Sample records for external phosphorus loading

  1. Hydrology and water quality of Delavan Lake in southeastern Wisconsin

    USGS Publications Warehouse

    Field, S.J.; Duerk, M.D.

    1988-01-01

    External loading of phosphorus and nitrogen were sufficient to cause eutrophic conditions. Internal loading of phosphorus was more than two times the external phosphorus supply. Most of the internal loading occurred when the hypolimnion was anoxic during summer. Internal loading of phosphorus during the 1985 water year was significantly reduced from that of 1984 because of a shorter anoxic period.

  2. Water Quality, Hydrology, and Simulated Response to Changes in Phosphorus Loading of Butternut Lake, Price and Ashland Counties, Wisconsin, with Special Emphasis on the Effects of Internal Phosphorus Loading in a Polymictic Lake

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2008-01-01

    Butternut Lake is a 393-hectare, eutrophic to hypereutrophic lake in northcentral Wisconsin. After only minor improvements in water quality were observed following several actions taken to reduce the nutrient inputs to the lake, a detailed study was conducted from 2002 to 2007 by the U.S. Geological Survey to better understand how the lake functions. The goals of this study were to describe the water quality and hydrology of the lake, quantify external and internal sources of phosphorus, and determine the effects of past and future changes in phosphorus inputs on the water quality of the lake. Since the early 1970s, the water quality of Butternut Lake has changed little in response to nutrient reductions from the watershed. The largest changes were in near-surface total phosphorus concentrations: August concentrations decreased from about 0.09 milligrams per liter (mg/L) to about 0.05 mg/L, but average summer concentrations decreased only from about 0.055-0.060 mg/L to about 0.045 mg/L. Since the early 1970s, only small changes were observed in chlorophyll a concentrations and water clarity (Secchi depths). All major water and phosphorus sources, including the internal release of phosphorus from the sediments (internal loading), were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake during monitoring years (MY) 2003 and 2004. During these years, Butternut Creek, Spiller Creek, direct precipitation, small tributaries and near-lake drainage area, and ground water contributed about 62, 20, 8, 7, and 3 percent of the inflow, respectively. The average annual load of phosphorus to the lake was 2,540 kilograms (kg), of which 1,590 kg came from external sources (63 percent) and 945 kg came from the sediments in the lake (37 percent). Of the total external sources, Butternut Creek, Spiller Creek, small tributaries and near-lake drainage area, septic systems, precipitation, and ground water contributed about 63, 23, 9, 3, 1, and 1 percent, respectively. Because of the high internal phosphorus loading, the eutrophication models used in this study were unable to simulate the observed water-quality characteristics in the lake without incorporating this source of phosphorus. However, when internal loading of phosphorus was added to the BATHTUB model, it accurately simulated the average water-quality characteristics measured in MY 2003 and 2004. Model simulations demonstrated a relatively linear response between in-lake total phosphorus concentrations and external phosphorus loading; however, the changes in concentrations were smaller than the changes in external phosphorus loadings (about 25-40 percent of the change in phosphorus loading). Changes in chlorophyll a concentrations, the percentage of days with algal blooms, and Secchi depths were nonlinear and had a greater response to reductions in phosphorus loading than to increases in phosphorus loading. A 50-percent reduction in external phosphorus loading caused an 18-percent decrease in chlorophyll a concentrations, a 41-percent decrease in the percentage of days with algal blooms, and a 12-percent increase in Secchi depth. When the additional internal phosphorus loading was removed from model simulations, all of these constituents showed a much greater response to changes in external phosphorus loading. Because of Butternut Lake's morphometry, it is polymictic, which means it mixes frequently and does not develop stable thermal stratification throughout the summer. This characteristic makes it more vulnerable than dimictic lakes, which mix in spring and fall and develop stable thermal stratification during summer, to the high internal phosphorus loading that has resulted from historically high, nonnatural, external phosphorus loading. In polymictic lakes, the phosphorus released from the sediments is mixed into the upper part of the lake throughout summer. Once Butternut Lake became hypereutrophic (very p

  3. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea.

    PubMed

    Vahtera, Emil; Conley, Daniel J; Gustafsson, Bo G; Kuosa, Harri; Pitkänen, Heikki; Savchuk, Oleg P; Tamminen, Timo; Viitasalo, Markku; Voss, Maren; Wasmund, Norbert; Wulff, Fredrik

    2007-04-01

    Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.

  4. Internal phosphorus loading across a cascade of three eutrophic basins: A synthesis of short- and long-term studies.

    PubMed

    Tammeorg, Olga; Horppila, Jukka; Tammeorg, Priit; Haldna, Marina; Niemistö, Juha

    2016-12-01

    Ascertaining the phosphorus (P) release processes in polymictic lakes is one of the methodologically most complex questions in limnology. In the current study, we combined short- and long-term investigations to elucidate the role of sediments in the P budget in a chain of eutrophic lake basins. We quantified the internal loading of P in three basins of Lake Peipsi (Estonia/Russia) for two periods characterized by different external P loadings using radiometrically dated sediment cores (long-term studies). The relationships between different water quality variables and the internal P loading, and the external P loading were studied. Our short-term studies aimed at elucidating the possible mechanisms behind variations in internal P loading included examination of the surficial sediments, i.e., seasonal measurements of redox potential, sediment pore water P concentrations and diffusive fluxes. Our results provided evidence for a potentially high importance of internal P loading in regulating water quality. The sediment core analyses revealed an increase in the internal P loading during the period of lower external P loading coinciding with the general deterioration in the lake water quality (i.e, higher concentrations of soluble reactive phosphorus, total phosphorus and biomass of cyanobacteria). Increase in wave action between the two studied periods appeared to cause more frequent sediment resuspension, and thus be the most likely reason for the variations in internal P loading. Our short-term measurements indicated that resuspension events can be followed by a considerable increase in the diffusive fluxes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. External nutrient sources, internal nutrient pools, and phytoplankton production in Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnien, R.E.; Summers, R.M.; Sellner, K.G.

    1992-12-01

    External nutrient loadings, internal nutrient pools, and phytoplankton production were examined for three major subsystems of the Chesapeake Bay Estuary-the upper Mainstem, the Patuxent Estuary, and the Potomac Estuary-during 1985-1989. The atomic nitrogen to phosphorus ratios (TN:TP) of total loads were 51, 29 and 35, respectively. Most of these loads entered at the head of the estuaries from riverine sources and major wastewater treatment plants. Seven-16% of the nitrogen load entered the head of each estuary as particulate matter in contrast to 48-69% for phosphorus. The difference seems to favor a greater loss of phosphorus than nitrogen through sedimentation andmore » burial. A major storm event in the Potomac watershed greatly increased the particulate fraction of nitrogen and phosphorus and lowered the TN:TP in the river-borne loads and accounted for 11% of the nitrogen and 31% of the phosphorus delivered to the estuary by the Potomac River during the entire 60- month period examined here. Within the Mainstem estuary, salinity dilution plots revealed strong net sources of ammonium and phosphate in the oligohaline to upper mesohaline region. indicating considerable internal recycling of nutrients to surface waters. A net sink of nitrate was indicated during summer. Phytoplankton biomass in the mesohaline Mainstem reached a peak in spring and was relatively constant throughout the other seasons. In the Patuxent and Potomac, the TN:TP ratios of external loads are 2-4 times higher than those observed over the previous two decades. These changes are attributed to point-source phosphorus controls and the likelihood that nitrogen-rich nonpoint source inputs, including contributions from the atmosphere, have increased. These higher N:P ratios now suggest a greater overall potential for phosphorus-limitation rather than nitrogen-limitation of phytoplankton in the areas studied. 66 refs., 6 figs., 7 tabs.« less

  6. Fifteen-year study of environmental dredging effect on variation of nitrogen and phosphorus exchange across the sediment-water interface of an urban lake.

    PubMed

    Liu, Cheng; Zhong, Jicheng; Wang, Jianjun; Zhang, Lu; Fan, Chengxin

    2016-12-01

    Environmental dredging has been applied widely in Chinese lakes to reduce their internal nutrient loads. However, the efficacy of dredging to reduce internal loading of nitrogen (N) and phosphorus (P) and to improve water quality has been questioned by some researchers. In this study, the long-term (∼15 years) effects of dredging to reduce internal N and P loading in a closed, polluted urban lake were investigated. The results showed that the release of soluble reactive phosphorus (SRP) could be suppressed quickly after dredging, and that the dredging effect was sustained for about 18 months. A significant release of NH 4 + -N was discovered during the first 2-8 months after dredging, followed by maintenance of low-level release rates for about 21-32 months. The continuous inflowing of external pollution loading led to the increase in the release rates of SRP and NH 4 + -N. The external pollution loading was therefore reduced three years after dredging to strengthen the remediation effect. After that, high diffusive flux from the sediment was observed for both NH 4 + -N and SRP during summer seasons for about six years, followed by a decreasing trend. The NH 4 + -N concentration in the overlying water was reduced after the reduction of external loading, while a high concentration of SRP in the overlying water was still observed during summer seasons. In conclusion, the mid-term (<3 years) reduction of internal N and P loading could be achieved by dredging if the external pollution loading were not reduced. Achieving long-term control would require modification of external loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem

    USGS Publications Warehouse

    Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, Dale M.

    2011-01-01

    The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.

  8. Predicting lake responses to phosphorus loading with measurement-based characterization of P recycling in sediments

    NASA Astrophysics Data System (ADS)

    Katsev, S.; Li, J.

    2017-12-01

    Predicting the time scales on which lake ecosystems respond to changes in anthropogenic phosphorus loadings is critical for devising efficient management strategies and setting regulatory limits on loading. Internal loading of phosphorus from sediments, however, can significantly contribute to the lake P budget and may delay recovery from eutrophication. The efficiency of mineralization and recycling of settled P in bottom sediments, which is ultimately responsible for this loading, is often poorly known and is surprisingly poorly characterized in the societally important systems such as the Great Lakes. We show that a simple mass-balance model that uses only a minimum number of parameters, all of which are measurable, can successfully predict the time scales over which the total phosphorus (TP) content of lakes responds to changes in external loadings, in a range of situations. The model also predicts the eventual TP levels attained under stable loading conditions. We characterize the efficiency of P recycling in Lake Superior based on a detailed characterization of sediments at 13 locations that includes chemical extractions for P and Fe fractions and characterization of sediment-water exchange fluxes of P. Despite the low efficiency of P remobilization in these deeply oxygenated sediments (only 12% of deposited P is recycled), effluxes of dissolved phosphorus (2.5-7.0 μmol m-2 d-1) still contribute 37% to total P inputs into the water column. In this oligotrophic large lake, phosphate effluxes are regulated by organic sedimentation rather than sediment redox conditions. By adjusting the recycling efficiency to conditions in other Laurentian Great Lakes, we show that the model reproduces the historical data for total phosphorus levels. Analysis further suggests that, in the Lower Lakes, the rate of P sequestration from water column into sediments has undergone a significant change in recent decades, possibly in response to their invasion by quagga mussels. Importantly, even for lakes where P budgets are dominated by internal loading, mass balance arguments show that, over multi-year time scales, lakes should respond to changes in external P inputs faster than their hydrological residence times.

  9. External nutrient loading from land, sea and atmosphere to all 656 Swedish coastal water bodies.

    PubMed

    Bryhn, Andreas C; Dimberg, Peter H; Bergström, Lena; Fredriksson, Ronny E; Mattila, Johanna; Bergström, Ulf

    2017-01-30

    Identifying the main sources of nutrient loading is a key factor for efficient mitigation of eutrophication. This study has investigated the pathways of external nutrient loading to 656 coastal water bodies along the entire Swedish coastline. The studied water bodies have been delineated to meet requirements in the European Union's Water Framework Directive, and recent status assessments have shown that 57% of them fail to attain good or high ecological status with respect to nutrients. The analysis in the study was performed on data from mass-balance based nutrient budgets computed using the modelling framework Vattenwebb. The external nutrient contribution from the sea to the water bodies was highly variable, ranging from about 1% to nearly 100%, but the median contribution was >99% of the total external loading regarding both nitrogen and phosphorus. External loading from the atmosphere and local catchment area played a minor role in general. However, 45 coastal water bodies received >25% of the external nitrogen and phosphorus from their catchments. Loading from land typically peaked in April following ice-break and snow melting and was comparatively low during summer. The results indicate that for many eutrophicated Swedish coastal water bodies, nutrient abatement is likely to be optimally effective when potential measures in all of the catchment area of the concerned sea basin are considered. Local-scale mitigation in single water bodies will likely be locally effective only in the small proportion of areas where water and thereby also nutrient input from the catchment is high compared to the influx from the sea. Future studies should include nutrient reduction scenarios in order to refine these conclusions and to identify relevant spatial scales for coastal eutrophication mitigation measures from a water body perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Relation of nutrient concentrations, nutrient loading, and algal production to changes in water levels in Kabetogama Lake, Voyageurs National Park, northern Minnesota, 2008-09

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2011-01-01

    Nutrient enrichment has led to excessive algal growth in Kabetogama Lake, Voyageurs National Park, northern Minnesota. Water- and sediment-quality data were collected during 2008-09 to assess internal and external nutrient loading. Data collection was focused in Kabetogama Lake and its inflows, the area of greatest concern for eutrophication among the lakes of Voyageurs National Park. Nutrient and algal data were used to determine trophic status and were evaluated in relation to changes in Kabetogama Lake water levels following changes to dam operation starting in 2000. Analyses were used to estimate external nutrient loading at inflows and assess the potential contribution of internal phosphorus loading. Kabetogama Lake often was mixed vertically, except for a few occasionally stratified areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, combined with larger bottom-water nutrient concentrations, larger sediment phosphorus concentrations, and estimated phosphorus release rates from sediment cores indicate that Lost Bay may be one of several areas that may be contributing substantially to internal loading. Internal loading is a concern because nutrients may cause excessive algal growth including potentially toxic cyanobacteria. The cyanobacterial hepatotoxin, microcystin, was detected in 7 of 14 cyanobacterial bloom samples, with total concentrations exceeding 1.0 microgram per liter, the World Health Organization's guideline for finished drinking water for the congener, microcystin-LR. Comparisons of the results of this study to previous studies indicate that chlorophyll-a concentrations and trophic state indices have improved since 2000, when the rules governing dam operation changed. However, total-phosphorus concentrations have not changed significantly since 2000.

  11. Water Quality, Hydrology, and Response to Changes in Phosphorus Loading of Nagawicka Lake, a Calcareous Lake in Waukesha County, Wisconsin

    USGS Publications Warehouse

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Goddard, Gerald L.; Horwatich, Judy A.

    2006-01-01

    Nagawicka Lake is a 986-acre, usually mesotrophic, calcareous lake in southeastern Wisconsin. Because of concern over potential water-quality degradation of the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 2002 to 2006 to describe the water quality and hydrology of the lake; quantify sources of phosphorus, including those associated with urban development; and determine the effects of past and future changes in phosphorus loading on the water quality of the lake. All major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake. The Bark River, near-lake surface inflow, precipitation, and ground water contributed 74, 8, 12, and 6 percent of the inflow, respectively. Water leaves the lake primarily through the Bark River outlet (88 percent) or by evaporation (11 percent). The water quality of Nagawicka Lake has improved dramatically since 1980 as a result of decreasing the historical loading of phosphorus to the lake. Total input of phosphorus to the lake was about 3,000 pounds in monitoring year (MY) 2003 and 6,700 pounds in MY 2004. The largest source of phosphorus entering the lake was the Bark River, which delivered about 56 percent of the total phosphorus input, compared with about 74 percent of the total water input. The next largest contributions were from the urbanized near-lake drainage area, which disproportionately accounted for 37 percent of the total phosphorus input but only about 5 percent of the total water input. Simulations with water-quality models within the Wisconsin Lakes Modeling Suite (WiLMS) indicated the response of Nagawicka Lake to 10 phosphorus-loading scenarios. These scenarios included historical (1970s) and current (base) years (MY 2003-04) for which lake water quality and loading were known, six scenarios with percentage increases or decreases in phosphorus loading from controllable sources relative to the base years 2003-04, and two scenarios corresponding to specific management actions. Because of the lake's calcareous character, the average simulated summer concentration of total phosphorus for Nagawicka Lake was about 2 times that measured in the lake. The models likely over-predict because they do not account for coprecipitation of phosphorus and dissolved organic matter with calcite, negligible release of phosphorus from the deep sediments, and external phosphorus loading with abnormally high amounts of nonavailable phosphorus. After adjusting the simulated results for the overestimation of the models, a 50-percent reduction in phosphorus loading resulted in an average predicted phosphorus concentration of 0.008 milligrams per liter (mg/L) (a decrease of 46 percent). With a 50-percent increase in phosphorus loading, the average predicted concentration was 0.020 mg/L (an increase of 45 percent). With the changes in land use under the assumed future full development conditions, the average summer total phosphorus concentration should remain similar to that measured in MY 2003-04 (approximately 0.014 mg/L). However, if stormwater and nonpoint controls are added to achieve a 50-percent reduction in loading from the urbanized near-lake drainage area, the average summer total phosphorus concentration should decrease from the present conditions (MY 2003-04) to 0.011 mg/L. Slightly more than a 25-percent reduction in phosphorus loading from that measured in MY 2003-04 would be required for the lake to be classified as oligotrophic.

  12. Hydrology and water quality of Shell Lake, Washburn County, Wisconsin, with special emphasis on the effects of diversion and changes in water level on the water quality of a shallow terminal lake

    USGS Publications Warehouse

    Juckem, Paul F.; Robertson, Dale M.

    2013-01-01

    Shell Lake is a relatively shallow terminal lake (tributaries but no outlets) in northwestern Wisconsin that has experienced approximately 10 feet (ft) of water-level fluctuation over more than 70 years of record and extensive flooding of nearshore areas starting in the early 2000s. The City of Shell Lake (City) received a permit from the Wisconsin Department of Natural Resources in 2002 to divert water from the lake to a nearby river in order to lower water levels and reduce flooding. Previous studies suggested that water-level fluctuations were driven by long-term cycles in precipitation, evaporation, and runoff, although questions about the lake’s connection with the groundwater system remained. The permit required that the City evaluate assumptions about lake/groundwater interactions made in previous studies and evaluate the effects of the water diversion on water levels in Shell Lake and other nearby lakes. Therefore, a cooperative study between the City and U.S. Geological Survey (USGS) was initiated to improve the understanding of the hydrogeology of the area and evaluate potential effects of the diversion on water levels in Shell Lake, the surrounding groundwater system, and nearby lakes. Concerns over deteriorating water quality in the lake, possibly associated with changes in water level, prompted an additional cooperative project between the City and the USGS to evaluate efeffects of changes in nutrient loading associated with changes in water levels on the water quality of Shell Lake. Numerical models were used to evaluate how the hydrology and water quality responded to diversion of water from the lake and historical changes in the watershed. The groundwater-flow model MODFLOW was used to simulate groundwater movement in the area around Shell Lake, including groundwater/surface-water interactions. Simulated results from the MODFLOW model indicate that groundwater flows generally northward in the area around Shell Lake, with flow locally converging toward the lake. Total groundwater inflow to Shell Lake is small (approximately 5 percent of the water budget) compared with water entering the lake from precipitation (83 percent) and surface-water runoff (13 percent). The MODFLOW model also was used to simulate average annual hydrologic conditions from 1949 to 2009, including effects of the removal of 3 billion gallons of water during 2003–5. The maximum decline in simulated average annual water levels for Shell Lake due to the diversion alone was 3.3 ft at the end of the diversion process in 2005. Model simulations also indicate that although water level continued to decline through 2009 in response to local weather patterns (local drought), the effects of the diversion decreased after the diversion ceased; that is, after 4 years of recovery (2006–9), drawdown attributable to the diversion alone decreased by about 0.6 ft because of increased groundwater inflow and decreased lake-water outflow to groundwater caused by the artificially lower lake level. A delayed response in drawdown of less than 0.5 ft was transmitted through the groundwater-flow system to upgradient lakes. This relatively small effect on upgradient lakes is attributed in part to extensive layers of shallow clay that limit lake/groundwater interaction in the area. Data collected in the lake indicated that Shell Lake is polymictic (characterized by frequent deep mixing) and that its productivity is limited by the amount of phosphorus in the lake. The lake was typically classified as oligotrophic-mesotrophic in June, mesotrophic in July, and mesotrophic-eutrophic in August. In polymictic lakes like Shell Lake, phosphorus released from the sediments is not trapped near the bottom of the lake but is intermittently released to the shallow water, resulting in deteriorating water quality as summer progresses. Because the productivity of Shell Lake is limited by phosphorus, the sources of phosphorus to the lake were quantified, and the response in water quality to changes in phosphorus inputs were evaluated by means of eutrophication models. During 2009, the total input of phosphorus to Shell Lake was 1,730 pounds (lb), of which 1,320 lb came from external sources (76 percent) and 414 lb came from internal loading from sediments in the lake (24 percent). The largest external source was from surface-water runoff, which delivered about 52 percent of the total phosphorus load compared with about 13 percent of the water input. The second largest source was from precipitation (wetfall and dryfall), which delivered 19 percent of the load compared to about 83 percent of the water input. Contributions from septic systems and groundwater accounted for about 3 and 2 percent, respectively. Increased runoff raises water levels in the lake but does not necessarily increase phosphorus loading because phosphorus concentrations in the tributaries decline during increased flow, possibly because of shorter retention times in upstream wetlands. Phosphorus loading to the lake in 2009 represented what occurred after a series of dry years; therefore, this information was combined with data from 2011, a wet year, to estimate phosphorus loading during a range of hydrologic conditions by estimating loading from each component of the phosphorus budget for each year from 1949 to 2011. Comparisons of historical water-quality records with historical water levels and applications of a hydrodynamic model (Dynamic Lake Model, DLM) and empirical eutrophication models were used to understand how changes in water level and the coinciding changes in phosphorus loading affect the water quality of Shell Lake. DLM simulations indicate that large changes in water level (approximately 10 ft) affect the persistence of stratification in the lake. During periods with low water levels, the lake is a well-mixed, polymictic system, with water quality degrading slightly as summer progresses. During periods with high water levels, the lake is more stratified, and phosphorus from internal loading is trapped in the hypolimnion and released later in summer, which results in more extreme seasonality in water quality and better clarity in early summer. Results of eutrophication model simulations using a range in external phosphorus inputs illustrate how water quality in Shell Lake (phosphorus and chlorophyll a concentrations and Secchi depths) responds to changes in external phosphorus loading. Results indicate that a 50-percent reduction in external loading from that measured in 2009 would be required to change phosphorus concentrations from 0.018 milligram per liter (mg/L) (measured in 2009) to 0.012 mg/L (estimated for the mid-1800s from analysis of diatoms in sediment cores). Such reductions in phosphorus loading cannot be accomplished by targeting septic systems or internal loading alone because septic systems contribute only about 3 percent of the phosphorus input to the lake, and internal loading from the sediments of Shell Lake contributes only about 25 percent of phosphorus input. Complete elimination of phosphorus from septic systems and internal loading would decrease the phosphorus concentrations in the lake by 0.003–0.004 mg/L. Therefore, reducing phosphorus concentration in the lake more than by 0.004 mg/L requires decreasing phosphorus loading from surface-water contributions, primarily runoff to the lake. Reconstructed changes in water quality from 1860 to 2010, based on changes in the diatom communities archived in the sediments and eutrophication model simulations, suggest that anthropogenic changes in the watershed (sawmill construction in 1881; the establishment of the village of Shell Lake; and land-use changes in the 1920s, including increased agriculture) had a much larger effect on water quality than the natural changes associated with fluctuations in water level. Although the effects of natural changes in water level on water quality appear to be small, changes in water level do have a modest effect on water quality, primarily manifested as small improvements during higher water levels. Fluctuations in water level, however, have a larger effect on the seasonality of water-quality patterns, with better water quality, especially increased Secchi depths, in early summer during years with high water levels.

  13. Phosphorus fractionation and distribution in sediments from wetlands and canals of a water conservation area in the Florida Everglades

    Treesearch

    Qingren Wang; Yuncong Li; Ying Ouyang

    2011-01-01

    Phosphorus (P) fractionation and distribution in sediments are of great concern in the Florida Everglades ecosystem because potential eutrophication of surface waters usually results from P external loading and stability. Intact core sediment samples were collected to a depth of 35 cm from wetlands and canals across Water Conservation Area 3 (WCA‐3) of the Florida...

  14. Internal loading of phosphorus in western Lake Erie

    USGS Publications Warehouse

    Matisoff, Gerald; Kaltenberg, Eliza M.; Steely, Rebecca L.; Hummel, Stephanie K.; Seo, Jinyu; Gibbons, Kenneth J.; Bridgeman, Thomas B.; Seo, Youngwoo; Behbahani, Mohsen; James, William F.; Johnson, Laura; Doan, Phuong; Dittrich, Maria; Evans, Mary Anne; Chaffin, Justin D.

    2016-01-01

    This study applied eight techniques to obtain estimates of the diffusive flux of phosphorus (P) from bottom sediments throughout the western basin of Lake Erie. The flux was quantified from both aerobic and anaerobic incubations of whole cores; by monitoring the water encapsulated in bottom chambers; from pore water concentration profiles measured with a phosphate microelectrode, a diffusive equilibrium in thin films (DET) hydrogel, and expressed pore waters; and from mass balance and biogeochemical diagenetic models. Fluxes under aerobic conditions at summertime temperatures averaged 1.35 mg P/m2/day and displayed spatial variability on scales as small as a centimeter. Using two different temperature correction factors, the flux was adjusted to mean annual temperature yielding average annual fluxes of 0.43–0.91 mg P/m2/day and a western basin-wide total of 378–808 Mg P/year as the diffusive flux from sediments. This is 3–7% of the 11,000 Mg P/year International Joint Commission (IJC) target load for phosphorus delivery to Lake Erie from external sources. Using these average aerobic fluxes, the sediment contributes 3.0–6.3 μg P/L as a background internal contribution that represents 20–42% of the IJC Target Concentration of 15 μg P/L for the western basin. The implication is that this internal diffusive recycling of P is unlikely to trigger cyanobacterial blooms by itself but is sufficiently large to cause blooms when combined with external loads. This background flux may be also responsible for delayed response of the lake to any decrease in the external loading.

  15. Intra- and inter-annual trends in phosphorus loads and comparison with nitrogen loads to Rehoboth Bay, Delaware (USA)

    USGS Publications Warehouse

    Volk, J.A.; Scudlark, J.R.; Savidge, K.B.; Andres, A.S.; Stenger, R.J.; Ullman, W.J.

    2012-01-01

    Monthly phosphorus loads from uplands, atmospheric deposition, and wastewater to Rehoboth Bay (Delaware) were determined from October 1998 to April 2002 to evaluate the relative importance of these three sources of P to the Bay. Loads from a representative subwatershed were determined and used in an areal extrapolation to estimate the upland load from the entire watershed. Soluble reactive phosphorus (SRP) and dissolved organic P (DOP) are the predominant forms of P in baseflow and P loads from the watershed are highest during the summer months. Particulate phosphorus (PP) becomes more significant in stormflow and during periods with more frequent or larger storms. Atmospheric deposition of P is only a minor source of P to Rehoboth Bay. During the period of 1998-2002, wastewater was the dominant external source of P to Rehoboth Bay, often exceeding all other P sources combined. Since 2002, however, due to technical improvements to the sole wastewater plant discharging directly to the Bay, the wastewater contribution of P has been significantly reduced and upland waters are now the principal source of P on an annualized basis. Based on comparison of N and P loads, primary productivity and biomass carrying capacity in Rehoboth Bay should be limited by P availability. However, due to the contrasting spatial and temporal patterns of N and P loading and perhaps internal cycling within the ecosystem, spatial and temporal variations in N and P-limitation within Rehoboth Bay are likely. ?? 2011 Elsevier Ltd.

  16. Regime Shifts in Shallow Lakes: Responses of Cyanobacterial Blooms to Watershed Agricultural Phosphorus Loading Over the Last ~100 Years.

    NASA Astrophysics Data System (ADS)

    Vermaire, J. C.; Taranu, Z. E.; MacDonald, G. K.; Velghe, K.; Bennett, E.; Gregory-Eaves, I.

    2015-12-01

    Rapid changes in ecosystem states have occurred naturally throughout Earth's history. However, environmental changes that have taken place since the start of the Anthropocene may be destabilizing ecosystems and increasing the frequency of regime shifts in response to abrupt changes in external drivers or local intrinsic dynamics. To evaluate the relative influence of these forcers and improve our understanding of the impact of future change, we examined the effects of historical catchment phosphorus loading associated with agricultural land use on lake ecosystems, and whether this caused a shift from a stable, clear-water, regime to a turbid, cyanobacteria-dominated, state. The sedimentary pigments, diatom, and zooplankton (Cladocera) records from a currently clear-water shallow lake (Roxton Pond) and a turbid-water shallow lake (Petit lac Saint-François; PSF) were examined to determine if a cyanobacteria associated pigment (i.e. echinenone) showed an abrupt non-linear response to continued historical phosphorus load index (determined by phosphorus budget) over the last ~100 years. While PSF lake is presently in the turbid-water state, pigment and diatom analyses indicated that both lakes were once in the clear-water state, and that non-linear increases in catchment phosphorus balance resulted in an abrupt transition to cyanobacteria dominated states in each record. These results show that phosphorus loading has resulted in state shifts in shallow lake ecosystems that has been recorded across multiple paleolimnological indicators preserved in the sedimentary record.

  17. Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data

    USGS Publications Warehouse

    Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.

    2016-12-22

    Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at the two study sites, particularly in using turbidity to compute suspended-sediment concentrations in the Williamson River. This proof-of-concept effort for computing total phosphorus concentrations using turbidity at the Williamson and Wood River sites also has shown that with additional samples over a wide range of flow regimes, high-temporal-resolution total phosphorus loads can be estimated on a daily, monthly, and annual basis, along with uncertainties for total phosphorus and suspended-sediment concentrations computed using regression models. Sediment-corrected backscatter at the Wood River has potential for estimating suspended-sediment loads from the Wood River Valley as well, with additional analysis of the variable streamflow measured at that site. Suspended-sediment and total phosphorus loads with a high level of temporal resolution will be useful to water managers, restoration practitioners, and scientists in the Upper Klamath Basin working toward the common goal of decreasing nutrient and sediment loads in Upper Klamath Lake.

  18. A modeling study examining the impact of nutrient boundaries ...

    EPA Pesticide Factsheets

    A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchanges, an empirical site-specific light attenuation equation, estimates of 56 river loads and atmospheric loads. The model was calibrated for 2006 by comparing model output to observations in zones that represent different locations in the Gulf. The model exhibited reasonable skill in simulating the phosphorus and nitrogen field data and primary production observations. The model was applied to generate a nitrogen mass balance estimate, to perform sensitivity analysis to compare the importance of the nutrient boundary concentrations versus the river loads on nutrient concentrations and primary production within the shelf, and to provide insight into the relative importance of different limitation factors on primary production. The mass budget showed the importance of the rivers as the major external nitrogen source while the atmospheric load contributed approximately 2% of the total external load. Sensitivity analysis showed the importance of accurate estimates of boundary nitrogen concentrations on the nitrogen levels on the shelf, especially at regions further away from the river influences. The boundary nitrogen concentrations impacted primary production less than nitrogen concent

  19. Response in the water quality of the Salton Sea, California, to changes in phosphorus loading: An empirical modeling approach

    USGS Publications Warehouse

    Robertson, Dale M.; Schladow, S.G.

    2008-01-01

    Salton Sea, California, like many other lakes, has become eutrophic because of excessive nutrient loading, primarily phosphorus (P). A Total Maximum Daily Load (TMDL) is being prepared for P to reduce the input of P to the Sea. In order to better understand how P-load reductions should affect the average annual water quality of this terminal saline lake, three different eutrophication programs (BATHTUB, WiLMS, and the Seepage Lake Model) were applied. After verifying that specific empirical models within these programs were applicable to this saline lake, each model was calibrated using water-quality and nutrient-loading data for 1999 and then used to simulate the effects of specific P-load reductions. Model simulations indicate that a 50% decrease in external P loading would decrease near-surface total phosphorus concentrations (TP) by 25-50%. Application of other empirical models demonstrated that this decrease in loading should decrease near-surface chlorophyll a concentrations (Chl a) by 17-63% and increase Secchi depths (SD) by 38-97%. The wide range in estimated responses in Chl a and SD were primarily caused by uncertainty in how non-algal turbidity would respond to P-load reductions. If only the models most applicable to the Salton Sea are considered, a 70-90% P-load reduction is required for the Sea to be classified as moderately eutrophic (trophic state index of 55). These models simulate steady-state conditions in the Sea; therefore, it is difficult to ascertain how long it would take for the simulated changes to occur after load reductions. ?? 2008 Springer Science+Business Media B.V.

  20. A sediment resuspension and water quality model of Lake Okeechobee

    USGS Publications Warehouse

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  1. Water Quality and Hydrology of Whitefish (Bardon) Lake, Douglas County, Wisconsin, With Special Emphasis on Responses of an Oligotrophic Seepage Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Juckem, Paul F.

    2009-01-01

    Whitefish Lake, which is officially named Bardon Lake, is an oligotrophic, soft-water seepage lake in northwestern Wisconsin, and classified by the Wisconsin Department of Natural Resources as an Outstanding Resource Water. Ongoing monitoring of the lake demonstrated that its water quality began to degrade (increased phosphorus and chlorophyll a concentrations) around 2002 following a period of high water level. To provide a better understanding of what caused the degradation in water quality, and provide information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. The goals of the study were to describe the past and present water quality of the lake, quantify water and phosphorus budgets for the lake, simulate the potential effects of changes in phosphorus inputs on the lake's water quality, analyze changes in the water level in the lake since 1900, and relate the importance of changes in climate and changes in anthropogenic (human-induced) factors in the watershed to the water quality of the lake. Since 1998, total phosphorus concentrations increased from near the 0.005-milligrams per liter (mg/L) detection limit to about 0.010 mg/L in 2006, and then decreased slightly in 2007-08. During this time, chlorophyll a concentrations and Secchi depths remained relatively stable at about 1.5 micrograms per liter (ug/L) and 26 feet, respectively. Whitefish Lake is typically classified as oligotrophic. Because the productivity in Whitefish Lake is limited by phosphorus, phosphorus budgets were constructed for the lake. Because it was believed that much of its phosphorus comes from the atmosphere, phosphorus deposition was measured in this study. Phosphorus input from the atmosphere was greater than computed based on previously reported wetfall phosphorus concentrations. The concentrations and deposition rates can be used to estimate atmospheric loading in future lake studies. The average annual load of phosphorus to the lake was 232 pounds: 56 percent from precipitation, 27 percent from groundwater, and 16 percent from septic systems. During a series of dry years (low water levels) and wet years (high water levels), the inputs of water and phosphorus ranged by only 10-13 percent. Results from the Canfield and Bachmann eutrophication model and Carlson trophic-state-index equations demonstrated that the lake directly responds to changes in external phosphorus loading, with percent change in chlorophyll a being similar to the percent change in loading and the change in total phosphorus and Secchi depth being slightly smaller. Therefore, changes in phosphorus loading should affect the water quality of the lake. Specific scenarios that simulated the effects of anthropogenic (human-induced) and climatic (water level) changes demonstrated that: surface-water inflow (runoff) based on current development has little effect on pelagic water quality, changes in the inputs from septic systems and development in the watershed could have a large effect on water quality, and decreases in water and phosphorus loading during periods of low water level had little effect on water quality. Sustained high water levels, resulting from several wet years with relatively high water and phosphorus input, however, could cause a small degradation in water quality. Although high water levels may be associated with a degradation in water quality, it appears that anthropogenic changes in the watershed may be more important in affecting the future water quality of the lake. Fluctuations in water levels since 1998 are representative of what has occurred since 1900, with fluctuations of about 3 feet occurring about every 15 years. Based on total phosphorus concentrations inferred from sediment core analysis, there has been little long-term change in water quality and there has been a slight deterioration in water quality following most periods of high water levels. There

  2. Controlling tailwater sediment and phosphorus concentrations with polyacrylamide in the Imperial Valley, California.

    PubMed

    Goodson, Christopher C; Schwartz, Gregory; Amrhein, Christopher

    2006-01-01

    External loading of phosphorus (P) from agricultural surface discharge (tailwater) is the main cause of excessive algae growth and the eutrophication of the Salton Sea, California. Continuous polyacrylamide (PAM) applications to agricultural irrigation water inflows were evaluated as a means of reducing sediment and P in tailwater. Zero (control) and 1 mg L(-1) PAM (PAM1) treatments were compared at 17 Imperial Valley field sites. Five and 10 mg L(-1) PAM treatments (PAM5, PAM10) were conducted at one site. The particulate phosphorus (Pp) fraction was determined as the difference between total phosphorus (Pt) and the soluble phosphorus (Ps) fraction. We observed 73, 82, and 98% turbidity reduction with PAM1, PAM5, and PAM10 treatments. Although eight field sites had control tailwater sediment concentrations above the New River total maximum daily loads (TMDL), all but one were made compliant during their paired PAM1 treatments. While PAM1 and PAM10 reduced tail water Pp by 31 and 78%, none of the treatments tested reduced Ps. This may have been caused by high irrigation water Na concentrations which would reduce Ca adsorption and Ca-phosphate bridging on the PAM. The PAM1 treatments resulted in <0.5 mg L(-1) drain water polyacrylamide concentrations 1.6 km downstream of PAM addition, while PAM5 and PAM10 treatments produced > 2 mg L(-1) drain water polyacrylamide concentrations. We concluded that, although PAM practically eliminates Imperial Valley tailwater sediment loads, it does not effectively reduce tailwater Ps, the P fraction most responsible for the eutrophication of the Salton Sea.

  3. Hydrology, water quality, and response to changes in phosphorus loading of Minocqua and Kawaguesaga Lakes, Oneida County, Wisconsin, with special emphasis on effects of urbanization

    USGS Publications Warehouse

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Saad, David A.

    2010-01-01

    Minocqua and Kawaguesaga Lakes are 1,318- and 690-acre interconnected lakes in the popular recreation area of north-central Wisconsin. The lakes are the lower end of a complex chain of lakes in Oneida and Vilas Counties, Wis. There is concern that increased stormwater runoff from rapidly growing residential/commercial developments and impervious surfaces from the urbanized areas of the Town of Minocqua and Woodruff, as well as increased effluent from septic systems around their heavily developed shoreline has increased nutrient loading to the lakes. Maintaining the quality of the lakes to sustain the tourist-based economy of the towns and the area was a concern raised by the Minocqua/Kawaguesaga Lakes Protection Association. Following several small studies, a detailed study during 2006 and 2007 was done by the U.S. Geological Survey, in cooperation with the Minocqua/Kawaguesaga Lakes Protection Association through the Town of Minocqua to describe the hydrology and water quality of the lakes, quantify the sources of phosphorus including those associated with urban development and to better understand the present and future effects of phosphorus loading on the water quality of the lakes. The water quality of Minocqua and Kawaguesaga Lakes appears to have improved since 1963, when a new sewage-treatment plant was constructed and its discharge was bypassed around the lakes, resulting in a decrease in phosphorus loading to the lakes. Since the mid-1980s, the water quality of the lakes has changed little in response to fluctuations in phosphorus loading from the watershed. From 1986 to 2009, summer average concentrations of near-surface total phosphorus in the main East Basin of Minocqua Lake fluctuated from 0.009 mg/L to 0.027 mg/L but generally remained less than 0.022 mg/L, indicating that the lake is mesotrophic. Phosphorus concentrations from 1988 through 1996, however, were lower than the long-term average, possibly the result of an extended drought in the area. Water-quality data for Kawaguesaga Lake had a similar pattern to that of Minocqua Lake. Summer average chlorophyll a concentrations and Secchi depths also indicate that the lakes generally are mesotrophic but occasionally borderline eutrophic, with no long-term trends. During the study, major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lakes for monitoring years (MY) 2006 and 2007. During these years, the Minocqua Thoroughfare contributed about 38 percent of the total inflow to the lakes, and Tomahawk Thoroughfare contributed 34 percent; near-lake inflow, precipitation, and groundwater contributed about 1, 16, and 11 percent of the total inflow, respectively. Water leaves the lakes primarily through the Tomahawk River outlet (83 percent) or by evaporation (14 percent), with minor outflow to groundwater. Total input of phosphorus to both lakes was about 3,440 pounds in MY 2006 and 2,200 pounds in MY 2007. The largest sources of phosphorus entering the lakes were the Minocqua and Tomahawk Thoroughfares, which delivered about 39 and 26 percent of the total, respectively. The near-lake drainage area, containing most of the urban and residential developments, disproportionately accounted for about 12 percent of the total phosphorus input but only about 1 percent of the total water input (estimated with WinSLAMM). The next largest contributions were from septic systems and precipitation, each contributing about 10 percent, whereas groundwater delivered about 4 percent of the total phosphorus input. Empirical lake water-quality models within BATHTUB were used to simulate the response of Minocqua and Kawaguesaga Lakes to 19 phosphorus-loading scenarios. These scenarios included the current base years (2006?07) for which lake water quality and loading were known, nine general increases or decreases in phosphorus loading from controllable external sources (inputs from the tributa

  4. The Chaoborus pump: Migrating phantom midge larvae sustain hypolimnetic oxygen deficiency and nutrient internal loading in lakes.

    PubMed

    Tang, Kam W; Flury, Sabine; Grossart, Hans-Peter; McGinnis, Daniel F

    2017-10-01

    Hypolimnetic oxygen demand in lakes is often assumed to be driven mainly by sediment microbial processes, while the role of Chaoborus larvae, which are prevalent in eutrophic lakes with hypoxic to anoxic bottoms, has been overlooked. We experimentally measured the respiration rates of C. flavicans at different temperatures yielding a Q 10 of 1.44-1.71 and a respiratory quotient of 0.84-0.98. Applying the experimental data in a system analytical approach, we showed that migrating Chaoborus larvae can significantly add to the water column and sediment oxygen demand, and contribute to the observed linear relationship between water column respiration and depth. The estimated phosphorus excretion by Chaoborus in sediment is comparable in magnitude to the required phosphorus loading for eutrophication. Migrating Chaoborus larvae thereby essentially trap nutrients between the water column and the sediment, and this continuous internal loading of nutrients would delay lake remediation even when external inputs are stopped. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Geo-engineering experiments in two urban ponds to control eutrophication.

    PubMed

    Waajen, Guido; van Oosterhout, Frank; Douglas, Grant; Lürling, Miquel

    2016-06-15

    Many urban ponds experience detrimental algal blooms as the result of eutrophication. During a two year field experiment, the efficacy of five in situ treatments to mitigate eutrophication effects in urban ponds was studied. The treatments targeted the sediment phosphorus release and were intended to switch the ponds from a turbid phytoplankton-dominated state to a clear-water state with a low phytoplankton biomass. Two eutrophic urban ponds were each divided into six compartments (300-400 m(2); 210-700 m(3)). In each pond the following treatments were tested: dredging in combination with biomanipulation (involving fish biomass control and the introduction of macrophytes) with and without the addition of the flocculant polyaluminiumchloride, interception and reduction of sediment phosphorus release with lanthanum-modified bentonite (Phoslock(®)) in combination with biomanipulation with and without polyaluminiumchloride; biomanipulation alone; and a control. Trial results support the hypothesis that the combination of biomanipulation and measures targeting the sediment phosphorus release can be effective in reducing the phytoplankton biomass and establishing and maintaining a clear-water state, provided the external phosphorus loading is limited. During the experimental period dredging combined with biomanipulation showed mean chlorophyll-a concentrations of 5.3 and 6.2 μg L(-1), compared to 268.9 and 52.4 μg L(-1) in the control compartments. Lanthanum-modified bentonite can be an effective alternative to dredging and in combination with biomanipulation it showed mean chlorophyll-a concentrations of 5.9 and 7.6 μg L(-1). Biomanipulation alone did not establish a clear-water state or only during a limited period. As the two experimental sites differed in their reaction to the treatments, it is important to choose the most promising treatment depending on site specific characteristics. In recovering the water quality status of urban ponds, continuing attention is required to the concurrent reduction of external phosphorus loading and to maintaining an appropriate fish community. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations.

    PubMed

    Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E

    2009-01-01

    Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.

  7. Multidecadal oscillations in past Baltic Sea hypoxia: the role of sedimentary iron-phosphorus feedbacks

    NASA Astrophysics Data System (ADS)

    Jilbert, Tom; Gustafsson, Bo G.; Veldhuijzen, Simon; Reed, Daniel C.; van Helmond, Niels A. G. M.; Slomp, Caroline P.

    2017-04-01

    The Baltic Sea currently experiences widespread deep-water hypoxia, a consequence of both anthropogenic nutrient loading and the natural susceptibility of its stratified water column to oxygen depletion. Sediment core records show that hypoxia was also prevalent in the Baltic during the Holocene Thermal Maximum (HTM) and Medieval Climate Anomaly (MCA). Sedimentary iron (Fe) and phosphorus (P) dynamics are known to play a key role in determining the intensity of Baltic Sea hypoxia through time. Rapid intensification of hypoxia at the onset of past centennial-scale hypoxic events during the HTM and MCA has been explained by release of P from sedimentary Fe oxides, leading to enhanced primary productivity and deep water oxygen consumption (Jilbert and Slomp, 2013). Similarly, rapid relief from hypoxia at the termination of these events reflects efficient trapping of P by Fe oxides as oxic conditions expand. Here we show that within past hypoxic events in the Baltic Sea, hypoxia intensity also varied continuously on multidecadal timescales. We observe persistent oscillations in new high-resolution records of sediment redox proxies derived from Laser Ablation (LA) ICP-MS analysis. In-phase multidecadal oscillations in molybdenum/aluminium (Mo/Al), bromine/phosphorus (Br/P) and Fe/Al indicate coupling between redox conditions, the flux of carbon to the seafloor, and mobilization of Fe in shelf areas, respectively. Using a simple box model, we show that instabilities in the response of sedimentary P release to changing oxygen concentrations and carbon flux were the likely cause of the observed oscillations. When prescribing a non-linear relationship between P release, oxygen concentration and carbon flux, and forcing the model with external P loadings typical of the HTM and MCA, the simulated time-series of deep-water oxygen show pronounced oscillations similar to those observed in the sediment records. However, when external P loads typical of the modern anthropogenic interval are used in the simulations, these instabilities are overcome and deep water conditions remain permanently hypoxic. The results suggest that complete recovery from hypoxia in the modern Baltic Sea will require a substantial further decline in external nutrient loading. Reference: Jilbert, T. and Slomp, C.P., Rapid high-amplitude variability in Baltic Sea hypoxia during the Holocene. Geology 41 (11), 1183-1186, 2013.

  8. Monitoring to assess progress toward meeting the total maximum daily load for phosphorus in the Assabet River, Massachusetts: phosphorus loads, 2008 through 2010

    USGS Publications Warehouse

    Zimmerman, Marc J.; Savoie, Jennifer G.

    2013-01-01

    Wastewater discharges to the Assabet River contribute substantial amounts of phosphorus, which support accumulations of nuisance aquatic plants that are most evident in the river’s impounded reaches during the growing season. To restore the Assabet River’s water quality and aesthetics, the U.S. Environmental Protection Agency required the major wastewater-treatment plants in the drainage basin to reduce the amount of phosphorus discharged to the river by 2012. From October 2008 to December 2010, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection and in support of the requirements of the Total Maximum Daily Load for Phosphorus, collected weekly flow-proportional, composite samples for analysis of concentrations of total phosphorus and orthophosphorus upstream and downstream from each of the Assabet River’s two largest impoundments: Hudson and Ben Smith. The purpose of this monitoring effort was to evaluate conditions in the river before enhanced treatment-plant technologies had effected reductions in phosphorus loads, thereby defining baseline conditions for comparison with conditions following the mandated load reductions. The locations of sampling sites with respect to the impoundments enabled examination of the impoundments’ effects on phosphorus sequestration and on the transformation of phosphorus between particulate and dissolved forms. The study evaluated the differences between loads upstream and downstream from the impoundments throughout the sampling period and compared differences during two seasonal periods of relevance to aquatic plants: April 1 through October 31, the growing season, and November 1 through March 31, the nongrowing season, when existing permit limits allowed average monthly wastewater-treatment-plant-effluent concentrations of 0.75 milligram per liter (growing season) or 1.0 milligram per liter (nongrowing season) for total phosphorus. At the four sampling sites during the growing season, median weekly total phosphorus loads ranged from 110 to 190 kilograms (kg) and median weekly orthophosphorus loads ranged from 17 to 41 kg. During the nongrowing season, median weekly total phosphorus loads ranged from 240 to 280 kg and median weekly orthophosphorus loads ranged from 56 to 66 kg. During periods of low and moderate streamflow, estimated loads of total phosphorus upstream from the Hudson impoundment generally exceeded those downstream during the same sampling periods throughout the study; orthophosphorus loads downstream from the impoundment were typically larger than those upstream. When storm runoff substantially increased the streamflow, loads of total phosphorus and orthophosphorus both tended to be larger downstream than upstream. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads were generally larger downstream than upstream during low and moderate streamflow, but the differences were not as pronounced as they were at the Hudson impoundment. High flows were also associated with substantially larger total phosphorus and orthophosphorus loads downstream than those entering the impoundment from upstream. In comparing periods of growing- and nongrowing-season loads, the same patterns of loads entering and leaving were observed at both impoundments. That is, at the Hudson impoundment, total phosphorus loads entering the impoundment were greater than those leaving it, and orthophosphorus loads leaving the impoundment were greater than those entering it. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads leaving the impoundment were greater than those entering it. However, the loads were greater during the nongrowing seasons than during the growing seasons, and the net differences between upstream and downstream loads were about the same. The results indicate that some of the particulate fraction of the total phosphorus loads is sequestered in the Hudson impoundment, where particulate phosphorus probably undergoes some physical and biogeochemical transformations to the dissolved form orthophosphorus. The orthophosphorus may be taken up by aquatic plants or transported out of the impoundments. The results for the Ben Smith impoundment are less clear and suggest net export of total phosphorus and orthophosphorus. Differences between results from the two impoundments may be attributable in part to differences in their sizes, morphology, unmonitored tributaries, riparian land use, and processes within the impoundments that have not been quantified for this study.

  9. A Baltic Sea estuary as a phosphorus source and sink after drastic load reduction: seasonal and long-term mass balances for the Stockholm inner archipelago for 1968-2015

    NASA Astrophysics Data System (ADS)

    Walve, Jakob; Sandberg, Maria; Larsson, Ulf; Lännergren, Christer

    2018-05-01

    Internal phosphorus (P) loading from sediments, controlled by hypoxia, is often assumed to hamper the recovery of lakes and coastal areas from eutrophication. In the early 1970s, the external P load to the inner archipelago of Stockholm, Sweden (Baltic Sea), was drastically reduced by improved sewage treatment, but the internal P loading and its controlling factors have been poorly quantified. We use two slightly different four-layer box models to calculate the area's seasonal and annual P balance (input-export) and the internal P exchange with sediments in 1968-2015. For 10-20 years after the main P load reduction, there was a negative P balance, small in comparison to the external load, and probably due to release from legacy sediment P storage. Later, the stabilized, near-neutral P balance indicates no remaining internal loading from legacy P, but P retention is low, despite improved oxygen conditions. Seasonally, sediments are a P sink in spring and a P source in summer and autumn. Most of the deep-water P release from sediments in summer-autumn appears to be derived from the settled spring bloom and is exported to outer areas during winter. Oxygen consumption and P release in the deep water are generally tightly coupled, indicating limited iron control of P release. However, enhanced P release in years of deep-water hypoxia suggests some contribution from redox-sensitive P pools. Increasing deep-water temperatures that stimulate oxygen consumption rates in early summer have counteracted the effect of lowered organic matter sedimentation on oxygen concentrations. Since the P turnover time is short and legacy P small, measures to bind P in Stockholm inner archipelago sediments would primarily accumulate recent P inputs, imported from the Baltic Sea and from Lake Mälaren.

  10. Simulation of hydrodynamics, water quality, and lake sturgeon habitat volumes in Lake St. Croix, Wisconsin and Minnesota, 2013

    USGS Publications Warehouse

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne

    2018-01-05

    Lake St. Croix is a naturally impounded, riverine lake that makes up the last 40 kilometers of the St. Croix River. Substantial land-use changes during the past 150 years, including increased agriculture and urban development, have reduced Lake St. Croix water-quality and increased nutrient loads delivered to Lake St. Croix. A recent (2012–13) total maximum daily load phosphorus-reduction plan set the goal to reduce total phosphorus loads to Lake St. Croix by 20 percent by 2020 and reduce Lake St. Croix algal bloom frequencies. The U.S. Geological Survey, in cooperation with the National Park Service, developed a two-dimensional, carbon-based, laterally averaged, hydrodynamic and water-quality model, CE–QUAL–W2, that addresses the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of water temperature, oxygen, and chlorophyll a. Distribution is evaluated in the context of habitat for lake sturgeon, including a combination of temperature and dissolved oxygen conditions termed oxy-thermal habitat.The Lake St. Croix CE–QUAL–W2 model successfully reproduced temperature and dissolved oxygen in the lake longitudinally (from upstream to downstream), vertically, and temporally over the seasons. The simulated water temperature profiles closely matched the measured water temperature profiles throughout the year, including the prediction of thermocline transition depths (often within 1 meter), the absolute temperature of the thermocline transitions (often within 1.0 degree Celsius), and profiles without a strong thermocline transition. Simulated dissolved oxygen profiles matched the trajectories of the measured dissolved oxygen concentrations at multiple depths over time, and the simulated concentrations matched the depth and slope of the measured concentrations.Additionally, trends in the measured water-quality data were captured by the model simulation, gaining some potential insights into the underlying mechanisms of critical Lake St. Croix metabolic processes. The CE–QUAL–W2 model tracked nitrate plus nitrite, total nitrogen, and total phosphorus throughout the year. Inflow nutrient contributions (loads), largely dominated by upstream St. Croix River loads, were the most important controls on Lake St. Croix water quality. Close to 60 percent of total phosphorus to the lake was from phosphorus derived from organic matter, and about 89 percent of phosphorus to Lake St. Croix was delivered by St. Croix River inflows. The Lake St. Croix CE–QUAL–W2 model offered potential mechanisms for the effect of external and internal loadings on the biotic response regarding the modeled algal community types of diatoms, green algae, and blue-green algae. The model also suggested the seasonal dominance of blue-green algae in all four pools of the lake.A sensitivity analysis was completed to test the total maximum daily load phosphorus-reduction scenario responses of total phosphorus and chlorophyll a. The modeling indicates that phosphorus reductions would result in similar Lake St. Croix reduced concentrations, although chlorophyll a concentrations did not decrease in the same proportional amounts as the total phosphorus concentrations had decreased. The smaller than expected reduction in algal growth rates highlighted that although inflow phosphorus loads are important, other constituents also can affect the algal response of the lake, such as changes in light penetration and the breakdown of organic matter releasing nutrients.The available habitat suitable for lake sturgeon was evaluated using the modeling results to determine the total volume of good-growth habitat, optimal growth habitat, and lethal temperature habitat. Overall, with the calibrated model, the fish habitat volume in general contained a large proportion of good-growth habitat and a sustained period of optimal growth habitat in the summer. Only brief periods of lethal oxy-thermal habitat were present in Lake St. Croix during the model simulation.

  11. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi.

    PubMed

    Cao, Xin; Wang, Yiqi; He, Jian; Luo, Xingzhang; Zheng, Zheng

    2016-12-01

    This study was focused on the phosphorus mobility among sediments, water and cyanobacteria in eutrophic Lake Dianchi. Four conditions lake water, water and algae, water and sediments, and three objects together were conducted to investigate the effects of cyanobacteria growth on the migration and transformation of phosphorus. Results showed a persistent correlation between the development of cyanobacterial blooms and the increase of soluble reactive phosphorus (SRP) in the lake water under the condition of three objects together. Time-course assays measuring different forms of phosphorus in sediments indicated that inorganic phosphorus (IP) and NaOH-P were relatively more easier to migrate out of sediment to the water and cyanobacteria. Further studies on phosphorus mobility showed that up to 70.2% of the released phosphorus could be absorbed by cyanobacteria, indicating that sediment is a major source of phosphorus when external loading is reduced. Time-course assays also showed that the development of cyanobacterial blooms promoted an increase in pH and a decrease in the redox potential of the lake water. The structure of the microbial communities in sediments was also significantly changed, revealed a great impaction of cyanobacterial blooms on the microbial communities in sediments, which may contribute to phosphorus release. Our study simulated the cyanobacterial blooms of Lake Dianchi and revealed that the cyanobacterial blooms is a driving force for phosphorus mobility among sediments, water and cyanobacteria. The outbreak of algal blooms caused deterioration in water quality. The P in the sediments represented a significant supply for the growth of cyanobacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Global baseline data on phosphorus pollution of large lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Flörke, Martina; Alcamo, Joseph

    2016-04-01

    Lakes are exposed to harmful eutrophication which is the most concerning water quality issue on global scale. Eutrophication is caused by phosphorous pollution in most lakes. Hence, global consistent base line data on phosphorus loadings are needed to assess future sustainable development. We used the modeling framework WaterGAP3 to calculate present total phosphorus loadings to the world's largest lakes. Estimates of modeled total phosphorus (TP) loadings as well as the contributions of different sectors were successfully validated against measured data. Based on these findings, annual total phosphorus loadings to lakes were calculated for diffuse and point sources according to the different sectors domestic, manufacturing, urban surface runoff, agriculture and background for the time period 1990 to 2010. Our results show high phosphorus loadings into lakes in southern latitudes. On global average, industrial fertilizer is the main anthropogenic source while background loadings are low in comparison. Nevertheless, both features indicate a high potential to reduce the exposure to eutrophication in lakes which are faced with high phosphor inputs. The global average of TP loadings was 7% higher in the time period 2005-2010 than in the period 1990-1995. The global average in 2005-2010 results from an increase in TP loadings of 79% in South America, which was dampened by a decrease in Europe, North America, and Asia. Chinese lakes were exposed to massive increasing phosphorus loadings, too. Both increasing and decreasing trends are caused primarily by changing industrial fertilizer application rates. In conclusion, this study provides a consistent and model based synopsis of global trends and sources of phosphorus loadings to large lakes. The estimates of phosphorus pollution of lakes present a basis for assessing and managing the global eutrophication problem.

  13. Nutrient dynamics in five off-stream reservoirs in the lower South Platte River basin, March-September 1995

    USGS Publications Warehouse

    Sprague, Lori A.

    2002-01-01

    In 1995, the U.S. Geological Survey conducted a study to characterize nutrient concentrations in five off-stream reservoirs in the lower South Platte River Basin?Riverside, Jackson, Prewitt, North Sterling, and Julesburg. These reservoirs are critical sources of irrigation water for agricultural areas, and several also are used for fishing, boating, swimming, hunting, and camping. Data collected for this study include depth profiles of water temperature, dissolved oxygen, pH, and specific conductance; nutrient species concentrations in the water column, bottom sediment, and inflow and outflow canals; and chlorophyll-a concentrations in the water column. Data were collected during the irrigation season from March through September 1995 at five sites each in Riverside, Jackson, Prewitt, and Julesburg Reservoirs and at six sites in North Sterling Reservoir. The five reservoirs studied are located in similar geographic, climatic, and land-use areas and, as a result, have a number of similarities in their internal nutrient dynamics. Nitrogen concentrations in the reservoirs were highest in March and decreased through September as a result of dilution from river inflows and biological activity. From March through June, decreases in nitrogen concentrations in the river and biological activity contributed to decreases in reservoir concentrations. From July through September, inflows from the river were cut off, and biological activity in the reservoirs led to further decreases in nitrate concentrations, which fell to near or below detectable levels. Phosphorus concentrations in the reservoirs did not show the same consistent decrease from March through September. Phosphorus likely was recycled continuously back to algae during the study period through processes such as excretion from fish, decay of aquatic plants and animals, and release of orthophosphate from bottom sediment during periods of low oxygen. With the exception of phosphorus in Jackson Reservoir, the reservoirs acted as a sink for both nitrogen and phosphorus; the percentage of the total mass (initial storage plus inflows) trapped in the reservoirs during the study period ranged from 49 to 88 percent for nitrogen and from 20 to 86 percent for phosphorus. The nutrient loading, morphology, and operation of the five reservoirs differed, however, leading to several important differences in nutrient dynamics among the reservoirs. Mean nutrient concentrations during the study period decreased in a downstream direction from Riverside Reservoir to Julesburg Reservoir because concentrations in the source water?the South Platte River?decreased downstream as a result of increased distance from wastewater loading upstream from Kersey, Colorado, and the replacement of diverted river water with more dilute ground-water return flow. North Sterling was an exception to this decrease; the strong stratification and resulting anoxia that developed in the reservoir led to nutrient release from the bottom sediments that offset the decrease in external nutrient loading. Variations in nutrient loading also contributed to differences in the nutrient limiting algal growth in the reservoirs, as indicated by mass nitrogen:phosphorus ratios. In Riverside and Jackson Reservoirs, nitrogen became the potential limiting nutrient by midsummer as biological activity depleted the available supply of nitrogen while the high initial phosphorus load was recycled. Prewitt, North Sterling, and Julesburg Reservoirs, with lower initial loadings of phosphorus, were phosphorus-limited throughout the study period, with additional colimitation of nitrogen as biological uptake reduced nitrogen concentrations to near or below laboratory detection limits. The percentage of the total nitrogen and phosphorus mass lost through outflow and trapped in the reservoir due to processes such as biological uptake and sedimentation varied between reservoirs.Generally, reservoirs with short residence times such as North Ste

  14. Water quality, hydrology, and simulated response to changes in phosphorus loading of Mercer Lake, Iron County, Wisconsin, with special emphasis on the effects of wastewater discharges

    USGS Publications Warehouse

    Robertson, Dale M.; Garn, Herbert S.; Rose, William J.; Juckem, Paul F.; Reneau, Paul C.

    2012-01-01

    Mercer Lake is a relatively shallow drainage lake in north-central Wisconsin. The area near the lake has gone through many changes over the past century, including urbanization and industrial development. To try to improve the water quality of the lake, actions have been taken, such as removal of the lumber mill and diversion of all effluent from the sewage treatment plant away from the lake; however, it is uncertain how these actions have affected water quality. Mercer Lake area residents and authorities would like to continue to try to improve the water quality of the lake; however, they would like to place their efforts in the actions that will have the most beneficial effects. To provide a better understanding of the factors affecting the water quality of Mercer Lake, a detailed study of the lake and its watershed was conducted by the U.S. Geological Survey in collaboration with the Mercer Lake Association. The purposes of the study were to describe the water quality of the lake and the composition of its sediments; quantify the sources of water and phosphorus loading to the lake, including sources associated with wastewater discharges; and evaluate the effects of past and future changes in phosphorus inputs on the water quality of the lake using eutrophication models (models that simulate changes in phosphorus and algae concentrations and water clarity in the lake). Based on analyses of sediment cores and monitoring data collected from the lake, the water quality of Mercer Lake appears to have degraded as a result of the activities in its watershed over the past 100 years. The water quality appears to have improved, however, since a sewage treatment plant was constructed in 1965 and its effluent was routed away from the lake in 1995. Since 2000, when a more consistent monitoring program began, the water quality of the lake appears to have changed very little. During the two monitoring years (MY) 2008-09, the average summer near-surface concentration of total phosphorus was 0.023 mg/L, indicating the lake is borderline mesotrophic-eutrophic, or has moderate to high concentrations of phosphorus, whereas the average summer chlorophyll a concentration was 3.3 mg/L and water clarity, as measured with a Secchi depth, was 10.4 ft, both indicating mesotrophic conditions or that the lake has a moderate amount of algae and water clarity. Although actions have been taken to eliminate the wastewater discharges, the bottom sediment still has slightly elevated concentrations of several pollutants from wastewater discharges, lumber operations, and roadway drainage, and a few naturally occurring metals (such as iron). None of the concentrations, however, were high enough above the defined thresholds to be of concern. Based on nitrogen to phosphorus ratios, the productivity (algal growth) in Mercer Lake should typically be limited by phosphorus; therefore, understanding the phosphorus input to the lake is important when management efforts to improve or prevent degradation of the lake water quality are considered. Total inputs of phosphorus to Mercer Lake were directly estimated for MY 2008-09 at about 340 lb/yr and for a recent year with more typical hydrology at about 475 lb/yr. During these years, the largest sources of phosphorus were from Little Turtle Inlet, which contributed about 45 percent, and the drainage area near the lake containing the adjacent urban and residential developments, which contributed about 24 percent. Prior to 1965, when there was no sewage treatment plant and septic systems and other untreated systems contributed nutrients to the watershed, phosphorus loadings were estimated to be about 71 percent higher than during around 2009. In 1965, a sewage treatment plant was built, but its effluent was released in the downstream end of the lake. Depending on various assumptions on how much effluent was retained in the lake, phosphorus inputs from wastewater may have ranged from 0 to 342 lb. Future highway and stormwater improvements have been identified in the Mercer Infrastructure Improvement Project, and if they are done with the proposed best management practices, then phosphorus inputs to the lake may decrease by about 40 lb. Eutrophication models [Canfield and Bachman model (1981) and Carlson Trophic State Index equations (1977)] were used to predict how the water quality of Mercer Lake should respond to changes in phosphorus loading. A relatively linear response was found between phosphorus loading and phosphorus and chlorophyll a concentrations in the lake, with changes in phosphorus concentrations being slightly less (about 80 percent) and changes in chlorophyll a concentrations being slightly more (about 120 percent) than the changes in phosphorus loadings to the lake. Water clarity, indicated by Secchi depths, responded more to decreases in phosphorus loading than to increases in loading. Results from the eutrophication models indicated that the lake should have been negatively affected by the wastewater discharges. Prior to 1965, when there was no sewage treatment plant effluent and inputs from the septic systems and other untreated systems were thought to be high, the lake should have been eutrophic; near the surface, average phosphorus concentrations were almost 0.035 mg/L, chlorophyll a concentrations were about 7 μg/L, and Secchi depths were about 6 ft, which agreed with the shallower Secchi depths during this time estimated from the sediment-core analysis. The models indicated that between 1965 and 1995, when the lake retained some of the effluent from the new sewage treatment plant, water quality should have been between the conditions estimated prior to 1965 and what was expected during typical hydrologic conditions around MY 2008-09. The models also indicated that if the future Mercer Infrastructure Improvement Project is conducted with the best management practices as proposed, the water quality in the lake could improve slightly from that measured during 2006-10. Because of the small amount of phosphorus that is presently input into Mercer Lake any additional phosphorus added to the lake could degrade water quality; therefore, management actions can usefully focus on minimizing future phosphorus inputs. Phosphorus released from the sediments of a degraded lake often delays its response to decreases in external phosphorus loading, especially in shallow, frequently mixed systems. Mercer Lake, however, remains stratified throughout most of the summer, and phosphorus released from the sediments represents only about 6 percent, or a small fraction, of the total phosphorus load to the lake. Therefore, the phosphorus trapped in the sediments should minimally affect the long-term water quality of the lake and should not delay the response in its productivity to future changes in nutrient loading from its watershed.

  15. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    PubMed

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-06-01

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Changes in phosphorus concentrations and loads in the Assabet River, Massachusetts, October 2008 through April 2014

    USGS Publications Warehouse

    Savoie, Jennifer G.; DeSimone, Leslie A.; Mullaney, John R.; Zimmerman, Marc J.; Waldron, Marcus C.

    2016-10-24

    Treated effluent discharged from municipal wastewater-treatment plants to the Assabet River in central Massachusetts includes phosphorus, which leads to increased growth of nuisance aquatic plants that decrease the river’s water quality and aesthetics in impounded reaches during the growing season. To improve the river’s water quality and aesthetics, the U.S. Environmental Protection Agency approved a total maximum daily load for phosphorus in 2004 that directed the wastewater-treatment plants to reduce the amount of total phosphorus discharged to the river by 2012. The permitted total phosphorus monthly average of 0.75 milligrams per liter during the aquatic plant growing season (April 1 through October 31) was reduced by the total maximum daily load to a target of 0.1 milligrams per liter by 2012, and the nongrowing-season limit was unchanged at 1.0 milligrams per liter.From October 2008 through April 2014, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, measured streamflow and collected weekly flow-proportional, composite samples of water from the Assabet River for analysis of concentrations of total phosphorus and orthophosphate. Streamflow and concentration data were used to estimate total phosphorus and orthophosphate loads in the river. The purpose of this monitoring effort was to evaluate phosphorus concentrations and loads in the river before, during, and after the wastewater-treatment-plant upgrades and to assess the effects of seasonal differences in permitted discharges. The locations of water-quality-monitoring stations, with respect to the Hudson and Ben Smith impoundments, enabled examination of effects of phosphorus entering and leaving the impoundments.Annual median concentrations of total phosphorus in wastewater-treatment plants were reduced by more than 80 percent with the plant upgrades. Measured instream annual median concentrations of total phosphorus in the Assabet River decreased by about 38 to 50 percent at three of the four monitoring stations following the wastewater-treatment-plant upgrades. At the station farthest upstream, the median total phosphorus concentration remained unchanged throughout the study; this may be attributed to the site location and potential resuspension of particulate organic matter during periods of increased streamflow. Annual median loads from the wastewater-treatment plants were reduced by up to 91 percent following the upgrades, instream annual median total phosphorus loads at the three downstream stations decreased by 71 to 76 percent, and instream orthophosphate loads at the three downstream stations decreased by 79 to 87 percent.Seasonal fluctuations (growing versus nongrowing) of total phosphorus and orthophosphate were observed instream before the upgrades. However, after the upgrades, fluctuations in phosphorus released from the treatment plants were slight and seasonal changes were typically not observed instream.Annual loads entering and leaving the two impoundments were inconclusive in determining whether the impoundments were sources or sinks of total phosphorus during the study. Total phosphorus loads entering the Hudson impoundment were consistently greater than those leaving; however, there was uncertainty about the loads at the monitoring station upstream from this impoundment. At the Ben Smith impoundment, total phosphorus and orthophosphate loads downstream were slightly greater than those upstream from the impoundment, but the differences may reflect additions from tributaries and overland runoff.Estimated instream total phosphorus concentrations and loads indicated that the decreases in total phosphorus in wastewater-treatment-plant discharges were accompanied by reductions measured in the Assabet River. A statistical analysis which incorporates the effect of varying flow conditions demonstrated significant reductions in total phosphorus concentrations after the wastewater-treatment-plant upgrades at three of the four instream monitoring stations. No significant change was observed at the most upstream location, the Assabet River at Port Street at Hudson, Massachusetts (station number 01096835), which may have been affected by flow-related resuspension of particulate phosphorus.

  17. Reducing sediment and phosphorus in tributary waters with alum and polyacrylamide.

    PubMed

    Mason, L B; Amrhein, C; Goodson, C C; Matsumoto, M R; Anderson, M A

    2005-01-01

    The Salton Sea is the largest inland water body in California, covering an area of 980 km(2). Inflow to the Salton Sea (1.6 km(3) yr(-1)) is predominately nutrient-rich agricultural wastewater, which has led to eutrophication. Because internal phosphorus release from the bottom sediments is comparatively low and external phosphorus loading to the Salton Sea is high, reduction of tributary phosphorus is expected to reduce algal blooms, increase dissolved oxygen, and reduce odors. Removing both dissolved phosphorus and phosphorus-laden sediment from agricultural drainage water (ADW) should decrease eutrophication. Both alum and polyacrylamide (PAM) are commonly used in wastewater treatment to remove phosphorus and sediment and were tested for use in tributary waters. Laboratory jar tests determined PAM effectiveness (2 mg L(-1)) for turbidity reduction as cationic > anionic = nonionic. Although cationic PAM was the most effective at reducing turbidity at higher speeds, there was no observed difference between the neutral and anionic PAMs at velocity gradients of 18 to 45 s(-1). Alum (4 mg L(-1) Al) reduced turbidity in low energy systems (velocity gradients < 10 s(-1)) by 95% and was necessary to reduce soluble phosphorus, which comprises 47 to 100% of the total P concentration in the tributaries. When PAM was added with alum, the anionic PAM became ineffective in aiding flocculation. The nonionic PAM (2 mg L(-1)) + alum (4 mg L(-1) Al) is recommended to reduce suspended solids in higher energy systems and reduce soluble P by 93%.

