particles, formation of a homogeneous one-phase kinetically stable and percolated physical gel is predicted to be possible, but depends on non-universal factors. On the other hand, the dynamic crossover to activated dynamics and physical bond formation, which signals discrete cluster formation below the percolation threshold, almost always occurs in the one phase region. Rods more easily gel in the homogeneous isotropic regime, but whether a percolation or kinetic arrest boundary is reached first upon increasing interparticle attraction depends sensitively on packing fraction, rod aspect ratio and attraction range. Overall, the connectivity percolation threshold is much more sensitive to attraction range than either the kinetic arrest or phase separation boundaries. Our results appear to be qualitatively consistent with recent experiments on polymer-colloid depletion systems and brush mediated attractive nanoparticle suspensions.

  10. Effect of pH and temperature upon self-assembling process between poly(aspartic acid) and Pluronic F127.

    PubMed

    Nita, Loredana E; Chiriac, Aurica P; Bercea, Maria

    2014-07-01

    The present investigation was made in order to evaluate the capability of self-assembling of the two water soluble polymers, respectively, poly(aspartic acid) and Pluronic F127 into well interpenetrated mixture, and to evidence the connection effects intervened during polymer complex formation to exhibit good stability once formed, as well to understand and correlate the binding strength and the interval between better association domains. The effect of pH and temperature on the interpolymeric complex formation between poly(aspartic acid) and Pluronic F127 was studied by combining rheology with light scattering technique. The solution mixtures between poly(aspartic acid) and Pluronic F127 are Newtonian fluids for all ratios among them. Depending on the polymeric mixture composition and experimental temperature, positive or negative deviations of the experimental values from the additive dependence appear. An interesting behavior was registered around 1/1 wt. ratio between the two polymers, when the hydrodynamic diameter of the interpenetrated polymeric particles decreased suddenly. This allows us to conclude the formation of core-shell micelle structure with poly(aspartic acid) core and Pluronic F127 as shell, performed through strong interactions between polymers. This behavior was sustained by the increase of absolute value of zeta potential owing to the decrease of functional groups number at the surface of micelles. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol + 50% acetonitrile

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2016-02-01

    Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job's and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (KPT) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer's law was obeyed in the concentration range 0.5-8 μg mL- 1 with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and 1H NMR spectroscopy.

  12. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study.

    PubMed

    Engeldinger, Jana; Richter, Manfred; Bentrup, Ursula

    2012-02-21

    The simultaneous combination of steady state isotopic transient kinetic analysis (SSITKA) with diffuse reflectance Fourier transform spectroscopy (DRIFTS) and mass spectrometric (MS) analysis was applied to study the oxidative carbonylation of methanol (MeOH) to dimethyl carbonate (DMC) on a CuY zeolite catalyst prepared by incipient-wetness impregnation of commercial zeolite NH(4)-Y. The interaction of the catalyst with different reactants and reactant mixtures (O(2), CO, CO/O(2), MeOH/O(2), MeOH/CO, and MeOH/CO/O(2)) was studied in detail using (16)O(2)/(18)O(2) as well as (12)CO/(13)CO containing gas mixtures. DMC is produced via a monodentate monomethyl carbonate (MMC) species as intermediate which is formed by the concerted action of adsorbed methoxide and CO with gas phase MeOH. Adsorbed bidentate MMC species were found to be inactive. Lattice oxygen supplied by CuO(x) species is involved in the formation of MMC. Gas phase oxygen is needed to re-oxidize the catalyst but favours also the oxidation of CO to CO(2) and unselective oxidation reactions of MeOH to methyl formate, dimethoxymethane, and CO(2). The appropriate choice of reaction temperature and of the oxygen content in the reactant gas mixture was found to be indispensable for reaching high DMC selectivities.

  13. Modeling of an initial stage of bone fracture healing

    NASA Astrophysics Data System (ADS)

    Lu, Yanfei; Lekszycki, Tomasz

    2015-09-01

    In case of the secondary bone fracture healing, four characteristic steps are often distinguished. The first stage, hematoma and clot formation, which is an object of our study, is important because it prepares the environment for the following stages. In this work, a new mathematical model describing basic effects present short after the injury is proposed. The main idea is based on the assumption that blood leaking from the ruptured blood vessels propagates into a poroelastic saturated tissue close to the fracture and mixes with the interstitial liquid present in pores. After certain time period from the first contact with surrounding tissue, the solidification of blood in the fluid mixture starts. This results in clot formation. By assuming the time necessary to initiate solidification and critical saturation of blood in the mixture, the shape and the structure of blood clot could be determined. In numerical example, proposed mathematical formulas were used to study the size of the gap between fractured parts and its effect in blood clot formation.

  14. Structured fluids as microreactors for flavor formation by the Maillard reaction.

    PubMed

    Vauthey, S; Milo, C; Frossard, P; Garti, N; Leser, M E; Watzke, H J

    2000-10-01

    Thermal reactions of cysteine/furfural and cysteine/ribose mixtures were studied in model systems to gain more insight into the influence of structured fluids such as L(2) microemulsions and cubic phases on the generation of aroma compounds. Formation of 2-furfurylthiol from cysteine/furfural was particularly efficient in L(2) microemulsions and cubic phases compared to aqueous systems. The reaction led to the formation of two new sulfur compounds, which were identified as 2-(2-furyl)thiazolidine and, tentatively, N-(2-mercaptovinyl)-2-(2-furyl)thiazolidine. Similarly, generation of 2-furfurylthiol and 2-methyl-3-furanthiol from cysteine/ribose mixtures was strongly enhanced in structured fluids. The cubic phase was shown to be even more efficient in flavor generation than the L(2) microemulsion. It was denoted "cubic catalyst" or "cubic selective microreactor". The obtained results are interpreted in terms of a surface and curvature control of the reactions defined by the structural properties of the formed surfactant associates.

  15. Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: process efficiency, limitations and floating granules formation.

    PubMed

    Pitk, Peep; Palatsi, Jordi; Kaparaju, Prasad; Fernández, Belén; Vilu, Raivo

    2014-08-01

    Lipid and protein rich solid slaughterhouse wastes are attractive co-substrates to increase volumetric biogas production in co-digestion with dairy manure. Addition of decanter sludge (DS), containing 42.2% of lipids and 35.8% of proteins (total solids basis), up to 5% of feed mixture resulted in a stable process without any indication of long chain fatty acids (LCFA) or free ammonia (NH3) inhibition and in 3.5-fold increase of volumetric biogas production. Contrary, only lipids addition as technical fat (TF) at over 2% of feed mixture resulted in formation of floating granules (FG) and process efficiency decrease. Formed FG had low biodegradability and its organic part was composed of lipids and calcium salts of LCFAs. Anaerobic digestion process intentionally directed to FG formation, could be a viable option for mitigation and control of lipids overload and derived LCFA inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Mixture experiment methods in the development and optimization of microemulsion formulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furlanetto, Sandra; Cirri, Marzia; Piepel, Gregory F.

    2011-06-25

    Microemulsion formulations represent an interesting delivery vehicle for lipophilic drugs, allowing for improving their solubility and dissolution properties. This work developed effective microemulsion formulations using glyburide (a very poorly-water-soluble hypoglycaemic agent) as a model drug. First, the area of stable microemulsion (ME) formations was identified using a new approach based on mixture experiment methods. A 13-run mixture design was carried out in an experimental region defined by constraints on three components: aqueous, oil, and surfactant/cosurfactant. The transmittance percentage (at 550 nm) of ME formulations (indicative of their transparency and thus of their stability) was chosen as the response variable. Themore » results obtained using the mixture experiment approach corresponded well with those obtained using the traditional approach based on pseudo-ternary phase diagrams. However, the mixture experiment approach required far less experimental effort than the traditional approach. A subsequent 13-run mixture experiment, in the region of stable MEs, was then performed to identify the optimal formulation (i.e., having the best glyburide dissolution properties). Percent drug dissolved and dissolution efficiency were selected as the responses to be maximized. The ME formulation optimized via the mixture experiment approach consisted of 78% surfactant/cosurfacant (a mixture of Tween 20 and Transcutol, 1:1 v/v), 5% oil (Labrafac Hydro) and 17% aqueous (water). The stable region of MEs was identified using mixture experiment methods for the first time.« less

  17. PLP and GABA trigger GabR-mediated transcription regulation in Bacillus subtilis via external aldimine formation

    DOE PAGES

    Wu, Rui; Sanishvili, Ruslan; Belitsky, Boris R.; ...

    2017-03-27

    Here, the Bacillus subtilis protein regulator of the gabTD operon and its own gene (GabR) is a transcriptional activator that regulates transcription of gamma-aminobutyric acid aminotransferase (GABA-AT; GabT) upon interactions with pyridoxal-5'-phosphate (PLP) and GABA, and thereby promotes the biosynthesis of glutamate from GABA. We show here that the external aldimine formed between PLP and GABA is apparently responsible for triggering the GabR-mediated transcription activation. Details of the "active site" in the structure of the GabR effector-binding/oligomerization (Eb/O) domain suggest that binding a monocarboxylic.-amino acid such as GABA should be preferred over dicarboxylic acid ligands. A reactive GABA analog, (S)-4-amino-5-fluoropentanoicmore » acid (AFPA), was used as a molecular probe to examine the reactivity of PLP in both GabR and a homologous aspartate aminotransferase (Asp-AT) from Escherichia coli as a control. A comparison between the structures of the Eb/O-PLP-AFPA complex and Asp-AT-PLP-AFPA complex revealed that GabR is incapable of facilitating further steps of the transamination reaction after the formation of the external aldimine. Results of in vitro and in vivo assays using full-length GabR support the conclusion that AFPA is an agonistic ligand capable of triggering GabR-mediated transcription activation via formation of an external aldimine with PLP.« less

  18. PLP and GABA trigger GabR-mediated transcription regulation in Bacillus subtilis via external aldimine formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Rui; Sanishvili, Ruslan; Belitsky, Boris R.

    Here, the Bacillus subtilis protein regulator of the gabTD operon and its own gene (GabR) is a transcriptional activator that regulates transcription of gamma-aminobutyric acid aminotransferase (GABA-AT; GabT) upon interactions with pyridoxal-5'-phosphate (PLP) and GABA, and thereby promotes the biosynthesis of glutamate from GABA. We show here that the external aldimine formed between PLP and GABA is apparently responsible for triggering the GabR-mediated transcription activation. Details of the "active site" in the structure of the GabR effector-binding/oligomerization (Eb/O) domain suggest that binding a monocarboxylic.-amino acid such as GABA should be preferred over dicarboxylic acid ligands. A reactive GABA analog, (S)-4-amino-5-fluoropentanoicmore » acid (AFPA), was used as a molecular probe to examine the reactivity of PLP in both GabR and a homologous aspartate aminotransferase (Asp-AT) from Escherichia coli as a control. A comparison between the structures of the Eb/O-PLP-AFPA complex and Asp-AT-PLP-AFPA complex revealed that GabR is incapable of facilitating further steps of the transamination reaction after the formation of the external aldimine. Results of in vitro and in vivo assays using full-length GabR support the conclusion that AFPA is an agonistic ligand capable of triggering GabR-mediated transcription activation via formation of an external aldimine with PLP.« less

  19. The influences of calcia silica contents to the compressive strength of the Al-7000 aluminium foam

    NASA Astrophysics Data System (ADS)

    Sutarno; Soepriyanto, S.; Korda, A. A.; Dirgantara, T.

    2016-08-01

    This experiment evaluated the effect of calcia alumina and alumina silica that formed as side products involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) is desired to improve the viscosity and to strengthen of cell wall of aluminium foam. However, Al-7000 aluminium foam showed a decrease tendency of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture. In this case, the silica that thermally combines with alumina compound may degrade the metal mixture of aluminium foam structure.

  20. The Mathematics of a Successful Deconvolution: A Quantitative Assessment of Mixture-Based Combinatorial Libraries Screened Against Two Formylpeptide Receptors

    PubMed Central

    Santos, Radleigh G.; Appel, Jon R.; Giulianotti, Marc A.; Edwards, Bruce S.; Sklar, Larry A.; Houghten, Richard A.; Pinilla, Clemencia

    2014-01-01

    In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays. PMID:23722730

  1. Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel

    NASA Astrophysics Data System (ADS)

    Levin, V. A.; Zhuravskaya, T. A.

    2017-03-01

    Stabilization of a detonation wave in a stoichiometric hydrogen-air mixture flowing at a supersonic velocity into a plane symmetric channel with constriction has been studied in the framework of a detailed kinetic mechanism of the chemical interaction. Conditions ensuring the formation of a thrust-producing f low with a stabilized detonation wave in the channel are determined. The inf luence of the inf low Mach number, dustiness of the combustible gas mixture supplied to the channel, and output cross-section size on the position of a stabilized detonation wave in the f low has been analyzed with a view to increasing the efficiency of detonation combustion of the gas mixture. It is established that thrust-producing flow with a stabilized detonation wave can be formed in the channel without any energy consumption.

  2. Control of the Development of Swirling Airflow Dynamics and Its Impact on Biomass Combustion Characteristics

    NASA Astrophysics Data System (ADS)

    Barmina, I.; Valdmanis, R.; Zaķe, M.

    2017-06-01

    The development of the swirling flame flow field and gasification/ combustion dynamics at thermo-chemical conversion of biomass pellets has experimentally been studied using a pilot device, which combines a biomass gasifier and combustor by varying the inlet conditions of the fuel-air mixture into the combustor. Experimental modelling of the formation of the cold nonreacting swirling airflow field above the inlet nozzle of the combustor and the upstream flow formation below the inlet nozzle has been carried out to assess the influence of the inlet nozzle diameter, as well primary and secondary air supply rates on the upstream flow formation and air swirl intensity, which is highly responsible for the formation of fuel-air mixture entering the combustor and the development of combustion dynamics downstream of the combustor. The research results demonstrate that at equal primary axial and secondary swirling air supply into the device a decrease in the inlet nozzle diameter enhances the upstream air swirl formation by increasing swirl intensity below the inlet nozzle of the combustor. This leads to the enhanced mixing of the combustible volatiles with the air swirl below the inlet nozzle of the combustor providing a more complete combustion of volatiles and an increase in the heat output of the device.

  3. JPRS Report, Science & Technology, USSR: Life Sciences.

    DTIC Science & Technology

    1988-03-09

    41 (O~isopropyl-s-n- butyl methylthiophosphonate, with lecithin liposSmefand «ÜJ i^ dispersions of a mixture of lecithin and cardiolipm. The...only one aspect was unfavorable, the patient status was classified as unclear. Low-risk patients received anti-shock therapy , surgical treatment of...of risk groups and therapy promote preventive health care. 12172/12223 32 RADIATION BIOLOGY UDC 577.391,577.7 EFFECTS OF LONG-TERM EXTERNAL GAMMA

  4. Effects of external applications of fuel oil on hatchability of mallard eggs

    USGS Publications Warehouse

    Albers, P.H.; Wolfe, Douglas A.

    1977-01-01

    An experiment was performed to determine the toxicity of oil to incubating eggs. Number 2 fuel oil, a mixture of 9 paraffin compounds, and propylene glycol were applied to the surface of artificially incubated mallard (Anas platyrhynchos) eggs. Embryonic mortality was significantly greater (P 0.01) from the control. Thus, the transfer of even small quantities of oil to the egg surface is sufficient to reduce hatchability.

  5. Engine Throat/Nozzle Optics for Plume Spectroscopy

    DTIC Science & Technology

    1991-02-01

    independent of the external plume characteristics so operation can be achieved on diffuser test stands and with the engine exhausting to a variable... combustion chamber operates at 205 atmospheres during 109% power conditions with a mixture ratio of 6:1. The engine is overexpanded at sea level and...LeRC/500-219. 16. Abstract The throat and combustion chamber of an operating rocket engine provide a preferred signal source for optical spectroscopy

  6. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole.

    PubMed

    Dave, Rutesh H; Patel, Hardikkumar H; Donahue, Edward; Patel, Ashwinkumar D

    2013-10-01

    The solubility of drugs remains one of the most challenging aspects of formulation development. There are numerous ways to improve the solubility of drugs amongst which the most promising strategy is solid dispersion. Different ratios of sulfathiazole: PVP-K29/32: sodium lauryl sulfate (SLS) were prepared (1:1:0.1, 1:1:0.5, 1:1:1) and various methods were employed to characterize the prepared solid dispersions, namely modulated differential scanning calorimeter, X-ray powder diffraction, Fourier Transformed Infrared Spectroscopy and dissolution studies. Lack of crystallinity was observed in internal and external systems suggesting a loss of crystallinity, whereas the physical mixtures showed a characteristic peak of sulfathiazole. In vitro dissolution results clearly showed that the incorporation of a relatively small amount of surfactants (5, 20 or 33% w/w) into a solid dispersion can improve its dissolution rates compared to binary solid dispersion (SD) alone and pure sulfathiazole. In all ratios solid dispersion internal shows a higher dissolution rate compared to a physical mixture and solid dispersion external which suggests that the way that the surfactant is incorporated into the solid dispersion plays an important role in changing the solubility of a drug. The solubilization mechanism is mainly responsible for this higher dissolution rate when we incorporate the SLS in SD.

  7. Synthesis, characterization and crystal structure of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata

    2018-03-01

    The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.

  8. A Review of the Internal and External Physiological Demands Associated With Batting in Cricket.

    PubMed

    Scanlan, Aaron T; Berkelmans, Daniel M; Vickery, William M; Kean, Crystal O

    2016-11-01

    Cricket is a popular international team sport with various game formats ranging from long-duration multiday tests to short-duration Twenty20 game play. The role of batsmen is critical to all game formats, with differing physiological demands imposed during each format. Investigation of the physiological demands imposed during cricket batting has historically been neglected, with much of the research focusing on bowling responses and batting technique. A greater understanding of the physiological demands of the batting role in cricket is required to assist strength and conditioning professionals and coaches with the design of training plans, recovery protocols, and player-management strategies. This brief review provides an updated synthesis of the literature examining the internal (eg, metabolic demands and heart rate) and external (eg, activity work rates) physiological responses to batting in the various game formats, as well as simulated play and small-sided-games training. Although few studies have been done in this area, the summary of data provides important insight regarding physiological responses to batting and highlights that more research on this topic is required. Future research is recommended to combine internal and external measures during actual game play, as well as comparing different game formats and playing levels. In addition, understanding the relationship between batting technique and physiological responses is warranted to gain a more holistic understanding of batting in cricket, as well as to develop appropriate coaching and training strategies.