  18. Structural equation model of total phosphorus loads in the Red River of the North Basin, USA and Canada

    USGS Publications Warehouse

    Ryberg, Karen R.

    2017-01-01

    Attribution of the causes of trends in nutrient loading is often limited to correlation, qualitative reasoning, or references to the work of others. This paper represents efforts to improve causal attribution of water-quality changes. The Red River of the North basin provides a regional test case because of international interest in the reduction of total phosphorus loads and the availability of long-term total phosphorus data and ancillary geospatial data with the potential to explain changes in water quality over time. The objectives of the study are to investigate structural equation modeling methods for application to water-quality problems and to test causal hypotheses related to the drivers of total phosphorus loads over the period 1970 to 2012. Multiple working hypotheses that explain total phosphorus loads and methods for estimating missing ancillary data were developed, and water-quality related challenges to structural equation modeling (including skewed data and scaling issues) were addressed. The model indicates that increased precipitation in season 1 (November–February) or season 2 (March–June) would increase total phosphorus loads in the basin. The effect of agricultural practices on total phosphorus loads was significant, although the effect is about one-third of the effect of season 1 precipitation. The structural equation model representing loads at six sites in the basin shows that climate and agricultural practices explain almost 60% of the annual total phosphorus load in the Red River of the North basin. The modeling process and the unexplained variance highlight the need for better ancillary long-term data for causal assessments.

  19. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2017-01-01

    We used monitoring data from Lake Lugano (Switzerland and Italy) to assess key ecosystem responses to three decades of nutrient management (1983–2014). We investigated whether reductions in external phosphorus loadings (Lext) caused declines in lake phosphorus concentrations (P) and phytoplankton biomass (Chl a), as assumed by the predictive models that underpinned the management plan. Additionally, we examined the hypothesis that deep lakes respond quickly to Lext reductions. During the study period, nutrient management reduced Lext by approximately a half. However, the effects of such reduction on P and Chl a were complex. Far from the scenarios predicted by classic nutrient-management approaches, the responses of P and Chl a did not only reflect changes in Lext, but also variation in internal P loadings (Lint) and food-web structure. In turn, Lint varied depending on basin morphometry and climatic effects, whereas food-web structure varied due to apparently stochastic events of colonization and near-extinction of key species. Our results highlight the complexity of the trajectory of deep-lake ecosystems undergoing nutrient management. From an applied standpoint, they also suggest that [i] the recovery of warm monomictic lakes may be slower than expected due to the development of Lint, and that [ii] classic P and Chl a models based on Lext may be useful in nutrient management programs only if their predictions are used as starting points within adaptive frameworks.

  20. Hydrologic and biogeochemical controls on phosphorus export from western Lake Erie tributaries

    USDA-ARS?s Scientific Manuscript database

    Understanding the processes controlling phosphorus (P) export from agricultural watersheds is essential for predicting and mitigating adverse environmental impacts. In this study, discharge, dissolved reactive phosphorus load, and total phosphorus load time series data (1975-2014) from two Lake Erie...

  1. Water quality, hydrology, and the effects of changes in phosphorus loading to Pike Lake, Washington County, Wisconsin, with special emphasis on inlet-to-outlet short-circuiting

    USGS Publications Warehouse

    Rose, William J.; Robertson, Dale M.; Mergener, Elizabeth A.

    2004-01-01

    Simulations using water-quality models within the Wisconsin Lake Model Suite (WiLMS) indicated Pike Lake's response to 13 different phosphorus-loading scenarios. These scenarios included a base 'normal' year (2000) for which lake water quality and loading were known, six different percentage increases or decreases in phosphorus loading from controllable sources, and six different loading scenarios corresponding to specific management actions. Model simulations indicate that a 50-percent reduction in controllable loading sources would be needed to achieve a mesotrophic classification with respect to phosphorus, chlorophyll a, and Secchi depth (an index of water clarity). Model simulations indicated that short-circuiting of phosphorus from the inlet to the outlet was the main reason the water quality of the lake is good relative to the amount of loading from the Rubicon River and that changes in the percentage of inlet-to-outlet short-circuiting have a significant influence on the water quality of the lake.

  2. Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Parkhurst, David L.; Stollenwerk, Kenneth G.; Colman, John A.

    2003-01-01

    The subsurface transport of phosphorus introduced by the disposal of treated sewage effluent to ground-infiltration disposal beds at the Massachusetts Military Reservation on western Cape Cod was simulated with a three-dimensional reactive-transport model. The simulations were used to estimate the load of phosphorus transported to Ashumet Pond during operation of the sewage-treatment plant?from 1936 to 1995?and for 60 years following cessation of sewage disposal. The model accounted for spatial and temporal changes in water discharge from the sewage-treatment plant, ground-water flow, transport of associated chemical constituents, and a set of chemical reactions, including phosphorus sorption on aquifer materials, dissolution and precipitation of iron- and manganese-oxyhydroxide and iron phosphate minerals, organic carbon sorption and decomposition, cation sorption, and irreversible denitrification. The flow and transport in the aquifer were simulated by using parameters consistent with those used in previous flow models of this area of Cape Cod, except that numerical dispersion was much larger than the physical dispersion estimated in previous studies. Sorption parameters were fit to data derived from phosphorus sorption and desorption laboratory column experiments. Rates of organic carbon decomposition were adjusted to match the location of iron concentrations in an anoxic iron zone within the sewage plume. The sensitivity of the simulated load of phosphorus transported to Ashumet Pond was calculated for a variety of processes and input parameters. Model limitations included large uncertainties associated with the loading of the sewage beds, the flow system, and the chemistry and sorption characteristics in the aquifer. The results of current model simulations indicate a small load of phosphorus transported to Ashumet Pond during 1965?85, but this small load was particularly sensitive to model parameters that specify flow conditions and the chemical process by which non-desorbable phosphorus is incorporated in the sediments. The uncertainties were large enough to make it difficult to determine whether loads of phosphorus transported to Ashumet Pond in the 1990s were greater or less than loads during the previous two decades. The model simulations indicate substantial discharge of phosphorus to Ashumet Pond after about 1965. After the period 2000?10 the simulations indicate that the load of phosphorus transported to Ashumet Pond decreases continuously, but the load of phosphorus remains substantial for many decades. The current simulations indicate a peak in phosphorus discharge to Ashumet Pond of about 1,000 kilograms per year during the 1990s; however, comparisons of simulated phosphorus concentrations with measured concentrations in 1993 indicate that the peak in phosphorus load transported to Ashumet Pond may be larger and moving more quickly in the model simulations than in the aquifer. The results of the three-dimensional reactive-transport simulations are consistent with the loading history, experimental laboratory data, and field measurements. The results of the simulations adequately reproduce the spatial distribution of phosphorus concentrations measured in 1993, the magnitude of changes in phosphorus concentration with time in a profile near the disposal beds following cessation of sewage disposal, the observed iron zone in the sewage plume, the approximate flow of treated sewage effluent into Ashumet Valley, and laboratory-column data for phosphorus sorption and desorption.

  3. Sources of phosphorus to the Carson River upstream from Lahontan Reservoir, Nevada and California, Water Years 2001-02

    USGS Publications Warehouse

    Alvarez, Nancy L.; Seiler, Ralph L.

    2004-01-01

    Discharge of treated municipal-sewage effluent to the Carson River in western Nevada and eastern California ceased by 1987 and resulted in a substantial decrease in phosphorus concentrations in the Carson River. Nonetheless, concentrations of total phosphorus and suspended sediment still commonly exceed beneficial-use criteria established for the Carson River by the Nevada Division of Environmental Protection. Potential sources of phosphorus in the study area include natural inputs from undisturbed soils, erosion of soils and streambanks, construction of low-head dams and their destruction during floods, manure production and grazing by cattle along streambanks, drainage from fields irrigated with streamwater and treated municipal-sewage effluent, ground-water seepage, and urban runoff including inputs from golf courses. In 2000, the U.S. Geological Survey (USGS), in cooperation with Carson Water Subconservancy District, began an investigation with the overall purpose of providing managers and regulators with information necessary to develop and implement total maximum daily loads for the Carson River. Two specific goals of the investigation were (1) to identify those reaches of the Carson River upstream from Lahontan Reservoir where the greatest increases in phosphorus and suspended-sediment concentrations and loading occur, and (2) to identify the most important sources of phosphorus within the reaches of the Carson River where the greatest increases in concentration and loading occur. Total-phosphorus concentrations in surface-water samples collected by USGS in the study area during water years 2001-02 ranged from <0.01 to 1.78 mg/L and dissolved-orthophosphate concentrations ranged from <0.01 to 1.81 mg/L as phosphorus. In streamflow entering Carson Valley from headwater areas in the East Fork Carson River, the majority of samples exceeding the total phosphorus water-quality standard of 0.1 mg/L occur during spring runoff (March, April, and May) when suspended-sediment concentrations are high. Downstream from Carson Valley, almost all samples exceed the water-quality standard, with the greatest concentrations observed during spring and summer months. Estimated annual total-phosphorus loads ranged from 1.33 tons at the West Fork Carson River at Woodfords to 43.41 tons at the Carson River near Carson City during water years 2001-02. Loads are greatest during spring runoff, followed by fall and winter, and least during the summer, which corresponds to the amount of streamflow in the Carson River. The estimated average annual phosphorus load entering Carson Valley was 21.9 tons; whereas, the estimated average annual phosphorus load leaving Carson Valley was 37.8 tons, for an annual gain in load across Carson Valley of 15.9 tons. Thus, about 58 percent of the total-phosphorus load leaving Carson Valley on an annual basis could be attributed to headwater reaches upstream from Carson Valley. During spring and summer (April 1-September 30) an average of 85 percent of the total-phosphorus load leaving Carson Valley could be attributed to headwater reaches. During fall and winter (October 1-March 31) only 17 percent of the phosphorus load leaving Carson Valley could be attributed to headwater reaches. The composition of the phosphorus changes during summer from particulate phosphorus entering Carson Valley to dissolved orthophosphate leaving Carson Valley. Particulate phosphorus entering Carson Valley could be settling out when water is applied to fields and be replaced by dissolved orthophosphate from other sources. Alternatively, the particulate phosphorus could be converted to dissolved orthophosphate as it travels across Carson Valley. Data collected during the study are not sufficient to distinguish between the two possibilities. Eagle Valley and Dayton-Churchill Valleys may act as sinks for phosphorus. On an annual basis, during water years 2001-02, about 90 percent of the phosphorus entering Eagle Valley left the

  4. Phosphorus Concentrations, Loads, and Yields in the Illinois River Basin, Arkansas and Oklahoma, 1997-2001

    USGS Publications Warehouse

    Pickup, Barbara E.; Andrews, William J.; Haggard, Brian E.; Green, W. Reed

    2003-01-01

    The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin. Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and the Baron Fork. Loads appeared to generally increase with time during 1997-2001 at all stations, but this increase might be partly attributable to the beginning of runoff-event sampling in the basin in July 1999. Base-flow loads at stations on the Illinois River were about 10 times greater than those on the Baron Fork and 5 times greater than those on Flint Creek. Runoff components of the annual total phosphorus load ranged from 58.7 to 96.8 percent from 1997-2001. Base-flow and runoff loads were generally greatest in spring (March through May) or summer (June through August), and were least in fall (September through November). Total yields of phosphorus ranged from 107 to 797 pounds per year per square mile. Greatest yields were at Flint Creek near Kansas (365 to 797 pounds per year per square mile) and the least yields were at Baron Fork at Eldon (107 to 440 pounds per year per square mile). Estimated mean flow-weighted concentrations were more than 10 times greater than the median and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.022 milligram per liter and 0.037 milligram per liter, respectively). In addition, flow-weighted phosphorus concentrations in 1999-2001 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment program stations in the United States (0.29 milligram per liter). The annual average phosphorus load entering Lake Tenkiller was about 577,000 pounds per year, and more than 86 percent of the load was transported to the lake by runoff.The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin. Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus

  5. Trends in phosphorus loading to the western basin of Lake ...

    EPA Pesticide Factsheets

    Dave Dolan spent much of his career computing and compiling phosphorus loads to the Great Lakes. None of his work in this area has been more valuable than his continued load estimates to Lake Erie, which has allowed us to unambiguously interpret the cyanobacteria blooms and hypoxia development in the lake. To help understand the re-occurrence of cyanobacteria blooms in the Western Basin of Lake Erie, we have examined the phosphorus loading to the Western Basin over the past 15 years. Furthermore, we have examined the relative contributions from various tributaries and the Detroit River. On an annual basis the total phosphorus load has not exhibited a trend, other than being well correlated with flow from major tributaries. However, the dissolved reactive phosphorus (DRP) load has trended upward, returning to levels observed in the mid-1970s. This increase has largely been attributed to the increase in flow-weighted DRP concentration in the Maumee River. Over the period, about half of the phosphorus load comes from the Maumee River with the other half coming from the Detroit River; other tributaries contribute much small amounts to the load. Seasonal analysis shows the highest percentage of the load occurs in the spring during high flow events. We are very grateful to our friend Dave for making this type of analysis possible not applicable

  6. Evaluation of a method for comparing phosphorus loads from barnyards and croplands in Otter Creek Watershed, Wisconsin

    USGS Publications Warehouse

    Wierl, Judy A.; Giddings, Elise M.P.; Bannerman, Roger T.

    1998-01-01

    Control of phosphorus from rural nonpoint sources is a major focus of current efforts to improve and protect water resources in Wisconsin and is recommended in almost every priority watershed plan prepared for the State's Nonpoint Source (NFS) Program. Barnyards and crop- lands usually are identified as the primary rural sources of phosphorus. Numerous questions have arisen about which of these two sources to control and about the method currently being used by the NFS program to compare phosphorus loads from barnyards and croplands. To evaluate the method, the U.S. Geological Survey (USGS). in cooperation with the Wisconsin Department of Natural Resources, used phosphorus-load and sediment-load data from streams and phosphorus concentrations in soils from the Otter Creek Watershed (located in the Sheboygan River Basin: fig. 1) in conjunction with two computer-based models. 

  7. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia

    USGS Publications Warehouse

    Scavia, Donald; Allan, J. David; Arend, Kristin K.; Bartell, Steven; Beletsky, Dmitry; Bosch, Nate S.; Brandt, Stephen B.; Briland, Ruth D.; Daloğlu, Irem; DePinto, Joseph V.; Dolan, David M.; Evans, Mary Anne; Farmer, Troy M.; Goto, Daisuke; Han, Haejin; Höök, Tomas O.; Knight, Roger; Ludsin, Stuart A.; Mason, Doran; Michalak, Anna M.; Richards, R. Peter; Roberts, James J.; Rucinski, Daniel K.; Rutherford, Edward; Schwab, David J.; Sesterhenn, Timothy M.; Zhang, Hongyan; Zhou, Yuntao

    2014-01-01

    Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiated in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton biomass, and bottom-water hypoxia (dissolved oxygen 2) requires cutting total phosphorus loads by 46% from the 2003–2011 average or reducing dissolved reactive phosphorus loads by 78% from the 2005–2011 average. Reductions to these levels are also protective of fish habitat. We provide potential approaches for achieving those new loading targets, and suggest that recent load reduction recommendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin hypoxia to 2000 km2.

  8. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.

    PubMed

    Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik

    2012-03-01

    Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.

  9. Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon

    NASA Astrophysics Data System (ADS)

    Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.

    2017-10-01

    The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.

  10. Phosphorus Concentrations, Loads, and Yields in the Illinois River Basin, Arkansas and Oklahoma, 2000-2004

    USGS Publications Warehouse

    Tortorelli, Robert L.; Pickup, Barbara E.

    2006-01-01

    The Illinois River and tributaries, Flint Creek and Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus levels in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30-day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to summarize phosphorus concentrations and provide estimates of phosphorus loads, yields, and flow-weighted concentrations in the Illinois River and tributaries from January 2000 through December 2004. Data from water-quality samples collected from 2000 to 2004 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and mean flow-weighted concentrations in the Illinois River basin for three 3-year periods - 2000-2002, 2001-2003, and 2002-2004, to update a previous report that used data from water-quality samples from 1997 to 2001. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Phosphorus concentrations in the Illinois River basin were significantly greater in runoff samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and decreased in the downstream direction in the Illinois River from the Watts to Tahlequah stations. Phosphorus concentrations generally increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and Baron Fork. Annual total loads in the Illinois River from Watts to Tahlequah, increased slightly for the period 2000-2002 and decreased slightly for the periods 2001-2003 and 2002-2004. Estimated mean annual base-flow loads at stations on the Illinois River were about 11 to 20 times greater than base-flow loads at the station on Baron Fork and 4 to 10 times greater than base-flow loads at the station on Flint Creek. Estimated mean annual runoff loads ranged from 68 to 96 percent of the estimated mean annual total phosphorus loads from 2000-2004. Estimated mean seasonal base-flow loads were generally greatest in spring (March through May) and were least in fall (September through November). Estimated mean seasonal runoff loads generally were greatest in summer (June through August) for the period 2000-2002, but were greatest in winter (December through February) for the period 2001-2003, and greatest in spring for the period 2002-2004. Estimated mean total yields of phosphorus ranged from 192 to 811 pounds per year per square mile, with greatest yields being reported for Illinois River near Watts (576 to 811 pounds per year per square mile), and the least yields being reported for Baron Fork at Eldon for the periods 2000-2002 and 2001-2003 (501 and 192 pounds per year per square mile) and for Illinois River near Tahlequah for the period 2002-2004 (370 pounds per year per square mile). Estimated mean flow-weighted concentrations were more than 10 times greater than the median (0.022 milligram per liter) and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.037 milligram per liter). In addition, flow-weighted phosphorus concentrations in 2000-2002 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment Program station

  11. Sources and transport of phosphorus to rivers in California and adjacent states, U.S., as determined by SPARROW modeling

    USGS Publications Warehouse

    Domagalski, Joseph L.; Saleh, Dina

    2015-01-01

    The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de-trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small- and intermediate-sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.

  12. Optimization of enhanced biological phosphorus removal after periods of low loading.

    PubMed

    Miyake, Haruo; Morgenroth, Eberhard

    2005-01-01

    Enhanced biological phosphorus removal is a well-established technology for the treatment of municipal wastewater. However, increased effluent phosphorus concentrations have been reported after periods (days) of low organic loading. The purpose of this study was to evaluate different operating strategies to prevent discharge of effluent after such low-loading periods. Mechanisms leading to these operational problems have been related to the reduction of polyphosphate-accumulating organisms (PAOs) and their storage compounds (polyhydroxy alkanoates [PHA]). Increased effluent phosphorus concentrations can be the result of an imbalance between influent loading and PAOs in the system and an imbalance between phosphorus release and uptake rates. The following operating conditions were tested in their ability to prevent a reduction of PHA and of overall biomass during low organic loading conditions: (a) unchanged operation, (b) reduced aeration time, (c) reduced sludge wastage, and (d) combination of reduced aeration time and reduced sludge wastage. Experiments were performed in a laboratory-scale anaerobic-aerobic sequencing batch reactor, using acetate as the carbon source. Without operational adjustments, phosphorus-release rates decreased during low-loading periods but recovered rapidly. Phosphorus-uptake rates also decreased, and the recovery typically required several days to increase to normal levels. The combination of reduced aeration time and reduced sludge wastage allowed the maintenance of constant levels of both PHA and overall biomass. A mathematical model was used to explain the influence of the tested operating conditions on PAO and PHA concentrations. While experimental results were in general agreement with model predictions, the kinetic expression for phosphorus uptake deviated significantly for the first 24 hours after low-loading conditions. Mechanisms leading to these deviations need to be further investigated.

  13. Concentrations and Loads of Nutrients and Suspended Sediments in Englesby Brook and Little Otter Creek, Lake Champlain Basin, Vermont, 2000-2005

    USGS Publications Warehouse

    Medalie, Laura

    2007-01-01

    The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek assessment of agricultural BMPs showed that concentrations of phosphorus ranged from 0.016 to 0.141 mg/L during base-flow and from 0.019 to 0.565 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of suspended sediment ranged from 2 to 13 mg/L during base-flow and from 1 to 473 mg/L during high-flow conditions at the upstream monitoring station. Concentrations of phosphorus ranged from 0.018 to 0.233 mg/L during base-flow and from 0.019 to 1.95 mg/L during high-flow conditions at the downstream monitoring station. Concentrations of suspended sediment ranged from 10 to 132 mg/L during base-flow and from 8 to 1,190 mg/L during high-flow conditions at the downstream monitoring station. Annual loads of phosphorus at the downstream monitoring station were significantly larger than loads at the upstream monitoring station, and annual loads of suspended sediment at the downstream monitoring station were larger than loads at the upstream monitoring station for 4 out of 6 years. On a monthly basis, loads of phosphorus and suspended sediment at the downstream monitoring station were significantly larger than loads at the upstream monitoring station. Pairs of concentrations of phosphorus and monthly loads of phosphorus and suspended sediment from the upstream and downstream monitoring stations were evaluated using the paired watershed study design. The only significant reduction between the calibration and treatment periods was for monthly loads of phosphorus; all other evaluations showed no change between periods.

  14. Modeling drivers of phosphorus loads in Chesapeake Bay tributaries and inferences about long-term change

    USGS Publications Warehouse

    Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer

    2018-01-01

    Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.

  15. Scientifically Derived Phosphorus Loading Objective and Adaptive Watershed Management for Lake Simcoe, Canada

    NASA Astrophysics Data System (ADS)

    Winter, J. G.; Walters, M.; Willox, C.

    2005-05-01

    The recruitment failure of native cold-water fish in Lake Simcoe, Canada, has been attributed to a three-fold increase in phosphorus (P) loading from pre-settlement rates and consequent oxygen depletion in the hypolimnion and spawning shoal degradation. These water quality concerns led to a multi-agency partnership, the Lake Simcoe Environmental Management Strategy, whose goals include reducing phosphorus loading to the lake and restoring a self-sustaining cold-water fishery. A targeted end-of-summer hypolimnetic dissolved oxygen concentration (DO) was related to phosphorus loading rate through a series of intermediary relationships among trophic state variables using an empirical modeling approach to derive a phosphorus loading objective. The proposed P loading target of 75 metric tons/year is predicted to generate a P concentration of 0.01 mg/L and an end-of-summer hypolimnetic DO of 5 mg/L. The 5mg/L target is considered a significant interim step towards the goal of 7mg/L, a threshold above which cold-water fish recruitment should no longer be impaired. This model is presently being evaluated using data collected from 1980 to 2004 and will be compared to a three-dimensional mechanistic lake model. An adaptive watershed management approach is employed to meet the phosphorus loading target, linking scientific assessments to implementation activities and incorporating community education.

  16. Assessing risk of non-compliance of phosphorus standards for lakes in England and Wales

    NASA Astrophysics Data System (ADS)

    Duethmann, D.; Anthony, S.; Carvalho, L.; Spears, B.

    2009-04-01

    High population densities, use of inorganic fertilizer and intensive livestock agriculture have increased phosphorus loads to lakes, and accelerated eutrophication is a major pressure for many lakes. The EC Water Framework Directive (WFD) requires that good chemical and ecological quality is restored in all surface water bodies by 2015. Total phosphorus (TP) standards for lakes in England and Wales have been agreed recently, and our aim was to estimate what percentage of lakes in England and Wales is at risk of failing these standards. With measured lake phosphorus concentrations only being available for a small number of lakes, such an assessment had to be model based. The study also makes a source apportionment of phosphorus inputs into lakes. Phosphorus loads were estimated from a range of sources including agricultural loads, sewage effluents, septic tanks, diffuse urban sources, atmospheric deposition, groundwater and bank erosion. Lake phosphorus concentrations were predicted using the Vollenweider model, and the model framework was satisfactorily tested against available observed lake concentration data. Even though predictions for individual lakes remain uncertain, results for a population of lakes are considered as sufficiently robust. A scenario analysis was carried out to investigate to what extent reductions in phosphorus loads would increase the number of lakes achieving good ecological status in terms of TP standards. Applying the model to all lakes in England and Wales greater than 1 ha, it was calculated that under current conditions roughly two thirds of the lakes would fail the good ecological status with respect to phosphorus. According to our estimates, agricultural phosphorus loads represent the most frequent dominant source for the majority of catchments, but diffuse urban runoff also is important in many lakes. Sewage effluents are the most frequent dominant source for large lake catchments greater than 100 km². The evaluation in terms of total load can be misleading in terms of what sources need to be tackled by catchment management for most of the lakes. For example sewage effluents are responsible for the majority of the total load but are the dominant source in only a small number of larger lake catchments. If loads from all sources were halved this would potentially increase the number of complying lakes to two thirds but require substantial measures to reduce phosphorus inputs to lakes. For agriculture, required changes would have to go beyond improvements of agricultural practise, and need to include reducing the intensity of land use. The time required for many lakes to respond to reduced nutrient loading is likely to extend beyond the current timelines of the WFD due to internal loading and biological resistances.

  17. Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water quality

    USGS Publications Warehouse

    Manny, Bruce A.; Johnson, W.C.; Wetzel, R.G.

    1994-01-01

    Lakes and reservoirs provide water for human needs and habitat for aquatic birds. Managers of such waters may ask whether nutrients added by waterfowl degrade water quality. For lakes and reservoirs where primary productivity is limited by phosphorus (P), we developed a procedure that integrates annual P loads from waterfowl and other external sources, applies a nutrient load-response model, and determines whether waterfowl that used the lake or reservoir degraded water quality. Annual P loading by waterfowl can be derived from a figure in this report, using the days per year that each kind spent on any lake or reservoir. In our example, over 6500 Canada geese (Branta canadensis) and 4200 ducks (mostly mallards, Anas platyrhynchos) added 4462 kg of carbon (C), 280 kg of nitrogen (N), and 88 kg of P y-1 to Wintergreen Lake in southwestern Michigan, mostly during their migration. These amounts were 69% of all C, 27% of all N, and 70% of all P that entered the lake from external sources. Loads from all external sources totaled 840 mg P m-2 y-1. Application of a nutrient load-response model to this concentration, the hydraulic load (0.25 m y-1), and the water residence time (9.7 y) of Wintergreen Lake yielded an average annual concentration of total P in the lake of 818 mg m-3 that classified the lake as hypertrophic. This trophic classification agreed with independent measures of primary productivity, chlorophyll-a, total P, total N, and Secchi disk transparency made in Wintergreen Lake. Our procedure showed that waterfowl caused low water quality in Wintergreen Lake.

  18. Water quality, hydrology, and phosphorus loading to Little St. Germain Lake, Wisconsin, with special emphasis on the effects of winter aeration and ground-water inputs

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Saad, David A.

    2005-01-01

    Several empirical water-quality models were used to simulate how the East and Upper East Bays of the lake should respond to reductions in phosphorus loading from Muskellunge Creek. Simulation results indicated that reductions in tributary loading could improve the water quality of the East and Upper East Bays. Improving the water quality of these bays would also improve the water quality of the South and Second South Bays because of the flow of water through the lake. However, even with phosphorus loading from Muskellunge Creek completely eliminated, most of the lake would remain borderline mesotrophic/eutrophic because of the contributions of phosphorus from ground water.

  19. Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997-1999

    USGS Publications Warehouse

    Green, W. Reed; Haggard, Brian E.

    2001-01-01

    Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.

  20. Rehabilitation of Delavan Lake, Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Goddard, Gerald L.; Helsel, D.R.; MacKinnon, Kevin L.

    2009-01-01

    A comprehensive rehabilitation plan was developed and implemented to shift Delavan Lake, Wisconsin, from a hypereutrophic to a mesotrophic condition. The plan was threefold: (1) reduce external phosphorus (P) loading by applying Best Management Practices in the watershed, enhance an existing wetland, and short-circuit the inflows through the lake, (2) reduce internal P loading by treating the sediments with alum and removing carp, and (3) rehabilitate the fishery by removing carp and bigmouth buffalo and adding piscivores (biomanipulation). The first and second parts of the plan met with only limited success. With only minor reductions in internal and external P loading, P concentrations in the lake returned to near pre-treatment concentrations. The intensive biomanipulation and resulting trophic cascade (increased piscivores, decreased planktivores, increased large zooplankton populations, and reduced phytoplankton populations) eliminated most of the original problems in the lake (blue-green algal blooms and limited water clarity). However, now there is extensive macrophyte growth and abundant filamentous algae. Without significantly reducing the sources of the problems (high P loading) in Delavan Lake, the increased water clarity may not last. With an improved understanding of the individual components of this rehabilitation program, better future management plans can be developed for Delavan Lake and other lakes and reservoirs with similar eutrophication problems.

  1. Reassessing hypoxia forecasts for the Gulf of Mexico.

    PubMed

    Scavia, Donald; Donnelly, Kristina A

    2007-12-01

    Gulf of Mexico hypoxia has received considerable scientific and policy attention because of its potential ecological and economic impacts and implications for agriculture within its massive watershed. A 2000 assessment concluded that increased nitrate load to the Gulf since the 1950s was the primary cause of large-scale hypoxia areas. More recently, models have suggested that large-scale hypoxia did not start untilthe mid-1970s, and that a 40-45% nitrogen load reduction may be needed to reach the hypoxia area goal of the Hypoxia Action Plan. Recently, USGS revised nutrient load estimates to the Gulf, and the Action Plan reassessment has questioned the role of phosphorus versus nitrogen in controlling hypoxia. In this paper, we re-evaluate model simulations, hindcasts, and forecasts using revised nitrogen loads, and testthe ability of a phosphorus-driven version of the model to reproduce hypoxia trends. Our analysis suggests that, if phosphorus is limiting now, it became so because of relative increases in nitrogen loads during the 1970s and 1980s. While our model suggests nitrogen load reductions of 37-45% or phosphorus load reductions of 40-50% below the 1980-1996 average are needed, we caution that a phosphorus-only strategy is potentially dangerous, and suggest it would be prudent to reduce both.

  2. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: the phosphorus indicator in Northeast China.

    PubMed

    Ouyang, Wei; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-08-15

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20-40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Nutrient Load Estimates for Lake Erie 2005

    EPA Science Inventory

    Evaluation of phosphorus loads to Lake Erie is in progress for multiple uses in the Lake Erie ECOFORE Program. Emphasis is being placed on phosphorus loadings in 1976, 2005, and 2007 for model calibration and other purposes. This presentation focuses on an overview of temporal ...

  4. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy.

    PubMed

    Qiu, Meng; Wang, Dou; Liang, Weiyuan; Liu, Liping; Zhang, Yin; Chen, Xing; Sang, David Kipkemoi; Xing, Chenyang; Li, Zhongjun; Dong, Biqin; Xing, Feng; Fan, Dianyuan; Bao, Shiyun; Zhang, Han; Cao, Yihai

    2018-01-16

    A biodegradable drug delivery system (DDS) is one the most promising therapeutic strategies for cancer therapy. Here, we propose a unique concept of light activation of black phosphorus (BP) at hydrogel nanostructures for cancer therapy. A photosensitizer converts light into heat that softens and melts drug-loaded hydrogel-based nanostructures. Drug release rates can be accurately controlled by light intensity, exposure duration, BP concentration, and hydrogel composition. Owing to sufficiently deep penetration of near-infrared (NIR) light through tissues, our BP-based system shows high therapeutic efficacy for treatment of s.c. cancers. Importantly, our drug delivery system is completely harmless and degradable in vivo. Together, our work proposes a unique concept for precision cancer therapy by external light excitation to release cancer drugs. If these findings are successfully translated into the clinic, millions of patients with cancer will benefit from our work.

  5. Nitrogen and Phosphorus Loads to Temperate Seepage Lakes Associated With Allochthonous Dissolved Organic Carbon Loads

    Treesearch

    J.R. Corman; B.L. Bertolet; N.J. Casson; S.D. Sebestyen; R.K. Kolka; E.H. Stanley

    2018-01-01

    Terrestrial loads of dissolved organic matter (DOM) have increased in recent years in many north temperate lakes. While much of the focus on the "browning" phenomena has been on its consequences for carbon cycling, much less is known about how it influences nutrient loading to lakes. We characterize potential loads of nitrogen and phosphorus to seepage lakes...

  6. Sustainable Phosphorus Loadings from Effective and Cost-Effective Phosphorus Management Around the Baltic Sea

    PubMed Central

    Bryhn, Andreas C.

    2009-01-01

    Nutrient over-enrichment of the Baltic Sea, accompanied by intensified algal blooms and decreasing water clarity, has aroused widespread concern in the surrounding countries during the last four decades. This work has used a well-tested dynamic mass-balance model to investigate which decrease in total phosphorus loading would be required to meet the environmental goal to restore the trophic state in the Baltic Sea to pre-1960s levels. Furthermore, the extent to which various abatement options may decrease the phosphorus loading in a cost-effective manner has been studied. Upgrading urban sewage treatment in the catchment could, alone or in combination with banning phosphates in detergents, be sufficient to meet the set environmental goal, at an estimated annual basin-wide cost of 0.21–0.43 billion euro. Such a plan would potentially decrease the total phosphorus loading to the Baltic Sea with 6,650–10,200 tonnes per year. PMID:19412551

  7. Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13

    USGS Publications Warehouse

    Buck, Stephanie D.

    2014-01-01

    The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.

  8. Trends in phosphorus loading to the western basin of Lake Erie

    EPA Science Inventory

    Dave Dolan spent much of his career computing and compiling phosphorus loads to the Great Lakes. None of his work in this area has been more valuable than his continued load estimates to Lake Erie, which has allowed us to unambiguously interpret the cyanobacteria blooms and hypox...

  9. Phosphorus Loading Trends in Lake Michigan: A Historic Surprise

    EPA Science Inventory

    Total phosphorus (TP) loads to the Great Lakes have been of interest to researchers since the 1960s. The International Joint Commission (IJC) was the primary source of Great Lakes TP loading data during the 1970s and 1980s when the IJC released annual reports detailing Great Lake...

  10. Estimation of phosphorus flux in rivers during flooding.

    PubMed

    Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang

    2013-07-01

    Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in rivers during flooding should be monitored to evaluate the loading of phosphorus more precisely. The results show that monitoring and controlling phosphorus transport during flooding can help prevent the eutrophication of a reservoir.

  11. Exchange of nitrogen and phosphorus between a shallow lagoon and coastal waters

    USGS Publications Warehouse

    Hayn, Melanie; Howarth, Robert W.; Ganju, Neil K.; Berg, Peter; Foreman, Kenneth H.; Giblin, Anne E.; McGlathery, Karen

    2014-01-01

    West Falmouth Harbor, a shallow lagoon on Cape Cod, has experienced a threefold increase in nitrogen load since the mid- to late 1990s due to input from a groundwater plume contaminated by a municipal wastewater treatment plant. We measured the exchange of nitrogen and phosphorus between the harbor and the coastal waters of Buzzards Bay over several years when the harbor was experiencing this elevated nitrogen load. During summer months, the harbor not only retained the entire watershed nitrogen load but also had a net import of nitrogen from Buzzards Bay. During the spring and fall, the harbor had a net export of nitrogen to Buzzards Bay. We did not measure the export in winter, but assuming the winter net export was less than 112 % of the load, the harbor exported less than half of the watershed nitrogen load on an annual basis. For phosphorus, the harbor had a net import from coastal waters in the spring and summer months and a net export in the fall. Despite the large increase in nitrogen load to the harbor, the summertime import of phosphorus from Buzzards Bay was sufficient to maintain nitrogen limitation of primary productivity during the summer. Our findings illustrate that shallow systems dominated by benthic producers have the potential to retain large terrestrial nitrogen loads when there is sufficient supply of phosphorus from exchange with coastal waters.

  12. Controlling Eutrophication in A Mediterranean Shallow Reservoir by Phosphorus Loading Reduction: The Need for an Integrated Management Approach

    NASA Astrophysics Data System (ADS)

    Zaragüeta, Mikel; Acebes, Pablo

    2017-04-01

    Increased nutrient enrichment in Mediterranean standing waters has enhanced the risk of being affected by cyanobacterial blooms. Because phosphorus abatement is shaped as a crucial strategy for controlling eutrophication, this study introduces a structural thinking, experiential learning laboratory with animation dynamic model elaborated for Cazalegas Reservoir (Spain) to assess the feasibility of implementing a set of internal and external control measures and hydromorphological adjustments to meet the goal of oligotrophication. This shallow reservoir is another case where recurrent eutrophication has led to reach annual mean total phosphorus concentrations (0.16 ± 0.08 mg total phosphorus/L) over the threshold of current water policies, triggering cyanobacterial growth up to undesirable levels in summer time (approximately 50,000 cells/mL). Modeling results showed that (i) after upgrading water treatment in the main tributary, (ii) applying a lanthanum-modified bentonite into the water column and sediment, and (iii) increasing reservoir water level, in-lake P concentrations and cyanobacterial abundance decreased in an 88% (below 0.01 mg total phosphorus/L) and 84% (below 6000 cells/mL), respectively in the most critical periods. However, the constraints of the proposed management strategies are associated with their costs of implementation and the time span for a stable trophic recovery of the reservoir. In that end, integrated management approaches are aimed to be adopted by water managers to reach adequate ecological status of freshwater bodies.

  13. Assessing Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    EPA Science Inventory

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the US...

  14. [Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed based on L-THIA model].

    PubMed

    Li, Kai; Zeng, Fan-Tang; Fang, Huai-Yang; Lin, Shu

    2013-11-01

    Based on the Long-term Hydrological Impact Assessment (L-THIA) model, the effect of land use and rainfall change on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed was analyzed. The parameters in L-THIA model were revised according to the data recorded in the scene of runoff plots, which were set up in the watershed. The results showed that the distribution of areas with high pollution load was mainly concentrated in agricultural land and urban land. Agricultural land was the biggest contributor to nitrogen and phosphorus load. From 1995 to 2010, the load of major pollutants, namely TN and TP, showed an obviously increasing trend with increase rates of 17.91% and 25.30%, respectively. With the urbanization in the watershed, urban land increased rapidly and its area proportion reached 43.94%. The contribution of urban land to nitrogen and phosphorus load was over 40% in 2010. This was the main reason why pollution load still increased obviously while the agricultural land decreased greatly in the past 15 years. The rainfall occurred in the watershed was mainly concentrated in the flood season, so the nitrogen and phosphorus load of the flood season was far higher than that of the non-flood season and the proportion accounting for the whole year was over 85%. Pearson regression analysis between pollution load and the frequency of different patterns of rainfall demonstrated that rainfall exceeding 20 mm in a day was the main rainfall type causing non-point source pollution.

  15. Effects of urban best management practices on streamflow and phosphorus and suspended-sediment transport on Englesby Brook in Burlington, Vermont, 2000-2010

    USGS Publications Warehouse

    Medalie, Laura

    2012-01-01

    An assessment of the effectiveness of several urban best management practice structures, including a wet extended detention facility and a shallow marsh wetland (together the "wet extended detention ponds"), was made using data collected from 2000 through 2010 at Englesby Brook in Burlington, Vermont. The purpose of the best management practices was to reduce high streamflows and phosphorus and suspended-sediment loads and concentrations and to increase low streamflows. Englesby Brook was monitored for streamflow, phosphorus, and suspended-sediment concentrations at a streamgage downstream of the best management practice structures for 5 years before the wet extended detention ponds were constructed in 2005 and for 4 years (phosphorus and suspended-sediment concentrations) or 5 years (streamflow) after they were constructed. The period after construction of the best management practice structures was wetter and had higher discharges than the period before construction. Despite the wetter conditions, streamflow duration curves provided evidence that the streamflow regime appeared to have shifted so that the percentages of low streamflows have increased and those of high streamflows may have slightly decreased. Two other hydrologic measures showed improvements in the years following construction of the best management practices: the percentage of annual discharge transported during the 3 days with highest discharges and the number of days with zero streamflow have both decreased. Evidence was mixed for the effectiveness of the best management practices in reducing phosphorus and suspended-sediment concentrations and loads. Annual phosphorus and suspended-sediment loads, monthly loads, low-streamflow concentrations, storm-averaged streamflow-adjusted concentrations, and total storm loads either did not change significantly or increased in the period after construction. These results likely were because of the wetter conditions in the period after construction. For example, monthly loads assessed using analysis of covariance, which compensated for the effects of streamflow on loads, suggested no difference in phosphorus or suspended-sediment loads between the two periods, whereas the comparison of monthly loads without factoring in streamflow showed an increase. This result could be viewed as evidence that the ponds may have mitigated the effect of greater discharges in the period after construction by preventing a corresponding increase in loads. In another analysis used to adjust for the difference in discharge between the two comparison periods, annual and monthly load results were grouped into dry and wet years. Large (50 percent) reductions in annual loads were observed when data from dry (or wet) years before construction were compared with data from dry (or wet) years after construction. When paired monthly loads of each constituent were grouped into dry and wet years, approximately the same number of months had increases as did decreases with the magnitudes of the decreases generally larger than the magnitudes of the increases. These differences in magnitude explain the decrease in annual loads for dry and wet years. The close association of phosphorus with suspended-sediment data suggested that most of the phosphorus was in the particulate form and was controlled by suspended-sediment dynamics.

  16. Streamflow and nutrient data for the Yazoo River below Steele Bayou near Long Lake, Mississippi, 1996-2000

    USGS Publications Warehouse

    Runner, Michael S.; Turnipseed, D. Phil; Coupe, Richard H.

    2002-01-01

    Increased nutrient loading to the Gulf of Mexico from off-continent flux has been identified as contributing to the increase in the areal extent of the low dissolved-oxygen zone that develops annually off the Louisiana and Texas coast. The proximity of the Yazoo River Basin in northwestern Mississippi to the Gulf of Mexico, and the intensive agricultural activities in the basin have led to speculation that the Yazoo River Basin contributes a disproportionate amount of nitrogen and phosphorus to the Mississippi River and ultimately to the Gulf of Mexico. An empirical measurement of the flux of nitrogen and phosphorus from the Yazoo Basin has not been possible due to the hydrology of the lower Yazoo River Basin. Streamflow for the Yazoo River below Steele Bayou is affected by backwater from the Mississippi River. Flow at the gage is non-uniform and varying, with bi-directional and reverse flows possible. Streamflow was computed by using remote sensing and acoustic and conventional discharge and velocity measurement techniques. Streamflow from the Yazoo River for the 1996-2000 period accounted for 2.8 percent of the flow of the Mississippi River for the same period. Water samples from the Yazoo River were collected from February 1996 through December 2000 and were analyzed for total nitrogen, nitrate, total phosphorus, and orthophosphorus as part of the U.S. Geological Survey National Water-Quality Assessment Program. These data were used to compute annual loads of nitrogen and phosphorus discharged from the Yazoo River for the period 1996-2000. Annual loads of nitrogen and phosphorus were calculated by two methods. The first method used multivariate regression and the second method multiplied the mean annual concentration by the total annual flow. Load estimates based on the product of the mean annual concentration and the total annual flow were within the 95 percent confidence interval for the load calculated by multivariate regression in 10 of 20 cases. The Yazoo River loads, compared to average annual loads in the Mississippi River, indicated that the Yazoo River was contributing 1.4 percent of the total nitrogen load, 0.7 percent of the nitrate load, 3.4 percent of the total phosphorus load, and 1.6 percent of the orthophosphorus load during 1996 - 2000. The total nitrogen, nitrate, and orthophosphorus loads in the Yazoo River Basin were less than expected, whereas the total phosphorus load was slightly higher than expected based on discharge.

  17. Interannual and long-term changes in the trophic state of a multibasin lake: Effects of morphology, climate, winter aeration, and beaver activity

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William; Reneau, Paul C.

    2016-01-01

    Little St. Germain Lake (LSG), a relatively pristine multibasin lake in Wisconsin, USA, was examined to determine how morphologic (internal), climatic (external), anthropogenic (winter aeration), and natural (beaver activity) factors affect the trophic state (phosphorus, P; chlorophyll, CHL; and Secchi depth, SD) of each of its basins. Basins intercepting the main flow and external P sources had highest P and CHL and shallowest SD. Internal loading in shallow, polymictic basins caused P and CHL to increase and SD to decrease as summer progressed. Winter aeration used to eliminate winterkill increased summer internal P loading and decreased water quality, while reductions in upstream beaver impoundments had little effect on water quality. Variations in air temperature and precipitation affected each basin differently. Warmer air temperatures increased productivity throughout the lake and decreased clarity in less eutrophic basins. Increased precipitation increased P in the basins intercepting the main flow but had little effect on the isolated deep West Bay. These relations are used to project effects of future climatic changes on LSG and other temperate lakes.

  18. Nitrogen and phosphorus in streams of the Great Miami River Basin, Ohio, 1998-2000

    USGS Publications Warehouse

    Reutter, David C.

    2003-01-01

    Sources and loads of nitrogen and phosphorus in streams of the Great Miami River Basin were evaluated as part of the National Water-Quality Assessment program. Water samples were collected by the U.S. Geological Survey from October 1998 through September 2000 (water years 1999 and 2000) at five locations in Ohio on a routine schedule and additionally during selected high streamflows. Stillwater River near Union, Great Miami River near Vandalia, and Mad River near Eagle City were selected to represent predominantly agricultural areas upstream from the Dayton metropolitan area. Holes Creek near Kettering is in the Dayton metropolitan area and was selected to represent an urban area in the Great Miami River Basin. Great Miami River at Hamilton is downstream from the Dayton and Hamilton-Middletown metropolitan areas and was selected to represent mixed agricultural and urban land uses of the Great Miami River Basin. Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the three agricultural basins and for the Great Miami River Basin as a whole. Nutrient inputs from point sources were computed from the facilities that discharge one-half million gallons or more per day into streams of the Great Miami River Basin. Nonpoint-source inputs estimated in this report are atmospheric deposition and commercial-fertilizer and manure applications. Loads of ammonia, nitrate, total nitrogen, orthophosphate, and total phosphorus from the five sites were computed with the ESTIMATOR program. The computations show nitrate to be the primary component of instream nitrogen loads, and particulate phosphorus to be the primary component of instream phosphorus loads. The Mad River contributed the smallest loads of total nitrogen and total phosphorus to the study area upstream from Dayton, whereas the Upper Great Miami River (upstream from Vandalia) contributed the largest loads of total nitrogen and total phosphorus to the Great Miami River Basin upstream from Dayton. An evaluation of monthly mean loads shows that nutrient loads were highest during winter 1999 and lowest during the drought of summer and autumn 1999. During the 1999 drought, point sources were the primary contributors of nitrogen and phosphorus loads to most of the study area. Nonpoint sources, however, were the primary contributors of nitrogen and phosphorus loads during months of high streamflow. Nonpoint sources were also the primary contributors of nitrogen loads to the Mad River during the 1999 drought, owing to unusually large amounts of ground-water discharge to the stream. The Stillwater River Basin had the highest nutrient yields in the study area during months of high streamflow; however, the Mad River Basin had the highest yields of all nutrients except ammonia during the months of the 1999 drought. The high wet-weather yields in the Stillwater River Basin were caused by agricultural runoff, whereas high yields in the Mad River Basin during drought resulted from the large, sustained contribution of ground water to streamflow throughout the year. In the basins upstream from Dayton, an estimated 19 to 25 percent of the nonpoint source of nitrogen and 4 to 5 percent of the nonpoint source of phosphorus that was deposited or applied to the land was transported into streams.

  19. Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality

    USGS Publications Warehouse

    Litke, David W.

    1999-01-01

    Historical information on phosphorus loadings to the environment and the effect on water quality are summarized in this report, which was produced as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. Phosphorus is a water-quality constituent of concern because it is often the limiting nutrient responsible for accelerated eutrophication in water bodies. Phosphorus inputs to the environment have increased since 1950 as the use of phosphate fertilizer, manure, and phosphate laundry detergent increased; however, the manufacture of phosphate detergent for household laundry was ended voluntarily in about 1994 after many States had established phosphate detergent bans. Total phosphorus concentrations in raw wastewater effluent contained about 3 milligrams per liter of total phosphorus during the 1940's, increased to about 11 milligrams per liter at the height of phosphate detergent use (1970), and have currently declined to about 5 milligrams per liter. However, in some cases, tertiary wastewater treatment still is needed to effectively improve water quality of streams. Downward trends in phosphorus concentrations since 1970 have been identified in many streams, but median total phosphorus concentrations still exceed the recommended limit of 0.1 milligram per liter across much of the Nation. Data from the NAWQA Program are representative of a variety of phosphorus-control measures, and, therefore, may be used to evaluate the effects of various control strategies. Current areas of concern include: evaluation of the effects of increased manure loadings of phosphorus on soil phosphorus and, subsequently, on ground water and subsurface runoff; determination of point-source and nonpoint-source components of phosphorus loads by geographic modeling and hydrologic separation techniques; and development of methods or indices to evaluate nutrient impairment in streams and rivers to serve as a basis for developing phosphorus criteria or standards.

  20. Sources and loads of nutrients in the South Platte River, Colorado and Nebraska, 1994-95

    USGS Publications Warehouse

    Litke, D.W.

    1996-01-01

    The South Platte River Basin was one of 20 river basins selected in 1991 for investigation as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. Nationwide, nutrients have been identified as one of the primary nationwide water-quality concerns and are of particular interest in the South Platte River Basin where nutrient concentrations are large compared to concentrations in other NAWQA river basins. This report presents estimates of the magnitude of nutrient-source inputs to the South Platte River Basin, describes nutrient concen- trations and loads in the South Platte River during different seasons, and presents comparisons of nutrient inputs to instream nutrient loads. Annual nutrient inputs to the basin were estimated to be 306,000 tons of nitrogen and 41,000 tons of phosphorus. The principal nutrient sources were wastewater-treatment plants, fertilizer and manure applications, and atmospheric deposition. To characterize nutrient concentrations and loads in the South Platte River during different seasons, five nutrient synoptic samplings were conducted during 1994 and 1995. Upstream from Denver, Colorado, during April 1994 and January 1995, total nitrogen concentrations were less than 2 milligrams per liter (mg/L), and total phosphorus concentrations were less than 0.2 mg/L. The water in the river at this point was derived mostly from forested land in the mountains west of Denver. Total nutrient concentrations increased through the Denver metropolitan area, and concentration peaks occurred just downstream from each of Denver's largest wastewater-treatment plants with maximum concentrations of 13.6 mg/L total nitrogen and 2.4 mg/L total phosphorus. Nutrient concen- concentrations generally decreased downstream from Denver. Upstream from Denver during April 1994 and January 1995, total nitrogen loads were less than 1,000 pounds per day (lb/d), and total phosphorus loads were less than 125 lb/d. Total nutrient loads increased through the Denver metropolitan area, and load peaks occurred just downstream from each of Denver's largest wastewater-treatment plants, with a maximum load of 14,000 lb/d total nitrogen and 2,300 lb/d total phosphorus. In April 1994, nutrient loads generally decreased from Henderson, Colorado, to North Platte, Nebraska. In January 1995, however, nutrient loads increased from Henderson to Kersey, Colorado (maximum loads of 31,000 lb/d total nitrogen and 3,000 lb/d total phosphorus), and then decreased from Kersey to North Platte. Seasonal nutrient loads primarily were dependent on streamflow. Total nitrogen loads were largest in June 1994 and January 1995 when streamflows also were largest. During June, streamflow was large, but nitrogen concentrations were small, which indicated that snowmelt runoff diluted the available supply of nitrogen. Total phosphorus loads were largest in June, when streamflow and phosphorus concentrations were large, which indicated an additional source of phosphorus during snowmelt runoff. Streamflow along the South Platte River was smallest in April and August 1994, and nutrient loads also were smallest during these months. The downstream pattern for nutrient loads did not vary much by season. Loads were large at Henderson, decreased between Henderson and Kersey, and usually were largest at Kersey. The magnitude of the decrease in loads between Henderson and Kersey varied between synoptics and was dependent on the amount of water removed by irrigation ditches. Nutrient loads leaving the basin were very small compared to the estimated total nutrient inputs to the basin. Streamflow balances indicated that the South Platte River is a gaining river throughout much of its length; streamflow-balance residuals were as large as 15 cubic feet per second per mile. Nutrient-load balances indicated that increases in river nitrate loads were, in some places, due to nitrification and, elsewhere, were due to the influx of nitrate-enriched ground water to

  1. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    USGS Publications Warehouse

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  2. Estimation of nitrogen and phosphorus flows in livestock production in Dianchi Lake basin, China.

    PubMed

    Anzai, Hiroki; Wang, Lin; Oishi, Kazato; Irbis, Chagan; Li, Kunzhi; Kumagai, Hajime; Inamura, Tatsuya; Hirooka, Hiroyuki

    2016-01-01

    We assessed the nitrogen (N) and phosphorus (P) flows in intensified livestock production systems by investigating nutrient budgets and cycling in the basin of Dianchi Lake, one of the most eutrophic lakes in China. We conducted field surveys based on feed samplings and interviews of livestock farmers. The N and P in local and external feeds, animal body retentions, animal products and excretions were calculated at the individual level for dairy cattle, fattening pigs, breeding sows, broilers and laying hens. The N and P flows in the total livestock production system in the area were estimated by multiplying the individual N and P budgets by the number of animals. For the dairy and fattening pig productions, N and P supplied from local crops or by-products accounted for large parts of the inputs. For the other livestock categories, most of the N and P inputs depended on external resources. The N and P outputs through animal manure into the cropland were 287 and 66 kg/ha/year, respectively, which were higher than the N and P inputs into the livestock production systems from the cropland. The N and P loads from manure should be reduced for the establishment of sustainable agricultural production systems. © 2015 Japanese Society of Animal Science.

  3. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: A Chinese case study.

    PubMed

    Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Wen, Xuefa; Yu, Guirui

    2017-07-01

    Atmospheric phosphorus (P) deposition is not only an important external macronutrient source for aquatic ecosystems but also a major cause of high export coefficient (EC) values. However, there are limited numbers of studies in the literature that focus on estimating the deposition flux of reactive P (P r ). The aim of this study is to estimate the P r deposition on the Xiangxi River watershed, and therefore, provide a comprehensive understanding about the P r deposition on subtropical watersheds in China. Results have shown that maximal P r deposition fluxes reached 12 kg km -2 in our selected subtropical watershed. Furthermore, we found out the particulate phosphorus (PP) were dominating the total P r deposition in the Xiangxi River watershed. According to our experiments, certain forms of P r deposition were associated with high correlation coefficients with respect to the variation of rainfall intensity. Results also demonstrated that the dissolved organic phosphorus (DOP) and soluble reactive phosphorus (SRP) via wet deposition had large influences on the DOP and SRP concentrations in runoff, while the PO 4 -P and PP via wet deposition only affected PO 4 -P and PP loads through runoff discharge. Our experiments also shown that most parts of the P r in runoff water was derived from rainfall and its magnitudes varied with land types. Results suggested that during the dry season, the P r wet deposition not only was an important source for the P r transport driven by runoff, but also was one of the most important influencing factors that dominated the P r transport in subtropical watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Phosphorus loading to McGrath and Ellis ponds, Kennebec County, Maine

    USGS Publications Warehouse

    Nichols, Wallace J.; Sowles, J.W.; Lobao, J.J.

    1984-01-01

    McGrath and Ellis Ponds in south-central Maine have been identified as having nuisance algae blooms. In 1978, a cooperative study between the U.S. Geological Survey and the Maine Department Environmental Protection was begun to evaluate areas in which restoration effort would best improve water quality of the ponds. Streamflow and phosphorus data were collected from 28 tributaries to the ponds, April 1 through September 30, 1978 and 1979. Phosphorus yields from each tributary watershed were compared to determine their relative importance to the phosphorus budgets of the ponds. Three tributaries to the ponds were estimated to contribute 44 percent of the phosphorus load, yet drain only 22 percent of the watershed. Phosphorus input to the ponds likely would be most easily reduced by instituting phosphorus control practices in parts of the basin drained by the three tributaries. (USGS)

  5. Phosphorus Loadings to the World's Largest Lakes: Sources and Trends

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Alcamo, Joseph; Flörke, Martina; Reder, Klara

    2018-04-01

    Eutrophication is a major water quality issue in lakes worldwide and is principally caused by the loadings of phosphorus from catchment areas. It follows that to develop strategies to mitigate eutrophication, we must have a good understanding of the amount, sources, and trends of phosphorus pollution. This paper provides the first consistent and harmonious estimates of current phosphorus loadings to the world's largest 100 lakes, along with the sources of these loadings and their trends. These estimates provide a perspective on the extent of lake eutrophication worldwide, as well as potential input to the evaluation and management of eutrophication in these lakes. We take a modeling approach and apply the WorldQual model for these estimates. The advantage of this approach is that it allows us to fill in large gaps in observational data. From the analysis, we find that about 66 of the 100 lakes are located in developing countries and their catchments have a much larger average phosphorus yield than the lake catchments in developed countries (11.1 versus 0.7 kg TP km-2 year-1). Second, the main source of phosphorus to the examined lakes is inorganic fertilizer (47% of total). Third, between 2005-2010 and 1990-1994, phosphorus pollution increased at 50 out of 100 lakes. Sixty percent of lakes with increasing pollution are in developing countries. P pollution changed primarily due to changing P fertilizer use. In conclusion, we show that the risk of P-stimulated eutrophication is higher in developing countries.

  6. Preliminary analysis of phosphorus flow in Hue Citadel.

    PubMed

    Anh, T N Q; Harada, H; Fujii, S; Anh, P N; Lieu, P K; Tanaka, S

    2016-01-01

    Characteristics of waste and wastewater management can affect material flows. Our research investigates the management of waste and wastewater in urban areas of developing countries and its effects on phosphorus flow based on a case study in Hue Citadel, Hue, Vietnam. One hundred households were interviewed to gain insight into domestic waste and wastewater management together with secondary data collection. Next, a phosphorus flow model was developed to quantify the phosphorus input and output in the area. The results showed that almost all wastewater generated in Hue Citadel was eventually discharged into water bodies and to the ground/groundwater. This led to most of the phosphorus output flowing into water bodies (41.2 kg P/(ha year)) and ground/groundwater (25.3 kg P/(ha year)). Sewage from the sewer system was the largest source of phosphorus loading into water bodies, while effluent from on-site sanitation systems was responsible for a major portion of phosphorus into the ground/groundwater. This elevated phosphorus loading is a serious issue in considering surface water and groundwater protection.

  7. Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland.

    PubMed

    Li, Chunyan; Wu, Shubiao; Dong, Renjie

    2015-03-15

    This paper demonstrates the potential of tidal flow operated constructed wetland application for the removal dynamics of organic matter, nitrogen and phosphorus. Near-complete removal of organic matter was achieved with a constant removal efficiency of 95%, irrespective of TOC influent loadings ranged from 10 g/m(2) · d to 700 g/m(2) · d. High NH4(+)-N removal at 95% efficiency under influent loading of 17 g/m(2) · d, was stably obtained and was not negatively influenced by increasing influent organic carbon loading rate. Increased influent TOC loading (350 g/m(2) · d to 700 g/m(2) · d) significantly enhanced denitrification capacity and increased TN removal from 30% to 95%. Under tidal flow operation, a higher carbon supply (C/N = 20) for complete TN removal was demonstrated as comparing to that observed in traditional CWs approaches. In addition, the removal of phosphorus was strongly influenced by organic loadings. However, further investigations are needed to elucidate the detailed mechanism that would explain the role of organic loading in phosphorus removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The estimation of the load of non-point source nitrogen and phosphorus based on observation experiments and export coefficient method in Three Gorges Reservoir Area

    NASA Astrophysics Data System (ADS)

    Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.

    2017-12-01

    In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.

  9. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen

    USGS Publications Warehouse

    Domagalski, Joseph L.; Lin, Chao; Luo, Yang; Kang, Jie; Wang, Shaoming; Brown, Larry R.; Munn, Mark D.

    2007-01-01

    Concentrations, loads, and sources of nitrate and total phosphorus were investigated at the Panjiakou and Daheiting Reservoir system in northern Hebei Province, People's Republic of China. The Luan He River is the primary source of water to these reservoirs, and the upstream watershed has a mix of land uses including agriculture, forest, and one large urban center. The reservoirs have a primary use for storage of drinking water and partially supply Tianjin City with its annual needs. Secondary uses include flood control and aqua culture (fish cages). The response of the reservoir system from phosphorus input, with respect to chlorophyll-a production from algae, was fitted to a model of normalized phosphorus loading that regresses the average summer-time chlorophyll-a concentration to the average annual phosphorus concentration of the reservoir. Comparison of the normalized phosphorus loading and chlorophyll-a response of this system to other reservoirs throughout the world indicate a level of eutrophication that will require up to an approximate 5–10-fold decrease in annual phosphorus load to bring the system to a more acceptable level of algal productivity. Isotopes of nitrogen and oxygen in dissolved nitrate were measured from the headwater streams and at various locations along the major rivers that provide the majority of water to these reservoirs. Those isotopic measurements indicate that the sources of nitrate change from natural background in the rivers to animal manure and septic waste upstream of the reservoir. Although the isotopic measurements suggest that animal and septic wastes are a primary source of nutrients, measurements of the molar ratio of nitrogen to phosphorus are more indicative of row-cropping practices. Options for reduction of nutrient loads include changing the management practices of the aqua culture, installation of new sewage treatment systems in the large urbanized area of the upper watershed, and agricultural management practices that would reduce the loading of nutrients and soil erosion from that land use.

  10. Revision and proposed modification for a total maximum daily load model for Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wherry, Susan A.; Wood, Tamara M.; Anderson, Chauncey W.

    2015-01-01

    Using the extended 1991–2010 external phosphorus loading dataset, the lake TMDL model was recalibrated following the same procedures outlined in the Phase 1 review. The version of the model selected for further development incorporated an updated sediment initial condition, a numerical solution method for the chlorophyll a model, changes to light and phosphorus factors limiting algal growth, and a new pH-model regression, which removed Julian day dependence in order to avoid discontinuities in pH at year boundaries. This updated lake TMDL model was recalibrated using the extended dataset in order to compare calibration parameters to those obtained from a calibration with the original 7.5-year dataset. The resulting algal settling velocity calibrated from the extended dataset was more than twice the value calibrated with the original dataset, and, because the calibrated values of algal settling velocity and recycle rate are related (more rapid settling required more rapid recycling), the recycling rate also was larger than that determined with the original dataset. These changes in calibration parameters highlight the uncertainty in critical rates in the Upper Klamath Lake TMDL model and argue for their direct measurement in future data collection to increase confidence in the model predictions.

  11. Full-scale phosphorus recovery from digested waste water sludge in Belgium - part I: technical achievements and challenges.

    PubMed

    Marchi, A; Geerts, S; Weemaes, M; Schiettecatte, W; Wim, S; Vanhoof, C; Christine, V

    2015-01-01

    To date, phosphorus recovery as struvite in wastewater treatment plants has been mainly implemented on water phases resulting from dewatering processes of the sludge line. However, it is possible to recover struvite directly from sludge phases. Besides minimising the return loads of phosphorus from the sludge line to the water line, placing such a process within the sludge line is claimed to offer advantages such as a higher recovery potential, enhanced dewaterability of the treated sludge, and reduced speed of scaling in pipes and dewatering devices. In the wastewater treatment plant at Leuven (Belgium), a full-scale struvite recovery process from digested sludge has been tested for 1 year. Several monitoring campaigns and experiments provided indications of the efficiency of the process for recovery. The load of phosphorus from the sludge line returning to the water line as centrate accounted for 15% of the P-load of the plant in the reference situation. Data indicated that the process divides this phosphorus load by two. An improved dewaterability of 1.5% of dry solids content was achieved, provided a proper tuning of the installation. Quality analyses showed that the formed struvite was quite pure.

  12. Phosphorus retention and internal loading in the Bay of Quinte, Lake Ontario, using diagenetic modelling.

    PubMed

    Doan, Phuong T K; Watson, Sue B; Markovic, Stefan; Liang, Anqi; Guo, Jay; Mugalingam, Shan; Stokes, Jonathan; Morley, Andrew; Zhang, Weitao; Arhonditsis, George B; Dittrich, Maria

    2018-04-24

    Internal phosphorus (P) loading significantly contributes to hysteresis in ecosystem response to nutrient remediation, but the dynamics of sediment P transformations are often poorly characterized. Here, we applied a reaction-transport diagenetic model to investigate sediment P dynamics in the Bay of Quinte, a polymictic, spatially complex embayment of Lake Ontario, (Canada). We quantified spatial and temporal variability of sediment P binding forms and estimated P diffusive fluxes and sediment P retention in different parts of the bay. Our model supports the notion that diagenetic recycling of redox sensitive and organic bound P forms drive sediment P release. In the recent years, summer sediment P diffusive fluxes varied in the range of 3.2-3.6 mg P m -2  d -1 in the upper bay compared to 1.5 mg P m -2  d -1 in the middle-lower bay. Meanwhile sediment P retention ranged between 71% and 75% in the upper and middle-lower bay, respectively. The reconstruction of temporal trends of internal P loading in the past century, suggests that against the backdrop of reduced external P inputs, sediment P exerts growing control over the lake nutrient budget. Higher sediment P diffusive fluxes since mid-20th century with particular increase in the past 20 years in the shallower upper basins, emphasize limited sediment P retention potential and suggest prolonged ecosystem recovery, highlighting the importance of ongoing P control measures. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Lake Erie phosphorus loading and Cladophora updates

    EPA Science Inventory

    The presentation will focus on updates or progress being made on each Phosphorus Loadings and Cladophora for Lake Erie. The format will give a brief summary of data, findings, and results that were used by the Great Lakes Water Quality Agreement (GLWQA) Annex 4 Nutrients Modeli...

  14. Characterization of suspended solids and total phosphorus loadings from small watersheds in Wisconsin

    USGS Publications Warehouse

    Danz, Mari E.; Corsi, Steven R.; Graczyk, David J.; Bannerman, Roger T.

    2010-01-01

    Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area Ecoregion, the Northern Lakes and Forests Ecoregion, the North Central Hardwoods Ecoregion, and the Southeastern Wisconsin Till Plains Ecoregion. The Northern Lakes and Forests and the North Central Hardwoods Ecoregions were combined into one region for analysis due to a lack of sufficient data in each region. Urban watersheds, all located in the Southeastern Wisconsin Till Plains, were analyzed separately from rural watersheds as the Rural Southeastern Wisconsin Till Plains region and the Urban Southeastern Wisconsin Till Plains region. Results provide information on the distribution of loadings and streamflow between base flow and stormflow, the timing of loadings and streamflow throughout the year, and information regarding the number of days in which the majority of the annual loading is transported. The average contribution to annual solids loading from stormflow periods for the Driftless Area Ecoregion was 84 percent, the Northern Lakes and Forests/North Central Hardwoods region was 71 percent, the Rural Southeastern Wisconsin Till Plains region was 70 percent, and the Urban Southeastern Wisconsin Till Plains region was 90 percent. The average contributions to annual total phosphorus loading from stormflow periods were 72, 49, 61, and 76 percent for each of the respective regions. The average contributions to annual streamflow from stormflow periods are 20, 23, 31, and 50 percent for each of the respective regions. In all regions, the most substantial loading contributions for solids were in the late winter (February through March), spring (April through May), and early summer (June through July), with fall (October through November) and early winter (December through January) contributing the smallest loadings. The Northern Lakes and Forests/North Central Hardwoods region had some substantial loading in September. There was a similar pattern for total phosphorus loading in all regions, with the pattern somewhat less pronounced in urban watersheds. As with the loading results, average monthly streamflow values were greatest in late winter, spring, and early summer, with the lowest values typically in fall and early winter. Loading contributions were greater from stormflow than from base flow in all instances, except total phosphorus in the Northern Lakes and Forests/North Central Hardwoods region, which had equal or greater base-flow contribution for several months. Base flow constituted a greater percentage of the total streamflow than stormflow in all rural watersheds for all regions. Only a few storms each year dominated the annual loading totals for solids and total phosphorus. When daily loading values were ranked for the year, all regions reached 50 percent of the annual solids loading in the 5 highest loading days and nearly 50 percent of the annual total phosphorus loading in the 14 highest loading days.

  15. Nutrient Loading and Algal Response in West Thompson Lake, Thompson, Connecticut, 2003-2005

    USGS Publications Warehouse

    Morrison, Jonathan; Colombo, Michael J.

    2008-01-01

    Water quality and nutrient loads were characterized for parts of the Quinebaug River and West Thompson Lake in northeastern Connecticut during 2003 to 2005. The West Thompson Lake watershed is a mainly forested watershed that receives treated municipal wastewater from several point sources in Massachusetts. The lake is a flood-control reservoir formed in 1966 by impoundment of the Quinebaug River. Median concentrations of total phosphorus in two inflow (upstream) and one outflow (downstream) sampling stations on the Quinebaug River were higher than the nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) for rivers and streams in aggregate Ecoregion XIV. In general, concentrations of total phosphorus in West Thompson Lake also were above the nutrient criteria recommended by USEPA for lakes and impoundments in aggregate Ecoregion XIV. The trophic status of West Thompson Lake has changed since 1995 from a hypereutrophic lake to a eutrophic lake; however, the lake still has large algal blooms. These blooms are predominated by blue-green algae, with chlorophyll-a concentrations of more than 30 micrograms per liter and algal cell counts as high as 73,000 cells/mL. Water samples collected during the summer of 2005 identified phosphorus as the primary limiting nutrient early in the season, but algal growth is probably co-limited by phosphorus and nitrogen later in the season. Lake-bottom sediments were collected from several areas throughout the lake and ranged in thickness from less than 1 foot (ft) to more than 3 ft. Concentrations of phosphorus in sediments differed throughout the lake; the highest values were found in the middle of the lake. Concentrations of total phosphorus also increased from an average 1,800 milligrams per kilogram (mg/kg) in the upper layers of sediment to more than 6,000 mg/kg at depth in the sediment. Annual, seasonal, and monthly loads and yields of nutrients were calculated for the three sampling locations on the Quinebaug River to develop a nutrient mass-balance model (budget) for West Thompson Lake. The average annual yields of total phosphorus during 2000 to 2005 were 115 pounds per square mile per year (lb/mi2/yr) at Quinebaug (inflow station), 116 lb/mi2/yr at Red Bridge Road (inflow station), and 97.9 lb/mi2/yr at West Thompson (outflow station). The 18-percent decrease in the average annual yield of total phosphorus between the inflow station at Red Bridge Road and the outlet of West Thompson Lake at West Thompson indicates that a significant part of the phosphorus load is retained in the lake. Annual yields of total phosphorus at Quinebaug have decreased significantly since the 1980s, from 362 lb/mi2/yr (for 1981-1990) to 115 lb/mi2/yr (1996-2005). The annual net export of phosphorus in West Thompson Lake during water years 2000 to 2005 ranged from -36 percent (2005) to 1 percent (2002) of the incoming load. Seasonal mass-balance data for total phosphorus during the summers of 2000 to 2003, when streamflow was at or lower than normal, indicated a net export of phosphorus that ranged from 3.4 percent (2003) to 30.7 percent (2002) of the incoming load. During the summer of 2004, however, streamflows were much higher than normal, and there was a negative export of phosphorus in West Thompson Lake of -3.9 percent. The annual net export of nitrogen in West Thompson Lake during water years 2000 to 2005 ranged from -5 percent (2002) to 4 percent (2001) of the incoming load. No clear pattern was evident to relate total nitrogen export to seasonal variables or runoff. Removal of phosphorus during the summer by wastewater-treatment plants (WWTPs) in Massachusetts reduces the concentration and load of total phosphorus entering West Thompson Lake in the summer; however, the large amount of phosphorus retained in the lake during the other seasons, in addition to the phosphorus stored in the lake-bottom sediments, may become available to fuel algal blooms in the lake

  16. Seasonal Phosphorus Sources and Loads to Upper Klamath Lake, Oregon, as Determined by a Dynamic SPARROW Model

    NASA Astrophysics Data System (ADS)

    Saleh, D.; Domagalski, J. L.; Smith, R. A.

    2016-12-01

    The SPARROW (SPAtially-Referenced Regression On Watershed Attributes) model, developed by the U.S. Geological Survey, has been used to identify and quantify the sources of nitrogen and phosphorus in watersheds and to predict their fluxes and concentration at specified locations downstream. Existing SPARROW models use a hybrid statistical approach to describe an annual average ("steady-state") relationship between sources and stream conditions based on long-term water quality monitoring data and spatially-referenced explanatory information. Although these annual models are useful for some management purposes, many water quality issues stem from intra- and inter-annual changes in constituent sources, hydrologic forcing, or other environmental conditions, which cause a lag between watershed inputs and stream water quality. We are developing a seasonal dynamic SPARROW model of sources, fluxes, and yields of phosphorus for the watershed (approximately 9,700 square kilometers) draining to Upper Klamath Lake, Oregon. The lake is hyper-eutrophic and various options are being considered for water quality improvement. The model was calibrated with 11 years of water quality data (2000 to 2010) and simulates seasonal loads and yields for a total of 44 seasons. Phosphorus sources to the watershed include animal manure, farm fertilizer, discharges of treated wastewater, and natural sources (soil and streambed sediment). The model predicts that phosphorus delivery to the lake is strongly affected by intra- and inter-annual changes in precipitation and by temporary seasonal storage of phosphorus in the watershed. The model can be used to predict how different management actions for mitigating phosphorus sources might affect phosphorus loading to the lake as well as the time required for any changes in loading to occur following implementation of the action.

  17. Identifying external nutrient reduction requirements and potential in the hypereutrophic Lake Taihu Basin, China.

    PubMed

    Peng, Jiao-Ting; Zhu, Xiao-Dong; Sun, Xiang; Song, Xiao-Wei

    2018-04-01

    Reducing external nutrient loads is the first step for controlling eutrophication. Here, we identified external nutrient reduction requirements and potential of strategies for achieving reductions to remediate a eutrophic water body, Lake Taihu, China. A mass balance approach based on the entire lake was used to identify nutrient reduction requirements; an empirical export coefficient approach was introduced to estimate the nutrient reduction potential of the overall program on integrated regulation of Taihu Lake Basin (hereafter referred to as the "Guideline"). Reduction requirements included external total nitrogen (TN) and total phosphorus (TP) loads, which should be reduced by 41-55 and 25-50%, respectively, to prevent nutrient accumulation in Lake Taihu and to meet the planned water quality targets. In 2010, which is the most seriously polluted calendar year during the 2008-2014 period, the nutrient reduction requirements were estimated to be 36,819 tons of N and 2442 tons of P, and the potential nutrient reduction strategies would reduce approximately 25,821 tons of N and 3024 tons of P. Since there is a net N remaining in the reduction requirements, it should be the focus and deserves more attention in identifying external nutrient reduction strategies. Moreover, abatement measures outlined in the Guideline with high P reduction potential required large monetary investments. Achieving TP reduction requirement using the cost-effective strategy costs about 80.24 million USD. The design of nutrient reduction strategies should be enacted according to regional and sectoral differences and the cost-effectiveness of abatement measures.

  18. Nutrient Concentrations, Loads, and Yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-2004

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2006-01-01

    The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency over time. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, conducted an investigation to summarize nitrogen and phosphorus concentrations and provide estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than in base-flow samples at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma. Nitrogen concentrations in base-flow samples significantly increased in the downstream direction in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations. Nitrogen in base-flow samples from Beaty Creek was significantly less than in those from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to Cherokee stations in Spavinaw Creek, probably due to a point source between those stations, then significantly decreased downstream from the Cherokee to Colcord stations. Phosphorus in base-flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek, and not significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads from 2002-2004 were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that of Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 percent, whereas, at the Spavinaw Creek stations, the range in the runoff component was 60 to 66 percent. Estimated mean annual phosphorus total loads from 2002-2004 were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2.5 times that of Maysville station. Estimated mean annual phosphorus base-flow loads at the Spavinaw Creek stations were about 2.5 to 19 times greater than at Beaty Creek. Phosphorus base-flow loads increased about 8 times from Maysville to Cherokee in Spavinaw Creek; the base-flow loads were about the same at the three downstream stations. The runoff component

  19. The "phosphorus pyramid": a visual tool for dietary phosphate management in dialysis and CKD patients.

    PubMed

    D'Alessandro, Claudia; Piccoli, Giorgina B; Cupisti, Adamasco

    2015-01-20

    Phosphorus retention plays a pivotal role in the onset of mineral and bone disorders (MBD) in chronic kidney disease (CKD). Phosphorus retention commonly occurs as a result of net intestinal absorption exceeding renal excretion or dialysis removal. The dietary phosphorus load is crucial since the early stages of CKD, throughout the whole course of the disease, up to dialysis-dependent end-stage renal disease.Agreement exits regarding the need for dietary phosphate control, but it is quite challenging in the real-life setting. Effective strategies to control dietary phosphorus intake include restricting phosphorus-rich foods, preferring phosphorus sourced from plant origin, boiling as the preferred cooking procedure and avoiding foods with phosphorus-containing additives. Nutritional education is crucial in this regard.Based on the existing literature, we developed the "phosphorus pyramid", namely a novel, visual, user-friendly tool for the nutritional education of patients and health-care professionals. The pyramid consists of six levels in which foods are arranged on the basis of their phosphorus content, phosphorus to protein ratio and phosphorus bioavailability. Each has a colored edge (from green to red) that corresponds to recommended intake frequency, ranging from "unrestricted" to "avoid as much as possible".The aim of the phosphorus pyramid is to support dietary counseling in order to reduce the phosphorus load, a crucial aspect of integrated CKD-MBD management.

  20. Coral Skeletons Provide Historical Evidence of Phosphorus Runoff on the Great Barrier Reef

    PubMed Central

    Mallela, Jennie; Lewis, Stephen E.; Croke, Barry

    2013-01-01

    Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca) of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs. PMID:24086606

  1. Land application of spent gypsum from ditch filters: phosphorus source or sink?

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage ditches can provide a direct connection between fields and surface waters, and some have been shown to deliver high loads of phosphorus (P) to sensitive water bodies. A potential way to reduce nutrient loads in drainage ditches is to install filter structures containing P sorbi...

  2. Decreasing phosphorus loss in tile-drained landscapes using flue gas desulfurization gypsum

    USDA-ARS?s Scientific Manuscript database

    Elevated phosphorus (P) loading from agricultural non-point source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P...

  3. Internal loading of phosphate in Lake Erie Central Basin.

    PubMed

    Paytan, Adina; Roberts, Kathryn; Watson, Sue; Peek, Sara; Chuang, Pei-Chuan; Defforey, Delphine; Kendall, Carol

    2017-02-01

    After significant reductions in external phosphorus (P) loads, and subsequent water quality improvements in the early 1980s, the water quality of Lake Erie has declined considerably over the past decade. The frequency and magnitude of harmful algal blooms (primarily in the western basin) and the extent of hypoxic bottom waters in the central basin have increased. The decline in ecosystem health, despite meeting goals for external P loads, has sparked a renewed effort to understand P cycling in the lake. We use pore-water P concentration profiles and sediment cores incubation experiments to quantify the P flux from Lake Erie central basin sediments. In addition, the oxygen isotopes of phosphate were investigated to assess the isotopic signature of sedimentary phosphate inputs relative to the isotopic signature of phosphate in lake water. Extrapolating the total P sediment flux based on the pore-water profiles to the whole area of the central basin ranged from 300 to 1250metric tons per year and using the flux based on core incubation experiments an annual flux of roughly 2400metric tons of P is calculated. These estimates amount to 8-20% of the total external input of P to Lake Erie. The isotopic signature of phosphate in the extractable fraction of the sediments (~18‰) can explain the non-equilibrium isotope values of dissolved phosphate in the deep water of the central basin of Lake Erie, and this is consistent with sediments as an important internal source of P in the Lake. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Management of Natural and Added Dietary Phosphorus Burden in Kidney Disease

    PubMed Central

    Cupisti, Adamasco; Kalantar-Zadeh, Kamyar

    2018-01-01

    Phosphorus retention occurs from higher dietary phosphorus intake relative to its renal excretion or dialysis removal. In the gastrointestinal tract the naturally existing organic phosphorus is only partially (~60%) absorbable; however, this absorption varies widely and is lower for plant-based phosphorus including phytate (<40%) and higher for foods enhanced with inorganic-phosphorus-containing preservatives (>80%). The latter phosphorus often remains unrecognized by patients and health care professionals, even though it is widely used in contemporary diets, in particular low-cost foods. In a non-enhanced mixed diet, the digestible phosphorus is closely correlated with total protein content, making protein-rich foods a main source of natural phosphorus. Phosphorus burden is more appropriately limited in pre-dialysis patients who are on low protein diets (~0.6 g/kg/day), whereas dialysis patients who require higher protein intake (~1.2 g/kg/day) are subject to a higher dietary phosphorus load. An effective and patient-friendly approach to reduce phosphorus intake without depriving patients of adequate proteins is to educate patients to avoid foods with high phosphorus relative to protein such as egg yolk and those with high amounts of phosphorus-based preservatives such as certain soft drinks and enhanced cheese and meat. Protein-rich foods should be prepared by boiling, which reduces phosphorus as well as sodium and potassium content, or by other types of cooking induced demineralization. The dose of phosphorus-binding therapy should be adjusted separately for the amount and absorbability of phosphorus in each meal. Dietician counselling to address the foregoing aspects of dietary phosphorus management is instrumental for achieving reduction of phosphorus load. PMID:23465504

  5. Analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics in Lake Maumelle, Arkansas, 1991-92

    USGS Publications Warehouse

    Green, W. Reed

    2001-01-01

    Lake Maumelle is the major drinking-water source for the Little Rock metropolitan area in central Arkansas. Urban and agricultural development has increased in the Lake Maumelle Basin and information is needed related to constituent transport and waterquality response to changes in constituent loading or hydrologic regime. This report characterizes ambient conditions in Lake Maumelle and its major tributary, Maumelle River; describes the calibration and verification of a numerical model of hydrodynamics and water quality; and provides several simulations that describe constituent transport and water quality response to changes in constituent loading and hydrologic regime. Ambient hydrologic and water-quality conditions demonstrate the relatively undisturbed nature of Lake Maumelle and the Maumelle River. Nitrogen and phosphorus concentrations were low, one to two orders of magnitude lower than estimates of national background nutrient concentrations. Phosphorus and chlorophyll a concentrations in Lake Maumelle demonstrate its oligotrophic/mesotrophic condition. However, concentrations of chlorophyll a appeared to increase since 1990 within the upper and middle reaches of the reservoir. A two-dimensional, laterally averaged hydrodynamic and water-quality model developed and calibrated for Lake Maumelle simulates water level, currents, heat transport and temperature distribution, conservative material transport, and the transport and transformation of 11 chemical constituents. Simulations included the movement and dispersion of spills or releases in the reservoir during stratified and unstratified conditions, release of the fish nursery pond off the southern shore of Lake Maumelle, and algal responses to changes in external loading. The model was calibrated using 1991 data and verified using 1992 data. Simulated temperature and dissolved oxygen concentrations related well when compared to measured values. Simulated nutrient and algal biomass also related reasonably well when compared to measured values. A simulated spill of conservative material at the upper end of Lake Maumelle during a major storm event took less than 102 hours to disperse the entire length of the reservoir. Simulation of a nursery pond release into a tributary to Lake Maumelle demonstrated how the released water plunges within the receiving embayment and enters the main stem of the reservoir at mid depths. Simulations of algal response to increases of nitrogen and phosphorus loads demonstrate the phosphorus limiting condition in Lake Maumelle. Results from this study will provide waterresource management with information to better understand how changes in hydrology and water quality in the basin affects water quality in the reservoir. With this information, managers will be able to more effectively manage their drinking-water source supply.

  6. Phosphorus and nitrogen loading depths in fluvial sediments following manure spill simulations

    USDA-ARS?s Scientific Manuscript database

    Manure spills that enter streams can devastate the aquatic ecosystem. The depth of nitrogen (N) and phosphorus (P) loading in fluvial sediments following a manure spill have not been documented. Thus, the objectives of this study were (i) to determine the depth of N and P contamination as a result o...

  7. Sensitivity analysis of the agricultural policy/environmental extender (APEX) for phosphorus loads in tile-drained landscapes

    USDA-ARS?s Scientific Manuscript database

    Numerical modeling is an economical and feasible approach for quantifying the effects of best management practices on phosphorus (P) loadings from agricultural fields. However, tools that simulate both surface and subsurface P pathways are limited and have not been robustly evaluated in tile-drained...

  8. Runoff and phosphorus loads from two Iowa fields with and without applied manure, 2000-2011

    USDA-ARS?s Scientific Manuscript database

    Understanding the dynamics of field-edge runoff water quality and responses to changes in management practices and climate through monitoring will probably require decade-duration data sets. This study compared runoff volumes and phosphorus loads from two fields in central Iowa, where the glacial la...

  9. Streambanks: A net source of sediment and phosphorus to streams and rivers

    USDA-ARS?s Scientific Manuscript database

    Sediment and phosphorus (P) are two primary pollutants of surface waters. Many studies have investigated loadings from upland sources or even streambed sediment, but in many cases, limited to no data exist to determine sediment and P loading from streambanks on a watershed scale. The objectives of t...

  10. Source Separation of Urine as an Alternative Solution to Nutrient Management in Biological Nutrient Removal Treatment Plants.

    PubMed

    Jimenez, Jose; Bott, Charles; Love, Nancy; Bratby, John

    2015-12-01

    Municipal wastewater contains a mixture of brown (feces and toilet paper), yellow (urine), and gray (kitchen, bathroom and wash) waters. Urine contributes approximately 70-80% of the nitrogen (N), 50-70% of the phosphorus (P) load and 60-70% of the pharmaceutical residues in normal domestic sewage. This study evaluated the impact of different levels of source separation of urine on an existing biological nutrient removal (BNR) process. A process model of an existing biological nutrient removal (BNR) plant was used. Increasing the amount of urine diverted from the water reclamation facilities, has little impact on effluent ammonia (NH₃-N) concentration, but effluent nitrate (NO₃-N) concentration decreases. If nitrification is necessary then no reduction in the sludge age can be realized. However, a point is reached where the remaining influent nitrogen load matches the nitrogen requirements for biomass growth, and no residual nitrogen needs to be nitrified. That allows a significant reduction in sludge age, implying reduced process volume requirements. In situations where nitrification is required, lower effluent nitrate (NO₃-N) concentrations were realized due to both the lower influent nitrogen content in the wastewater and a more favorable nitrogen-to-carbon ratio for denitrification. The external carbon requirement for denitrification decreases as the urine separation efficiency increases due to the lower influent nitrogen content in the wastewater and a more favorable nitrogen-to-carbon ratio for denitrification. The effluent phosphorus concentration decreases when the amount of urine sent to water reclamation facilities is decreased due to lower influent phosphorus concentrations. In the case of chemical phosphate removal, urine separation reduces the amount of chemicals required.

  11. Nitrate and pesticides in surficial aquifers and trophic state and phosphorus sources for selected lakes, eastern Otter Tail County, west-central Minnesota, 1993-96

    USGS Publications Warehouse

    Ruhl, J.F.

    1997-01-01

    Phosphorus at depth in Little Pine and Big Pine Lakes was mostly orthophosphate. During the fall turnover of the lakes, this orthophosphate may have circulated to near the lake surface and became an available nutrient for phytoplankton during the following growing season. The internal phosphorus load to Little Pine Lake may have been important because about three-fourths of the lake probably became stratified and anoxic in the hypolimnion. The internal phosphorus load to Big Pine Lake may not have been important because only a small portion of the lake became stratified and anoxic at depth.

  12. Simulation of the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region--based on the improved export coefficient model.

    PubMed

    Wang, Jinliang; Shao, Jing'an; Wang, Dan; Ni, Jiupai; Xie, Deti

    2015-11-01

    Nonpoint source pollution is one of the primary causes of eutrophication of water bodies. The concentrations and loads of dissolved pollutants have a direct bearing on the environmental quality of receiving water bodies. Based on the Johnes export coefficient model, a pollutant production coefficient was established by introducing the topographical index and measurements of annual rainfall. A pollutant interception coefficient was constructed by considering the width and slope of present vegetation. These two coefficients were then used as the weighting factors to modify the existing export coefficients of various land uses. A modified export coefficient model was created to estimate the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region (TGRR) in 1990, 1995, 2000, 2005, and 2010. The results show that the new land use export coefficient was established by the modification of the production pollution coefficient and interception pollution coefficient. This modification changed the single numerical structure of the original land use export coefficient and takes into consideration temporal and spatial differentiation features. The modified export coefficient retained the change structure of the original single land use export coefficient, and also demonstrated that the land use export coefficient was not only impacted by the change of land use itself, but was also influenced by other objective conditions, such as the characteristics of the underlying surface, amount of rainfall, and the overall presence of vegetation. In the five analyzed years, the simulation values of the dissolved nitrogen and phosphorus loads in paddy fields increased after applying the modification in calculation. The dissolved nitrogen and phosphorus loads in dry land comprised the largest proportions of the TGRR's totals. After modification, the dry land values showed an initial increase and then a decrease over time, but the increments were much smaller than those of the paddy field. The dissolved nitrogen and phosphorus loads in the woodland and meadow decreased after modification. The dissolved nitrogen and phosphorus loads in the building lot were the lowest but showed an increase with the progression of time. These results demonstrate that the modified export coefficient model significantly improves the accuracy of dissolved pollutant load simulation for different land uses in the TGRR, especially the accuracy of dissolved nitrogen load simulation.

  13. Hindcasting of nutrient loadings from its catchment on a highly valuable coastal lagoon: the example of the Fleet, Dorset, UK, 1866–2004

    PubMed Central

    Weber, Geraint J; O'Sullivan, Patrick E; Brassley, Paul

    2006-01-01

    Background Nutrient loadings from its catchment upon The Fleet, a highly valuable coastal lagoon in Southern England, were hindcast for the period AD 1866–2004, using a catchment model, export coefficients, and historical data on land use changes, livestock numbers, and human population. Agriculture was the main nutrient source throughout, other inputs representing minor contributions. Permanent pasture was historically the main land use, with temporary grassland and cereals increasing during the mid-20th century. Sheep, the main 19th century livestock, were replaced by cattle during the 1930s. Results Total nitrogen loadings rose from ca 41 t yr-1 during the late 19th century to 49–54 t yr-1 for the mid-20th, increasing to 98 t yr-1 by 1986. Current values are ca 77 t yr-1. Total phosphorus loads increased from ca 0.75 t yr-1 for the late 19th century to ca 1.6 t yr-1 for the mid-20th, reached ca 2.2 t yr-1 in 1986, and are now ca 1.5 t yr-1. Loadings rose most rapidly between 1946 and 1988, owing to increased use of inorganic fertilisers, and rising sheep and cattle numbers. Livestock were the main nutrient source throughout, but inputs from inorganic fertilisers increased after 1946, peaking in 1986. Sewage treatment works and other sources contribute little nitrogen, but ca 35% of total phosphorus. Abbotsbury Swannery, an ancient Mute Swan community, provides ca 0.5% of total nitrogen, and ca 5% of total phosphorus inputs. Conclusion The Fleet has been grossly overloaded with nitrogen since 1866, climaxing during the 1980s. Total phosphorus inputs lay below 'permissible' limits until the 1980s, exceeding them in inner, less tidal parts of the lagoon, during the 1940s. Loadings on Abbotsbury Bay exceeded 'permissible' limits by the 1860s, becoming 'dangerous' during the mid-20th century. Phosphorus stripping at point sources will not significantly reduce loadings to all parts of the lagoon. Installation of 5 m buffer strips throughout the catchment and shoreline will marginally affect nitrogen loadings, but will reduce phosphorus inputs to the West Fleet below 'permissible' limits. Only a combination of measures will significantly affect Abbotsbury Bay, where, without effluent diversion, loadings will remain beyond 'permissible'. PMID:17196108

  14. SWAT Model Prediction of Phosphorus Loading in a South Carolina Karst Watershed with a Downstream Embayment

    Treesearch

    Devendra M. Amatya; Manoj K. Jha; Thomas M. Williams; Amy E. Edwards; Daniel R. Hitchcock

    2013-01-01

    The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for monthly streamflow predictions from tributaries draining three potential source areas as well as the downstream R-E, followed by TP loadings using data...

  15. The importance of considering shifts in seasonal changes in discharges when prediciting future phosphorus loads in streams

    USDA-ARS?s Scientific Manuscript database

    In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses t...

  16. Relative contribution of hemlock pollen to the phosphorus loading of the clear lake ecosystem near Minden, Ontario

    Treesearch

    Hugh H. Banks; James E. Nighswander

    2000-01-01

    The forest stand composition within the terrestrial watershed of a small lake on the southern Precambrian Shield was assessed. Total phosphorus inputs from the terrestrial watersheds were obtained for two sub inflows by measuring flow rates and phosphorus concentrations. Direct aerial phosphorus fallout was estimated from nearby sites sampled by the Ontario Ministry of...

  17. Application of the SPARROW model to assess surface-water nutrient conditions and sources in the United States Pacific Northwest

    USGS Publications Warehouse

    Wise, Daniel R.; Johnson, Henry M.

    2013-01-01

    The watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) was used to estimate mean annual surface-water nutrient conditions (total nitrogen and total phosphorus) and to identify important nutrient sources in catchments of the Pacific Northwest region of the United States for 2002. Model-estimated nutrient yields were generally higher in catchments on the wetter, western side of the Cascade Range than in catchments on the drier, eastern side. The largest source of locally generated total nitrogen stream load in most catchments was runoff from forestland, whereas the largest source of locally generated total phosphorus stream load in most catchments was either geologic material or livestock manure (primarily from grazing livestock). However, the highest total nitrogen and total phosphorus yields were predicted in the relatively small number of catchments where urban sources were the largest contributor to local stream load. Two examples are presented that show how SPARROW results can be applied to large rivers—the relative contribution of different nutrient sources to the total nitrogen load in the Willamette River and the total phosphorus load in the Snake River. The results from this study provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to researchers and water-quality managers performing local nutrient assessments.

  18. Evaluation of internal loading and water level changes: implications for phosphorus, algal production, and nuisance blooms in Kabetogama Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2013-01-01

    Hydrologic manipulations have the potential to exacerbate or remediate eutrophication in productive reservoirs. Dam operations at Kabetogama Lake, Minnesota, were modified in 2000 to restore a more natural water regime and improve water quality. The US Geological Survey and National Park Service evaluated nutrient, algae, and nuisance bloom data in relation to changes in Kabetogama Lake water levels. Comparison of the results of this study to previous studies indicates that chlorophyll a concentrations have decreased, whereas total phosphorus (TP) concentrations have not changed significantly since 2000. Water and sediment quality data were collected at Voyageurs National Park during 2008–2009 to assess internal phosphorus loading and determine whether loading is a factor affecting TP concentrations and algal productivity. Kabetogama Lake often was mixed vertically, except for occasional stratification measured in certain areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, higher bottom water and sediment nutrient concentrations than in other parts of the lake, and phosphorus release rates estimated from sediment core incubations indicated that Lost Bay is one of several areas that may be contributing to internal loading. Internal loading of TP is a concern because increased TP may cause excessive algal growth including potentially toxic cyanobacteria.

  19. Nutrient, suspended sediment, and trace element loads in the Blackstone River Basin in Massachusetts and Rhode Island, 2007 to 2009

    USGS Publications Warehouse

    Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.

    2015-01-01

    Analysis of the representative constituents (total phosphorus, total chromium, and suspended sediment) upstream and downstream of impoundments indicated that the existing impoundments, such as Rice City Pond, can be sources of particulate contaminant loads in the Blackstone River. Loads of particulate phosphorus, particulate chromium, and suspended sediment were consistently higher downstream from Rice City Pond than upstream during high-flow events, and there was a positive, linear relation between streamflow and changes in these constituents from upstream to downstream of the impoundment. Thus, particulate contaminants were mobilized from Rice City Pond during high-flow events and transported downstream. In contrast, downstream loads of particulate phosphorus, particulate chromium, and suspended sediment were generally lower than or equal to upstream loads for the former Rockdale Pond impoundment. Sediments associated with the former impoundment at Rockdale Pond, breached in the late 1960s, did not appear to be mobilized during the high-flow events monitored during this study.

  20. Distributed and dynamic modelling of hydrology, phosphorus and ecology in the Hampshire Avon and Blashford Lakes: evaluating alternative strategies to meet WFD standards.

    PubMed

    Whitehead, P G; Jin, L; Crossman, J; Comber, S; Johnes, P J; Daldorph, P; Flynn, N; Collins, A L; Butterfield, D; Mistry, R; Bardon, R; Pope, L; Willows, R

    2014-05-15

    The issues of diffuse and point source phosphorus (P) pollution in the Hampshire Avon and Blashford Lakes are explored using a catchment model of the river system. A multibranch, process based, dynamic water quality model (INCA-P) has been applied to the whole river system to simulate water fluxes, total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations and ecology. The model has been used to assess impacts of both agricultural runoff and point sources from waste water treatment plants (WWTPs) on water quality. The results show that agriculture contributes approximately 40% of the phosphorus load and point sources the other 60% of the load in this catchment. A set of scenarios have been investigated to assess the impacts of alternative phosphorus reduction strategies and it is shown that a combined strategy of agricultural phosphorus reduction through either fertiliser reductions or better phosphorus management together with improved treatment at WWTPs would reduce the SRP concentrations in the river to acceptable levels to meet the EU Water Framework Directive (WFD) requirements. A seasonal strategy for WWTP phosphorus reductions would achieve significant benefits at reduced cost. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Removal and retention of phosphorus by periphyton from wastewater with high organic load.

    PubMed

    Cao, Jinxiang; Hong, Xiaoxing; Pei, Guofeng

    2014-01-01

    The total phosphorus (TP) removal efficiency from organic wastewater (pig farm and distillery wastewater) were estimated by using filamentous green algae (FGA) and benthic algal mats (BAM) treatment systems under laboratory conditions, and the contents of periphyton phosphorus fractions were determined by using a sequential extraction. The removal rates of TP reached 59-78% within the first 8 days of all treatment systems and could achieve average 80% during 30 day period, and the phosphorus removal rates by using BAM was higher than that of FGA. The ability of retention TP of periphyton enhanced gradually, the BAM TP contents were higher than that of FGA, the highest TP concentrations of BAM and FGA were 26.24 and 10.52 mg P g(-1)·dry weight. Inorganic phosphorus (IP) always exceeded 67.5% of TP, but the organic phosphorus fraction only made up less than 20% of TP. The calcium-binding phosphorus (Ca-P) was the dominant fraction and its relative contribution to TP was more than 40%. The TP was also strongly and positively correlated with the IP and Ca-P (p < 0.01) in periphyton. It showed that the periphyton had a potential ability of rapid phosphorus removing and remarkable retention from wastewater with high load phosphorus.

  2. The effects of phosphorus additions on the sedimentation of contaminants in a uranium mine pit-lake.

    PubMed

    Dessouki, Tarik C E; Hudson, Jeff J; Neal, Brian R; Bogard, Matthew J

    2005-08-01

    We investigated the usefulness of phytoplankton for the removal of surface water contaminants. Nine large mesocosms (92.2m(3)) were suspended in the flooded DJX uranium pit at Cluff Lake (Saskatchewan, Canada), and filled with highly contaminated mine water. Each mesocosm was fertilized with a different amount of phosphorus throughout the 35 day experiment to stimulate phytoplankton growth, and to create a range in phosphorus load (g) to examine how contaminants may be affected by different nutrient regimes. Algal growth was rapid in fertilized mesocosms (as demonstrated by chlorophyll a profiles). As phosphorus loads increased there were significant declines (p<0.05) in the surface water concentrations of As, Co, Cu, Mn, Ni, and Zn. This decline was near significant for uranium (p=0.065). The surface water concentrations of Ra-226, Mo, and Se showed no relationship to phosphorus load. Contaminant concentrations in sediment traps suspended at the bottom of each mesocosm generally showed the opposite trend to that observed in the surface water, with most contaminants (As, Co, Cu, Mn, Ni, Ra-226, U, and Zn) exhibiting a significant positive relationship (p<0.05) with phosphorus load. Selenium and Mo did not respond to nutrient treatments. Our results suggest that phytoremediation has the potential to lower many surface water contaminants through the sedimentation of phytoplankton. Based on our results, we estimate that the Saskatchewan Surface Water Quality Objectives (SSWQO) for DJX pit would be met in approximately 45 weeks for Co, 65 weeks for Ni, 15 weeks for U, and 5 weeks for Zn.

  3. Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments

    NASA Astrophysics Data System (ADS)

    Carling, G. T.; Randall, M.; Nelson, S.; Rey, K.; Hansen, N.; Bickmore, B.; Miller, T.

    2017-12-01

    An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to anthropogenic nutrient inputs. Utah Lake is a unique eutrophic freshwater lake that is naturally shallow, turbid, and alkaline with high dissolved oxygen levels that has experienced severe algal blooms in recent years. Recently, the Utah Division of Water Quality has proposed a new limitation of phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study was to characterize the fate and mobility of P in Utah Lake sediments to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 15 locations across Utah Lake. P concentrations in sediment ranged from 615 to 1894 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Sequential leach tests indicate that 25-50% of P is associated with Ca (CaCO₃/ Ca10(PO4)6(OH,F,Cl)2 ≈ P) and 40-60% is associated with Fe (Fe(OOH) ≈ P). Ca-associated P was confirmed by SEM images, which showed the highest P concentrations correlating with Ca (carbonate minerals/apatite). The Ca-associated P fraction is likely immobile, but the Fe-bound P is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% removal over the range of 1-10 mg/L P. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be temporarily available for resuspension and cycling in surface waters. Mitigating lake eutrophication is a complex problem that goes beyond decreasing external nutrient loads to the water body and requires a better understanding in-lake P cycling.

  4. Evaluation of total phosphorus mass balance in the lower Boise River and selected tributaries, southwestern Idaho

    USGS Publications Warehouse

    Etheridge, Alexandra B.

    2013-01-01

    he U.S. Geological Survey (USGS), in cooperation with Idaho Department of Environmental Quality, developed spreadsheet mass-balance models for total phosphorus using results from three synoptic sampling periods conducted in the lower Boise River watershed during August and October 2012, and March 2013. The modeling reach spanned 46.4 river miles (RM) along the Boise River from Veteran’s Memorial Parkway in Boise, Idaho (RM 50.2), to Parma, Idaho (RM 3.8). The USGS collected water-quality samples and measured streamflow at 14 main-stem Boise River sites, two Boise River north channel sites, two sites on the Snake River upstream and downstream of its confluence with the Boise River, and 17 tributary and return-flow sites. Additional samples were collected from treated effluent at six wastewater treatment plants and two fish hatcheries. The Idaho Department of Water Resources quantified diversion flows in the modeling reach. Total phosphorus mass-balance models were useful tools for evaluating sources of phosphorus in the Boise River during each sampling period. The timing of synoptic sampling allowed the USGS to evaluate phosphorus inputs to and outputs from the Boise River during irrigation season, shortly after irrigation ended, and soon before irrigation resumed. Results from the synoptic sampling periods showed important differences in surface-water and groundwater distribution and phosphorus loading. In late August 2012, substantial streamflow gains to the Boise River occurred from Middleton (RM 31.4) downstream to Parma (RM 3.8). Mass-balance model results indicated that point and nonpoint sources (including groundwater) contributed phosphorus loads to the Boise River during irrigation season. Groundwater exchange within the Boise River in October 2012 and March 2013 was not as considerable as that measured in August 2012. However, groundwater discharge to agricultural tributaries and drains during non-irrigation season was a large source of discharge and phosphorus in the lower Boise River in October 2012 and March 2013. Model results indicate that point sources represent the largest contribution of phosphorus to the Boise River year round, but that reductions in point and nonpoint source phosphorus loads may be necessary to achieve seasonal total phosphorus concentration targets at Parma (RM 3.8) from May 1 through September 30, as set by the 2004 Snake River-Hells Canyon Total Maximum Daily Load document. The mass-balance models do not account for biological or depositional instream processes, but are useful indicators of locations where appreciable phosphorus uptake or release by aquatic plants may occur.

  5. NMR and mass spectrometry of phosphorus in wetlands

    USGS Publications Warehouse

    El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.

    2008-01-01

    There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.

  6. [Estimation of nonpoint source pollutant loads and optimization of the best management practices (BMPs) in the Zhangweinan River basin].

    PubMed

    Xu, Hua-Shan; Xu, Zong-Xue; Liu, Pin

    2013-03-01

    One of the key techniques in establishing and implementing TMDL (total maximum daily load) is to utilize hydrological model to quantify non-point source pollutant loads, establish BMPs scenarios, reduce non-point source pollutant loads. Non-point source pollutant loads under different years (wet, normal and dry year) were estimated by using SWAT model in the Zhangweinan River basin, spatial distribution characteristics of non-point source pollutant loads were analyzed on the basis of the simulation result. During wet years, total nitrogen (TN) and total phosphorus (TP) accounted for 0.07% and 27.24% of the total non-point source pollutant loads, respectively. Spatially, agricultural and residential land with steep slope are the regions that contribute more non-point source pollutant loads in the basin. Compared to non-point source pollutant loads with those during the baseline period, 47 BMPs scenarios were set to simulate the reduction efficiency of different BMPs scenarios for 5 kinds of pollutants (organic nitrogen, organic phosphorus, nitrate nitrogen, dissolved phosphorus and mineral phosphorus) in 8 prior controlled subbasins. Constructing vegetation type ditch was optimized as the best measure to reduce TN and TP by comparing cost-effective relationship among different BMPs scenarios, and the costs of unit pollutant reduction are 16.11-151.28 yuan x kg(-1) for TN, and 100-862.77 yuan x kg(-1) for TP, which is the most cost-effective measure among the 47 BMPs scenarios. The results could provide a scientific basis and technical support for environmental protection and sustainable utilization of water resources in the Zhangweinan River basin.

  7. Nutrient loads within the Sava River Catchment and comparison with load relations in the Baltic region

    NASA Astrophysics Data System (ADS)

    Levi, Lea; Cvetkovic, Vladimir; Destouni, Georgia

    2015-04-01

    This study compiles estimates of total nitrogen and phosphorus loads in the Sava River Catchment (SRC), investigates the load relations to human drivers of excess nutrient loading, and compares them with corresponding relations implied by data reported for the Baltic region. Nutrient load data, associated average discharge concentrations (ratio of load to water discharge) and their relations to human drivers are investigated across subcatchments of the SRC with different agricultural and population conditions. The Zagreb subcatchment, which has the smallest area but the highest population density and runoff among the investigated SRC subcatchments, exhibits the highest loads of both nitrogen and phosphorus. Overall for the SRC, results show high correlation (R2=0.93-0.95) of nutrient loads with population density and of concentrations with farmland share. A further question investigated here is then to what degree these relations are comparable with such relations found also for the Baltic region. The two regions are otherwise quite different in their climatic, agricultural and wastewater treatment conditions, so relation consistency, even if surprising, would be important in indicating some degree of relation transferability worthy of further investigation also in other regions. For the Baltic region corresponding correlations to those found in the SRC are in the range R2=0.79-0.88. In particular nitrogen and phosphorus concentration correlations with farmland share are qualitatively consistent between the regions. At the same time, phosphorus concentration correlation with population density shows quite different results between regions. Obtained results indicate a certain level of transferability of dependencies between the two regions and call for further detailed investigations on finer spatial-temporal scales.

  8. Geochemical and hydrologic controls on phosphorus transport in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Rea, Brigid A.; Stollenwerk, Kenneth G.; Savoie, Jennifer G.

    1996-01-01

    Currently (1993), about 170 kg/yr of phosphorus discharges into Ashumet Pond on Cape Cod from a plume of sewage-contaminated ground water. Phosphorus in the plume is mobile in two distinct geochemical environments--an anoxic zone containing dissolved iron and a suboxic zone containing dissolved oxygen. Phosphorus mobility in the suboxic zone is due to saturation of available sorption sites. Phosphorus loading to Ashumet Pond may increase significantly after sewage disposal is stopped due to phosphorus desorption from sediment surfaces.

  9. A model study of the coupled water quality and hydrodynamics in YuQiao Reservoir of Haihe River Basin, People's Republic of China

    NASA Astrophysics Data System (ADS)

    Liu, X.; Liu, J.; Peng, W.; Wang, Y.

    2007-05-01

    In recent years, eutrophication has become one of the most serious of global water pollution problems, especially in reservoirs, which is menacing the security of domestic water supplies. As the unique drinking water source of Tianjin within the Haihe River basin of Hebei Province, China, YuQiao Reservoir has been polluted and its eutrophic state is serious. To make clear the physical and chemical relationship between transport and transformation of the polluted water, a model package was developed to compute the hydrodynamic field and mass transport processes including total nitrogen (TN) and total phosphorus (TP) for YuQiao Reservoir. The hydrodynamic model was driven by observed winds and daily measured flow data to simulate the seasonal water cycle of the reservoir. The mass transport and transformation processes of TN and TP was based on the unsteady diffusion equations, driven by observed meteorological forcings and external loadings, with the fluxes through the bottom of the reservoir, plant (algal) photosynthesis, and respiration as internal sources and sinks. The solution of these equations uses the finite volume method and alternating direction implicit (ADI) scheme. The model was calibrated and verified by using the data observed from YuQiao Reservoir in two different years. The results showed that in YuQiao Reservoir, the wind-driven current is an important style of lake current, while the water quality is decreasing from east to west because of the external polluted loadings. There was good agreement between the simulated and measured values. Advection is the main process driving the water quality impacts from the inflow river, and diffusion and biochemical processes dominate in center of the reservoir. So it is necessary to build a pre-pond to reduce the external loadings into the reservoir.

  10. Changes in bottom-surface elevations in three reservoirs on the lower Susquehanna River, Pennsylvania and Maryland, following the January 1996 flood; implications for nutrient and sediment loads to Chesapeake Bay

    USGS Publications Warehouse

    Langland, Michael J.; Hainly, Robert A.

    1997-01-01

    The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.

  11. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.

  12. Occurrence, distribution, and transport of nutrients in Eastern Iowa Rivers

    USGS Publications Warehouse

    Becher, Kent D.

    2001-01-01

    Total nitrogen loads contributed to the Mississippi River from the Eastern Iowa Basins during 1996, 1997, and 1998 were 97,000, 120,000, and 230,000 metric tons respectively. Total phosphorus loads contributed to the Mississippi River from the Eastern Iowa Basins during 1996, 1997, and 1998 were 6,900, 4,600, and 8,800 metric tons, respectively. The highest nitrogen and phosphorus yields typically occurred in streams draining small watersheds that were dominated by a single land use and geology. Sampling sites located in drainage basins with higher row-crop percentage typically had higher nitrogen and phosphorus yields. Sites that were located in the Des Moines Lobe and the Southern Iowa Drift Plain typically had higher phosphorus yields probably due to more erodible soils and steeper slopes.

  13. Technical evaluation of a total maximum daily load model for Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Wherry, Susan A.; Carter, James L.; Kuwabara, James S.; Simon, Nancy S.; Rounds, Stewart A.

    2013-01-01

    We reviewed a mass balance model developed in 2001 that guided establishment of the phosphorus total maximum daily load (TMDL) for Upper Klamath and Agency Lakes, Oregon. The purpose of the review was to evaluate the strengths and weaknesses of the model and to determine whether improvements could be made using information derived from studies since the model was first developed. The new data have contributed to the understanding of processes in the lakes, particularly internal loading of phosphorus from sediment, and include measurements of diffusive fluxes of phosphorus from the bottom sediments, groundwater advection, desorption from iron oxides at high pH in a laboratory setting, and estimates of fluxes of phosphorus bound to iron and aluminum oxides. None of these processes in isolation, however, is large enough to account for the episodically high values of whole-lake internal loading calculated from a mass balance, which can range from 10 to 20 milligrams per square meter per day for short periods. The possible role of benthic invertebrates in lake sediments in the internal loading of phosphorus in the lake has become apparent since the development of the TMDL model. Benthic invertebrates can increase diffusive fluxes several-fold through bioturbation and biodiffusion, and, if the invertebrates are bottom feeders, they can recycle phosphorus to the water column through metabolic excretion. These organisms have high densities (1,822–62,178 individuals per square meter) in Upper Klamath Lake. Conversion of the mean density of tubificid worms (Oligochaeta) and chironomid midges (Diptera), two of the dominant taxa, to an areal flux rate based on laboratory measurements of metabolic excretion of two abundant species suggested that excretion by benthic invertebrates is at least as important as any of the other identified processes for internal loading to the water column. Data from sediment cores collected around Upper Klamath Lake since the development of the TMDL model also contributed to this review. Cores were sequentially extracted to determine the distribution of phosphorus associated with several matrices in the sediment (freely exchangeable, metal-oxides, acid-soluble minerals, and residual). The concentrations of phosphorus in these fractions varied around the lake in patterns that reflect transport processes in the lake and the ultimate deposition of organic and inorganic forms of phosphorus from the water column. Both organic and inorganic phosphorus had higher concentrations in the northern part of the lake, in and just west of Goose Bay. At the time that these cores were collected, prior to restoration of the Williamson River Delta, this area was close to the shoreline of the lake and east of the Williamson River mouth. This contrasts with erosional inputs, which, in addition to being high to the east of the pre-restoration Williamson River mouth, were higher in the middle of the lake than at the northern end. Organic forms of phosphorus had particularly high concentrations in the northern bays. When these cores were used to calculate a new estimate of the whole-lake-averaged concentration of total phosphorus in the top 10 centimeters of the lake sediments, the estimate was about one-third of the best estimate available when the TMDL model was developed.

  14. Extracellular Secretion of Phytase from Transgenic Wheat Roots Allows Utilization of Phytate for Enhanced Phosphorus Uptake.

    PubMed

    Mohsin, Samreen; Maqbool, Asma; Ashraf, Mehwish; Malik, Kauser Abdulla

    2017-08-01

    A significant portion of organic phosphorus comprises of phytates which are not available to wheat for uptake. Hence for enabling wheat to utilize organic phosphorus in form of phytate, transgenic wheat expressing phytase from Aspergillus japonicus under barley root-specific promoter was developed. Transgenic events were initially screened via selection media containing BASTA, followed by PCR and BASTA leaf paint assay after hardening. Out of 138 successfully regenerated T o events, only 12 had complete constructs and thus further analyzed. Positive T1 transgenic plants, grown in sand, exhibited 0.08-1.77, 0.02-0.67 and 0.44-2.14 fold increase in phytase activity in root extracts, intact roots and external root solution, respectively, after 4 weeks of phosphorus stress. Based on these results, T2 generation of four best transgenic events was further analyzed which showed up to 1.32, 56.89, and 15.40 fold increase in phytase activity in root extracts, intact roots and external root solution, respectively, while in case of real-time PCR, maximum fold increase of 19.8 in gene expression was observed. Transgenic lines showed 0.01-1.18 fold increase in phosphorus efficiency along with higher phosphorus content when supplied phytate or inorganic phosphorus than control plants. Thus, this transgenic wheat may aid in reducing fertilizer utilization and enhancing wheat yield.

  15. Linking soil phosphorus to dissolved phosphorus losses in the midwest

    USDA-ARS?s Scientific Manuscript database

    Harmful and nuisance algal blooms resulting from excess phosphorus (P) have placed agriculture in the spotlight of the water quality debate. Sixty-eight site years of P loading data from 36 fields in Ohio were used to see if a soil test P (STP) concentration could be identified that would permit P a...

  16. Edge-of-field evaluation of the Ohio phosphorus risk index

    USDA-ARS?s Scientific Manuscript database

    The Phosphorus Index (PI) has been the cornerstone for phosphorus (P)-based management and planning over the past twenty years; yet, field-scale evaluation of many state PIs has been limited. In this study, measured P loads in surface runoff and tile discharge from 40 agricultural fields in Ohio wit...

  17. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    PubMed

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

  18. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    PubMed Central

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  19. Feasibility of Estimating Constituent Concentrations and Loads Based on Data Recorded by Acoustic Instrumentation

    USGS Publications Warehouse

    Lietz, A.C.

    2002-01-01

    The acoustic Doppler current profiler (ADCP) and acoustic Doppler velocity meter (ADVM) were used to estimate constituent concentrations and loads at a sampling site along the Hendry-Collier County boundary in southwestern Florida. The sampling site is strategically placed within a highly managed canal system that exhibits low and rapidly changing water conditions. With the ADCP and ADVM, flow can be gaged more accurately rather than by conventional field-data collection methods. An ADVM velocity rating relates measured velocity determined by the ADCP (dependent variable) with the ADVM velocity (independent variable) by means of regression analysis techniques. The coefficient of determination (R2) for this rating is 0.99 at the sampling site. Concentrations and loads of total phosphorus, total Kjeldahl nitrogen, and total nitrogen (dependent variables) were related to instantaneous discharge, acoustic backscatter, stage, or water temperature (independent variables) recorded at the time of sampling. Only positive discharges were used for this analysis. Discharges less than 100 cubic feet per second generally are considered inaccurate (probably as a result of acoustic ray bending and vertical temperature gradients in the water column). Of the concentration models, only total phosphorus was statistically significant at the 95-percent confidence level (p-value less than 0.05). Total phosphorus had an adjusted R2 of 0.93, indicating most of the variation in the concentration can be explained by the discharge. All of the load models for total phosphorus, total Kjeldahl nitrogen, and total nitrogen were statistically significant. Most of the variation in load can be explained by the discharge as reflected in the adjusted R2 for total phosphorus (0.98), total Kjeldahl nitrogen (0.99), and total nitrogen (0.99).

  20. Discharge, water-quality characteristics, and nutrient loads from McKay Bay, Delaney Creek, and East Bay, Tampa, Florida, 1991-1993

    USGS Publications Warehouse

    Stoker, Y.E.; Levesque, V.A.; Fritz, E.M.

    1996-01-01

    Nutrient enrichment in Tampa Bay has caused a decline in water quality in the estuary. Efforts to reduce the nutrient loading to Tampa Bay have resulted in improvement in water quality from 1981 to 1991. However, Tampa Bay still is onsidered enriched with nutrients. Water quality in East Bay (located at the northeastern part of Hillsborough Bay, which is an embayment in Tampa Bay) is not improving at the same rate as the rest of the bay. East Bay is the center of shipping activity in Tampa Bay and the seventh largest port in the United States. One of the primary cargoes is phosphate ore and related products such as fertilizer. The potential for nutrient loading to East Bay from shipping activities is high and has not previously been measured. Nitrogen and phosphorus loads from East Bay to Hillsborough Bay were measured during selected time periods during June 1992 through May 1993; these data were used to estimate seasonal and annual loads. These loads were evaluated to determine whether the loss of fertilizer products from shipping activities resulted in increased nutrient loading to Hillsborough Bay. Discharge was measured, and water-quality samples were collected at the head of East Bay (exiting McKay Bay), and at the mouth of East Bay. Discharge and nitrogen and phosphorus concentrations for the period June 1992 through May 1993 were used to compute loads. Discharges from McKay Bay, Delaney Creek, and East Bay are highly variable because of the effect of tide. Flow patterns during discharge measurements generally were unidirectional in McKay Bay and Delaney Creek, but more complex, bidirectional patterns were observed at the mouth of East Bay. Tidally affected discharge data were digitally filtered with the Godin filter to remove the effects of tide so that residual, or net, discharge could be determined. Daily mean discharge from McKay Bay ranged from -1,900 to 2,420 cubic feet per second; from Delaney Creek, -3.8 to 162 cubic feet per second; and from East Bay, -437 to 3,780 cubic feet per second. Water quality in McKay Bay, Delaney Creek, and East Bay varies vertically, areally, and seasonally. Specific conductance and concentrations of phosphorus and ammonia nitrogen were greater near the bottom than near the surface at the head and mouth of East Bay. Concentrations of total nitrogen and ammonia plus organic nitrogen generally were greater at the head of East Bay than at the mouth, indicating that McKay Bay is the primary source of nitrogen to East Bay. Concentrations of total ammonia nitrogen, nitrite plus nitrate nitrogen, phosphorus, orthophosphorus, and suspended solids and values of turbidity and specific conductance generally were greater at the mouth of East Bay than at the head. The greatest concentrations of nitrogen and phosphorus were measured in Delaney Creek. In East Bay and McKay Bay, the greatest concentrations of nitrogen, phosphorus, and ammonia plus organic nitrogen occurred in summer, whereas turbidity, specific conductance, and concentrations of suspended solids were greater in winter. The greatest daily mean loads from McKay Bay and East Bay occurred in late June 1992 and April and May 1993 and coincided with periods of daily mean discharge greater than about 2,000 cubic feet per second. Although concentrations of nitrogen and phosphorus were greater in Delaney Creek than in McKay Bay and East Bay, loads were minimal because of minimal discharges from Delaney Creek. Monthly loads of total nitrogen ranged from about 20 tons to about 83 tons at McKay Bay; from about 1 ton to 4.2 tons at Delaney Creek; and from about 17 tons to 76 tons at the mouth of East Bay. Monthly loads of phosphorus ranged from about 11 tons to about 45 tons at McKay Bay; from about 0.62 ton to 2.6 tons at Delaney Creek; and from about 10 tons to about 45 tons at the mouth of East Bay. The results of this study indicate that nitrogen and phosphorus loads from the basin draining directly to East Bay (excluding loads from the McKa

  1. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    PubMed

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  2. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    PubMed

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.

  3. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Concentrations, loads, and yields of nutrients and suspended sediment in the South Pacolet, North Pacolet, and Pacolet Rivers, northern South Carolina and southwestern North Carolina, October 2005 to September 2009

    USGS Publications Warehouse

    Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year. The Pacolet River had a mean annual total nitrogen load of 99,780 kilograms per year and yield of 1.82 kilograms per hectare per year. Mean annual total phosphorus loads of 2,576; 9,404; and 11,710 kilograms per year and yields of 0.180, 0.313, and 0.213 kilograms per hectare per year were estimated at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. Annually, the intervening subbasin of the Pacolet River contributed negligible amounts of total nitrogen and total phosphorus loads, and large losses of dissolved nitrate plus nitrite and orthophosphate loads were determined for the subbasin. Biological (algal) uptake in the two reservoirs in this intervening area was considered the likely explanation for the loss of these constituents. Estimated mean annual suspended-sediment loads were 21,190,000; 9,895,000; and 6,547,000 kilograms per year at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. In the intervening Pacolet River subbasin, computed annual suspended-sediment loads were consistently negative, indicating large percentage losses in annual suspended-sediment load. Sedimentation processes in the two reservoirs are the most likely explanations for these apparent losses. At all sites, the winter season tended to have the highest estimated seasonal dissolved orthophosphate and dissolved nitrate plus nitrite fluxes, and the summer and fall seasons tended to have the lowest fluxes. The reverse pattern, however, was observed in the intervening drainage area in the Pacolet River where the lowest fluxes of dissolved orthophosphate and nitrate plus nitrite occurred during the winter and spring seasons and the highest occurred during the summer and fall seasons. Synoptic samples were collected during a high-flow event in August 2009 at eight sites that represented shoreline and minor tributary drainages. The South Pacolet River site was identified as contributing greater than 80 percent of the cumulative nutrient and sediment l

  5. Using decision analysis to choose phosphorus targets for Lake Erie.

    PubMed

    Anderson, R M; Hobbs, B F; Koonce, J F; Locci, A B

    2001-02-01

    Lake Erie water quality has improved dramatically since the degraded conditions of the 1960s. Additional gains could be made, but at the expense of further investment and reductions in fishery productivity. In facing such cross-jurisdictional issues, natural resource managers in Canada and the United States must grapple with conflicting objectives and important uncertainties, while considering the priorities of the public that live in the basin. The techniques and tools of decision analysis have been used successfully to deal with such decision problems in a range of environmental settings, but infrequently in the Great Lakes. The objective of this paper is to illustrate how such techniques might be brought to bear on an important, real decision currently facing Lake Erie resource managers and stakeholders: the choice of new phosphorus loading targets for the lake. The heart of our approach is a systematic elicitation of stakeholder preferences and an investigation of the degree to which different phosphorus-loading policies might satisfy ecosystem objectives. Results show that there are potential benefits to changing the historical policy of reducing phosphorus loads in Lake Erie. Copyright 2001 Springer-Verlag

  6. Development of a Phosphorus-Eutrophication Management Strategy for Vermont: Evaluations Available Phosphorus Loads.

    DTIC Science & Technology

    1985-11-01

    1980). " J . V. DePinto, T . C. Young, J . S. Bonner, and P. W. Rodgers, "Microbial Recycling of Phytoplankton Phosphorus," Canadian Journal of...algal growth, 97 9 3 S. C. Chapra, H. D. Wicke, T . M. Heidtke, "Effectiveness of Treatment to Meet Phosphorus Objectives in the Great Lakes," J . Water...Conference on Management Strategies for Phosphorus in the Environment (Selper Ltd., London, 1985.) 1 0 4 G. F. Lee, et al. (1980). 105 T . C. Young and J . V

  7. Selected nutrients and pesticides in streams of the eastern Iowa basins, 1970-95

    USGS Publications Warehouse

    Schnoebelen, Douglas J.; Becher, Kent D.; Bobier, Matthew W.; Wilton, Thomas

    1999-01-01

     The statistical analysis of the nutrient data typically indicated a strong positive correlation of nitrate with streamflow. Total phosphorus concentrations with streamflow showed greater variability than nitrate, perhaps reflecting the greater potential of transport of phosphorus on sediment rather than in the dissolved phase as with nitrate. Ammonia and ammonia plus organic nitrogen showed no correlation with streamflow or a weak positive correlation. Seasonal variations and the relations of nutrients and pesticides to streamflow generally corresponded with nonpoint‑source loadings, although possible point sources for nutrients were indicated by the data at selected monitoring sites. Statistical trend tests for concentrations and loads were computed for nitrate, ammonia, and total phosphorus. Trend analysis indicated decreases for ammonia and total phosphorus concentrations at several sites and increases for nitrate concentrations at other sites in the study unit.

  8. 76 FR 549 - Clean Water Act Section 303(d): Notice for the Establishment of the Total Maximum Daily Load...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... EPA's establishment of the Chesapeake Bay (Bay) TMDL on December 29, 2010 for nitrogen, phosphorus and... revised the draft TMDL as appropriate and established the Bay TMDL for nitrogen, phosphorus and sediment..., phosphorus and sediment which can enter a waterbody without causing a violation in the water quality...

  9. Influence of Diagenesis on Bioavailable Phosphorus in Lake Mendota, USA

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Armstrong, D.; Lathrop, R.; Penn, M.

    2013-12-01

    Phosphorus (P) is a major driver of productivity in many freshwater systems and in excess P can cause a variety of deleterious effects. Lake Mendota, located in Madison, Wisconsin (USA), is a eutrophic calcareous lake that is influenced by both urban and agricultural sources. As measures have been implemented to control point and non-point source pollution, internal sources, including release by sediments, has become more important. We collected multiple sediment cores from seven depositional basins to determine how diagenesis is influencing the bioavailability of sediment P. Cores were sliced in 1-cm intervals and analyzed for total P (TP), various P fractions, total metals, and multiple stable isotopes. While the average amount of total P that was bioavailable was 64.8%, the range noted was 39.2% to 88.6%. Spatial differences existed among the cores when comparing TP and bioavailable P among the cores. Depth profiles elucidated temporal differences as occasional increases in TP with depth were noted. These increases were found to contain a higher percent of bioavailable P. This variation was explored to determine if it resulted from differences in source material, for example inorganic P formed by diagenesis of organic P (algal derived) rather than soil P from external inputs. Saturation index modeling using MINEQL+ suggests that phosphorus concentrations in Lake Mendota pore waters are influenced by precipitation of vivianite (Fe3(PO4)2●8H2O) and certain calcium phosphates. However, hydroxyl apatite (Ca5(PO4)3(OH)), was highly supersaturated, indicating that precipitation of hydroxyl apatite is hindered and not important in controlling phosphate concentrations in these sediments. Yet even more important than precipitation reactions, adsorption/desorption characteristics of P seem to play a major role in P bioavailability. Sediment 210Pb and 137Cs activity profiles indicate differences exist among sedimentation rates for the various depositional sites in Lake Mendota. Implications for the modeling of P cycling and changes in internal loading following external P reduction in lakes will be discussed.

  10. Magnitudes, nature, and effects of point and nonpoint discharges in the Chattahoochee River basin, Atlanta to West Point Dam, Georgia

    USGS Publications Warehouse

    Stamer, J.K.; Cherry, R.N.; Faye, R.E.; Kleckner, R.L.

    1978-01-01

    On an average annual basis and during the storm period of March 12-15, 1976, nonpoint-source loads for most constituents were larger than point-source loads at the Whitesburg station, located on the Chattahoochee River about 40 miles downstream from Atlanta, GA. Most of the nonpoint-source constituent loads in the Atlanta to Whitesburg reach were from urban areas. Average annual point-source discharges accounted for about 50 percent of the dissolved nitrogen, total nitrogen, and total phosphorus loads and about 70 percent of the dissolved phosphorus loads at Whitesburg. During a low-flow period, June 1-2, 1977, five municipal point-sources contributed 63 percent of the ultimate biochemical oxygen demand, and 97 percent of the ammonium nitrogen loads at the Franklin station, at the upstream end of West Point Lake. Dissolved-oxygen concentrations of 4.1 to 5.0 milligrams per liter occurred in a 22-mile reach of the river downstream from Atlanta due about equally to nitrogenous and carbonaceous oxygen demands. The heat load from two thermoelectric powerplants caused a decrease in dissolved-oxygen concentration of about 0.2 milligrams per liter. Phytoplankton concentrations in West Point Lake, about 70 miles downstream from Atlanta, could exceed three million cells per millimeter during extended low-flow periods in the summer with present point-source phosphorus loads. (Woodard-USGS)

  11. Importance of diffuse pollution control in the Patzcuaro Lake Basin in Mexico.

    PubMed

    Carro, Marco Mijangos; Dávila, Jorge Izurieta; Balandra, Antonieta Gómez; López, Rubén Hernández; Delgadillo, Rubén Huerto; Chávez, Javier Sánchez; Inclán, Luís Bravo

    2008-01-01

    In the catchment area of the Lake Patzcuaro in Central Mexico (933 km2) the apportionments of erosion, sediment, nutrients and pathogen coming from thirteen micro basins were estimated with the purpose of identifying critical areas in which best management practices need to be implemented in order to reduce their contribution to the lake pollution and eutrophication. The ArcView Generalized Watershed Loading Functions model (AV-GWLF) was applied to estimate the loads and sources of nutrients. The main results show that the total annual contribution of nitrogen from point sources were 491 tons and from diffuse pollution 2,065 tons, whereas phosphorus loads where 116 and 236 tons, respectively during a thirty year simulation period. Micro basins with predominant agricultural and animal farm land use (56% of the total area) accounts for a high percentage of nitrogen load 33% and phosphorus 52%. On the other hand, Patzcuaro and Quiroga micro basins which comprise approximately 10% of the total catchment area and are the most populated and visited towns by tourist 686,000 people every year, both contributes with 10.1% of the total nitrogen load and 3.2% of phosphorus. In terms of point sources of nitrogen and phosphorus the last towns contribute with 23.5% and 26.6% respectively. Under this situation the adoption of best management practices are an imperative task since the sedimentation and pollution in the lake has increased dramatically in the last twenty years. Copyright (c) IWA Publishing 2008.

  12. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.

  13. Additional Sediment/Soil Sampling Conducted at the Little Sioux Bend Shallow Water Habitat Project Site during October 2013

    DTIC Science & Technology

    2013-11-01

    Conditions in the Missouri River and Gulf of Mexico ................................................43 4.3 Comparison of Total Phosphorus Levels...Sediment Management” which assessed nutrient loadings to the Missouri River and Gulf of Mexico (NRC, 2011). The report concluded that potential...concern regarding Gulf of Mexico hypoxia. Currently, the total phosphorus load to the Gulf of Mexico is estimated to be 154,300 metric tons per year

  14. Total Phosphorus Loads for Selected Tributaries to Sebago Lake, Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2001-01-01

    The streamflow and water-quality datacollection networks of the Portland Water District (PWD) and the U.S. Geological Survey (USGS) as of February 2000 were analyzed in terms of their applicability for estimating total phosphorus loads for selected tributaries to Sebago Lake in southern Maine. The long-term unit-area mean annual flows for the Songo River and for small, ungaged tributaries are similar to the long-term unit-area mean annual flows for the Crooked River and other gaged tributaries to Sebago Lake, based on a regression equation that estimates mean annual streamflows in Maine. Unit-area peak streamflows of Sebago Lake tributaries can be quite different, based on a regression equation that estimates peak streamflows for Maine. Crooked River had a statistically significant positive relation (Kendall's Tau test, p=0.0004) between streamflow and total phosphorus concentration. Panther Run had a statistically significant negative relation (p=0.0015). Significant positive relations may indicate contributions from nonpoint sources or sediment resuspension, whereas significant negative relations may indicate dilution of point sources. Total phosphorus concentrations were significantly larger in the Crooked River than in the Songo River (Wilcoxon rank-sum test, p<0.0001). Evidence was insufficient, however, to indicate that phosphorus concentrations from medium-sized drainage basins, at a significance level of 0.05, were different from each other or that concentrations in small-sized drainage basins were different from each other (Kruskal-Wallis test, p= 0.0980, 0.1265). All large- and medium-sized drainage basins were sampled for total phosphorus approximately monthly. Although not all small drainage basins were sampled, they may be well represented by the small drainage basins that were sampled. If the tributaries gaged by PWD had adequate streamflow data, the current PWD tributary monitoring program would probably produce total phosphorus loading data that would represent all gaged and ungaged tributaries to Sebago Lake. Outside the PWD tributary-monitoring program, the largest ungaged tributary to Sebago Lake contains 1.5 percent of the area draining to the lake. In the absence of unique point or nonpoint sources of phosphorus, ungaged tributaries are unlikely to have total phosphorus concentrations that differ significantly from those in the small tributaries that have concentration data. The regression method, also known as the rating-curve method, was used to estimate the annual total phosphorus load for Crooked River, Northwest River, and Rich Mill Pond Outlet for water years 1996-98. The MOVE.1 method was used to estimate daily streamflows for the regression method at Northwest River and Rich Mill Pond Outlet, where streamflows were not continuously monitored. An averaging method also was used to compute annual loads at the three sites. The difference between the regression estimate and the averaging estimate for each of the three tributaries was consistent with what was expected from previous studies.

  15. Nutrient Concentrations, Loads, and Yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-2006

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2008-01-01

    The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, investigated and summarized nitrogen and phosphorus concentrations and provided estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for three 3-year periods - 2002-2004, 2003-2005, and 2004-2006, to update a previous report that used data from water-quality samples for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple agencies for interstate agreements. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples for all three periods at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than base-flow concentrations at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma except for phosphorus during 2003-2005. Nitrogen concentrations in base-flow samples significantly increased downstream in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations for all three periods. Nitrogen in base-flow samples from Beaty Creek was significantly less than in samples from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to Cherokee stations in Spavinaw Creek for all three periods, probably because of a wastewater-treatment plant point source between those stations, and then significantly decreased downstream from the Cherokee to Colcord stations. Phosphorus in base-flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek for most of the three periods, except during 2003-2005 when runoff samples at the Colcord station were less than at the Sycamore station; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek and were significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station, only during 2004-2006. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads for the three 3-year periods were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased downstream from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that at Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 to 89 percent; whereas, the range in the runoff component at the Spavinaw Creek stations was 60 to 71 percent. Estimated mean annual phosphorus total loads for the three 3-year periods were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased downstream from Maysville to Colcord in Spavinaw Creek, wit

  16. Working with Farmers to Reduce Phosphorus in Lake Champlain

    EPA Pesticide Factsheets

    EPA researchers are working with Vermont small dairy farmers to explore whether pasture-based rotational grazing can be a viable, cost-effective, option for small farms to help to reduce phosphorus loadings to the lake.

  17. Missisquoi Bay Phosphorus Model Addendum

    EPA Pesticide Factsheets

    This technical memorandum provides results of an extended load reduction simulation. The memorandum serves as an addendum to the main Missisquoi Bay Phosphorus Mass Balance Model report prepared for the Lake Champlain Basin Program by LimnoTech in 2012

  18. Increasing dietary phosphorus intake from food additives: potential for negative impact on bone health.

    PubMed

    Takeda, Eiji; Yamamoto, Hironori; Yamanaka-Okumura, Hisami; Taketani, Yutaka

    2014-01-01

    It is important to consider whether habitual high phosphorus intake adversely affects bone health, because phosphorus intake has been increasing, whereas calcium intake has been decreasing in dietary patterns. A higher total habitual dietary phosphorus intake has been associated with higher serum parathyroid hormone (PTH) and lower serum calcium concentrations in healthy individuals. Higher serum PTH concentrations have been shown in those who consume foods with phosphorus additives. These findings suggest that long-term dietary phosphorus loads and long-term hyperphosphatemia may have important negative effects on bone health. In contrast, PTH concentrations did not increase as a result of high dietary phosphorus intake when phosphorus was provided with adequate amounts of calcium. Intake of foods with a ratio of calcium to phosphorus close to that found in dairy products led to positive effects on bone health. Several randomized controlled trials have shown positive relations between dairy intake and bone mineral density. In our loading test with a low-calcium, high-phosphorus lunch provided to healthy young men, serum PTH concentrations showed peaks at 1 and 6 h, and serum fibroblast growth factor 23 (FGF23) concentrations increased significantly at 8 h after the meal. In contrast, the high-calcium, high-phosphorus meal suppressed the second PTH and FGF23 elevations until 8 h after the meal. This implies that adequate dietary calcium intake is needed to overcome the interfering effects of high phosphorus intake on PTH and FGF23 secretion. FGF23 acts on the parathyroid gland to decrease PTH mRNA and PTH secretion in rats with normal kidney function. However, increased serum FGF23 is an early alteration of mineral metabolism in chronic kidney disease, causing secondary hyperthyroidism, and implying resistance of the parathyroid gland to the action of FGF23 in chronic kidney disease. These findings suggest that long-term high-phosphorus diets may impair bone health mediated by FGF23 resistance both in chronic kidney disease patients and in the healthy population.

  19. New insights into phosphorus management in agriculture--A crop rotation approach.

    PubMed

    Łukowiak, Remigiusz; Grzebisz, Witold; Sassenrath, Gretchen F

    2016-01-15

    This manuscript presents research results examining phosphorus (P) management in a soil–plant system for three variables: i) internal resources of soil available phosphorus, ii) cropping sequence, and iii) external input of phosphorus (manure, fertilizers). The research was conducted in long-term cropping sequences with oilseed rape (10 rotations) and maize (six rotations) over three consecutive growing seasons (2004/2005, 2005/2006, and 2006/2007) in a production farm on soils originated from Albic Luvisols in Poland. The soil available phosphorus pool, measured as calcium chloride extractable P (CCE-P), constituted 28% to 67% of the total phosphorus input (PTI) to the soil–plant system in the spring. Oilseed rape and maize dominant cropping sequences showed a significant potential to utilize the CCE-P pool within the soil profile. Cropping sequences containing oilseed rape significantly affected the CCE-P pool, and in turn contributed to the P(TI). The P(TI) uptake use efficiency was 50% on average. Therefore, the CCE-P pool should be taken into account as an important component of a sound and reliable phosphorus balance. The instability of the yield prediction, based on the P(TI), was mainly due to an imbalanced management of both farmyard manure and phosphorus fertilizer. Oilseed rape plants provide a significant positive impact on the CCE-P pool after harvest, improving the productive stability of the entire cropping sequence. This phenomenon was documented by the P(TI) increase during wheat cultivation following oilseed rape. The Unit Phosphorus Uptake index also showed a higher stability in oilseed rape cropping systems compared to rotations based on maize. Cropping sequences are a primary factor impacting phosphorus management. Judicious implementation of crop rotations can improve soil P resources, efficiency of crop P use, and crop yield and yield stability. Use of cropping sequences can reduce the need for external P sources such as farmyard manure and chemical fertilizers.

  20. Nutrient and suspended-sediment trends, loads, and yields and development of an indicator of streamwater quality at nontidal sites in the Chesapeake Bay watershed, 1985-2010

    USGS Publications Warehouse

    Langland, Michael; Blomquist, Joel; Moyer, Douglas; Hyer, Kenneth

    2012-01-01

    The U.S. Geological Survey (USGS) updates information on loads of, and trends in, nutrients and sediment annually to help the Chesapeake Bay Program (CBP) investigators assess progress toward improving water-quality conditions in the Chesapeake Bay and its watershed. CBP scientists and managers have worked since 1983 to improve water quality in the bay. In 2010, the U.S. Environmental Protection Agency (USEPA) established a Total Maximum Daily Load (TMDL) for the Chesapeake Bay. The TMDL specifies nutrient and sediment load allocations that need to be achieved in the watershed to improve dissolved oxygen, water-clarity, and chlorophyll conditions in the bay. The USEPA, USGS, and state and local jurisdictions in the watershed operate a CBP nontidal water-quality monitoring network and associated database that are used to update load and trend information to help assess progress toward reducing nutrient and sediment inputs to the bay. Data collected from the CBP nontidal network were used to estimate loads and trends for two time periods: a long-term period (1985-2010) at 31 "primary" sites (with storm sampling) and a 10-year period (2001-10) at 33 primary sites and 16 "secondary" sites (without storm sampling). In addition, loads at 64 primary sites were estimated for the period 2006 to 2010. Results indicate improving flow-adjusted trends for nitrogen and phosphorus for 1985 to 2010 at most of the sites in the network. For nitrogen, 21 of the 31 sites showed downward (improving) trends, whereas 2 sites showed upward (degrading) trends, and 8 sites showed no trends. The results for phosphorus were similar: 22 sites showed improving trends, 4 sites showed degrading trends, and 5 sites indicated no trends. For sediment, no trend was found at 40 percent of the sites, with 10 sites showing improving trends and 8 sites showing degrading trends. The USGS, working with CBP partners, developed a new water-quality indicator that combines the results of the 10-year trend analysis with results from a greater number of sites (64 primary sites) where loads and yields of total nitrogen and phosphorus and sediment could be calculated. The new indicator shows fewer significant trends for the 10-year time period than for the long-term time period (1985-2010). For 2001-10, total nitrogen trends were downward (improving) at 14 sites and upward (degrading) at 2 sites; no trend was found at 17 sites. For total phosphorus, 12 sites showed improving trends, 4 sites showed degrading trends, and 17 sites showed no trend. For total sediment, most sites (21) did not exhibit a significant trend; 3 sites showed improving trends, and 10 sites showed degrading trends. Few significant trends were seen at the 16 secondary sites: improving trends for total nitrogen at 4 sites, improving trends for total phosphorus at 2 sites, and a degrading trend for sediment at 1 site. Total streamflow to the Chesapeake Bay was 20 percent higher in 2010 than in 2009 and is considered to be within the normal range of flow, whereas annual streamflow at 28 sites was greater in 2010 than in 2009. No trends in daily streamflow were detected at the 31 long-term sites. Combined loads for the farthest downstream nontidal monitoring sites (called "River Input Monitoring sites") increased 33 percent for total nitrogen, 120 percent for total phosphorus, and 330 percent for total sediment from 2009 to 2010. The large increase in phosphorus and sediment loads in 2010 was caused in large part by two large storm events that occurred during the spring in the Potomac River Basin. Yields (load per watershed area) of total nitrogen in the Chesapeake Bay watershed decreased from north to south (New York to Virginia). No spatial patterns were discernible for total phosphorus or sediment.