  9. The dynamics of city formation*

    PubMed Central

    Henderson, J. Vernon; Venables, Anthony J.

    2013-01-01

    This paper examines city formation in a country whose urban population is growing steadily over time, with new cities required to accommodate this growth. In contrast to most of the literature there is immobility of housing and urban infrastructure, and investment in these assets is taken on the basis of forward-looking behavior. In the presence of these fixed assets cities form sequentially, without the population swings in existing cities that arise in current models, but with swings in house rents. Equilibrium city size, absent government, may be larger or smaller than is efficient, depending on how urban externalities vary with population. Efficient formation of cities with internalization of externalities involves local government intervention and borrowing to finance development. The paper explores the institutions required for successful local government intervention. PMID:25089087

  10. Modelling in conventional electroporation for model cell with organelles using COMSOL Multiphysics

    NASA Astrophysics Data System (ADS)

    Sulaeman, M. Y.; Widita, R.

    2016-03-01

    Conventional electroporation is a formation of pores in the membrane cell due to the external electric field applied to the cell. The purpose of creating pores in the cell using conventional electroporation are to increase the effectiveness of chemotherapy (electrochemotherapy) and to kill cancer tissue using irreversible electroporation. Modeling of electroporation phenomenon on a model cell had been done by using software COMSOL Multiphysics 4.3b with the applied external electric field with intensity at 1.1 kV/cm to find transmembrane voltage and pore density. It can be concluded from the results of potential distribution and transmembrane voltage, it show that pores formation only occurs in the membrane cells and it could not penetrate into inside the model cell so there is not pores formation in its organells.

  11. Improvement of wine aromatic quality using mixtures of lysozyme and dimethyl dicarbonate, with low SO2 concentration.

    PubMed

    Nieto-Rojo, Rodrigo; Luquin, Asuncion; Ancín-Azpilicueta, Carmen

    2015-01-01

    The use of sulphur dioxide (SO2) in the treatment of foodstuffs presents some problems as it could lead to pseudo-allergies in some people. The aim of this research work was to study the addition of different preservative mixtures and their influence on the concentration of volatile compounds and sensorial quality in wine. To do so, vinifications were carried out using Garnacha must to which lysozyme, dimethyl dicarbonate (DMDC) and mixtures of these with SO2 were added at different doses (25 and 50 mg l(-1)). The results were compared with a control sample to which only SO2 had been added (50 mg l(-1)). In general, mixtures of SO2 with lysozyme and DMDC favoured the formation of volatile compounds in the wines. Wines obtained from the mixtures of lysozyme and DMDC with 25 mg l(-1) of SO2 had better sensorial quality than the wines obtained with 50 mg l(-1) as the only preservative used.

  12. Characterization of airborne particles generated from metal active gas welding process.

    PubMed

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

  13. Phenolics from Garcinia mangostana Inhibit Advanced Glycation Endproducts Formation: Effect on Amadori Products, Cross-Linked Structures and Protein Thiols.

    PubMed

    Abdallah, Hossam M; El-Bassossy, Hany; Mohamed, Gamal A; El-Halawany, Ali M; Alshali, Khalid Z; Banjar, Zainy M

    2016-02-22

    Accumulation of Advanced Glycation Endproducts (AGEs) in body tissues plays a major role in the development of diabetic complications. Here, the inhibitory effect of bioactive metabolites isolated from fruit hulls of Garcinia mangostana on AGE formation was investigated through bio-guided approach using aminoguanidine (AG) as a positive control. Including G. mangostana total methanol extract (GMT) in the reaction mixture of bovine serum albumin (BSA) and glucose or ribose inhibited the fluorescent and non-fluorescent AGEs formation in a dose dependent manner. The bioassay guided fractionation of GMT revealed isolation of four bioactive constituents from the bioactive fraction; which were identified as: garcimangosone D (1), aromadendrin-8-C-glucopyranoside (2), epicatechin (3), and 2,3',4,5',6-pentahydroxybenzophenone (4). All the tested compounds significantly inhibited fluorescent and non-fluorescent AGEs formation in a dose dependent manner whereas compound 3 (epicatechin) was found to be the most potent. In search for the level of action, addition of GMT, and compounds 2-4 inhibited fructosamine (Amadori product) and protein aggregation formation in both glucose and ribose. To explore the mechanism of action, it was found that addition of GMT and only compound (3) to reaction mixture increased protein thiol in both glucose and ribose while compounds 1, 2 and 4 only increased thiol in case of ribose. In conclusion, phenolic compounds 1-4 inhibited AGEs formation at the levels of Amadori product and protein aggregation formation through saving protein thiol.

  14. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOEpatents

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  15. High-Density Renewable Fuels Based on the Selective Dimerization of Pinenes

    DTIC Science & Technology

    2009-01-01

    spectrometry (GC/MS), revealing that the principal reaction was isomerization to a mixture of camphene, limonene , and R-pinene, with some β-pinene...ratio of R-pinene/ camphene/β-pinene/ limonene was roughly 3:5:2:4. Heating the mixture to the reflux temperature of heptane led to a vigorous...important product is p-cymene, which is derived from limonene . Pre- vious studies suggest that the mechanism for formation of p-cymene proceeds

  16. Mechanism of Phase Formation in the Batch Mixtures for Slag-Bearing Glass Ceramics - 12207

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanovsky, Sergey V.; Stefanovsky, Olga I.; Malinina, Galina A.

    2012-07-01

    Slag surrogate was produced from chemicals by heating to 900 deg. C and keeping at this temperature for 1 hr. The product obtained was intermixed with either sodium di-silicate (75 wt.% waste loading) or borax (85 wt.% slag loading). The mixtures were heat-treated within a temperature range of 25 to 1300 deg. C. The products were examined by X-ray diffraction and infrared spectroscopy. The products prepared at temperatures of up to 1000 deg. C contained both phase typical of the source slag and intermediate phases as well as phases typical of the materials melted at 1350 deg. C such asmore » nepheline, britholite, magnetite and matrix vitreous phase. Vitrification process in batch mixtures consisting of slag surrogate and either sodium di-silicate or sodium tetraborate runs through formation of intermediate phases mainly silico-phosphates capable to incorporate Sm as trivalent actinides surrogate. Reactions in the batch mixtures are in the whole completed by ∼1000 deg. C but higher temperatures are required to homogenize the products. If in the borate-based system the mechanism is close to simple dissolution of slag constituents in the low viscous borate melt, then in the silicate-based system the mechanism was found to be much complicated and includes re-crystallization during melting with segregation of newly-formed nepheline type phase. (authors)« less

  17. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins.

    PubMed

    Leitner, Verena M; Walker, Greg F; Bernkop-Schnürch, Andreas

    2003-09-01

    Disulphide bonds between thiolated polymers (thiomers) and cysteine-rich subdomains of mucus glycoproteins are supposed to be responsible for the enhanced mucoadhesive properties of thiomers. This study set out to provide evidence for these covalent interactions using poly(acrylic acid)-cysteine conjugates of 2 and 450 kDa (PAA2-Cys, PAA450-Cys) displaying 402.5-776.0 micromol thiol groups per gram polymer. The effect of the disulphide bond breaker cysteine on thiomer-mucin disulphide bonds was monitored by (1) mucoadhesion studies and (2) rheological studies. Furthermore, (3) diffusion studies and (4) gel filtration studies were performed with thiomer-mucus mixtures. The addition of cysteine significantly (P<0.01) reduced the adhesion of thiomer tablets to porcine mucosa and G'/G" values of thiomer-mucin mixtures, whereas unthiolated controls were not influenced. These results indicate the cleavage of disulphide bonds between thiomer and mucus glycoproteins. Diffusion studies demonstrated that a 12.8-fold higher concentration of the thiomer (PAA2-Cys) remains in the mucin gel than the corresponding unmodified polymer. Gel filtration studies showed that PAA2-Cys was able to form disulphide bonds with mucin glycoproteins resulting in an altered elution profile of the mucin/PAA2-Cys mixture in comparison to mucin alone or mucin/PAA2 mixture. According to these results, the study provides evidence for the formation of covalent bonds between thiomer and mucus glycoproteins.

  18. Protective effect of mannitol, glucose-fructose-sucrose-maltose mixture, and natural honey hyperosmolar solutions against ethanol-induced gastric mucosal damage in rats.

    PubMed

    Gharzouli, K; Gharzouli, A; Amira, S; Khennouf, S

    2001-06-01

    We have previously shown that natural honey is able to protect the rat stomach against acute ethanol- and indomethacin-induced lesions. The present investigations were undertaken to examine the role of intraluminal osmolality in this protective effect. Mannitol, glucose-fructose-sucrose-maltose mixture (GFSM) and natural honey (300, 600, 1800 mOsmol/kg water) were given orally to rats 30 min before administration of 70% ethanol for a further 15-min period. Lesions area of the excised stomachs were evaluated. Pylorus-ligated stomachs were filled with mannitol, GFSM mixture and honey (1800 mOsmol/kg water) to test the effect of the hyperosmolar solutions on gastric fluid content and acid secretion. The rate of gastric emptying of the three test solutions (1800 mOsmol/kg) was measured by the phenol red method. Intragastric administration of mannitol, GFSM mixture or honey prevented the formation of mucosal lesions in an osmolality-dependent manner. Using the pylorus-ligated stomach model, the test solutions led to a net increase of luminal fluid volume without affecting acid content. Hyperosmolar solutions presented a delayed gastric emptying if compared to a nonnutrient solution made of carboxymethyl cellulose. The observed results suggest that hyperosmolar solutions can prevent the formation of hemorrhagic lesions by luminal dilution of the necrotising agent and acid, an effect which may be potentiated by a lowered gastric emptying rate.

  19. Apparatus for diffusion-gap thermal desalination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowenstein, Andrew

    A thermal distillation apparatus including evaporation surfaces that are wetted with a solution, and from which at least some of the volatile solvent contained in the solution evaporates, condensers having an external surface in close proximity to, but not touching, a corresponding one of the one or more evaporation surfaces, and on which vapors of the solvent condense, releasing thermal energy that heats a flow of the solution moving upward within the condensers, spacers that prevent contact between the evaporating surfaces and the condensers, wherein spaces between the evaporating surfaces and the condensers are filled with a gaseous mixture composedmore » of solvent vapor and one or more non-condensable gases, and except for diffusion of the solvent vapor relative to the non-condensable gases, the gaseous mixture is stationary.« less

  20. Rheological behavior of magnetic powder mixtures for magnetic PIM

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hun; Kim, See Jo; Park, Seong Jin; Mun, Jun Ho; Kang, Tae Gon; Park, Jang Min

    2012-06-01

    Powder injection molding (PIM) is a promising manufacturing technology for the net-shape production of small, complex, and precise metal or ceramic components. In order to manufacture high quality magnets using PIM, the magneto-rheological (MR) properties of the PIM feedstock, i.e. magnetic powder-binder mixture, should be investigated experimentally and theoretically. The current research aims at comprehensive understanding of the rheological characteristics of the PIM feedstock. The feedstock used in the experiment consists of strontium ferrite powder and paraffin wax. Steady and oscillatory shear tests have been carried out using a plate-and-plate rheometer, under the influence of a uniform magnetic field applied externally. Rheological properties of the PIM feedstock have been measured and characterized for various conditions by changing the temperature, the powder fraction and the magnetic flux density.

  1. Spectroscopic Case-Based Studies in a Flipped Quantum Mechanics Course

    NASA Astrophysics Data System (ADS)

    Shipman, Steven

    2015-06-01

    Students in a flipped Quantum Mechanics course were expected to apply their knowledge of spectroscopy to a variety of case studies involving complex mixtures of chemicals. They used simulated data, prepared in advance by the instructor, to determine the major chemical constituents of complex mixtures. Students were required to request the appropriate data in order to ultimately make plausible guesses about the composition of the mixtures, allowing them ownership over the discovery process. This talk will describe how these activities worked in practice, give caveats for instructors who wish to adopt them in the future, and discuss how the results of these exercises can be used for both formative and summative assessment.

  2. Reactive atomistic simulations of shock-induced initiation processes in mixtures of ammonium nitrate and fuel oil

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan P.; Shan, Tzu-Ray

    2014-05-01

    Ammonium nitrate mixed with fuel oil (ANFO) is a commonly used blasting agent. In this paper we investigated the shock properties of pure ammonium nitrate (AN) and two different mixtures of ammonium nitrate and n-dodecane by characterizing their Hugoniot states. We simulated shock compression of pure AN and ANFO mixtures using the Multi-scale Shock Technique, and observed differences in chemical reaction. We also performed a large-scale explicit sub-threshold shock of AN crystal with a 10 nm void filled with 4.4 wt% of n-dodecane. We observed the formation of hotspots and enhanced reactivity at the interface region between AN and n-dodecane molecules.

  3. Single-Particle Properties of a Strongly Interacting Bose-Fermi Mixture Above the BEC Phase Transition Temperature

    NASA Astrophysics Data System (ADS)

    Kharga, D.; Inotani, D.; Hanai, R.; Ohashi, Y.

    2017-06-01

    We theoretically investigate the normal state properties of a Bose-Fermi mixture with a strong attractive interaction between Fermi and Bose atoms. We extend the ordinary T-matrix approximation (TMA) with respect to Bose-Fermi pairing fluctuations, to include the Hugenholtz-Pines' relation for all Bose Green's functions appearing in TMA self-energy diagrams. This extension is shown to be essentially important to correctly describe the physical properties of the Bose-Fermi mixture, especially near the Bose-Einstein condensation instability. Using this improved TMA, we clarify how the formation of composite fermions affects Bose and Fermi single-particle excitation spectra, over the entire interaction strength.

  4. Thermal reaction of sonochemically prepared amorphous Fe/C

    NASA Astrophysics Data System (ADS)

    Miyatani, R.; Kobayashi, Y.; Yamada, Y.

    2017-11-01

    An amorphous iron/carbon mixture was prepared by sonolysis of ferrocene in diphenylmethane. Heating of the amorphous mixture at 900 or 1200 °C produced nanoparticles, which were then analyzed using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. The nanoparticles obtained after heating were spherical with diameters of about 50 nm. The sample obtained after heating at 900 °C consisted of α-Fe and Fe 3C, whereas the sample obtained after heating at 1200 °C consisted of α-Fe and γ-Fe. The reaction of the mixture during the heating process was accompanied by the formation of carbon nanotubes catalyzed by the iron or iron carbide nanoparticles.

  5. Electrostatic separation for recycling waste printed circuit board: a study on external factor and a robust design for optimization.

    PubMed

    Hou, Shibing; Wu, Jiang; Qin, Yufei; Xu, Zhenming

    2010-07-01

    Electrostatic separation is an effective and environmentally friendly method for recycling waste printed circuit board (PCB) by several kinds of electrostatic separators. However, some notable problems have been detected in its applications and cannot be efficiently resolved by optimizing the separation process. Instead of the separator itself, these problems are mainly caused by some external factors such as the nonconductive powder (NP) and the superficial moisture of feeding granule mixture. These problems finally lead to an inefficient separation. In the present research, the impacts of these external factors were investigated and a robust design was built to optimize the process and to weaken the adverse impact. A most robust parameter setting (25 kv, 80 rpm) was concluded from the experimental design. In addition, some theoretical methods, including cyclone separation, were presented to eliminate these problems substantially. This will contribute to efficient electrostatic separation of waste PCB and make remarkable progress for industrial applications.

  6. Pond Hockey on Whitmore Lacus: the Formation of Ponds and Ethane Ice Deposits Following Storm Events on Titan

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Soderblom, Jason M.

    2017-10-01

    Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains. Eventually, this residual liquid evaporates away, exposing the submerged ethane ice, which Cassini VIMS and ISS would observe as a dramatic brightening of the surface, consistent with observations.

  7. Critical aggregates concentration of fatty esters present in biodiesel determined by turbidity and fluorescence.

    PubMed

    Froehner, Sandro; Sánez, Juan; Dombroski, Luiz Fernando; Gracioto, Maria Paula

    2017-09-01

    Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SO x , mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be responsible for speed degradation of compounds by accommodation of them in inner part of aggregates.

  8. Shear viscosity for a heated granular binary mixture at low density.

    PubMed

    Montanero, José María; Garzó, Vicente

    2003-02-01

    The shear viscosity for a heated granular binary mixture of smooth hard spheres at low density is analyzed. The mixture is heated by the action of an external driving force (Gaussian thermostat) that exactly compensates for cooling effects associated with the dissipation of collisions. The study is made from the Boltzmann kinetic theory, which is solved by using two complementary approaches. First, a normal solution of the Boltzmann equation via the Chapman-Enskog method is obtained up to first order in the spatial gradients. The mass, heat, and momentum fluxes are determined and the corresponding transport coefficients identified. As in the free cooling case [V. Garzó and J. W. Dufty, Phys. Fluids 14, 1476 (2002)], practical evaluation requires a Sonine polynomial approximation, and here it is mainly illustrated in the case of the shear viscosity. Second, to check the accuracy of the Chapman-Enskog results, the Boltzmann equation is numerically solved by means of the direct simulation Monte Carlo method. The simulation is performed for a system under uniform shear flow, using the Gaussian thermostat to control inelastic cooling. The comparison shows an excellent agreement between theory and simulation over a wide range of values of the restitution coefficients and the parameters of the mixture (masses, concentrations, and sizes).