  1. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of 0.1 mg/L. Concentrations of suspended sediment were highest in the spring during runoff and lowest in the fall. The highest concentration of suspended sediment (1,020 mg/L) was observed at the Sinking Fork near Cadiz site. The median concentration of suspended sediment for all sites sampled was 12 mg/L. A nonparameteric statistical test (Wilcoxson rank-sum) showed that the median concentrations of suspended sediment were not different among any of the fixed-network sites. The Little River near Cadiz site contributed larger estimated mean annual loads of nitrite plus nitrate (2,500,000 pounds per year (lb/yr)) and total phosphorus (160,000 lb/yr) than the other three fixed-network sites. Of the two main upstream tributaries from the Little River near Cadiz site, the North Fork Little River was the greatest contributor of total phosphorus to the study area with an estimated mean annual load of 107,000 lb/yr or about 64 percent of the total estimated mean annual load at the Little River near Cadiz site. The other main upstream tributary, South Fork Little River, had an estimated mean annual load of total phosphorus that was about 20 percent of the mean annual load at the Little River near Cadiz site. Estimated loads of suspended sediment were largest at the Little River near Cadiz site, where the estimated mean annual load for 2003-04 was about 84,000,000 lb/yr. The North Fork Little River contributed an estimated 36 percent of the mean annual load of suspended sediment at the Little River near Cadiz site, while the South Fork Little River contributed an estimated 18 percent of the mean annual load at the Little River near Cadiz site. The North Fork Little River site had the largest estimated mean annual yield of total phosphorus (1,600 pounds per year per square mile (lb/yr/mi2)) and orthophosphate (1,100 lb/yr/mi2). A principal source of phosphorus for the North Fork Little River is discharge from wastewater-treatment facilities. The largest estimated mean annual yield of nitrite plus nitrate was observed at the South Fork Little River site. The North Fork Little River site had the largest estimated mean annual yield of suspended sediment (450,000 lb/yr/mi2). Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the Little River Basin. Commercial fertilizer and livestock-waste applications on row crops are a principal source of nutrients for most of the Little River Basin. Sources of nutrients in the urban areas of the basin mainly are from effluent discharge from wastewater-treatment facilities and fertilizer applications to lawns and golf courses.

  2. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters.

    PubMed

    Sawers, Ruairidh J H; Svane, Simon F; Quan, Clement; Grønlund, Mette; Wozniak, Barbara; Gebreselassie, Mesfin-Nigussie; González-Muñoz, Eliécer; Chávez Montes, Ricardo A; Baxter, Ivan; Goudet, Jerome; Jakobsen, Iver; Paszkowski, Uta

    2017-04-01

    Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigated in a panel of diverse maize lines. A panel of 30 maize lines was evaluated with and without inoculation with arbuscular mycorrhizal fungi. The line Oh43 was identified to show superior response and, along with five other reference lines, was characterized in greater detail in a split-compartment system, using 33 P to quantify mycorrhizal phosphorus uptake. Changes in relative growth indicated variation in host capacity to profit from the symbiosis. Shoot phosphate content, abundance of root-internal and -external fungal structures, mycorrhizal phosphorus uptake, and accumulation of transcripts encoding plant PHT1 family phosphate transporters varied among lines. Superior response in Oh43 is correlated with extensive development of root-external hyphae, accumulation of specific Pht1 transcripts and high phosphorus uptake by mycorrhizal plants. The data indicate that host genetic factors influence fungal growth strategy with an impact on plant performance. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Trends in Streamflow and Nutrient and Suspended-Sediment Concentrations and Loads in the Upper Mississippi, Ohio, Red, and Great Lakes River Basins, 1975-2004

    USGS Publications Warehouse

    Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.

    2009-01-01

    Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern. Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.

  4. Methodology for estimating nutrient loads discharged from the east coast canals to Biscayne Bay, Miami-Dade County, Florida

    USGS Publications Warehouse

    Lietz, Arthur C.

    1999-01-01

    Biscayne Bay is an oligotrophic, subtropical estuary located along the southeastern coast of Florida that provides habitat for a variety of plant and animal life. Concern has arisen with regard to the ecological health of Biscayne Bay because of the presence of nutrient-laden discharges from the east coast canals that drain into the bay. This concern, as well as planned diversion of discharges for ecosystem restoration from the urban and agricultural corridors of Miami-Dade County to Everglades National Park, served as the impetus for a study conducted during the 1996 and 1997 water years to estimate nutrient loads discharged from the east coast canals into Biscayne Bay. Analytical results indicated that the highest concentration of any individual nutrient sampled for in the study was 4.38 mg/L (milligrams per liter) for nitrate at one site, and the lowest concentrations determined were below the detection limits for orthophosphate at six sites and nitrite at four sites. Median concentrations for all the sites were 0.75 mg/L for total organic nitrogen, 0.10 mg/L for ammonia, 0.02 mg/L for nitrite, 0.18 mg/L for nitrate, 0.20 mg/L for nitrite plus nitrate nitrogen, 0.02 mg/L for total phosphorus, and 0.005 mg/L for orthophosphate. The maximum total phosphorus concentration of 0.31 mg/L was the only nutrient concentration to exceed U.S. Environmental Protection Agency (1986) water-quality criteria. High concentrations of total phosphorus usually reflect contamination as a result of human activities. Five sites exceeded the fresh-water quality standard of 0.5 mg/L for ammonia concentration as determined by the Miami-Dade County Department of Environmental Resources Management. Median total organic nitrogen concentrations were higher in urban and forested/wetland areas than in agricultural areas; median concentrations of nitrite, nitrate, and nitrite plus nitrate nitrogen were higher in agricultural areas than in urban and forested/wetland areas; and ammonia, total phosphorus, and orthophosphate concentrations were higher in urban areas than in agricultural and forested/wetland areas. These results coincide with expected differences in nutrient concentrations based on knowledge of point and nonpoint source influences and nutrient cycling. The Wilcoxon signed ranks test (WSRT) was used to compare differences between point (grab) samples and depth-integrated samples for total nitrogen and total phosphorus concentrations at 12 east coast canal sites. Statistically significant differences (alpha level of 0.025) in total phosphorus concentrations between point (grab) samples collected 1.0 meter deep and depth-integrated samples were detected at three sites. One site also showed statistically significant differences in total phosphorus concentrations between point (grab) samples collected 0.5 meter deep and depth-integrated samples. There were no statistically significant differences in total nitrogen and total phosphorus concentrations between point (grab) samples collected 0.5 meter deep and 1.0 meter deep for all the sites. Results of the line of organic correlation, a fitting procedure used to compare point (grab) and depth-integrated samples where statistically significant differences exist as defined by the WSRT, indicated that point (grab) samples underestimate total phosphorus concentrations when compared to depth-integrated samples. This underestimation probably can be attributed to the reduced suspended-sediment concentrations near the surface during periods of flow as compared to those near the streambed. Predictive models were developed to estimate total nitrogen and total phosphorus loads by means of an ordinary least-squares regression technique. Instantaneous discharge was used as the independent variable, and total phosphorus load or total nitrogen load represented the dependent variable. A software program called Estimator was used to develop the regression models and to compute total nitrogen and total phosphorus loads

  5. Stage-discharge relations and annual nitrogen and phosphorus load estimates for stream sites in the Elk River Basin, 2006–2008

    USGS Publications Warehouse

    Hoos, Anne B.; Williams, Shannon D.; Wolfe, William J.

    2016-11-22

    The U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation (TDEC), measured continuous discharge at 4 water-quality monitoring sites and developed stage-discharge ratings for 10 additional water-quality monitoring sites in the Elk River Basin during 2006 through 2008. The discharge data were collected to support stream load assessments by TDEC. Annual nitrogen and phosphorus loads were estimated for the four sites where continuous daily discharge records were collected. Reported loads for the period 2006 through 2008 are not representative of long-term mean annual conditions at the sites in this study, however, because of severe drought conditions in the Elk River Basin during this period.

  6. Modelling of in-stream nitrogen and phosphorus concentrations using different sampling strategies for calibration data

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    It is known that a good evaluation and prediction of surface water pollution is mainly limited by the monitoring strategy and the capability of the hydrological water quality model to reproduce the internal processes. To this end, a compromise sampling frequency, which can reflect the dynamical behaviour of leached nutrient fluxes responding to changes in land use, agriculture practices and point sources, and appropriate process-based water quality model are required. The objective of this study was to test the identification of hydrological water quality model parameters (nitrogen and phosphorus) under two different monitoring strategies: (1) regular grab-sampling approach and (2) regular grab-sampling with additional monitoring during the hydrological events using automatic samplers. First, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was successfully calibrated (1994-1998) for discharge (NSE = 0.86), nitrate-N (lowest NSE for nitrate-N load = 0.69), particulate phosphorus and soluble phosphorus in the Selke catchment (463 km2, central Germany) for the period 1994-1998 using regular grab-sampling approach (biweekly to monthly for nitrogen and phosphorus concentrations). Second, the model was successfully validated during the period 1999-2010 for discharge, nitrate-N, particulate-phosphorus and soluble-phosphorus (lowest NSE for soluble phosphorus load = 0.54). Results, showed that when additional sampling during the events with random grab-sampling approach was used (period 2011-2013), the hydrological model could reproduce only the nitrate-N and soluble phosphorus concentrations reasonably well. However, when additional sampling during the hydrological events was considered, the HYPE model could not represent the measured particulate phosphorus. This reflects the importance of suspended sediment during the hydrological events increasing the concentrations of particulate phosphorus. The HYPE model could reproduce the total phosphorus during the period 2011-2013 only when the sediment transport-related model parameters was re-identified again considering the automatic sampling during the high-flow conditions.

  7. Evaluating the potential for watershed restoration to reduce nutrient loading to Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    McCormick, Paul V.; Campbell, Sharon G.

    2007-01-01

    A literature review of best management practices to reduce nutrient loading was performed to provide information for resource managers in the Klamath Basin, Oregon. Although BMPs have already been implemented in the watershed, some sense of their effectiveness in reducing phosphorus loading and their cost for installation and maintenance is still lacking. This report discusses both causes of nutrient loading and a wide-variety of BMPs used to treat or reduce causal factors. We specifically focused on cattle grazing as the principal land-use and causal factor for nutrient loading in the Klamath Basin above Upper Klamath Lake, Oregon. Several BMP types, including stream corridor fencing, riparian buffer strips and constructed wetlands, seem to have potential for reducing phosphorus loading that may result from cattle grazing. However, no single BMP is likely to be the most effective in all locations or situations.

  8. Uncertainty Of Stream Nutrient Transport Estimates Using Random Sampling Of Storm Events From High Resolution Water Quality And Discharge Data

    NASA Astrophysics Data System (ADS)

    Scholefield, P. A.; Arnscheidt, J.; Jordan, P.; Beven, K.; Heathwaite, L.

    2007-12-01

    The uncertainties associated with stream nutrient transport estimates are frequently overlooked and the sampling strategy is rarely if ever investigated. Indeed, the impact of sampling strategy and estimation method on the bias and precision of stream phosphorus (P) transport calculations is little understood despite the use of such values in the calibration and testing of models of phosphorus transport. The objectives of this research were to investigate the variability and uncertainty in the estimates of total phosphorus transfers at an intensively monitored agricultural catchment. The Oona Water which is located in the Irish border region, is part of a long term monitoring program focusing on water quality. The Oona Water is a rural river catchment with grassland agriculture and scattered dwelling houses and has been monitored for total phosphorus (TP) at 10 min resolution for several years (Jordan et al, 2007). Concurrent sensitive measurements of discharge are also collected. The water quality and discharge data were provided at 1 hour resolution (averaged) and this meant that a robust estimate of the annual flow weighted concentration could be obtained by simple interpolation between points. A two-strata approach (Kronvang and Bruhn, 1996) was used to estimate flow weighted concentrations using randomly sampled storm events from the 400 identified within the time series and also base flow concentrations. Using a random stratified sampling approach for the selection of events, a series ranging from 10 through to the full 400 were used, each time generating a flow weighted mean using a load-discharge relationship identified through log-log regression and monte-carlo simulation. These values were then compared to the observed total phosphorus concentration for the catchment. Analysis of these results show the impact of sampling strategy, the inherent bias in any estimate of phosphorus concentrations and the uncertainty associated with such estimates. The estimates generated using the full time series underestimate the flow weighted mean concentration of total phosphorus. This work compliments other contemporary work in the area of load estimation uncertainty in the UK (Johnes, 2007). Johnes P,J. 2007, Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseflow index and catchment population density, Journal of hydrology 332 (1- 2): 241-258 Jordan, P., Arnscheidt, J., McGrogan, H & McCormick, S., 2007. Characterising phosphorus transfers in rural transfers using a continuous bank-side analyser. Hydrology and Earth System Science 11, 372-381 Kronvang B & Bruhn, A. J, 1996. Choice of sampling strategy and estimation method for calculating nitrogen and phosphorus transport in small lowland streams , Hydrological processes 10 (11): 1483-1501

  9. Nutrient concentrations and loads in the northeastern United States - Status and trends, 1975-2003

    USGS Publications Warehouse

    Trench, Elaine C. Todd; Moore, Richard B.; Ahearn, Elizabeth A.; Mullaney, John R.; Hickman, R. Edward; Schwarz, Gregory E.

    2012-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) began regional studies in 2003 to synthesize information on nutrient concentrations, trends, stream loads, and sources. In the northeastern United States, a study area that extends from Maine to central Virginia, nutrient data were evaluated for 130 USGS water-quality monitoring stations. Nutrient data were analyzed for trends in flow-adjusted concentrations, modeled instream (non-flow-adjusted) concentrations, and stream loads for 32 stations with 22 to 29 years of water-quality and daily mean streamflow record during 1975-2003 (termed the long-term period), and for 46 stations during 1993-2003 (termed the recent period), by using a coupled statistical model of streamflow and water quality developed by the USGS. Recent trends in flow-adjusted concentrations of one or more nutrients also were analyzed for 90 stations by using Tobit regression. Annual stream nutrient loads were estimated, and annual nutrient yields were calculated, for 47 stations for the long-term and recent periods, and for 37 additional stations that did not have a complete streamflow and water-quality record for 1993-2003. Nutrient yield information was incorporated for 9 drainage basins evaluated in a national NAWQA study, for a total of 93 stations evaluated for nutrient yields. Long-term downward trends in flow-adjusted concentrations of total nitrogen and total phosphorus (18 and 19 of 32 stations, respectively) indicate regional improvements in nutrient-related water-quality conditions. Most of the recent trends detected for total phosphorus were upward (17 of 83 stations), indicating possible reversals to the long-term improvements. Concentrations of nutrients in many streams persist at levels that are likely to affect aquatic habitat adversely and promote freshwater or coastal eutrophication. Recent trends for modeled instream concentrations, and modeled reference concentrations, were evaluated relative to ecoregion-based nutrient criteria proposed by the U.S. Environmental Protection Agency. Instream concentrations of total nitrogen and total phosphorus persist at levels higher than proposed criteria at more than one-third and about one-half, respectively, of the 46 stations analyzed. Long-term trends in nutrient loads were primarily downward, with downward trends in total nitrogen and total phosphorus loads detected at 12 and 17 of 32 stations, respectively. Upward trends were rare, with one upward trend for total nitrogen loads and none for total phosphorus. Trends in loads of nitrite-plus-nitrate nitrogen included 7 upward and 8 downward trends among 32 stations. Downward trends in loads of ammonia nitrogen and total Kjeldahl nitrogen were detected at all six stations evaluated. Long-term downward trends detected in four of the five largest drainage basins evaluated include: total nitrogen loads for the Connecticut, Delaware, and James Rivers; total Kjeldahl nitrogen and ammonia nitrogen loads for the Susquehanna River; ammonia nitrogen and nitrite-plus-nitrate nitrogen loads for the James River; and total phosphorus loads for the Connecticut and Delaware Rivers. No trends in load were detected for the Potomac River. Nutrient yields were evaluated relative to the extent of land development in 93 drainage basins. The undeveloped land-use category included forested drainage basins with undeveloped land ranging from 75 to 100 percent of basin area. Median total nitrogen yields for the 27 undeveloped drainage basins evaluated, including 9 basins evaluated in a national NAWQA study, ranged from 290 to 4,800 pounds per square mile per year (lb/mi2/yr). Total nitrogen yields even in the most pristine drainage basins may be elevated relative to natural conditions, because of high rates of atmospheric deposition of nitrogen in parts of the northeastern United States. Median total phosphorus yields ranged from 12 to 330 lb/mi2/yr for the 26 undeveloped basins evaluated. The undeveloped category includes some large drainage basins with point-source discharges and small percentages of developed land; in these basins, streamflow from undeveloped headwater areas dilutes streamflow in more urbanized reaches, and dampens but does not eliminate the point-source "signal" of higher nutrient loads. Median total nitrogen yields generally do not exceed 1,700 lb/mi2/yr, and median total phosphorus yields generally do not exceed 100 lb/mi2/yr, in the drainage basins that are least affected by human land-use and waste-disposal practices. Agricultural and urban land use has increased nutrient yields substantially relative to undeveloped drainage basins. Median total nitrogen yields for 24 agricultural basins ranged from 1,700 to 26,000 lb/mi2/yr, and median total phosphorus yields ranged from 94 to 1,000 lb/mi2/yr. The maximum estimated total nitrogen and total phosphorus yields, 32,000 and 16,000 lb/mi2/yr, respectively, for all stations in the region were in small (less than 50 square miles (mi2)) agricultural drainage basins. Median total nitrogen yields ranged from 1,400 to 17,000 lb/mi2/yr in 26 urbanized drainage basins, and median total phosphorus yields ranged from 43 to 1,900 lb/mi2/yr. Urbanized drainage basins with the highest nutrient yields are generally small (less than 300 mi2) and are drained by streams that receive major point-source discharges. Instream nutrient loads were evaluated relative to loads from point-source discharges in four drainage basins: the Quinebaug River Basin in Connecticut, Massachusetts, and Rhode Island; the Raritan River Basin in New Jersey; the Patuxent River Basin in Maryland; and the James River Basin in Virginia. Long-term downward trends in nutrient loads, coupled with similar trends in flow-adjusted nutrient concentrations, indicate long-term reductions in the delivery of most nutrients to these streams. However, the absence of recent downward trends in load for most nutrients, coupled with instream concentrations that exceed proposed nutrient criteria in several of these waste-receiving streams, indicates that challenges remain in reducing delivery of nutrients to streams from point sources. During dry years, the total nutrient load from point sources in some of the drainage basins approached or equaled the nutrient load transported by the stream.

  10. Historical trend of nitrogen and phosphorus loads from the upper Yangtze River basin and their responses to the Three Gorges Dam.

    PubMed

    Sun, Chengchun; Shen, Zhenyao; Liu, Ruimin; Xiong, Ming; Ma, Fangbing; Zhang, Ouyang; Li, Yangyang; Chen, Lei

    2013-12-01

    Excessive inputs of nitrogen and phosphorus (N and P) degrade surface water quality worldwide. Impoundment of reservoirs alters the N and P balance of a basin. In this study, riverine nutrient loads from the upper Yangtze River basin (YRB) at the Yichang station were estimated using Load Estimator (LOADEST). Long-term load trends and monthly variabilities during three sub-periods based on the construction phases of the Three Gorges Dam (TGD) were analyzed statistically. The dissolved inorganic nitrogen (DIN) loads from the upper YRB for the period from 1990 to 2009 ranged from 30.47 × 10(4) to 78.14 × 10(4) t, while the total phosphorus (TP) loads ranged from 2.54 × 10(4) to 7.85 × 10(4) t. DIN increased rapidly from 1995 to 2002 mainly as a result of increased fertilizer use. Statistics of fertilizer use in the upper YRB agreed on this point. However, the trend of the TP loads reflected the combined effect of removal by sedimentation in reservoirs and increased anthropogenic inputs. After the TGD impoundment in 2003, decreasing trends in both DIN and TP loads were found. The reduction in DIN was mainly caused by ammonium consumption and transference. From an analysis of monthly loads, it was found that DIN had a high correlation to discharges. For TP loads, an average decrease of 4.91 % in October was found when the TGD impoundment occurred, but an increase of 4.23 % also occurred in July, corresponding to the washout from sediment deposited in the reservoir before July. Results of this study revealed the TGD had affected nutrient loads in the basin, and it had played a role in nutrient reduction after its operation.

  11. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    PubMed

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  12. SAMPLING STRATEGIES FOR ESTIMATING THE MAGNITUDE AND IMPORTANCE OF INTERNAL PHOSPHORUS SUPPLIES IN LAKES

    EPA Science Inventory

    The physical and chemical factors controlling sediment release and water column cycling of phosphorus and other nutrients (internal loading) are discussed within a 'systems' framework. Applying the systems approach, time-dependent nutrient storage within identified compartments, ...

  13. Estimation of particulate nutrient load using turbidity meter.

    PubMed

    Yamamoto, K; Suetsugi, T

    2006-01-01

    The "Nutrient Load Hysteresis Coefficient" was proposed to evaluate the hysteresis of the nutrient loads to flow rate quantitatively. This could classify the runoff patterns of nutrient load into 15 patterns. Linear relationships between the turbidity and the concentrations of particulate nutrients were observed. It was clarified that the linearity was caused by the influence of the particle size on turbidity output and accumulation of nutrients on smaller particles (diameter < 23 microm). The L-Q-Turb method, which is a new method for the estimation of runoff loads of nutrients using a regression curve between the turbidity and the concentrations of particulate nutrients, was developed. This method could raise the precision of the estimation of nutrient loads even if they had strong hysteresis to flow rate. For example, as for the runoff load of total phosphorus load on flood events in a total of eight cases, the averaged error of estimation of total phosphorus load by the L-Q-Turb method was 11%, whereas the averaged estimation error by the regression curve between flow rate and nutrient load was 28%.

  14. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.

    PubMed

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-05-28

    Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Nitrification and ammonium dynamics in Taihu Lake, China: seasonal competition for ammonium between nitrifiers and cyanobacteria

    NASA Astrophysics Data System (ADS)

    Hampel, Justyna J.; McCarthy, Mark J.; Gardner, Wayne S.; Zhang, Lu; Xu, Hai; Zhu, Guangwei; Newell, Silvia E.

    2018-02-01

    Taihu Lake is hypereutrophic and experiences seasonal, cyanobacterial harmful algal blooms. These Microcystis blooms produce microcystin, a potent liver toxin, and are linked to anthropogenic nitrogen (N) and phosphorus (P) loads to lakes. Microcystis spp. cannot fix atmospheric N and must compete with ammonia-oxidizing and other organisms for ammonium (NH4+). We measured NH4+ regeneration and potential uptake rates and total nitrification using stable-isotope techniques. Nitrification studies included abundance of the functional gene for NH4+ oxidation, amoA, for ammonia-oxidizing archaea (AOA) and bacteria (AOB). Potential NH4+ uptake rates ranged from 0.02 to 6.80 µmol L-1 h-1 in the light and from 0.05 to 3.33 µmol L-1 h-1 in the dark, and NH4+ regeneration rates ranged from 0.03 to 2.37 µmol L-1 h-1. Nitrification rates exceeded previously reported rates in most freshwater systems. Total nitrification often exceeded 200 nmol L-1 d-1 and was > 1000 nmol L-1 d-1 at one station near a river discharge. AOA amoA gene copies were more abundant than AOB gene copies (p < 0.005) at all times; however, only abundance of AOB amoA (not AOA) was correlated with nitrification rates for all stations and all seasons (p < 0.005). Nitrification rates in Taihu Lake varied seasonally; at most stations, rates were highest in March, lower in June, and lowest in July, corresponding with cyanobacterial bloom progression, suggesting that nitrifiers were poor competitors for NH4+ during the bloom. Regeneration results suggested that cyanobacteria relied extensively on regenerated NH4+ to sustain the bloom. Internal NH4+ regeneration exceeded external N loading to the lake by a factor of 2 but was ultimately fueled by external N loads. Our results thus support the growing literature calling for watershed N loading reductions in concert with existing management of P loads.

  16. Nutrients discharged to the Mississippi River from eastern Iowa watersheds, 1996-1997

    USGS Publications Warehouse

    Becher, Kent D.; Schnoebelen, Douglas J.; Akers, Kimberlee K.

    2000-01-01

    The introduction of nutrients from chemical fertilizer, animal manure, wastewater, and atmospheric deposition to the eastern Iowa environment creates a large potential for nutrient transport in watersheds. Agriculture constitutes 93 percent of all land use in eastern Iowa. As part of the U.S. Geological Survey National Water Quality Assessment Program, water samples were collected (typically monthly) from six small and six large watersheds in eastern Iowa between March 1996 and September 1997. A Geographic Information System (GIS) was used to determine land use and quantify inputs of nitrogen and phosphorus within the study area. Streamliow from the watersheds is to the Mississippi River. Chemical fertilizer and animal manure account for 92 percent of the estimated total nitrogen and 99.9 percent of the estimated total phosphorus input in the study area. Total nitrogen and total phosphorus loads for 1996 were estimated for nine of the 12 rivers and creeks using a minimum variance unbiased estimator model. A seasonal pattern of concentrations and loads was observed. The greatest concentrations and loads occur in the late spring to early summer in conjunction with row-crop fertilizer applications and spring nmoff and again in the late fall to early winter as vegetation goes into dormancy and additional fertilizer is applied to row-crop fields. The three largest rivers in eastern Iowa transported an estimated total of 79,000 metric tons of total nitrogen and 6,800 metric tons of total phosphorus to the Mississippi River in 1996. The estimated mass of total nitrogen and total phosphorus transported to the Mississippi River represents about 19 percent of all estimated nitrogen and 9 percent of all estimated phosphorus input to the study area.

  17. Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model

    NASA Astrophysics Data System (ADS)

    Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi

    2018-06-01

    In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.

  18. Nutrient and sediment concentrations, yields, and loads in impaired streams and rivers in the Taunton River Basin, Massachusetts, 1997-2008

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Sorenson, Jason R.

    2013-01-01

    Rapid development, population growth, and the changes in land and water use accompanying development are placing increasing stress on water resources in the Taunton River Basin. An assessment by the Massachusetts Department of Environmental Protection determined that a number of tributary streams to the Taunton River are impaired for a variety of beneficial uses because of nutrient enrichment. Most of the impaired reaches are in the Matfield River drainage area in the vicinity of the City of Brockton. In addition to impairments of stream reaches in the basin, discharge of nutrient-rich water from the Taunton River contributes to eutrophication of Mount Hope and Narragansett Bays. To assess water quality and loading in the impaired tributary stream reaches in the basin, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection compiled existing water-quality data from previous studies for the period 1997-2006, developed and calibrated a Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model to simulate streamflow in areas of the basin that contain the impaired reaches for the same time period, and collected additional streamflow and water-quality data from sites on the Matfield and Taunton Rivers in 2008. A majority of the waterquality samples used in the study were collected between 1999 and 2006. Overall, the concentration, yield, and load data presented in this report represent water-quality conditions in the basin for the period 1997-2008. Water-quality data from 52 unique sites were used in the study. Most of the samples from previous studies were collected between June and September under dry weather conditions. Simulated or measured daily mean streamflow and water-quality data were used to estimate constituent yields and loads in the impaired tributary stream reaches and the main stem of the Taunton River and to develop yield-duration plots for reaches with sufficient water-quality data. Total phosphorus concentrations in the impaired-reach areas ranged from 0.0046 to 0.91 milligrams per liter (mg/L) in individual samples (number of samples (n)=331), with a median of 0.090 mg/L; total nitrogen concentrations ranged from 0.34 to 14 mg/L in individual samples (n=139), with a median of 1.35 mg/L; and total suspended solids concentrations ranged from 2/d) for total phosphorus and 100 lb/mi2/d for total nitrogen in these reaches. In most of the impaired reaches not affected by the Brockton Advanced Water Reclamation Facility outfall, yields were lower than in reaches downstream from the outfall, and the difference between measured and threshold yields was fairly uniform over a wide range of flows, suggesting that multiple processes contribute to nonpoint loading in these reaches. The Northeast and Mid-Atlantic SPAtially-Referenced Regression On Watershed (SPARROW) models for total phosphorus and total nitrogen also were used to estimate annual nutrient loads in the impaired tributary stream reaches and main stem of the Taunton River and predict the distribution of these loads among point and diffuse sources in reach drainage areas. SPARROW is a regional, statistical model that relates nutrient loads in streams to upstream sources and land-use characteristics and can be used to make predictions for streams that do not have nutrient-load data. The model predicts mean annual loads based on longterm streamflow and water-quality data and nutrient source conditions for the year 2002. Predicted mean annual nutrient loads from the SPARROW models were consistent with the measured yield and load data from sampling sites in the basin. For conditions in 2002, the Brockton Advanced Water Reclamation Facility outfall accounted for over 75 percent of the total nitrogen load and over 93 percent of the total phosphorus load in the Salisbury Plain and Matfield Rivers downstream from the outfall. Municipal point sources also accounted for most of the load in the main stem of the Taunton River. Multiple municipal wastewater discharges in the basin accounted for about 76 and 46 percent of the delivered loads of total phosphorus and total nitrogen, respectively, to Mount Hope Bay. For similarly sized watersheds, total delivered loads were lower in watersheds without point sources compared to those with point sources, and sources associated with developed land accounted for most of the delivered phosphorus and nitrogen loads to the impaired reaches. The concentration, yield, and load data evaluated in this study may not be representative of current (2012) point-source loading in the basin; in particular, most of the water-quality data used in the study (1999-2006) were collected prior to completion of upgrades to the Brockton Advanced Water Reclamation Facility that reduced total phosphorus and nitrogen concentrations in treated effluent. Effluent concentration data indicate that, for a given flow rate, effluent loads of total phosphorus and total nitrogen declined by about 80 and 30 percent, respectively, between the late 1990s and 2008 in response to plant upgrades. Consequently, current (2012) water-quality conditions in the impaired reaches downstream from the facility likely have improved compared to conditions described in the report.

  19. Annual Nutrient Loadings, Primary Productivity, and Trophic State of Lake Koocanusa, Montana and British Columbia, 1972-80

    USGS Publications Warehouse

    Woods, Paul F.

    1982-01-01

    Limnological data collected at Lake Koocanusa were used to investigate the relationship of nutrient loadings, primary productivity, and trophic state of the reservoir during 1972-80. The reservoir, on the Kootenai River, was impounded by Libby Dam on March 21, 1972. Manipulation of the 7.16-cubic-kilometer reservoir for flood control, its primary function, created large fluctuations in reservoir volume and produced annual lake-filling times that ranged from 0.14 to 0.66 year. Loadings of nitrogen and phosphorus prior to and following impoundment of Lake Koocanusa were found to be large enough to predict eutrophic conditions. Beginning in 1976, total phosphorus loadings, but not total nitrogen loadings, were substantially reduced following improvements in waste-water treatment at a fertilizer plant located upstream from the reservoir. The closure of Libby Dam substantially reduced loadings of nitrogen and phosphorus downstream from Lake Koocanusa. On the average, the reservoir retained 63 percent of its influent loading of total phosphorus and 25 percent of its influent loading of total nitrogen. Daily areal and volumetric primary productivity varied widely in each year at four sampled limnological stations. During the 9 years studied, daily areal primary productivity, in milligrams of carbon fixed per square meter, ranged from 0.4 to 420.0; the mean of the 313 sampled days was 128.5. Annual areal primary productivity ranged from 23.2 to 38.5 grams of carbon fixed per square meter and thereby categorized Lake Koocanusa as oligotrophic. The relationship of annual areal primary productivity and 12 selected environmental variables was determined by multiple regression analysis. One of the models that was derived used two variables-annual euphotic zone depth and annual areal phosphorus loading-and accounted for 62.0 percent of the variation in annual areal primary productivity. The distribution of chlorophyll a within the water column indicated that, on the average, more than one-half of the phytoplankton in the reservoir was beneath the euphotic zone. These results support the hypothesis that the reservoir's weak thermal structure had allowed circulation of phytoplankton out of the euphotic zone. The trophic state of Lake Koocanusa was categorized as eutrophic when based on the relationship of the nutrient loadings and the reservoir's ratio of mean depth to hydraulic-residence time. This result conflicted with the oligotrophic ranking the reservoir received based on its areal primary productivity. The discrepancy in trophic state was attributed mainly to the failure of nutrient loading models to adequately account for physical processes within reservoirs. Part of the nutrient loading that entered Lake Koocanusa was unavailable to phytoplankton because the nutrients were carried beneath the euphotic zone by large volumes of interflow and underflow. Another part of the nutrient loading was adsorbed to suspended sediment and removed from the water column. Thus, phytoplankton primary productivity was controlled not only by nutrients, but also by other limno logical processes.

  20. Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system.

    PubMed

    Gervin, L; Brix, H

    2001-01-01

    Lake Utterslev is situated in a densely built-up area of Copenhagen, and is heavily eutrophicated from combined sewer overflows. At the same time the lake suffers from lack of water. Therefore, a 5,000 m2 vertical flow wetland system was constructed in 1998 to reduce the phosphorus discharge from combined sewer overflows without reducing the water supply to the lake. During dry periods the constructed wetland is used to remove phosphorus from the lake water. The system is designed as a 90 m diameter circular bed with a bed depth of c. 2 m. The system is isolated from the surroundings by a polyethylene membrane. The bed medium consists of a mixture of gravel and crushed marble, which has a high binding capacity for phosphorus. The bed is located within the natural littoral zone of the lake and is planted with common reed (Phragmites australis). The constructed wetland is intermittently loaded with combined sewer overflow water or lake water and, after percolation through the bed medium, the water is collected in a network of drainage pipes at the bottom of the bed and pumped to the lake. The fully automated loading cycle results in alternating wet and dry periods. During the initial two years of operation, the phosphorus removal for combined sewer overflows has been consistently high (94-99% of inflow concentrations). When loaded with lake water, the phosphorus removal has been high during summer (71-97%) and lower during winter (53-75%) partly because of lower inlet concentrations. Effluent phosphorus concentrations are consistently low (0.03-0.04 mg/L). Ammonium nitrogen is nitrified in the constructed wetland, and total suspended solids and COD are generally reduced to concentrations below 5 mg/L and 25 mg/L, respectively. The study documents that a subsurface flow constructed wetland system can be designed and operated to effectively remove phosphorus and other pollutants from combined sewer overflows and eutrophicated lake water.

  1. Is the destabilisation of lake peipsi ecosystem caused by increased phosphorus loading or decreased nitrogen loading?

    PubMed

    Nõges, T; Laugaste, R; Loigu, E; Nedogarko, I; Skakalski, B; Nõges, P

    2005-01-01

    Lake Peipsi (3555 km2, mean depth 7.1 m) located on the border of Estonia and Russia is the largest transboundary lake in Europe. L. Peipsi consists of three parts. The shared largest northern part L. Peipsi s.s. (2611 km2, 8.3 m) and the southern L. Pihkva (708 km2, 3.8 m) which belongs mainly to Russia are connected by the river-shaped L. Lämmijärv (236 km2, 2.5 m). The catchment area (44,245 km2 without lake area) is shared between Estonia (33.3%), Russia (58.6%) and Latvia (8%). Intensive eutrophication of L. Peipsi started in the 1970s. The biomass of N2-fixing cyanobacteria was low at heavy nutrient loading in the 1980s. After the collapse of soviet-type agriculture in the early 1990s, the loading of nitrogen sharply decreased. A certain improvement of L. Peipsi s.s. was noticed at the beginning of the 1990s together with the temporary reduction of phosphorus loading from Estonian catchment while in recent years a destabilisation of the ecosystem has been observed. This deterioration has been expressed mainly as intensive blue-green blooms and fish-kills in summer. Reappearance of blooms has been explained by the decrease in N/P loading ratio due to reduced N discharge while in some periods increased phosphorus loading could have supported this trend.

  2. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  3. Modelling the regulation effects of lowland polder with pumping station on hydrological processes and phosphorus loads.

    PubMed

    Yan, Renhua; Li, Lingling; Gao, Junfeng

    2018-05-08

    Exploring the hydrological regulation of a lowland polder is essential for increasing knowledge regarding the role of polders associated with pumping stations in lowlands. In this study, the Lowland Polder Hydrology and Phosphorus modelling System (PHPS) was applied to the Jianwei polder as a case study for quantifying the regulation effects of a lowland polder with pumping on discharge and phosphorus loads. The results indicate that the polder significantly affected the temporal distribution and annual amount of catchment discharge. Compared with a no-pumping scenario, an agricultural polder with pumping stations generated a sharper discharge hydrograph with higher peak-values and lower minimum-values, as well as an 8.6% reduction in average annual discharge. It also decreased the phosphorus export to downstream water bodies by 5.33 kg/hm 2 /yr because of widespread ditches and ponds, a lower hydraulic gradient, and increased retention times of surface water in ponds. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Increasing Dietary Phosphorus Intake from Food Additives: Potential for Negative Impact on Bone Health123

    PubMed Central

    Takeda, Eiji; Yamamoto, Hironori; Yamanaka-Okumura, Hisami; Taketani, Yutaka

    2014-01-01

    It is important to consider whether habitual high phosphorus intake adversely affects bone health, because phosphorus intake has been increasing, whereas calcium intake has been decreasing in dietary patterns. A higher total habitual dietary phosphorus intake has been associated with higher serum parathyroid hormone (PTH) and lower serum calcium concentrations in healthy individuals. Higher serum PTH concentrations have been shown in those who consume foods with phosphorus additives. These findings suggest that long-term dietary phosphorus loads and long-term hyperphosphatemia may have important negative effects on bone health. In contrast, PTH concentrations did not increase as a result of high dietary phosphorus intake when phosphorus was provided with adequate amounts of calcium. Intake of foods with a ratio of calcium to phosphorus close to that found in dairy products led to positive effects on bone health. Several randomized controlled trials have shown positive relations between dairy intake and bone mineral density. In our loading test with a low-calcium, high-phosphorus lunch provided to healthy young men, serum PTH concentrations showed peaks at 1 and 6 h, and serum fibroblast growth factor 23 (FGF23) concentrations increased significantly at 8 h after the meal. In contrast, the high-calcium, high-phosphorus meal suppressed the second PTH and FGF23 elevations until 8 h after the meal. This implies that adequate dietary calcium intake is needed to overcome the interfering effects of high phosphorus intake on PTH and FGF23 secretion. FGF23 acts on the parathyroid gland to decrease PTH mRNA and PTH secretion in rats with normal kidney function. However, increased serum FGF23 is an early alteration of mineral metabolism in chronic kidney disease, causing secondary hyperthyroidism, and implying resistance of the parathyroid gland to the action of FGF23 in chronic kidney disease. These findings suggest that long-term high-phosphorus diets may impair bone health mediated by FGF23 resistance both in chronic kidney disease patients and in the healthy population. PMID:24425727

  5. Nutrient input from the Loxahatchee River Environmental Control District sewage-treatment plant to the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Sonntag, W.H.; McPherson, B.F.

    1984-01-01

    Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)

  6. Long-term records reveal decoupling of nitrogen and phosphorus cycles in a large, urban lake in response to an extreme rainfall event

    NASA Astrophysics Data System (ADS)

    Corman, J. R.; Loken, L. C.; Oliver, S. K.; Collins, S.; Butitta, V.; Stanley, E. H.

    2017-12-01

    Extreme events can play powerful roles in shifting ecosystem processes. In lakes, heavy rainfall can transport large amounts of particulates and dissolved nutrients into the water column and, potentially, alter biogeochemical cycling. However, the impacts of extreme rainfall events are often difficult to study due to a lack of long-term records. In this paper, we combine daily discharge records with long-term lake water quality information collected by the North Temperate Lakes Long-Term Ecological Research (NTL LTER) site to investigate the impacts of extreme events on nutrient cycling in lakes. We focus on Lake Mendota, an urban lake within the Yahara River Watershed in Madison, Wisconsin, USA, where nutrient data are available at least seasonally from 1995 - present. In June 2008, precipitation amounts in the Yahara watershed were 400% above normal values, triggering the largest discharge event on record for the 40 years of monitoring at the streamgage station; hence, we are able to compare water quality records before and after this event as a case study of how extreme rain events couple or decouple lake nutrient cycling. Following the extreme event, the lake-wide mass of nitrogen and phosphorus increased in the summer of 2008 by 35% and 21%, respectively, shifting lake stoichiometry by increasing N:P ratios (Figure 1). Nitrogen concentrations remained elevated longer than phosphorus, suggesting (1) that nitrogen inputs into the lake were sustained longer than phosphorus (i.e., a "smear" versus "pulse" loading of nitrogen versus phosphorus, respectively, in response to the extreme event) and/or (2) that in-lake biogeochemical processing was more efficient at removing phosphorus compared to nitrogen. While groundwater loading data are currently unavailable to test the former hypothesis, preliminary data from surficial nitrogen and phosphorus loading to Lake Mendota (available for 2011 - 2013) suggest that nitrogen removal efficiency is less than phosphorus, supporting the latter hypothesis. As climate change is expected to increase the frequency of extreme events, continued monitoring of lakes is needed to understand biogeochemical responses and when and how water quality threats may occur.

  7. Water-quality conditions of the lower Boise River, Ada and Canyon Counties, Idaho, May 1994 through February 1997

    USGS Publications Warehouse

    Mullins, William H.

    1998-01-01

    Agricultural land and water use, wastewater treatment facility discharges, land development, road construction, urban runoff, confined-animal feeding operations, reservoir operations, and river channelization affect the water quality and biotic integrity of the lower Boise River between Lucky Peak Dam and the river's mouth at Parma, Idaho. During May 1994 through February 1997, 4 sites on the Boise River, 12 tributary/drain sites, and 3 wastewater treatment facilities were sampled at various intervals during the irrigation (high-flow) and post-irrigation (low-flow) seasons to determine sources, concentrations, and relative loads of nutrients and suspended sediment. Discharge entering the Boise River from the 12 tributary/drain sites and 3 wastewater treatment facilities was measured to determine the nutrient loads being contributed from each source. Total nitrogen, total phosphorus, and suspended sediment concentrations and loads tended to increase in a downstream direction along the Boise River. Among the 15 sources of discharge to the Boise River, 3 southside tributary/drains and the West Boise wastewater treatment facility contributed the largest loads of total nitrogen; the median daily load was more than 2,000 pounds per day. The West Boise wastewater treatment facility contributed the largest median daily load of total phosphorus (810 pounds per day); Dixie Drain contributed the largest median daily load of suspended sediment (26.4 tons per day). Nitrogen-to-phosphorus ratios at the four Boise River sites indicated that phosphorus could be limiting algal growth at the Diversion Dam site, whereas nitrogen could be limiting algal growth at the Glenwood and Middleton sites during some parts of the year. Algal growth in the Boise River near Parma did not appear to be nutrient limited. Because of the complexity of the plumbing system in the lower Boise River (numerous diversions and inflow points), accurate comparisons between discharge and nutrient loads entering the river at measured sites during high-flow sampling periods were difficult. During low-flow sampling periods, southside tributary/drains contributed most of the discharge and total nitrogen load, and wastewater treatment facilities contributed most of the total phosphorus load to the Boise River. During the 50-day period July 18 through September 5, 1996, the Idaho State standard for maximum daily average temperature for coldwater biota was exceeded by 34 percent at Middleton, 48 percent at Caldwell, and 80 percent near Parma. Violations of State standards for primary and secondary contact recreation were observed at all tributary/ drains and in the Boise River near Parma. Median instantaneous concentrations of fecal coliform bacteria exceeded State standards for primary contact recreation at five tributary/drains and exceeded standards for secondary contact recreation at one tributary/drain (Dixie Drain).

  8. Nutrient loading to Lewisville Lake, north-central Texas, 1984-87

    USGS Publications Warehouse

    Gain, W.S.; Baldys, Stanley

    1995-01-01

    The estimated long-term (1974-89 water years) average annual total nitrogen load (excluding loads from sewage-treatment plants in ungaged areas) is 11,800 pounds per day. The estimated long-term (1974 89 water years) average annual total phosphorus load (excluding loads from sewage-treatment plants in ungaged areas) is 1,100 pounds per day.

  9. Hydrology and the hypothetical effects of reducing nutrient applications of water quality in the Bald Eagle Creek Headwaters, southeastern Pennsylvania prior to implementation of agricultural best-management practices

    USGS Publications Warehouse

    Fishel, D.K.; Langland, M.J.; Truhlar, M.V.

    1991-01-01

    The report characterizes a 0.43-square-mile agricultural watershed in York County, underlain by albite-chlorite and oligoclase-mica schist in the Lower Susquehanna River basin, that is being studied as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. The water quality of Bald Eagle Creek was studied from October 1985 through September 1987 prior to the implementation of Best-Management Practices to reduce nutrient and sediment discharge into Muddy Creek, a tributary to the Chesapeake Bay. About 88 percent of the watershed is cropland and pasture, and nearly 33 percent of the cropland is used for corn. The animal population is entirely dairy cattle. About 85,640 pounds of nitrogen (460 pounds per acre) and 21,800 pounds of phosphorus (117 pounds per acre) were applied to fields; 52 percent of the nitrogen and 69 percent of the phosphorus was from commercial fertilizer. Prior to fertilization, nitrate nitrogen in the soil ranged from 36 to 136 pounds per acre and phosphorus ranged from 0.89 to 5.7 pounds per acre in the top 4 feet of soil. Precipitation was about 18 percent below normal and streamflow about 35 percent below normal during the 2-year study. Eighty-four percent of the 20.44 inches of runoff was base flow. Median concentrations of total nitrogen and dissolved phosphorous in base flow were 0.05 and 0.04 milligrams per liter as phosphorus, respectively. Concentrations of dissolved nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations decreased similarly to those observed in carbonate-rock areas as nutrient uptake and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment, 5,250 pounds of nitrogen, and 66.6 pounds of phosphorus discharged in base flow during the 2-year period. The suspended sediment load was about 232,000 pounds in stormflow from 26 storms that contributed 51 percent of the total stormflow. The nitrogen load was about 651 pounds and the phosphorus load was about 74 pounds in stormflow from 16 storms that contributed 28 percent of the total stormflow. It is estimated that concentrations of total nitrogen and phosphorus in base flow need to be reduced by 12 and 48 percent, respectively, to detect changes during the nutrient-management phase. Likewise, loads to total nitrogen and phosphorus in base flow need to be reduced by 62 and 57 percent.

  10. Nutrient loads in the river mouth of the Río Verde basin in Jalisco, Mexico: how to prevent eutrophication in the future reservoir?

    PubMed

    Jayme-Torres, Gonzalo; Hansen, Anne M

    2017-10-04

    Since nutrients are emitted and mobilized in river basins, causing eutrophication of water bodies, it is important to reduce such emissions and subsequent nutrient loads. Due to processes of attenuation, nutrient loads are reduced during their mobilization in river basins. At the mouth of the Río Verde basin in western Mexico, the El Purgatorio dam is being constructed to supply water to the metropolitan area of the second most populated city in the country, Guadalajara. To analyze situations that allow protecting this future dam from eutrophication, nutrient loads in the mouth of the river basin were determined and their reduction scenarios evaluated by using the NEWS2 (Nutrient Export from Watersheds) model. For this, a nutrient emissions inventory was established and used to model nutrient loads, and modeling results were compared to an analysis of water quality data from two different monitoring sites located on the river. The results suggest that 96% of nitrogen and 99% of phosphorus emissions are attenuated in the watershed. Nutrient loads reaching the mouth of the river basin come mainly from wastewater discharges, followed by livestock activities and different land uses, and loads are higher as emissions are located closer to the mouth of the river basin. To achieve and maintain mesotrophic state of water in the future dam, different nutrient emission reduction scenarios were evaluated. According to these results, the reduction of 90% of the phosphorus loads in wastewater emissions or 75% of the phosphorus loads in wastewater emissions and at least 50% in emissions from livestock activities in the river basin are required.

  11. EXTERNAL PEER REVIEW OF THE DRAFT REGION 4 REPORT, EVALUATION OF THE ROLE OF NITROGEN AND PHOSPHORUS IN CAUSING OR CONTRIBUTING TO HYPOXIA IN THE NORTHERN GULF, AUGUST, 2004

    EPA Science Inventory

    EPA scientists in Region 4 (Atlanta) conducted a review of data and information regarding hypoxia in the northern Gulf of Mexico. This Region 4 staff assessment concluded that phosphorus, rather than nitrogen, may be the limiting nutrient controlling Gulf hypoxia. An unauthorize...

  12. Water-quality assessment of Steiner Branch basin, Lafayette County, Wisconsin

    USGS Publications Warehouse

    Field, Stephen J.; Lidwin, R.A.

    1982-01-01

    Most of the nutrient load of the stream was transported during runoff: total organic nitrogen, 80 percent; ammonia nitrogen, 80 percent; total phosphorus, 84 percent; and total orthophosphorus, 77 percent. Transport of nitrite plus nitrate nitrogen and total nitrogen occurred primarily during baseflow conditions, with 75 and 56 percent, respectively, of the total load for the study period being transported during these conditions. The time distribution of total phosphorus, total orthophosphorus, ammonia nitrogen, and total organic nitrogen transport was very similar to suspended-sediment transport in Steiner Branch.

  13. Phosphorus export from artificially drained fields across the Eastern corn belt

    USDA-ARS?s Scientific Manuscript database

    Field observations that quantify agricultural phosphorus (P) losses are critical for the development of P reduction strategies across the Eastern Corn Belt region of North America. Within this region, surface water bodies including Lake Erie are sensitive to non-point P loadings. It is therefore imp...

  14. Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-11-01

    The effect of sludge retention time (SRT) on the continuous-flow system with enhanced biological phosphorus removal (EBPR) granules at different COD loading was investigated during the operation of more than 220days. And the results showed that when the system operated at long SRT (30days) and low COD loading (200mg·L(-1)), it could maintain excellent performance. However, long SRT and high COD loading (300mg·L(-1)) deteriorated the settling ability of granules and the performance of system and resulted in the overgrowth of filamentous bacteria. Meanwhile, the transformation of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process was inhibited. Moreover, the results of pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading and long SRT. The PAOs specious of Candidatus_Accumlibater and system performance increased obviously when the SRT was reduced to 20days at high COD loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.

    PubMed

    Yu, Shenjing; Sun, Peide; Zheng, Wei; Chen, Lujun; Zheng, Xiongliu; Han, Jingyi; Yan, Tao

    2014-11-01

    In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Phosphorus loads from different urban storm runoff sources in southern China: a case study in Wenzhou City.

    PubMed

    Zhou, Dong; Bi, Chun-Juan; Chen, Zhen-Lou; Yu, Zhong-Jie; Wang, Jun; Han, Jing-Chao

    2013-11-01

    Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg · L(-1), 0.01 to 0.48 mg · L(-1), and 0.02 to 2.43 mg · L(-1), respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p<0.01), while TDP was positively correlated with BOD/COD only (p<0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p<0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p<0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.

  17. Phosphorus runoff from incorporated and surface-applied liquid swine manure and phosphorus fertilizer.

    PubMed

    Daverede, I C; Kravchenko, A N; Hoeft, R G; Nafziger, E D; Bullock, D G; Warren, J J; Gonzini, L C

    2004-01-01

    Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.

  18. Will the Oxygen-Phosphorus Paradigm Persist? - Expert Views of the Future of Management and Restoration of Eutrophic Lakes

    NASA Astrophysics Data System (ADS)

    Nygrén, Nina A.; Tapio, Petri; Horppila, Jukka

    2017-11-01

    In the age of climate change, the demand and lack of pure water challenges many communities. Substantial amount of effort is put in every year to manage and restore degraded lakes while the long-term effects of those efforts are only poorly known or monitored. Oxygenation, or aeration, is used extensively for the restoration of eutrophic lakes, although many studies question whether this process improves the status of the lakes in the long-term. The desired effect of oxygenation is based on paradigmatic theories that, in the light of recent literature, might not be adequate when long-term improvements are sought. This article canvasses expert views on the feasibility of the `oxygen-phosphorus paradigm' as well as the future of the management and restoration of eutrophic lakes, based on an international, two-rounded, expert panel survey (Delphi study), employing 200 freshwater experts from 33 nationalities, contacted at three conferences on the topic. The conclusion is that the oxygen-phosphorus paradigm seems to be rather persistent. The experts considered oxygenation to be a valid short-term lake restoration method, but not without harmful side-effects. In addition, experts' low level of trust in the adequacy of the scientific knowledge on the effects of restorations and in the use of the scientific knowledge as a basis of choice of restoration methods, could be signs of a paradigm shift towards an outlook emphasizing more effective catchment management over short-term restorations. The expert panel also anticipated that reducing external nutrient loads from both point and diffuse sources will succeed in the future.

  19. Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?

    PubMed

    Jarvie, Helen P; Johnson, Laura T; Sharpley, Andrew N; Smith, Douglas R; Baker, David B; Bruulsema, Tom W; Confesor, Remegio

    2017-01-01

    Cumulative daily load time series show that the early 2000s marked a step-change increase in riverine soluble reactive phosphorus (SRP) loads entering the Western Lake Erie Basin from three major tributaries: the Maumee, Sandusky, and Raisin Rivers. These elevated SRP loads have been sustained over the last 12 yr. Empirical regression models were used to estimate the contributions from (i) increased runoff from changing weather and precipitation patterns and (ii) increased SRP delivery (the combined effects of increased source availability and/or increased transport efficiency of labile phosphorus [P] fractions). Approximately 65% of the SRP load increase after 2002 was attributable to increased SRP delivery, with higher runoff volumes accounting for the remaining 35%. Increased SRP delivery occurred concomitantly with declining watershed P budgets. However, within these watersheds, there have been long-term, largescale changes in land management: reduced tillage to minimize erosion and particulate P loss, and increased tile drainage to improve field operations and profitability. These practices can inadvertently increase labile P fractions at the soil surface and transmission of soluble P via subsurface drainage. Our findings suggest that changes in agricultural practices, including some conservation practices designed to reduce erosion and particulate P transport, may have had unintended, cumulative, and converging impacts contributing to the increased SRP loads, reaching a critical threshold around 2002. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China.

    PubMed

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  1. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  2. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    USGS Publications Warehouse

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  3. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    PubMed

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-05

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  4. Impact of reduced anthropogenic emissions and century flood on the phosphorus stock, concentrations and loads in the Upper Danube

    PubMed Central

    Zoboli, Ottavia; Viglione, Alberto; Rechberger, Helmut; Zessner, Matthias

    2015-01-01

    Patterns of changes in the concentration of total and soluble reactive phosphorus (TP, SRP) and suspended sediments at different flow levels from 1991 to 2013 in the Austrian Danube are statistically analyzed and related to point and diffuse emissions, as well as to extreme hydrological events. Annual loads are calculated with three methods and their development in time is examined taking into consideration total emissions and hydrological conditions. The reduction of point discharges achieved during the 1990s was well translated into decreasing TP and SRP baseflow concentrations during the same period, but it did not induce any change in the concentrations at higher flow levels nor in the annual transport of TP loads. A sharp and long-lasting decline in TP concentration, affecting all flow levels, took place after a major flood in 2002. It was still visible during another major flood in 2013, which recorded lower TP concentrations than its predecessor. Such decline could not be linked to changes in point or diffuse emissions. This suggests that, as a result of the flood, the river system experienced a significant depletion of its in-stream phosphorus stock and a reduced mobilization of TP rich sediments afterwards. This hypothesis is corroborated by the decoupling of peak phosphorus loads from peak maximum discharges after 2002. These results are highly relevant for the design of monitoring schemes and for the correct interpretation of water quality data in terms of assessing the performance of environmental management measures. PMID:25747371

  5. Methods for Estimating Annual Wastewater Nutrient Loads in the Southeastern United States

    USGS Publications Warehouse

    McMahon, Gerard; Tervelt, Larinda; Donehoo, William

    2007-01-01

    This report describes an approach for estimating annual total nitrogen and total phosphorus loads from point-source dischargers in the southeastern United States. Nutrient load estimates for 2002 were used in the calibration and application of a regional nutrient model, referred to as the SPARROW (SPAtially Referenced Regression On Watershed attributes) watershed model. Loads from dischargers permitted under the National Pollutant Discharge Elimination System were calculated using data from the U.S. Environmental Protection Agency Permit Compliance System database and individual state databases. Site information from both state and U.S. Environmental Protection Agency databases, including latitude and longitude and monitored effluent data, was compiled into a project database. For sites with a complete effluent-monitoring record, effluent-flow and nutrient-concentration data were used to develop estimates of annual point-source nitrogen and phosphorus loads. When flow data were available but nutrient-concentration data were missing or incomplete, typical pollutant-concentration values of total nitrogen and total phosphorus were used to estimate load. In developing typical pollutant-concentration values, the major factors assumed to influence wastewater nutrient-concentration variability were the size of the discharger (the amount of flow), the season during which discharge occurred, and the Standard Industrial Classification code of the discharger. One insight gained from this study is that in order to gain access to flow, concentration, and location data, close communication and collaboration are required with the agencies that collect and manage the data. In addition, the accuracy and usefulness of the load estimates depend on the willingness of the states and the U.S. Environmental Protection Agency to provide guidance and review for at least a subset of the load estimates that may be problematic.

  6. How phosphorus limitation can control climate-active gas sources and sinks

    NASA Astrophysics Data System (ADS)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-06-01

    Since the 1950's, anthropogenic activities have increased nutrient river loads to European coastal areas. Subsequent implementation of nutrient reduction policies have led to considerably reduction of phosphorus (P) loads from the mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorus (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 30% due to DOP uptake under limiting DIP conditions. Consequently, simulated DMS emissions also increase proportionally while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake.

  7. Phosphorus and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985-2006.

    PubMed

    Ekholm, Petri; Rankinen, Katri; Rita, Hannu; Räike, Antti; Sjöblom, Heidi; Raateland, Arjen; Vesikko, Ljudmila; Cano Bernal, José Enrique; Taskinen, Antti

    2015-04-01

    The Finnish Agri-Environmental Programme aims to reduce nutrient load to waters. Using national monitoring data, we estimated the agricultural load (incl. natural background) of total phosphorus (TP) and total nitrogen (TN) transported by 21 Finnish rivers to the northern Baltic Sea and analysed the flow-adjusted trends in the loads and concentrations from 1985 to 2006. We also related the loads to spatial and temporal patterns in catchment and agricultural characteristics. Agricultural load of TN increased, especially in the rivers discharging into the Bothnian Bay, while the load of TP decreased in most of the rivers, except those discharging into the Archipelago Sea. The trends may partly be related to a decrease in grassed area (TP, TN) and increased mineralisation (TN), but the available data on catchment and agricultural characteristics did not fully explain the observed pattern. Our study showed that data arising from relatively infrequent monitoring may prove useful for analysing long-term trend. The mutual correlation among the explaining variables hampered the analysis of the load generating factors.

  8. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    PubMed

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source composition of TP (38.1 %) is rural life; the maximum contribution rates of TN and TP in Baota district are 36.26 and 39.26 %, respectively. Results may provide data support for NPS pollution prevention and control in the loess hilly and gully region and also provide scientific reference for the protection of ecological environment of the Loess Plateau in northern Shaanxi.

  9. Strength and stability analysis of a single-walled black phosphorus tube under axial compression

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Wan, Jing; Wei, Ning; Qin, Qing H.

    2016-07-01

    Few-layered black phosphorus materials currently attract much attention due to their special electronic properties. As a consequence, a single-layer black phosphorus (SLBP) nanotube has been theoretically built. The corresponding electronic properties of such a black phosphorus nanotube (BPNT) were also evaluated numerically. However, unlike graphene formed with 2sp2 covalent carbon atoms, SLBP is formed with 3sp3 bonded atoms. It means that the structure from SLBP will possess lower Young’s modulus and mechanical strength than those of carbon nanotubes. In this study, molecular dynamics simulation is performed to investigate the strength and stability of BPNTs affected by the factors of diameter, length, loading speed and temperature. Results are fundamental for investigating the other physical properties of a BPNT acting as a component in a nanodevice. For example, buckling of the BPNT happens earlier than fracture, before which the nanostructure has very small axial strain. For the same BPNT, a higher load speed results in lower critical axial strain and a nanotube with lower axial strain can still be stable at a higher temperature.

  10. Water quality and hydrology of Silver Lake, Oceana County, Michigan, with emphasis on lake response to nutrient loading

    USGS Publications Warehouse

    Brennan, Angela K.; Hoard, Christopher J.; Duris, Joseph W.; Ogdahl, Mary E.; Steinman, Alan D.

    2016-01-29

    Simulations also were run using the BATHTUB model to evaluate the number of days Silver Lake could experience algal blooms (algal blooms are defined as modeled chlorophyll a in excess of 10 micrograms per liter [µg/L]) as a result of an increase/decrease in phosphorus and nitrogen loading from groundwater, Hunter Creek, and (or) a combination of sources. If the phosphorus and nitrogen loading from Hunter Creek is decreased (and all other sources are not altered), Silver Lake will continue to experience algal blooms, but less frequently than what is currently experienced. The same scenario holds true if the nutrient loading from groundwater is decreased. Another scenario was simulated using a combination of sources, which includes increases and decreases in phosphorus and nitrogen loading from sources that are the most likely to be managed, and includes groundwater (as a result of conversion of household septic to sewers), Hunter Creek (conversion of household septic to sewers), and lawn runoff. Results of the BATHTUB model indicated that a 50-percent reduction of phosphorus and nitrogen from these sources would result in a considerable decrease in algal bloom frequency (from 231 to 132 days) and severity, and a 75-percent reduction would greatly reduce algal bloom occurrence on Silver Lake (from 231 to 57 days). BATHTUB model scenarios based on septic load model: A scenario also was conducted using the BATHTUB model to simulate the conversion of septic to sewer and included a low, high, and medium (likely) scenario of nutrient loading to Silver Lake. Simulations of the BATHTUB model indicated that, under the likely scenario, the conversion of all onsite septic treatment to sewers would result in an overall change in lake trophic status from eutrophic to mesotrophic, thereby reducing the frequency of algal blooms and algal bloom intensity on Silver Lake (chlorophyll a >10 µg/L, from 231 to 184 days per year, or chlorophyll a >20 µg/L, from 80 to 49 days per year).

  11. Application of a Three-Dimensional Water Quality Model as a Decision Support Tool for the Management of Land-Use Changes in the Catchment of an Oligotrophic Lake

    NASA Astrophysics Data System (ADS)

    Trolle, Dennis; Spigel, Bob; Hamilton, David P.; Norton, Ned; Sutherland, Donna; Plew, David; Allan, Mathew G.

    2014-09-01

    While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.

  12. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models

    USGS Publications Warehouse

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total phosphorus model include discharges for municipal wastewater-treatment facilities and pulp and paper facilities, developed land area, agricultural area, and forested area. For total phosphorus, loss rates were significant for reservoirs with surface areas of 10 square kilometers or less, and in streams with flows less than or equal to 2.83 cubic meters per second. Applications of SPARROW for evaluating nutrient loading in New England waters include estimates of the spatial distributions of total nitrogen and phosphorus yields, sources of the nutrients, and the potential for delivery of those yields to receiving waters. This information can be used to (1) predict ranges in nutrient levels in surface waters, (2) identify the environmental variables that are statistically significant predictors of nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.

  13. Two tales of legacy effects on stream nutrient behaviour

    NASA Astrophysics Data System (ADS)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high historical loads of nutrients) has different effects on nutrients stream responses, depending on their dominant sources and pathways. Both types of time lags, biogeochemical for phosphorus and hydrologic for nitrate, need to be taken into account when designing and evaluating the effectiveness of the agri-environmental mitigation measures.

  14. Optimizing best management practices to control anthropogenic sources of atmospheric phosphorus deposition to inland lakes.

    PubMed

    Weiss, Lee; Thé, Jesse; Winter, Jennifer; Gharabaghi, Bahram

    2018-04-18

    Excessive phosphorus loading to inland freshwater lakes around the globe has resulted in nuisance plant growth along the waterfronts, degraded habitat for cold water fisheries, and impaired beaches, marinas and waterfront property. The direct atmospheric deposition of phosphorus can be a significant contributing source to inland lakes. The atmospheric deposition monitoring program for Lake Simcoe, Ontario indicates roughly 20% of the annual total phosphorus load (2010-2014 period) is due to direct atmospheric deposition (both wet and dry deposition) on the lake. This novel study presents a first-time application of the Genetic Algorithm (GA) methodology to optimize the application of best management practices (BMPs) related to agriculture and mobile sources to achieve atmospheric phosphorus reduction targets and restore the ecological health of the lake. The novel methodology takes into account the spatial distribution of the emission sources in the airshed, the complex atmospheric long-range transport and deposition processes, cost and efficiency of the popular management practices and social constraints related to the adoption of BMPs. The optimization scenarios suggest that the optimal overall capital investment of approximately $2M, $4M, and $10M annually can achieve roughly 3, 4 and 5 tonnes reduction in atmospheric P load to the lake, respectively. The exponential trend indicates diminishing returns for the investment beyond roughly $3M per year and that focussing much of this investment in the upwind, nearshore area will significantly impact deposition to the lake. The optimization is based on a combination of the lowest-cost, most-beneficial and socially-acceptable management practices that develops a science-informed promotion of implementation/BMP adoption strategy. The geospatial aspect to the optimization (i.e. proximity and location with respect to the lake) will help land managers to encourage the use of these targeted best practices in areas that will most benefit from the phosphorus reduction approach.

  15. Validating pollutant load estimates from highways and roads.

    DOT National Transportation Integrated Search

    2015-12-31

    Rain and snowmelt that runs off of roadways carries pollutants. Pollutant event mean concentrations have been developed for various land uses to calculate annual pollutant loads. These were developed for total suspended solids, total phosphorus, and ...

  16. Nitrogen and phosphorus effluent loads from a paddy-field district adopting collective crop rotation.

    PubMed

    Hama, T; Aoki, T; Osuga, K; Sugiyama, S; Iwasaki, D

    2012-01-01

    Japanese paddy rice systems commonly adopt the rotation of vegetables, wheat and soybeans with paddy rice. Crop rotation may, however, increase the nutrient load in effluent discharged from the district because more fertilizer is applied to the rotation crops than is applied to paddy crops. We investigated a paddy-field district subject to collective crop rotation and quantified the annual nutrient load of effluent from the district in three consecutive years. The total annual exports of nitrogen and phosphorus over the investigation period ranged from 30.3 to 40.6 kg N ha(-1) and 2.62 to 3.13 kg P ha(-1). The results suggest that rotation cropping increases the effluent nutrient load because applied fertilizer is converted to nitrate, and surface runoff is increased due to the absence of shuttering boards at the field outlets.

  17. Estimates of long-term mean-annual nutrient loads considered for use in SPARROW models of the Midcontinental region of Canada and the United States, 2002 base year

    USGS Publications Warehouse

    Saad, David A.; Benoy, Glenn A.; Robertson, Dale M.

    2018-05-11

    Streamflow and nutrient concentration data needed to compute nitrogen and phosphorus loads were compiled from Federal, State, Provincial, and local agency databases and also from selected university databases. The nitrogen and phosphorus loads are necessary inputs to Spatially Referenced Regressions on Watershed Attributes (SPARROW) models. SPARROW models are a way to estimate the distribution, sources, and transport of nutrients in streams throughout the Midcontinental region of Canada and the United States. After screening the data, approximately 1,500 sites sampled by 34 agencies were identified as having suitable data for calculating the long-term mean-annual nutrient loads required for SPARROW model calibration. These final sites represent a wide range in watershed sizes, types of nutrient sources, and land-use and watershed characteristics in the Midcontinental region of Canada and the United States.

  18. Global Anthropogenic Phosphorus Loads to Fresh Water, Grey Water Footprint and Water Pollution Levels: A High-Resolution Global Study

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.

  19. Incorporating Climate Change Predictions into Watershed Restoration and Protection Strategies (WRAPS) in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Foreman, C. S.

    2014-12-01

    Development of the Watershed Restoration and Protection Strategies (WRAPS) for the Pine and Leech Lake River Watersheds is underway in Minnesota. Project partners participating in this effort include the Minnesota Pollution Control Agency (MPCA), Crow Wing Soil and Water Conservation District (SWCD), Cass County, and other local partners. These watersheds are located in the Northern Lakes and Forest ecoregion of Minnesota and drain to the Upper Mississippi River. To support the Pine and Leech Lake River WRAPS, watershed-scale hydrologic and water-quality models were developed with Hydrological Simulation Program-FORTRAN (HSPF). The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and provide predictions at points of interest within the watersheds, such as observation gages, management boundaries, compliance points, and impaired water body endpoints. The model applications were used to evaluate phosphorus loads to surface waters under resource management scenarios, which were based on water quality threats that were identified at stakeholder meetings. Simulations of land use changes including conversion of forests to agriculture, shoreline development, and full build-out of cities show a watershed-wide phosphorus increases of up to 80%. The retention of 1.1 inches of runoff from impervious surfaces was not enough to mitigate the projected phosphorus load increases. Changes in precipitation projected by climate change models led to a 20% increase in annual watershed phosphorus loads. The scenario results will inform the implementation strategies selected for the WRAPS.

  20. Modelling phosphorus transport and its response to climate change at upper stream of Poyang Lake-the largest fresh water lake in China

    NASA Astrophysics Data System (ADS)

    Jiang, Sanyuan; Zhang, Qi

    2017-04-01

    Phosphorus losses from excessive fertilizer application and improper land exploitation were found to be the limiting factor for freshwater quality deterioration and eutrophication. Phosphorus transport from uplands to river is related to hydrological, soil erosion and sediment transport processes, which is impacted by several physiographic and meteorological factors. The objective of this study was to investigate the spatiotemporal variation of phosphorus losses and response to climate change at a typical upstream tributary (Le'An river) of Poyang Lake. To this end, a process-oriented hydrological and nutrient transport model HYPE (Hydrological Predictions for the Environment) was set up for discharge and phosphorus transport simulation at Le'An catchment. Parameter ESTimator (PEST) was combined with HYPE model for parameter sensitivity analysis and optimisation. In runoff modelling, potential evapotranspiration rate of the dominant land use (forest) is most sensitive; parameters of surface runoff rate and percolation capacity for the red soil are also very sensitive. In phosphorus transport modelling, the exponent of equation for soil erosion processes induced by surface runoff is most sensitive, coefficient of adsorption/desorption processes for red soil is also very sensitive. Flow dynamics and water balance were simulated well at all sites for the whole period (1978-1986) with NSE≥0.80 and PBIAS≤14.53%. The optimized hydrological parameter set were transferable for the independent period (2009-2010) with NSE≥0.90 and highest PBIAS of -7.44% in stream flow simulation. Seasonal dynamics and balance of stream water TP (Total Phosphorus ) concentrations were captured satisfactorily indicated by NSE≥0.53 and highest PBIAS of 16.67%. In annual scale, most phosphorus is transported via surface runoff during heavy storm flow events, which may account for about 70% of annual TP loads. Based on future climate change analysis under three different emission scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), there is no considerable change in average annual rainfall amount in 2020-2035 while increasing occurrence frequency and intensity of extreme rainfall events were predicted. The validated HYPE model was run on the three emission scenarios. Overall increase of TP loads was found in future with the largest increase of annual TP loads under the high emission scenario (RCP 8.5). The outcomes of this study (i) verified the transferability of HYPE model at humid subtropical and heterogeneous catchment; (ii) revealed the sensitive hydrological and phosphorus transport processes and relevant parameters; (iii) implied more TP losses in future in response to increasing extreme rainfall events.

  1. Effect of External Loading on Force and Power Production During Plyometric Push-ups.

    PubMed

    Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi

    2018-04-01

    Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.

  2. The importance of considering shifts in seasonal changes in discharges when predicting future phosphorus loads in streams

    USGS Publications Warehouse

    LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale M.; Gyawali, Rabi

    2015-01-01

    In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.

  3. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and nearshore runoff and 22 percent from atmospheric deposition. Because Silver Lake is hydraulically mounded above the local groundwater system, little or no input of phosphorus to the lake is from groundwater and septic systems. Silver Lake had previously been incorrectly described as a groundwater flowthrough lake. Phosphorus budgets were constructed for a series of dry years (low water levels) and a series of wet years (high water levels). About 6 times more phosphorus was input to the lake during wet years with high water levels than during the dry years. Phosphorus from erosion represented 13-20 percent of the phosphorus input during years with very high water levels. Results from the Canfield and Bachman eutrophication model and Carlson trophic state index equations demonstrated that water quality in Silver Lake directly responds to changes in external phosphorus input, with the percent change in chlorophyll a being about 80 percent of the percent change in total phosphorus input and the change in Secchi depth and total phosphorus concentrations being about 40 and 50 percent of the percent change in input, respectively. Therefore, changes in phosphorus input should impact water quality. Specific scenarios were simulated with the models to describe the effects of natural (climate-driven) and anthropogenic (human-induced) changes. Results of these scenarios demonstrated that several years of above-normal precipitation cause sustained high water levels and a degradation in water quality, part of which is due to erosion of the shoreline. Results also demonstrated that 1) changes in tributary and nearshore runoff have a dramatic effect on lake-water quality, 2) diverting water into the lake to increase the water level is expected to degrade the water quality, and 3) removal of water to decrease the water level of the lake is expected to have little effect on water quality. Fluctuations in water levels since 1967, when records began for the lake, are representative

  4. Characterization of phosphorus forms in lake macrophytes and algae by solution 31P nuclear magnetic resonance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Aquatic macrophytes and algae are important sources of phosphorus (P) in the lake environment that cause blooms of algae under certain biogeochemical conditions. However, the knowledge of forms of P in these plants and algae and their contribution to internal loads of lake P is very limited. Witho...