  9. Evaluating the similarity of complex drinking-water disinfection by-product mixtures: overview of the issues.

    PubMed

    Rice, Glenn E; Teuschler, Linda K; Bull, Richard J; Simmons, Jane E; Feder, Paul I

    2009-01-01

    Humans are exposed daily to complex mixtures of environmental chemical contaminants, which arise as releases from sources such as engineering procedures, degradation processes, and emissions from mobile or stationary sources. When dose-response data are available for the actual environmental mixture to which individuals are exposed (i.e., the mixture of concern), these data provide the best information for dose-response assessment of the mixture. When suitable data on the mixture itself are not available, surrogate data might be used from a sufficiently similar mixture or a group of similar mixtures. Consequently, the determination of whether the mixture of concern is "sufficiently similar" to a tested mixture or a group of tested mixtures is central to the use of whole mixture methods. This article provides an overview for a series of companion articles whose purpose is to develop a set of biostatistical, chemical, and toxicological criteria and approaches for evaluating the similarity of drinking-water disinfection by-product (DBPs) complex mixtures. Together, the five articles in this series serve as a case study whose techniques will be relevant to assessing similarity for other classes of complex mixtures of environmental chemicals. Schenck et al. (2009) describe the chemistry and mutagenicity of a set of DBP mixtures concentrated from five different drinking-water treatment plants. Bull et al. (2009a, 2009b) describe how the variables that impact the formation of DBP affect the chemical composition and, subsequently, the expected toxicity of the mixture. Feder et al. (2009a, 2009b) evaluate the similarity of DBP mixture concentrates by applying two biostatistical approaches, principal components analysis, and a nonparametric "bootstrap" analysis. Important factors for determining sufficient similarity of DBP mixtures found in this research include disinfectant used; source water characteristics, including the concentrations of bromide and total organic carbon; concentrations and proportions of individual DBPs with known toxicity data on the same endpoint; magnitude of the unidentified fraction of total organic halides; similar toxicity outcomes for whole mixture testing (e.g., mutagenicity); and summary chemical measures such as total trihalomethanes, total haloacetic acids, total haloacetonitriles, and the levels of bromide incorporation in the DBP classes.

  10. Effects of Complex System Structure and External Field in Opinion Formation

    NASA Astrophysics Data System (ADS)

    Guo, Long; Cai, Xu

    Around us, the society structure and external field, such as government policy, the newspaper, the internet and other mass media, play a special role in shaping the attitudes, beliefs and public opinion. For studying the role of the society structure and the external field, we propose a new opinion model based on the former models. With computer simulations of opinion dynamics, we find that the smaller the clustering coefficient and the society size, the easier the consensus phase is reached and other interesting results.

  11. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures.

    PubMed

    Liu, Shurong; Berns, Anne E; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH 2 OH) to nitrous oxide (N 2 O) is a possible mechanism of N 2 O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO 2 ) and organic matter (OM) content of soil as well as soil pH are important control variables of N 2 O formation in the soil. But until now, their combined effect on abiotic N 2 O formation from NH 2 OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO 2 and OM, respectively, and quantified the interactive effects of the three variables on the NH 2 OH-to-N 2 O conversion ratio (R NH2OH-to-N2O ). Furthermore, the effect of OM quality on R NH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO 2 and OM on R NH2OH-to-N2O . In general, increasing MnO 2 and decreasing pH increased R NH2OH-to-N2O , while increasing OM content was associated with a decrease in R NH2OH-to-N2O . Organic matter quality also affected R NH2OH-to-N2O . However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  12. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Shurong; Berns, Anne E.; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH2OH) to nitrous oxide (N2O) is a possible mechanism of N2O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO2) and organic matter (OM) content of soil as well as soil pH are important control variables of N2O formation in the soil. But until now, their combined effect on abiotic N2O formation from NH2OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO2 and OM, respectively, and quantified the interactive effects of the three variables on the NH2OH-to-N2O conversion ratio (RNH2OH-to-N2O). Furthermore, the effect of OM quality on RNH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO2 and OM on RNH2OH-to-N2O. In general, increasing MnO2 and decreasing pH increased RNH2OH-to-N2O, while increasing OM content was associated with a decrease in RNH2OH-to-N2O. Organic matter quality also affected RNH2OH-to-N2O. However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  13. External Genital Development, Urethra Formation, and Hypospadias Induction in Guinea Pig: A Double Zipper Model for Human Urethral Development.

    PubMed

    Wang, Shanshan; Shi, Mingxin; Zhu, Dongqing; Mathews, Ranjiv; Zheng, Zhengui

    2018-03-01

    To determine whether the guinea pig phallus would be an appropriate model of human penile development, we characterized the embryology and sexual differentiation of guinea pig external genitalia and attended to induce hypospadias in males and tubular urethra formation in females pharmacologically. The external genitalia of guinea pig were collected from genital swelling initiation to newborn stages, and scanning electronic microscopy and histology were performed to visualize the morphology and structure. Immunohistochemistry was used to determine the androgen receptor localization. Bicalutamide and methyltestosterone were given to pregnant dams to reveal the role and timing of androgen in guinea pig penile masculinization. Canalization and dorsal-to-ventral movement of the urethral canal develops the urethral groove in both sexes, and then the males perform distal-opening-proximal-closing to form tubular urethra. More nuclear-localized androgen receptor is found in proximal genital tubercles of males than in females at (E) 29. Antiandrogen treatment at E26-E30 can cause hypospadias, and methyltestosterone administration at E27-E31 can induce tubular urethra formation in females. Fetal development of the guinea pig phallus is homologous to that of humans. Although guinea pig has structures similar to mouse, the urethral groove and the tubular urethra formation are more similar to humans. Antiandrogen treatment causes hypospadias in males and additional androgen induces tubular urethra formation in females. Thus, guinea pig is an appropriate model for further study of cellular and molecular mechanisms involved in distal-opening-proximal-closing in tubular urethra formation and the evaluation of the pathophysiological processes of hypospadias. Published by Elsevier Inc.

  14. Patients' health beliefs and coping prior to autologous peripheral stem cell transplantation.

    PubMed

    Frick, E; Fegg, M J; Tyroller, M; Fischer, N; Bumeder, I

    2007-03-01

    The aim of this study was to determine the associations between health locus of control (LoC), causal attributions and coping in tumour patients prior to autologous peripheral blood stem cell transplantation. Patients completed the Questionnaire of Health Related Control Expectancies, the Questionnaire of Personal Illness Causes (QPIC), and the Freiburg Questionnaire of Coping with Illness. A total of 126 patients (45% women; 54% suffering from a multiple myeloma, 29% from non-Hodgkin lymphomas, and 17% from other malignancies) participated in the study. Cluster analysis yielded four LoC clusters: 'fatalistic external', 'powerful others', 'yeah-sayer' and 'double external'. Self-blaming QPIC items were positively correlated with depressive coping, and 'fate or destiny' attributions with religious coping (P<0.001). The highest scores were found for 'active coping' in the LoC clusters 'powerful others' and 'yeah-sayer'. External LoC and an active coping style prevail before undergoing autologous peripheral blood stem cell transplantation, whereas the depressive coping is less frequent, associated with self-blaming causal attributions. Health beliefs include causal and control attributions, which can improve or impair the patient's adjustment. A mixture between internal and external attributions seems to be most adaptive.

  15. Evaluation of the efficiency of continuous wavelet transform as processing and preprocessing algorithm for resolution of overlapped signals in univariate and multivariate regression analyses; an application to ternary and quaternary mixtures

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-07-01

    Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.

  16. Preparation of polydopamine nanocapsules in a miscible tetrahydrofuran-buffer mixture.

    PubMed

    Ni, Yun-Zhou; Jiang, Wen-Feng; Tong, Gang-Sheng; Chen, Jian-Xin; Wang, Jie; Li, Hui-Mei; Yu, Chun-Yang; Huang, Xiao-hua; Zhou, Yong-Feng

    2015-01-21

    A miscible tetrahydrofuran-tris buffer mixture has been used to fabricate polydopamine hollow capsules with a size of 200 nm and with a shell thickness of 40 nm. An unusual non-emulsion soft template mechanism has been disclosed to explain the formation of capsules. The results indicate that the capsule structure is highly dependent on the volume fraction of tetrahydrofuran as well as the solvent, and the shell thickness of capsules can be controlled by adjusting the reaction time and dopamine concentration.

  17. Genotoxic effects induced by the exposure to an environmental mixture of illicit drugs to the zebra mussel.

    PubMed

    Parolini, Marco; Magni, Stefano; Castiglioni, Sara; Binelli, Andrea

    2016-10-01

    Despite the growing interest on the presence of illicit drugs in freshwater ecosystems, just recently the attention has been focused on their potential toxicity towards non-target aquatic species. However, these studies largely neglected the effects induced by exposure to complex mixtures of illicit drugs, which could be different compared to those caused by single psychoactive molecules. This study was aimed at investigating the genetic damage induced by a 14-day exposure to a realistic mixture of the most common illicit drugs found in surface waters worldwide (cocaine, benzoylecgonine, amphetamine, morphine and 3,4-methylenedioxymethamphetamine) on the zebra mussel (Dreissena polymorpha). The mixture caused a significant increase of DNA fragmentation and triggered the apoptotic process and micronuclei formation in zebra mussel hemocytes, pointing out its potential genotoxicity towards this bivalve species. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Milling assisted synthesis of calcium zirconate СаZrО3

    NASA Astrophysics Data System (ADS)

    Kalinkin, A. M.; Nevedomskii, V. N.; Kalinkina, E. V.; Balyakin, K. V.

    2014-08-01

    Monophase calcium zirconate (CaZrO3) has been prepared from the equimolar ZrO2 + CaCO3 mixture by two-step synthesis process. In the first step, mechanical treatment of the mixture is performed in an AGO-2 planetary ball mill. In the second step, the milled mixture is annealed to form calcium zirconate. High-energy ball milling of the (ZrO2+CaCO3) mixture results in decrease in the temperature of CaZrO3 formation during annealing at 950 °C. The enhancement of CaZrO3 synthesis is due to accumulation of excess energy by the reagents, decreasing the particle size and notable increase in the interphase area because of “smearing” of CaCO3 on ZrO2 particles during milling. Nanocrystalline calcium zirconate has been produced by controlling the annealing temperature and time.

  19. Analysis of Turbulent Combustion in Simplified Stratified Charge Conditions

    NASA Astrophysics Data System (ADS)

    Moriyoshi, Yasuo; Morikawa, Hideaki; Komatsu, Eiji

    The stratified charge combustion system has been widely studied due to the significant potentials for low fuel consumption rate and low exhaust gas emissions. The fuel-air mixture formation process in a direct-injection stratified charge engine is influenced by various parameters, such as atomization, evaporation, and in-cylinder gas motion at high temperature and high pressure conditions. It is difficult to observe the in-cylinder phenomena in such conditions and also challenging to analyze the following stratified charge combustion. Therefore, the combustion phenomena in simplified stratified charge conditions aiming to analyze the fundamental stratified charge combustion are examined. That is, an experimental apparatus which can control the mixture distribution and the gas motion at ignition timing was developed, and the effects of turbulence intensity, mixture concentration distribution, and mixture composition on stratified charge combustion were examined. As a result, the effects of fuel, charge stratification, and turbulence on combustion characteristics were clarified.

  20. [Deceleration of cataract development in rats under the action of N-acetylcarnosine and D-pantethine mixture].

    PubMed

    Avetisov, S É; Sheremet, N L; Muranov, K O; Polianskiĭ, N B; Polunin, G S; Ostrovskiĭ, M A

    2014-01-01

    The effect of a mixture of N-acetylcarnosine and D-pantethine (1 : 1, m/m) on UV-A induced cataract in rats was studied. It is shown that instillation of a 5% mixture into the eyes or intraperitoneal injections (25 or 150 mg/kg) inhibit the formation of cataracts, starting from 82nd day of the experiment (p < 0.03), after which the protective effect of the mixture significantly increases (p = 0.0003). UV-A irradiation significantly (p < 0.01) increased the content of water-insoluble proteins in the lens. The use of the mixture of N-Acetylcarnosine and D-pantethine prevented (p < 0.001) an increase in the content of water-insoluble proteins caused by UV-A irradiation. Gel permeation chromatography data showed that, in the control group, water insoluble proteins consist of 3 fractions (40 kDa, 100 - 200 kDa, and1000 kDa). UV-A irradiation reduced the amount of protein in fraction 1 and increases the amount of protein in the fractions 2 and 3. The use of the mixture of N-acetylcarnosine and D-pantethine reduced the effects of UV-A light. The authors attribute the effect of the N-acetylcarnosine and D-pantethine mixture to their chaperone-like properties.

  1. Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris

    Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less

  2. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    DOE PAGES

    Koziol, Lucas; Goldman, Nir

    2015-04-21

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extendedmore » structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.« less

  3. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koziol, Lucas; Goldman, Nir

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extendedmore » structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.« less

  4. Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors

    DOE PAGES

    Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris; ...

    2018-04-19

    Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less

  5. Quantitative isotopic measurements of gas-phase alcohol mixtures using a broadly tunable swept external cavity quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumfield, B. E.; Phillips, M. C.

    A swept-ECQCL is used for broadband IR spectroscopy of isotopic mixtures of CH3OH, CH3OD, CH3CH2OH, and CH3CH2OD in a static gas cell over a wavelength range of 9.5 to 10.4 µm. A weighted least squares fitting approach with quantitative library spectra illustrates that significant spectral congestion does not negatively impact the ability for in situ quantification of large isotopic species in a mixture. The noise equivalent concentrations for CH3OH, CH3OD, CH3CH2OH, and CH3CH2OD are 19 ppbv x m, 28 ppbv x m, 450 ppbv x m, and 330 ppbv x m respectively for a 50 second integration time. Based onmore » the observed NECs, isotopic precisions of 0.07‰ and 0.79‰ for a 50 s integration time are calculated for measurements of the [MeOD]/[MeOH] and [EtOD]/[EtOH] isotope ratios , respectively, for the species concentrations in the gas cell.« less

  6. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    PubMed

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.

  7. Mixture experiment methods in the development and optimization of microemulsion formulations.

    PubMed

    Furlanetto, S; Cirri, M; Piepel, G; Mennini, N; Mura, P

    2011-06-25

    Microemulsion formulations represent an interesting delivery vehicle for lipophilic drugs, allowing for improving their solubility and dissolution properties. This work developed effective microemulsion formulations using glyburide (a very poorly-water-soluble hypoglycaemic agent) as a model drug. First, the area of stable microemulsion (ME) formations was identified using a new approach based on mixture experiment methods. A 13-run mixture design was carried out in an experimental region defined by constraints on three components: aqueous, oil and surfactant/cosurfactant. The transmittance percentage (at 550 nm) of ME formulations (indicative of their transparency and thus of their stability) was chosen as the response variable. The results obtained using the mixture experiment approach corresponded well with those obtained using the traditional approach based on pseudo-ternary phase diagrams. However, the mixture experiment approach required far less experimental effort than the traditional approach. A subsequent 13-run mixture experiment, in the region of stable MEs, was then performed to identify the optimal formulation (i.e., having the best glyburide dissolution properties). Percent drug dissolved and dissolution efficiency were selected as the responses to be maximized. The ME formulation optimized via the mixture experiment approach consisted of 78% surfactant/cosurfacant (a mixture of Tween 20 and Transcutol, 1:1, v/v), 5% oil (Labrafac Hydro) and 17% aqueous phase (water). The stable region of MEs was identified using mixture experiment methods for the first time. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Process And Apparatus To Accomplish Autothermal Or Steam Reforming Via A Reciprocating Compression Device

    DOEpatents

    Lyons, K. David; James, Robert; Berry, David A.; Gardner, Todd

    2004-09-21

    The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.

  9. Oligopeptides and copeptides of homochiral sequence, via beta-sheets, from mixtures of racemic alpha-amino acids, in a one-pot reaction in water; relevance to biochirogenesis.

    PubMed

    Illos, Roni A; Bisogno, Fabricio R; Clodic, Gilles; Bolbach, Gerard; Weissbuch, Isabelle; Lahav, Meir

    2008-07-09

    As part of our studies on the biochirogenesis of peptides of homochiral sequence during early evolution, the formation of oligopeptides composed of 14-24 residues of the same handedness in the polymerization of dl-leucine (Leu), dl-phenylalanine (Phe), and dl-valine (Val) in aqueous solutions, by activation with N, N'-carbonyldiimidazole and then initiation with a primary amine, in a one-pot reaction, was demonstrated by MALDI-TOF MS using deuterium enantio-labeled alpha-amino acids. The formation of long isotactic peptides is rationalized by the following steps occurring in tandem: (i) creation of a library of short diasteroisomeric oligopeptides containing isotactic peptides in excess in comparison to a binomial kinetics, as a result of an asymmetric induction exerted by the N-terminal residue of a given handedness; (ii) precipitation of the less soluble racemic isotactic penta- and hexapeptides in the form of beta-sheets that are delineated by homochiral rims; (iii) regio-enantiospecific chain elongation occurring heterogeneously at the beta-sheets/solution interface. Polymerization of l-Leu with l-isoleucine (Ile) or l-Phe with l- (1) N-Me-histidine yielded mixtures of copeptides containing both residues. In contrast, in the polymerization of the corresponding mixtures of l- + d-alpha-amino acids, the long oligopeptides were composed mainly from oligo- l-Leu and oligo- d-Ile in the first system and oligo- d-Phe in the second. Furthermore, in the polymerization of mixtures of hydrophobic racemic alpha-amino acids dl-Leu, dl-Val, and dl-Phe and with added racemic dl-alanine and dl-tyrosine, copeptides of homochiral sequences are most dominantly represented. Possible routes for a spontaneous "mirror-symmetry breaking" process of the racemic mixtures of homochiral peptides are presented.

  10. [Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3D bio-printing].

    PubMed

    Song, Yang; Wang, Xiao-fei; Wang, Yu-guang; Sun, Yu-chun; Lv, Pei-jun

    2016-02-18

    To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily. P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1 × 10(6)/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells'survival rate was detected by live- dead cell double fluorescence staining. Next, the printing body was osteogenically induced for 1 week to gain the experimental group; and the sodium alginate-gelatin mixture without cells was also printed to gain the control group. Both the experimental group and the control group were implanted into the back of the nude mice. After 6 weeks of implantation, the samples were collected, HE staining, Masson staining, immunohistochemical staining and Inveon Micro CT test were preformed to analyze their osteogenic capability. The cells'survival rate was 89%± 2% after printing. Six weeks after implantation, the samples of the control group were mostly degraded, whose shape was irregular and gel-like; the samples of the experimental group kept their original size and their texture was tough. HE staining and Masson staining showed that the bone-like tissue and vessel in-growth could be observed in the experimental group 6 weeks after implantation, immunohistochemical staining showed that the result of osteocalcin was positive, and Micro CT results showed that samples of the experimental group had a higher density and the new bone volume was 18% ± 1%. hASCs -biomaterial mixture 3D bio-printing body has capability of ectopic bone formation in nude mice, and it is feasible to apply cells-biomaterial mixture 3D bio-printing technology in the area of bone formation in vivo.