  5. DEVELOPMENT OF A METHOD FOR DETERMINING PHOSPHORUS NUTRIENT CRITERIA IN STREAMS AND RIVERS OF THE MID-ATLANTIC REGION

    EPA Science Inventory

    Nutrient enrichment of phosphorus and nitrogen is the second most cited cause for impairment of streams and rivers in the U.S. There is a need to develop stream nutrient criteria to control nutrient loadings. Since biotic metrics can assess the overall impact of nutrient enrichm...

  6. Field scale modeling to estimate phosphorus and sediment load reductions using a newly developed graphical user interface for soil and water assessment tool

    USDA-ARS?s Scientific Manuscript database

    Streams throughout the North Canadian River watershed in northwest Oklahoma, USA have elevated levels of nutrients and sediment. SWAT (Soil and Water Assessment Tool) was used to identify areas that likely contributed disproportionate amounts of phosphorus (P) and sediment to Lake Overholser, the re...

  7. Climate change impacts on runoff, sediment, and nutrient loads in an agricultural watershed in the Lower Mississippi River Basin

    USDA-ARS?s Scientific Manuscript database

    Projected climate change can impact various aspects of agricultural systems, including the nutrient and sediment loads exported from agricultural fields. This study evaluated the potential changes in runoff, sediment, nitrogen, and phosphorus loads using projected climate estimates from 2041 – 2070 ...

  8. Forecasting future phosphorus export to the Laurentian Great Lakes from land-derived nutrient inputs

    NASA Astrophysics Data System (ADS)

    LaBeau, M. B.; Robertson, D. M.; Mayer, A. S.; Pijanowski, B. C.

    2011-12-01

    Anthropogenic use of the land through agricultural and urban activities has significantly increased phosphorus loading to rivers that flow to the Great Lakes. Phosphorus (P) is a critical element in the eutrophication of the freshwater ecosystems, most notably the Great Lakes. To better understand factors influencing phosphorus delivery to aquatic systems and thus their potential harmful effects to lake ecosystems, models that predict P export should incorporate account for changing changes in anthropogenic activities. Land-derived P from high yielding sources, such as agriculture and urban areas, affect eutrophication at various scales (e.g. specific bays to all of Lake Erie). SPARROW (SPAtially Referenced Regression On Watershed attributes) is a spatially explicit watershed model that has been used to understand linkages between land-derived sources and nutrient transport to the Great Lakes. The Great Lakes region is expected to experience a doubling of urbanized areas along with a ten percent increase in agricultural use over the next 40 years, which is likely to increase P loading. To determine how these changes will impact P loading, SPARROW have been developed that relate changes in land use to changes in nutrient sources, including relationships between row crop acreage and fertilizer intensity and urban land use and point source intensity. We used land use projections from the Land Transformation Model, a, spatially explicit, neural-net based land change model. Land use patterns from current to 2040 were used as input into HydroSPARROW, a forecasting tool that enables SPARROW to simulate the effects of various land-use and climate scenarios. Consequently, this work is focusing on understanding the effects of how specific agriculture and urbanization activities affect P loading in the watersheds of the Laurentian Great Lakes to potentially find strategies to reduce the extent and severity of future eutrophication.

  9. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states.

    PubMed

    Lin, Chen; Ma, Ronghua; Xiong, Junfeng

    2018-07-01

    The physicochemical properties of surface soil play a key role in the fate of watershed non-point source pollution. Special emphasis is needed to identify soil properties that are sensitive to both particulate P (PP) pollution and dissolved P (DP) pollution, which is essential for watershed environmental management. The Chaohu Lake basin, a typical eutrophic lake in China, was selected as the study site. The spatial features of the Non-point Source (NPS) PP loads and DP loads were calculated simultaneously based on the integration of sediment delivery distributed model (SEDD) and pollution loads (PLOAD) model. Then several critical physicochemical soil properties, especially various soil P compositions, were innovatively introduced to determine the response of the critical soil properties to NPS P pollution. The findings can be summarized: i) the mean PP load value of the different sub-basins was 5.87 kg, and PP pollution is regarded to be the primary NPS P pollution state, while the DP loads increased rapidly under the rapid urbanization process. ii) iron-bound phosphorus (Fe-P) and aluminum-bound phosphorus (Al-P) are the main components of available P and showed the most sensitive responses to NPS PP pollution, and the correlation coefficients were approximately 0.9. Otherwise, the residual phosphorus (Res-P) was selected as a sensitive soil P state that was significantly negatively correlated with the DP loads. iii) The DP and PP concentrations were represented differently when they were correlated with various soil properties, and the clay proportion was strongly negatively related to the PP loads. Meanwhile, there is a non-linear relationship between the DP loads and the critical soil properties, such as Fe and Total Nitrogen (TN) concentrations. Specifically, a strong inhibitory effect of TN concentration on the DP load was apparent in the Nanfei river (NF) and Paihe (PH) river basins where the R 2 reached 0.67, which contrasts with the relatively poor relationship within the other five basins. In addition, the degree of correlation between the Fe and DP loads severely degraded in the basins that were mostly covered by construction land or those that underwent a rapid urbanization process. The findings indicate that land use/cover change (LUCC), especially the distribution of agricultural land and construction land, as well as the soil background information (TN, Fe and Soil organic matters, etc.) can be considered as factors that influence NPS P pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process.

    PubMed

    Guo, Ziyan; Li, Jiuhai; Guo, Zhaobing; Guo, Qingjun; Zhu, Bin

    2017-06-01

    Parent and aluminum-modified eggshells were prepared and characterized with X-ray diffraction, specific surface area measurements, infrared spectroscopy, zeta potential, and scanning electron microscope, respectively. Besides, phosphorus adsorptions in these two eggshells at different temperatures and solution pH were carried out to study adsorption thermodynamics and kinetics as well as the mechanisms of phosphorus adsorption and diffusion. The results indicated that high temperature was favorable for phosphorus adsorption in parent and aluminum-modified eggshells. Alkaline solution prompted phosphorus adsorption in parent eggshell, while the maximum adsorption amount was achievable at pH 4 in aluminum-modified eggshell. Adsorption isotherms of phosphorus in these eggshells could be well described by Langmuir and Freundlich models. Phosphorus adsorption amounts in aluminum-modified eggshell were markedly higher compared to those in parent eggshell. Adsorption heat indicated that phosphorus adsorption in parent eggshell was a typically physical adsorption process, while chemical adsorption mechanism of ion exchange between phosphorus and hydroxyl groups on the surface of eggshells was dominated in aluminum-modified eggshell. The time-resolved uptake curves showed phosphorus adsorption in aluminum-modified eggshell was significantly faster than that in parent eggshell. Moreover, there existed two clear steps in time-resolved uptake curves of phosphorus in parent eggshell. Based on pseudo-second order kinetic model and intraparticle diffusion model, we inferred more than one process affected phosphorus adsorption. The first process was the diffusion of phosphorus through water to external surface and the opening of pore channel in the eggshells, and the second process was mainly related to intraparticle diffusion.

  11. Phosphorus Loadings Associated with a Park Tourist Attraction: Limnological Consequences of Feeding the Fish

    NASA Astrophysics Data System (ADS)

    Turner, Andrew M.; Ruhl, Nathan

    2007-04-01

    The Linesville spillway of Pymatuning State Park is one of the most visited tourist attractions in Pennsylvania, USA, averaging more than 450,000 visitors · year-1. Carp ( Cyprinus carpio Linnaeus) and waterfowl congregate at the spillway where they are fed bread and other foods by park visitors. We hypothesized that the “breadthrowers” constitute a significant nutrient vector to the upper portion of Pymatuning Reservoir. In the summer of 2002, we estimated phosphorus loadings attributable to breadthrowers, and compared these values to background loadings from Linesville Creek, a major tributary to the upper reservoir. Items fed to fish included bread, donuts, bagels, canned corn, popcorn, corn chips, hot dogs, birthday cakes, and dog food. Phosphorus loading associated with park visitors feeding fish was estimated to be 3233 g day-1, and estimated P export from the Linesville Creek watershed was 2235 g·day-1. P loading attributable to breadthrowers exceeded that of the entire Linesville Creek watershed on 33 of the 35 days of study, with only a heavy rainfall event triggering watershed exports that exceeded spillway contributions. Averaged across 5 weeks, breadthrowers contributed 1.45-fold more P to Pymatuning Reservoir than the Linesville Creek watershed. If Linesville Creek P exports are extrapolated to the entire Sanctuary Lake watershed, spillway contributions of P added 48% to the non-point source watershed P entering the lake. Park visitors feeding fish at the Linesville Spillway are a significant source of nutrients entering Sanctuary Lake.

  12. 14 CFR 133.17 - Requirements for issuance of a rotorcraft external-load operator certificate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... external-load operator certificate. 133.17 Section 133.17 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS ROTORCRAFT EXTERNAL-LOAD OPERATIONS Certification Rules § 133.17 Requirements for... §§ 133.19, 133.21, and 133.23, the Administrator issues a Rotorcraft External-Load Operator Certificate...

  13. Phosphorus in a ground-water contaminant plume discharging to Ashumet Pond, Cape Cod, Massachusetts, 1999

    USGS Publications Warehouse

    McCobb, Timothy D.; LeBlanc, Denis R.; Walter, Donald A.; Hess, Kathryn M.; Kent, Douglas B.; Smith, Richard L.

    2003-01-01

    The discharge of a plume of sewagecontaminated ground water emanating from the Massachusetts Military Reservation to Ashumet Pond on Cape Cod, Massachusetts, has caused concern about excessive loading of nutrients, particularly phosphorus, to the pond. The U.S. Air Force is considering remedial actions to mitigate potentially adverse effects on the ecological characteristics of the pond from continued phosphorus loading. Concentrations as great as 3 milligrams per liter of dissolved phosphorus (as P) are in ground water near the pond's shoreline; concentrations greater than 5 milligrams per liter of phosphorus are in ground water farther upgradient. Temporary drive-point wells were used to collect water samples from 2 feet below the pond bottom to delineate concentration distributions in the pore waters of the pond-bottom sediments. Measurements in the field of specific conductance and colorimetrically determined orthophosphate concentrations provided real-time data to guide the sampling. The contaminant plume discharges to the Fishermans Cove area of Ashumet Pond as evidenced by elevated levels of specific conductance and boron, which are chemically conservative indicators of the sewage-contaminated ground water. Concentrations of nonconservative species, such as dissolved phosphorus, manganese, nitrate, and ammonium, also were elevated above background levels in ground water discharging to the pond, but in spatially complex distributions that reflect their distributions in ground water upgradient of the pond. Phosphorus concentrations exceeded background levels (greater than 0.10 milligram per liter) in the pond-bottom pore water along 875 feet of shoreline. Greatest concentrations (greater than 2 milligrams per liter) occurred within 30 feet of the shore in an area about 225 feet long. Calculations of phosphorus flux in the aquifer upgradient of Ashumet Pond, as determined from water-flux estimates from a steady-state ground-water-flow model and phosphorus concentrations (in 1999) from multilevel samplers about 75 feet upgradient of the pond, indicate that dissolved phosphorus moves towards the pond and discharges to it with the inflowing ground water at a rate as high as about 316 kilograms per year.

  14. An optimized network for phosphorus load monitoring for Lake Okeechobee, Florida

    USGS Publications Warehouse

    Gain, W.S.

    1997-01-01

    Phosphorus load data were evaluated for Lake Okeechobee, Florida, for water years 1982 through 1991. Standard errors for load estimates were computed from available phosphorus concentration and daily discharge data. Components of error were associated with uncertainty in concentration and discharge data and were calculated for existing conditions and for 6 alternative load-monitoring scenarios for each of 48 distinct inflows. Benefit-cost ratios were computed for each alternative monitoring scenario at each site by dividing estimated reductions in load uncertainty by the 5-year average costs of each scenario in 1992 dollars. Absolute and marginal benefit-cost ratios were compared in an iterative optimization scheme to determine the most cost-effective combination of discharge and concentration monitoring scenarios for the lake. If the current (1992) discharge-monitoring network around the lake is maintained, the water-quality sampling at each inflow site twice each year is continued, and the nature of loading remains the same, the standard error of computed mean-annual load is estimated at about 98 metric tons per year compared to an absolute loading rate (inflows and outflows) of 530 metric tons per year. This produces a relative uncertainty of nearly 20 percent. The standard error in load can be reduced to about 20 metric tons per year (4 percent) by adopting an optimized set of monitoring alternatives at a cost of an additional $200,000 per year. The final optimized network prescribes changes to improve both concentration and discharge monitoring. These changes include the addition of intensive sampling with automatic samplers at 11 sites, the initiation of event-based sampling by observers at another 5 sites, the continuation of periodic sampling 12 times per year at 1 site, the installation of acoustic velocity meters to improve discharge gaging at 9 sites, and the improvement of a discharge rating at 1 site.

  15. Evaluation of the effects of Middleton's stormwater-management activities on streamflow and water-quality characteristics of Pheasant Branch, Dane County, Wisconsin 1975-2008

    USGS Publications Warehouse

    Gebert, Warren A.; Rose, William J.; Garn, Herbert S.

    2012-01-01

    Few long-term data sets are available for evaluating the effects of urban stormwater-management practices. Over 30 years of data are available for evaluating the effectiveness of such practices by the city of Middleton, Wis. Analysis of streamflow and water-quality data collected on Pheasant Branch, demonstrates the relation between the changes in the watershed to the structural and nonstructural best management practices put in place during 1975-2008. A comparison of the data from Pheasant Branch with streamflow and water-quality data (suspended sediment and total phosphorus) collected at other nearby streams was made to assist in the determination of the possible causes of the changes in Pheasant Branch. Based on 34 years of streamflow data collected at the Pheasant Branch at Middleton streamflow-gaging station, flood peak discharges increased 37 percent for the 2-year flood and 83 percent for the 100-year flood. A comparison of data for the same period from an adjacent rural stream, Black Earth at Black Earth had a 43 percent increase in the 2-year flood peak discharge and a 140-percent increase in the 100-year flood peak discharge. Because the flood peak discharges on Pheasant Branch have not increased as much as Black Earth Creek it appears that the stormwater management practices have been successful in mitigating the effects of urbanization. Generally urbanization results in increased flood peak discharges. The overall increase in flood peak discharges seen in both streams probably is the result of the substantial increase in precipitation during the study period. Average annual runoff in Pheasant Branch has also been increasing due to increasing average annual precipitation and urbanization. The stormwater-management practices in Middleton have been successful in decreasing the suspended-sediment and total phosphorus loads to Lake Mendota from the Pheasant Branch watershed. These loads decreased in spite of increased annual runoff and flood peaks, which are often expected to produce higher sediment and phosphorus loads. The biggest decreases in sediment and phosphorus loads occurred after 2001 when a large detention pond, the Confluence Pond, began operation. Since 2001, the annual suspended-sediment load has decreased from 2,650 tons per year to 1,450 tons per year for a 45-percent decrease. The annual total phosphorus load has decreased from 12,200 pounds per year to 6,300 pounds per year for a 48-percent decrease. A comparison of Pheasant Branch at Middleton with two other streams, Spring Harbor Storm Sewer and Yahara River at Windsor, that drain into Lake Mendota shows that suspended-sediment and total phosphorus load decreases were greatest at Pheasant Branch at Middleton. Prior to the construction of the Confluence Pond, annual suspended-sediment yield and total phosphorus yield from Pheasant Branch watershed was the largest of the three watersheds. After 2001, suspended-sediment yield was greatest at Spring Harbor Storm Sewer, and lowest at Yahara at Windsor; annual total phosphorus yield was greater at Yahara River at Windsor than that of Pheasant Branch. The stormwater-quality plan for Middleton shows that the city has met the present State of Wisconsin Administrative Code chap. NR216/NR151 requirements of reducing total suspended solids by 20 percent for the developed area in Middleton. In addition, the city already has met the 40-percent reduction in total suspended solids required by 2013. Snow and ice melt runoff from road surfaces and parking lots following winter storms can effect water quality because the runoff contains varying amounts of road salt. To evaluate the effect of road deicing on stream water quality in Pheasant Branch, specific conductance and chloride were monitored during two winter seasons. The maximum estimated concentration of chloride during the monitoring period was 931 milligrams per liter, which exceeded the U.S. Environmental Protection Agency acute criterion of 860 milligrams per liter. Chloride concentrations exceeded the U.S. Environmental Protection Agency chronic criterion of 230 milligrams per liter for at least 10 days during February and March 2007 and for 45 days during the 2007-8 winter seasons. The total sodium chloride load for the monitoring period was 1,720 tons and the largest sodium chloride load occurred in March and April of each year.

  16. INTRACELLULAR ION CONCENTRATIONS IN BRANCHIAL EPITHELIAL CELLS OF BROWN TROUT (SALMO TRUTTA L.) DETERMINED BY X-RAY MICROANALYSIS

    PubMed

    Morgan; Potts; Oates

    1994-09-01

    The intracellular concentrations of sodium, chloride, phosphorus and potassium under normal conditions in pavement epithelial (PE) cells of brown trout (Salmo trutta) gill were 66, 51, 87 and 88 mmol l-1 respectively. The concentrations of these elements under identical conditions in mitochondria-rich (MR) cells were not significantly different, except for that of chlorine, which was lower in MR cells (40 mmol l-1). The concentration of sodium in the PE cells decreased slightly after exposure of the fish to low external [Na+] (25 µmol l-1) for 7 days but increased greatly within 5 min of subsequent exposure to 1 mmol l-1 external Na+. These changes in external [Na+] had no significant effect on MR cells. Exposure of fish to low [Cl-] (25 µmol l-1) had no effect on PE or MR cells, but on exposure to 1 mmol l-1 Cl- the concentrations of chlorine, phosphorus and potassium in both types of cells increased, whilst the intracellular sodium concentration decreased only in MR cells. The PE cells were little affected by exposure of the fish to the carbonic anhydrase inhibitor acetazolamide. In contrast, 0.5 mmol l-1 external acetazolamide caused a significant decrease in intracellular phosphorus, chlorine and potassium concentrations in MR cells. This suggests that the PE cells are the sites of sodium uptake in the gills of the brown trout and that chloride uptake occurs via the MR cells. These results are discussed with respect to the sites and possible mechanisms of ionic exchange in freshwater vertebrates.

  17. Status of Lake Erie phosphorus loads and concentrations

    EPA Science Inventory

    Under the Great Lakes Water Quality Protocol of 2012, nutrient loading and nutrient concentrations for open and nearshore waters must be re-evaluated for Substance Objectives that are consistent with overall Ecosystem Objectives. One of the primary driving nutrients of interest ...

  18. The Influence of External Load on Quadriceps Muscle and Tendon Dynamics during Jumping.

    PubMed

    Earp, Jacob E; Newton, Robert U; Cormie, Prue; Blazevich, Anthony J

    2017-11-01

    Tendons possess both viscous (rate-dependent) and elastic (rate-independent) properties that determine tendon function. During high-speed movements external loading increases both the magnitude (FT) and rate (RFDT) of tendon loading. The influence of external loading on muscle and tendon dynamics during maximal vertical jumping was explored. Ten resistance-trained men performed parallel-depth, countermovement vertical jumps with and without additional load (0%, 30%, 60%, and 90% of maximum squat lift strength), while joint kinetics and kinematics, quadriceps tendon length (LT) and patellar tendon FT and RFDT were estimated using integrated ultrasound, motion analysis and force platform data and muscle tendon modelling. Estimated FT and RFDT, but not peak LT, increased with external loading. Temporal comparisons between 0% and 90% loads revealed that FT was greater with 90% loading throughout the majority of the movement (11%-81% and 87%-95% movement duration). However, RFDT was greater with 90% load only during the early movement initiation phase (8%-15% movement duration) but was greater in the 0% load condition later in the eccentric phase (27%-38% movement duration). LT was longer during the early movement (12%-23% movement duration) but shorter in the late eccentric and early concentric phases (48%-55% movement duration) with 90% load. External loading positively influenced peak FT and RFDT but tendon strain appeared unaffected, suggesting no additive effect of external loading on patellar tendon lengthening during human jumping. Temporal analysis revealed that external loading resulted in a large initial RFDT that may have caused dynamic stiffening of the tendon and attenuated tendon strain throughout the movement. These results suggest that external loading influences tendon lengthening in both a load- and movement-dependent manner.

  19. Estimated water and nutrient inflows and outflows, Lake Cochituate, eastern Massachusetts, 1977-79

    USGS Publications Warehouse

    Gay, F.B.

    1984-01-01

    Streamflow was the major source of water and nutrients (nitrogen and phosphorus) to Lake Cochituate, followed by ground water, and then precipitation during April 1978 through March 1979. Compared to all sources during that period, streams contributed 7,217 million gallons (a little over 82 percent) of water, 63 ,000 pounds (between 50 and 60 percent) of nitrogen, and 3,000 pounds (94 percent) of phosphorus. A little over 60 percent of all the water that entered Lake Cochituate flowed from Fisk Pond. This single source transported about 38,000 pounds of nitrogen and 2,000 pounds of phosphorus. Ground-water inflow to Lake Cochituate occurs along its shoreline except at the north end of Lake Cochituate 's North Pond where natural seepage from the lake is occurring and at locations on the lake 's Middle and South Ponds where municipal wells induce infiltration of lake water amounting to 1,228 million gallons for that period. Discharge of ground water to the lake was estimated to range from 462 to 816 million gallons and transported from 31,000 to 55,000 pounds of nitrogen and from 46 to 82 pounds of phosphorus. Bulk precipitation was estimated to contribute about the same volume of water to the lake as ground water but double its phosphorus load. However, the load of nitrogen, 8000 pounds, from bulk precipitation was the smallest of any source. (USGS)

  20. Factors influencing release of phosphorus from sediments in a high productive polymictic lake system.

    PubMed

    Solim, S U; Wanganeo, A

    2009-01-01

    Phosphorus (P) release rates from bottom sediments are high (20.6 mg/m(2)/day) in Dal Lake (India), a polymictic hyper-eutrophic lake. These gross release rates occur over a period of 72 days during summer only. Likewise, a net internal load of 11.3 tons was obtained from mass balance estimates. Significant proportion i.e. approximately 80% of 287.3 tons/yr of nitrate nitrogen (NO(3)-N) load is either eliminated by denitrification or gets entrapped for a short period in high macrophyte biomass of 3.2 kg/m(2) f.w., which eventually get decomposed and nitrogen (N) is released back. These processes result in low lake water NO(3)-N concentrations which potentially influence sediment phosphorus (P) release. Especially, nitrate nitrogen (NO(3)-N) <500 microg/L in the lake waters were associated with high P concentrations. Phosphorus was also observed to increase significantly in relation to temperature and pH, and it seems likely that release of phosphorus and ammonical nitrogen (NH(4)-N) depend on decomposition of rich reserves of organic matter (893 tons d.w. in superficial 10-cm bottom sediment layer). Lake P concentrations were significantly predicted by a multivariate regression model developed for the lake. This study describes significance of various lake water variables in relation to P-release from bottom sediments.

  1. Everglades Landscape Model: Integrated Assessment of Hydrology, Biogeochemistry, and Biology

    NASA Astrophysics Data System (ADS)

    Fitz, H. C.; Wang, N.; Sklar, F. H.

    2002-05-01

    Water management infrastructure and operations have fragmented the greater Everglades into separate, impounded basins, altering flows and hydropatterns. A significant area of this managed system has experienced anthropogenic eutrophication. This combination of altered hydrology and water quality has interacted to degrade vegetative habitats and other ecological characteristics of the Everglades. One of the modeling tools to be used in developing restoration alternatives is the Everglades Landscape Model (ELM), a process-based, spatially explicit simulation of ecosystem dynamics across a heterogeneous, 10,000 km2 region. The model has been calibrated to capture hydrologic and surface water quality dynamics across most of the Everglades landscape over decadal time scales. We evaluated phosphorus loading throughout the Everglades system under two base scenarios. The 1995 base case assumed current management operations, with phosphorus inflow concentrations fixed at their long term, historical average. The 2050 base case assumed future modifications in water and nutrient management, with all managed inflows to the Everglades having reduced phosphorus concentrations. In an example indicator subregion that currently is highly eutrophic, the 31-yr simulations predicted that desirable periphyton and macrophyte communities were maintained under the 2050 base case, whereas in the 1995 base case, periphyton biomass and production decreased to negligible levels and macrophytes became extremely dense. The negative periphyton response in the 1995 base case was due to high phosphorus loads and rapid macrophyte growth that shaded this algal community. Along an existing 11 km eutrophication gradient, the model indicated that the 2050 base case had ecologically significant reductions in phosphorus accumulation compared to the 1995 base case. Indicator regions (in Everglades National Park) distant from phosphorus inflow points also exhibited reductions in phosphorus accumulation under the 2050 base case, albeit to a lesser extent due to its distance from phosphorus inflows. The ELM fills a critical information need in Everglades management, and has become an accepted tool in evaluating scenarios of potential restoration of the natural system.

  2. Fish communities in coastal freshwater ecosystems: the role of the physical and chemical setting.

    PubMed

    Arend, Kristin K; Bain, Mark B

    2008-12-29

    We explored how embayment watershed inputs, morphometry, and hydrology influence fish community structure among eight embayments located along the southeastern shoreline of Lake Ontario, New York, USA. Embayments differed in surface area and depth, varied in their connections to Lake Ontario and their watersheds, and drained watersheds representing a gradient of agricultural to forested land use. We related various physicochemical factors, including total phosphorus load, embayment area, and submerged vegetation, to differences in fish species diversity and community relative abundance, biomass, and size structure both among and within embayments. Yellow perch (Perca flavescens) and centrarchids numerically dominated most embayment fish communities. Biomass was dominated by piscivorous fishes including brown bullhead (Ameiurus nebulosus), bowfin (Amia calva), and northern pike (Esox lucius). Phosphorus loading influenced relative biomass, but not species diversity or relative abundance. Fish relative abundance differed among embayments; within embayments, fish abundance at individual sampling stations increased significantly with submerged vegetative cover. Relative biomass differed among embayments and was positively related to total phophorus loading and embayment area. Fish community size structure, based on size spectra analysis, differed among embayments, with the frequency of smaller-bodied fishes positively related to percent vegetation. The importance of total phosphorus loading and vegetation in structuring fish communities has implications for anthropogenic impacts to embayment fish communities through activities such as farming and residential development, reduction of cultural eutrophication, and shoreline development and maintenance.

  3. Modeling riverine nutrient transport to the Baltic Sea: a large-scale approach.

    PubMed

    Mörth, Carl-Magnus; Humborg, Christoph; Eriksson, Hanna; Danielsson, Asa; Medina, Miguel Rodriguez; Löfgren, Stefan; Swaney, Dennis P; Rahm, Lars

    2007-04-01

    We developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e., a consistent handling of water fluxes (hydrological simulations) and loading functions (emission data), will facilitate a comparison of riverine nutrient transport between Baltic Sea subbasins that differ substantially. Hot spots of riverine emissions, such as from the rivers Vistula, Oder, and Daugava or from the Danish coast, can be easily demonstrated and the comparison between these hot spots, and the relatively unperturbed rivers in the northern catchments show decisionmakers where remedial actions are most effective to improve the environmental state of the Baltic Sea, and, secondly, what percentage reduction of riverine nutrient loads is possible. The relative difference between measured and simulated fluxes during the validation period was generally small. The cumulative deviation (i.e., relative bias) [Sigma(Simulated - Measured)/Sigma Measured x 100 (%)] from monitored water and nutrient fluxes amounted to +8.2% for runoff, to -2.4% for dissolved inorganic nitrogen, to +5.1% for total nitrogen, to +13% for dissolved inorganic phosphorus and to +19% for total phosphorus. Moreover, the model suggests that point sources for total phosphorus compiled by existing pollution load compilations are underestimated because of inconsistencies in calculating effluent loads from municipalities.

  4. August 2015 Proposed Total Maximum Daily Load Document and Appendices for Vermont Segments of Lake Champlain

    EPA Pesticide Factsheets

    These documents provide allocations of phosphorus loads to Lake Champlain to meet water quality criteria, describe basis for allocation for future growth, & describe how implementation measures were simulated to determine that allocations can be achieved

  5. Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake

    PubMed Central

    Craft, James A.; Stanford, Jack A.

    2015-01-01

    We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass. PMID:25802810

  6. Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake.

    PubMed

    Ellis, Bonnie K; Craft, James A; Stanford, Jack A

    2015-01-01

    We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass.

  7. Hydroclimatic and landscape controls on phosphorus loads to hypereutrophic Upper Klamath Lake, Oregon, United States

    NASA Astrophysics Data System (ADS)

    Records, R.; Fassnacht, S. R.; Arabi, M.; Duffy, W. G.

    2014-12-01

    Elevated total phosphorus (P) loading into Upper Klamath Lake, southern Oregon, United States has caused hypereutrophic conditions impacting endangered lake fish species. Increases in P loading have been attributed to land use changes, such as timber harvest and wetland drainage. The contribution of P to Upper Klamath Lake has been estimated from each major tributary, yet little research has explored what land use or other variables have most influence on P loading within the tributaries. In addition, previous work has shown a range of potential hydroclimatic shifts by the 2040s, with potential to alter P loading mechanisms. In this study, we use statistical methods including principle component analysis and multiple linear regression to determine what hydroclimatic and landscape variables best explain flow-weighted P concentration in the Sprague River, one of three main tributaries to Upper Klamath Lake. Identification of key variables affecting P loading has direct implications for management decisions in the Upper Klamath River Basin. Increases in P loading related to sediment loading are due to bank and upslope erosion. The former is more prevalent in areas of historic channel alteration and cattle grazing, while the latter is more dominant in areas of heavy timber harvesting and more precipitation as rain.

  8. Loads of nitrate, phosphorus, and total suspended solids from Indiana watersheds

    USGS Publications Warehouse

    Bunch, Aubrey R.

    2016-01-01

    Transport of excess nutrients and total suspended solids (TSS) such as sediment by freshwater systems has led to degradation of aquatic ecosystems around the world. Nutrient and TSS loads from Midwestern states to the Mississippi River are a major contributor to the Gulf of Mexico Hypoxic Zone, an area of very low dissolved oxygen concentration in the Gulf of Mexico. To better understand Indiana’s contribution of nutrients and TSS to the Mississippi River, annual loads of nitrate plus nitrite as nitrogen, total phosphorus, and TSS were calculated for nine selected watersheds in Indiana using the load estimation model, S-LOADEST. Discrete water-quality samples collected monthly by the Indiana Department of Environmental Management’s Fixed Stations Monitoring Program from 2000–2010 and concurrent discharge data from the U. S. Geological Survey streamflow gages were used to create load models. Annual nutrient and TSS loads varied across Indiana by watershed and hydrologic condition. Understanding the loads from large river sites in Indiana is important for assessing contributions of nutrients and TSS to the Mississippi River Basin and in determining the effectiveness of best management practices in the state. Additionally, evaluation of loads from smaller upstream watersheds is important to characterize improvements at the local level and to identify priorities for reduction.

  9. Ammonia-based feedforward and feedback aeration control in activated sludge processes.

    PubMed

    Rieger, Leiv; Jones, Richard M; Dold, Peter L; Bott, Charles B

    2014-01-01

    Aeration control at wastewater treatment plants based on ammonia as the controlled variable is applied for one of two reasons: (1) to reduce aeration costs, or (2) to reduce peaks in effluent ammonia. Aeration limitation has proven to result in significant energy savings, may reduce external carbon addition, and can improve denitrification and biological phosphorus (bio-P) performance. Ammonia control for limiting aeration has been based mainly on feedback control to constrain complete nitrification by maintaining approximately one to two milligrams of nitrogen per liter of ammonia in the effluent. Increased attention has been given to feedforward ammonia control, where aeration control is based on monitoring influent ammonia load. Typically, the intent is to anticipate the impact of sudden load changes, and thereby reduce effluent ammonia peaks. This paper evaluates the fundamentals of ammonia control with a primary focus on feedforward control concepts. A case study discussion is presented that reviews different ammonia-based control approaches. In most instances, feedback control meets the objectives for both aeration limitation and containment of effluent ammonia peaks. Feedforward control, applied specifically for switching aeration on or off in swing zones, can be beneficial when the plant encounters particularly unusual influent disturbances.

  10. 29 CFR 1926.958 - External load helicopters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false External load helicopters. 1926.958 Section 1926.958 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... External load helicopters. In all operations performed using a rotorcraft for moving or placing external...

  11. 29 CFR 1926.958 - External load helicopters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false External load helicopters. 1926.958 Section 1926.958 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... External load helicopters. In all operations performed using a rotorcraft for moving or placing external...

  12. 29 CFR 1926.958 - External load helicopters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false External load helicopters. 1926.958 Section 1926.958 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... External load helicopters. In all operations performed using a rotorcraft for moving or placing external...

  13. 29 CFR 1926.958 - External load helicopters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false External load helicopters. 1926.958 Section 1926.958 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... External load helicopters. In all operations performed using a rotorcraft for moving or placing external...

  14. 29 CFR 1926.958 - External load helicopters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false External load helicopters. 1926.958 Section 1926.958 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... External load helicopters. In all operations performed using a rotorcraft for moving or placing external...

  15. Characteristics of Nitrogen and Phosphorus Effluent Load from a Paddy-field District Implementing Crop Rotation

    NASA Astrophysics Data System (ADS)

    Hama, Takehide; Aoki, Takeru; Osuga, Katsuyuki; Nakamura, Kimihito; Sugiyama, Sho; Kawashima, Shigeto

    Implementation of collective crop rotation in a paddy-field district may increase nutrients effluent load. We have investigated a paddy-field district implementing collective crop rotation of wheat and soybeans, measured temporal variations in nutrients concentration of drainage water and the amount of discharged water for consecutive three years, and estimated nutrients effluent load from the district during the irrigation and non-irrigation periods. As a result, the highest concentration of nutrients was observed during the non-irrigation period in every investigation year. It was shown that high nutrients concentration of drainage water during the non-irrigation period was caused by runoff of fertilizer applied to wheat because the peaks of nutrients concentration of drainage water were seen in rainy days after fertilizer application in the crop-rotation field. The effluent load during the non-irrigation periods was 16.9-22.1 kgN ha-1 (nitrogen) and 0.84-1.42 kgP ha-1 (phosphorus), which respectively accounted for 46-66% and 27-54% of annual nutrients effluent load.

  16. Effects of external loads on balance control during upright stance: experimental results and model-based predictions.

    PubMed

    Qu, Xingda; Nussbaum, Maury A

    2009-01-01

    The purpose of this study was to identify the effects of external loads on balance control during upright stance, and to examine the ability of a new balance control model to predict these effects. External loads were applied to 12 young, healthy participants, and effects on balance control were characterized by center-of-pressure (COP) based measures. Several loading conditions were studied, involving combinations of load mass (10% and 20% of individual body mass) and height (at or 15% of stature above the whole-body COM). A balance control model based on an optimal control strategy was used to predict COP time series. It was assumed that a given individual would adopt the same neural optimal control mechanisms, identified in a no-load condition, under diverse external loading conditions. With the application of external loads, COP mean velocity in the anterior-posterior direction and RMS distance in the medial-lateral direction increased 8.1% and 10.4%, respectively. Predicted COP mean velocity and RMS distance in the anterior-posterior direction also increased with external loading, by 11.1% and 2.9%, respectively. Both experimental COP data and model-based predictions provided the same general conclusion, that application of larger external loads and loads more superior to the whole body center of mass lead to less effective postural control and perhaps a greater risk of loss of balance or falls. Thus, it can be concluded that the assumption about consistency in control mechanisms was partially supported, and it is the mechanical changes induced by external loads that primarily affect balance control.

  17. Effect of cyclic loading and retightening on reverse torque value in external and internal implants.

    PubMed

    Cho, Woong-Rae; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2015-08-01

    The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading.

  18. 46 CFR 154.408 - Cargo tank external pressure load.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... minimum internal pressure (maximum vacuum), and the maximum external pressure to which any portion of the... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank external pressure load. 154.408 Section 154... Equipment Cargo Containment Systems § 154.408 Cargo tank external pressure load. For the calculation...

  19. Biogeochemical phosphorus mass balance for Lake Baikal, southeastern Siberia, Russia

    USGS Publications Warehouse

    Callender, E.; Granina, L.

    1997-01-01

    Extensive data for Lake Baikal have been synthesized into a geochemical mass balance for phosphorus (P). Some of the P budget and internal cycling terms for Baikal have been compared to similar terms for oligotrophic Lake Superior, mesotrophic Lake Michigan and the Baltic Sea, and the Ocean. Lake Baikal has a large external source of fluvial P compared to the Laurentian upper Great Lakes and the Ocean. The major tributary to Lake Baikal has experienced substantial increases in organic P loading during the past 25 years. This, coupled with potential P inputs from possible phosphorite mining, may threaten Baikal's oligotrophic status in the future. Water-column remineralization of particulate organic P is substantially greater in Lake Baikal than in the Laurentian Great Lakes. This is probably due to the great water depths of Lake Baikal. There is a gradient in P burial efficiency, with very high values (80%) for Lake Baikal and Lake Superior, lower values (50%) for Lake Michigan and the Baltic Sea, and a low value (13%) for the Ocean. The accumulation rate of P in Lake Baikal sediments is somewhat greater than that in the Laurentian upper Great Lakes and the Baltic Sea, and much greater than in the Ocean. Benthic regeneration rates are surprisingly similar for large lacustrine and marine environments and supply less than 10% of the P utilized for primary production in these aquatic environments.

  20. The relationships between internal and external training load models during basketball training.

    PubMed

    Scanlan, Aaron T; Wen, Neal; Tucker, Patrick S; Dalbo, Vincent J

    2014-09-01

    The present investigation described and compared the internal and external training loads during basketball training. Eight semiprofessional male basketball players (mean ± SD, age: 26.3 ± 6.7 years; stature: 188.1 ± 6.2 cm; body mass: 92.0 ± 13.8 kg) were monitored across a 7-week period during the preparatory phase of the annual training plan. A total of 44 total sessions were monitored. Player session ratings of perceived exertion (sRPE), heart rate, and accelerometer data were collected across each training session. Internal training load was determined using the sRPE, training impulse (TRIMP), and summated-heart-rate-zones (SHRZ) training load models. External training load was calculated using an established accelerometer algorithm. Pearson product-moment correlations with 95% confidence intervals (CIs) were used to determine the relationships between internal and external training load models. Significant moderate relationships were observed between external training load and the sRPE (r42 = 0.49, 95% CI = 0.23-0.69, p < 0.001) and TRIMP models (r42 = 0.38, 95% CI = 0.09-0.61, p = 0.011). A significant large correlation was evident between external training load and the SHRZ model (r42 = 0.61, 95% CI = 0.38-0.77, p < 0.001). Although significant relationships were found between internal and external training load models, the magnitude of the correlations and low commonality suggest that internal training load models measure different constructs of the training process than the accelerometer training load model in basketball settings. Basketball coaching and conditioning professionals should not assume a linear dose-response between accelerometer and internal training load models during training and are recommended to combine internal and external approaches when monitoring training load in players.

  1. Total nutrient and sediment loads, trends, yields, and nontidal water-quality indicators for selected nontidal stations, Chesapeake Bay Watershed, 1985–2011

    USGS Publications Warehouse

    Langland, Michael J.; Blomquist, Joel D.; Moyer, Douglas; Hyer, Kenneth; Chanat, Jeffrey G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Chesapeake Bay Program (CBP) partners, routinely reports long-term concentration trends and monthly and annual constituent loads for stream water-quality monitoring stations across the Chesapeake Bay watershed. This report documents flow-adjusted trends in sediment and total nitrogen and phosphorus concentrations for 31 stations in the years 1985–2011 and for 32 stations in the years 2002–2011. Sediment and total nitrogen and phosphorus yields for 65 stations are presented for the years 2006–2011. A combined nontidal water-quality indicator (based on both trends and yields) indicates there are more stations classified as “improving water-quality trend and a low yield” than “degrading water-quality trend and a high yield” for total nitrogen. The same type of 2-way classification for total phosphorus and sediment results in equal numbers of stations in each indicator class.

  2. Groundwater flux and nutrient loading in the northeast section of Bear Lake, Muskegon County, Michigan, 2015

    USGS Publications Warehouse

    Totten, Alexander R.; Maurer, Jessica A.; Duris, Joseph W.

    2017-11-30

    Bear Lake in North Muskegon, Michigan, is listed as part of the Muskegon Lake area of concern as designated by the U.S. Environmental Protection Agency. This area of concern was designated as a result of eutrophication and beneficial use impairments. On the northeast end of Bear Lake, two man-made retention ponds (Willbrandt Pond East and Willbrandt Pond West), formerly used for celery farming, may contribute nutrients to Bear Lake. Willbrandt Ponds (East and West) were previously muck fields that were actively used for celery farming from the early 1900s until 2002. The restoration and reconnection of the Willbrandt Ponds into Bear Lake prompted concerns of groundwater nutrient loading into Bear Lake. Studies done by the State of Michigan and Grand Valley State University revised initial internal phosphorus load estimates and indicated an imbalance in the phosphorus budget in Bear Lake. From June through November 2015, the U.S. Geological Survey (USGS) did an investigative study to quantify the load of nutrients from shallow groundwater around the Willbrandt Ponds in an effort to update the phosphorus budget to Bear Lake. Seven sampling locations were established, including five shallow groundwater wells and two surface-water sites, in the Willbrandt pond study area and Bear Lake. A total of 12 nutrient samples and discrete water-level measurements were collected from each site from June through November 2015. Continuous water-level data were recorded for both surface-water monitoring locations for the entire sampling period.Water-level data indicated that Willbrandt Pond West had the highest average water-level elevation of all sites monitored, which indicated the general direction of flux is from Willbrandt Pond West to Bear Lake. Nutrient and chloride loading from Willbrandt Pond West to Bear Lake was calculated using two distinct methods: Dupuit and direct seepage methods. Shallow groundwater loading calculations were determined by using groundwater levels to first determine a flux of shallow groundwater, then nutrient concentrations to determine a load. It was determined that Willbrandt Pond East and Willbrandt Pond West contributed between 2 to 4 percent of the total annual phosphorus load to Bear Lake by way of shallow groundwater flow. Annual loads calculated for other constituents include orthophosphate (40–100 pounds per year [lb P/yr]), total nitrogen (200–830 lb/yr), chloride (12,700–32,100 lb/yr), and ammonia (130–670 lb N/yr). Study results indicated that mean groundwater and surface-water nutrient concentrations calculated in this study were higher than reported Michigan statewide values. The data collected in this study allow understanding of groundwater nutrient loading into Bear Lake in an effort to help inform future restoration and management decisions.

  3. Comprehensive trends assessment of nitrogen sources and loads to estuaries of the coterminous United States

    EPA Science Inventory

    Sources of nitrogen and phosphorus to estuaries and estuarine watersheds of the coterminous United States have been compiled from a variety of publically available data sources (1985 – 2015). Atmospheric loading was obtained from two sources. Modelled and interpolated meas...

  4. Uneven nutrient load and potential offsite loss

    USDA-ARS?s Scientific Manuscript database

    Landscape and management often results in uneven nutrient loads within a field. The hypotheses of this study are that: 1) phosphorus accumulates at low areas in the landscape adjacent to waterways; and 2) nitrate at lower landscape positions will be decreased in the subsoil due to denitrification an...

  5. Retreatment of Recurrent Cystic Craniopharyngioma With Chromic Phosphorus P 32

    PubMed Central

    Kumar, P.P.; Good, R.R.; Skultety, F.M.; Jones, E.O.; Chu, W.K.

    1986-01-01

    A cystic craniopharyngioma in a two-year-old boy recurred six months after surgery and postoperative external-beam radiotherapy. Successful retreatment was accomplished with radioisotope injection of 0.5 mCi of chromic phosphorus P 32 into the intracranial cyst, which delivered approximately 300.00 Gy to the cyst wall. The patient's symptoms were relieved, and he is without evidence of disease or cystic fluid accumulation four years after intracavitary 32P irradiation. ImagesFigure 1Figure 2Figure 3 PMID:3735454

  6. A metabolism-based whole lake eutrophication model to estimate the magnitude and time scales of the effects of restoration in Upper Klamath Lake, south-central Oregon

    USGS Publications Warehouse

    Wherry, Susan A.; Wood, Tamara M.

    2018-04-27

    A whole lake eutrophication (WLE) model approach for phosphorus and cyanobacterial biomass in Upper Klamath Lake, south-central Oregon, is presented here. The model is a successor to a previous model developed to inform a Total Maximum Daily Load (TMDL) for phosphorus in the lake, but is based on net primary production (NPP), which can be calculated from dissolved oxygen, rather than scaling up a small-scale description of cyanobacterial growth and respiration rates. This phase 3 WLE model is a refinement of the proof-of-concept developed in phase 2, which was the first attempt to use NPP to simulate cyanobacteria in the TMDL model. The calibration of the calculated NPP WLE model was successful, with performance metrics indicating a good fit to calibration data, and the calculated NPP WLE model was able to simulate mid-season bloom decreases, a feature that previous models could not reproduce.In order to use the model to simulate future scenarios based on phosphorus load reduction, a multivariate regression model was created to simulate NPP as a function of the model state variables (phosphorus and chlorophyll a) and measured meteorological and temperature model inputs. The NPP time series was split into a low- and high-frequency component using wavelet analysis, and regression models were fit to the components separately, with moderate success.The regression models for NPP were incorporated in the WLE model, referred to as the “scenario” WLE (SWLE), and the fit statistics for phosphorus during the calibration period were mostly unchanged. The fit statistics for chlorophyll a, however, were degraded. These statistics are still an improvement over prior models, and indicate that the SWLE is appropriate for long-term predictions even though it misses some of the seasonal variations in chlorophyll a.The complete whole lake SWLE model, with multivariate regression to predict NPP, was used to make long-term simulations of the response to 10-, 20-, and 40-percent reductions in tributary nutrient loads. The long-term mean water column concentration of total phosphorus was reduced by 9, 18, and 36 percent, respectively, in response to these load reductions. The long-term water column chlorophyll a concentration was reduced by 4, 13, and 44 percent, respectively. The adjustment to a new equilibrium between the water column and sediments occurred over about 30 years.

  7. Targets set to reduce Lake Erie algae

    USGS Publications Warehouse

    Evans, Mary

    2016-01-01

    In February 2016, the Great Lakes Executive Committee, which oversees the implementation of the Great Lakes Water Quality Agreement (GLWQA) between the U.S. and Canada, approved phosphorus loading targets for Lake Erie to reduce the size of harmful algal blooms (HABs), reduce the presence of the low oxygen zone in the central basin, and protect nearshore water quality. The targets are set with respect to the nutrient loads calculated for 2008. To reduce the impacts of HABs on Lake Erie a target was set of a 40 percent reduction in total and soluble reactive phosphorus loads in the spring from two Canadian rivers and several Michigan and Ohio rivers, especially the Maumee River (https://binational.net/2016/02/22/ finalptargets-ciblesfinalesdep/). States and the province of Ontario are already developing Domestic Action Plans to accomplish the reductions and scientists are developing research and monitoring plans to assess progress.

  8. Quantity and quality of phosphorus losses from an artificially drained lowland catchment

    NASA Astrophysics Data System (ADS)

    Nausch, Monika; Woelk, Jana; Kahle, Petra; Nausch, Günther; Leipe, Thomas; Lennartz, Bernd

    2017-04-01

    Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to reach the good ecological status aimed by the Baltic Sea Action Plan and the Marine Strategy Framework Directive. The objective of this study was to uncover the change in phosphorus loading as well as in P fractions along the flow path of a mid-size river basin in order to derive risk assessment and management strategies for a sustainable P reduction. P-fractions and the mineral composition of particulate P were investigated in a sub-basin of the river Warnow, the second largest German catchment discharging to the Baltic Sea. Samples were collected from the sources (tile drain, ditch) and along the subsequent brook up to the river Warnow representing spatial scales of a few hectars up to 3300 km2. The investigations were performed during the discharge season from November 1th 2013 until April 30th 2014 covering a relative dry and mild winter period. We observed an increase of total phosphorus (TP) concentrations from 15.5 ± 3.9 µg L-1 in the drain outlet to 72.0 ± 7.2 µg L-1 in the river Warnow emphasizing the importance of sediment-bound P mobilization along the flow path. Particulate phosphorus (PP) of 36.6 - 61.2% accounted for the largest share of TP in the streams. Clay minerals and Fe(hydr)oxides were the main carrier of particle bound P followed by apatite. A transformation of dissolved inorganic phosphorus (DIP) into particulate organic P was observed in the river Warnow with the beginning of the growth season in February. Our investigations indicate that the overall P load could be reduced by half when PP is removed.

  9. Mapping watershed potential to contribute phosphorus from geologic materials to receiving streams, southeastern United States

    USGS Publications Warehouse

    Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria

    2010-01-01

    As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.

  10. Rating curve estimation of nutrient loads in Iowa rivers

    USGS Publications Warehouse

    Stenback, G.A.; Crumpton, W.G.; Schilling, K.E.; Helmers, M.J.

    2011-01-01

    Accurate estimation of nutrient loads in rivers and streams is critical for many applications including determination of sources of nutrient loads in watersheds, evaluating long-term trends in loads, and estimating loading to downstream waterbodies. Since in many cases nutrient concentrations are measured on a weekly or monthly frequency, there is a need to estimate concentration and loads during periods when no data is available. The objectives of this study were to: (i) document the performance of a multiple regression model to predict loads of nitrate and total phosphorus (TP) in Iowa rivers and streams; (ii) determine whether there is any systematic bias in the load prediction estimates for nitrate and TP; and (iii) evaluate streamflow and concentration factors that could affect the load prediction efficiency. A commonly cited rating curve regression is utilized to estimate riverine nitrate and TP loads for rivers in Iowa with watershed areas ranging from 17.4 to over 34,600km2. Forty-nine nitrate and 44 TP datasets each comprising 5-22years of approximately weekly to monthly concentrations were examined. Three nitrate data sets had sample collection frequencies averaging about three samples per week. The accuracy and precision of annual and long term riverine load prediction was assessed by direct comparison of rating curve load predictions with observed daily loads. Significant positive bias of annual and long term nitrate loads was detected. Long term rating curve nitrate load predictions exceeded observed loads by 25% or more at 33% of the 49 measurement sites. No bias was found for TP load prediction although 15% of the 44 cases either underestimated or overestimate observed long-term loads by more than 25%. The rating curve was found to poorly characterize nitrate and phosphorus variation in some rivers. ?? 2010 .

  11. Fish communities in coastal freshwater ecosystems: the role of the physical and chemical setting

    PubMed Central

    Arend, Kristin K; Bain, Mark B

    2008-01-01

    Background We explored how embayment watershed inputs, morphometry, and hydrology influence fish community structure among eight embayments located along the southeastern shoreline of Lake Ontario, New York, USA. Embayments differed in surface area and depth, varied in their connections to Lake Ontario and their watersheds, and drained watersheds representing a gradient of agricultural to forested land use. Results We related various physicochemical factors, including total phosphorus load, embayment area, and submerged vegetation, to differences in fish species diversity and community relative abundance, biomass, and size structure both among and within embayments. Yellow perch (Perca flavescens) and centrarchids numerically dominated most embayment fish communities. Biomass was dominated by piscivorous fishes including brown bullhead (Ameiurus nebulosus), bowfin (Amia calva), and northern pike (Esox lucius). Phosphorus loading influenced relative biomass, but not species diversity or relative abundance. Fish relative abundance differed among embayments; within embayments, fish abundance at individual sampling stations increased significantly with submerged vegetative cover. Relative biomass differed among embayments and was positively related to total phophorus loading and embayment area. Fish community size structure, based on size spectra analysis, differed among embayments, with the frequency of smaller-bodied fishes positively related to percent vegetation. Conclusion The importance of total phosphorus loading and vegetation in structuring fish communities has implications for anthropogenic impacts to embayment fish communities through activities such as farming and residential development, reduction of cultural eutrophication, and shoreline development and maintenance. PMID:19114002

  12. Lessons Learned from Stakeholder-Driven Modeling in the Western Lake Erie Basin

    NASA Astrophysics Data System (ADS)

    Muenich, R. L.; Read, J.; Vaccaro, L.; Kalcic, M. M.; Scavia, D.

    2017-12-01

    Lake Erie's history includes a great environmental success story. Recognizing the impact of high phosphorus loads from point sources, the United States and Canada 1972 Great Lakes Water Quality Agreement set load reduction targets to reduce algae blooms and hypoxia. The Lake responded quickly to those reductions and it was declared a success. However, since the mid-1990s, Lake Erie's algal blooms and hypoxia have returned, and this time with a dominant algae species that produces toxins. Return of the algal blooms and hypoxia is again driven by phosphorus loads, but this time a major source is the agriculturally-dominated Maumee River watershed that covers NW Ohio, NE Indiana, and SE Michigan, and the hypoxic extent has been shown to be driven by Maumee River loads plus those from the bi-national and multiple land-use St. Clair - Detroit River system. Stakeholders in the Lake Erie watershed have a long history of engagement with environmental policy, including modeling and monitoring efforts. This talk will focus on the application of interdisciplinary, stakeholder-driven modeling efforts aimed at understanding the primary phosphorus sources and potential pathways to reduce these sources and the resulting algal blooms and hypoxia in Lake Erie. We will discuss the challenges, such as engaging users with different goals, benefits to modeling, such as improvements in modeling data, and new research questions emerging from these modeling efforts that are driven by end-user needs.

  13. Data on surface-water quality and quantity, lower Edgewood Creek basin, Douglas County, Nevada, 1984-85

    USGS Publications Warehouse

    La Camera, R. J.; Browning, S.B.

    1988-01-01

    Selected hydrologic data were collected from August 1984 through July 1985 at three sites on the lower part of Edgewood Creek, and at a recently constructed sediment-catchment basin that captures and retains runoff from developed areas in the lower Edgewood Creek drainage. The data were collected to quantify the discharge of selected constituents downstream from recent and planned watershed restoration projects, and to Lake Tahoe. Contained in this report are the results of quantitative analyses of 39 water samples for: total and dissolved ammonium, organic nitrogen, nitrite, nitrate, phosphorus, and orthophosphorus; suspended sediment; total iron, manganese, and zinc; and dissolved temperature, specific conductance, pH, and dissolved oxygen; summary statistics (means and standard deviations), and computations of instantaneous loads. On the basis of mean values, about 80% of the total nitrogen load at each of the three Edgewood Creek sites is in the form of organic nitrogen, 12% is in the form of nitrate nitrogen, 7% is in the form of ammonium nitrogen, and 1% is in the form of nitrite nitrogen. The percentage of total phosphorus load in the form of orthophosphorus at the three stream sites varies somewhat with time, but is generally greater at the two downstream sites than at the upstream site. In addition, the percentage of the total phosphorus load that is present in the dissolved state generally is greater at the two downstream sites than at the upstream site. (Lantz-PTT)

  14. Evaluation of nonpoint-source contamination, Wisconsin: water year 1999

    USGS Publications Warehouse

    Walker, John F.; Graczyk, D.J.; Corsi, Steven R.; Wierl, J.A.; Owens, D.W.

    2001-01-01

    For two of the eight rural streams (Rattlesnake and Kuenster Creeks) minimal BMP implementation has occurred, hence a comparison of pre- BMP and data collected after BMP implementation began is not warranted. For two other rural streams (Brewery and Garfoot Creeks), BMP implementation is complete. For the four remaining rural streams (Bower, Otter, Eagle, and Joos Valley Creeks), the pre-BMP load data were compared to the transitional data to determine if significant reductions in the loads have occurred as a result of the BMP implementation to date. For all sites, the actual constituent loads for suspended solids and total phosphorus exhibit no statistically significant reductions after BMP installation. Multiple regressions were used to remove some of the natural variability in the data. Based on the residual analysis, for Otter Creek, there is a significant difference in the suspended-solids regression residuals between the pre-BMP and transitional periods, indicating a potential reduction as a result of the BMP implementation after accounting for natural variability. For Joos Valley Creek, the residuals for suspended solids and total phosphorus both show a significant reduction after accounting for natural variability. It is possible that the other sites will also show statistically significant reductions in suspended solids and total phosphorus if additional BMPs are implemented.

  15. Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments

    NASA Astrophysics Data System (ADS)

    Randall, M.; Carling, G. T.; Nelson, S.; Bickmore, B.; Miller, T.

    2016-12-01

    An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to nutrient inputs. Utah Lake, located in northern Utah, is a eutrophic freshwater lake that is unique because it is naturally shallow, turbid, and alkaline with high dissolved oxygen levels. Recently, the Utah Division of Water Quality has proposed a new rule to limit phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study is to characterize the fate and mobility of P in Utah Lake to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 9 locations across Utah Lake. P concentrations in sediment ranged from 1120 to 1610 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Likewise, P concentrations in sediment pore water were highest in Provo Bay with concentrations up to 4 mg/L. Sequential leach tests indicate that 30-45% of P is bound to apatite and another 40-55% is adsorbed onto the surface of redox sensitive Fe/Mn hydroxides. This was confirmed by SEM images, which showed the highest P concentrations correlating with both Ca (apatite) and Fe (Fe hydroxides). The apatite-bound P fraction is likely immobile, but the P fraction sorbed to Fe/Mn hydroxides is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% of P from spiked surface water with concentrations ranging from 1-10 mg/L. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be available for resuspension and cycling in surface waters. Mitigating lake eutrophication is a complex problem that goes beyond reducing nutrient loads to the water body and requires a better understanding of internal P cycling.

  16. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    PubMed

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Effect of cyclic loading and retightening on reverse torque value in external and internal implants

    PubMed Central

    Cho, Woong-Rae; Huh, Yoon-Hyuk; Park, Chan-Jin

    2015-01-01

    PURPOSE The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. MATERIALS AND METHODS Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. RESULTS Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. CONCLUSION Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading. PMID:26330975

  18. Streambank alluvial unit contributions to suspended sediment and total phosphorus loads, Walnut Creek, Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    Streambank erosion may represent a significant source of sediment and P to overall watershed loads, however, watershed-scale quantification of contributions are rare. In addition, streambanks are often comprised of highly-variable stratigraphic source materials (e.g., alluvial deposits), which may d...

  19. DEVELOPMENT OF NITROGEN LOADING-RESPONSE RELATIONSHIPS FOR ESTUARINE WATERS USING AN EMPIRICAL COMPARATIVE SYSTEMS APPROACH

    EPA Science Inventory

    There is growing evidence that human activities have dramatically changed the amounts, distribution, and movement of major nutrient elements (nitrogen-N and phosphorus-P) in the landscape and have increased nutrient loading to receiving waters. Some of these changes affect use o...

  20. Vertical tillage impacts on water quality derived from rainfall simulations

    USDA-ARS?s Scientific Manuscript database

    Increasing soluble phosphorus (P) loads to Lake Erie occurring around the same time that the implementation of no-tillage in the watershed has led to speculation that this important conservation practice is a primary cause of the soluble P loading. Thus, conservationists are interesting in finding f...

  1. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode.

    PubMed

    Deng, Yexin; Luo, Zhe; Conrad, Nathan J; Liu, Han; Gong, Yongji; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Xu, Xianfan; Ye, Peide D

    2014-08-26

    Phosphorene, a elemental 2D material, which is the monolayer of black phosphorus, has been mechanically exfoliated recently. In its bulk form, black phosphorus shows high carrier mobility (∼10,000 cm(2)/V·s) and a ∼0.3 eV direct band gap. Well-behaved p-type field-effect transistors with mobilities of up to 1000 cm(2)/V·s, as well as phototransistors, have been demonstrated on few-layer black phosphorus, showing its promise for electronics and optoelectronics applications due to its high hole mobility and thickness-dependent direct band gap. However, p–n junctions, the basic building blocks of modern electronic and optoelectronic devices, have not yet been realized based on black phosphorus. In this paper, we demonstrate a gate-tunable p–n diode based on a p-type black phosphorus/n-type monolayer MoS2 van der Waals p–n heterojunction. Upon illumination, these ultrathin p–n diodes show a maximum photodetection responsivity of 418 mA/W at the wavelength of 633 nm and photovoltaic energy conversion with an external quantum efficiency of 0.3%. These p–n diodes show promise for broad-band photodetection and solar energy harvesting.

  2. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    PubMed

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target controllable risk factors, such as soil nutrient status, soil condition and crop cover. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Estimation of nonpoint source loadings of phosphorus for lakes in the Puget Sound region, Washington

    USGS Publications Warehouse

    Gilliom, Robert J.

    1983-01-01

    Control of eutrophication of lakes in watersheds undergoing development is facilitated by estimates of the amounts of phosphorus (P) that reach the lakes from areas under various types of land use. Using a mass-balance model, the author calculated P loadings from present-day P concentrations measured in lake water and from other easily measured physical characteristics in a total of 28 lakes in drainage basins that contain only forest and residential land. The loadings from background sources (forest-land drainage and bulk precipitation) to each of the lakes were estimated by methods developed in a previous study. Differences between estimated present-day P loadings and loadings from background sources were attributed to changes in land use. The mean increase in annual P yield resulting from conversion of forest to residential land use was 7 kilograms per square kilometer, not including septic tank system contributions. Calculated loadings from septic systems were found to correlate best with the number of near-shore dwellings around each lake in 1940. The regression equation expressing this relationship explained 36 percent of the sample variance. There was no significant correlation between estimated septic tank system P loadings and number of dwellings present in 1960 or 1970. The evidence indicates that older systems might contribute more phosphorus to lakes than newer systems, and that there may be substantial time lags between septic system installation and significant impacts on lake-water P concentrations. For lakes in basins that contain agricultural land, the P loading attributable to agriculture can be calculated as the difference between the estimated total loading and the sum of estimated loadings from nonagricultural sources. A comprehensive system for evaluating errors in all loading estimates is presented. The empirical relationships developed allow preliminary approximations of the cumulative impact development has had on P loading and the amounts of P loading from generalized land-use categories for Puget Sound lowland lakes. In addition, the sensitivity of a lake to increased loading can be evaluated using the mass-balance model. The data required are presently available for most lakes. Estimates of P loading are useful in developing water-quality goals, setting priorities for lake studies, and designing studies of individual lakes. The suitability of a method for management of individual lakes will often be limited by relatively high levels of uncertainty, especially if the method is used to evaluate relatively small increases in P loading.

  4. 14 CFR 27.865 - External loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  5. 14 CFR 27.865 - External loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  6. 14 CFR 27.865 - External loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  7. 14 CFR 27.865 - External loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  8. 14 CFR 27.865 - External loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  9. Trends in nutrient concentrations, loads, and yields in streams in the Sacramento, San Joaquin, and Santa Ana Basins, California, 1975-2004

    USGS Publications Warehouse

    Kratzer, Charles R.; Kent, Robert; Seleh, Dina K.; Knifong, Donna L.; Dileanis, Peter D.; Orlando, James L.

    2011-01-01

    A comprehensive database was assembled for the Sacramento, San Joaquin, and Santa Ana Basins in California on nutrient concentrations, flows, and point and nonpoint sources of nutrients for 1975-2004. Most of the data on nutrient concentrations (nitrate, ammonia, total nitrogen, orthophosphate, and total phosphorus) were from the U.S. Geological Survey's National Water Information System database (35.2 percent), the California Department of Water Resources (21.9 percent), the University of California at Davis (21.6 percent), and the U.S. Environmental Protection Agency's STOrage and RETrieval database (20.0 percent). Point-source discharges accounted for less than 1 percent of river flows in the Sacramento and San Joaquin Rivers, but accounted for close to 80 percent of the nonstorm flow in the Santa Ana River. Point sources accounted for 4 and 7 percent of the total nitrogen and total phosphorus loads, respectively, in the Sacramento River at Freeport for 1985-2004. Point sources accounted for 8 and 17 percent of the total nitrogen and total phosphorus loads, respectively, in the San Joaquin River near Vernalis for 1985-2004. The volume of wastewater discharged into the Santa Ana River increased almost three-fold over the study period. However, due to improvements in wastewater treatment, the total nitrogen load to the Santa Ana River from point sources in 2004 was approximately the same as in 1975 and the total phosphorus load in 2004 was less than in 1975. Nonpoint sources of nutrients estimated in this study included atmospheric deposition, fertilizer application, manure production, and tile drainage. The estimated dry deposition of nitrogen exceeded wet deposition in the Sacramento and San Joaquin Valleys and in the basin area of the Santa Ana Basin, with ratios of dry to wet deposition of 1.7, 2.8, and 9.8, respectively. Fertilizer application increased appreciably from 1987 to 2004 in all three California basins, although manure production increased in the San Joaquin Basin but decreased in the Sacramento and Santa Ana Basins from 1982 to 2002. Tile drainage accounted for 22 percent of the total nitrogen load in the San Joaquin River near Vernalis for 1985-2004. Nutrient loads and trends were calculated by using the log-linear multiple-regression model, LOADEST. Loads were calculated for water years 1975-2004 for 22 sites in the Sacramento Basin, 15 sites in the San Joaquin Basin, and 6 sites in the Santa Ana Basin. The average annual load of total nitrogen and total phosphorus for 1985-2004 in subbasins in the Sacramento and San Joaquin Basins were divided by their drainage areas to calculate average annual yield. Total nitrogen yields were greater than 2.45 tons per square mile per year [(tons/mi2)/yr] in about 61 percent of the valley floor in the San Joaquin Basin compared with only about 12 percent of the valley floor in the Sacramento Basin. Total phosphorus yields were greater than 0.34 (tons/mi2)/yr in about 43 percent of the valley floor in the San Joaquin Basin compared with only about 5 percent in the valley floor of the Sacramento Basin. In a stepwise multiple linear-regression analysis of 30 subbasins in the Sacramento and San Joaquin Basins, the most important explanatory variables (out of 11 variables) for the response variable (total nitrogen yield) were the percentage of land use in (1) orchards and vineyards, (2) row crops, and (3) urban categories. For total phosphorus yield, the most important explanatory variable was the amount of fertilizer application plus manure production. Trends were evaluated for three time periods: 1975-2004, 1985-2004, and 1993-2004. Most trends in flow-adjusted concentrations of nutrients in the Sacramento Basin were downward for all three time periods. The decreasing nutrient trends in the American River at Sacramento and the Sacramento River at Freeport for 1975-2004 were attributed to the consolidation of wastewater in the Sacramento metropolitan area in December 1982 to

  10. Extra-phosphate load from food additives in commonly eaten foods: a real and insidious danger for renal patients.

    PubMed

    Benini, Omar; D'Alessandro, Claudia; Gianfaldoni, Daniela; Cupisti, Adamasco

    2011-07-01

    Restriction of dietary phosphorus is a major aspect of patient care in those with renal disease. Restriction of dietary phosphorus is necessary to control for phosphate balance during both conservative therapy and dialysis treatment. The extra amount of phosphorus which is consumed as a result of phosphate-containing food additives is a real challenge for patients with renal disease and for dieticians because it represents a "hidden" phosphate load. The objective of this study was to measure phosphorus content in foods, common protein sources in particular, and comprised both those which included a listing of phosphate additives and those which did not. Determinations of dry matter, nitrogen, total and soluble phosphate ions were carried out in 60 samples of foods, namely cooked ham, roast breast turkey, and roast breast chicken, of which, 30 were with declared phosphate additives and the other 30 similar items were without additives. Total phosphorus (290 ± 40 mg/100 g vs. 185 ± 23 mg/100 g, P < .001) and soluble phosphorus (164 ± 25 mg/100 g vs. 100 ± 19 mg/100 g, P < .001) content were higher in products containing additives than in foods without additives. No difference was detected between the 2 groups regarding dry matter (27.2 ± 2.0 g/100 g vs. 26.7 ± 1.9 g/100 g) or total nitrogen (3.15 ± 0.40 g/100 g vs. 3.19 ± 0.40 g/100 g). Consequently, phosphorus intake per gram of protein was much greater in the foods containing phosphorus additives (15.0 ± 3.1 mg/g vs. 9.3 ± 0.7 mg/g, P < .001). Our results show that those foods which contain phosphate additives have a phosphorus content nearly 70% higher than the samples which did not contain additives. This creates a special concern because this extra amount of phosphorus is almost completely absorbed by the intestinal tract. These hidden phosphates worsen phosphate balance control and increase the need for phosphate binders and related costs. Information and educational programs are essential to make patients with renal disease aware of the existence of foods with phosphate additives. Moreover, these facts highlight the need for national and international authorities to devote more attention to food labels which should clearly report the amount of natural or added phosphorus. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  11. Discrete Organic Phosphorus Signatures are Evident in Pollutant Sources within a Lake Erie Tributary.

    PubMed

    Brooker, M R; Longnecker, K; Kujawinski, E B; Evert, M H; Mouser, P J

    2018-06-19

    Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary. We detected between 23 and 313 organic phosphorus formulas across our samples, with manure samples having greater abundance of phosphorus- and nitrogen containing compounds compared to other samples. Manures also were enriched in lipids and protein-like compounds. The greatest similarities were observed between the Sandusky River and wastewater treatment plant effluent (WWTP), or the Sandusky River and agricultural edge of field samples. These sample pairs shared 84% of organic compounds and 59-73% of P-containing organic compounds, respectively. This similarity suggests that agricultural and/or WWTP sources dominate the supply of organic phosphorus compounds to the river. We identify formulas shared between the river and pollutant sources that could serve as possible markers of source contamination in the tributary.

  12. 14 CFR 29.865 - External loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  13. 14 CFR 29.865 - External loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  14. 14 CFR 29.865 - External loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  15. 14 CFR 29.865 - External loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  16. 14 CFR 29.865 - External loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...

  17. The New Nordic Diet: phosphorus content and absorption.

    PubMed

    Salomo, Louise; Poulsen, Sanne K; Rix, Marianne; Kamper, Anne-Lise; Larsen, Thomas M; Astrup, Arne

    2016-04-01

    High phosphorus content in the diet may have adverse effect on cardiovascular health. We investigated whether the New Nordic Diet (NND), based mainly on local, organic and less processed food and large amounts of fruit, vegetables, wholegrain and fish, versus an Average Danish Diet (ADD) would reduce the phosphorus load due to less phosphorus-containing food additives, animal protein and more plant-based proteins. Phosphorus and creatinine were measured in plasma and urine at baseline, week 12 and week 26 in 132 centrally obese subjects with normal renal function as part of a post hoc analysis of data acquired from a 26-week controlled trial. We used the fractional phosphorus excretion as a measurement of phosphorus absorption. Mean baseline fractional phosphorus excretion was 20.9 ± 6.6 % in the NND group (n = 82) and 20.8 ± 5.5 % in the ADD group (n = 50) and was decreased by 2.8 ± 5.1 and 3.1 ± 5.4 %, respectively, (p = 0.6) at week 26. At week 26, the mean change in plasma phosphorus was 0.04 ± 0.12 mmol/L in the NND group and -0.03 ± 0.13 mmol/L in the ADD group (p = 0.001). Mean baseline phosphorus intake was 1950 ± 16 mg/10 MJ in the NND group and 1968 ± 22 mg/10 MJ in the ADD group and decreased less in the NND compared to the ADD (67 ± 36 mg/10 MJ and -266 ± 45 mg/day, respectively, p < 0.298). Contrary to expectations, the NND had a high phosphorus intake and did not decrease the fractional phosphorus excretion compared with ADD. Further modifications of the diet are needed in order to make this food concept beneficial regarding phosphorus absorption.