  11. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developedmore » and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.« less

  12. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    USGS Publications Warehouse

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  13. C-terminal N-alkylated peptide amides resulting from the linker decomposition of the Rink amide resin: a new cleavage mixture prevents their formation.

    PubMed

    Stathopoulos, Panagiotis; Papas, Serafim; Tsikaris, Vassilios

    2006-03-01

    Decomposition of the resin linkers during TFA cleavage of the peptides in the Fmoc strategy leads to alkylation of sensitive amino acids. The C-terminal amide alkylation, reported for the first time, is shown to be a major problem in peptide amides synthesized on the Rink amide resin. This side reaction occurs as a result of the Rink amide linker decomposition under TFA treatment of the peptide resin. The use of 1,3-dimethoxybenzene in a cleavage cocktail prevents almost quantitatively formation of C-terminal N-alkylated peptide amides. Oxidized by-product in the tested Cys- and Met-containing peptides were not observed, even if thiols were not used in the cleavage mixture. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.

  14. Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.

    PubMed

    Noguchi, Hiroshi

    2013-01-14

    Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.

  15. Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes.

    PubMed

    Bennett, W F Drew; Shea, Joan-Emma; Tieleman, D Peter

    2018-06-05

    Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Chemistry and Mechanism of Interaction Between Molybdenite Concentrate and Sodium Chloride When Heated in the Presence of Oxygen

    NASA Astrophysics Data System (ADS)

    Aleksandrov, P. V.; Medvedev, A. S.; Imideev, V. A.; Moskovskikh, D. O.

    2017-04-01

    Roasting of molybdenum concentrates with sodium chloride has high potential and can be an alternative to oxidizing roasting and autoclave leaching; however, the chemistry and mechanism are poorly known. The chemical mechanism of the roasting process between molybdenite concentrate and sodium chloride in the presence of atmospheric oxygen is proposed. It is demonstrated that the process occurs through molybdenite oxidation, up to molybdenum trioxide, with subsequent formation of sodium polymolybdates and molybdenum dioxydichloride from molybdenum trioxide. It is found that the formation of water-soluble sodium polymolybdates from molybdenum trioxide stops over time due to passivation of sodium chloride surface by polymolybdates. It is proved experimentally that preliminary grinding of the mixture in a furnace charge leads to an increase in the polymolybdate fraction of the roasting products, which constitutes approximately 65 pct of molybdenum initially in the roasted mixture against 20 to 22 pct in a nonground mixture (or 75 to 77 pct against 30 to 33 pct of molybdenum in calcine). For the first time, the presence of the Na2S2O7 phase in the calcine was confirmed experimentally. The suggested mechanism gives possible explanations for the sharp increase of MoO2Cl2 formation within the temperature range of 673 K to 723 K (400 °C to 450 °C) that is based on the catalytic reaction of molybdenum dioxydichloride from the Na2S2O7 liquid phase as it runs in a melt.

  17. Effect of liquefied petroleum gas on ozone formation in Guadalajara and Mexico City.

    PubMed

    Jaimes-López, J Luis; Sandoval-Fernández, Julio; González-Ortíz, Emmanuel; Vázquez-García, Marcos; González-Macías, Uriel; Zambrano-García, Angel

    2005-06-01

    Leakages of liquefied petroleum gas (LPG) are suspected to contribute greatly to ozone (O3) formation in Mexico City. We tested such a hypothesis by outdoor captive-air irradiation (CAI) experiments in the two largest Mexican metropolitan areas: Guadalajara (GMA) in 1997 and Mexico City (MCMA) in 2000. O3 was monitored in each city for 20 days (8:00 a.m.-6:00 p.m.) in smog chambers containing unaltered morning air or morning air enriched with either commercial LPG or LPG synthetic mixture 60/40 (propane and butane). Tested additions of both components were 35% (by volume) in GMA and 60% (by volume) in MCMA. The addition effects on O3 (max) were compared with effects from diluting LPG components or total nonmethane hydrocarbons (tNMHCs) by 50%. Diluting tNMHCs had the greatest absolute effect at both cities: it lowered O3 (max) by 24% in GMA and 55% in MCMA. Adding commercial LPG increased O3 (max) by 6% in GMA and 28% in MCMA; whereas adding LPG synthetic mixture 60/40 caused a similar increase in O3 (max), 4 and 21% in GMA and MCMA, respectively. Compared with dilution of tNMHCs, dilution of LPG-associated compounds had a smaller decreasing effect on O3 (max), only 4% in GMA and 15% in MCMA. These results show that commercial LPG and LPG synthetic mixture 60/40 affect O3 formation to a lesser extent than estimated previously.

  18. Microstructure of Mixed Surfactant Solutions by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward

    1995-01-01

    Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with biological surfactants. We have found that subtle changes by surfactant additives to phosphatidylcholines (PC) produce dramatic changes in the microstructure of the composite that are impossible to determine from simple scattering experiments. Novel microstructures were observed at mole ratios from 4/1 to 9/1 long chain (Di-C_{16}PC)/short chain lipid (Di-C_7PC), including disc-like micelles and rippled bilayers at room temperature. We have also observed for the first time the formation of single layered ripple phase bilayer fragments. The formation of such fragments eliminates a number of theories of formation of this unique structure that depend on coupling between bilayers. In a similar system, dimyristoyl phosphatidylcholine (DMPC) mixed with the branched alcohol geraniol produces a bluish and extremely viscoelastic phase of giant multilamellar wormy vesicles. This phase shows the Weissenberg effect under flow due to the distortion of the entangled vesicles and may be related to fluid lamellar phases and L _3 phases often seen in surfactant-alcohol -water systems. Lysophosphatidylcholine, the single-chain counterpart of the diacyl phospholipids, can also form bilayer phases when combined with long-chain fatty acids in water. The phase transition characteristics and appearance of the bilayers in equimolar mixtures of lysolipid and fatty acid are similar to those of the diacyl-PC. Electron microscopy reveals large extended multilayers in mixtures with excess lysolipid and multilamellar vesicles in mixtures with excess fatty acid.

  19. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    NASA Astrophysics Data System (ADS)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  20. Antioxidant and anti-ageing activities of citrus-based juice mixture.

    PubMed

    Kim, Dan-Bi; Shin, Gi-Hae; Kim, Jae-Min; Kim, Young-Hyun; Lee, Jin-Ha; Lee, Jong Seok; Song, Hye-Jin; Choe, Soo Young; Park, In-Jae; Cho, Ju-Hyun; Lee, Ok-Hawn

    2016-03-01

    The production of excessive reactive oxygen species by exposure to oxidative stress and solar radiation are primary factors in skin damage. We examined the effects of a citrus-based juice mixture and its bioactive compounds on antioxidant and anti-ageing activities in human dermal fibroblasts and hairless mice via the regulation of antioxidant enzymes and the mitogen-activated protein kinase pathway. The citrus-based juice mixture reduced H2O2-induced cell damage and intracellular reactive oxygen species production in human dermal fibroblasts. Citrus-based juice mixture pretreatment suppressed the activation of the H2O2-mediated mitogen-activated protein kinase pathway by activating the expression of activator protein 1 and matrix metalloproteinases. Moreover, it increased the expression levels of antioxidant enzymes such as glutathione reductase, catalase and manganese superoxide dismutase. In addition, oral administration of the citrus-based juice mixture decreased skin thickness and wrinkle formation and increased collagen content on an ultraviolet light B-exposed hairless mouse. These results indicate that the citrus-based juice mixture is a potentially healthy beverage for the prevention of oxidative stress-induced premature skin ageing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Flow Reactor Studies with Nanosecond Pulsed Discharges at Atmospheric Pressure and Higher

    DTIC Science & Technology

    2013-10-01

    Experiment and model analysis of low temperature C2H4/N2/O2/Ar mixtures suggest intermediate formation of nitromethane . Formation of such nitro and...Large amount of nitromethane (CH3NO2) forms within the plasma region, by CH3+NO2(+M)=CH3NO2(+M). Downstream, CH3NO2 then decomposes. • Current model

  2. Contribution of acetate to butyrate formation by human faecal bacteria.

    PubMed

    Duncan, Sylvia H; Holtrop, Grietje; Lobley, Gerald E; Calder, A Graham; Stewart, Colin S; Flint, Harry J

    2004-06-01

    Acetate is normally regarded as an endproduct of anaerobic fermentation, but butyrate-producing bacteria found in the human colon can be net utilisers of acetate. The butyrate formed provides a fuel for epithelial cells of the large intestine and influences colonic health. [1-(13)C]Acetate was used to investigate the contribution of exogenous acetate to butyrate formation. Faecalibacterium prausnitzii and Roseburia spp. grown in the presence of 60 mm-acetate and 10 mm-glucose derived 85-90 % butyrate-C from external acetate. This was due to rapid interchange between extracellular acetate and intracellular acetyl-CoA, plus net acetate uptake. In contrast, a Coprococcus-related strain that is a net acetate producer derived only 28 % butyrate-C from external acetate. Different carbohydrate-derived energy sources affected butyrate formation by mixed human faecal bacteria growing in continuous or batch cultures. The ranking order of butyrate production rates was amylopectin > oat xylan > shredded wheat > inulin > pectin (continuous cultures), and inulin > amylopectin > oat xylan > shredded wheat > pectin (batch cultures). The contribution of external acetate to butyrate formation in these experiments ranged from 56 (pectin) to 90 % (xylan) in continuous cultures, and from 72 to 91 % in the batch cultures. This is consistent with a major role for bacteria related to F. prausnitzii and Roseburia spp. in butyrate formation from a range of substrates that are fermented in the large intestine. Variations in the dominant metabolic type of butyrate producer between individuals or with variations in diet are not ruled out, however, and could influence butyrate supply in the large intestine.

  3. Understanding Heterogeneity in Price Elasticities in the Demand for Alcohol for Older Individuals

    PubMed Central

    Ayyagari, Padmaja; Deb, Partha; Fletcher, Jason; Gallo, William; Sindelar, Jody L.

    2013-01-01

    This paper estimates the price elasticity of demand for alcohol using Health and Retirement Study data. To account for unobserved heterogeneity in price responsiveness, we use finite mixture models. We recover two latent groups, one is significantly responsive to price, but the other is unresponsive. The group with greater responsiveness is disadvantaged in multiple domains, including health, financial resources, education and perhaps even planning abilities. These results have policy implications. The unresponsive group drinks more heavily, suggesting that a higher tax would fail to curb the negative alcohol-related externalities. In contrast, the more disadvantaged group is more responsive to price, thus suffering greater deadweight loss, yet this group consumes fewer drinks per day and might be less likely to impose negative externalities. PMID:22162113

  4. Understanding heterogeneity in price elasticities in the demand for alcohol for older individuals.

    PubMed

    Ayyagari, Padmaja; Deb, Partha; Fletcher, Jason; Gallo, William; Sindelar, Jody L

    2013-01-01

    This paper estimates the price elasticity of demand for alcohol using Health and Retirement Study data. To account for unobserved heterogeneity in price responsiveness, we use finite mixture models. We recover two latent groups, one is significantly responsive to price, but the other is unresponsive. The group with greater responsiveness is disadvantaged in multiple domains, including health, financial resources, education and perhaps even planning abilities. These results have policy implications. The unresponsive group drinks more heavily, suggesting that a higher tax would fail to curb the negative alcohol-related externalities. In contrast, the more disadvantaged group is more responsive to price, thus suffering greater deadweight loss, yet this group consumes fewer drinks per day and might be less likely to impose negative externalities. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; Derrick, James G.; Patten, Jack R. W.; Bland, Philip A.; Rack, Alexander; Collins, Gareth S.; Eakins, Daniel E.

    2017-01-01

    Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure of the sample. This Article provides the first detailed experimental insight into the distribution of extreme states within a shocked powder mixture, and represents the first mesoscopic validation of leading theories concerning the variation in extreme pressure-temperature states during the formation of primordial planetary bodies. PMID:28555619

  6. A study of processing parameters in thermal-sprayed alumina and zircon mixtures

    NASA Astrophysics Data System (ADS)

    Li, Y.; Khor, K. A.

    2002-06-01

    A method of plasma spraying of alumina and zircon mixtures to form ZrO2-mullite composites has been proposed and developed. The feedstock is prepared by a combination of mechanical alloying, which allows formation of fine-grained, homogeneous solid-solution mixtures, followed by plasma spheroidization that yields rapid solidified microstructures and enhanced compositional homogeneity. The effects of ball-milling duration and milling media were studied. It was found that zirconia is a more efficient milling media and that increasing milling duration enhanced the dissociation of zircon. Flame spray and plasma spray processes were used to spheroidize the spray-dried powders. The temperature of the flame spray was found to be insufficient to melt the powders completely. The processing parameters of the plasma spray played an important role in zircon decomposition and mullite formation. Increasing the arc current or reducing secondary gas pressure caused more zircon to decompose and more mullite to form after heat treatment at 1200 °C for 3 h. Dissociation of zircon and the amount of mullite for med can be enhanced significantly when using the more efficient, computerized plasma-spraying system and increasing the ball-milling duration from 4 to 8 h.

  7. [Railway use of asbestos-containing rubble: environmental hygienic aspects].

    PubMed

    Kaptsov, V A; Kashanskiĭ, S V; Domnin, S G; Tikhova, T S; Trofimova, E V; Novoselova, T A; Bogdanov, G B

    2003-01-01

    The paper presents the results of a study of the gravimetric and counting concentrations of respirable asbestos fibers while working with sand-and-crushed stone mixtures, obtained from the concentration of chrysotile asbestos, at distances of 25, 50, and 100 m from the working place, as well as in a car saloon when the electric train passes along the area of these operations following an hour, a day, and a year after the completion of work, in warm and colds seasons of a year. It is concluded that the use of asbestos-containing sand-and-crushed stone mixtures on the railway leads to a higher anthropogenic asbestos load on the population living in the railway right-of-way, on railway workers and passengers. In this connection, it is necessary to evaluate risk factors of asbestos-induced diseases among the above contingents. The authors consider that due to the fact that asbestos-containing sand-and-crushed stone mixtures are well wetted with water, followed by the formation of a firm surface crust that prevents dust formation, as well as the short duration and rare frequency of operations relating their change, it is necessary to irrigate the repair areas with water or surfactant liquids after work termination.

  8. The Hb A variant (beta73 Asp-->Leu) disrupts Hb S polymerization by a novel mechanism.

    PubMed

    Adachi, Kazuhiko; Ding, Min; Surrey, Saul; Rotter, Maria; Aprelev, Alexey; Zakharov, Mikhail; Weng, Weijun; Ferrone, Frank A

    2006-09-22

    Polymerization of a 1:1 mixture of hemoglobin S (Hb S) and the artificial mutant HbAbeta73Leu produces a dramatic morphological change in the polymer domains in 1.0 M phosphate buffer that are a characteristic feature of polymer formation. Instead of feathery domains with quasi 2-fold symmetry that characterize polymerization of Hb S and all previously known mixtures such as Hb A/S and Hb F/S mixtures, these domains are compact structures of quasi-spherical symmetry. Solubility of Hb S/Abeta73Leu mixtures was similar to that of Hb S/F mixtures. Kinetics of polymerization indicated that homogeneous nucleation rates of Hb S/Abeta73Leu mixtures were the same as those of Hb S/F mixtures, while exponential polymer growth (B) of Hb S/Abeta73Leu mixtures were about three times slower than those of Hb S/F mixtures. Differential interference contrast (DIC) image analysis also showed that fibers in the mixture appear to elongate between three and five times more slowly than in equivalent Hb S/F mixtures by direct measurements of exponential growth of mass of polymer in a domain. We propose that these results of Hb S/Abeta73Leu mixtures arise from a non-productive binding of the hybrid species of this mixture to the end of the growing polymer. This "cap" prohibits growth of polymers, but by nature is temporary, so that the net effect is a lowered growth rate of polymers. Such a cap is consistent with known features of the structure of the Hb S polymer. Domains would be more spherulitic because slower growth provides more opportunity for fiber bending to spread domains from their initial 2-fold symmetry. Moreover, since monomer depletion proceeds more slowly in this mixture, more homogeneous nucleation events occur, and the resulting gel has a far more granular character than normally seen in mixtures of non-polymerizing hemoglobins with Hb S. This mixture is likely to be less stiff than polymerized mixtures of other hybrids such as Hb S with HbF, potentially providing a novel approach to therapy.

  9. Secondary organic aerosol and ozone formation from photo-oxidation of unburned diesel fuel in a surrogate atmospheric environment

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Cocker, David R.

    2018-07-01

    Diesel fuel is a complex mixture of intermediate volatility organic compounds (IVOCs). Previous studies focused on secondary organic aerosol (SOA) and ozone formation from photo-oxidation of organic vapor from diesel exhaust and their components such as aromatics and heavy alkanes. However, there are few studies on atmospheric behavior of unburnt diesel. Therefore, in this study, ten unburnt #2 commercial diesel samples and one FACE9A research diesel fuel were photo-oxidized in the University of California Riverside, College of Engineering-Center for Environmental Research & Technology dual environmental chambers to investigate their SOA and ozone production potential. Photochemical aging rapidly produced significant SOA (yield ∼20.3-37.7%) in the presence of a surrogate reactive organic gas (ROG) mixture used to mimic urban atmospheric reactivity. SOA yields were consistent with n-Heptadecane yields under similar conditions. Doubling NOx concentrations within relevant urban concentration levels enhanced SOA formation by 33% and ozone formation by 48%. SOA formation in this study was approximately fourteen times higher than previously reported for very high NOx conditions. An SOA experiment designed to mimic the previous work achieved similar yields to the earlier work. SOA formed under urban relevant NOx concentrations were consistent with semi-volatile-oxygenated organic aerosol (SV-OOA) and underwent little further chemical processing once produced.

  10. Formation of nitrogenated organic aerosols in the Titan upper atmosphere.

    PubMed

    Imanaka, Hiroshi; Smith, Mark A

    2010-07-13

    Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan's organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet-vacuum ultraviolet irradiation of a N(2)/CH(4) gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N(2)/CH(4) photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H(2)C(2)N and HCN, respectively, are suggestive of important roles of H(2)C(2)N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using (13)C and (15)N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan's atmosphere.

  11. Formation of nitrogenated organic aerosols in the Titan upper atmosphere

    PubMed Central

    Imanaka, Hiroshi; Smith, Mark A.

    2010-01-01

    Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan’s organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet–vacuum ultraviolet irradiation of a N2/CH4 gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N2/CH4 photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H2C2N and HCN, respectively, are suggestive of important roles of H2C2N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using 13C and 15N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan’s atmosphere. PMID:20616074

  12. Cellular structure of lean hydrogen flames in microgravity

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1990-01-01

    Detailed, time-dependent, two-dimensional numerical simulations of premixed laminar flames have been used to study the initiation and subsequent development of cellular structures in lean hydrogen-air flames. The model includes detailed hydrogen-oxygen combustion with 24 elementary reactions of eight reactive species and a nitrogen diluent, molecular diffusion of all species, thermal conduction, viscosity, and convection. This model has been used to study the nonlinear evolution of cellular flame structure and shows that cell splitting, as observed in experiments, can be predicted numerically for sufficiently reactive mixtures. The structures that evolved also resembled the cellular structures observed in experiments. The present study shows that the 'cell-split limit' postulated from experimental observations is an intrinsic property of the mixture and that external factors such as heat losses are not necessary to cause this limit.

  13. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations.

    PubMed

    Wallace, Victoria M; Dhumal, Nilesh R; Zehentbauer, Florian M; Kim, Hyung J; Kiefer, Johannes

    2015-11-19

    The infrared and near-infrared spectra of the aqueous solutions of dimethyl sulfoxide are revisited. Experimental and computational vibrational spectra are analyzed and compared. The latter are determined as the Fourier transformation of the velocity autocorrelation function of data obtained from Car-Parrinello molecular dynamics simulations. The experimental absorption spectra are deconvolved, and the excess spectra are determined. The two-dimensional excess contour plot provides a means of visualizing and identifying spectral regions and concentration ranges exhibiting nonideal behavior. In the binary mixtures, the analysis of the SO stretching band provides a semiquantitative picture of the formation and dissociation of hydrogen-bonded DMSO-water complexes. A maximum concentration of these clusters is found in the equimolar mixture. At high DMSO concentration, the formation of rather stable 3DMSO:1water complexes is suggested. The formation of 1DMSO:2water clusters, in which the water oxygen atoms interact with the sulfoxide methyl groups, is proposed as a possible reason for the marked depression of the freezing temperature at the eutectic point.

  14. Organogel-emulsions with mixtures of β-sitosterol and γ-oryzanol: influence of water activity and type of oil phase on gelling capability.

    PubMed

    Sawalha, Hassan; den Adel, Ruud; Venema, Paul; Bot, Arjen; Flöter, Eckhard; van der Linden, Erik

    2012-04-04

    In this study, water-in-oil emulsions were prepared from water containing different salt concentrations dispersed in an oil phase containing a mixture of β-sitosterol and γ-oryzanol. In pure oil, the β-sitosterol and γ-oryzanol molecules self-assemble into tubular microstructures to produce a firm organogel. However, in the emulsion, the water molecules bind to the β-sitosterol molecules, forming monohydrate crystals that hinder the formation of the tubules and resulting in a weaker emulsion-gel. Addition of salt to the water phase decreases the water activity, thereby suppressing the formation of sitosterol monohydrate crystals even after prolonged storage times (∼1 year). When the emulsions were prepared with less polar oils, the tubular microstructure was promoted, which significantly increased the firmness of the emulsion-gel. The main conclusion of this study is that the formation of oryzanol and sitosterol tubular microstructure in the emulsion can be promoted by reducing the water activity and/or by using oils of low polarity.

  15. Possible Domain Formation In PE/PC Bilayers Containing High Cholesterol

    NASA Astrophysics Data System (ADS)

    Hein, Matthew; Hussain, Fazle; Huang, Juyang

    2015-03-01

    Cholesterol is a significant component of animal cell membranes, and its presence has the effects of not only adding rigidity to the lipid bilayer, but also leading to the formation of lipid domains. Two other lipids of interest are phosphatidylethanolamine (PE), which constitutes about 45 percent of the phospholipids found in human nervous tissues, and phosphatidylcholine (PC), which is found in every cell of the human body. The maximum solubility of cholesterol is the highest mole fraction of cholesterol that the lipid bilayer can retain, at which point cholesterol begins to precipitate out to form cholesterol monohydrate crystals. We have measured the maximum solubility of cholesterol in mixtures of 16:0-18:1PE and 16:0-18:1PC using a new light scattering technique, which utilizes the anisotropic nature of light scattering by cholesterol crystals. This new method is highly accurate and reproducible. Our results show that the maximum solubility of cholesterol increases linearly as a function of the molar ratio POPC/(POPE+POPC), which suggests possible domain formation in mixtures of PE and PC containing maximum amount of cholesterol.

  16. Languages of Science in the Era of Nation-State Formation: The Israeli Universities and Their (Non)Participation in the Revival of Hebrew

    ERIC Educational Resources Information Center

    Kheimets, Nina G.; Epstein, Alek D.

    2005-01-01

    This paper presents sociological analysis of the linguistic and cultural identity of two of Israel's most influential and high-ranked universities during their formative years, that were also the "de facto" formative years of the Israeli state-in-the-making (1924-1948). We argue that the influence of external universal factors on a…

  17. Kinetics of Mn3+-oxalate formation and decay in reactions catalyzed by manganese peroxidase of Ceriporiopsis subvermispora

    Treesearch

    Ulises Urzua; Philip J. Kersten; Rafael Vicuna

    1998-01-01

    The kinetics of Mn3+- oxalate formation and decay were investigated in reactions catalyzed by manganese peroxidase (MnP) from the basiomycete Ceriporiopsis subvermispora in the absence of externally added hydrogen peroxide. A characteristic lag observed in the formation of this complex was shortened by glyoxylate or catalytic amounts of Mn3+ or hydrogen peroxide. MnP...

  18. The influence of reactive side products on the electrooxidation of methanol--a combined in situ infrared spectroscopy and online mass spectrometry study.

    PubMed

    Reichert, R; Schnaidt, J; Jusys, Z; Behm, R J

    2014-07-21

    Aiming at a better understanding of the impact of reaction intermediates and reactive side products on electrocatalytic reactions under conditions characteristic for technical applications, i.e., at high reactant conversions, we have investigated the electrooxidation of methanol on a Pt film electrode in mixtures containing defined concentrations of the reaction intermediates formaldehyde or formic acid. Employing simultaneous in situ infrared spectroscopy and online mass spectrometry in parallel to voltammetric measurements, we examined the effects of the latter molecules on the adlayer build-up and composition and on the formation of volatile reaction products CO2 and methylformate, as well as on the overall reaction rate. To assess the individual contributions of each component, we used isotope labeling techniques, where one of the two C1 components in the mixtures of methanol with either formaldehyde or formic acid was (13)C-labeled. The data reveal pronounced effects of the additional components formaldehyde and formic acid on the reaction, although their concentration was much lower (10%) than that of the main reactant methanol. Most important, the overall Faradaic current responses and the amounts of CO2 formed upon oxidation of the mixtures are always lower than the sums of the contributions from the individual components, indicative of a non-additive behavior of both Faradaic current and CO2 formation in the mixtures. Mechanistic reasons and consequences for reactions in a technical reactor, with high reactant conversion, are discussed.

  19. Self assembly of oppositely charged latex particles at oil-water interface.

    PubMed

    Nallamilli, Trivikram; Ragothaman, Srikanth; Basavaraj, Madivala G

    2017-01-15

    In this study we explore the self assembly of oppositely charged latex particles at decane water interfaces. Two spreading protocols have been proposed in this context. In the first method oppositely charged particles are mixed prior to spreading at the interface, this is called "premixed-mixtures". In the second protocol negatively charged particles are first spread at the interface at known coverage followed by spreading positively charged particles at known coverage and this is called "sequential-mixtures". In premixed mixtures depending on particle mixing ratio (composition) and total surface coverage a number of 2d structures ranging from 2d crystals, aggregate-crystal coexistence and 2d-gels are observed. A detailed phase diagram of this system has been explored. In sequential-mixtures for the first time we observed a new phase in colloidal monolayers called 2d-bi crystalline domains. These structures consisted regions of two crystal phases of oppositely charged particles separated by a one dimensional chain of alternating positive and negative particles. Phase diagram of this system has also been explored at various combinations of first spread and second spread particles. A possible mechanism leading to formation of these 2d bi crystalline structures has been discussed. A direct visualization of breakage and reformation of particle barriers separating the crystal phases has been demonstrated through videos. Effect of salt in the water sub phase and particle hydrophobicity on domain formation is also investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effects of N2-O2 and CO2-O2 tensions on growth of fungi isolated from damaged flue-cured tobacco.

    PubMed

    Yang, H; Lucas, G B

    1970-02-01

    Ten fungi, Aspergillus niger, A. flavus, A. ochraceus, A. ruber, A. repens, A. amstelodami, Alternaria tenuis, Penicillium brevi-compactum, Cladosporium herbarum, and Chaetomium dolicotrichum, were isolated from moldy flue-cured tobacco and grown in various mixtures of N(2)-O(2) or CO(2)-O(2). A 1 to 5% concentration of O(2) in an N(2) atmosphere caused the greatest change in growth of the nine species, and a 10 to 20% concentration of O(2) for A. flavus. All species, except A. amstelodami and A. ruber, grew faster in air than in mixtures containing 10% O(2). High O(2) concentrations generally inhibited furrow production in the mycelial mats. In an atmosphere of 5 to 40% O(2) in the N(2) atmosphere, furrows formed in mycelial mats between 5 and 40% O(2) in the species except for A. ruber, A. repens, and A. amstelodami, which produced none in any concentration. As O(2) decreased below 20%, spore production was progressively decreased, colony color faded to white, and cleistothecia formation was suppressed. In CO(2)-O(2) mixtures radial growth of all species increased with each quantitative decrease of CO(2). All species except A. niger grew faster in air than in 10% CO(2). In contrast to N(2)-O(2) mixtures, the fungi formed furrows, sporulation and cleistothecial formation were suppressed, and colony color changed to white in higher O(2) concentrations.

  1. Effects of N2-O2 and CO2-O2 Tensions on Growth of Fungi Isolated from Damaged Flue-Cured Tobacco 1

    PubMed Central

    Yang, H.; Lucas, G. B.

    1970-01-01

    Ten fungi, Aspergillus niger, A. flavus, A. ochraceus, A. ruber, A. repens, A. amstelodami, Alternaria tenuis, Penicillium brevi-compactum, Cladosporium herbarum, and Chaetomium dolicotrichum, were isolated from moldy flue-cured tobacco and grown in various mixtures of N2-O2 or CO2-O2. A 1 to 5% concentration of O2 in an N2 atmosphere caused the greatest change in growth of the nine species, and a 10 to 20% concentration of O2 for A. flavus. All species, except A. amstelodami and A. ruber, grew faster in air than in mixtures containing 10% O2. High O2 concentrations generally inhibited furrow production in the mycelial mats. In an atmosphere of 5 to 40% O2 in the N2 atmosphere, furrows formed in mycelial mats between 5 and 40% O2 in the species except for A. ruber, A. repens, and A. amstelodami, which produced none in any concentration. As O2 decreased below 20%, spore production was progressively decreased, colony color faded to white, and cleistothecia formation was suppressed. In CO2-O2 mixtures radial growth of all species increased with each quantitative decrease of CO2. All species except A. niger grew faster in air than in 10% CO2. In contrast to N2-O2 mixtures, the fungi formed furrows, sporulation and cleistothecial formation were suppressed, and colony color changed to white in higher O2 concentrations. PMID:5461786

  2. Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance.

    PubMed

    Zhang, Xuechen; Zhou, Gaofeng; Shabala, Sergey; Koutoulis, Anthony; Shabala, Lana; Johnson, Peter; Li, Chengdao; Zhou, Meixue

    2016-06-01

    Aerenchyma formation after 7 days of waterlogging in commercial potting mixture can be a reliable, fast, and widely utilized approach for the selection of waterlogging tolerant barley genotypes. One major QTL for aerenchyma formation after 7 days of waterlogging treatment was identified and the newly developed markers explained 44 % of the phenotypic variance. This QTL can now be effectively used in barley breeding programs. Waterlogging is one of the important limiting conditions for crop yield and productivity. The main feature of waterlogged soils is oxygen deprivation, due to slow gas diffusion in water. Decreased oxygen content in waterlogged soils leads to the oxygen deficiency in plant tissues, resulting in reduced energy availability for plants. Rapidly induced aerenchyma formation is critical to maintaining adequate oxygen supply and overall waterlogging tolerance in barley. In this study, we have proved that quantifying aerenchyma formation after 7 days of waterlogging in commercial potting mixture can be a reliable, fast, and widely utilised approach for the selection of waterlogging tolerant barley genotypes, which is supported by measurements of redox potential (an indicator of anaerobic conditions). This protocol was also used to identify quantitative trait loci (QTL) in a doubled haploid population of barley from the cross between Yerong (tolerant) and Franklin (sensitive) genotypes. The QTL for aerenchyma formation and root porosity were at the same location as the waterlogging tolerance QTL. Seven new markers were developed and added onto this region on chromosome 4H. One major QTL for aerenchyma formation after 7 days waterlogging treatment explained 44.0 % of the phenotypic variance. This successful QTL for aerenchyma formation can be effectively used in the marker assisted selection to improve waterlogging tolerance in barley.

  3. Estimation of total rate of formation of nitric oxide in the rat.

    PubMed Central

    Sakinis, A; Wennmalm, A

    1998-01-01

    Nitric oxide (NO) is a powerful mediator with important actions in several organ systems. NO is synthesized during the enzymatic conversion of l-arginine and molecular oxygen to L-citrulline. About 90% of the NO formed is degraded to nitrate. Utilizing this information we have developed a method for assessment of the total rate of formation of NO in the rat. Male Wistar rats were kept in a closed-cage system allowing controlled breathing of a mixture of 18O2 and 16O2 in N2 for up to 5h. Blood samples for mass spectrometric analysis of nitrate residues with varying numbers of 18O atoms incorporated were drawn before and during the exposure to 18O2. By comparing the relative incorporation of 18O into nitrate residues to the 16O2/18O2 ratio in the breathing gas mixture in the cage system it was possible to calculate the absolute rate of NO formation in the animal. The rate of formation of NO in anaesthetized rats ranged from 0.33 to 0.85 micromol.kg-1.h-1. The rate of formation did not differ significantly in rats which were awake during the experiment (range 0.36-0.72 micromol.kg-1.h-1). The L-arginine analogue Nomega-nitro-L-arginine methyl ester (L-NAME) dose-dependently inhibited the formation of NO, at a dose of 100mg/kg by more than 99%. The technique presented allows estimation of the total rate of formation of NO in vivo in rats. Application of the technique may yield important information about the physiological and pathophysiological roles of NO. It may also be utilized to evaluate the effect of pharmacological treatment on NO formation. PMID:9461552

  4. 49 CFR 174.81 - Segregation of hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...

  5. 49 CFR 174.81 - Segregation of hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...

  6. 49 CFR 174.81 - Segregation of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...

  7. 49 CFR 174.81 - Segregation of hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...

  8. Positronium formation studies in solid molecular complexes: Triphenylphosphine oxide-triphenylmethanol

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F. H.; Magalhães, W. F.; Alcântara, A. F. C.; Windmöller, D.; Machado, J. C.

    2012-06-01

    Positronium formation in triphenylphosphine oxide (TPPO), triphenylmethanol (TPM), and systems [TPPO(1-X)ṡTPMX] has been studied. The low probability of positronium formation in complex [TPPO0.5ṡTPM0.5] was attributed to strong hydrogen bond and sixfold phenyl embrace interactions. These strong interactions in complex reduce the possibility of the n- and π-electrons to interact with positrons on the spur and consequently, the probability of positronium formation is lower. The τ3 parameter and free volume (correlated to τ3) were also sensitive to the formation of hydrogen bonds and sixfold phenyl embrace interactions within the complex. For physical mixture the positron annihilation parameters remained unchanged throughout the composition range.

  9. Cluster-based query expansion using external collections in medical information retrieval.

    PubMed

    Oh, Heung-Seon; Jung, Yuchul

    2015-12-01

    Utilizing external collections to improve retrieval performance is challenging research because various test collections are created for different purposes. Improving medical information retrieval has also gained much attention as various types of medical documents have become available to researchers ever since they started storing them in machine processable formats. In this paper, we propose an effective method of utilizing external collections based on the pseudo relevance feedback approach. Our method incorporates the structure of external collections in estimating individual components in the final feedback model. Extensive experiments on three medical collections (TREC CDS, CLEF eHealth, and OHSUMED) were performed, and the results were compared with a representative expansion approach utilizing the external collections to show the superiority of our method. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Formative Assessment in Year 12 English: A Conceptual Framework

    ERIC Educational Resources Information Center

    Dargusch, Jo

    2010-01-01

    This article reports a research project investigating the formative assessment practices of two teachers of Year 12 English in Queensland. This is a high-stakes year that is focused on summative assessment for certification purposes. In this school-based, externally-moderated, standards-referenced system, however, teachers are also expected to…

  11. The Interactional Effects of the Internal and External University Environment, and the Influence of Personal Values, on Satisfaction among International Postgraduate Students

    ERIC Educational Resources Information Center

    Arambewela, Rodney; Hall, John

    2013-01-01

    The article investigates the interactional effects of internal and external university learning environments, and the influence of personal values, in the satisfaction formation process of international postgraduate students from Asia. Past research on student satisfaction has been narrowly focused on certain aspects of the university internal…

  12. ERDDAP - RESTful Web Services

    Science.gov Websites

    , graphs, or information about datasets). A RESTful web service (external link) - a URL that computer to get the same information in a more computer-program-friendly format like JSON (external link .jsonlKVP, where column names are on every row): Each column has a column name and one type of information

  13. Together, Slowly but Surely: The Role of Social Interaction and Feedback on the Build-Up of Benefit in Collective Decision-Making

    ERIC Educational Resources Information Center

    Bahrami, Bahador; Olsen, Karsten; Bang, Dan; Roepstorff, Andreas; Rees, Geraint; Frith, Chris

    2012-01-01

    That objective reference is necessary for formation of reliable beliefs about the external world is almost axiomatic. However, Condorcet (1785) suggested that purely subjective information--if shared and combined via social interaction--is enough for accurate understanding of the external world. We asked if social interaction and objective…

  14. Reference manual for a Requirements Specification Language (RSL), version 2.0

    NASA Technical Reports Server (NTRS)

    Fisher, Gene L.; Cohen, Gerald C.