  18. Potential contributions of mature prairie and turfgrass to phosphorus in urban runoff.

    PubMed

    Steinke, K; Kussow, W R; Stier, J C

    2013-07-01

    Urban vegetative plantings are considered desirable to mitigate and filter stormwater runoff and nonpoint-source pollution. Phosphorus fertilization of turfgrass may enhance P in urban runoff; however, the amount of P from nonfertilized, native vegetation that could potentially replace some turf is not known. This study was conducted to measure the relative contributions of nonfertilized, native prairie vegetation and fertilized turfgrass to runoff water and P loads. Six replicates of side-by-side mature urban prairie and turfgrass were monitored for mean annual runoff volumes and P loads, biomass production, vegetative nutrient composition, and changes in soil moisture. Vegetation type did not significantly affect seasonal or annual runoff volumes or P loads. The mean annual total P loads of 0.46 kg ha for prairie and 0.28 kg ha for turfgrass were significant and comparable to those reported by other researchers when studied separately. Total P concentrations in runoff water from prairie and turf vegetation were above USEPA limits, averaging 1.86 and 1.63 mg L, respectively, over 2 yr. Averaged across 2 yr, 78% of runoff P was collected when the soil was frozen. Biomass P reductions over the period of November to April were strongly related to quantities of runoff total P from frozen soil ( = 0.874). Phosphorus losses from urban areas appeared to be primarily correlated with runoff depth, not vegetation type, because correlation coefficients revealed 86 and 45% of the Year 1 and Year 2 total P loads were directly accounted for by runoff volumes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Graphene/blue-phosphorus heterostructure as potential anode materials for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fan, Kaimin; Tang, Ting; Wu, Shiyun; Zhang, Zhiyuan

    2018-01-01

    The first-principles calculations based on density functional theory (DFT) have been implemented to investigate the graphene/blue-phosphorus (G/BP) heterostructure as potential anode material for SIBs. The adsorption and diffusion behaviors of sodium (Na) in G/BP heterostructure and the effect of external electric field on Na adsorption have been investigated. The results indicate that G/BP heterostructure with Na adsorption is metallic due to Na incorporation, which is of benefit for electronic conductivity as anode material. The results show that the design of G/BP heterostructure is an efficient scheme to enhance the Na adsorption in G/BP without affecting the high mobility of Na in the G/BP heterostructure surface. The present work demonstrates that the external electric field can effectively modulate the adsorption of Na, and the adsorption behavior of Na is more sensitive to the external electric field when E > 0.10 V Å-1 in G/BP heterostructure. The Mulliken population analysis and DOS calculations have been performed to explore the charge transfer and the interaction between Na and G/BP.

  20. Quality of water and bottom sediments, and nutrient and dissolved-solids loads in the Apopka-Beauclair Canal, Lake County, Florida, 1986-90

    USGS Publications Warehouse

    Schiffer, D.M.

    1994-01-01

    Nutrient-rich water enters Lake Beauclair and other lakes downstream from Lake Apopka in the Ocklawaha River chain of lakes in central Florida. Two sources of the nutrient-rich water are Lake Apopka outflow and drainage from farming operations adjacent to the Apopka-Beauclair Canal. Two flow and water- quality monitoring sites were established to measure nutrient and dissolved-solids loads at the outflow from lake Apopka and at a control structure on the Apopka-Beauclair Canal downstream from farming activities. Samples were collected biweekly for analysis of nutrients and monthly for analysis of major ions for 4 years. Most of the nutrient load transported through the lock and dam on the Apopka-Beauclair Canal was transported during periods of high discharge. In April 1987, when discharges were as high as 589 cubic feet per second, loads transported through the lock and dam accounted for 59 percent of the ammonia-plus- organic nitrogen load, 61 percent of the total nitrogen load, and 59 percent of the phosphorus load transported during the 1987 water year. Constituent concentrations in annual bottom sediment samples from the canal indicated that most of the constituent load is not being transported down- stream. An alternative approach was derived for determining the relative constituent load from farm input along the canal: Load computations using this approach indicated that, with the exception of phosphorus, nutrient and dissolved-solids loads due to farm activity along the canal account for 10 percent or less of the total load at the Apopka-Beauclair canal lock and dam. (USGS)

  1. Nutrient and metal loads estimated by using discrete, automated, and continuous water-quality monitoring techniques for the Blackstone River at the Massachusetts-Rhode Island State line, water years 2013–14

    USGS Publications Warehouse

    Sorenson, Jason R.; Granato, Gregory E.; Smith, Kirk P.

    2018-01-10

    Flow-proportional composite water samples were collected in water years 2013 and 2014 by the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, from the Blackstone River at Millville, Massachusetts (U.S. Geological Survey station 01111230), about 0.5 mile from the border with Rhode Island. Samples were collected in order to better understand the dynamics of selected nutrient and metal constituents, assist with planning, guide activities to meet water-quality goals, and provide real-time water-quality information to the public. An automated system collected the samples at 14-day intervals to determine total and dissolved nitrogen and phosphorus concentrations, to provide accurate monthly nutrient concentration data, and to calculate monthly load estimates. Concentrations of dissolved trace metals and total aluminum were determined from 4-day composite water samples that were collected twice monthly by the automated system. Results from 4-day composites provide stakeholders with information to evaluate trace metals on the basis of chronic 4-day exposure criteria for aquatic life, and the potential to use the biotic ligand model to evaluate copper concentrations. Nutrient, trace metal, suspended sediment, dissolved organic carbon, and chlorophyll a concentrations were determined from discrete samples collected at the Millville station and from across the stream transect at the upstream railroad bridge, and these concentrations served as a means to evaluate the representativeness of the Millville point location.Analytical results from samples collected with the automated flow-proportional sampling system provided the means to calculate monthly and annual loading data. Total nitrogen and total phosphorus loads in water year (WY) 2013 were about 447,000 and 36,000 kilograms (kg), respectively. In WY 2014, annual loads of total nitrogen and total phosphorus were about 342,000 and 21,000 kg, respectively. Total nitrogen and total phosphorus loads from WYs 2013 and 2014 were about 56 and 65 percent lower than those reported for WYs 2008 and 2009. The higher loads in 2008 and 2009 may be explained by the higher than average flows in WY 2009 and by facility upgrades made by wastewater treatment facilities in the basin.Median loads were determined from composite samples collected with the automated system between October 2012 and October 2014. Median dissolved cadmium and chromium 4-day loads were 0.55 and 0.84 kg, respectively. Dissolved copper and total lead median 4-day loads were 8.02 and 1.42 kg, respectively. The dissolved nickel median 4-day load was 5.45 kg, and the dissolved zinc median 4-day load was 36 kg. Median total aluminum 4-day loads were about 197 kg.Spearman’s rank correlation analyses were used with discrete sample concentrations and continuous records of temperature, specific conductance, turbidity, and chlorophyll a to identify correlations between variables that could be used to develop regression equations for estimating real-time concentrations of constituents. Correlation coefficients were generated for flow, precipitation, antecedent precipitation, physical parameters, and chemical constituents. A 95-percent confidence limit for each value of Spearman’s rho was calculated, and multiple linear regression analysis using ordinary least squares regression techniques was used to develop regression equations for concentrations of total phosphorus, total nitrogen, suspended sediment concentration, total copper, and total aluminum. Although the correlations are based on the limited amount of data collected as part of this study, the potential to monitor water-quality changes in real time may be of value to resource managers and decision makers.

  2. Computer simulation of the effects of shoe cushioning on internal and external loading during running impacts.

    PubMed

    Miller, Ross H; Hamill, Joseph

    2009-08-01

    Biomechanical aspects of running injuries are often inferred from external loading measurements. However, previous research has suggested that relationships between external loading and potential injury-inducing internal loads can be complex and nonintuitive. Further, the loading response to training interventions can vary widely between subjects. In this study, we use a subject-specific computer simulation approach to estimate internal and external loading of the distal tibia during the impact phase for two runners when running in shoes with different midsole cushioning parameters. The results suggest that: (1) changes in tibial loading induced by footwear are not reflected by changes in ground reaction force (GRF) magnitudes; (2) the GRF loading rate is a better surrogate measure of tibial loading and stress fracture risk than the GRF magnitude; and (3) averaging results across groups may potentially mask differential responses to training interventions between individuals.

  3. Mountain Island Lake, North Carolina; analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics, 1996–97

    USGS Publications Warehouse

    Bales, Jerad D.; Sarver, Kathleen M.; Giorgino, Mary J.

    2001-01-01

    Mountain Island Lake is an impoundment of the Catawba River in North Carolina and supplies drinking water to more than 600,000 people in Charlotte, Gastonia, Mount Holly, and several other communities. The U.S. Geological Survey, in cooperation with the Charlotte-Mecklenburg Utilities, conducted an investigation of the reservoir to characterize hydrologic and water-quality conditions and to develop and apply a simulation model to predict the response of the reservoir to changes in constituent loadings or the flow regime.During 1996–97, flows into Mountain Island Lake were dominated by releases from Cowans Ford Dam on Lake Norman, with more than 85 percent of the total inflow to the reservoir coming from Lake Norman. Riverbend Steam Station discharges accounted for about 12 percent of the inflows to the reservoir, and inflows from tributary streams contributed less than 1.5 percent of the total inflows. Releases through Mountain Island Dam accounted for about 81 percent of outflows from the reservoir, while Riverbend Steam Station withdrawals, which were equal to discharge from the facility, constituted about 13 percent of the reservoir withdrawals. About 5.5 percent of the withdrawals from the reservoir were for water supply.Strong thermal stratification was seldom observed in Mountain Island Lake during April 1996-September 1997. As a result, dissolved-oxygen concentrations were only infrequently less than 4 milligrams per liter, and seldom less than 5 milligrams per liter throughout the entire reservoir, including the coves. The Riverbend Steam Station thermal discharge had a pronounced effect on surface-water temperatures near the outfall.McDowell Creek, which drains to McDowell Creek cove, receives treated wastewater from a large municipal facility and has exhibited signs of poor water-quality conditions in the past. During April 1996-September 1997, concentrations of nitrate, ammonia, total phosphorus, and chlorophyll a were higher in McDowell Creek cove than elsewhere throughout the reservoir. Nevertheless, the highest chlorophyll a concentration measured during the study was 13 micrograms per liter—well below the North Carolina ambient water-quality standard of 40 micrograms per liter. In the mainstem of the reservoir, near-bottom ammonia concentrations occasionally were greater than near-surface concentrations. However, the relatively large top-to-bottom differences in ammonia and phosphorus that have been observed in other Catawba River reservoirs were not present in Mountain Island Lake.External loadings of suspended solids, nitrogen, phosphorus, and biochemical oxygen demand were determined for May 1996-April 1997. Flows through Cowans Ford Dam contributed more than 80 percent of the biochemical oxygen demand and nitrogen load to the reservoir, with McDowell Creek contributing about 15 percent of the biochemical oxygen demand load. In contrast, McDowell Creek contributed about half of the phosphorus load to the reservoir, while inflows through Cowans Ford Dam contributed about one-fourth of the phosphorus load, and the McDowell Creek wastewater-treatment plant contributed about 15 percent of the total phosphorus load. The remainder of the phosphorus loadings came from Gar Creek and the discharge from the Riverbend ash settling pond.Mountain Island Lake is a relatively small (11.3-square-kilometer surface area) impoundment. An area of 181 square kilometers drains directly to the reservoir, but much of this area is undergoing development. In addition, the reservoir receives treated effluent from a municipal wastewater-treatment facility.The two-dimensional, laterally averaged model CE-QUAL-W2 was applied to Mountain Island Lake. The model was configured to simulate water level, water temperature, and 12 water-quality constituents. The model included the mainstem, four coves, three point-source discharges, and three withdrawals.Simulated water levels generally were within 10 centimeters of measured values, indicating a good calibration of the water balance for the reservoir. The root-mean-square difference between measured and simulated water temperatures was about 1 to 1.5 degrees Celsius, and vertical distributions of water temperature were accurately simulated in both the mainstem and coves.Seasonal and spatial patterns of nitrate, ammonia, orthophosphorus, and chlorophyll a were reasonably reproduced by the water-quality model. Because of the absence of the denitrification process in the model formulation, nitrate concentrations typically were overpredicted. Simulated and measured ammonia concentrations seldom differed by more than 0.01 milligram per liter, and simulations of seasonal fluctuations in chlorophyll a were representative of measured conditions. The root mean square of the difference between measured and simulated dissolved-oxygen concentrations was about 1 milligram per liter.The calibrated water-quality model was applied to evaluate (1) the movement of a conservative, neutrally buoyant material, or tracer, through the reservoir for several sets of conditions; (2) the effects of the Riverbend thermal discharge on water temperature in the reservoir; (3) the effects of changes in water-supply withdrawal rates on water-quality conditions; and (4) changes in reservoir water quality in response to changes in point- and nonpoint-source loadings. In general, dissolved material entering Mountain Island Lake from both Cowans Ford Dam and McDowell Creek during the summer moves along the bottom of the lake toward Mountain Island Dam, with little mixing of dissolved material into the surface layers. Simulations suggest that dissolved material can move upstream in the reservoir when flows from Cowans Ford Dam are near zero. Dissolved material can remain in Mountain Island Lake for a period far in excess of the theoretical retention time of 12 days.Simulations indicated that the Riverbend thermal discharge increases water temperature in the surface layers of the downstream part of the reservoir by as much as 5 degrees Celsius. However, the discharge has little effect on near-bottom water temperature.Based on model simulations, a proposed doubling of the water-supply withdrawals from Mountain Island Lake has no readily apparent effect on water quality in the reservoir. The increased withdrawal rate may have some localized effects on circulation in the reservoir, but a more detailed model of the intake zone would be required to identify those effects.The effects of a 20-percent increase in water-chemistry loadings through Cowans Ford Dam and from McDowell Creek were simulated separately. Increased loadings from Cowans Ford Dam had about the same effect on water-quality conditions near Mountain Island Dam as did increased loadings from McDowell Creek. Maintaining good water quality in Mountain Island Lake depends on maintaining good water quality in Lake Norman as well as in the inflows from the McDowell Creek watershed.

  4. Long-term changes in the phosphorus loading to and trophic state of the Salton Sea, California

    USGS Publications Warehouse

    Robertson, Dale M.; Schladow, S.G.; Holdren, G.C.

    2008-01-01

    The Salton Sea (Sea) is a eutrophic to hypereutrophic lake characterized by high nutrient concentrations, low water clarity, and high biological productivity. Based on dissolved phosphorus (P) and nitrogen (N) concentrations and N:P ratios, P is typically the limiting nutrient in the Sea and, therefore, should be the primary nutrient of concern when considering management efforts. Flows in the major tributaries to the Sea have been measured since 1965, whereas total P (TP) concentrations were only measured intermittently by various agencies since 1968. These data were used to estimate annual P loading from 1965 to 2002. Annual loads have increased steadily from ???940,000 kg around 1968 to ???1,450,000 kg in 2002 (???55% increase), primarily a result of increased TP concentrations and loads in the New River. Although the eutrophic condition of the Salton Sea is of great concern, only limited nutrient data are available for the Sea. It is difficult to determine whether the eutrophic state of the Sea has degraded or possibly even improved slightly in response to the change in P loading because of variability in the data and changes in the sampling and analytical methodologies. ?? 2008 Springer Science+Business Media B.V.

  5. Internalizing and externalizing problems in adolescence: general and dimension-specific effects of familial loadings and preadolescent temperament traits.

    PubMed

    Ormel, J; Oldehinkel, A J; Ferdinand, R F; Hartman, C A; De Winter, A F; Veenstra, R; Vollebergh, W; Minderaa, R B; Buitelaar, J K; Verhulst, F C

    2005-12-01

    We investigated the links between familial loading, preadolescent temperament, and internalizing and externalizing problems in adolescence, hereby distinguishing effects on maladjustment in general versus dimension-specific effects on either internalizing or externalizing problems. In a population-based sample of 2230 preadolescents (10-11 years) familial loading (parental lifetime psychopathology) and offspring temperament were assessed at baseline by parent report, and offspring psychopathology at 2.5-years follow-up by self-report, teacher report and parent report. We used purified measures of temperament and psychopathology and partialled out shared variance between internalizing and externalizing problems. Familial loading of internalizing psychopathology predicted offspring internalizing but not externalizing problems, whereas familial loading of externalizing psychopathology predicted offspring externalizing but not internalizing problems. Both familial loadings were associated with Frustration, low Effortful Control, and Fear. Frustration acted as a general risk factor predicting severity of maladjustment; low Effortful Control and Fear acted as dimension-specific risk factors that predicted a particular type of psychopathology; whereas Shyness, High-Intensity Pleasure, and Affiliation acted as direction markers that steered the conditional probability of internalizing versus externalizing problems, in the event of maladjustment. Temperament traits mediated one-third of the association between familial loading and psychopathology. Findings were robust across different composite measures of psychopathology, and applied to girls as well as boys. With regard to familial loading and temperament, it is important to distinguish general risk factors (Frustration) from dimension-specific risk factors (familial loadings, Effortful Control, Fear), and direction markers that act as pathoplastic factors (Shyness, High-Intensity Pleasure, Affiliation) from both types of risk factors. About one-third of familial loading effects on psychopathology in early adolescence are mediated by temperament.

  6. Calcium, Magnesium, and Phosphorus Metabolism, and Parathyroid- Calcitonin Function during Prolonged Exposure to Elevated CO2 Concentrations on Submarines

    DTIC Science & Technology

    1975-12-01

    renal regulation, determine acid- base balance. calcitonin activity calcium excretion chronic hypercapnia magnesium parathyroid phosphorus...Mg increased. An important aspect of acid- base and electrolyte balance is the renal handling of an acid load. Figure 2 presents data on urine...E. SCHAEFER Navat Submarine Medical Research Laboratory, Naval Submarine Base , Groton, CT 06340 Messier, A. A., E. Heyder, W. R. Braithwaite, C

  7. Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High-Resolution Global Study

    NASA Astrophysics Data System (ADS)

    Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2018-01-01

    We estimate the global anthropogenic phosphorus (P) loads to freshwater and the associated grey water footprints (GWFs) for the period 2002-2010, at a spatial resolution of 5 × 5 arc min, and compare the GWF per river basin to runoff to assess the P-related water pollution level (WPL). The global anthropogenic P load to freshwater systems from both diffuse and point sources is estimated at 1.5 Tg/yr. More than half of this total load was in Asia, followed by Europe (19%) and Latin America and the Caribbean (13%). The domestic sector contributed 54% to the total, agriculture 38%, and industry 8%. In agriculture, cereals production had the largest contribution to the P load (31%), followed by fruits, vegetables, and oil crops, each contributing 15%. The global total GWF related to anthropogenic P loads is estimated to be 147 × 1012 m3/yr, with China contributing 30%, India 8%, USA 7%, and Spain and Brazil 6% each. The basins with WPL > 1 (where GWF exceeds the basin's assimilation capacity) together cover about 38% of the global land area, 37% of the global river discharge, and provide residence to about 90% of the global population.

  8. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China.

    PubMed

    Zhang, Di; Tao, Yi; Liu, Xiaoning; Zhou, Kuiyu; Yuan, Zhenghao; Wu, Qianyuan; Zhang, Xihui

    2016-01-01

    Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.

  9. Vertical Stratification of Soil Phosphorus as a Concern for Dissolved Phosphorus Runoff in the Lake Erie Basin.

    PubMed

    Baker, David B; Johnson, Laura T; Confesor, Remegio B; Crumrine, John P

    2017-11-01

    During the re-eutrophication of Lake Erie, dissolved reactive phosphorus (DRP) loading and concentrations to the lake have nearly doubled, while particulate phosphorus (PP) has remained relatively constant. One potential cause of increased DRP concentrations is P stratification, or the buildup of soil-test P (STP) in the upper soil layer (<5 cm). Stratification often accompanies no-till and mulch-till practices that reduce erosion and PP loading, practices that have been widely implemented throughout the Lake Erie Basin. To evaluate the extent of P stratification in the Sandusky Watershed, certified crop advisors were enlisted to collect stratified soil samples (0-5 or 0-2.5 cm) alongside their normal agronomic samples (0-20 cm) ( = 1758 fields). The mean STP level in the upper 2.5 cm was 55% higher than the mean of agronomic samples used for fertilizer recommendations. The amounts of stratification were highly variable and did not correlate with agronomic STPs (Spearman's = 0.039, = 0.178). Agronomic STP in 70% of the fields was within the buildup or maintenance ranges for corn ( L.) and soybeans [ (L.) Merr.] (0-46 mg kg Mehlich-3 P). The cumulative risks for DRP runoff from the large number of fields in the buildup and maintenance ranges exceeded the risks from fields above those ranges. Reducing stratification by a one-time soil inversion has the potential for larger and quicker reductions in DRP runoff risk than practices related to drawing down agronomic STP levels. Periodic soil inversion and mixing, targeted by stratified STP data, should be considered a viable practice to reduce DRP loading to Lake Erie. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Continuous monitoring of sediment and nutrients in the Illinois River at Florence, Illinois, 2012-13

    USGS Publications Warehouse

    Terrio, Paul J.; Straub, Timothy D.; Domanski, Marian M.; Siudyla, Nicholas A.

    2015-01-01

    The Illinois River is the largest river in Illinois and is the primary contributing watershed for nitrogen, phosphorus, and suspended-sediment loading to the upper Mississippi River from Illinois. In addition to streamflow, the following water-quality constituents were monitored at the Illinois River at Florence, Illinois (U.S. Geological Survey station number 05586300), during May 2012–October 2013: phosphate, nitrate, turbidity, temperature, specific conductance, pH, and dissolved oxygen. The objectives of this monitoring were to (1) determine performance capabilities of the in-situ instruments; (2) collect continuous data that would provide an improved understanding of constituent characteristics during normal, low-, and high-flow periods and during different climatic and land-use seasons; (3) evaluate the ability to use continuous turbidity as a surrogate constituent to determine suspended-sediment concentrations; and (4) evaluate the ability to develop a regression model for total phosphorus using phosphate, turbidity, and other measured parameters. Reliable data collection was achieved, following some initial periods of instrument and data-communication difficulties. The resulting regression models for suspended sediment had coefficient of determination (R2) values of about 0.9. Nitrate plus nitrite loads computed using continuous data were found to be approximately 8 percent larger than loads computed using traditional discrete-sampling based models. A regression model for total phosphorus was developed by using historic orthophosphate data (important during periods of low flow and low concentrations) and historic suspended-sediment data (important during periods of high flow and higher concentrations). The R2of the total phosphorus regression model using orthophosphorus and suspended sediment was 0.8. Data collection and refinement of the regression models is ongoing.

  11. Considerations on the influence of extreme events on the phosphorus transport from river catchments to the sea.

    PubMed

    Zessner, M; Postolache, C; Clement, A; Kovacs, A; Strauss, P

    2005-01-01

    In this paper, results from rivers of different sizes in Romania, Hungary and Austria are presented. The paper shows the dynamics of extreme events and their contribution to the total P and suspended solids transported in these rivers. Special attention is paid to the influence of the size of the catchment and the event probability on the relative contribution of a single event to the total loads transported in the river. Further, the development of phosphorus loads along the Danube River at a flood event is shown. From the results it can be concluded that there is no immediate influence of high flow and flood events in upstream parts of the Basin on the transport of phosphorus from the catchment to the receiving Sea. Particle-bound phosphorus is mobilised from the catchment (through erosion) and the river bottom to a high extent at high flow events and transported at peak discharges to downstream, where retention by sedimentation of particles takes place. On the one hand this retention is a transport to flooded areas. In this case it can be considered as more or less long term retention. On the other hand sedimentation takes place in the riverbed, in case the tractive effort of the river is reduced. In this second case the P-pool in the sediments of the sedimentation area will be increased. If anaerobic conditions in the sediment appear, part of the phosphorus will be transformed to soluble ortho-phosphate and will continuously contribute to the phosphorus transport to the receiving sea. Part of the P-retained in the river sediment will be mobilised by resuspension at the next biggest high flow event. Altogether, these alternating processes of suspension, transport, export to flooded areas or sedimentation in the river bed with partly solution and partly resuspension at the next event decrease the share of the phosphorus transport during high flow events on the total loads transported in the more downstream parts of a catchments as compared to the more upstream parts. In the year of occurrence of an extreme flood event the P-transport of this year is dominated by the flood event. As an average over many years the contribution of high flow events to the total P-transport still may be between 7 and 20% in smaller catchments (around 1,000 km2). In a big catchment (e.g. river Danube) much smaller contributions of flood events on the total P-transport can be expected as an average over many years.

  12. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, May; Zhang, Zhonglong

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat,more » and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was clearly attributable to the conversion of a large amount of land to switchgrass. The Middle Lower Missouri River and Lower Missouri River were identified as hot regions. Further analysis identified four subbasins (10240002, 10230007, 10290402, and 10300200) as being the most vulnerable in terms of sediment, nitrogen, and phosphorus loadings. Overall, results suggest that increasing the amount of switchgrass acreage in the hot spots should be considered to mitigate the nutrient loads. The study provides an analytical method to support stakeholders in making informed decisions that balance biofuel production and water sustainability.« less

  13. Reactive phosphorus removal from aquaculture and poultry productions systems using polymeric hydrogels.

    PubMed

    Kofinas, Peter; Kioussis, Dimitri R

    2003-01-15

    This work reports on the features of a sorption processes for the ultimate removal and recovery of reactive phosphorus from aquaculture and poultry production wastewater effluents. The sorbent used was a cross-linked polyamine (PAA-HCl) polymeric hydrogel. The PAA-HCl hydrogels were prepared by chemically cross-linking aqueous solutions of linear PAA-HCl chains with epichlorohydrin (EPI). The phosphorus binding capacity of the gels was measured in standard aqueous solutions as a function of ionic strength. Equilibrium PO4(3-), loadings of 100 mg anion/g gel were obtained. The regeneration ability of the gels was demonstrated by release of the bound phosphorus anions upon washing with 1-2 M NaOH solution, providing opportunities to recover and reuse the gel over multiple cycles. The ionic polyamine gels have been demonstrated to be appropriate materials for treating poultry and aquaculture wastewater effluents. Upon treatment phosphorus anion concentrations were reduced to levels suitable for discharge into natural surface waters.

  14. Modeling ecosystem processes with variable freshwater inflow to the Caloosahatchee River Estuary, southwest Florida. II. Nutrient loading, submarine light, and seagrasses

    NASA Astrophysics Data System (ADS)

    Buzzelli, Christopher; Doering, Peter; Wan, Yongshan; Sun, Detong

    2014-12-01

    Short- and long-term changes in estuarine biogeochemical and biological attributes are consequences of variations in both the magnitude and composition of freshwater inputs. A common conceptualization of estuaries depicts nutrient loading from coastal watersheds as the stressor that promotes algal biomass, decreases submarine light penetration, and degrades seagrass habitats. Freshwater inflow depresses salinity while simultaneously introducing colored dissolved organic matter (color or CDOM) which greatly reduces estuarine light penetration. This is especially true for sub-tropical estuaries. This study applied a model of the Caloosahatchee River Estuary (CRE) in southwest Florida to explore the relationships between freshwater inflow, nutrient loading, submarine light, and seagrass survival. In two independent model series, the loading of dissolved inorganic nitrogen and phosphorus (DIN and DIP) was reduced by 10%, 20%, 30%, and 50% relative to the base model case from 2002 to 2009 (2922 days). While external nutrient loads were reduced by lowering inflow (Q0) in the first series (Q0 series), reductions were accomplished by decreasing the incoming concentrations of DIN and DIP in the second series (NP Series). The model also was used to explore the partitioning of submarine light extinction due to chlorophyll a, CDOM, and turbidity. Results suggested that attempting to control nutrient loading by decreasing freshwater inflow could have minor effects on water column concentrations but greatly influence submarine light and seagrass biomass. This is because of the relative importance of Q0 to salinity and submarine light. In general, light penetration and seagrass biomass decreased with increased inflow and CDOM. Increased chlorophyll a did account for more submarine light extinction in the lower estuary. The model output was used to help identify desirable levels of inflow, nutrient loading, water quality, salinity, and submarine light for seagrass in the lower CRE. These findings provide information essential to the development of a resource-based approach to improve the management of both freshwater inflow and estuarine biotic resources.

  15. Pre-development conditions to assess the impact of growth in an urbanizing watershed in Northern Virginia

    NASA Astrophysics Data System (ADS)

    Kumar, Saurav; Godrej, Adil N.; Grizzard, Thomas J.

    2016-09-01

    Pre-development conditions are an easily understood state to which watershed nonpoint nutrient reduction targets may be referenced. Using the pre-development baseline, a "developed-excess" measure may be computed for changes due to anthropogenic development. Developed-excess is independent of many geographical, physical, and hydrological characteristics of the region and after normalization by area may be used for comparison among various sub-sets of the watershed, such as jurisdictions or land use types. We have demonstrated this method by computing pre-development nitrogen and phosphorus loads entering the Occoquan Reservoir from its tributary watershed in Northern Virginia. The pre-development loads in this study were computed using the calibrated water quality models for the period 2002-2007. Current forest land was used as a surrogate for pre-development land use conditions for the watershed and developed-excess was estimated for fluvial loads of Total Inorganic Nitrogen (TIN) and Orthophosphate-Phosphorus (OP) by subtracting simulated predevelopment loads from observed loads. It was observed that within the study period (2002-2007), the average annual developed-excess represented about 30% of the TIN and OP average annual loads exported to the reservoir. Comparison of the two disturbed land use types, urban and agricultural, showed that urban land uses exported significantly more excess nonpoint nutrient load per unit area than agricultural land uses.

  16. Concentrations and loads of nutrients in the tributaries of the Lake Okeechobee watershed, south-central Florida, water years 2004-2008

    USGS Publications Warehouse

    Byrne, Michael J.; Wood, Molly S.

    2011-01-01

    Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic nitrogen plus ammonia ranged from 1.27 to 2.96 mg/L at the 16 tributaries during 2004–2008. Mean concentrations were highest at Fisheating Creek at Lake Placid (a non-priority site), and lowest at Wolff Creek, Taylor Creek near Grassy Island, and Otter Creek (three priority basin sites), and at Arbuckle Creek (a non-priority basin site). Mean concentrations of nitrite plus nitrate ranged from 0.01 to 0.55 mg/L at the 16 tributaries during 2004–2008. Mean concentrations measured in priority basins were significantly higher than those measured in non-priority basins. Nutrient concentrations were substantially lower in the non-priority basins; however, total loads were substantially higher due to discharge that was 5 to 6 times greater than from the priority basins. Total phosphorus, organic nitrogen plus ammonia, and nitrite plus nitrate loads from the non-priority basins were 1.5, 4.5, and 3.5 times greater, respectively, than were loads from the priority basins. In the non-priority basins, total phosphorus loads ranged from 35 metric tons (MT) in 2007 to 247 MT in 2005. In the priority basins, the loads ranged from 18 MT in 2007 to 136 MT in 2005. In the non-priority basins, organic nitrogen plus ammonia loads ranged from 337 MT in 2007 to 2,817 MT in 2005. In the priority basins, organic nitrogen plus ammonia loads ranged from 85 MT in 2007 to 503 MT in 2005. In the non-priority basins, nitrite plus nitrate loads ranged from 34 MT in 2007 to 143 MT in 2005. In the priority basins, nitrite plus nitrate loads ranged from 4 MT in 2007 to 27 MT in 2005.

  17. Process-based modelling of phosphorus transformations and retention in global rivers

    NASA Astrophysics Data System (ADS)

    Vilmin, Lauriane; Mogollon, Jose; Beusen, Arthur; Bouwman, Lex

    2016-04-01

    Phosphorus (P) plays a major role in the biogeochemical functioning of aquatic systems. It typically acts as the limiting nutrient for primary productivity in freshwater bodies, and thus the increase in anthropogenic P loads during the XXth century has fuelled the eutrophication of these systems. Total P retention in global rivers has also escalated over this timeframe as demonstrated via a global model that implements the spiralling method at a spatial resolution of 0.5° (IMAGE-GNM, Beusen et al., 2015). Here, we refine this coupled hydrological - nutrient model by including mechanistic biogeochemical interactions that govern the P cycle. Special attention is paid to the representation of particle processes (i.e. particle loading, sedimentation and erosion), which play a major role in P transport and accumulation in aquatic systems. Our preliminary results are compared to measurements of suspended sediments, total P and orthophosphates in selected river basins. Initial model results show that P concentrations are particularly sensitive to particulate load distribution in the river network within a grid cell. This novel modelling approach will eventually allow a better assessment of the amounts of different forms of P (organic P, soluble reactive P, and particulate inorganic P), of P transformation rates and retention in inland waters. References Beusen, A.H.W., Van Beek, L.P.H., Bouwman, A.F., Mogollón, J.M., Middelburg, J.J. 2015. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water - description of the IMAGE-GNM and analysis of performance. Geosci. Model Dev. 8, 4045-4067

  18. Using regression methods to estimate stream phosphorus loads at the Illinois River, Arkansas

    USGS Publications Warehouse

    Haggard, B.E.; Soerens, T.S.; Green, W.R.; Richards, R.P.

    2003-01-01

    The development of total maximum daily loads (TMDLs) requires evaluating existing constituent loads in streams. Accurate estimates of constituent loads are needed to calibrate watershed and reservoir models for TMDL development. The best approach to estimate constituent loads is high frequency sampling, particularly during storm events, and mass integration of constituents passing a point in a stream. Most often, resources are limited and discrete water quality samples are collected on fixed intervals and sometimes supplemented with directed sampling during storm events. When resources are limited, mass integration is not an accurate means to determine constituent loads and other load estimation techniques such as regression models are used. The objective of this work was to determine a minimum number of water-quality samples needed to provide constituent concentration data adequate to estimate constituent loads at a large stream. Twenty sets of water quality samples with and without supplemental storm samples were randomly selected at various fixed intervals from a database at the Illinois River, northwest Arkansas. The random sets were used to estimate total phosphorus (TP) loads using regression models. The regression-based annual TP loads were compared to the integrated annual TP load estimated using all the data. At a minimum, monthly sampling plus supplemental storm samples (six samples per year) was needed to produce a root mean square error of less than 15%. Water quality samples should be collected at least semi-monthly (every 15 days) in studies less than two years if seasonal time factors are to be used in the regression models. Annual TP loads estimated from independently collected discrete water quality samples further demonstrated the utility of using regression models to estimate annual TP loads in this stream system.

  19. Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait?

    PubMed

    Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J

    2013-06-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.

  20. Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China.

    PubMed

    Wu, Pan; Qin, Boqiang; Yu, Ge

    2016-03-01

    The shallow lakes in the eastern China developed on alluvial plains with high-nutrient sediments, and most overflow into the Yangtze River with short hydraulic residence times, whereas they become eutrophic over long time periods. Assuming strong responses to hydrogeological changes in the basin, we attempted to determine the dynamic eutrophication history of these lakes. Although evaluation models for internal total phosphorus (TP) loading are widely used for deep lakes in Europe and North America, the accuracy of these models for shallow lakes that have smaller water volumes controlled by the geometrical morphology and greater basin area of alluvial plains is unknown. To describe the magnitude of changes in velocity of trophic state for the studied shallow lakes, we first evaluated the P retention model in relation to the major forces driving lake morphology, basin climate, and external discharge and then used the model to estimate changes in TP in three large shallow lakes (Taihu, Chao, and Poyang) over 60 years (1950-2009 AD). The observed levels of TP were verified against the relative error of the three lakes (<6.43 %) and Nash-Sutcliffe coefficients (0.67-0.75). The results showed that the predicted TP concentrations largely increased with hydraulic residence time, especially in extreme drought years, with a generally rising trend in trophic status. The simulated trophic state index showed that lakes Taihu and Poyang became eutrophic in the 1990s, whereas Lake Chao became eutrophic in the 1980s; lakes Taihu and Chao ultimately became hypereutrophic in the 2000s. The analysis suggested that the tropic status of the shallow lakes was affected by both the hydroclimate and geological sedimentation of the Yangtze River basin. This work will contribute to the development of an internal P loading model for further evaluating trophic states.

  1. Editorial - A critical perspective on geo-engineering for eutrophication management in lakes.

    PubMed

    Lürling, Miquel; Mackay, Eleanor; Reitzel, Kasper; Spears, Bryan M

    2016-06-15

    Eutrophication is the primary worldwide water quality issue. Reducing excessive external nutrient loading is the most straightforward action in mitigating eutrophication, but lakes, ponds and reservoirs often show little, if any, signs of recovery in the years following external load reduction. This is due to internal cycling of phosphorus (P). Geo-engineering, which we can here define as activities intervening with biogeochemical cycles to control eutrophication in inland waters, represents a promising approach, under appropriate conditions, to reduce P release from bed sediments and cyanobacteria accumulation in surface waters, thereby speeding up recovery. In this overview, we draw on evidence from this special issue Geoengineering in Lakes, and on supporting literature to provide a critical perspective on the approach. We demonstrate that many of the strong P sorbents in the literature will not be applicable in the field because of costs and other constraints. Aluminium and lanthanum modified compounds are among the most effective compounds for targeting P. Flocculants and ballast compounds can be used to sink cyanobacteria, in the short term. We emphasize that the first step in managing eutrophication is a system analysis that will reveal the main water and P flows and the biological structure of the waterbody. These site specific traits can be significant confounding factors dictating successful eutrophication management. Geo-engineering techniques, considered collectively, as part of a tool kit, may ensure successful management of eutrophication through a range of target effects. In addition, novel developments in modified zeolites offer simultaneous P and nitrogen control. To facilitate research and reduce the delay from concept to market a multi-national centre of excellence is required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Biomass production in the Lower Mississippi River Basin: Mitigating associated nutrient and sediment discharge to the Gulf of Mexico.

    PubMed

    Ha, Miae; Zhang, Zhonglong; Wu, May

    2018-04-24

    A watershed model was developed using the Soil and Water Assessment Tool (SWAT) that simulates nitrogen, phosphorus, and sediment loadings in the Lower Mississippi River Basin (LMRB). The LMRB SWAT model was calibrated and validated using 21 years of observed flow, sediment, and water-quality data. The baseline model results indicate that agricultural lands within the Lower Mississippi River Basin (LMRB) are the dominant sources of nitrogen and phosphorus discharging into the Gulf of Mexico. The model was further used to evaluate the impact of biomass production, in the presence of riparian buffers in the LMRB, on suspended-sediment and nutrient loading discharge from the Mississippi River into the Gulf of Mexico. The interplay among land use, riparian buffers, crop type, land slope, water quality, and hydrology were anlyzed at various scales. Implementing a riparian buffer in the dominant agricultural region within the LMRB could reduce suspended sediment, nitrogen, and phosphorus loadings at the regional scale by up to 65%, 38%, and 39%, respectively. Implementation of this land management practice can reduce the suspended-sediment content and improve the water quality of the discharge from the LMRB into the Gulf of Mexico and support the potential production of bioenergy and bio-products within the Mississippi River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River basin, Washington, 1999-2000 [electronic resource] : with an analysis of trends in concentrations

    USGS Publications Warehouse

    Ebbert, James C.; Embrey, Sandra S.; Kelley, Janet A.

    2003-01-01

    Spatial and temporal variations in concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River Basin were assessed using data collected during 1999?2000 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Samples were collected at 34 sites located throughout the Basin in August 1999 using a Lagrangian sampling design, and also were collected weekly and monthly from May 1999 through January 2000 at three of the sites. Nutrient and sediment data collected at various time intervals from 1973 through 2001 by the USGS, Bureau of Reclamation, Washington State Department of Ecology, and Roza-Sunnyside Board of Joint Control were used to assess trends in concentrations. During irrigation season (mid-March to mid-October), concentrations of suspended sediment and nutrients in the Yakima River increase as relatively pristine water from the forested headwaters moves downstream and mixes with discharges from streams, agricultural drains, and wastewater treatment plants. Concentrations of nutrients also depend partly on the proportions of mixing between river water and discharges: in years of ample water supply in headwater reservoirs, more water is released during irrigation season and there is more dilution of nutrients discharged to the river downstream. For example, streamflow from river mile (RM) 103.7 to RM 72 in August 1999 exceeded streamflow in July 1988 by a factor of almost 2.5, but loads of total nitrogen and phosphorus discharged to the reach from streams, drains, and wastewater treatment plants were only 1.2 and 1.1 times larger. In years of ample water supply, canal water, which is diverted from either the Yakima or Naches River, makes up more of the flow in drains and streams carrying agricultural return flows. The canal water dilutes nutrients (especially nitrate) transported to the drains and streams in runoff from fields and in discharges from subsurface field drains and the shallow ground-water system. The average concentration of total nitrogen in drains and streams discharging to the Yakima River from RM 103.7 to RM 72 in August 1999 was 2.63 mg/L, and in July 1988 was 3.16 mg/L; average concentrations of total phosphorus were 0.20 and 0.26 mg/L. After irrigation season, streamflow in agricultural drains decreases because irrigation water is no longer diverted from the Yakima and Naches Rivers. As a result, concentrations of total nitrogen in drains increase because nitrate, which constitutes much of total nitrogen, continues to enter the drains from subsurface drains and shallow ground water. Concentrations of total phosphorus and suspended sediment often decrease, because they are transported to the drains in runoff of irrigation water from fields. In Granger Drain, concentrations of total nitrogen ranged from 2-4 mg/L during irrigation season and increased to about 6 mg/L after irrigation season, and concentrations of total phosphorus, as high as 1 mg/L, decreased to about 0.2 mg/L. In calendar year 1999, Moxee Drain transported an average of 28,000 lb/d (pounds per day) of suspended sediment, 380 lb/d of total nitrogen, and 46 lb/d of total phosphorus to the Yakima River. These loads were about half the average loads transported by Granger Drain during the same period. Average streamflows were similar for the two drains, so the difference in loads was due to differences in constituent concentrations: those in Moxee Drain were about 40-60 percent less than those in Granger Drain. Loads of suspended sediment and total phosphorus in Moxee and Granger Drains were nearly four times higher during irrigation season than during the non-irrigation season because with increased flow during irrigation season, concentrations of suspended sediment and total phosphorus are usually higher. Loads of nitrate in the drains were about the same in both seasons because nitrate concentrations are higher during the non-irrigation season.

  4. Phosphorus removal using Ca-rich hydrated oil shale ash as filter material--the effect of different phosphorus loadings and wastewater compositions.

    PubMed

    Kõiv, Margit; Liira, Martin; Mander, Ulo; Mõtlep, Riho; Vohla, Christina; Kirsimäe, Kalle

    2010-10-01

    We studied the phosphorus (P) binding capacity of Ca-rich alkaline filter material - hydrated oil shale ash (i.e. hydrated ash) in two onsite pilot-scale experiments (with subsurface flow filters) in Estonia: one using pre-treated municipal wastewater with total phosphorus (TP) concentration of 0.13-17.0 mg L(-1) over a period of 6 months, another using pre-treated landfill leachate (median TP 3.4 mg L(-1)) for a total of 12 months. The results show efficient P removal (median removal of phosphates 99%) in horizontal flow (HF) filters at both sites regardless of variable concentrations of several inhibitors. The P removal efficiency of the hydrated ash increases with increasing P loading, suggesting direct precipitation of Ca-phosphate phases rather than an adsorption mechanism. Changes in the composition of the hydrated ash suggest a significant increase in P concentration in all filters (e.g. from 489.5 mg kg(-1) in initial ash to 664.9 mg kg(-1) in the HF filter after one year in operation), whereas almost all TP was removed from the inflow leachate (R(2) = 0.99). Efficiency was high throughout the experiments (median outflow from HF hydrated ash filters 0.05-0.50 mg L(-1)), and P accumulation did not show any signs of saturation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. An Assessment of Reservoir Density Currents and Inflow Processes

    DTIC Science & Technology

    1983-07-01

    Perrier et al. 1977, Westerdahl et al. 1981). During storms, certain constituents (e.g., phosphorus, coliform bacteria, turbidity) charac...teristically load on the rising side of the hydrograph while others (e.g., nitrate and many metals) load on the falling limb (Perrier et al. 1977, Westerdahl et...Perrier, E. R., Westerdahl , H. E., and Nix, J. F. 1977. Water quality loadings during thirteen storms in the Caddo River, Arkansas. Am. Soc. Agr

  6. Nutrient transport and transformation beneath an infiltration basin

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Bradner, L.A.

    1998-01-01

    Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.

  7. Airworthiness Qualification Criteria for Rotorcraft with External Sling Loads

    NASA Technical Reports Server (NTRS)

    Key, David L.

    2002-01-01

    This report presents the results of a study to develop airworthiness requirements for rotorcraft with external sling loads. The report starts with a review of the various phenomena that limit external sling load operations. Specifically discussed are the rotorcraft-load aeroservoelastic stability, load-on handling qualities, effects of automatic flight control system failure, load suspension system failure, and load stability at speed. Based on past experience and treatment of these phenomena, criteria are proposed to form a package for airworthiness qualification. The desired end objective is a set of operational flight envelopes for the rotorcraft with intended loads that can be provided to the user to guide operations in the field. The specific criteria proposed are parts of ADS-33E-PRF; MIL-F-9490D, and MIL-STD-913A all applied in the context of external sling loads. The study was performed for the Directorate of Engineering, U.S. Army Aviation and Missile Command (AMCOM), as part of the contract monitored by the Aerothermodynamics Directorate, U.S. Army AMCOM.

  8. Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device

    USGS Publications Warehouse

    Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.

    1999-01-01

    This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.

  9. The nutrient load from food waste generated onboard ships in the Baltic Sea.

    PubMed

    Wilewska-Bien, Magda; Granhag, Lena; Andersson, Karin

    2016-04-15

    The combination of the sensitive characteristics of the Baltic Sea and the intense maritime traffic makes the marine environment vulnerable to anthropogenic influences. The theoretical scenario calculated in this study shows that the annually generated food waste onboard ships in traffic in the Baltic Sea contains about 182tonnes of nitrogen and 34tonnes of phosphorus. Today, all food waste generated onboard can be legally discharged into the marine environment at a distance of 12NM from the nearest land. The annual load of nitrogen contained in the food waste corresponds to 52% of load of nitrogen from the ship-generated sewage. Future regulations for sewage discharge in the Baltic Sea will require significant reduction of total nitrogen and phosphorus released. The contribution of nutrients from food waste compared to sewage will therefore be relatively larger in the future, if food waste still can be legally discharged. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.

    PubMed

    Ged, Evan C; Boyer, Treavor H

    2013-05-01

    This study characterized dissolved organic phosphorus (DOP) that is discharged from the Everglades Agricultural Area as part of the larger pool of aquatic dissolved organic matter (DOM). Whole water samples collected at the Everglades stormwater treat area 1 West (STA-1 W) were fractionated using a batch ultrafiltration method to separate organic compounds based on apparent molecular weight (AMW). Each AMW fraction of DOM was characterized for phosphorus, carbon, nitrogen, UV absorbance, and fluorescence. The DOP content of the Everglades water matrix was characteristically variable constituting 4-56% of total phosphorus (TP) and demonstrated no correlation with dissolved organic carbon (DOC). Measured values for DOP exceeded 14μgL(-1) in four out of five sampling dates making phosphorus load reductions problematic for the stormwater treatment areas (STAs), which target inorganic phosphorus and have a goal of 10μgL(-1) as TP. The molecular weight distributions revealed 40% of DOP is high molecular weight, aromatic-rich DOM. The results of this research are expected to be of interest to environmental chemists, environmental engineers, and water resources managers because DOP presents a major obstacle to achieving TP levels <10μgL(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Sodium and phosphorus-based food additives: persistent but surmountable hurdles in the management of nutrition in chronic kidney disease

    PubMed Central

    Gutiérrez, Orlando M.

    2012-01-01

    Sodium and phosphorus-based food additives are among the most commonly consumed nutrients in the world. This is because both have diverse applications in processed food manufacturing, leading to their widespread utilization by the food industry. Since most foods are naturally low in salt, sodium additives almost completely account for the excessive consumption of sodium throughout the world. Similarly, phosphorus additives represent a major and “hidden” phosphorus load in modern diets. These factors pose a major barrier to successfully lowering sodium or phosphorus intake in patients with chronic kidney disease. As such, any serious effort to reduce sodium or phosphorus consumption will require reductions in the use of these additives by the food industry. The current regulatory environment governing the use of food additives does not favor this goal, however, in large part because these additives have historically been classified as generally safe for public consumption. To overcome these barriers, coordinated efforts will be needed to demonstrate that high intakes of these additives are not safe for public consumption and as such, should be subject to greater regulatory scrutiny. PMID:23439374

  12. Sodium- and phosphorus-based food additives: persistent but surmountable hurdles in the management of nutrition in chronic kidney disease.

    PubMed

    Gutiérrez, Orlando M

    2013-03-01

    Sodium- and phosphorus-based food additives are among the most commonly consumed nutrients in the world. This is because both have diverse applications in processed food manufacturing, leading to their widespread use by the food industry. Since most foods are naturally low in salt, sodium additives almost completely account for the excessive consumption of sodium throughout the world. Similarly, phosphorus additives represent a major and "hidden" phosphorus load in modern diets. These factors pose a major barrier to successfully lowering sodium or phosphorus intake in patients with CKD. As such, any serious effort to reduce sodium or phosphorus consumption will require reductions in the use of these additives by the food industry. The current regulatory environment governing the use of food additives does not favor this goal, however, in large part because these additives have historically been classified as generally safe for public consumption. To overcome these barriers, coordinated efforts will be needed to demonstrate that high intake of these additives is not safe for public consumption and as such should be subject to greater regulatory scrutiny. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. [Influence of dredging on sediment resuspension and phosphorus transfer in lake: a simulation study].

    PubMed

    Yu, Ju-Hua; Zhong, Ji-Cheng; Zhang, Yin-Long; Fan, Cheng-Xin; He, Wei; Zhang, Lei; Tang, Zhen-Wu

    2012-10-01

    A simulated experiment was conducted to investigate the impacts of sediment dredging on sediment resuspension and phosphorus transfer in the summer and winter seasons under the common wind-wave disturbance, and the contaminated sediment used in this study was from Meiliang Bay, Taihu lake. The result showed that 20 cm dredging could effectively inhibit the sediment resuspension in study area, dredging in winter has a better effect than that in summer, and the higher values of the total suspended solid (TSS) in undredged and dredged water column during the process of wind wave disturbance were 7.0 and 2.2, 24.3 and 6.4 times higher than the initial value in summer and winter simulation respectively. The paired-samples t-test result demonstrated that total phosphorus (TP) and phosphate (PO4(3-)-P) loading positively correlated to TSS content in dredged (P<0.01) and undredged water column (P<0.05), which proved that internal phosphorus fulminating release induced by wind-wave disturbance would significantly increase the TP and PO4(3-)-P loading in the water column. The effect of dredging conducted in summer on the TP and PO4(3)-P loading in the water column was negative, but not for winter dredging (P<0.01). The pore water dissolved reactive phosphorus (DRP) profile at water-sediment interface in summer simulation was also investigated by diffusive gradients in thin films (DGT) technique. Diffusion layer of the DRP profile in undredged sediment was wider than that in dredged sediment. However, the DRP diffusion potential in dredged sediment was greater than that in undredged sediment, showing that dredging can effectively reduce the risk of the DRP potential release in dredged pore water, but also would induce the DRP fulminating release in the short time under hydrodynamic action. Generally, dredging was usually deployed during the summer and the autumn. Considering Taihu Lake is a large, shallow, eutrophic lake and the contaminant distribution is spatially heterogeneous, it is vital to determine the optimal time, depth and scope of dredging.

  14. 14 CFR 133.17 - Requirements for issuance of a rotorcraft external-load operator certificate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Requirements for issuance of a rotorcraft external-load operator certificate. 133.17 Section 133.17 Aeronautics and Space FEDERAL AVIATION... §§ 133.19, 133.21, and 133.23, the Administrator issues a Rotorcraft External-Load Operator Certificate...

  15. 14 CFR 133.17 - Requirements for issuance of a rotorcraft external-load operator certificate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Requirements for issuance of a rotorcraft external-load operator certificate. 133.17 Section 133.17 Aeronautics and Space FEDERAL AVIATION... §§ 133.19, 133.21, and 133.23, the Administrator issues a Rotorcraft External-Load Operator Certificate...

  16. Potential effects of structural controls and street sweeping on stormwater loads to the lower Charles River, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.; Breault, Robert F.; Weiskel, Peter K.

    2002-01-01

    The water quality of the lower Charles River is periodically impaired by combined sewer overflows (CSOs) and non-CSO stormwater runoff. This study examined the potential non-CSO load reductions of suspended solids, fecal coliform bacteria, total phosphorus, and total lead that could reasonably be achieved by implementation of stormwater best management practices, including both structural controls and systematic street sweeping. Structural controls were grouped by major physical or chemical process; these included infiltration-filtration (physical separation), biofiltration-bioretention (biological mechanisms), or detention-retention (physical settling). For each of these categories, upper and lower quartiles, median, and average removal efficiencies were compiled from three national databases of structural control performance. Removal efficiencies obtained indicated a wide range of performance. Removal was generally greatest for infiltration-filtration controls and suspended solids, and least for biofiltration-bioretention controls and fecal coliform bacteria. Street sweeping has received renewed interest as a water-quality control practice because of reported improvements in sweeper technology and the recognition that opportunities for implementing structural controls are limited in highly urbanized areas. The Stormwater Management Model that was developed by the U.S. Geological Survey for the lower Charles River Watershed was modified to simulate the effects of street sweeping in a single-family land-use basin. Constituent buildup and washoff variable values were calibrated to observed annual and storm-event loads. Once calibrated, the street sweeping model was applied to various permutations of four sweeper efficiencies and six sweeping frequencies that ranged from every day to once every 30 days. Reduction of constituent loads to the lower Charles River by the combined hypothetical practices of structural controls and street sweeping was estimated for a range of removal efficiencies because of their inherent variability and uncertainty. This range of efficiencies, with upper and lower estimates, provides reasonable bounds on the load that could be removed by the practices examined. The upper estimated load reduction from combined street sweeping and structural controls, as a percentage of the total non-CSO load entering the lower Charles River downstream of Watertown Dam, was 44 percent for suspended solids, 34 percent for total lead, 14 percent for total phosphorus, and 17 percent for fecal coliform bacteria. The lower estimated load reduction from combined street sweeping and structural controls from non-CSO sources downstream of Watertown Dam, was 14 percent for suspended solids, 11 percent for total lead, 4.9 percent for total phosphorus, and 7.5 percent for fecal coliform bacteria. Load reductions by these combined management practices can be a small as 1.4 percent for total phosphorus to about 4 percent for the other constituents if the total load above Watertown Dam is added to the load from below the dam. Although the reductions in stormwater loads to the lower Charles River from the control practices examined appear to be minor, these practices would likely provide water-quality benefits to portions of the river during those times that they are most impaired-during and immediately after storms. It should also be recognized that only direct measurements of changes in stormwater loads before and after implementation of control practices can provide definitive evidence of the beneficial effects of these practices on water-quality conditions in the lower Charles River.

  17. [Pollution load and the first flush effect of phosphorus in urban runoff of Wenzhou City].

    PubMed

    Zhou, Dong; Chen, Zhen-lou; Bi, Chun-juan

    2012-08-01

    Five typical rainfalls were monitored in two different research areas of Wenzhou municipality. The pH and concentrations of total phosphorus (TP), dissolved phosphorus (DP), particulate phosphorus (PP), total inorganic carbon (TIC), total organic carbon (TOC), total suspended substances (TSS), BOD5 and COD in six different kinds of urban runoff were measured. The results showed that, the concentrations of TP, DP and PP in different kinds of urban runoff of Wenzhou ranged from 0.01 to 4.32 mg x L(-1), ND to 0.88 mg x L(-1) and ND to 4.31 mg x L(-1), respectively. In the early stages of runoff process PP was dominated, while in the later, the proportion of DP in most of the runoff samples would show a rising trend, especially in roof and outlet runoff. Judged by the event mean concentration (EMC) of TP and DP in these five rainfalls, some kinds of urban runoff could cause environmental pressure to the next level receiving water bodies. Meanwhile, the differences among the TP and DP content (maximum, minimum and mean content) in various urban runoffs were significant, and so were the differences among various rainfall events. According to the M (V) curve, the first flush effect of TP in most kinds of urban runoff was common; while the first flush effect of DP was more difficult to occur comparing with TP. Not only the underlying surface types but also many physico-chemical properties of runoff could affect the concentration of TP in urban runoff. All the results also suggested that different best management plans (BMPs) should be selected for various urban runoff types for the treatment of phosphorus pollution, and reducing the concentration of TSS is considered as one of the effective ways to decrease the pollution load of phosphorus in urban runoff.

  18. Load control system. [for space shuttle external tank ground tests

    NASA Technical Reports Server (NTRS)

    Grosse, J. C.

    1977-01-01

    The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.

  19. Improvement of fatigue resistance for multilayer lead zirconate titanate (PZT)-based ceramic actuators by external mechanical loads

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Yue, Zhenxing; Ji, Ye; Chu, Xiangcheng; Li, Longtu

    2008-12-01

    The influence of external compressive loads, applied along a direction perpendicular to polarization, on fatigue behaviors of multilayer lead zirconate titanate (PZT)-based ceramic actuators was investigated. Under no external mechanical load, a normal fatigue behavior was observed, demonstrating that both switching polarization (Pswitching) and remnant polarization (Pr) progressively decreased with increasing switching cycles due to domain pinning by charge point defects. However, an anomalous enhancement in both switching and remnant polarizations was observed upon application of the external compressive loads. After 5×106 cycles of polarization switching, Pswitching and Pr increase by about 13% and 6% at 40 MPa, respectively, while Pswitching and Pr increase by about 11% and 21% at 60 MPa, respectively. The improvement of fatigue resistance can be attributed to non-180° domain switching and suppression of microcracking, triggered by external mechanical loads.

  20. Identification of Geologic and Anthropogenic Sources of Phosphorus to Streams in California and Portions of Adjacent States, U.S.A., Using SPARROW Modeling

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2013-12-01

    The SPARROW (Spatially Referenced Regressions On Watershed Attributes) model allows for the simulation of nutrient transport at un-gauged catchments on a regional scale. The model was used to understand natural and anthropogenic factors affecting phosphorus transport in developed, undeveloped, and mixed watersheds. The SPARROW model is a statistical tool that allows for mass balance calculation of constituent sources, transport, and aquatic decay based upon a calibration of a subset of stream networks, where concentrations and discharge have been measured. Calibration is accomplished using potential sources for a given year and may include fertilizer, geological background (based on bed-sediment samples and aggregated with geochemical map units), point source discharge, and land use categories. NHD Plus version 2 was used to model the hydrologic system. Land to water transport variables tested were precipitation, permeability, soil type, tile drains, and irrigation. For this study area, point sources, cultivated land, and geological background are significant phosphorus sources to streams. Precipitation and clay content of soil are significant land to water transport variables and various stream sizes show significance with respect to aquatic decay. Specific rock types result in different levels of phosphorus loading and watershed yield. Some important geological sources are volcanic rocks (andesite and basalt), granodiorite, glacial deposits, and Mesozoic to Cenozoic marine deposits. Marine sediments vary in their phosphorus content, but are responsible for some of the highest natural phosphorus yields, especially along the Central and Southern California coast. The Miocene Monterey Formation was found to be an especially important local source in southern California. In contrast, mixed metamorphic and igneous assemblages such as argillites, peridotite, and shales of the Trinity Mountains of northern California result in some of the lowest phosphorus yields. The agriculturally productive Central Valley of California has a low amount of background phosphorus in spite of inputs from streams draining upland areas. Many years of intensive agriculture may be responsible for the decrease of soil phosphorus in that area. Watersheds with significant background sources of phosphorus and large amounts of cultivated land had some of the highest per hectare yields. Seven different stream systems important for water management, or to describe transport processes, were investigated in detail for downstream changes in sources and loads. For example, the Klamath River (Oregon and California) has intensive agriculture and andesite-derived phosphorus in the upper reach. The proportion of agricultural-derived phosphorus decreases as the river flows into California before discharge to the ocean. The river flows through at least three different types of geological background sources from high to intermediate to very low. Knowledge of the role of natural sources in developed watersheds is critical for developing nutrient management strategies and these model results will have applicability for the establishment of realistic nutrient criteria.

  1. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    USGS Publications Warehouse

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent of the orthophosphate budget. We identified several data gaps and areas for future research, which include the need for better understanding nutrient inputs to the lake from sediment resuspension and better quantification of indirect nutrient inputs to the lake from Salmon Creek.

  2. Chemical and physical characteristics of water and sediment in Scofield Reservoir, Carbon County, Utah

    USGS Publications Warehouse

    Waddell, Kidd M.; Darby, D.W.; Theobald, S.M.

    1985-01-01

    Evaluations based on the nutrient content of the inflow, outflow, water in storage, and the dissolved-oxygen depletion during the summer indicate that the trophic state of Scofield Reservoir is borderline between mesotrophic and eutrophic and may become highly eutrophic unless corrective measures are taken to limit nutrient inflow.Sediment deposition in Scofield Reservoir during 1943-79 is estimated to be 3,000 acre-feet, and has decreased the original storage capacity of the reservoir by 4 percent. The sediment contains some coal, and age dating of those sediments (based on the radioisotope lead-210) indicates that most of the coal was deposited prior to about 1950.Scofield Reservoir is dimictic, with turnovers occurring in the spring and autumn. Water in the reservoir circulates completely to the bottom during turnovers. The concentration of dissolved oxygen decreases with depth except during parts of the turnover periods. Below an altitude of about 7,590 feet, where 20 percent of the water is stored, the concentration of dissolved oxygen was less than 2 milligrams per liter during most of the year. During the summer stratification period, the depletion of dissolved oxygen in the deeper layers is coincident with supersaturated conditions in the shallow layers; this is attributed to plant photosynthesis and bacterial respiration in the reservoir.During October 1,1979-August 31,1980, thedischargeweighted average concentrations of dissolved solids was 195 milligrams per liter in the combined inflow from Fish, Pondtown, and Mud Creeks, and was 175 milligrams per liter in the outflow (and to the Price River). The smaller concentration in the outflow was due primarily to precipitation of calcium carbonate in the reservoir about 80 percent of the decrease can be accounted for through loss as calcium carbonate.The estimated discharge-weighted average concentration of total nitrogen (dissolved plus suspended) in the combined inflow of Fish, Pondtown, and Mud Creeks was 1.1 milligrams per liter as nitrogen. The load of total nitrogen contributed by each stream was about proportional to the quantity of water contributed by the respective stream.For the combined inflow of Fish, Pondtown, and Mud Creeks, the discharge-weighted average concentration of total phosphorus was 0.06 milligram per liter as phosphorus. Percentages of the total phosphorus load contributed by Mud and Pondtown Creeks were significantly larger than their percentages of the total inflow. During October 1, 1979-August 31, 1980, Fish Creek contributed 72 percent of the inflowing water but only 60 percent of the total phosphorus load, Mud Creek contributed 16 percent of the total inflow but 24 percent of the total phosphorus load, and Pondtown Creek contributed 6 percent of the total inflow and 16 percent of the load of total phosphorus.Eccles Canyon is a major contributor of nutrients to Mud Creek, and most of the nutrient load occurs in the form of suspended organic material. During the snowmelt period, concentrations of total nitrogen and phosphorus were as much as 21 and 4.3 milligrams per liter at the gaging station in Eccles Canyon. The unusually large concentrations of nitrogen and phosphorus probably have resulted from flushing of residual debris from the canyon about 27.3 acres of forested land were cleared during 1979 for fire protection around new mine portals and for road rights-of-way.The concentrations of trace metals in the sediments near the inflow of Mud Creek are not greatly different from those in the middle of the reservoir, which suggests that sediments related to coal mining either have not affected the trace-metal concentrations in the sediments or, particularly for the fine-grained sediments, have been uniformly distributed over the reservoir bottom. The concentration of total extractable mercury in the sediments ranged from 0.08 to 0.20 part per million near the inflow of Mud Creek and from 0.08 to 0.46 part per million at a site near the middle of the reservoir. Virtually all the mercury is silica bound, which is the least soluble fraction. The maximum concentration of mercury in the nondetrital and easily soluble fraction was 0.02 part per million at both sites.

  3. Long-term trends in nutrient budgets of the western Dutch Wadden Sea (1976-2012)

    NASA Astrophysics Data System (ADS)

    Jung, A. S.; Brinkman, A. G.; Folmer, E. O.; Herman, P. M. J.; van der Veer, H. W.; Philippart, C. J. M.

    2017-09-01

    Long-term field observations of nitrogen [N] and phosphorus [P] concentrations were used to construct nutrient budgets for the western Dutch Wadden Sea between 1976 and 2012. Nutrients come into the western Dutch Wadden Sea via river runoff, through exchange with the coastal zone of the North Sea, neighbouring tidal basins and through atmospheric deposition (for N). The highest concentrations in phosphorus and nitrogen were observed in the mid-1980s. Improved phosphorus removal at waste water treatment plants, management of fertilization in agriculture and removal of phosphates from detergents led to reduced riverine nutrient inputs and, consequently, reduced nutrient concentrations in the Wadden Sea. The budgets suggest that the period of the initial net import of phosphorus and nitrogen switched to a net export in 1981 for nitrogen and in 1992 for phosphorus. Such different behaviour in nutrient budgets during the rise and fall of external nutrient concentrations may be the result of different sediment-water exchange dynamics for P and N. It is hypothesized that during the period of increasing eutrophication (1976-1981) P, and to a lesser degree N, were stored in sediments as organic and inorganic nutrients. In the following period (1981-1992) external nutrient concentrations (especially in the North Sea) decreased, but P concentrations in the Wadden Sea remained high due to prolonged sediment release, whilst denitrification removed substantial amounts of N. From 1992 onwards, P and N budgets were closed by net loss, most probably because P stores were then depleted and denitrification continued. Under the present conditions (lower rates of sediment import and depleted P stores), nutrient concentrations in this area are expected to be more strongly influenced by wind-driven exchange with the North Sea and precipitation-driven discharge from Lake IJssel. This implies that the consequences of climate change will be more important, than during the 1970s and 1980s.

  4. Sediment deposition and trends and transport of phosphorus and other chemical constituents, Cheney Reservoir watershed, south-central Kansas

    USGS Publications Warehouse

    Mau, D.P.

    2001-01-01

    Sediment deposition, water-quality trends, and mass transport of phosphorus, nitrogen, selected trace elements, and selected pesticides within the Cheney Reservoir watershed in south-central Kansas were investigated using bathymetric survey data and reservoir bottom-sediment cores. Sediment loads in the reservoir were investigated by comparing 1964 topographic data to 1998 bathymetric survey data. Approximately 7,100 acre-feet of sediment deposition occurred in Cheney Reservoir from 1965 through 1998. As of 1998, sediment had filled 27 percent of the reservoir's inactive conservation storage pool, which is less than the design estimate of 34 percent. Mean annual sediment deposition was 209 acre-feet per year, or 0.22 acre-feet per year per square mile, and the mean annual sediment load was 453 million pounds per year. During the 3-year period from 1997 through 1999, 23 sediment cores were collected from the reservoir, and subsamples were analyzed for nutrients (phosphorus and nitrogen species), selected trace elements, and selected organic pesticides. Mean concentrations of total phosphorus in reservoir bottom sediment ranged from 94 milligrams per kilogram at the upstream end of the reservoir to 710 milligrams per kilogram farther downstream near the reservoir dam. The mean concentration for all sites was 480 milligrams per kilogram. Total phosphorus concentrations were greatest when more silt- and clay-sized particles were present. The implications are that if anoxic conditions (inadequate oxygen) occur near the dam, phosphorus could be released from the sediment and affect the drinking-water supply. Analysis of selected cores also indicates that total phosphorus concentrations in the reservoir sediment increased over time and were probably the result of nonpoint-source activities in the watershed, such as increased fertilizer use and livestock production. Mean annual phosphorus loading to Cheney Reservoir was estimated to be 226,000 pounds per year on the basis of calculations from deposited sediment in the reservoir. Mean total phosphorus concentration in the surface-water inflow to Cheney Reservoir was 0.76 milligram per liter, mean annual phosphorus yield of the watershed was estimated to be 0.38 pound per year per acre, and both are based on sediment deposition in the reservoir. A comparison of the Cheney Reservoir watershed to the Webster Reservoir, Tuttle Creek Lake, and Hillsdale Lake watersheds showed that phosphorus yields were smallest in the Webster Reservoir watershed where precipitation was less than in the other watersheds. Mean concentrations of total ammonia plus organic nitrogen in bottom sediment from Cheney Reservoir ranged from 1,200 to 2,400 milligrams per kilogram as nitrogen. A regression analysis between total ammonia plus organic nitrogen as nitrogen and sediment particle size showed a strong relation between the two variables and suggests, as with phosphorus, that total ammonia plus organic nitrogen as nitrogen adsorbs to the silt- and clay-sized particles that are transported to the deeper parts of the reservoir. An analysis of trends with depth of total ammonia plus organic nitrogen as nitrogen did not indicate a strong relation between the two variables despite the increase in fertilizer use in the watershed during the past 40 years. Selected cores were analyzed for trace elements. Concentrations of arsenic, chromium, copper, and nickel at many sites exceeded levels where adverse effects on aquatic organisms sometimes occur. Larger concentrations of these elements also occurred in sediment closer to the reservoir dam where there is a larger percentage of silt and clay in the bottom sediment than farther upstream. However, the lack of industrial or commercial land use in the watershed suggests that these concentrations may be the result of natural conditions. Organochlorine insecticides were detected in the reservoir-bottom sediment in Cheney Reservoir. DDT and its degradation products DDD and DD

  5. Integrated research - water quality, sociological, economic, and modeling - in a regulated watershed: Jordan Lake, NC

    Treesearch

    Deanna Osmond; Mazdak Arabi; Caela O' Connell; Dana Hoag; Dan Line; Marzieh Motallebi; Ali Tasdighi

    2016-01-01

    Jordan Lake watershed is regulated by state rules in order to reduce nutrient loading from point and both agricultural and urban nonpoint sources. The agricultural community is expected to reduce nutrient loading by specific amounts that range from 35 - 0 percent nitrogen, and 5 - 0 percent phosphorus.

  6. Effects of a Cattail Wetland on Water Quality of Irondequoit Creek near Rochester, New York

    USGS Publications Warehouse

    Coon, William F.; Bernard, John M.; Seischab, Franz K.