    1993-01-01

    This report is a Reference Manual for a general-purpose Requirements Specification Language, RSL. The purpose of RSL is to specify precisely the external structure of a mechanized system and to define requirements that the system must meet. A system can be comprised of a mixture of hardware, software, and human processing elements. RSL is a hybrid of features found in several popular requirements specification languages and includes constructs for formal mathematical specification.

  15. Petrology and physical conditions of metamorphism of calcsilicate rocks from low- to high-grade transition area, Dharmapuri District, Tamil Nadu

    NASA Technical Reports Server (NTRS)

    Narayana, B. L.; Natarajan, R.; Govil, P. K.

    1988-01-01

    Calc-silicate rocks comprising quartz, plagioclase, diopside, sphene, scapolite, grossularite-andradite and wollastonite occur as lensoid enclaves within the greasy migmatitic and charnockitic gneisses of the Archaean amphibolite- to granulite-facies transition zone in Dharmapuri district, Tamil Nadu. The calc-silicate rocks are characterized by the absence of K-feldspar and primary calcite, presence of large modal quartz and plagioclase and formation of secondary garnet and zoisite rims around scapolite and wollastonite. The mineral distributions suggest compositional layering. The chemical composition and mineralogy of the calc-silicate rocks indicate that they were derived from impure silica-rich calcareous sediments whose composition is similar to that of pelite-limestone mixtures. From the mineral assemblages the temperature, pressure and fluid composition during metamorphism were estimated. The observed mineral reaction sequences require a range of X sub CO2 values demonstrating that an initially CO2-rich metamorphic fluid evolved with time towards considerably more H2O-rich compositions. These variations in fluid composition suggest that there were sources of water-rich fluids external to the calc-silicate rocks and that mixing of these fluids with those of calc-silicate rocks was important in controlling fluid composition in calc-silicate rocks and some adjacent rock types as well.

  16. Inhibition of tyrosine phenol-lyase by tyrosine homologues.

    PubMed

    Do, Quang; Nguyen, Giang T; Phillips, Robert S

    2016-09-01

    We have designed, synthesized, and evaluated tyrosine homologues and their O-methyl derivatives as potential inhibitors for tyrosine phenol lyase (TPL, E.C. 4.1.99.2). Recently, we reported that homologues of tryptophan are potent inhibitors of tryptophan indole-lyase (tryptophanase, TIL, E.C. 4.1.99.1), with K i values in the low µM range (Do et al. Arch Biochem Biophys 560:20-26, 2014). As the structure and mechanism for TPL is very similar to that of TIL, we postulated that tyrosine homologues could also be potent inhibitors of TPL. However, we have found that homotyrosine, bishomotyrosine, and their corresponding O-methyl derivatives are competitive inhibitors of TPL, which exhibit K i values in the range of 0.8-1.5 mM. Thus, these compounds are not potent inhibitors, but instead bind with affinities similar to common amino acids, such as phenylalanine or methionine. Pre-steady-state kinetic data were very similar for all compounds tested and demonstrated the formation of an equilibrating mixture of aldimine and quinonoid intermediates upon binding. Interestingly, we also observed a blue-shift for the absorbance peak of external aldimine complexes of all tyrosine homologues, suggesting possible strain at the active site due to accommodating the elongated side chains.

  17. Synthesis of iron oxide nanorods via chemical scavenging and phase transformations of intermediates at ambient conditions

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish

    2017-01-01

    Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra- methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe 3 O 4) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe 3 O 4) or a mixture of ( γ-Fe 2 O 3 + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 ∘C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.

  18. Recycling Frank: Spontaneous emergence of homochirality in noncatalytic systems

    PubMed Central

    Plasson, Raphaël; Bersini, Hugues; Commeyras, Auguste

    2004-01-01

    In this work, we introduce a prebiotically relevant protometabolic pattern corresponding to an engine of deracemization by using an external energy source. The spontaneous formation of a nonracemic mixture of chiral compounds can be observed in out-of-equilibrium systems via a symmetry-breaking phenomenon. This observation is possible thanks to chirally selective autocatalytic reactions (Frank's model) [Frank, F. C. (1953) Biochim. Biophys. Acta 11, 459–463]. We show that the use of a Frank-like model in a recycled system composed of reversible chemical reactions, rather than the classical irreversible system, allows for the emergence of a synergetic autoinduction from simple reactions, without any autocatalytic or even catalytic reaction. This model is described as a theoretical framework, based on the stereoselective reactivity of preexisting chiral monomeric building blocks (polymerization, epimerization, and depolymerization) maintained out of equilibrium by a continuous energy income, via an activation reaction. It permits the self-conversion of all monomeric subunits into a single chiral configuration. Real prebiotic systems of amino acid derivatives can be described on this basis. They are shown to be able to spontaneously reach a stable nonracemic state in a few centuries. In such systems, the presence of epimerization reactions is no more destructive, but in contrast is the central driving force of the unstabilization of the racemic state. PMID:15548617

  19. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    NASA Astrophysics Data System (ADS)

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  20. Fuel property effects in stirred combustors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Soot formation in strongly backmixed combustion was investigated using the jet-stirred combustor (JSC). This device provided a combustion volume in which temperature and combustion were uniform. It simulated the recirculating characteristics of the gas turbine primary zone; it was in this zone where mixture conditions were sufficiently rich to produce soot. Results indicate that the JSC allows study of soot formation in an aerodynamic situation revelant to gas turbines.

  1. Differential Effect of Plant Lipids on Membrane Organization

    PubMed Central

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  2. Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol.

    PubMed

    Liu, Chang; Ma, Qingxin; Liu, Yongchun; Ma, Jinzhu; He, Hong

    2012-02-07

    Sulfate is one of the most important aerosols in the atmosphere. A new sulfate formation pathway via synergistic reactions between SO(2) and NO(2) on mineral oxides was proposed. The heterogeneous reactions of SO(2) and NO(2) on CaO, α-Fe(2)O(3), ZnO, MgO, α-Al(2)O(3), TiO(2), and SiO(2) were investigated by in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) at ambient temperature. Formation of sulfate from adsorbed SO(2) was promoted by the coexisting NO(2), while surface N(2)O(4) was observed as the crucial oxidant for the oxidation of surface sulfite. This process was significantly promoted by the presence of O(2). The synergistic effect between SO(2) and NO(2) was not observed on other mineral particles (such as CaCO(3) and CaSO(4)) probably due to the lack of the surface reactive oxygen sites. The synergistic reaction between SO(2) and NO(2) on mineral oxides resulted in the formation of internal mixtures of sulfate, nitrate, and mineral oxides. The change of mixture state will affect the physicochemical properties of atmospheric particles and therefore further influence their environmental and climate effects.

  3. Simulation of the formation of nonequilibrium structures in magnetorheological fluids subject to an external magnetic field

    NASA Astrophysics Data System (ADS)

    Mohebi, M.; Jamasbi, N.; Liu, Jing

    1996-11-01

    We developed a computer model to understand the nonequilibrium structures induced in a magnetorheological (MR) fluid by rapidly applying an external magnetic field. MR fluids consist of particles suspended in a liquid where particles interact through dipole moments induced by the external magnetic field. We have simulated these induced structures in both directions, parallel and perpendicular to the field, in the limit of fastest response, by neglecting thermal motion and applying the field instantaneously. Our results show that the process of structure formation starts with particles forming chains aligned with the external field. The chains then coalesce to form columns and wall-like structures (``worms'' as viewed from the top). The complexity of this pattern is found to depend on the concentration of particles and the confinement of the cell in the direction of the external field. These results are consistent with experimental observations [G.A. Flores et al., in Proceedings of the Fifth International Conference on ER Fluids, MR Suspensions, and Associate Technology, University of Sheffield, Sheffield, 1995, edited by W. Bullough (World Scientific, Singapore, 1996), p. 140]. We have also used this model to study the interaction of two chains. The results of this study help in the understanding of the connection between the thickness of the sample and the increased complexity of the observed lateral pattern.

  4. Effects of grinding and humidification on the transformation of conglomerate to racemic compound in optically active drugs.

    PubMed

    Piyarom, S; Yonemochi, E; Oguchi, T; Yamamoto, K

    1997-04-01

    The effects of grinding and humidification on the transformation of conglomerate to racemic compound have been investigated by X-ray powder diffraction (XPD), differential scanning calorimetry (DSC) and infrared (IR) spectroscopy for leucine, norleucine, valine, serine, tartaric acid and malic acid. Racemic physical mixtures were prepared by physical mixing of equimolar quantities of D and I. crystals using a mortar and pestle. Ground mixtures were obtained by grinding the physical mixtures with a vibrational mill. Humidification was performed by storing the physical mixtures and the ground mixtures in a desiccator containing saturated aqueous salt solutions at 40 degrees C. When physical mixtures of malic acid, tartaric acid and serine were ground, the XPD peaks of the racemic compounds were observed. The XPD patterns of humidified physical mixtures of these compounds also showed the formation of the racemic compounds. This indicated that grinding or humidification of malic acid, tartaric acid and serine induced the transformation of conglomerate to racemic compound crystals. When, on the other hand, the physical mixtures of valine, leucine and norleucine were ground, peaks of racemic compounds were not detected in the XPD pattern. After humidification of the ground mixtures of valine, leucine and norleucine, however, the XPD peaks of racemic compounds were observed. DSC and IR studies revealed consistent results. We concluded that grinding or humidification of malic acid, tartaric acid and serine could induce the transformation of a conglomerate to racemic compound. In contrast, humidifying after grinding was needed to bring about the transformation in leucine, norleucine and valine.

  5. First Branchial Cleft Fistula Associated with External Auditory Canal Stenosis and Middle Ear Cholesteatoma

    PubMed Central

    Abdollahi fakhim, Shahin; Naderpoor, Masoud; Mousaviagdas, Mehrnoosh

    2014-01-01

    Introduction: First branchial cleft anomalies manifest with duplication of the external auditory canal. Case Report: This report features a rare case of microtia and congenital middle ear and canal cholesteatoma with first branchial fistula. External auditory canal stenosis was complicated by middle ear and external canal cholesteatoma, but branchial fistula, opening in the zygomatic root and a sinus in the helical root, may explain this feature. A canal wall down mastoidectomy with canaloplasty and wide meatoplasty was performed. The branchial cleft was excised through parotidectomy and facial nerve dissection. Conclusion: It should be considered that canal stenosis in such cases can induce cholesteatoma formation in the auditory canal and middle ear. PMID:25320705

  6. First branchial cleft fistula associated with external auditory canal stenosis and middle ear cholesteatoma.

    PubMed

    Abdollahi Fakhim, Shahin; Naderpoor, Masoud; Mousaviagdas, Mehrnoosh

    2014-10-01

    First branchial cleft anomalies manifest with duplication of the external auditory canal. This report features a rare case of microtia and congenital middle ear and canal cholesteatoma with first branchial fistula. External auditory canal stenosis was complicated by middle ear and external canal cholesteatoma, but branchial fistula, opening in the zygomatic root and a sinus in the helical root, may explain this feature. A canal wall down mastoidectomy with canaloplasty and wide meatoplasty was performed. The branchial cleft was excised through parotidectomy and facial nerve dissection. It should be considered that canal stenosis in such cases can induce cholesteatoma formation in the auditory canal and middle ear.

  7. Chaotic one-dimensional domains induced by periodic potentials in normal-dispersion fiber lasers

    NASA Astrophysics Data System (ADS)

    Urzagasti, Deterlino; Vargas, Bryan A.; Quispe-Flores, Luzmila A.

    2017-10-01

    We investigate numerically the effects of external time-periodic potentials on time-localized perturbations to the amplitude of electromagnetic waves propagating in normal-dispersion fiber lasers which are described by the complex Ginzburg-Landau equation. Two main effects were found: The formation of domains enclosed by two maxima of the external periodic field and the generation of a chaotic behavior of these domains in the region of relatively high amplitudes and low frequencies of the external fields. Maps and bifurcation diagrams of the largest Lyapunov exponent and moments, such as energy and momentum, are also provided for different values of the amplitude and frequency of such external potentials.

  8. Improved Efficacy of Synthesizing *MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study.

    PubMed

    Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank

    2018-05-21

    Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O values increase from Ce III to Lu III . However, the log K M(HL) H protonation constants, analogous to the log K H 2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.

  9. A Study of Soil and Duricrust Models for Mars

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    2001-03-01

    Analysis of soil and duricrust formation mechanisms on Mars. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments; results are compared with Mars Pathfinder soil data (spectral, chemical and magnetic).

  10. Synthesis of Multimetal-Graphene Composite by Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Saiphaneendra, Bachu; Srivastava, Avi Krishna; Srivastava, Chandan

    2016-10-01

    Multimetal-graphene composites were synthesized using the ball milling technique. To prepare the composite, graphite powder was mixed with Fe, Cr, Co, Cu and Mg powders. This mixture was then mechanically milled for 35 h in toluene medium. After milling, the multimetal-graphite mixture was mixed with sodium lauryl sulfate and sonicated for 2 h. Sonication led to the exfoliation of graphene sheets. Formation of graphene was confirmed from x-ray diffraction and Raman spectroscopy. Transmission electron microscopy-based analysis revealed the formation of multimetal deposits over the graphene surface. Compositional analysis of the multimetal deposits revealed fairly uniform distribution of all the five component metal atoms over the graphene sheet. The average composition of the multimetal deposit was determined to be 11.4 ± 4 at.% Mg, 33.8 ± 19 at.% Cr, 21.8 ± 16 at.% Fe, 9.4 ± 5.7 at.% Co and 23.6 ± 12 at.% Cu.

  11. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz; Innovation

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly relatedmore » to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.« less

  12. Formation of Si grains from a NaSi melt prepared by reaction of SiO2 and Na

    NASA Astrophysics Data System (ADS)

    Yamane, Hisanori; Morito, Haruhiko; Uchikoshi, Masahito

    2013-08-01

    A mixture of Na2SiO3 and NaSi was found to be formed by reaction of SiO2 and Na at 650 °C as follows: 5Na+3SiO2→2Na2SiO3+NaSi. Single crystals of NaSi were grown by cooling the mixture of Na2SiO3 and NaSi with an excess amount of Na from 850 °C, and polycrystalline Si was obtained by vaporization of Na from the crystals. Coarse grains of Si were also crystallized by Na evaporation after the formation of Na2SiO3 and Si-dissolved liquid Na at 830 °C. The Si grains were collected by washing the product with water. The yield of the Si grains was 85% of the ideal amount expected from the reaction.

  13. Controlled multistep synthesis in a three-phase droplet reactor

    PubMed Central

    Nightingale, Adrian M.; Phillips, Thomas W.; Bannock, James H.; de Mello, John C.

    2014-01-01

    Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock. PMID:24797034

  14. Coupling Glucose Dehydrogenation with CO2 Hydrogenation by Hydrogen Transfer in Aqueous Media at Room Temperature.

    PubMed

    Ding, Guodong; Su, Ji; Zhang, Cheng; Tang, Kan; Yang, Lisha; Lin, Hongfei

    2018-05-08

    Conversion of carbon dioxide into value-added chemicals and fuels provides a direct solution to reduce excessive CO2 in the atmosphere. Herein, a novel catalytic reaction system is presented by coupling the dehydrogenation of glucose with the hydrogenation of a CO2 derived salt, ammonium carbonate, in the ethanol-water mixture. For the first time, the hydrogenation of CO2 into formate by glucose has been achieved under ambient conditions. Under the optimal reaction conditions, the highest yield of formate reached ~ 46 %. We find that the apparent pH value in the ethanol-water mixture plays a central role in determining the performance of the hydrogen transfer reaction. Based on the 13C NMR and ESI-MS results, a possible pathway of the coupled glucose dehydrogenation and CO2 hydrogenation reactions was proposed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and structure characterization of chromium oxide prepared by solid thermal decomposition reaction.

    PubMed

    Li, Li; Yan, Zi F; Lu, Gao Q; Zhu, Zhong H

    2006-01-12

    Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)3.9H2O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time.

  16. Experimental study of formation and dynamics of cavitation bubbles and acoustic flows in NaCl, KCl water solutions

    NASA Astrophysics Data System (ADS)

    Rybkin, K. A.; Bratukhin, Yu. K.; Lyubimova, T. P.; Fatallov, O.; Filippov, L. O.

    2017-07-01

    The acoustic flows and the phenomena associated with them arising under the action of ultrasound of different power on distilled water and aqueous solutions of a mixture of NaCl and KCl salts of various concentrations are studied experimentally. It is found that in the distilled water, under the action of ultrasound, the appearance of inertial and non-inertial cavitation bubbles takes place, then the formation of stable clusters, the distance between which depends on the power of the ultrasound source is observed. Experiments show that an increase in the mass concentration of salts in water leads to the decrease in the average diameter of the arising inertial cavitation bubbles and to the gradual decrease in their number, up to an almost complete disappearance at nearly 13% of the concentration of the salt mixture in the water.

  17. Lyman alpha radiation in external galaxies

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Mckee, Christopher F.

    1990-01-01

    The Ly alpha line of atomic hydrogen is often a luminous component of the radiation emitted by distant galaxies. Except for those galaxies which have a substantial central source of non-stellar ionizing radiation, most of the Ly alpha radiation emitted by galaxies is generated within regions of the interstellar medium which are photoionized by starlight. Conversely, much of the energy radiated by photoionized regions is carried by the Ly alpha line. Only hot, massive stars are capable of ionizing hydrogen in the interstellar medium which surrounds them, and because such stars are necessarily short-lived, Ly alpha emission traces regions of active star formation. Researchers argue that the strength of the Ly alpha emission observed from external galaxies may be used to estimate quantitatively the dust content of the emitting region, while the Ly alpha line profile is sensitive to the presence of shock waves. Interstellar dust particles and shock waves are intimately associated with the process of star formation in two senses. First, both dust particles and shock waves owe their existence to stellar activity; second, they may both serve as agents which facilitate the formation of stars, shocks by triggering gravitational instabilities in the interstellar gas that they compress, and dust by shielding star-forming molecular clouds from the ionizing and dissociative effects of external UV radiation. By using Ly alpha observations as a probe of the dust content in diffuse gas at high redshift, we might hope to learn about the earliest epochs of star formation.

  18. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors.

  19. Physicochemical compatibility of propofol with thiopental sodium.

    PubMed

    Prankerd, R J; Jones, R D

    1996-11-01

    The physicochemical compatibility of propofol and thiopental sodium when mixed together in various ratios and stored was studied. Mixtures of propofol and thiopental sodium in five volume ratios from 1:3 to 3:1 were refrigerated (4 degrees C) for up to seven days and then centrifuged at 2000g for two hours. Droplet sizes were determined at intervals by optical microscopy and laser diffraction, and chemical stability of the 1:1 mixture was evaluated by high-performance liquid chromatography (HPLC). Optical microscopy and laser diffraction indicated negligible changes in droplet size within 48 hours of mixing. A small increase in the width of the frequency distribution of droplet sizes occurred 24-48 hours after mixing for the two mixtures with the lowest propofol concentration. Some coalescence of droplets occurred on centrifugation. These results indicated negligible formation of droplets that might cause embolism after i.v. injection of fresh mixtures (not more than six hours old). A yellow color appearing after 24-48 hours indicated anticipated chemical changes. HPLC of samples stored at 25 degrees C indicated clinically unimportant drug loss after six hours. The mixtures were considered physically stable for not more than 48 hours. Droplet size in mixtures of propofol and thiopental sodium did not increase until at least 24 hours. Drug loss from mixtures containing propofol 5 mg/mL and thiopental sodium 12.5 mg/mL was insignificant for up to eight hours.

  20. Dynamics of the sol—gel transition in organic—inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Judeinstein, P.; Oliveira, P. W.; Krug, H.; Schmidt, H.

    1994-03-01

    Two different techniques have been used to follow the gelation of photochromic organic—inorganic nanocomposites. The variations of molecular and macromolecular motions in these complex systems have been analyzed. Photo-correlation spectroscopy probes the formation of the gel network. Forced Rayleigh scattering experiences the microstructure of the mixtures via the measurement of the translational diffusion coefficient of entrapped photoreactive targets. In the different mixtures, a drop of the network mobility could be observed around the sol to gel conversion, while the entrapped molecules do not experience the macroscopic transition.

  1. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  2. Homogeneous reactions of hydrocarbons, silane, and chlorosilanes in radiofrequency plasmas at low pressures

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.

    1984-01-01

    The ion-molecule and radical-molecule mechanisms are responsible for the dissociation of hydrocarbon, silane, and chlorosilane monomers and the formation of polymerized species, respectively, in an RF plasma discharge. In a plasma containing a mixture of monomer and argon the rate-determining step for both dissociation and polymerization is governed by an ion-molecule type of interaction. Adding hydrogen or ammonia to the monomer-argon mixture transforms the rate-determining step from an ion-molecule interaction to a radical-molecule interaction for both monomer dissociation and polymerization.

  3. Computer simulation of phase separation under a double temperature quench.

    PubMed

    Podariu, Iulia; Chakrabarti, Amitabha

    2007-04-21

    The authors numerically study a two-step quench process in an asymmetric binary mixture. The mixture is first quenched to an unstable state in the two-phase region. After a large phase-separated structure is formed, the authors again quench the system deeper. The second quench induces the formation of small secondary droplets inside the large domains created by the first quench. The authors characterize this secondary droplet growth in terms of the temperature of the first quench as well as the depth of the second one.

  4. An Efficient Composition for Bengal Lights

    NASA Astrophysics Data System (ADS)

    Comet, M.; Schreyeck, L.; Fuzellier, H.

    2002-01-01

    Fuel-oxidizer mixtures based on potassium chlorate or sodium chlorate are well known. These mixtures have interesting properties of deflagration and are often used in propellants. Drastic reactivity of alkaline chlorates with ammonium salts due to the formation of ammonium chlorate NH4ClO3, a very unstable salt, is famous. By analogy, we tested the reactivity of different molecules containing nitrogen atoms, and we found an efficient fuel-oxidizer composed of potassium chlorate and thiocarbamide. Impressive bengal lights of various colors can easily be achieved using this basic composition.

  5. Thermochemical nitrate destruction

    DOEpatents

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  6. Ceramic sealants prepared by polymer pyrolysis

    NASA Astrophysics Data System (ADS)

    Hong, Sung Jin; Kim, Deug Joong; Yoo, Young Sung

    2011-02-01

    The formation and properties of ceramic seals for SOFC applications prepared by polymer pyrolysis are investigated. A mixture with polymethylsiloxane and fillers are pyrolyzed in a N2 atmosphere. The coefficient of thermal expansion of the ceramic composites was controlled by fillers with a high coefficient of thermal expansion such as AlCo. The morphology of the ceramic composites derived from the mixture with polymethylsiloxane and fillers is composed of fillers embedded in a Si-O-C glass matrix. The thermal expansion behavior and sealing characteristics are measured and discussed

  7. Effects of adsorptive properties of biofilter packing materials on toluene removal.

    PubMed

    Oh, Dong Ik; Song, Jihyeon; Hwang, Sun Jin; Kim, Jae Young

    2009-10-15

    Various adsorptive materials, including granular activated carbon (GAC) and ground tire rubber (GTR), were mixed with compost in biofilters used for treating gaseous toluene, and the effects of the mixtures on the stability of biofilter performance were investigated. A transient loading test demonstrated that a sudden increase in inlet toluene loading was effectively attenuated in the compost/GAC biofilter, which was the most significant advantage of adding adsorptive materials to the biofilter packing media. Under steady conditions with inlet toluene loading rates of 18.8 and 37.5 g/m(3)/h, both the compost and the compost/GAC biofilters achieved overall toluene removal efficiencies greater than 99%. In the compost/GAC mixture, however, biodegradation activity declined as the GAC mass fraction increased. Because of the low water-holding capacity of GTR, the compost/ground tire mixture did not show a significant improvement in toluene removal efficiency throughout the entire operational period. Furthermore, nitrogen limitations affected system performance in all the biofilters, but an external nitrogen supply resulted in the recovery of the toluene removal efficiency only in the compost biofilter during the test periods. Consequently, the introduction of excessive adsorptive materials was unfavorable for long-term performance, suggesting that the mass ratio of the adsorptive materials in such mixtures should be carefully selected to achieve high and steady biofilter performance.

  8. Application of pattern mixture models to address missing data in longitudinal data analysis using SPSS.

    PubMed

    Son, Heesook; Friedmann, Erika; Thomas, Sue A

    2012-01-01

    Longitudinal studies are used in nursing research to examine changes over time in health indicators. Traditional approaches to longitudinal analysis of means, such as analysis of variance with repeated measures, are limited to analyzing complete cases. This limitation can lead to biased results due to withdrawal or data omission bias or to imputation of missing data, which can lead to bias toward the null if data are not missing completely at random. Pattern mixture models are useful to evaluate the informativeness of missing data and to adjust linear mixed model (LMM) analyses if missing data are informative. The aim of this study was to provide an example of statistical procedures for applying a pattern mixture model to evaluate the informativeness of missing data and conduct analyses of data with informative missingness in longitudinal studies using SPSS. The data set from the Patients' and Families' Psychological Response to Home Automated External Defibrillator Trial was used as an example to examine informativeness of missing data with pattern mixture models and to use a missing data pattern in analysis of longitudinal data. Prevention of withdrawal bias, omitted data bias, and bias toward the null in longitudinal LMMs requires the assessment of the informativeness of the occurrence of missing data. Missing data patterns can be incorporated as fixed effects into LMMs to evaluate the contribution of the presence of informative missingness to and control for the effects of missingness on outcomes. Pattern mixture models are a useful method to address the presence and effect of informative missingness in longitudinal studies.

  9. Evaluation of the efficiency of continuous wavelet transform as processing and preprocessing algorithm for resolution of overlapped signals in univariate and multivariate regression analyses; an application to ternary and quaternary mixtures.

    PubMed

    Hegazy, Maha A; Lotfy, Hayam M; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-07-05

    Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Stray light rejection in giant externally-occulted solar coronagraphs: experimental developments

    NASA Astrophysics Data System (ADS)

    Venet, M.; Bazin, C.; Koutchmy, S.; Lamy, P.

    2017-11-01

    The advent of giant, formation-flight, externally-occulted solar coronagraphs such as ASPIICS (Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire [1,2,3,4]) selected by the European Space Agency (ESA) for its third PROBA (Project for On-Board Autonomy) mission of formation flying demonstration (presently in phase B) and Hi-RISE proposed in the framework of ESA Cosmic Vision program, presents formidable challenges for the study and calibration of instrumental stray light. With distances between the external occulter (EO) and the optical pupil (OP) exceeding hundred meters and occulter sizes larger than a meter, it becomes impossible to perform tests at the real scale. The requirement to limit the over-occultation to less than 1.05 Rsun, orders of magnitude to what has been achieved so far in past coronagraphs, further adds to the challenge. We are approaching the problem experimentally using reduced scale simulators and present below a progress report of our work.

  11. Self-consistent semi-analytic models of the first stars

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2018-04-01

    We have developed a semi-analytic framework to model the large-scale evolution of the first Population III (Pop III) stars and the transition to metal-enriched star formation. Our model follows dark matter haloes from cosmological N-body simulations, utilizing their individual merger histories and three-dimensional positions, and applies physically motivated prescriptions for star formation and feedback from Lyman-Werner (LW) radiation, hydrogen ionizing radiation, and external metal enrichment due to supernovae winds. This method is intended to complement analytic studies, which do not include clustering or individual merger histories, and hydrodynamical cosmological simulations, which include detailed physics, but are computationally expensive and have limited dynamic range. Utilizing this technique, we compute the cumulative Pop III and metal-enriched star formation rate density (SFRD) as a function of redshift at z ≥ 20. We find that varying the model parameters leads to significant qualitative changes in the global star formation history. The Pop III star formation efficiency and the delay time between Pop III and subsequent metal-enriched star formation are found to have the largest impact. The effect of clustering (i.e. including the three-dimensional positions of individual haloes) on various feedback mechanisms is also investigated. The impact of clustering on LW and ionization feedback is found to be relatively mild in our fiducial model, but can be larger if external metal enrichment can promote metal-enriched star formation over large distances.

  12. Codevelopment of externalizing and internalizing symptoms in middle to late childhood: Sex, baseline respiratory sinus arrhythmia, and respiratory sinus arrhythmia reactivity as predictors

    PubMed Central

    Hinnant, J. Benjamin; EL-Sheikh, Mona

    2013-01-01

    We investigated the roles of sex and respiratory sinus arrhythmia (RSA), an index of autonomic parasympathetic nervous system activity, as predictors of codeveloping externalizing and internalizing symptoms in middle childhood. We expected that sex, baseline RSA (RSA-B), and RSA reactivity (RSA-R) to two types of tasks would interact to differentiate co-occurring trajectories of symptoms. We tested these hypotheses by combining longitudinal data from two independent samples (n = 390; 210 girls, 180 boys) with repeated measures at ages 8, 9, 10, and 11. RSA-R was measured in response to a socially stressful and frustrating stressor. Indicators of growth in externalizing and internalizing symptoms were derived from multiple domain growth models and used in person-centered growth mixture analyses. Three groups of externalizing and internalizing trajectories were found. Profile membership was predicted by several two-way interactions among sex, RSA-B, or RSA-R but was not predicted by three-way interactions. Children with low RSA-B and strong RSA withdrawal, girls with low RSA-B, and girls with strong RSA withdrawal were more likely to be on a developmental trajectory of low externalizing symptoms and moderately elevated internalizing symptoms. Membership in the high externalizing and high internalizing trajectory was predicted by weak RSA withdrawal for boys and strong RSA withdrawal for girls. The type of stressor task also played a role in predicting probability of profile membership. Results are discussed in the context of developmental psychobiology and implications for the codevelopment of psychopathology symptoms in childhood. PMID:23627954

  13. The effect of hydrodynamic and thermodynamic factors and the addition of citric acid on the precipitation of calcium oxalate dihydrate.

    PubMed

    Šter, Anamarija; Šafranko, Silvija; Bilić, Katarina; Marković, Berislav; Kralj, Damir

    2018-06-01

    This paper reports on the investigation of experimental conditions relevant for spontaneous precipitation of significant amount of pure calcium oxalate dihydrate (COD). For this purpose, the hydrodynamic and thermodynamic parameters, such as mode of agitation, temperature, supersaturation and concentration of additives (citrate ions), have been studied. The results show that in the model systems, without the citrate addition and applied mechanical stirring, calcium oxalate monohydrate (COM) was observed as dominant modification after 20 min of aging, while the magnetic stirring resulted in a formation of a mixture of COM and calcium oxalate trihydrate (COT), regardless of the temperature applied. In the mechanically stirred systems, the addition of citrate ions in the range of concentrations, 0.001 mol dm -3  < c i (Na 3 C 6 H 5 O 7 ) < 0.012 mol dm -3 , caused the formation of COM and COD mixture at all temperatures. At the same conditions and in the magnetically stirred systems formation of COD, in a mixture with COT or COM, has been observed. The highest COD content in the mechanically stirred system was obtained at 45 °C and c i (Na 3 C 6 H 5 O 7 ) = 0.001 mol dm -3 (w = 89.5%), while in the magnetically stirred system almost pure COD was obtained at 37 °C and c i (Na 3 C 6 H 5 O 7 ) = 0.008 mol dm -3 (w = 96.5%).

  14. Formation and composition of adsorbates on hydrophobic carbon surfaces from aqueous laccase-maltodextrin mixture suspension

    NASA Astrophysics Data System (ADS)

    Corrales Ureña, Yendry Regina; Lisboa-Filho, Paulo Noronha; Szardenings, Michael; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Rischka, Klaus

    2016-11-01

    A robust procedure for the surface bio-functionalization of carbon surfaces was developed. It consists on the modification of carbon materials in contact with an aqueous suspension of the enzyme laccase from Trametes versicolor and the lyophilization agent maltodextrin, with the pH value adjusted close to the isoelectric point of the enzyme. We report in-situ investigations applying Quartz Crystal Microbalance with Dissipation (QCM-D) for carbon-coated sensor surfaces and, moreover, ex-situ measurements with static contact angle measurements, X-ray Photoelectron Spectroscopy (XPS) and Scanning Force Microscopy (SFM) for smooth Highly Oriented Pyrolytic Graphite (HOPG) substrates, for contact times between the enzyme formulation and the carbon material surface ranging from 20 s to 24 h. QCM-D studies reveals the formation of rigid layer of biomaterial, a few nanometers thin, which shows a strongly improved wettability of the substrate surface upon contact angle measurements. Following spectroscopic characterization, these layers are composed of mixtures of laccase and maltodextrin. The formation of these adsorbates is attributed to attractive interactions between laccase, the maltodextrin-based lyophilization agent and the hydrophobic carbon surfaces; a short-term contact between the aqueous laccase mixture suspension and HOPG surfaces is shown to merely result in de-wetting patterns influencing the results of contact angle measurements. The new enzyme-based surface modification of carbon-based materials is suggested to be applicable for the improvement of not only the wettability of low energy substrate surfaces with fluid formulations like coatings or adhesives, but also their adhesion in contact with hardened polymers.

  15. Influence of polyols on the formation of nanocrystalline nickel ferrite inside silica matrices

    NASA Astrophysics Data System (ADS)

    Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Bunoiu, Mădălin

    2017-01-01

    We have synthesized nickel ferrite/silica nanocomposites, using a modified sol-gel method that combines the sol-gel processing with the thermal decomposition of metal-organic precursors, leading to a homogenous dispersion of ferrite nanoparticles within the silica matrix and a narrow size distribution. We used as starting materials tetraethyl orthosilicate (TEOS) as source of silica, Fe(III) and Ni(II) nitrates as sources of metal cations, and polyols as reducing agent (polyvinyl alcohol, 1,4-butanediol and their mixture). TG/DTA coupled technique evidenced the redox interaction between the polyol and the mixture of metal nitrates during the heating of the gel, with formation of nickel ferrite precursors in the pores of the silica-gels. FT-IR spectroscopy confirmed the formation of metal carboxylates inside the silica-gels and the interaction of the polyols with the Si-OH groups of the polysiloxane network. X-ray diffractometry evidenced that in case of nanocomposites obtained by using a single polyol, nickel ferrite forms as single crystalline phase inside the amorphous silica matrix, while in case of using a mixture of polyols the nickel oxide appears as a secondary phase. TEM microscopy and elemental mapping evidenced the fine nature of the obtained nickel ferrite nanoparticles that are homogenously dispersed within the silica matrix. The obtained nanocomposites exhibit magnetic behavior very close to superparamagnetism slightly depending on the presence and nature of the organic compounds used in synthesis; the magnetization reached at 5 kOe magnetic field was 7 emu/g for all composites.

  16. Phase equillibria and solidification behaviour in the vanillin- p-anisidine system

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Das, S. S.; Gupta, Preeti; Dwivedi, M. K.

    2008-12-01

    Phase diagram of the vanillin- p-anisidine system has been studied by the thaw melt method. Congruent melting-type phase diagram exhibiting two eutectic points was obtained. Vanillin and p-anisidine react in 1:1 M ratio and form N-(4-methoxy phenyl)-4-hydroxy-3-methoxy phenyl methanimine (NHM) and water. Heats of fusion of pure components and the eutectic mixtures ( E1 and E2) were obtained from DSC studies. Jackson's roughness parameters ( α) were calculated. Excess Gibbs free energy ( GE), excess entropy ( SE) and excess enthalpy ( HE) of mixing of pre-, post- and eutectic mixtures were also calculated by using activity coefficient data. Linear velocities of solidification of components and eutectic mixtures were determined at different undercoolings. The values of excess thermodynamic functions and linear velocity data have indicated the non-ideal nature of the eutectic mixtures. Interaction energies in the gaseous state, calculated from computer simulation, have also indicated that the eutectics are non-ideal mixtures. Microstructural studies of vanillin, p-anisidine and NHM show the formation of broken lamellar type structures. However, for the eutectic E1, an irregular type and for the eutectic E2, a lamellar type structures were obtained. The effect of impurity on the microstructures of eutectic mixtures was also studied.