    2000-01-01

    A 6-year (1990-96) study of the Ellison Park wetland, a 423-acre, predominantly cattail (Typha glauca) marsh in Monroe County, N.Y., was conducted to document the effect that this wetland has on the water quality of Irondequoit Creek, which flows through it. Irondequoit Creek drains 151 square miles of mostly urban and suburban land and is the main tributary to Irondequoit Bay on Lake Ontario. The wetland was a sink for total phosphorus and total suspended solids (28 and 47 percent removal efficiencies, respectively, over the 6-year study period). Sedimentation and vegetative filtration appear to be the primary mechanisms for the decrease in loads of these constituents. Total nitrogen loads were decreased slightly by the wetland; removal efficiencies for ammonia-plus-organic nitrogen and nitrate-plus-nitrite were 6 and 3 percent, respectively. The proportions of total phosphorus and total nitrogen constituents were altered by the wetland. Orthophosphate and ammonia nitrogen were generated within the wetland and represented 12 percent of the total phosphorus output load and 1.8 percent of total nitrogen output load, respectively. Conservative chemicals, such as chloride and sulfate, were littleaffected by the wetland. Concentrations of zinc, lead, and cadmium showed statistically significant decreases, which are attributed to sedimentation and filtration of sediment and organic matter to which these elements adsorb.Sediment samples from open-water depositional areas in the wetland contained high concentrations of (1) trace metals, including barium, manganese, strontium, zinc (each of which exceeded 200 parts per million), as well as chromium, copper, lead, and vanadium, and (2) some polycyclic aromatic hydrocarbons. Persistent organochlorine pesticides, such as chlordane, dieldrin, DDT and its degradation products (DDD and DDE), and polychlorinated biphenyls (PCB's), also were detected, but concentrations of these compounds were within the ranges often found in depositional environments in highly urbanized areas.Cattail shoots attained a maximum height of 350 centimeters, a density of more than 30 shoots per square meter, and total biomass of more than 5,600 grams per square meter (46 percent of which was in above-ground tissues during the growing season). Nitrogen and potassium were three times more abundant in above-ground tissues (2.4 and 1.5 percent by dry weight, respectively) than in below-ground tissues (0.8 and 0.5 percent, respectively). Concentrations of phosphorus, molybdenum, and manganese in above-ground tissues were similar to those in below-ground tissues, but the concentrations of all other constituents were considerably higher in below-ground tissues. Concentrations of several elements exceeded those typically found in natural wetlands; these included manganese (417 ppm, parts per million) and sodium (3,600 ppm) in above-ground tissues, and aluminum (1,540 ppm), iron (15,400 ppm), manganese (433 ppm), and sodium (10,000 ppm) in below-ground tissues.Large quantities of nutrients are assimilated by wetland vegetation during the growing season, but neither tissue production nor microbial metabolic processes appeared to play a significant role in the observed patterns of surface-water chemical input-to-output relations on a seasonal basis. Presumably, internal cycling of nutrients sequestered in the sediments and detritus, combined with a summer increase in microbially mediated chemical transformations, obscured the effects of vegetative assimilation during the summer on surface-water chemical loads. Additionally, the natural confinement of most flows within the banks of Irondequoit Creek, which resulted in passage of stormwater through the wetland with little dispersion or detention in the cattail and backwater areas, diminished the capability of the wetland to improve water quality. Additional factors that probably affected the chemical-removal efficiency of the wetland included chemical inflow loading rates, storage and release mechanisms of the sediments (sedimentation, adsorption, filtration, precipitaton, dissolution, and resuspension), and accretion and burial of organic matter.Measurements of chlorophyll_a concentrations, and calculations of potential phosphorus concentrations, since the 1970’s indicate an improvement in the trophic state of Irondequoit Bay. Estimated average annual loads (1990-96) of selected constituents entering Irondequoit Bay indicate that, since 1980, the loads of all major forms of nitrogen have decreased, chloride loads have increased, and sulfate loads have changed little. Inputs of total phosphorus and suspended solids to the wetland have increased since 1980, possibly as a result of increased erosion by stormflows from an increasingly developed watershed. The wetland decreases the loads of these constituents, but the trends of these loads entering Irondequoit Bay cannot be reliably defined because the removal efficiencies during the two earlier study periods (1980–81 and 1984–88) are known.

  7. Economic analysis of best management practices to reduce watershed phosphorus losses.

    PubMed

    Rao, Nalini S; Easton, Zachary M; Lee, David R; Steenhuis, Tammo S

    2012-01-01

    In phosphorus-limited freshwater systems, small increases in phosphorus (P) concentrations can lead to eutrophication. To reduce P inputs to these systems, various environmental and agricultural agencies provide producers with incentives to implement best management practices (BMPs). In this study, we examine both the water quality and economic consequences of systematically protecting saturated, runoff-generating areas from active agriculture with selected BMPs. We also examine the joint water quality/economic impacts of these BMPs-specifically BMPs focusing on barnyards and buffer areas. Using the Variable Source Loading Function model (a modified Generalized Watershed Loading Function model) and net present value analysis (NPV), the results indicate that converting runoff-prone agricultural land to buffers and installing barnyard BMPs are both highly effective in decreasing dissolved P loss from a single-farm watershed, but are also costly for the producer. On average, including barnyard BMPs decreases the nutrient loading by about 5.5% compared with only implementing buffers. The annualized NPV for installing both buffers on only the wettest areas of the landscape and implementing barnyard BMPs becomes positive only if the BMPs lifetime exceeds 15 yr. The spatial location of the BMPs in relation to runoff producing areas, the time frame over which the BMPs are implemented, and the marginal costs of increasing buffer size were found to be the most critical considerations for water quality and profitability. The framework presented here incorporates estimations of nutrient loading reductions in the economic analysis, and is applicable to farms facing BMP adoption decisions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Nutrient production from dairy cattle manure and loading on arable land.

    PubMed

    Won, Seunggun; Shim, Soo-Min; You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix

    2017-01-01

    Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

  9. Modeling a phosphorus credit trading program in an agricultural watershed.

    PubMed

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2014-10-01

    Water quality and economic models were linked to assess the economic and environmental benefits of implementing a phosphorus credit trading program in an agricultural sub-basin of Lake Okeechobee watershed, Florida, United States. The water quality model determined the effects of rainfall, land use type, and agricultural management practices on the amount of total phosphorus (TP) discharged. TP loadings generated at the farm level, reaching the nearby streams, and attenuated to the sub-basin outlet from all sources within the sub-basin, were estimated at 106.4, 91, and 85 mtons yr(-)(1), respectively. Almost 95% of the TP loadings reaching the nearby streams were attributed to agriculture sources, and only 1.2% originated from urban areas, accounting for a combined TP load of 87.9 mtons yr(-)(1). In order to compare a Least-Cost Abatement approach to a Command-and-Control approach, the most cost effective cap of 30% TP reduction was selected, and the individual allocation was set at a TP load target of 1.6 kg ha(-1) yr(-1) (at the nearby stream level). The Least-Cost Abatement approach generated a potential cost savings of 27% ($1.3 million per year), based on an optimal credit price of $179. Dairies (major buyer), ornamentals, row crops, and sod farms were identified as potential credit buyers, whereas citrus, improved pastures (major seller), and urban areas were identified as potential credit sellers. Almost 81% of the TP credits available for trading were exchanged. The methodology presented here can be adapted to deal with different forms of trading sources, contaminants, or other technologies and management practices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Concentrations, loads, and yields of select constituents from major tributaries of the Mississippi and Missouri Rivers in Iowa, water years 2004-2008

    USGS Publications Warehouse

    Garrett, Jessica D.

    2012-01-01

    Excess nutrients, suspended-sediment loads, and the presence of pesticides in Iowa rivers can have deleterious effects on water quality in State streams, downstream major rivers, and the Gulf of Mexico. Fertilizer and pesticides are used to support crop growth on Iowa's highly productive agricultural landscape and for household and commercial lawns and gardens. Water quality was characterized near the mouths of 10 major Iowa tributaries to the Mississippi and Missouri Rivers from March 2004 through September 2008. Stream loads were calculated for select ions, nutrients, and sediment using approximately monthly samples, and samples from storm and snowmelt events. Water-quality samples collected using standard streamflow-integrated protocols were analyzed for major ions, nutrients, carbon, pesticides, and suspended sediment. Statistical data summaries of sample data used parametric and nonparametric techniques to address potential bias related to censored data and multiple levels of censoring of data below analytical detection limits. Constituent stream loads were computed using standard pre-defined models in S-LOADEST that include streamflow and time terms plus additional terms for streamflow variability and streamflow anomalies. Streamflow variability terms describe the difference in streamflow from recent average conditions, whereas streamflow anomaly terms account for deviations from average conditions from long- to short-term sequentially. Streamflow variability or anomaly terms were included in 44 of 80 site/constituent individual models, demonstrating the usefulness of these terms in increasing accuracy of the load estimates. Constituent concentrations in Iowa streams exhibit streamflow, seasonal, and spatial patterns related to the landform and climate gradients across the studied basins. The streamflow-concentration relation indicated dilution for ions such as chloride and sulfate. Other constituent concentrations, such as dissolved organic carbon and suspended sediment, increased with streamflow. Nitrogen concentrations (total nitrogen and nitrate plus nitrite) increased with low and moderate streamflows, but decreased with high streamflows. Seasonal patterns observed in constituent concentrations were affected by streamflow, algae blooms, and pesticide application. The various landform regions produced different water-quality responses across the study basins; for example, total phosphorus, suspended sediment, and turbidity were greatest from the steep, loess-dominated southwestern Iowa basins. Nutrient concentrations, though not regulated for drinking water at the study sites, were high compared to drinking-water limits and criteria for protection of aquatic life proposed for other Midwestern states (Iowa criteria for aquatic life have not been proposed). Nitrate plus nitrite concentrations exceeded the drinking-water limit [10 milligrams per liter (mg/L)] in 11 percent of all samples at the 10 sites, and exceeded Minnesota's proposed aquatic life criteria (4.9 mg/L) in 68 percent of samples. The Wisconsin standard for total phosphorus (0.1 mg/L) was exceeded in 92 percent of samples. Ammonia standards, current during sample collection and at publication of this report, for protection of aquatic life were met for all samples, but draft criteria proposed in 2009 to protect more sensitive species like mussels, were exceeded at three sites. Loads and yields also differed among sites and years. The Big Sioux, Little Sioux, and Des Moines Rivers produced the greatest sulfate yields. Mississippi River tributaries had greater chloride yields than Missouri River tributaries. The Big Sioux River also had the lowest silica yields and total nitrogen and nitrate yields, whereas nitrogen yields were greater in the northeastern rivers. The Boyer and Nishnabotna River total phosphorus yields were the greatest in the study. The Boyer River orthophosphate yields were greatest except in 2008, when the Maquoketa River produced the greatest yield. Rivers in southwestern Iowa's Western Loess Hills and Steeply Rolling Loess Prairie ecoregions had the greatest suspended-sediment yields, whereas the smallest yields were in the Big Sioux and Wapsipinicon Rivers. In the 10 Iowa rivers studied, combined annual total nitrogen stream transport ranged from 3.68 to 9.95 tons per square mile per year, and total phosphorus transport ranged from 0.138 to 0.570 tons per square mile per year. Six-month loads relative to fertilizer use ranged from 8 to 56 percent for nitrogen, and 1.0 to 11.1 percent for phosphorus. The smallest loads relative to fertilizer use for both nitrogen and phosphorus occurred in July-December of dry years, and the largest nitrogen and phosphorus loads relative to use were in wet years from January-June.

  11. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    USGS Publications Warehouse

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of floating macrophytes accumulated behind bridge constrictions and dams; in 2008, high flows during the early part of the growing season carried floating macrophytes past bridges and over dams, minimizing accumulations. Samples of Lemna were collected and weighed to provide an estimate of Lemna biomass based on areal coverage during the summer growing seasons at eight sites in the five impoundments. Average estimated biomass during 2007 was approximately twice the 2008 biomass in each of the areas monitored. In 2007, in situ hyperspectral and high-resolution, multispectral data from the IKONOS satellite were obtained to evaluate the feasibility of using remote sensing to monitor the extent of aquatic plant growth in Assabet River impoundments. Three vegetation indices based on light reflectance were used to develop metrics with which the hyperspectral and satellite data were compared. The results of the comparisons confirmed that the high-resolution satellite imagery could differentiate among the common aquatic-plant associations found in the impoundments. The use of satellite imagery could counterbalance emphasis on the subjective judgment of a human observer, and airborne hyperspectral data can provide higher resolution imagery than multispectral satellite data. In 2007 and 2008, the potential for sediment flux of phosphorus was examined in free-flowing reaches of the river and in the two largest impoundments-Hudson and Ben Smith. These studies were undertaken to determine in situ flux rates prior to the implementation of the Assabet River Total Maximum Daily Load (TMDL) for phosphorus and to compare these rates with those used in the development and evaluation of the TMDL. Water samples collected from a chamber placed on the river bottom were analyzed for total phosphorus and orthophosphorus. Ambient dissolved oxygen concentrations and seasonal temperature differences appeared to affect the rates of sequestration and sediment release of phosphorus. When dissolved oxygen concentrations remained relatively high in the chambers and when the temperature was relatively low, the tendency was for phosphorus concentrations to decrease in the chambers, indicating sediment sequestration of phosphorus; when dissolved oxygen concentrations dropped to near zero and temperatures were warmest, phosphorus concentrations increased in the chambers, indicating phosphorus flux from the sediment. The rates of release and sequestration in the in situ studies were generally comparable with the rates determined in laboratory studies of Assabet River sediment cores for State and Federal agencies. Sediment-core and chamber studies produced substantial sediment fluxes to the water column only under extremely low-DO or anaerobic conditions rarely found in the Assabet River impoundments; thus, sediment is not likely to be a major phosphorus source, especially when compared to the wastewater effluent, which sustains higher ambient concentrations. The regulatory agencies now (2011) have substantial laboratory and field data with which to determine the required 90-percent reduction in phosphorus flux after the completion of upgrades to the wastewater-treatment plants that discharge to the Assabet River.

  12. Transformation-Induced Diffraction Peak Broadening During Bainitic and Martensitic Transformations Under Small External Loads in a Quenched and Tempered High Strength Steel

    NASA Astrophysics Data System (ADS)

    Dutta, R. K.; Huizenga, R. M.; Amirthalingam, M.; Hermans, M. J. M.; King, A.; Richardson, I. M.

    2013-09-01

    In situ phase transformation behavior of a high strength S690QL1 steel during continuous cooling under different mechanical loading conditions has been used to investigate the effect of small external loads on the transformation-induced plasticity during bainitic and martensitic transformations. The results show that during phase transformations, the untransformed austenite undergoes plastic deformation, thereby retarding further transformation to bainite/martensite. This occurs independent of external load.

  13. GROWTH, PRIMARY PRODUCTIVITY, AND NITROGEN FIXATION POTENTIAL OF NODULARIA SPP. (CYANOPHYCEAE) IN WATER FROM A SUBTROPICAL ESTUARY IN THE UNITED STATES .

    PubMed

    Moisander, Pia H; Paerl, Hans W

    2000-08-26

    Nodularia is a halotolerant, filamentous, dinitrogen-fixing cyanobacterium that forms massive blooms in some coastal oceans, estuaries, and saline lakes worldwide. Although the genus is globally distributed, its blooms are sporadic and appear to be confined to certain water bodies. Blooms are frequently associated with phosphorus enrichment; therefore Nodularia may benefit from increased anthropogenic nutrient loading to coastal waters. We studied the potential for Nodularia to grow in the nitrogen-limited Neuse River Estuary (North Carolina, U.S.A.) with laboratory growth experiments in Neuse River Estuary water and by examining physico-chemical data from the estuary. Analysis of nutrients (nitrogen and phosphorus), salinity, and temperature data from the Neuse River Estuary between 1994 and 1998 revealed that suitable conditions for Nodularia prevailed during the summer of each of these years for time spans ranging from 1.5 to 5 months. Growth of two laboratory strains in Neuse River Estuary water was as fast or slightly slower than in artificial growth medium, as long as the culture inoculum had phosphorus reserves. Phosphorus addition did not stimulate growth of already phosphorus-sufficient inocula. Phosphorus starvation of the inoculum before the experiment decreased growth rates in the estuarine water unless additional phosphorus was supplied. Although phosphorus addition had a stimulatory effect on dinitrogen fixation and productivity, the effect differed for the two Nodularia strains. Results suggest that growth of Nodularia in North Carolinian estuaries is possible, and that such growth would be phosphorus-limited at times. Phosphorus availability may determine the times and locations for potential establishment of Nodularia in this and similar estuarine ecosystems.

  14. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff

    PubMed Central

    Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684

  15. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    PubMed

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  16. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    PubMed

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.

  17. Application of an Environmental Decision Support System to a Water Quality Trading Program Affected by Surface Water Diversions

    NASA Astrophysics Data System (ADS)

    Obropta, Christopher C.; Niazi, Mehran; Kardos, Josef S.

    2008-12-01

    Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon’s (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions.

  18. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  19. Does Maximal External Tibial Component Rotation Influence Tibiofemoral Load Distribution in the Primary Knee Arthroplasty Setting: A Comparison of Neutral vs Maximal Anatomical External Rotatory States.

    PubMed

    Manning, William A; Ghosh, Kanishka M; Blain, Alasdair P; Longstaff, Lee M; Rushton, Steven P; Deehan, David J

    2017-06-01

    Tibial component rotation at time of knee arthroplasty can influence conformity, load transmission across the polyethylene surface, and perhaps ultimately determined survivorship. Optimal tibial component rotation on the cut surface is reliant on standard per operative manual stressing. This subjective assessment aims to balance constraint and stability of the articulation through a full arc of movement. Using a cadaveric model, computer navigation and under defined, previously validated loaded conditions mimicking the in vivo setting, the influence of maximal tibial component external rotation compared with the neutral state was examined for changes in laxity and tibiofemoral continuous load using 3D displacement measurement and an orthosensor continuous load sensor implanted within the polyethylene spacer in a simulated single radius total knee arthroplasty. No significant difference was found throughout arc of motion (0-115 degrees of flexion) for maximal varus and/or valgus or rotatory laxity between the 2 states. The neutral state achieved equivalence for mediolateral load distribution at each point of flexion. We have found that external rotation of the tibial component increased medial compartment load in comparison with the neutral position. Compared with the neutral state, external rotation consistently effected a marginal, but not significant reduction in lateral load under similar loading conditions. The effects were most pronounced in midflexion. On the basis of these findings, we would advocate for the midtibial tubercle point to determine tibial component rotation and caution against component external rotation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Surface-Water Quality and Nutrient Loads in the Nepaug Reservoir Watershed, Northwestern Connecticut, 1999-2001

    USGS Publications Warehouse

    Morrison, Jonathan; Colombo, Michael J.

    2006-01-01

    Water quality was characterized at three tributary watersheds to the Nepaug Reservoir-Nepaug River, Phelps Brook, and Clear Brook-from October 1998 through September 2001 to document existing water-quality conditions and evaluate potential future effects of the removal of sand and gravel from areas of the watershed. Some removal operations may include removal of vegetation and top soil and steepening of slopes. Routine water samples collected monthly in all three watersheds were analyzed for nutrients, organic carbon, major ions, and fecal indicator bacteria. Results of the analyses indicate that, in general, the water quality in all three tributary watersheds is good and meets standards established for drinking-water supplies for nitrate, but does not always meet contact-recreation standards for bacteria. Median concentrations of total nitrogen, total phosphorus, and total organic carbon were highest in the routine monthly samples from Phelps Brook and lowest from Clear Brook. Samples also were collected during selected storms to examine changes in concentrations of nutrients during periods of high streamflow. The maximum values measured for total nitrogen, total phosphorus, and total organic carbon were in storm samples from Clear Brook. The Nepaug River watershed delivered the largest loads of total nitrogen, total phosphorus, and total organic carbon to the reservoir. Yields of nutrients and organic carbon differed significantly from year to year and among the three watersheds. Yields of total nitrogen and total organic carbon were largest from Phelps Brook and smallest from Clear Brook. The yields of total phosphorus were largest from Nepaug River and smallest from Phelps Brook. In comparison to other watersheds in Connecticut, annual loads and yields from the three streams were lower than those of developed urban areas and comparable to those of other rural and forested basins. Delivery of nutrients and organic carbon to the reservoir took place mostly during the spring with the exception of those constituents delivered during Tropical Storm Floyd, a large fall storm.

  1. Real-time estimation of TP load in a Mississippi Delta Stream using a dynamic data driven application system

    Treesearch

    Ying Ouyang; Theodor D. Leininger; Jeff Hatten

    2013-01-01

    Elevated phosphorus (P) in surface waters can cause eutrophication of aquatic ecosystems and can impair water for drinking, industry, agriculture, and recreation. Currently, no effort has been devoted to estimating real-time variation and load of total P (TP) in surface waters due to the lack of suitable and/or cost-effective wireless sensors. However, when considering...

  2. Quantity and quality of runoff from selected guttered and unguttered roadways in northeastern Ramsey County, Minnesota

    USGS Publications Warehouse

    Mitton, G.B.; Payne, G.A.

    1997-01-01

    Length of latent period was statistically compared to constituent concentration levels of total phosphorus, dissolved sulfate, and total zinc and there was a correlation. Constituent loads were not associated with latent period. No correlation was found between traffic volumes which ranged from 1,888 to 7,172 vehicles per day and constituent concentrations or loads for this study.

  3. Evaluation of a Leaf Collection and Street Cleaning Program as a Way to Reduce Nutrients and Organic Carbon in Urban Runoff

    NASA Astrophysics Data System (ADS)

    Selbig, W.

    2016-12-01

    Organic detritus can be major sources of nutrients and organic carbon in urban stormwater, especially in areas with dense overhead tree canopy. In order to meet impending regulation to reduce nutrient loads, many cities will require information on structural and non-structural stormwater control measures that target organic detritus. Most cities already conduct some level of leaf collection and existing street cleaning programs; however, few studies have quantified their water-quality benefits. The U.S Geological Survey measured the water-quality benefits of a municipal leaf collection program coupled with street cleaning in Madison, WI, USA during the months of October through November of 2014 and 2015. The calibration phase of the study (2014) characterized nutrient and organic carbon concentrations and loads in runoff from two paired basins without leaf collection or street cleaning. During the treatment phase (2015), leaf collection and street cleaning was done in the test basin by city personnel on a weekly basis. Additionally, prior to each precipitation event, USGS personnel removed as much organic debris from the street surface as reasonably possible. The control remained without street cleaning or leaf collection for the entire monitoring period. During the fall, leaf collection and street cleaning was able to remove the increased amount of organic debris from the curb and street surface which resulted in statistically significant (p<0.05) reductions in loads of phosphorus, nitrogen and organic carbon. Total and dissolved phosphorus loads were reduced by 84 and 83 percent, respectively. Similarly, total and dissolved organic carbon was reduced by 81 and 86 percent, and total and dissolved nitrogen was reduced by 74 and 71 percent, respectively. In the control basin, 60 percent of the annual phosphorus load occurred in fall (winter excluded), the majority of which was dissolved as orthophosphorus, compared to only 16 percent in the test basin. While the leaf collection practices adopted during this study may surpass those used by most municipal programs, results from this study suggest a significant reduction of nutrient and organic carbon loads in urban stormwater is feasible when leaves and other organic detritus are removed from streets prior to precipitation events.

  4. Eutrophication of Water Bodies: Insights for an Age-Old Problem

    ERIC Educational Resources Information Center

    Lee, G. Fred; And Others

    1978-01-01

    Reviews the current state of information on the significance of phosphate as a water pollutant and the relationship between phosphorus loads and water quality. Areas that need additional research are discussed. (Author/BB)

  5. Quantifying phosphorus levels in soils, plants, surface water, and shallow groundwater associated with bahiagrass-based pastures.

    PubMed

    Sigua, Gilbert C; Hubbard, Robert K; Coleman, Samuel W

    2010-01-01

    Recent assessments of water quality status have identified eutrophication as one of the major causes of water quality 'impairment' not only in the USA but also around the world. In most cases, eutrophication has accelerated by increased inputs of phosphorus due to intensification of crop and animal production systems since the early 1990 s. Despite substantial measurements using both laboratory and field techniques, little is known about the spatial and temporal variability of phosphorus dynamics across landscapes, especially in agricultural landscapes with cow-calf operations. Critical to determining environmental balance and accountability is an understanding of phosphorus excreted by animals, phosphorus removal by plants, acceptable losses of phosphorus within the manure management and crop production systems into soil and waters, and export of phosphorus off-farm. Further research effort on optimizing forage-based cow-calf operations to improve pasture sustainability and protect water quality is therefore warranted. We hypothesized that properly managed cow-calf operations in subtropical agroecosystem would not be major contributors to excess loads of phosphorus in surface and ground water. To verify our hypothesis, we examined the comparative concentrations of total phosphorus among soils, forage, surface water, and groundwater beneath bahiagrass-based pastures with cow-calf operations in central Florida, USA. Soil samples were collected at 0-20; 20-40, 40-60, and 60-100 cm across the landscape (top slope, middle slope, and bottom slope) of 8 ha pasture in the fall and spring of 2004 to 2006. Forage availability and phosphorus uptake of bahiagrass were also measured from the top slope, middle slope, and bottom slope. Bi-weekly (2004-2006) groundwater and surface water samples were taken from wells located at top slope, middle slope, and bottom slope, and from the runoff/seepage area. Concentrations of phosphorus in soils, forage, surface water, and shallow groundwater beneath a bahiagrass-based pasture and forage availability at four different landscape positions and soil depth (for soil samples only) in 2004, 2005, and 2006 were analyzed statistically following a two-way analysis of variance using the SAS PROC general linear models model. Where the F-test indicated a significant (p

  6. Data to support statistical modeling of instream nutrient load based on watershed attributes, southeastern United States, 2002

    USGS Publications Warehouse

    Hoos, Anne B.; Terziotti, Silvia; McMahon, Gerard; Savvas, Katerina; Tighe, Kirsten C.; Alkons-Wolinsky, Ruth

    2008-01-01

    This report presents and describes the digital datasets that characterize nutrient source inputs, environmental characteristics, and instream nutrient loads for the purpose of calibrating and applying a nutrient water-quality model for the southeastern United States for 2002. The model area includes all of the river basins draining to the south Atlantic and the eastern Gulf of Mexico, as well as the Tennessee River basin (referred to collectively as the SAGT area). The water-quality model SPARROW (SPAtially-Referenced Regression On Watershed attributes), developed by the U.S. Geological Survey, uses a regression equation to describe the relation between watershed attributes (predictors) and measured instream loads (response). Watershed attributes that are considered to describe nutrient input conditions and are tested in the SPARROW model for the SAGT area as source variables include atmospheric deposition, fertilizer application to farmland, manure from livestock production, permitted wastewater discharge, and land cover. Watershed and channel attributes that are considered to affect rates of nutrient transport from land to water and are tested in the SAGT SPARROW model as nutrient-transport variables include characteristics of soil, landform, climate, reach time of travel, and reservoir hydraulic loading. Datasets with estimates of each of these attributes for each individual reach or catchment in the reach-catchment network are presented in this report, along with descriptions of methods used to produce them. Measurements of nutrient water quality at stream monitoring sites from a combination of monitoring programs were used to develop observations of the response variable - mean annual nitrogen or phosphorus load - in the SPARROW regression equation. Instream load of nitrogen and phosphorus was estimated using bias-corrected log-linear regression models using the program Fluxmaster, which provides temporally detrended estimates of long-term mean load well-suited for spatial comparisons. The detrended, or normalized, estimates of load are useful for regional-scale assessments but should be used with caution for local-scale interpretations, for which use of loads estimated for actual time periods and employing more detailed regression analysis is suggested. The mean value of the nitrogen yield estimates, normalized to 2002, for 637 stations in the SAGT area is 4.7 kilograms per hectare; the mean value of nitrogen flow-weighted mean concentration is 1.2 milligrams per liter. The mean value of the phosphorus yield estimates, normalized to 2002, for the 747 stations in the SAGT area is 0.66 kilogram per hectare; the mean value of phosphorus flow-weighted mean concentration is 0.17 milligram per liter. Nutrient conditions measured in streams affected by substantial influx or outflux of water and nutrient mass across surface-water basin divides do not reflect nutrient source and transport conditions in the topographic watershed; therefore, inclusion of such streams in the SPARROW modeling approach is considered inappropriate. River basins identified with this concern include south Florida (where surface-water flow paths have been extensively altered) and the Oklawaha, Crystal, Lower Sante Fe, Lower Suwanee, St. Marks, and Chipola River basins in central and northern Florida (where flow exchange with the underlying regional aquifer may represent substantial nitrogen influx to and outflux from the surface-water basins).

  7. Promotion Effect of Asian Dust on Phytoplankton Growth and Potential Dissolved Organic Phosphorus Utilization in the South China Sea

    NASA Astrophysics Data System (ADS)

    Chu, Qiang; Liu, Ying; Shi, Jie; Zhang, Chao; Gong, Xiang; Yao, Xiaohong; Guo, Xinyu; Gao, Huiwang

    2018-03-01

    Dust deposition is an important nutrient source to the South China Sea (SCS), but few in situ experiments were conducted on phytoplankton response to the deposition. We conducted onboard incubation experiments at three stations near Luzon Strait in the SCS, with addition of multiple dissolved inorganic nutrients, Asian dust, and rainwater. From our results, nitrogen and phosphorus were both urgently needed for phytoplankton growth in the SCS, indicated by the evident Chl a response to the addition of nitrogen and phosphorus together. Almost no evident response was observed by adding phosphorus or iron alone to incubation waters, although a delayed response of Chl a in mass concentration was observed by adding nitrogen alone. The latter implied a possible utilization of dissolved organic phosphorus because of insufficient dissolved inorganic phosphorus in incubation waters. Under such nutrient condition, Asian dust showed an apparent promotion effect on phytoplankton growth by providing sufficient amounts of nitrogen but low phosphorus. Meanwhile, it was found that large sized (> 5 μm) phytoplankton community showed different responses to dust addition at different stations. At stations A3 and A6, Chaetoceros spp. became the dominant species during the bloom period, while at station WG2, Nitzschia spp. became dominant. In combination with different initial nutrients and Chl a levels at the three stations, the different phytoplankton community evolution implied the response difference to external inputs between oligotrophic (stations A3 and A6) and ultraoligotrophic (station WG2) conditions in the SCS.

  8. Effectiveness of barnyard best management practices in Wisconsin

    USGS Publications Warehouse

    Stuntebeck, Todd D.; Bannerman, Roger T.

    1998-01-01

    In 1978, the Wisconsin Legislature committed to protecting water quality by enacting the Nonpoint Source Water Pollution Abatement Program. Through this program, cost-share money is provided within priority watersheds to control sources of nonpoint pollution. Most of the cost-share dollars for rural watersheds have been used to implement barnyard Best Management Practices (BMPs) because barnyards are believed to be a major source of pollutants, most notably phosphorus. Reductions in phosphorus loads of as much as 95 percent have been predicted for the barnyard BMPs recommended for priority watersheds.

  9. [Release and supplement of carbon, nitrogen and phosphorus from jellyfish (Nemopilema nomurai) decomposition in seawater].

    PubMed

    Qu, Chang-feng; Song, Jin-ming; Li, Ning; Li, Xue-gang; Yuan, Hua-mao; Duan, Li-qin

    2016-01-01

    Abstract: Jellyfish bloom has been increasing in Chinese seas and decomposition after jellyfish bloom has great influences on marine ecological environment. We conducted the incubation of Nemopilema nomurai decomposing to evaluate its effect on carbon, nitrogen and phosphorus recycling of water column by simulated experiments. The results showed that the processes of jellyfish decomposing represented a fast release of biogenic elements, and the release of carbon, nitrogen and phosphorus reached the maximum at the beginning of jellyfish decomposing. The release of biogenic elements from jellyfish decomposition was dominated by dissolved matter, which had a much higher level than particulate matter. The highest net release rates of dissolved organic carbon and particulate organic carbon reached (103.77 ± 12.60) and (1.52 ± 0.37) mg · kg⁻¹ · h⁻¹, respectively. The dissolved nitrogen was dominated by NH₄⁺-N during the whole incubation time, accounting for 69.6%-91.6% of total dissolved nitrogen, whereas the dissolved phosphorus was dominated by dissolved organic phosphorus during the initial stage of decomposition, being 63.9%-86.7% of total dissolved phosphorus and dominated by PO₄³⁻-P during the late stage of decomposition, being 50.4%-60.2%. On the contrary, the particulate nitrogen was mainly in particulate organic nitrogen, accounting for (88.6 ± 6.9) % of total particulate nitrogen, whereas the particulate phosphorus was mainly in particulate. inorganic phosphorus, accounting for (73.9 ±10.5) % of total particulate phosphorus. In addition, jellyfish decomposition decreased the C/N and increased the N/P of water column. These indicated that jellyfish decomposition could result in relative high carbon and nitrogen loads.

  10. Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants.

    PubMed

    Antonini, Samantha; Arias, Maria Alejandra; Eichert, Thomas; Clemens, Joachim

    2012-11-01

    A selection of six urine-derived struvite fertilizers generated by innovative precipitation technologies was assessed for their quality and their effectiveness as phosphorus sources for crops. Struvite purity was influenced by drying techniques and magnesium dosage. In a greenhouse experiment, the urine fertilizers led to biomass yields and phosphorus uptakes comparable to or higher than those induced by a commercial mineral fertilizer. Heavy metal concentrations of the different struvite fertilizers were below the threshold limits specified by the German Fertilizer and Sewage Sludge Regulations. The computed loading rates of heavy metals to agricultural land were also below the threshold limits decreed by the Federal Soil Protection Act. Urine-derived struvite contributed less to heavy metal inputs to farmland than other recycling products or commercial mineral and organic fertilizers. When combined with other soil conditioners, urine-derived struvite is an efficient fertilizer which covers the magnesium and more than half of the phosphorus demand of crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Regional nutrient trends in streams and rivers of the United States, 1993-2003

    USGS Publications Warehouse

    Sprague, Lori A.; Lorenz, David L.

    2009-01-01

    Trends in flow-adjusted concentrations (indicators of anthropogenic changes) and observed concentrations (indicators of natural and anthropogenic changes) of total phosphorus and total nitrogen from 1993 to 2003 were evaluated in the eastern, central, and western United States by adapting the Regional Kendall trend test to account for seasonality and spatial correlation. The only significant regional trend was an increase in flow-adjusted concentrations of total phosphorus in the central United States, which corresponded to increases in phosphorus inputs from fertilizer in the region, particularly west of the Mississippi River. A similar upward regional trend in observed total phosphorus concentrations in the central United States was not found, likely because precipitation and runoff decreased during drought conditions in the region, offsetting the increased source loading on the land surface. A greater number of regional trends would have been significant if spatial correlation had been disregarded, indicating the importance of spatial correlation modifications in regional trend assessments when sites are not spatially independent.

  12. Occurrence of phosphorus, other nutrients, and triazine herbicides in water from the Hillsdale Lake basin, Northeast Kansas, May 1994 through May 1995

    USGS Publications Warehouse

    Putnam, J.E.

    1997-01-01

    An investigation of the occurrence of phosporus, other nutrients, and triazine herbicides in water samples from the Hillsdale Lake Basin in northeast Kansas was conducted from May 1994 through May 1995. Point-source and nonpoint-source contributions of these water-quality constituents were estimated by conducting synoptic sampling at 48 sites in the basin during five periods of low- flow conditions. Samples were collected for the determination of nutrients, including total phosphorus as phosphorus, dissolved orthophosphate as phosphorus, total nitrite plus nitrate as nitrogen, and total ammonia plus organic nitrogen as nitrogen, and for selected triazine herbicides. On the basis of criteria developed by the Kansas Department of Health and Environment, the Hillsdale Water-Quality Protection Project established a goal to maintain water quality in the tributaries of the Hillsdale Lake Basin at a mean annual low-flow total phosphorus concentration of 0.05 mg/L (milligrams per liter). The mean low- flow total phosphorus concentration of water samples collected in the Big Bull Creek (which includes drainage from Martin Creek), Rock Creek, Little Bull Creek, Wade Branch, and Smith Branch subbasins during low-flow conditions ranged from 0.05 to 4.9 mg/L during this study. Of the 44 sites sampled during low flow, 95 percent had low-flow total phosphorus concentrations larger than the 0.05-mg/L criterion. Discharges from wastewater- treatment plants located in Big Bull Creek and Martin Creek subbasins and the Little Bull Creek subbasin affected nutrient concentrations. Nutrient concentrations in water samples collected from the subbasins not affected by point-source discharges generally were smaller than those in the Big Bull Creek and Little Bull Creek subbasins. Estimated annual low-flow phosphorus loads computed at sampling sites located at the outlet of the subbasins show that the Big Bull Creeksubbasin, which includes drainage from the Martin Creek subbasin, had the largest estimate annual low-flow load, 2,740 kg/yr (kilograms per year).Rock Creek, Little Bull Creek, Wade Branch, and Smith Branch subbasins contributed less annual low-flow phosphorus load, 175, 161, 234, and 22kg/yr, respectively. With the exception of the Smith Branch subbasin, the largest triazine herbicide concentrations occurred in water samples collectedduring May 1994 and May 1995. During May 1994, 10 of 17 sampling sites in the Big Bull Creek and Martin Creek subbasins, 5 of 6 sites in theRock Creek subbasin, and 4 of 10 sites in the Little Bull Creek subbasin had triazine herbicide concentrations in water larger than the U.S.Environmental Protection Agency's Maximum Contaminant Level (MCL), which is an annual mean 3.0 ug/L (micrograms per liter) for atrazine indrinking water. During May 1995, 7 of 19 sites in the Big Bull Creek and Martin Creek subbasins, 5 of 6 sites in the Rock Creek subbasin, 1 of 12 sites in the Little Bull Creek subbasin, and 2 of 4 sites in the Wade Branch subbasin had samples with trazine herbicide concentrations larger than the MCL.Water samples collected in the Rock Creek subbasins had the largest mean triazine herbicide concentrations during May 1994 and May 1995, 6.4 and 4.5 ug/L, respectively.

  13. Simulation of Nitrogen and Phosphorus Load Runoff by a GIS-based Distributed Model for Chikugo River Watershed

    NASA Astrophysics Data System (ADS)

    Iseri, Haruka; Hiramatsu, Kazuaki; Harada, Masayoshi

    A distributed model was developed in order to simulate the process of nitrogen and phosphorus load runoff in the semi-urban watershed of the Chikugo River, Japan. A grid of cells 1km in size was laid over the study area, and several input variables for each cell area including DEM, land use and statistical data were extracted by GIS. In the process of water runoff, hydrograph calculated at Chikugo Barrage was in close agreement with the observed one, which achieved Nash-Sutcliffe coefficient of 0.90. In addition, the model simulated reasonably well the movement of TN and TP at each station. The model was also used to analyze three scenarios based on the watershed management: (1) reduction of nutrient loads from livestock farm, (2) improvement of septic tanks' wastewater treatment system and (3) application of purification function of paddy fields. As a result, effectiveness of management strategy in each scenario depended on land use patterns. The reduction rates of nutrient load effluent in scenarios (1) and (3) were higher than that in scenario (2). The present result suggests that an appropriate management of livestock farm together with the effective use of paddy environment would have significant effects on the reduction of nutrient loads. A suitable management strategy should be planned based on the land use pattern in the watershed.

  14. Effect of Loading Efficiency on the Process of Consolidation in Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Lo, W. C.; Lee, J. W.; Deng, J. H.; Liu, J. H.

    2016-12-01

    Loading efficiency is an undrained poroelastic coefficient that causes an increase in the pore pressure due to an increase in the compressive axial stress. In order to illustrate the importance of loading efficiency on the process of consolidation in unsaturated soils, we utilize two assumptions proposed by Biot (1941) and Terzaghi (1943) to formulate the initial conditions taking account of loading efficiency and without consideration of loading efficiency, respectively. In Biot's theory (1941), he suggested that water is not allowed to escape when the external loading is instantly applied on a porous medium. Accordingly, the soil texture sample is considered to be undrained, and the linearized increment of the fluid content is equal to zero. For this reason, water and air can sustain an external loading only partially at the moment it is imposed, leading to an immediate one-dimensional consolidation. On the contrary, Terzaghi (1943) posited that as the external loading is initially applied, it is entirely sustained by the pore fluid. Thus, the initial water and air pressures are equal to the stress of external loading. Numerical calculations of excess pore water pressure and total settlement were made for a soil with clay texture as an illustrative example. A comparative study shows that in the early stage of consolidation, the model of considering loading efficiency generates larger time-dependent total settlement and also has the highest value of excess pore water pressure initially. The physical cause behind this difference is that the initial conditions established from Biot's theory is much smaller, reflecting the soil skeleton to carry most of external load at the moment it is imposed. Our results indicate that, in terms of the initial conditions for water and air pressures, the loading efficiency must be taken into account in the early stage of consolidation.

  15. Motor unit recruitment and firing rate in medial gastrocnemius muscles during external perturbations in standing in humans.

    PubMed

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2014-10-01

    There is limited investigation of the interaction between motor unit recruitment and rate coding for modulating force during standing or responding to external perturbations. Fifty-seven motor units were recorded from the medial gastrocnemius muscle with intramuscular electrodes in response to external perturbations in standing. Anteriorly directed perturbations were generated by applying loads in 0.45-kg increments at the pelvis every 25-40 s until 2.25 kg was maintained. Motor unit firing rate was calculated for the initial recruitment load and all subsequent loads during two epochs: 1) dynamic response to perturbation directly following each load drop and 2) maintenance of steady state between perturbations. Joint kinematics and surface electromyography (EMG) from lower extremities and force platform measurements were assessed. Application of the external loads resulted in a significant forward progression of the anterior-posterior center of pressure (AP COP) that was accompanied by modest changes in joint angles (<3°). Surface EMG increased more in medial gastrocnemius than in the other recorded muscles. At initial recruitment, motor unit firing rate immediately after the load drop was significantly lower than during subsequent load drops or during the steady state at the same load. There was a modest increase in motor unit firing rate immediately after the load drop on subsequent load drops associated with regaining balance. There was no effect of maintaining balance with increased load and forward progression of the AP COP on steady-state motor unit firing rate. The medial gastrocnemius utilized primarily motor unit recruitment to achieve the increased levels of activation necessary to maintain standing in the presence of external loads. Copyright © 2014 the American Physiological Society.

  16. Effects of load on ground reaction force and lower limb kinematics during concentric squats.

    PubMed

    Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos

    2005-10-01

    The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.

  17. Modeling Nutrient Release in the Tai Lake Basin of China: Source Identification and Policy Implications

    NASA Astrophysics Data System (ADS)

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun

    2013-03-01

    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a-1 and 5254.4 tons P a-1, and annual area-specific nutrient loads were 1.94 tons N km-2 and 0.31 tons P km-2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  18. Water-quality assessment of the Lower Susquehanna River Basin, Pennsylvania and Maryland; sources, characteristics, analysis and limitations of nutrient and suspended-sediment data, 1975-90

    USGS Publications Warehouse

    Hainly, R.A.; Loper, C.A.

    1997-01-01

    This report describes analyses of available information on nutrients and suspended sediment collected in the Lower Susquehanna River Basin during water years 1975-90. Most of the analyses were applied to data collected during water years 1980-89. The report describes the spatial and temporal availability of nutrient and suspended-sediment data and presents a preliminary concept of the spatial and temporal patterns of concentrations and loads within the basin. Where data were available, total and dissolved forms of nitrogen and phosphorus species from precipitation, surface water, ground water, and springwater, and bottom material from streams and reservoirs were evaluated. Suspended-sediment data from streams also were evaluated. The U.S. Geological Survey National Water Information System (NWIS) database was selected as the primary database for the analyses. Precipitation-quality data from the National Atmospheric Deposition Program (NADP) and bottom-material-quality data from the National Uranium Resource Evaluation (NURE) were used to supplement the water-quality data from NWIS. Concentrations of nutrients were available from 3 precipitation sites established for longterm monitoring purposes, 883 wells (854 synoptic areal survey sites and 29 project and research sites), 23 springs (17 synoptic areal survey sites and 6 project and research sites), and 894 bottom-material sites (840 synoptic areal survey sites and 54 project and research sites). Concentrations of nutrients and (or) suspended sediment were available from 128 streams (36 long-term monitoring sites, 51 synoptic areal survey sites, and 41 project and research sites). Concentrations of nutrients and suspended sediment in streams varied temporally and spatially and were related to land use, agricultural practices, and streamflow. A general north-to-south pattern of increasing median nitrate concentrations, from 2 to 5 mg/L, was detected in samples collected in study unit streams. In streams that drain areas dominated by agriculture, concentrations of nutrients and suspended sediment tend to be elevated with respect to those found in areas of other land-use types and are related to the amount of commercial fertilizer and animal manure applied to the area drained by the streams. Animal manure is the dominant source of nitrogen for the streams in the lower, agricultural part of the basin. Concentrations of nutrients in samples from wells varied with season and well depth and were related to hydrogeologic setting. Median concentrations of nitrate were 2.5 and 3.5 mg/L for wells drawing water at depths of 0 to 100 ft and 101 to 200 ft, respectively. The lowest median concentrations for nitrate in ground water from wells were generally found in siliciclastic-bedrock, forested settings of the Ridge and Valley Physiographic Province, and the highest were found in carbonate-bedrock agricultural settings of the Piedmont Physiographic Province. Twenty-five percent of the measurements from wells in carbonate rocks in the Piedmont Physiographic Province exceeded the Pennsylvania drinking-water standard. An estimate of mass balance of nutrient loads within the Lower Susquehanna River Basin was produced by combining the available information on stream loads, atmosphericdeposition loads, commercial-fertilizer applications, animal-manure production, privateseptic-system nonpoint-source loads, and municipal and industrial point-source loads. The percentage of the average annual nitrate load carried in base flow of streams in the study unit ranged from 45 to 76 percent, and the average annual phosphorus load carried in base flow ranged from 20 to 33 percent. Average annual yields of nutrients and suspended sediment from tributary basins are directly related to percentage of drainage area in agriculture and inversely to drainage area. Information required to compute loads of nitrogen and phosphorus were available for all sources except atmospheric deposition, for which only nitrogen data were available. Atmospheric deposition is the dominant source of nitrogen for the mostly forested basins draining the upper half of the study unit. The estimate of total annual nitrogen load to the study unit from precipitation is 98.8 million pounds. Nonpoint and point sources of nutrients were estimated. Nonpoint and point sources combined, including atmospheric deposition, provide a potential annual load of 390 million pounds of nitrogen and 79.5 million pounds of phosphorus. The range of percentages of the estimated nonpoint and point sources that were measured in the stream was 20 to 47 percent for nitrogen and 6 to 14 percent for phosphorus. On the average, the Susquehanna River discharges 141,000 pounds of nitrogen and 7,920 pounds of phosphorus to the Lower Susquehanna River reservoir system each year. About 98 percent of the nitrogen and 60 percent of the phosphorus passes through the reservoir system. Interpretations of available water-quality data and conclusions about the water quality of the Lower Susquehanna River Basin were limited by the scarcity of certain types of water-quality data and current ancillary data. A more complete assessment of the water quality of the basin with respect to nutrients and suspended sediment would be enhanced by the availability of additional data for multiple samples over time from all water environments; samples from streams in the northern and western part of the basin; samples from streams and springs throughout the basin during high base-flow or stormflow conditions; and information on current land-use, and nutrient loading from all types of land-use settings.

  19. SWAT Model Configuration, Calibration and Validation for Lake Champlain Basin

    EPA Pesticide Factsheets

    The Soil and Water Assessment Tool (SWAT) model was used to develop phosphorus loading estimates for sources in the Lake Champlain Basin. This document describes the model setup and parameterization, and presents calibration results.

  20. Restoration of the Baltic Proper to a system in equilibrium with the external phosphorus supply in the presence of huge sustained internal supply connected to anoxic bottoms

    NASA Astrophysics Data System (ADS)

    Stigebrandt, Anders

    2015-04-01

    The phosphorus (P) content of the water column of the Baltic Proper has increased by 20 % since the 1980s in spite of a simultaneous reduction by 50 % of the external supply from land-based human activities and runoff. A simple budget model explains that the increased P content is a result of sustained leakage of P from anoxic bottoms. At the present, the internal P supply from anoxic bottoms is about three times greater than the external supply. Restoration of the Baltic Proper to a less eutrophic state obviously requires that the internal source vanishes which requires that the deepwater is kept oxygenated during a long period. This will not likely happen by natural processes as long as the oxygen consumption in the deepwater is high due to high P content and high biological production in the water column. One might therefore consider man-made oxygenation to keep the deepwater bottoms oxygenated. In the presentation positive and negative effects of man-made oxygenation of the Baltic Proper are discussed based on recently published results from a pilot experiment in the Swedish By Fjord and from analyses of physical, ecological and biogeochemical conditions in the Baltic Proper.

  1. Use of Weighted Regressions on Time, Discharge, and Season to Assess Effectiveness of Agricultural and Environmental Best Management Practices in California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Schlegel, B.; Hutchins, J.

    2014-12-01

    Long-term data sets on stream-water quality and discharge can be used to assess whether best management practices (BMPs) are restoring beneficial uses of impaired water as required under the Clean Water Act. In this study, we evaluated a greater than 20-year record of water quality from selected streams in the Central Valley (CV) of California and Lake Tahoe (California and Nevada, USA). The CV contains a mix of agricultural and urbanized land, while the Lake Tahoe area is mostly forested, with seasonal residents and tourism. Because nutrients and fine sediments cause a reduction in water clarity that impair Lake Tahoe, BMPs were implemented in the early 1990's, to reduce nitrogen and phosphorus loads. The CV does not have a current nutrient management plan, but numerous BMPs exist to reduce pesticide loads, and it was hypothesized that these programs could also reduce nutrient levels. In the CV and Lake Tahoe areas, nutrient concentrations, loads, and trends were estimated by using the recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model. Sufficient data were available to compare trends during a voluntary and enforcement period for seven CV sites within the lower Sacramento and San Joaquin Basins. For six of the seven sites, flow-normalized mean annual concentrations of total phosphorus and nitrate decreased at a faster rate during the enforcement period than during the earlier voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that BMPs designed for pesticides also reduced nutrient loads in the CV. A trend analysis using WRTDS was completed for six streams that enter Lake Tahoe during the late 1980's through 2008. The results of the model confirm that nutrient loading is influenced strongly by season, such as by spring runoff from snowmelt. The highest nutrient concentrations in the late 1980's and early 1990's correlate with high flows, followed by statistically significant decreases in loading from most streams under different flow conditions. The results of the WRTDS model indicate a clear reduction in nutrient loading of nitrogen and phosphorus in all six streams. However, some streams show an increase in nutrient concentrations after 2000, suggesting the possible need for changes to the nutrient reduction management practices.

  2. Mayan urbanism: impact on a tropical karst environment.

    PubMed

    Deevey, E S; Rice, D S; Rice, P M; Vaughan, H H; Brenner, M; Flannery, M S

    1979-10-19

    From the first millennium B.C. through the 9th-century A.D. Classic Maya collapse, nonurban populations grew exponentially, doubling every 408 years, in the twin-lake (Yaxha-Sacnab) basin that contained the Classic urban center of Yaxha. Pollen data show that forests were essentially cleared by Early Classic time. Sharply accelerated slopewash and colluviation, amplified in the Yaxha subbasin by urban construction, transferred nutrients plus calcareous, silty clay to both lakes. Except for the urban silt, colluvium appearing as lake sediments has a mean total phosphorus concentration close to that of basin soils. From this fact, from abundance and distribution of soil phosphorus, and from continuing post-Maya influxes (80 to 86 milligrams of phosphorus per square meter each year), which have no other apparent source, we conclude that riparian soils are anthrosols and that the mechanism of long-term phosphorus loading in lakes is mass transport of soil. Per capita deliveries of phosphorus match physiological outputs, approximately 0.5 kilogram of phosphorus per capita per year. Smaller apparent deliveries reflect the nonphosphatic composition of urban silt; larger societal outputs, expressing excess phosphorus from deforestation and from food waste and mortuary disposal, are probable but cannot be evaluated from our data. Eutrophication is not demonstrable and was probably impeded, even in less-impacted lakes, by suspended Maya silt. Environmental strain, the product of accelerating agroengineering demand and sequestering of nutrients in colluvium, developed too slowly to act as a servomechanism, damping population growth, at least until Late Classic time.

  3. Phosphorus storage and mobilization in coastal Phragmites wetlands: Influence of local-scale hydrodynamics

    NASA Astrophysics Data System (ADS)

    Karstens, Svenja; Buczko, Uwe; Glatzel, Stephan

    2016-04-01

    Coastal Phragmites wetlands are at the interface between terrestrial and aquatic ecosystems and are of paramount importance for nutrient regulation. They can act both as sinks and sources for phosphorus, depending on environmental conditions, sediment properties as well as on antecedent nutrient loading and sorption capacity of the sediments. The Darss-Zingst Bodden Chain is a shallow lagoon system at the German Baltic Sea coast with a long eutrophication history. It is lined almost at its entire length by reed wetlands. In order to elucidate under which conditions these wetlands act as sources or sinks for phosphorus, in-situ data of chemo-physical characteristics of water and sediment samples were combined with hydrodynamic measurements and laboratory experiments. Small-scale basin structures within the wetland serve as sinks for fine-grained particles rich in phosphorus, iron, manganese and organic matter. Without turbulent mixing the bottom water and the sediment surface lack replenishment of oxygen. During stagnant periods with low water level, low turbulence and thus low-oxygen conditions phosphorus from the sediments is released. But the sediments are capable of becoming sinks again once oxygen is resupplied. A thin oxic sediment surface layer rich in iron and manganese adsorbs phosphorus quickly. We demonstrate that sediments in coastal Phragmites wetlands can serve both as sources and sinks of soluble reactive phosphorus on a very short time-scale, depending on local-scale hydrodynamics and the state of the oxic-anoxic sediment interface.

  4. Adsorption and diffusion of lithium in a graphene/blue-phosphorus heterostructure and the effect of an external electric field.

    PubMed

    Fan, Kaimin; Tang, Jing; Wu, Shiyun; Yang, Chengfu; Hao, Jiabo

    2016-12-21

    The adsorption and diffusion behaviors of lithium (Li) in a graphene/blue-phosphorus (G/BP) heterostructure have been investigated using a first principles method based on density functional theory (DFT). The effect of an external electric field on the adsorption and diffusion behaviors has also been investigated. The results show that the adsorption energy of Li on the graphene side of the G/BP heterostructure is higher than that on monolayer graphene, and Li adsorption on the BP side of the G/BP/Li system is slightly stronger than that on monolayer BP (BP/Li). The adsorption energy of Li reaches 2.47 eV, however, the energy barriers of Li diffusion decrease in the interlayer of the G/BP heterostructure. The results mentioned above suggest that the rate performance of the G/BP heterostructure is better than that of monolayer graphene. Furthermore, the adsorption energies of Li atoms in the three different most stable sites, i.e., H G , T P and H 1 sites, increase by about 0.49 eV, 0.26 eV, and 0.13 eV, respectively, as the electric field intensity reaches 0.6 V Å -1 . The diffusion energy barrier is significantly decreased by an external electric field. It is demonstrated that the external electric field can not only enhance the adsorption but can also modulate the diffusion barriers of Li atoms in the G/BP heterostructure.

  5. The changing flow regime and sediment load of the Red River, Viet Nam

    NASA Astrophysics Data System (ADS)

    Le, Thi Phuong Quynh; Garnier, Josette; Gilles, Billen; Sylvain, Théry; Van Minh, Chau

    2007-02-01

    SummarySouth-East Asian Rivers contribute very significantly to the global sediment load to the ocean, hence to global biogeochemical cycles, and are subject to rapid changes owing to recent population and economic growth. The Red River system (Viet Nam and China) offers a good example of these changes. Previous estimates (before the year 1980) of the suspended matter loading of the Red River ranged from 100 to 170 × 10 6 t yr -1, i.e. from 640 to 1060 t km -2 yr -1. The strong dependence of suspended solid transport on hydrology results in a large year-to-year variability. Based on the available hydrological data from the period 1997-2004, and on a one-year survey of daily suspended matter of the three main tributaries of the Red River system in 2003, a simplified modeling approach, distinguishing between surface runoff and base flow, is established to estimate the mean suspended loading of the Red River under present conditions. The obtained value is 40 × 10 6 t yr -1, corresponding to a specific load of 280 t km -2 yr -1. It reflects a 70% decrease of the total suspended load since the impoundment of the Hoa Binh and Thac Ba reservoirs in the 1980s. Following the planned construction of two additional reservoirs, the model predicts a further reduction by 20% of the suspended load of the Red River, which might be compensated by an expected increase in suspended loading due to enhanced rainfall induced by climate change. Using measurements of the total phosphorus content of the suspended material in the different Red River tributaries, the present phosphorus delivery by the Red River can be estimated as 36 × 10 6 kgP yr -1.

  6. Phosphorus and suspended sediment load estimates for the Lower Boise River, Idaho, 1994-2002

    USGS Publications Warehouse

    Donato, Mary M.; MacCoy, Dorene E.

    2004-01-01

    The U.S. Geological Survey used LOADEST, newly developed load estimation software, to develop regression equations and estimate loads of total phosphorus (TP), dissolved orthophosphorus (OP), and suspended sediment (SS) from January 1994 through September 2002 at four sites on the lower Boise River: Boise River below Diversion Dam near Boise, Boise River at Glenwood Bridge at Boise, Boise River near Middleton, and Boise River near Parma. The objective was to help the Idaho Department of Environmental Quality develop and implement total maximum daily loads (TMDLs) by providing spatial and temporal resolution for phosphorus and sediment loads and enabling load estimates made by mass balance calculations to be refined and validated. Regression models for TP and OP generally were well fit on the basis of regression coefficients of determination (R2), but results varied in quality from site to site. The TP and OP results for Glenwood probably were affected by the upstream wastewater-treatment plant outlet, which provides a variable phosphorus input that is unrelated to river discharge. Regression models for SS generally were statistically well fit. Regression models for Middleton for all constituents, although statistically acceptable, were of limited usefulness because sparse and intermittent discharge data at that site caused many gaps in the resulting estimates. Although the models successfully simulated measured loads under predominant flow conditions, errors in TP and SS estimates at Middleton and in TP estimates at Parma were larger during high- and low-flow conditions. This shortcoming might be improved if additional concentration data for a wider range of flow conditions were available for calibrating the model. The average estimated daily TP load ranged from less than 250 pounds per day (lb/d) at Diversion to nearly 2,200 lb/d at Parma. Estimated TP loads at all four sites displayed cyclical variations coinciding with seasonal fluctuations in discharge. Estimated annual loads of TP ranged from less than 8 tons at Diversion to 570 tons at Parma. Annual loads of dissolved OP peaked in 1997 at all sites and were consistently higher at Parma than at the other sites. The ratio of OP to TP varied considerably throughout the year at all sites. Peaks in the OP:TP ratio occurred primarily when flows were at their lowest annual stages; estimated seasonal OP:TP ratios were highest in autumn at all sites. Conversely, when flows were high, the ratio was low, reflecting increased TP associated with particulate matter during high flows. Parma exhibited the highest OP:TP ratio during all seasons, at least 0.60 in spring and nearly 0.90 in autumn. Similar OP:TP ratios were estimated at Glenwood. Whereas the OP:TP ratio for Parma and Glenwood peaked in November or December, decreased from January through May, and increased again after June, estimates for Diversion showed nearly the opposite pattern ? ratios were highest in July and lowest in January and February. This difference might reflect complex biological and geochemical processes involving nutrient cycling in Lucky Peak Lake, but further data are needed to substantiate this hypothesis. Estimated monthly average SS loads were highest at Diversion, about 400 tons per day (ton/d). Average annual loads from 1994 through 2002 were 144,000 tons at Diversion, 33,000 tons at Glenwood, and 88,000 tons at Parma. Estimated SS loads peaked in the spring at all sites, coinciding with high flows. Increases in TP in the reach from Diversion to Glenwood ranged from 200 to 350 lb/d. Decreases in TP were small in this reach only during high flows in January and February 1997. Decreases in SS, were large during high-flow conditions indicating sediment deposition in the reach. Intermittent data at Middleton indicated that increases and decreases in TP in the reach from Glenwood to Middleton were during low- and high-flow conditions, respectively. All constituents increased in the r

  7. Phosphorus and water budgets in an agricultural basin.

    PubMed

    Faridmarandi, Sayena; Naja, Ghinwa M

    2014-01-01

    Water and phosphorus (P) budgets of a large agricultural basin located in South Florida (Everglades Agricultural Area, EAA) were computed from 2005 to 2012. The annual surface outflow P loading from the EAA averaged 157.2 mtons originating from Lake Okeechobee (16.4 mtons, 10.4%), farms (131.0 mtons, 83.4%), and surrounding basins (9.8 mtons, 6.2%) after attenuation. Farms, urban areas, and the adjacent C-139 basin contributed 186.1, 15.6, and 3.8 mtons/yr P to the canals, respectively. The average annual soil P retention was estimated at 412.5 mtons. Water and P budgets showed seasonal variations with high correlation between rainfall and P load in drainage and surface outflows. Moreover, results indicated that the canals acted as a P sink storing 64.8 mtons/yr. To assess the P loading impact of farm drainage on the canals and on the outflow, dimensionless impact factors were developed. Sixty-two farms were identified with a high and a medium impact factor I1 level contributing 44.5% of the total drainage P load to the canals, while their collective area represented less than 23% of the EAA area (172 farms). Optimizing the best management practice (BMP) strategies on these farms could minimize the environmental impacts on the downstream sensitive wetlands areas.

  8. Groundwater – The disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients

    USGS Publications Warehouse

    Lewandowski, Jörg; Meinikmann, Karin; Nützmann, Gunnar; Rosenberry, Donald O.

    2015-01-01

    Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer-lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater-borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer-lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater-borne P loads vary from 0.74 to 2900 mg PO4-P m−2 year−1; for N, these loads vary from 0.001 to 640 g m−2 year−1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management.

  9. Anthropogenic Phosphorus Inputs to a River Basin and Their Impacts on Phosphorus Fluxes Along Its Upstream-Downstream Continuum

    NASA Astrophysics Data System (ADS)

    Zhang, Wangshou; Swaney, Dennis P.; Hong, Bongghi; Howarth, Robert W.

    2017-12-01

    The increasing trend in riverine phosphorus (P) loads resulting from anthropogenic inputs has gained wide attention because of the well-known role of P in eutrophication. So far, however, there is still limited scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream-to-downstream continuum. Here we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China and developed an empirical function to describe the relationship between anthropogenic inputs and riverine P fluxes. Our results indicated that there are obvious gradients regarding P budgets in response to changes in human activities. Fertilizer application and food and feed P import was always the dominant source of P inputs in all sections, followed by nonfood P. Further interpretation using the model revealed the processes of P loading to the lake. About 2%-9% of anthropogenic P inputs are transported from the various sections into the corresponding tributaries of the river systems, depending upon local precipitation rates. Of this amount, around 41%-95% is delivered to the main stem of the Huai River after in-stream attenuation in its tributaries. Ultimately, 55%-86% of the P loads delivered to different locations of the main stem are transported into the receiving lake of the downstream, due to additional losses in the main stem. An integrated P management strategy that considers the gradients of P loss along the upstream-to-downstream continuum is required to assess and optimize P management to protect the region's freshwater resource.

  10. Spatio-temporal variation of erosion-type non-point source pollution in a small watershed of hilly and gully region, Chinese Loess Plateau.

    PubMed

    Wu, Lei; Liu, Xia; Ma, Xiao-Yi

    2016-06-01

    Loss of nitrogen and phosphorus in the hilly and gully region of Chinese Loess Plateau not only decreases the utilization rate of fertilizer but also is a potential threat to aquatic environments. In order to explore the process of erosion-type non-point source (NPS) pollution in Majiagou watershed of Loess Plateau, a distributed, dynamic, and integrated NPS pollution model was established to investigate impacts of returning farmland on erosion-type NPS pollution load from 1995 to 2012. Results indicate that (1) the integrated model proposed in this study was verified to be reasonable; the general methodology is universal and can be applicable to the hilly and gully region, Loess Plateau; (2) the erosion-type NPS total nitrogen (TN) and total phosphorus (TP) load showed an overall decreasing trend; the average nitrogen and phosphorus load modulus in the last four years (2009-2012) were 1.23 and 1.63 t/km(2) · a, respectively, which were both decreased by about 35.4 % compared with the initial treatment period (1995-1998); and (3) The spatial variations of NPS pollution are closely related to spatial characteristics of rainfall, topography, and soil and land use types; the peak regions of TN and TP loss mainly occurred along the main river banks of the Yanhe River watershed from northeast to southeast, and gradually decreased with the increase of distance to the left and right river banks, respectively. Results may provide scientific basis for the watershed-scale NPS pollution control of the Loess Plateau.

  11. Optimized Deposition Parameters & Coating Properties of Cobalt Phosphorus Alloy Electroplating for Technology Insertion Risk Reduction

    DTIC Science & Technology

    2010-10-01

    of tensile yield strength (Fty) and the runout load (107 cycles), with no more than four points per load. Load and cycles to failure were used to...were coated with 0.002” nCo-P at Integran Technologies Inc. or 0.002” at FRC-SE. Testing was conducted using CS-17 wheels at FRC-SE. 3.2 RESULTS...Abrasive wear tests shall be conducted using the Taber wear test apparatus in accordance with ASTM D4060 using a CS-17 wheel . The wear rate of

  12. Tree-based modeling of complex interactions of phosphorus loadings and environmental factors.

    PubMed

    Grunwald, S; Daroub, S H; Lang, T A; Diaz, O A

    2009-06-01

    Phosphorus (P) enrichment has been observed in the historic oligotrophic Greater Everglades in Florida mainly due to P influx from upstream, agriculturally dominated, low relief drainage basins of the Everglades Agricultural Area (EAA). Our specific objectives were to: (1) investigate relationships between various environmental factors and P loads in 10 farm basins within the EAA, (2) identify those environmental factors that impart major effects on P loads using three different tree-based modeling approaches, and (3) evaluate predictive models to assess P loads. We assembled thirteen environmental variable sets for all 10 sub-basins characterizing water level management, cropping practices, soils, hydrology, and farm-specific properties. Drainage flow and P concentrations were measured at each sub-basin outlet from 1992-2002 and aggregated to derive monthly P loads. We used three different tree-based models including single regression trees (ST), committee trees in Bagging (CTb) and ARCing (CTa) modes and ten-fold cross-validation to test prediction performances. The monthly P loads (MPL) during the monitoring period showed a maximum of 2528 kg (mean: 103 kg) and maximum monthly unit area P loads (UAL) of 4.88 kg P ha(-1) (mean: 0.16 kg P ha(-1)). Our results suggest that hydrologic/water management properties are the major controlling variables to predict MPL and UAL in the EAA. Tree-based modeling was successful in identifying relationships between P loads and environmental predictor variables on 10 farms in the EAA indicated by high R(2) (>0.80) and low prediction errors. Committee trees in ARCing mode generated the best performing models to predict P loads and P loads per unit area. Tree-based models had the ability to analyze complex, non-linear relationships between P loads and multiple variables describing hydrologic/water management, cropping practices, soil and farm-specific properties within the EAA.

  13. Tensiomyographical responses to accelerometer loads in female collegiate basketball players.

    PubMed

    Peterson, Kyle D; Quiggle, Gabriela T

    2017-12-01

    The purpose of the present study was to characterise the relationship between relative versus absolute internal and external loads in collegiate basketball players throughout the course of a season. Five Division I basketball players wore triaxial accelerometers throughout the 2015-2016 season and were tensiomyographically assessed weekly. One-way repeated-measure analysis of variance (RM ANOVA) with least-significant-difference (LSD) pairwise comparisons was used to determine which absolute weekly loads were different across the season. Cohen's d was used to supplement the determination of meaningful relative load changes. Overall RM ANOVA models suggest absolute external load differences occurred (PlayerLoad™ F = 17.63; IMA™ F = 31.63). Two-way RM ANOVA models revealed main effect differences were revealed between muscle groups for Tc (F = 9.11) and Dm (F = 3.25). Meaningful relative load changes between weeks were observed for both external and internal. The present study observed that tensiomyography utilised as a tool to monitor internal load may be more suitable for detecting fatigue from relative external load changes versus absolute load attained. Limiting weekly training volume changes to ≤10% may maintain appropriate adaptation. Mediolateral plane IMA™ and adductor longus muscle group may be pertinent metrics when monitoring female collegiate basketball athletes.

  14. 14 CFR 29.471 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... equilibrium. For limit ground loads— (1) The limit ground loads obtained in the landing conditions in this part must be considered to be external loads that would occur in the rotorcraft structure if it were acting as a rigid body; and (2) In each specified landing condition, the external loads must be placed in...

  15. Bacterial production and their role in the removal of dissolved organic matter from tributaries of drinking water reservoirs.

    PubMed

    Kamjunke, Norbert; Oosterwoud, Marieke R; Herzsprung, Peter; Tittel, Jörg

    2016-04-01

    Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6-12% of total DOM released by the catchments was degraded within the tributaries. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Environmental indicators in effluent assessment of rainbow trout (Oncorhynchus mykiss) reared in raceway system through phosphorus and nitrogen.

    PubMed

    Moraes, M A B; Carmo, C F; Tabata, Y A; Vaz-Dos-Santos, A M; Mercante, C T J

    2016-01-01

    The phosphorus and nitrogen discharge via effluent of intensive trout farming system was quantified through the use of environmental indicators. The nutrient loads, the mass balance, the estimated amount of nutrients in feed and the amount of nutrients converted in fish biomass were calculated based on the concentrations of phosphorus (P) and nitrogen (N) in the feed and in the water. Of the offered feed, 24.75 kg were available as P and 99.00 kg as N, of these, 9.32 kg P (38%) and 29.12 kg N (25%) were converted into fish biomass and 15.43 kg P (62%) and 69.88 kg N (75%) were exported via effluent. The loads and the mass balance show the excessive discharge of nutrients via effluent, corroborated by the feed conversion ratio (2.12:1) due to the low efficiency of feed utilization, therefore, it is proposed the use of this zootechnical parameter as environmental indicator. In addition, feed management practices are not adequate, highlighting the low frequency of feeding during the day, excessive amount and low quality of feed offered. These results demonstrate the need for adequate feed management and the need for careful monitoring of effluent.

  17. Using a Hydrodynamic and Biogeochemical Model to Investigate the Effects of Nutrient Loading from a Wastewater Treatment Plant into Lake Michigan

    NASA Astrophysics Data System (ADS)

    Khazaei, B.; Bravo, H.; Bootsma, H.

    2017-12-01

    There is clear evidence that excessive nutrient, in particular phosphorus (P), loading into Lake Michigan has produced significant problems, such as algal blooms, hypoxia, and reduced water quality. Addressing those problems requires understanding the transport and fate of P in the lake. The dominance of mixing and dispersion processes on the P transport has been demonstrated, yet recent research has shown the remarkable influence of dreissenid mussels and Cladophora on water clarity and the P budget. Since mussels and Cladophora tend to concentrate near the coastlines, nearshore-offshore P exchange is of a big importance. In this research, a computer model was developed to simulate the P cycle by incorporating the biogeochemical processes relevant to the transport of P into a 3D high-resolution hydrodynamic model. The near-bottom biogeochemical model consists of three linked modules: Cladophora, mussel, and sediment storage modules. The model was applied to the Milwaukee Metropolitan Sewerage District South Shore Wastewater Treatment Plant, between June and October of 2013 and 2015, as a case study. The plant outfall introduces a point source of P into the study domain—the nearshore zone of Lake Michigan adjacent to Milwaukee County. The model was validated against field observations of water temperature, dissolved phosphorus (DP), particulate phosphorus (PP), Cladophora biomass, and P content. The model simulations showed reasonably good agreement with field measurements. Model results showed a) different temporal patterns in 2013 and 2015, b) a larger range of fluctuations in DP than that in PP, and c) that the effects of mussels and Cladophora could explain the differences in patterns and ranges. PP concentrations showed more frequent spikes of concentration in 2013 due to resuspension events during that year because of stronger winds. The model is being applied as a management tool to test scenarios of nutrient loading to determine effluent P limits for the treatment plant. The alongshore lengths of the surface layer-footprints of total phosphorus (TP) that exceeded the target concentration of 7 μg L-1 during 25% of the summer season were approximately 30 and 24 Km in 2013 and 2015, respectively. That result indicates that the footprint was reduced by the application of a more efficient loading scenario in 2015.

  18. Trends in nutrients and suspended solids at the Fall Line of five tributaries to the Chesapeake Bay in Virginia, July 1988 through June 1995

    USGS Publications Warehouse

    Bell, C.F.; Belval, D.L.; Campbell, J.P.