  17. Effects of variation in chain length on ternary polymer electrolyte - Ionic liquid mixture - A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Raju, S. G.; Hariharan, Krishnan S.; Park, Da-Hye; Kang, HyoRang; Kolake, Subramanya Mayya

    2015-10-01

    Molecular dynamics (MD) simulations of ternary polymer electrolyte - ionic liquid mixtures are conducted using an all-atom model. N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CnMPy][TFSI], n = 1, 3, 6, 9) and polyethylene oxide (PEO) are used. Microscopic structure, energetics and dynamics of ionic liquid (IL) in these ternary mixtures are studied. Properties of these four pure IL are also calculated and compared to that in ternary mixtures. Interaction between pyrrolidinium cation and TFSI is stronger and there is larger propensity of ion-pair formation in ternary mixtures. Unlike the case in imidazolium IL, near neighbor structural correlation between TFSI reduces with increase in chain length on cation in both pure IL and ternary mixtures. Using spatial density maps, regions where PEO and TFSI interact with pyrrolidinium cation are identified. Oxygens of PEO are above and below the pyrrolidinium ring and away from the bulky alkyl groups whereas TFSI is present close to nitrogen atom of CnMPy. In pure IL, diffusion coefficient (D) of C3MPy is larger than of TFSI but D of C9MPy and C6MPy are larger than that of TFSI. The reasons for alkyl chain dependent phenomena are explored.

  18. Luminescent Characteristics of a Pulsed Discharge Plasma in Xe-KBr Mixture

    NASA Astrophysics Data System (ADS)

    Heneral, A. A.; Zhmenyak, Y. V.

    2018-03-01

    A mixture of xenon with a nontoxic halogen carrier Xe-KBr is used to create a plasma radiation source at the 282-nm transition of the XeBr* molecule excited by a high-voltage pulsed-periodic discharge. The luminescence spectra of the plasma of a longitudinal pulsed-periodic discharge in the Xe-KBr mixture at low pressures are studied experimentally. The most intense UV bands of exciplex XeBr* molecules are recorded in the spectral range of 250-350 nm. The spectral, temporal, and energetic characteristics of the radiation source are presented, as well as the dependence of the XeBr* exciplex molecule formation efficiency on the discharge excitation conditions. The optimal conditions for the excitation of UV radiation in the pulsed-periodic discharge plasma are determined.

  19. Mechanism for Increasing the Pressure in an Oil Well by a Combustible Oxidizing Liquid Mixture

    NASA Astrophysics Data System (ADS)

    Melik-Gaikazov, G. V.

    2014-09-01

    A method of estimating the pressure pulse arising in a deep oil well as a result of the thermal explosion of a combustible oxidizing liquid mixture in it is presented. It was established that less than 10% of this mixture is expended for the formation of a pressure pulse in this well. The conditions under which a tubing string positioned in such a well experiences a plastic bending and its walls are crumpled were determined. The maximum admissible difference between the pressures at the walls of this tube were calculated, and axial compression loads were related to critical forces of different orders. It is shown that, when the indicated tube is submerged in the liquid in the well, its resistance to a short-time axial compression load increases.

  20. Formation and photopatterning of nanoporous titania thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Oun-Ho; Cheng, Joy Y.; Kim, Hyun Suk

    2007-06-04

    Photopatternable nanoporous titania thin films were generated from mixtures of an organic diblock copolymer, poly(styrene-b-ethylene oxide) (PS-b-PEO), and an oligomeric titanate (OT) prepared from a chelated titanium isopropoxide. The PS-b-PEO templates well-defined microdomains in thin films of the mixtures, which upon thermal treatment at 450 deg. C, become nanopores in titania. Average pore size and porosity are controlled by the molecular weight and loading level of the PS-b-PEO, respectively. Patterns of nanoporous titania were created by selectively exposing UV light on the mixture films. The UV irradiation destroys the chelating bond and induces the cross-linking reaction of the OT. Subsequentmore » wet development followed by thermal treatment gives patterned nanoporous films of anatase phase titania.« less

  1. Etherification process

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1990-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  2. Oligomerization process

    DOEpatents

    Smith, Jr., Lawrence A.; hearn, Dennis; Jones, Jr., Edward M.

    1991-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  3. Prosocial Behavior: Long-Term Trajectories and Psychosocial Outcomes.

    PubMed

    Flynn, Elinor; Ehrenreich, Samuel E; Beron, Kurt J; Underwood, Marion K

    2015-08-01

    This study investigated developmental trajectories for prosocial behavior for a sample followed from age 10 - 18 and examined possible adjustment outcomes associated with membership in different trajectory groups. Participants were 136 boys and 148 girls, their teachers, and their parents (19.4% African American, 2.4% Asian, 51.9% Caucasian, 19.5% Hispanic, and 5.8% other). Teachers rated children's prosocial behavior yearly in grades 4 - 12. At the end of the 12 th grade year, teachers, parents, and participants reported externalizing behaviors and participants reported internalizing symptoms, narcissism, and features of borderline personality disorder. Results suggested that prosocial behavior remained stable from middle childhood through late adolescence. Group-based mixture modeling revealed three prosocial trajectory groups: low (18.7%), medium (52.8%), and high (29.6%). Membership in the high prosocial trajectory group predicted lower levels of externalizing behavior as compared to the low prosocial trajectory group, and for girls, lower levels of internalizing symptoms. Membership in the medium prosocial trajectory group also predicted being lower on externalizing behaviors. Membership in the high prosocial trajectory group predicted lower levels of borderline personality features for girls only.

  4. FBI fingerprint identification automation study: AIDS 3 evaluation report. Volume 6: Environmental analysis

    NASA Technical Reports Server (NTRS)

    Mulhall, B. D. L.

    1980-01-01

    The results of the analysis of the external environment of the FBI Fingerprint Identification Division are presented. Possible trends in the future environment of the Division that may have an effect on the work load were projected to determine if future work load will lie within the capability range of the proposed new system, AIDS 3. Two working models of the environment were developed, the internal and external model, and from these scenarios the projection of possible future work load volume and mixture was developed. Possible drivers of work load change were identified and assessed for upper and lower bounds of effects. Data used for the study were derived from historical information, analysis of the current situation and from interviews with various agencies who are users of or stakeholders in the present system.

  5. Academic Identity Formation and Motivation among Ethnic Minority Adolescents: The Role of the "Self" between Internal and External Perceptions of Identity

    ERIC Educational Resources Information Center

    Matthews, Jamaal S.; Banerjee, Meeta; Lauermann, Fani

    2014-01-01

    Identity is often studied as a motivational construct within research on adolescent development and education. However, differential dimensions of identity, as a set of internal values versus external perceptions of social belonging, may relate to motivation in distinct ways. Utilizing a sample of 600 African American and Latino adolescents (43%…

  6. Clustering of Magnetic Swimmers in a Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Meng, Fanlong; Matsunaga, Daiki; Golestanian, Ramin

    2018-05-01

    We investigate the collective behavior of magnetic swimmers, which are suspended in a Poiseuille flow and placed under an external magnetic field, using analytical techniques and Brownian dynamics simulations. We find that the interplay between intrinsic activity, external alignment, and magnetic dipole-dipole interactions leads to longitudinal structure formation. Our work sheds light on a recent experimental observation of a clustering instability in this system.

  7. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Andres, S.; Bachner, M.; Behnke, K.; Broch, S.; Hofzumahaus, A.; Holland, F.; Kleist, E.; Mentel, T. F.; Rubach, F.; Springer, M.; Steitz, B.; Tillmann, R.; Wahner, A.; Schnitzler, J.-P.; Wildt, J.

    2012-01-01

    Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (<0.5 nmol m-2 s-1) in isoprene emission-repressed plants (line RA22), respectively. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  8. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Andres, S.; Bachner, M.; Behnke, K.; Broch, S.; Hofzumahaus, A.; Holland, F.; Kleist, E.; Mentel, T. F.; Rubach, F.; Springer, M.; Steitz, B.; Tillmann, R.; Wahner, A.; Schnitzler, J.-P.; Wildt, J.

    2011-08-01

    Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar, modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (<0.5 nmol m-2 s-1) in isoprene emission-repressed lines (line RA22), respectively. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3 % of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  9. The Role of Electrolyte Upon the SEI Formation Characteristics and Low Temperature Performance of Lithium-Ion Cells With Graphite Anodes

    NASA Technical Reports Server (NTRS)

    Smart, M.; Ratnakumar, B.; Greenbaum, S.; Surampudi, S.

    1998-01-01

    Quarternary lithium-ion battery electrolyte solutions containing ester co-solvents in mixtures of carbonates have been demonstrated to have high conductivity at low temperatures (<-20 degrees Celcius).

  10. Guanine- Formation During the Thermal Polymerization of Amino Acids

    NASA Technical Reports Server (NTRS)

    Mc Caw, B. K.; Munoz, E. F.; Ponnamperuma, C.; Young, R. S.

    1964-01-01

    The action of heat on a mixture of amino acids was studied as a possible abiological pathway for the synthesis of purines and pyrimidines. Guanine was detected. This result is significant in the context of chemical evolution.

  11. Separation of non-racemic mixtures of enantiomers: an essential part of optical resolution.

    PubMed

    Faigl, Ferenc; Fogassy, Elemér; Nógrádi, Mihály; Pálovics, Emese; Schindler, József

    2010-03-07

    Non-racemic enantiomeric mixtures form homochiral and heterochiral aggregates in melt or suspension, during adsorption or recrystallization, and these diastereomeric associations determine the distribution of the enantiomers between the solid and other (liquid or vapour) phases. That distribution depends on the stability order of the homo- and heterochiral aggregates (conglomerate or racemate formation). Therefore, there is a correlation between the binary melting point phase diagrams and the experimental ee(I)vs. ee(0) curves (ee(I) refers to the crystallized enantiomeric mixtures, ee(0) is the composition of the starting ones). Accordingly, distribution of the enantiomeric mixtures between two phases is characteristic and usually significant enrichment can be achieved. There are two exceptions: no enrichment could be observed under thermodynamically controlled conditions when the starting enantiomer composition corresponded to the eutectic composition, or when the method used was unsuitable for separation. In several cases, when kinetic control governed the crystallization, the character of the ee(0)-ee(I) curve did not correlate with the melting point binary phase diagram.

  12. Protic ionic liquids based on the dimeric and oligomeric anions: [(AcO)xH(x-1)]-.

    PubMed

    Johansson, K M; Izgorodina, E I; Forsyth, M; MacFarlane, D R; Seddon, K R

    2008-05-28

    We describe a fluidity and conductivity study as a function of composition in N-methylpyrrolidine-acetic acid mixtures. The simple 1 : 1 acid-base mixture appears to form an ionic liquid, but its degree of ionicity is quite low and such liquids are better thought of as poorly dissociated mixtures of acid and base. The composition consisting of 3 moles acetic acid and 1 mole N-methylpyrrolidine is shown to form the highest ionicity mixture in this binary due to the presence of oligomeric anionic species [(AcO)(x)H(x-1)](-) stabilised by hydrogen bonds. These oligomeric species, being weaker bases than the acetate anion, shift the proton transfer equilibrium towards formation of ionic species, thus generating a higher degree of ionicity than is present at the 1 : 1 composition. A Walden plot analysis, thermogravimetric behaviour and proton NMR data, as well as ab initio calculations of the oligomeric species, all support this conclusion.

  13. Energy transfer studies in krypton-xenon mixtures excited in a cooled DC discharge

    NASA Astrophysics Data System (ADS)

    Krylov, B.; Gerasimov, G.; Morozov, A.; Arnesen, A.; Hallin, R.; Heijkenskjold, F.

    2000-01-01

    The VUV spectrum of gaseous mixtures of krypton with a small amount of xenon added was investigated in the range 115-200 nm. The mixtures were excited in a capillary DC discharge where the capillary could be cooled by using liquid nitrogen. The mixed molecule band around the Xe I resonance line at λ = 147 nm and the mixed molecule continuum to the long wavelength side from the line were analysed. The band around λ = 147 nm was identified as transitions between a weakly bound excited state and the weakly bound ground state of XeKr molecules. When cooling the capillary wall, the appearance of the Xe2 continuum was observed. The effect is ascribed to energy transfer between molecular states as a consequence of radiation trapping in the band around λ = 147 nm. The role of the mixed molecule in the formation of the VUV spectrum of the gas mixture is discussed and underlined.

  14. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, Mikko

    1996-12-31

    The thermal behavior of a fuel ash is one important factor to consider when fireside slagging and fouling problems in steam boilers are addressed. It is well known that different types of chemical reactions and melts in deposits play an important role in the build-up of problematic fireside deposits. Low viscous melts occur in steam boilers mainly when salt mixtures are present in the ash. Such are Merent mixtures of alkali and earth alkali sulfates, chlorides and carbonates. These mixtures do not melt at a certain temperature but form a melt in a temperature range which in some cases maymore » be several hundreds of degrees. The amount of melt is crucial for the deposit build-up. For some boilers it has been found that roughly 10 - 20 weight-% melt in an ash mixture would be enough to cause extensive deposit formation, while 60 - 80 weight-% melt would already cause the ash to be so wet it would flow down a vertical tube and not cause any further deposit growth.« less

  15. Equilibration of a polycation - anionic surfactant mixture at the water/vapor interface.

    PubMed

    Akanno, Andrew; Guzmán, Eduardo; Fernández-Peña, Laura; Llamas, Sara; Ortega, Francisco; Rubio, Ramon Gonzalez

    2018-06-01

    The adsorption of concentrated poly(diallyldimethylammonium chloride) (PDADMAC) - sodium lauryl ether sulfate (SLES) mixtures at the water / vapor interface has been studied by different surface tension techniques and dilational visco-elasticity measurements. This work tries to shed light on the way in which the formation of polyelectrolyte - surfactant complexes in the bulk affects to the interfacial properties of mixtures formed by a polycation and an oppositely charged surfactant. The results are discussed in terms of a two-step adsorption-equilibration of PDADMAC - SLES complexes at the interface, with the initial stages involving the diffusion of kinetically trapped aggregates formed in the bulk to the interface followed by the dissociation and spreading of such aggregates at the interface. This latter process becomes the main contribution to the surface tension decrease. This work helps on the understanding of the most fundamental bases of the physico-chemical behavior of concentrated polyelectrolyte - surfactant mixtures which present complex bulk and interfacial interactions with interest in both basic and applied sciences.

  16. Reformers or Roadblocks: Educational Interest Groups and State Policy Formation

    ERIC Educational Resources Information Center

    Emerson, Joseph; Lemasters, Linda; Howerton, Everett

    2008-01-01

    Given the overt political nature of this topic, an additional theoretical postulate, the Triadic Theory of Power was also presented as another framework to conceptualize the external and internal forces which shape the formation of contemporary education policy. Predicated upon the scholarship of Nobel laureate James Q. Wilson, Andrew McFarland…

  17. Survey of Reader Preferences Concerning the Format of NASA Technical Reports.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    This report presents the results of internal and external surveys of engineers and scientists at Langley Research Center and in the academic and industrial communities concerning the format of technical reports of the National Aeronautics and Space Administration (NASA). After stating the purpose of the study and defining the terms, the report…

  18. Transformation to a Web-Based Preservice Training Program: A Case Study

    ERIC Educational Resources Information Center

    Lifter, Karin; Kruger, Louis; Okun, Barbara; Tabol, Charity; Poklop, Laurie; Shishmanian, Eunice

    2005-01-01

    In this article, the authors describe how they transformed their interdisciplinary personnel preparation program in early intervention from a traditional classroom format to a primarily Web-based format. The authors used force field analysis, informed by survey results of faculty and practitioners, to examine the external and internal factors that…

  19. QSPR for predicting chloroform formation in drinking water disinfection.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-01-01

    Chlorination is the most widely used technique for water disinfection, but may lead to the formation of chloroform (trichloromethane; TCM) and other by-products. This article reports the first quantitative structure-property relationship (QSPR) for predicting the formation of TCM in chlorinated drinking water. Model compounds (n = 117) drawn from 10 literature sources were divided into training data (n = 90, analysed by five-way leave-many-out internal cross-validation) and external validation data (n = 27). QSPR internal cross-validation had Q² = 0.94 and root mean square error (RMSE) of 0.09 moles TCM per mole compound, consistent with external validation Q2 of 0.94 and RMSE of 0.08 moles TCM per mole compound, and met criteria for high predictive power and robustness. In contrast, log TCM QSPR performed poorly and did not meet the criteria for predictive power. The QSPR predictions were consistent with experimental values for TCM formation from tannic acid and for model fulvic acid structures. The descriptors used are consistent with a relatively small number of important TCM precursor structures based upon 1,3-dicarbonyls or 1,3-diphenols.

  20. The promotion effect of coexisting hygroscopic composition on the reaction between oxalic acid and calcite during humidifying process

    NASA Astrophysics Data System (ADS)

    Ma, Q.; He, H.

    2012-12-01

    Internally mixed oxalic acid with mineral dust has been frequently detected in field measurements (Sullivan and Prather, 2007; Wang et al., 2012; Yang et al., 2009). Meanwhile, Furukawa and Takahashi (Furukawa and Takahashi, 2011) found that most of the oxalic acid in mineral mixture is present as metal oxalate complexes in the aerosols, however, the formation mechanism of these complexes is not well known. It was reported that cloud process of H2C2O4/CaCO3 mixture could lead to the formation of calcium oxalate (Gierlus et al., 2012). Recently, we used Raman spectroscopy to investigate the hygroscopic behavior of H2C2O4/CaCO3 mixture below saturation condition as well as the effect of coexisting hygroscopic compositions, e.g. Ca(NO3)2, NaCl, NH4NO3, and (NH4)2SO4. It was found that there was no interaction between H2C2O4 and calcite without third component during humidifying process under ambient condition. In contrast, the presence of coexisting Ca(NO)3, NaCl, or NH4NO3 could promote the reaction between H2C2O4 and calcite by providing an aqueous circumstance after deliquescence, resulting in the formation of calcium oxalate hydrates. Moreover, substitution of strong acid (HNO3) by medium acid (H2C2O4) occurred when water vapor was absorbed in Ca(NO3)2/H2C2O4 mixture (Ma and He, 2012). As for (NH4)2SO4, there existed a competition effect between (NH4)2SO4 and H2C2O4 for the reaction with CaCO3. CaCO3 was preferentially reacted with (NH4)2SO4 to form gypsum in the solution, while the residual NH4+ and C2O42- ions were bonded to (NH4)2C2O4 after efflorescence. These results implies a potential formation pathway of metal oxalate complexes in the atmosphere and also suggests that synergistic effect between different constituents in humidifying process of mixed particles should be considered in future hygroscopic behavior studies.

Top