    1996-01-01

    Water-quality samples were collected at the Fall Line of five tributaries to the Chesapeake Bay in Virginia during a 6- to 7-year period. The water-quality data were used to estimate loads of nutrients and suspended solids from these tributaries to the non-tidal part of Chesapeake Bay Basin and to identify trends in water quality. Knowledge of trends in water quality is required to assess the effectiveness of nutrient manage- ment strategies in the five basins. Multivariate log-linear regression and the seasonal Kendall test were used to estimate flow-adjusted trends in constituent concentration and load. Results of multivariate log-linear regression indicated a greater number of statistically significant trends than the seasonal Kendall test; how-ever, when both methods indicated a significant trend, both agreed on the direction of the trend. Interpre- tation of the trend estimates for this report was based on results of the parametric regression method. No significant trends in total nitrogen concentration were detected at the James River monitoring station from July 1988 through June 1995, though total Kjeldahl nitrogen concen- tration decreased slightly in base-flow samples. Total phosphorus concentration decreased about 29 percent at this station during the sampling period. Most of the decrease can be attributed to reductions in point-source phosphorus loads in 1988 and 1989, especially the phosphate detergent ban of 1988. No significant trends in total suspended solids were observed at the James River monitoring station, and no trends in runoff- derived constituents were interpreted for this river. Significant decreases were detected in concentrations of total nitrogen, total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, and total suspended solids at the Rappahannock River monitoring station between July 1988 and June 1995. A similar downward trend in total phosphorus concentration was significant at the 90-percent confidence level, but not the 95-percent confidence level. These decreases can be attributed primarily to reductions in nonpoint nutrient and sediment loads, and may have been partially caused by implementation of best management practices on agricultural and silvicultural land. Flow-adjusted trends observed at the Appomattox, Pamunkey, and Mattaponi monitoring stations were more difficult to explain than those at the James and Rappahannock stations. Total Kjeldahl nitrogen and total phosphorus increased 16 and 23 percent, respectively, at the Appomattox River monitoring station from July 1989 through June 1995. Total phosphorus concentration increased about 46 percent at the Pamunkey River monitoring station between July 1989 and June 1995. At the Mattaponi River monitoring station, decreases in dissolved nitrite-plus-nitrate nitrogen were offset by increases in total Kjeldahl nitrogen, resulting in no net change in total nitrogen concentration from October 1989 through June 1995.

  19. A linked hydrodynamic and water quality model for the Salton Sea

    USGS Publications Warehouse

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, Dale M.

    2008-01-01

    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  20. Relationships Between Results Of An Internal And External Match Load Determining Method In Male, Singles Badminton Players.

    PubMed

    Abdullahi, Yahaya; Coetzee, Ben; Van den Berg, Linda

    2017-07-03

    The study purpose was to determine relationships between results of internal and external match load determining methods. Twenty-one players, who participated in selected badminton championships during the 2014/2015 season served as subjects. The heart rate (HR) values and GPS data of each player were obtained via a fix Polar HR Transmitter Belt and MinimaxX GPS device. Moderate significant Spearman's rank correlations were found between HR and absolute duration (r = 0.43 at a low intensity (LI) and 0.44 at a high intensity (HI)), distance covered (r = 0.42 at a HI) and player load (PL) (r = 0.44 at a HI). Results also revealed an opposite trend for external and internal measures of load as the average relative HR value was found to be the highest for the HI zone (54.1%) compared to the relative measures of external load where average values (1.29-9.89%) were the lowest for the HI zone. In conclusion, our findings show that results of an internal and external badminton match load determining method are more related to each other in the HI zone than other zones and that the strength of relationships depend on the duration of activities that are performed in especially LI and HI zones. Overall, trivial to moderate relationships between results of an internal and external match load determining method in male, singles badminton players reaffirm the conclusions of others that these constructs measure distinctly different demands and should therefore be measured concurrently to fully understand the true requirements of badminton match play.

  1. Monitoring external and internal loads of brazilian soccer referees during official matches.

    PubMed

    Costa, Eduardo C; Vieira, Caio M A; Moreira, Alexandre; Ugrinowitsch, Carlos; Castagna, Carlo; Aoki, Marcelo S

    2013-01-01

    This study aimed to assess the external and internal loads of Brazilian soccer referees during official matches. A total of 11 field referees (aged 36.2 ± 7.5 years) were monitored during 35 matches. The external (distance covered, mean and maximal speed) and internal load parameters (session ratings of perceived exertion [RPE] training load [TL], Edwards' TL, and time spent in different heart rate [HR] zones) were assessed in 3-4 matches per referee. External load parameters were measured using a wrist Global Positioning System (GPS) receiver. No differences in distance covered (5.219 ± 205 vs. 5.230 ± 237 m) and maximal speed (19.3 ± 1.0 vs. 19.4 ± 1.4 km·h(-1)) were observed between the halves of the matches (p > 0.05). However, the mean speed was higher in the first half of the matches (6.6 ± 0.4 vs. 6.4 ± 0.3 km·h(-1)) (p < 0.05) than in the second half. The mean HR during the matches was ~89% of HRmax. In ~95% of the matches, the referees demonstrated a HR ≥ 80% of HRmax. Nonetheless, the time spent at 90-100% of HRmax was higher in the first half (59.9 vs. 52.3%) (p < 0.05). Significant correlations between session RPE TL and distance covered at 90-100% of HRmax (r = 0.62) and session RPE TL and maximal speed (r = 0.54) (p < 0.05) were noted. Furthermore, there was a positive correlation between session RPE TL and Edwards' TL (r = 0.61) (p < 0.05). Brazilian soccer referees demonstrated high external and internal load demands during official matches. The portable GPS/HR monitors and session RPE method can provide relevant information regarding the magnitude of the physiological strain during official matches. Key PointsHigh external and internal loads were imposed on Brazilian soccer referees during official matches.There was a high positive correlation between a subjective marker of internal load (session RPE) and parameters of external load (distance covered between 90-100% of HRmax and maximal speed).There was a high positive correlation between session RPE method and Edwards' method.Session RPE seems to be a reliable marker of internal load.The portable GPS/HR monitors and the session RPE method can provide relevant information regarding the magnitude of external and internal loads of soccer referees during official matches.

  2. Understanding nutrients in the Chesapeake Bay watershed and implications for management and restoration: the Eastern Shore

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.

    2015-03-12

    The Eastern Shore includes only a small part of the Chesapeake Bay watershed, but contributes disproportionately large loads of the excess nitrogen and phosphorus that have contributed to ecological and economic degradation of the bay in recent decades. Chesapeake Bay is the largest estuary in the United States and a vital ecological and economic resource. The bay and its tributaries have been degraded in recent decades by excessive nitrogen and phosphorus in the water column, however, which cause harmful algal blooms and decreased water clarity, submerged aquatic vegetation, and dissolved oxygen. The disproportionately large nitrogen and phosphorus yields from the Eastern Shore to Chesapeake Bay are attributable to human land-use practices as well as natural hydrogeologic and soil conditions. Applications of nitrogen and phosphorus compounds to the Eastern Shore from human activities are intensive. More than 90 percent of nitrogen and phosphorus reaching the land in the Eastern Shore is applied as part of inorganic fertilizers or manure, or (for nitrogen) fixed directly from the atmosphere in cropland. Also, hydrogeologic and soil conditions promote the movement of these compounds from application areas on the landscape to groundwater and (or) surface waters, and the proximity of much of the Eastern Shore to tidal waters limits opportunities for natural removal of these compounds in the landscape. The Eastern Shore only includes 7 percent of the Chesapeake Bay watershed, but receives nearly twice as much nitrogen and phosphorus applications (per area) as the remainder of the watershed and yields greater nitrogen and phosphorus, on average, to the bay. Nitrogen and phosphorus commonly occur in streams at concentrations that may adversely affect aquatic ecosystems and have increased in recent decades.

  3. Effects of Climate Change on Stratification-Destratification Cycles and Resulting Cyanobacterial Blooms in Shallow Lakes of the North Temperate Zone

    NASA Astrophysics Data System (ADS)

    King, A. T.; Schaffner, L. R.; Gilman, B.; Gronwall, T. R.; Gronwall, D.; Dietz, E. R.; Hairston, N., Jr.

    2016-12-01

    "Harmful Algal Blooms" of cyanobacteria (cyanoHABs) have become more frequent and larger in extent for inland waters across the globe. Honeoye Lake, the shallowest of the New York State Finger Lakes (9 m max depth, 7 km long), has experienced recent problematic blooms. We use this lake as a model system for understanding the effects of climate change on cyanoHABs in shallow lakes. Cyanobacteria thrive in warm waters with high phosphorus concentrations. While high P is often caused by external nutrient loading via surface runoff, it can also result from internal loading when P-rich sediment is exposed to anoxic/reducing conditions in a lake's hypolimnion after prolonged stratification. In deep lakes, hypolimnetic water remains isolated from the epilimnion throughout the summer with the dissolved P separated from illuminated surface water; in very shallow lakes where the entire water column remains oxygenated/oxidizing, P is bound in insoluble inorganic complexes. However, in lakes of intermediate depth, hypolimnetic water high in soluble reactive P may mix into the photic zone if sufficiently strong winds occur, stimulating a cyanoHAB. We suggest that repeated cycles of stratification, hypolimnetic anoxia, and subsequent mixing may result in "phosphorus pumping" with recurrent cyanoHABs throughout summer. Climate change is causing stronger thermal stratification in lakes through increased surface warming but also causing more frequent storms that can break down stratification in a shallow lake. We use Honeoye Lake as a model system for understanding the extent to which P-pumping occurs and the likely effects of climate change on cyanoHABs. Field data collected in summer 2016 were used to calibrate the publically available General Lake Model (GLM) to predict Honeoye's discontinuous polymictic pattern of stratification punctuated by overturn events and spikes in epilimnetic P and cyanobacterial biomass. We use the calibrated model to determine cyanoHAB incidence as a function of lake morphometry, summer temperature, and summer storm frequency and intensity. This allows projection of the effects of different climate change scenarios on the incidence of cyanoHABs for this lake and for lakes along a continuum of length-depth morphometries across the North Temperate Zone.

  4. Hydrology and water quality of Little Cross Creek, Cumberland County, North Carolina, 1996-98

    USGS Publications Warehouse

    Giorgino, Mary J.; Middleton, Terry L.

    2000-01-01

    Little Cross Creek is a small stream located in Cumberland County, North Carolina, in the Sand Hills area of the Coastal Plain Province. From August 1996 through August 1998, the U.S. Geological Survey collected streamflow, water-quality, and time-of-travel data at 10 sites in Little Cross Creek Basin to assess ambient conditions and compute loads of suspended sediment, total nitrogen, total phosphorus, and total organic carbon. Streamflows in the Little Cross Creek Basin responded to climatic factors and to human activities such as water withdrawals and controlled releases from impoundments. Peak streamflows were observed during the passages of Hurricane Fran in September 1996 and Hurricane Josephine in October 1996. Streamflows generally were lowest during the summer and early fall of 1997, reflecting drought conditions associated with a prevailing El Nino. At most sites, average streamflow per unit drainage area, or yield, was higher than yields reported previously for the Sand Hills. High yields may have resulted from unidentified inputs of water to the study basins or from underestimation of the contributing drainage area. Bonnie Doone Lake, Kornbow Lake, Mintz Pond, and Glenville Lake, four impoundments of Little Cross Creek, notably influence hydrology and water quality in the basin. Streamflow records indicate that these impoundments dampen peak stormflows and delay the downstream release of stormwater. Time of travel also is affected by seasonal stratification in the reservoirs. In general, sites downstream from reservoirs have lower concentrations of suspended sediment, turbidity, and total phosphorus than sites upstream from reservoirs or sites that receive stormwater runoff. Few water-quality problems were observed in the Little Cross Creek Basin for the constituents that were sampled. However, fecal coliform bacteria commonly exceeded 200 colonies per 100 milliliters at two of the seven monitored sites during the study. Relatively high concentrations of specific conductance, total phosphorus, and total ammonia plus organic nitrogen were observed in Clark Pond Creek, a tributary to Little Cross Creek. Loads and yields of suspended sediment, total nitrogen, total phosphorus, and total organic carbon were computed for the period from October 1996 through September 1997. The highest suspended-sediment yield (230 tons per square mile per year) occurred upstream from Bonnie Doone Lake, probably because there were no impoundments upstream from this site to intercept sediment. Sediment yields at the remaining Little Cross Creek sites were low relative to yields reported from other urban basins in North Carolina. Downstream from Kornbow Lake, yields of suspended sediment (9.50 tons per square mile per year) and total phosphorus (0.011 ton per square mile per year) were very low. Clark Pond Creek had the highest yields ot total phosphorus (0.081 ton per square mile per year) and total organic carbon (11.5 tons per square mile per year). However, total phosphorus yields at all of the Little Cross Creek sites generally were lower than yields measured in other urban basins in the State. Comparison of inflow and outflow loads for the four Little Cross Creek reservoirs from October 1996 through September 1997 indicated that Bonnie Doone Lake trapped 92 percent of incoming sediment and 37 percent of incoming total phosphorus. Kornbow Lake trapped 57 percent of incoming sediment and 77 percent of total phosphorus inputs. Nitrogen was not effectively trapped by any of the reservoirs. An influx of sediment, total phosphorus, and total organic carbon was noted at a site downstream from Mintz Pond, and may have resulted from stormwater discharge from the U.S. Highway 401 bypass or from additional, unidentified sources in the watershed downstream from Kornbow Lake.

  5. Loads and yields of selected constituents in streams and rivers of Monroe County, New York, 1984-2001

    USGS Publications Warehouse

    Sherwood, Donald A.

    2004-01-01

    Hydrologic data collected in Monroe County since the 1980s and earlier, including long-term records of streamflow and chemical loads, provide a basis for assessment of water-management practices. All monitored streams except Northrup Creek showed a slight (nonsignificant) overall decrease in annual streamflow over their period of record; Northrup Creek showed a slight increase.The highest yields of all constituents except chloride and sulfate were at Northrup Creek; these values exceeded those of the seven Irondequoit Creek basin sites and the Genesee River site. The highest yields of dissolved chloride were at the most highly urbanized site (Allen Creek), whereas the highest yields of dissolved sulfate were at the most upstream Irondequoit Creek sites -- Railroad Mills (active) and Pittsford (inactive). Yields of all constituents in the Genesee River at the Charlotte Pump Station were within the range of those at the Irondequoit Creek basin sites.The four active Irondequoit Creek basin sites showed significant downward trends in flow-adjusted loads of ammonia + organic nitrogen, possibly from the conversion of agricultural land to suburban land. Two active sites (Allen Creek and Blossom Road) and one inactive site (Thomas Creek) showed downward trends in loads of ammonia. All active sites showed significant upward trends in dissolved chloride loads. Northrup Creek showed a significant downward trend in total phosphorus load since the improvement in phosphorus removal at the Spencerport wastewater-treatment plant, and upward trends in dissolved chloride and sulfate loads. The Genesee River at the Charlotte Pump Station showed significant downward trends in loads of ammonia + organic nitrogen and chloride, and an upward trend in loads of orthophosphate.The improved treatment or diversion of sewage-treatment-plant-effluent has produced decreased yields of some constituents throughout the county, particularly in the Irondequoit Creek basin, where the loads of nutrients delivered to Irondequoit Bay have been decreased.

  6. Water-Quality Characterization of Surface Water in the Onondaga Lake Basin, Onondaga County, New York, 2005-08

    USGS Publications Warehouse

    Coon, William F.; Hayhurst, Brett A.; Kappel, William M.; Eckhardt, David A.V.; Szabo, Carolyn O.

    2009-01-01

    Water-resources managers in Onondaga County, N.Y., have been faced with the challenge of improving the water-quality of Onondaga Lake. To assist in this endeavor, the U.S. Geological Survey undertook a 3-year basinwide study to assess the water quality of surface water in the Onondaga Lake Basin. The study quantified the relative contributions of nonpoint sources associated with the major land uses in the basin and also focused on known sources (streams with large sediment loads) and presumed sinks (Onondaga Reservoir and Otisco Lake) of sediment and nutrient loads, which previously had not been evaluated. Water samples were collected and analyzed for nutrients and suspended sediment at 26 surface-water sites and 4 springs in the 285-square-mile Onondaga Lake Basin from October 2005 through December 2008. More than 1,060 base-flow, stormflow, snowmelt, spring-water, and quality-assurance samples collected during the study were analyzed for ammonia, nitrite, nitrate-plus-nitrite, ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment. The concentration of total suspended solids was measured in selected samples. Ninety-one additional samples were collected, including 80 samples from 4 county-operated sites, which were analyzed for suspended sediment or total suspended solids, and 8 precipitation and 3 snowpack samples, which were analyzed for nutrients. Specific conductance, salinity, dissolved oxygen, and water temperature were periodically measured in the field. The mean concentrations of selected constituents in base-flow, stormflow, and snowmelt samples were related to the land use or land cover that either dominated the basin or had a substantial effect on the water quality of the basin. Almost 40 percent of the Onondaga Lake Basin is forested, 30 percent is in agricultural uses, and almost 21 percent, including the city of Syracuse, is in developed uses. The data indicated expected relative differences among the land types for concentrations of nitrate, ammonia-plus-organic nitrogen, and orthophosphate. The data departed from the expected relations for concentrations of phosphorus and suspended sediment, and plausible explanations for these departures were posited. Snowmelt concentrations of dissolved constituents generally were greater and those of particulate constituents were less than concentrations of these constituents in storm runoff. Presumably, the snowpack acted as a short-term sink for dissolved constituents that had accumulated from atmospheric deposition, and streambed erosion and resuspension of previously deposited material, rather than land-surface erosion, were the primary sources of particulate constituents in snowmelt flows. Longitudinal assessments documented the changes in the median concentrations of constituents in base flows and event flows (combined stormflow and snowmelt) from upstream to downstream monitoring sites along the two major tributaries to Onondaga Lake - Onondaga Creek and Ninemile Creek. Median base-flow concentrations of ammonia and phosphorus and event concentrations of ammonia increased in the downstream direction in both streams. Whereas median event concentrations of other constituents in Onondaga Creek displayed no consistent trends, concentrations of ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment in Ninemile Creek decreased from upstream to downstream sites. Springs discharging from the Onondaga and Bertie Limestone had measureable effects on water temperatures in the receiving streams and increased salinity and values of specific conductance in base flows. Loads of selected nutrients and suspended sediment transported in three tributaries of Otisco Lake were compared with loads from 1981-83. Loads of ammonia-plus-organic nitrogen and orthophosphate decreased from 1981-83 to 2005-08, but those of nitrate-plus-nitrite, phosphorus, and suspended sediment increased. The largest load increase was for suspende

  7. Transport, speciation, toxicity, and treatability of highway stormwater discharged to receiving waters in Louisiana.

    DOT National Transportation Integrated Search

    2013-01-01

    Stormwater from transportation land uses is a complex heterogeneous mixture of particulate matter, nutrients (phosphorus and nitrogen), heavy metals, inorganic, and organic compounds with variations in flow and mass loadings by orders of magnitude du...

  8. Hydrology, water quality, trophic status, and aquatic plants of Fowler Lake, Wisconsin

    USGS Publications Warehouse

    Hughes, P.E.

    1993-01-01

    The low annual phosphorus input (28 pounds per square mile) to the lake from the Oconomowoc River shows the benefit of upstream lakes on the Oconomowoc River. Fourteen percent of the phosphorus input load to Fowler Lake is deposited in the lake sediments and the rest is transported through the lake by surface-water flow to downstream Lac La Belle. Dense growths of macrophytes in the lake change in composition seasonally; chara sp. (muskgrass) and Myriophyllum sp. (milfoil) are abundant in June and Najas marina and Vallesneria Americana (wild celery) are abundant in August.

  9. Nutrient and sediment concentrations and corresponding loads during the historic June 2008 flooding in eastern Iowa

    USGS Publications Warehouse

    Hubbard, L.; Kolpin, D.W.; Kalkhoff, S.J.; Robertson, Dale M.

    2011-01-01

    A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.

  10. Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model

    USGS Publications Warehouse

    Granato, Gregory; Jones, Susan Cheung

    2017-01-01

    The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.

  11. Nutrient and sediment concentrations and corresponding loads during the historic June 2008 flooding in eastern Iowa.

    PubMed

    Hubbard, L; Kolpin, D W; Kalkhoff, S J; Robertson, D M

    2011-01-01

    A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.

  12. Study on phosphorus loadings in ten natural and agricultural watersheds in subtropical region of China.

    PubMed

    Li, Yuyuan; Meng, Cen; Gao, Ru; Yang, Wen; Jiao, Junxia; Li, Yong; Wang, Yi; Wu, Jinshui

    2014-05-01

    Water eutrophication in subtropical regions of southern China threatens watershed health and is of major concern. However, annual phosphorus (P) loading and its dominant causes are still unclear, especially at the watershed scale. In this study, we investigated dynamic P loadings and associated factors (e.g., land use, livestock production, and runoff depth) in ten watersheds that varied in area from 9 to 5,212 ha in a hilly area of Hunan Province, China. A flowmeter was installed at the outlet of each watershed, and total P (TP) and soluble P (SP) concentrations were monitored periodically from June 2010 to October 2012. The results showed that annual P loadings (APLs) in the ten watersheds ranged from 22.8 to 247.8 kg P/km(2) and that P loss primarily occurred from April to June of each year during the main rainfall season in the study area. In addition, the average eutrophication (>0.05 mg P/L) ratio for stream waters was 86.7 % during the study period, which was indicative of a potentially serious condition for the local water environments. Annual P loadings were linearly related to livestock density (LD; R = 0.92, p < 0.01), whereas the eutrophication ratio of stream water was significantly (p < 0.05) correlated with LD (R = 0.61), percentage cropland (R = 0.71), and percentage forest cover (R = -0.68). Thus, it is concluded that the control of livestock production has the greatest potential for reducing P loadings in watersheds in this subtropical area. This will be beneficial to the amelioration and protection of local environment.

  13. Decreasing Phosphorus Loss in Tile-Drained Landscapes Using Flue Gas Desulfurization Gypsum.

    PubMed

    King, K W; Williams, M R; Dick, W A; LaBarge, G A

    2016-09-01

    Elevated phosphorus (P) loading from agricultural nonpoint-source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P sorbing potential. A before-after control-impact paired field experiment was used to examine the water quality effects of successive FGD gypsum applications (2.24 Mg ha; 1 ton acre each) to an Ohio field with high soil test P levels (>480 ppm Mehlich-3 P). Analysis of covariance was used to compare event discharge, dissolved reactive P (DRP), and total P (TP) concentrations and loadings in surface runoff and tile discharge between the baseline period (86 precipitation events) and Treatment Period 1 (42 precipitation events) and Treatment Period 2 (84 precipitation events). Results showed that, after the first application of FGD gypsum, event mean DRP and TP concentrations in treatment field tile water were significantly reduced by 21 and 10%, respectively, and DRP concentrations in surface runoff were significantly reduced by 14%; however, no significant reductions were noted in DRP or TP loading. After the second application, DRP and TP loads were significantly reduced in surface runoff (DRP, 41%; TP 40%), tile discharge (DRP, 35%; TP, 15%), and combined (surface + tile) discharge (DRP, 36%; TP, 38%). These findings indicate that surface application of FGD gypsum can be used as a tool to address elevated P concentrations and loadings in drainage waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Development of Handling Qualities Criteria for Rotorcraft with Externally Slung Loads

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H.; Heffley, Robert K.; Mitchell, David G.

    2006-01-01

    Piloted simulations were performed on the NASA-Ames Vertical Motion Simulator (VMS) to explore handling qualities issues for large cargo helicopters, particularly focusing on external slung load operations. The purpose of this work was based upon the need to include handling qualities criteria for cargo helicopters in an upgrade to the U.S. Army's rotorcraft handling qualities specification, Aeronautical Design Standard-33 (ADS-33E-PRF). From the VMS results, handling qualities criteria were developed fro cargo helicopters carrying external slung loads in the degraded visual environment (DVE). If satisfied, these criteria provide assurance that the handling quality rating (HQR) will be 4 or better for operations in the DVE, and with a load mass ratio of 0.33 or less. For lighter loads, flying qualities were found to be less dependent on the load geometry and therefore the significance of the criteria is less. For heavier loads, meeting the criteria ensures the best possible handling qualities, albeit Level 2 for load mass ratios greater than 0.33.

  15. Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.

    PubMed

    Roman-Liu, Danuta

    2005-01-01

    The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.

  16. Nutrient production from dairy cattle manure and loading on arable land

    PubMed Central

    You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix

    2017-01-01

    Objective Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). Results The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management. PMID:27492346

  17. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef

    2017-03-01

    Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n +/Au n - and P n +/P n -) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge ( m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples.

  18. An evaluation of methods for estimating decadal stream loads

    NASA Astrophysics Data System (ADS)

    Lee, Casey J.; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.

    2016-11-01

    Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen - lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale's ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.

  19. Simulated impacts of climate change on phosphorus loading to Lake Michigan

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.; Christiansen, Daniel E.; Lorenz, David J

    2016-01-01

    Phosphorus (P) loading to the Great Lakes has caused various types of eutrophication problems. Future climatic changes may modify this loading because climatic models project changes in future meteorological conditions, especially for the key hydrologic driver — precipitation. Therefore, the goal of this study is to project how P loading may change from the range of projected climatic changes. To project the future response in P loading, the HydroSPARROW approach was developed that links results from two spatially explicit models, the SPAtially Referenced Regression on Watershed attributes (SPARROW) transport and fate watershed model and the water-quantity Precipitation Runoff Modeling System (PRMS). PRMS was used to project changes in streamflow throughout the Lake Michigan Basin using downscaled meteorological data from eight General Circulation Models (GCMs) subjected to three greenhouse gas emission scenarios. Downscaled GCMs project a + 2.1 to + 4.0 °C change in average-annual air temperature (+ 2.6 °C average) and a − 5.1% to + 16.7% change in total annual precipitation (+ 5.1% average) for this geographic area by the middle of this century (2045–2065) and larger changes by the end of the century. The climatic changes by mid-century are projected to result in a − 21.2% to + 8.9% change in total annual streamflow (− 1.8% average) and a − 29.6% to + 17.2% change in total annual P loading (− 3.1% average). Although the average projected changes in streamflow and P loading are relatively small for the entire basin, considerable variability exists spatially and among GCMs because of their variability in projected future precipitation.

  20. An evaluation of methods for estimating decadal stream loads

    USGS Publications Warehouse

    Lee, Casey; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.

    2016-01-01

    Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen – lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale’s ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.

  1. Modeling nutrient release in the Tai Lake basin of China: source identification and policy implications.

    PubMed

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun

    2013-03-01

    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a(-1) and 5254.4 tons P a(-1), and annual area-specific nutrient loads were 1.94 tons N km(-2) and 0.31 tons P km(-2). Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  2. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.

    PubMed

    Barat, R; Montoya, T; Borrás, L; Ferrer, J; Seco, A

    2008-07-01

    A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosphate, and later crystallization of hydroxyapatite. Also the accumulation of phosphorus precipitated was observed when the influent calcium concentration was increased. In all the experiments, the influent wastewater ratio P/COD was kept constant. It has been observed that, at high calcium concentration, the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)) decreases. Changes in the polyphosphate-accumulating organism (PAO) population and in the glycogen-accumulating organism (GAO) population during the experimental period were ruled out by means of fluorescence in situ hybridization. These results could suggest that PAO are able to change their metabolic pathways based on external conditions, such as influent calcium concentration. The accumulation of phosphorus precipitated as calcium phosphate at high influent calcium concentration throughout the experimental period confirmed that phosphate precipitation is a process that can affect the PAO metabolism.

  3. Influence of domestic pets on soil concentrations of dissolved organic carbon, nitrogen, and phosphorus under turfgrass in apartment complexes of Central Texas, USA

    NASA Astrophysics Data System (ADS)

    Steele, M.; Aitkenhead-Peterson, J. A.

    2009-12-01

    High nitrogen (N) and phosphorus (P) watershed loading rates increases the concentration and loads present in urban streams and rivers, resulting in eutrophication and degradation of surface water quality. Domestic pet animal feed may represent a significant proportion of nitrogen loading in urban watersheds, and because it is deposited directly on the watershed surface may have a large effect on N loads in urban surface waters (Baker et al. 2001). Animal manure has long been used to increase soil N and phosphorus concentrations for the purpose of growing agricultural crops; however, little is known about unintentional urban manuring resulting from a high density of domesticated pets. The purpose of this study is to determine if the presence of domesticated animals in high density urban developments results in increased concentrations of soil dissolved organic carbon (DOC), N, and P and the potential to contribute to loading of urban streams. Composite soil samples from the 0 to 5 cm and 5 to 10 cm soil depth were collected from apartment complexes in Bryan/College Station (BCS) and San Antonio, Texas during August, 2009. Apartment complexes were randomly located around the city and were chosen based on their rules regarding pet ownership. Four apartment complexes that allowed all domestic pets were compared to four that did not allow any domestic pets on the property. A 10:1 water extraction of field moist soil was conducted immediately after sampling. Soil water extracts were analyzed for DOC, total dissolved nitrogen (TDN), nitrate-N, ammonium-N, dissolved organic N, and orthophosphate-P. Results indicated significantly increased concentrations of DOC and N species at both depths in BCS apartments that allowed pets compared to those that did not; however, opposite trends were found in San Antonio. There is a trend for increased concentrations of orthophosphate-P at both locations. Baker, L.A., D. Hope, Y. Xu, et al. 2001. Nitrogen balance for the central Arizona-Phoenix (CAP) ecosystem. Ecosystems 4: 582-602.

  4. The use of 3d scanner for testing changes in shape of human limbs under the influence of external mechanical load

    NASA Astrophysics Data System (ADS)

    Kasperska, Kamila; Wieczorowski, Michał; Krolczyk, Jolanta B.

    2017-10-01

    Three-dimensional scanning is used in many fields: medicine, architecture, industry, reverse engineering. The aim of the article was to analyze the changes in the shape of the limbs under the influence of a mechanical external load using the method of three-dimensional scanner uses white light technology. The paper presents a system of human movement, passive part - skeleton and active part - the muscles, and principles of their interaction, which results in a change of the position of the body. Furthermore, by using the 3D scan, the differences in appearance of the arm and leg depending on the size of the external load in different positions have been presented. The paper shows that with increasing load, which muscles must prevent, increases the volume of certain parts of the legs, while another parts of them will be reduced. Results of the research using three-dimensional scanner allow determining what impact on changing the legs shape has an external mechanical load.

  5. Nutrient sources and transport in the Missouri River Basin, with emphasis on the effects of irrigation and reservoirs

    USGS Publications Warehouse

    Brown, J.B.; Sprague, L.A.; Dupree, J.A.

    2011-01-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.

  6. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  7. Modified APEX model for Simulating Macropore Phosphorus Contributions to Tile Drains.

    PubMed

    Ford, William I; King, Kevin W; Williams, Mark R; Confesor, Remegio B

    2017-11-01

    The contribution of macropore flow to phosphorus (P) loadings in tile-drained agricultural landscapes remains poorly understood at the field scale, despite the recognized deleterious impacts of contaminant transport via macropore pathways. A new subroutine that couples existing matrix-excess and matrix-desiccation macropore flow theory and a modified P routine is implemented in the Agricultural Policy Environmental eXtender (APEX) model. The original and modified formulation were applied and evaluated for a case study in a poorly drained field in Western Ohio with 31 months of surface and subsurface monitoring data. Results highlighted that a macropore subroutine in APEX improved edge-of-field discharge calibration and validation for both tile and total discharge from satisfactory and good, respectively, to very good and improved dissolved reactive P load calibration and validation statistics for tile P loads from unsatisfactory to very good. Output from the calibrated macropore simulations suggested median annual matrix-desiccation macropore flow contributions of 48% and P load contributions of 43%, with the majority of loading occurring in winter and spring. While somewhat counterintuitive, the prominence of matrix-desiccation macropore flow during seasons with less cracking reflects the importance of coupled development of macropore pathways and adequate supply of the macropore flow source. The innovative features of the model allow for assessments of annual macropore P contributions to tile drainage and has the potential to inform P site assessment tools. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. The impact of cognitive control, incentives, and working memory load on the P3 responses of externalizing prisoners.

    PubMed

    Baskin-Sommers, Arielle R; Krusemark, Elizabeth A; Curtin, John J; Lee, Christopher; Vujnovich, Aleice; Newman, Joseph P

    2014-02-01

    The P3 amplitude reduction is one of the most common correlates of externalizing. However, few studies have used experimental manipulations designed to challenge different cognitive functions in order to clarify the processes that impact this reduction. To examine factors moderating P3 amplitude in trait externalizing, we administered an n-back task that manipulated cognitive control demands, working memory load, and incentives to a sample of male offenders. Offenders with high trait externalizing scores did not display a global reduction in P3 amplitude. Rather, the negative association between trait externalizing and P3 amplitude was specific to trials involving inhibition of a dominant response during infrequent stimuli, in the context of low working memory load, and incentives for performance. In addition, we discuss the potential implications of these findings for externalizing-related psychopathologies. The results complement and expand previous work on the process-level dysfunction contributing to externalizing-related deficits in P3. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Long-term effects of compost and cover crops on soil phosphorus in two California agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Inefficient P use in agriculture results in soil P accumulation and losses to surrounding ecosystems, highlighting the need to reduce external inputs and use them more efficiently. Composts reduce the need for mineral fertilizers by recycling P from wastes at the regional scale, whereas cover crops ...

  10. The Impact of Additives on the Phosphorus, Potassium, and Sodium Content of Commonly Consumed Meat, Poultry, and Fish Products Among Patients With Chronic Kidney Disease.

    PubMed

    Parpia, Arti Sharma; L'Abbé, Mary; Goldstein, Marc; Arcand, Joanne; Magnuson, Bernadene; Darling, Pauline B

    2018-03-01

    Patients with chronic kidney disease (CKD) are advised to limit their dietary intake of phosphorus and potassium as hyperphosphatemia and hyperkalemia are both associated with an increased risk of mortality. There is uncertainty concerning the actual content of these minerals in the Canadian food supply, as phosphorus and potassium are increasingly being used as food additives. This study aimed to determine the impact of food additives on the chemically analyzed content of phosphorus, potassium, sodium, and protein in commonly consumed meat, poultry, and fish products (MPFs). Foods representing commonly consumed MPF identified by a food frequency questionnaire in dialysis patients were purchased from three major grocery store chains in Canada. MPF with and without phosphorus and potassium additives listed on their ingredient list (n = 76) as well as reference MPF that was additive free (n = 15) were chemically analyzed for phosphorus, potassium, sodium, and protein content according to Association of Analytical Community official methods. Phosphorus, potassium, and sodium additives were present on the ingredient list in 37%, 9%, and 72% of MPF, respectively. Among MPF categories that contained a phosphorus additive, phosphorus content was significantly (P < .05) higher in MPF with phosphorus additives versus MPF without phosphorus additives and MPF reference foods (median [min, max]): (270 [140, 500] mg/100 g) versus (200 [130, 510] mg/100 g) versus (210 [100, 260] mg/100 g), respectively. Among MPF categories containing a potassium additive, foods listing a potassium additive had significantly more (P < .05) potassium than foods that did not list potassium additives and reference foods (900 [750, 1100] mg/100 g) versus (325 [260, 470] mg/100 g) versus (420 [270, 450] mg/100 g). The use of additives in packaged MPF products as indicated by the ingredient list can significantly contribute to the dietary phosphorus and potassium loads in patients with CKD. Patients with CKD should be educated to avoid MPF foods listing phosphorus and/or potassium additives on the ingredient list, which may lead to improved dietary adherence. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  11. Cultivation of Chlorella vulgaris and Arthrospira platensis with Recovered Phosphorus from Wastewater by Means of Zeolite Sorption

    PubMed Central

    Markou, Giorgos; Depraetere, Orily; Vandamme, Dries; Muylaert, Koenraad

    2015-01-01

    In this study, zeolite was employed for the separation and recovery of P from synthetic wastewater and its use as phosphorus (P) source for the cultivation of the green microalga Chlorella vulgaris and the cyanobacterium Arthrospira (Spirulina) platensis. At P-loaded zeolite concentration of 0.15–1 g/L, in which P was limited, the two species displayed quite different behavior regarding their growth and biomass composition. C. vulgaris preferred to increase the intracellular P and did not synthesize biomass, while A. platensis synthesized biomass keeping the intracellular P as low as possible. In addition under P limitation, C. vulgaris did display some little alteration of the biomass composition, while A. platensis did it significantly, accumulating carbohydrates around 70% from about 15%–20% (control). Both species could desorb P from zeolite biologically. A. platensis could recover over 65% and C. vulgaris 25% of the P bounded onto zeolite. When P-loaded zeolite concentration increased to 5 g/L, P was adequate to support growth for both species. Especially in the case of C. vulgaris, growth was stimulated from the presence of P-loaded zeolite and produced more biomass compared to the control. PMID:25690037

  12. Seasonal change of non-point source pollution-induced bioavailable phosphorus loss: A case study of Southwestern China

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhu, Bo; Wang, Tao; Wang, Yafeng

    2012-02-01

    SummaryBioavailable phosphorus (P) losses due to agriculture activity in a purple soil watershed in the Sichuan Basin of Southwestern China were monitored to define the hydrological controls of P transport. Our results indicate that the proportion of P that was transported in particulate form increased in the rainy season, and that the mass of total bioavailable P (BAP) loads exhibited seasonal fluctuations, wherein the majority (over 90%) was observed to have been exported between June and September. The proportion of bioavailable dissolved P (BDP) in the BAP discharge budget in the watershed varied between 11% and 15% during the monitoring period. The bioavailable particulate P (BPP) and BDP concentrations of stream water under rainstorm events increased by over 40% in comparison to their annual mean concentrations, and the annual BAP load was primarily dominated by the loads that occurred during rainstorm events in the study year. BAP concentration in groundwater significantly fluctuated with the seasons, and the ratio of total BAP in groundwater to that in surface water gradually increased during the rainy season. Thus, the impact of agriculture on the water quality of this watershed becomes clearly evident.

  13. Three years experience of operating and selling recovered struvite from full-scale plant.

    PubMed

    Ueno, Y; Fujii, M

    2001-11-01

    The adoption of phosphorus removal at sewage treatment works (STW) creates two main problems. Firstly large amounts of sludge are produced and secondly the quantity of the effluent deteriorates due to the increase in the phosphorus load of the sidestream. Furthermore, these processes do not remove phosphorus in a form that would enable it to be recycled. Therefore in order to control these process difficulties and produce a recyclable phosphorus product a sidestream struvite crystallisation reactor was developed. The struvite was produced in a fluidised bed reactor using dewatered filtrate from anaerobic sludge digestion. Magnesium hydroxide was added in a magnesium to phosphate ratio of 1:1 and the pH was adjusted to between 8.2-8.8 with the addition of sodium hydroxide. A retention time of 10 days alowed the growth of pellets between 0.5-1.0 mm in size. The recovered struvite contained only minute traces of toxic substances and was sold to fertiliser companies for 27,000 yen tonne(-1). It is used to enhance existing fertilisers, which are widely used on paddy rice, vegetables and flowers.

  14. Towards high through-put biological treatment of municipal wastewater and enhanced phosphorus recovery using a hybrid microfiltration-forward osmosis membrane bioreactor with hydraulic retention time in sub-hour level.

    PubMed

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-01

    This work uncovers an important feature of the forward osmosis membrane bioreactor (FOMBR) process: the decoupling of contaminants retention time (CRT) and hydraulic retention time (HRT). Based on this concept, the capability of the hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) in achieving high through-put treatment of municipal wastewater with enhanced phosphorus recovery was explored. High removal of TOC and NH4(+)-N (90% and 99%, respectively) was achieved with HRTs down to 47min, with the treatment capacity increased by an order of magnitude. Reduced HRT did not affect phosphorus removal and recovery. As a result, the phosphorus recovery capacity was also increased by the same order. Reduced HRT resulted in increased system loading rates and thus elevated concentrations of mixed liquor suspended solids and increased membrane fouling. 454-pyrosequecing suggested the thriving of Bacteroidetes and Proteobacteria (especially Sphingobacteriales Flavobacteriales and Thiothrix members), as well as the community succession and dynamics of ammonium oxidizing and nitrite oxidizing bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influences of load characteristics on impaired control of grip forces in patients with cerebellar damage.

    PubMed

    Brandauer, B; Timmann, D; Häusler, A; Hermsdörfer, J

    2010-02-01

    Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of movement-induced torques. To study the effects of disturbed torque control on feedforward grip-force control, two self-generated load conditions with different demands on torque control-one with movement-induced and the other with isometrically generated load changes-were directly compared in patients with cerebellar degeneration. Furthermore the cerebellum is thought to be more involved in grip-force adjustment to self-generated loads than to externally generated loads. Consequently, an additional condition with externally generated loads was introduced to further test this hypothesis. Analysis of 23 patients with degenerative cerebellar damage revealed clear impairments in predictive feedforward mechanisms in the control of both self-generated load types. Besides feedforward control, the cerebellar damage also affected more reactive responses when the externally generated load destabilized the grip, although this impairment may vary with the type of load as suggested by control experiments. The present findings provide further support that the cerebellum plays a major role in predictive control mechanisms. However, this impact of the cerebellum does not strongly depend on the nature of the load and the specific internal forward model. Contributions to reactive (grip force) control are not negligible, but seem to be dependent on the physical characteristics of an externally generated load.

  16. Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.

    2008-01-01

    Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily-mean loads were computed at the two Waiakea Stream sampling sites for the analyzed constituents, during the period October 1, 2003 to September 30, 2005. No record of daily-mean load was computed for the Alenaio Stream sampling site due to the problems with computing a discharge record. The maximum daily-mean loads for the upper site on Waiakea Stream for suspended sediment was 79 tons per day, and the maximum daily-mean loads for total nitrogen, dissolved nitrite plus nitrate, and total phosphorus were 1,350, 13, and 300 pounds per day, respectively. The maximum daily-mean loads for the lower site on Waiakea Stream for suspended sediment was 468 tons per day, and the maximum daily-mean loads for total nitrogen, nitrite plus nitrate, and total phosphorus were 913, 8.5, and 176 pounds per day, respectively. From the estimated continuous daily-mean load record, all of the maximum daily-mean loads occurred during October 2003 and September 2004, except for suspended sediment load for the lower site, which occurred on September 15, 2005. Maximum values were not all caused by a single storm event. Overall, the record of daily-mean loads showed lower loads during storm events for suspended sediments and nutrients at the downstream site of Waiakea Stream during 2004 than at the upstream site. During 2005, however, the suspended sediment loads were higher at the downstream site than the upstream site. Construction of a flood control channel between the two sites in 2005 may have contributed to the change in relative suspended-sediment loads.

  17. Gate induced monolayer behavior in twisted bilayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Sevik, Cem; Wallbank, John R.; Gülseren, Oğuz; Peeters, François M.; Çakır, Deniz

    2017-09-01

    Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90°. These calculations are complemented with a simple k\\centerdot p model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90° twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90° simply by changing the direction of the applied electric field. In particular, a + 0.4 (-0.4) V {{{\\mathringA}}-1} out-of-plane electric field results in a  ˜60% increase in the hole effective mass along the \\mathbf{y} (\\mathbf{x} ) axis and enhances the m\\mathbf{y}\\ast/m\\mathbf{x}\\ast (m\\mathbf{x}\\ast/m\\mathbf{y}\\ast ) ratio as much as by a factor of 40. Our DFT and k\\centerdot p simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.

  18. Load-dependent assembly of the bacterial flagellar motor.

    PubMed

    Tipping, Murray J; Delalez, Nicolas J; Lim, Ren; Berry, Richard M; Armitage, Judith P

    2013-08-20

    It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. The transition between liquid living and surface living is important in the life cycles of many bacteria. In this paper, we describe how the flagellar motor, used by bacteria for locomotion through liquid media and across solid surfaces, is capable of adjusting the number of bound stator units to better suit the external load conditions. By stalling motors using external magnetic fields, we also show that rotation is not required for maintenance of stators around the motor; instead, torque production is the essential factor for motor stability. These new results, in addition to previous data, lead us to hypothesize that the motor stators function as mechanosensors as well as functioning as torque-generating units.

  19. NITROGEN EFFECTS ON COASTAL MARINE ECOSYSTEMS

    EPA Science Inventory

    In the 1960s the problem of nutrient inputs to freshwater systems, and scientific debate about it, was reaching a peak. . . Even before the freshwater decision-makers became fully focused on setting limits on phosphorus (P) loading by a seminal experiment of David Schindler (1974...

  20. Stable isotope differences among the Lake Michigan 2015 CSMI transects

    EPA Science Inventory

    During the Lake Michigan 2015 Cooperative Science and Monitoring Initiative (CSMI), eight transects situated near tributaries that present a gradient of phosphorus loads were sampled from nearshore to offshore during May, July, and September. Our objective was to evaluate associa...

  1. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North, Fargo, North Dakota, 2003-05

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.

  2. Estimating costs and potentials of different methods to reduce the Swedish phosphorus load from agriculture to surface water.

    PubMed

    Malmaeus, J M; Karlsson, O M

    2010-01-01

    This paper reviews 17 measures to reduce phosphorus leakage from Swedish agriculture to surface waters. Our aim is to evaluate the possible contribution from agriculture to achieve environmental goals including the Baltic Sea Action Plan. Using a regional approach integrating the variability in field specific characteristics, typical costs and national potential for the included measures may be estimated without identifying, e.g., suitable individual fields for implementation. The result may be helpful to select suitable measures but may also influence the design of environmental targets before they are determined. We find that the cheapest measures are reduced phosphorus content in animal food and fertilizer application supervision in pig farms, both measures with annual potentials of around 50t each, and costs of euro7 to euro11 kg(-1)yr(-1). The total potential of the listed measures is an annual phosphorus reduction to surface waters of 242t. If the most expensive measures are excluded (>euro1000 kg(-1)yr(-1)) and including retention in lakes the phosphorus transport to the sea could be reduced by 165 t yr(-1). This amount can be compared with the Swedish commitment in the Baltic Sea Action Plan (BSAP) to reduce input to the Baltic Proper by 290 t yr(-1).

  3. Nitrogen Removal from Landfill Leachate by Microalgae.

    PubMed

    Pereira, Sérgio F L; Gonçalves, Ana L; Moreira, Francisca C; Silva, Tânia F C V; Vilar, Vítor J P; Pires, José C M

    2016-11-17

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N-NH₄⁺) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N-NH₄⁺ concentration. In terms of nutrients uptake, an effective removal of N-NH₄⁺ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N-NO₃ - removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates.

  4. Nitrogen Removal from Landfill Leachate by Microalgae

    PubMed Central

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  5. 14 CFR 23.301 - Loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... load would significantly change the distribution of external or internal loads, this redistribution...) and ultimate loads (limit loads multiplied by prescribed factors of safety). Unless otherwise provided...

  6. Developing a comprehensive framework for eutrophication management in off-stream artificial lakes

    NASA Astrophysics Data System (ADS)

    Khorasani, Hamed; Kerachian, Reza; Malakpour-Estalaki, Siamak

    2018-07-01

    In this paper, a comprehensive and interdisciplinary framework for management of eutrophication in off-stream artificial lakes in semi-arid and arid regions is proposed. Identification of the lake's water resources system components and stakeholders, simulation of Phosphorus (P) export from upstream watershed, simulation of the lake water quality as well as simulation of water demands and supply, development of management scenarios for the lake and selecting the best scenario using social choice methods (i.e. discrete and fuzzy Borda counts) are the four main parts of the framework. The proposed framework is applied on Chitgar Artificial Lake (ChAL), the largest intra-urban artificial lake in Tehran which has been constructed in 2010-2013 for recreational purposes. The Load Apportionment Model (LAM) is used for the simulation of P loads from the point and non-point (diffusive) sources and the LakeMab model is used for the simulation of P dynamics in the lake. The management scenarios contain optimized rule curves for water intake/outtake blended with P management plans (i.e. removal of point sources of P load in the upstream watershed, construction of a hydroponic bio-filter or an advanced water treatment plant beside the lake for reduction of external loading of P and recycling lake water, alum treatment of lake sediments for controlling the internal loading of P as well as construction of a dry detention basin). The most preferred scenarios selected by the discrete Borda count are the low-cost alum treatment and dry detention basin, while the most preferred scenario according to fuzzy Borda count, which considers the uncertainty of model inputs, is the costly water treatment plant. In all preferred scenarios, water intake is conducted from flood flows in order to avoid conflict with downstream agricultural demands. In addition to decentralized decision making and stakeholders' participation, the proposed framework promotes the integration of the technical aspects such as the role of internal loading in lake eutrophication and separation of flood and non-flood flows in the off-stream lakes' systems.

  7. Eutrophication of Buttermilk Bay, a cape cod coastal embayment: Concentrations of nutrients and watershed nutrient budgets

    NASA Astrophysics Data System (ADS)

    Valiela, Ivan; Costa, Joseph E.

    1988-07-01

    Nutrient concentrations in Buttermilk Bay, a coastal embayment on the northern end of Buzzards Bay, MA, are higher in the nearshore where salinities are lower. This pattern suggests that freshwater sources may contribute significantly to nutrient inputs into Buttermilk Bay. To evaluate the relative importance of the various sources we estimated inputs of nutrients by each major source into the watershed and into the bay itself. Septic systems contributed about 40% of the nitrogen and phosphorus entering the watershed, with precipitation and fertilizer use adding the remainder. Groundwater transported over 85% of the nitrogen and 75% of the phosphorus entering the bay. Most nutrients entering the watershed failed to reach the bay; uptake by forests, soils, denitrification, and adsorption intercepted two-thirds of the nitrogen and nine-tenths of the phosphorus that entered the watershed. The nutrients that did reach the bay most likely originated from subsoil injections into groundwater by septic tanks, plus some leaching of fertilizers. Buttermilk Bay water has relatively low nutrient concentrations, probably because of uptake of nutrients by macrophytes and because of relatively rapid tidal flushing. Annual budgets of nutrients entering the watershed showed a low nitrogen-to-phosphorus ratio of 6, but passage of nutrients through the watershed raised N/P to 23, probably because of adsorption of PO4 during transit. The N/P ratio of water that leaves the watershed and presumably enters the bay is probably high enough to maintain active growth of nitrogenlimited coastal producers. There is a seasonal shift in N/P in the water column of Buttermilk Bay. N/P exceeded the 16∶1 Redfield ratio during midwinter; the remainder of the year N/P fell below 16∶1. This suggests that annual budgets do not provide sufficiently detailed data with which to interpret nutrient-limitation of producers. Further, some idea of water turnover is also needed to evaluate impact of loading rates. Urbanization of watersheds seems to increase loadings to nearshore environments, and to shift the nutrient loadings delivered to coastal waters to relatively high N-to-P ratios, potentially stimulating growth of nitrogen-limited primary producers.

  8. New England SPARROW Water-Quality Modeling to Assist with the Development of Total Maximum Daily Loads in the Connecticut River Basin

    NASA Astrophysics Data System (ADS)

    Moore, R. B.; Robinson, K. W.; Simcox, A. C.; Johnston, C. M.

    2002-05-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEWIPCC), is currently preparing a water-quality model, called SPARROW, to assist in the regional total maximum daily load (TMDL) studies in New England. A model is required to provide estimates of nutrient loads and confidence intervals at unmonitored stream reaches. SPARROW (Spatially Referenced Regressions on Watershed Attributes) is a spatially detailed, statistical model that uses regression equations to relate total phosphorus and nitrogen (nutrient) stream loads to pollution sources and watershed characteristics. These statistical relations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW model is based on a hydrologic network of 42,000 stream reaches and associated watersheds. Point source data are derived from USEPA's Permit Compliance System (PCS). Information about nonpoint sources is derived from data such as fertilizer use, livestock wastes, and atmospheric deposition. Watershed characteristics include land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. Preliminary SPARROW results are expected in Spring 2002. The New England SPARROW model is proposed for use in the TMDL determination for nutrients in the Connecticut River Basin, upstream of Connecticut. The model will be used to estimate nitrogen loads from each of the upstream states to Long Island Sound. It will provide estimates and confidence intervals of phosphorus and nitrogen loads, area-weighted yields of nutrients by watershed, sources of nutrients, and the downstream movement of nutrients. This information will be used to (1) understand ranges in nutrient levels in surface waters, (2) identify the environmental factors that affect nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.

  9. Combined effects of phosphate-solubilizing bacterium XMT-5 (Rhizobium sp.) and submerged macrophyte Ceratophyllum demersum on phosphorus release in eutrophic lake sediments.

    PubMed

    Li, Haifeng; Li, Zhijian; Qu, Jianhang; Tian, Hailong; Yang, Xiaohong

    2018-05-02

    Simulation experiments were conducted using sediments collected from the Taihu Lake to determine the combined effects of submerged macrophytes Ceratophyllum demersum and phosphate-solubilizing bacteria (PSB) strain XMT-5 (Rhizobium sp.) on phosphorus (P) concentrations in overlying waters and sediments. After 30 days of experimental incubation, the total phosphorus (TP) and dissolved total phosphorus (DTP) concentrations of the overlying water subjected to AMB and AHMB treatments (both with the combined effects of PSB cells and submerged macrophytes) were generally lower than those of the AM (with individual effects of inoculated C. demersum) and AB (with individual effects of a smaller amount of inoculated PSB cells) control treatments but higher than that of the A (with no effects of inoculated PSB cells or C. demersum) and AHB (with individual effects of a larger amount of inoculated PSB) control treatments. The TP contents of the sediment in the AMB and AHMB treatments were significantly lower than those of the other control treatments. The TP contents of the C. demersum cocultured with the PSB strain XMT-5 cells in the AMB and AHMB treatments were all significantly higher than that of the AM treatment, indicating the enhancement of P uptake by submerged plants inoculated with PSB. The bacterial diversity structures of the rhizosphere sediment subjected to different treatments were also analyzed by the high-throughput sequencing method. According to the ACE and Chao 1 indices, the bacterial diversity in the AMB and AHMB treatments were the highest. Although many sources contributed to the decrease in the nutrient loads of the lake sediment, harvesting macrophytes inoculated with PSB cells prior to their senescence might constitute a significant in-lake measure for reducing internal P load.

  10. Metabolic Factors Affecting Enhanced Phosphorus Uptake by Activated Sludge

    PubMed Central

    Boughton, William H.; Gottfried, Richard J.; Sinclair, Norval A.; Yall, Irving

    1971-01-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and 32P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl2, iodoacetic acid, p-chloromercuribenzoic acid, NaN3, and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10−3m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions). PMID:5002140

  11. Nutrient Removal through Oyster Habitat Restoration in the Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Gallagher, S. M.; Schmidt, C. A.; Walters, L.; Blank, R.

    2017-12-01

    In 2016, an algae bloom in the Indian River Lagoon (IRL) caused a state of emergency in Florida. As with many estuaries, nutrient loading in the IRL has led to periodic eutrophication. While previous studies have shown oyster bed restoration reduces suspended organic matter in estuaries, similar reductions to net nutrient loads are not well established. In addition, previous studies have focused on seasonal variation rather than ongoing yearly effects. Here, we determine the net nitrogen and phosphorus effects of oyster restoration in the IRL over seven years. Analysis of aerial images from 1943 and 2009 showed 14.7 ha of oyster beds were destroyed by boat traffic in the IRL (40% loss). According to our measurements of restored oyster bed sediment, this equates to a maximum of 1,580,000 kg•N•yr-1 of lost denitrification potential; this is equivalent to 150% of estimated current nitrogen loading in the IRL. Oyster restoration began in the IRL in 2007 and has recovered 7.7% of the lost beds and denitrification potential (1.13 ha and 107,000 kg•N•yr-1•ha-1). In all cases, denitrification reached a maximum within two years and remained significantly higher than open sediment for at least the seven years observed. Denitrification benefits came at the cost of mobilizing a maximum of 3450 kg ha-1 of recalcitrant phosphorus from restored bed sediment. This effect was limited to the two years following restoration, whereas increased denitrification was ongoing. Overall, our results show oyster restoration achieved maximum denitrification within two years and maintained significant denitrification benefits for at least seven years. In addition, our results are useful for future oyster restoration projects since they quantify nitrogen benefits in terms of phosphorus mobilization.

  12. A generalized force-modified potential energy surface (G-FMPES) for mechanochemical simulations

    DOE PAGES

    Subramanian, Gopinath; Mathew, Nithin; Leiding, Jeffery A.

    2015-10-05

    We describe the modifications that a spatially varying external load produces on a Born-Oppenheimer potential energy surface (PES) by calculating static quantities of interest. The effects of the external loads are exemplified using electronic structure calculations (at the HF/6-31G** level) of two different molecules: ethane and hexahydro-1,3,5-trinitro-s-triazine (RDX). The calculated transition states and The Hessian matrices of stationary points show that spatially varying external loads shift the stationary points and modify the curvature of the PES, thereby affecting the harmonic transition rates by altering both the energy barrier as well as the prefactor. The harmonic spectra of both molecules aremore » blue-shifted with increasing compressive “pressure.” Some stationary points on the RDX-PES disappear under application of the external load, indicating the merging of an energy minimum with a saddle point.« less

  13. Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments.

    PubMed

    Kataki, Sampriti; West, Helen; Clarke, Michèle; Baruah, D C

    2016-03-01

    Global population growth requires intensification of agriculture, for which a sustainable supply of phosphorus (P) is essential. Since natural P reserves are diminishing, recovering P from wastes and residues is an increasingly attractive prospect, particularly as technical and economic potential in the area is growing. In addition to providing phosphorus for agricultural use, precipitation of P from waste residues and effluents lessens their nutrient loading prior to disposal. This paper critically reviews published methods for P recovery from waste streams (municipal, farm and industrial) with emphasis on struvite (MgNH4PO4·6H2O) crystallisation, including pre-treatments to maximise recovery. Based on compositional parameters of a range of wastes, a Feedstock Suitability Index (FSI) was developed as a guide to inform researchers and operators of the relative potential for struvite production from each waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Laguna Madre Water Purification using Biochar from Citrus Peels

    NASA Astrophysics Data System (ADS)

    Lopez, C.; Al-Qudah, O. M.

    2017-12-01

    Laguna Madre is an important lagoon in the coast of Texas. It is one of the seven hypersaline lagoons in the world. Due to inflow of water with extreme amounts of phosphorus and nitrates and the low inflow of freshwater, the lagoon has high amount of phosphorus and nitrates which can be harmful for fish and plants situated in the lagoon. The goal is to be able to perform a filtration method with citrus peels biochar, and then to evaluate and compare the produced biochar, zeolite, and activated carbon as an infiltration filter by assessing reductions of nitrogen and phosphorus compounds, as well as sum selected trace elements. Furthermore, the current research will investigate how long the cleaning capacity of biochar lasts and how the performance of the filter changes under an increased load of contaminants. The performance of biochar from different parent materials and recycling options for the used filter materials are also included in this research.

  15. Prediction of Water Quality Parameters Using Statistical Methods: A Case Study in a Specially Protected Area, Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Alp, E.; Yücel, Ö.; Özcan, Z.

    2014-12-01

    Turkey has been making many legal arrangements for sustainable water management during the harmonization process with the European Union. In order to make cost effective and efficient decisions, monitoring network in Turkey has been expanding. However, due to time and budget constraints, desired number of monitoring campaigns can not be carried. Hence, in this study, independent parameters that can be measured easily and quickly are used to estimate water quality parameters in Lake Mogan and Eymir using linear regression. Nonpoint sources are one of the major pollutant components in Eymir and Mogan lakes. In this paper, a correlation between easily measurable parameters, DO, temperature, electrical conductivity, pH, precipitation and dependent variables, TN, TP, COD, Chl-a, TSS, Total Coliform is investigated. Simple regression analysis is performed for each season in Eymir and Mogan lakes by using SPSS Statistical program using the water quality data collected between 2006-2012. Regression analysis demonstrated significant linear relationship between measured and simulated concentrations for TN (R2=0.86), TP (R2=0.85), TSS (R2=0.91), Chl-a (R2=0.94), COD (R2=0.99), T. Coliform (R2=0.97) which are the best results in each season for Eymir and Mogan Lakes. The overall results of this study shows that by using easily measurable parameters even in ungauged situation the water quality of lakes can be predicted. Moreover, the outputs obtained from the regression equations can be used as an input for water quality models such as phosphorus budget model which is used to calculate the required reduction in the external phosphorus load to Lake Mogan to meet the water quality standards.

  16. Spatial and temporal variation of stream chemistry associated with contrasting geology and land-use patterns in the Chesapeake Bay watershed—Summary of results from Smith Creek, Virginia; Upper Chester River, Maryland; Conewago Creek, Pennsylvania; and Difficult Run, Virginia, 2010–2013

    USGS Publications Warehouse

    Hyer, Kenneth E.; Denver, Judith M.; Langland, Michael J.; Webber, James S.; Böhlke, J.K.; Hively, W. Dean; Clune, John W.

    2016-11-17

    Despite widespread and ongoing implementation of conservation practices throughout the Chesapeake Bay watershed, water quality continues to be degraded by excess sediment and nutrient inputs. While the Chesapeake Bay Program has developed and maintains a large-scale and long-term monitoring network to detect improvements in water quality throughout the watershed, fewer resources have been allocated for monitoring smaller watersheds, even though water-quality improvements that may result from the implementation of conservation practices are likely to be first detected at smaller watershed scales.In 2010, the U.S. Geological Survey partnered with the U.S. Environmental Protection Agency and the U.S. Department of Agriculture to initiate water-quality monitoring in four selected small watersheds that were targeted for increased implementation of conservation practices. Smith Creek watershed is an agricultural watershed in the Shenandoah Valley of Virginia that is dominated by cattle and poultry production, and the Upper Chester River watershed is an agricultural watershed on the Eastern Shore of Maryland that is dominated by row-cropping activities. The Conewago Creek watershed is an agricultural watershed in southeastern Pennsylvania that is characterized by mixed agricultural activities. The fourth watershed, Difficult Run, is a suburban watershed in northern Virginia that is dominated by medium density residential development. The objective of this study was to investigate spatial and temporal variations in water chemistry and suspended sediment in these four relatively small watersheds that represent a range of land-use patterns and underlying geology to (1) characterize current water-quality conditions in these watersheds, and (2) identify the dominant sources, sinks, and transport processes in each watershed.The general study design involved two components. The first included intensive routine water-quality monitoring at an existing streamgage within each study area (including continuous water-quality monitoring as well as discrete water-quality sampling) to develop a detailed understanding of the temporal and hydrologic variability in stream chemistry and sediment transport in each watershed. The second component involved extensive water-quality monitoring at various sites throughout each watershed to develop a detailed understanding of spatial patterns. Both components were used to improve understanding of sources and transport processes affecting stream chemistry, including nutrients and suspended sediments, and their implications for detecting long-term trends related to best management practices. This report summarizes the results of monitoring that was performed from April 2010 through September 2013.Individual Small Watershed SummariesSummaries for each of the four small watersheds are presented below. Each watershed has a more descriptive and detailed section in the report, but these summaries may be particularly useful for some watershed managers and stakeholders desiring slightly less technical detail.Smith CreekSmith Creek is a 105.39-mi2 watershed within the Shenandoah Valley that drains to the North Fork Shenandoah River. The long-term Smith Creek base-flow index is 72.3 percent, indicating that on average, approximately 72 percent of Smith Creek flow was base flow, which suggests that Smith Creek streamflow is dominated by groundwater discharge rather than stormwater runoff. A series of cluster and principal components analyses demonstrated that the majority of the variability in Smith Creek water quality could be attributed to hydrologic and seasonal variability. Statistically significant positive correlations with flow were observed for turbidity, suspended sediments, total nitrogen, ammonium, orthophosphate, iron, total phosphorus, and the ratio of calcium to magnesium. Statistically significant inverse correlations with flow were observed for specific conductance, magnesium, δ15N of nitrate, pH, bicarbonate, calcium, and δ18O of nitrate. Of particular note, flow and nitrate were not statistically significantly correlated, likely because of the relatively complex concentration-discharge relationship observed in continuous and discrete datasets. Statistically significant seasonal patterns were observed for numerous water-quality constituents: water temperature, turbidity, orthophosphate, total phosphorus, suspended-sediment concentration, and silica were higher during the warm season, but pH, dissolved oxygen, and sulfate were higher during the cool season. Surrogate regression models were developed to compute sediment and nutrient loads in Smith Creek using the continuous water-quality monitors. The mean Smith Creek in-stream sediment load was approximately 6,900 tons per year, with nearly 90 percent of the sediment load over the 3-year study period contributed during the eight largest storm events during that period. The Smith Creek total phosphorus load was approximately 21,000 pounds of phosphorus per year, with the majority of the load contributed during stormflow periods, although a substantial phosphorus load still occurs during base-flow conditions. The Smith Creek total nitrogen load was approximately 400,000 pounds per year, with total nitrogen accumulation less dominated by stormflow contributions (as was the case for sediment and total phosphorus) and strongly affected by base-flow export of nitrogen from the basin.Extensive water-quality monitoring throughout the Smith Creek watershed revealed how the complex geology and hydrology interacted to result in variable water chemistry. During relatively dry and low base-flow periods, much of the discharge in Smith Creek was contributed by a single dominant spring—Lacey Spring. During wetter base-flow periods, the flows in Smith Creek were largely generated by a mixture of headwater springs and forested mountain tributaries with very different geochemical composition. The headwater springs generally issued from limestone bedrock and were characterized as having relatively high nitrate, specific conductance, calcium, and magnesium, as well as relatively low concentrations of phosphorus, ammonium, iron, and manganese. The undeveloped, high-gradient, forested mountain sites were generally characterized by low ionic strength waters with low nutrient concentrations. Nitrate isotope data from the limestone springs generally were consistent with manure-derived nitrogen sources (such as cattle and poultry), although the possibility of other mixed sources cannot be excluded. Nitrate isotope data from the undeveloped, high-gradient forested mountain sites were more consistent with nitrogen from undisturbed soils, atmospheric deposition, or nitrogen fixation. Regardless of the nitrogen source, oxygen isotope data indicate that the nitrate was largely a result of nitrification. Land-use data indicate that manure sources of nitrogen dominated watershed nitrogen inputs. Phosphorus sources were less well studied. The presence of a single point-source discharge near the town of New Market contributed the majority of the phosphorus to Smith Creek under base-flow conditions, but nonpoint sources of phosphorus dominated the loading to Smith Creek during stormflow periods.Implementation of conservation practices increased in the Smith Creek watershed during the study period, and even though a broad range of practice types was implemented, the most common practices included stream fencing (for cattle exclusion), the development of nutrient management plans, conservation crop rotation, and the planting of cover crops. While the implementation of these conservation practices is encouraging, results indicate small increases in nitrate concentrations at the streamgage over the last 29 years, concurrent with small decreases in nitrate fluxes. It will likely be years before the cumulative effect of these practices can be detected in the Smith Creek water quality, and the magnitude of the effect of these conservation practices detected in Smith Creek will depend largely on whether nutrient loading (of manure and commercial fertilizer) is reduced over time.Upper Chester RiverThe Upper Chester River watershed includes the 36-square-mile (mi2) watershed area around several nontidal tributaries that drain into the tidal Chester River. The streamgage is on Chesterville Branch, the largest nontidal tributary (approximately 6.12 mi2) and is the site for continuous water-quality monitoring for this project. The base-flow index at Chesterville Branch is about 72 percent and indicates that, as in most of the Coastal Plain, groundwater is the greatest contributor to streamflow. As such, more than 90 percent of the nitrogen in the stream is in the form of nitrate from groundwater. Continuous and discrete data collected at Chesterville Branch show the effects of streamflow and season on water quality. Significantly positive correlations with flow were observed for ammonium, dissolved and total phosphorus, sediment, and turbidity as runoff carried these constituents from the land surface into Chesterville Branch. Other constituents that increased significantly with flow include potassium, sulfate, iron, and manganese, which are likely contributed from near-stream areas and ponds with high organic-matter content. Total nitrogen, pH, and specific conductance, along with chemical constituents associated with groundwater inputs including nitrate, calcium, ratio of calcium to magnesium, silica, bicarbonate, and sodium, were negatively correlated with flow because concentrations of these constituents were diluted by runoff.Seasonal differences in water chemistry, which are most likely related to increased biologic effects on the uptake and release of chemicals in the stream and near-stream areas, also were observed. Water temperature, orthophosphate, δ15N of nitrate, bicarbonate, sodium, and the ratio of sodium to chloride were higher during the warm season, and dissolved oxygen, total nitrogen, nitrate, magnesium, sulfate, and manganese were higher during the cool season.Surrogate-regression models developed by using continuous water-quality data showed that the annual sediment load for the 2013 water year was about 2,600 tons, with more than 90 percent of this sediment contributed during two storms. The total phosphorus load in 2013 was about 13,000 pounds with more than 90 percent contributed during the same two storms as sediment. The load of total nitrogen, 140,000 pounds, accumulated steadily throughout the 2013 water year as nitrate in groundwater continuously discharged into the stream. The same two large storms that contributed 90 percent of the suspended-sediment and total phosphorus load only contributed about 20 percent of the annual total nitrogen load.Extensive water-quality monitoring of stream base flow throughout the Upper Chester River watershed identified how differences in land use and hydrogeology affected water chemistry. In parts of the watershed with well-drained soil and thick sandy aquifer sediments, concentrations of nitrate and other chemicals associated with fertilizer and lime application increased in streams as agricultural land use increased. More than 90 percent of the nitrogen in streams from these areas was in the form of nitrate, and concentrations ranged from about 5 milligrams per liter (mg/L) to 8 mg/L as nitrogen in the two largest tributaries. Stream nitrate concentrations were about 1 mg/L as nitrogen where soils were more poorly drained, the surficial aquifer sediments were thinner, and forests and wetlands were more widespread than agriculture. Nitrate isotope data were consistent with inorganic fertilizers ± atmospheric deposition and N2 fixation as sources of nitrogen, and with nitrification as the dominant nitrate-forming process. Nitrate reduction was indicated by elevated δ15N and δ18O values in some samples from streams draining watersheds with poorly drained soils. An analysis of land-use data and SPARROW modeling input data attributed almost 90 percent of the nitrogen sources in the Upper Chester River watershed to inorganic fertilizer and fixation of atmospheric nitrogen by legumes, which is in agreement with the isotopic characteristics of nitrate in this watershed. Local sources of manure are limited in this area. Total phosphorus concentrations during base flow ranged from below detection to about 0.2 mg/L. Stream phosphorus concentrations during base flow were generally lower than those measured during storms because most phosphorus transport likely occurs as phosphorus attached to sediment particles during runoff. Because manure is not widely used in this area, the major source of phosphorus is likely fertilizer.The implementation of conservation practices in the Upper Chester River watershed increased substantially during the study period, with a total implementation of 1,194 U.S. Department of Agriculture-compliant practices. The most frequently used practices were oriented towards nutrient and sediment control, including cover crops, nutrient management planning, conservation crop rotation, conservation tillage, and irrigation management. The current Chesapeake Bay model for this area predicts that implementation of best management practices should result in a 13-percent decrease in overall delivery of nitrogen to the Upper Chester River. Because most nitrogen travels through the groundwater system for years to decades before being discharged to streams, the time period of monitoring was not sufficient to see the effects of these practices on water quality. The magnitude of the effect that may eventually be detected will depend on the degree to which nitrate leaching into the groundwater system is reduced over time. Loadings of phosphorus and sediment are primarily transported during large runoff events and are difficult to control and analyze for trends because of their timing and episodic nature.Conewago CreekConewago Creek has two primary monitoring locations—one near the middle of the 47-mi2 watershed and the other near the outlet just upstream of the Susquehanna River. The base-flow index was 47.3 percent for 2012–2013, indicating that on average, approximately 53 percent of the streamflow in Conewago Creek exited the watershed as surface flow, which suggests that the stormwater runoff was somewhat greater than groundwater discharge (base flow). A series of cluster and principal components analyses demonstrated that the majority of the variability in the Conewago Creek water quality could be attributed to hydrologic and seasonal variability. Statistically significant positive correlations with flow were observed at both monitoring sites for ammonium, total phosphorus, orthophosphate, iron, and manganese; additionally, at the upstream monitoring station, total nitrogen demonstrated a statistically significant positive correlation with flow. Statistically significant inverse correlations with flow were observed at both sites for water temperature, specific conductance (at the downstream site only), sulfate, chloride, calcium, and magnesium. Statistically significant seasonal patterns were observed for several water-quality constituents. Water temperature, phosphorus (upstream site only), and orthophosphate were higher during the warm season, and nitrate and total nitrogen (upstream site only) were higher during the cool season.Surrogate regression models were developed to compute sediment and nutrient load in Conewago Creek by using the continuous water-quality monitors and water-quality samples. Conewago Creek sediment load was approximately 9,900 tons in 2012 and approximately 18,900 tons in 2013, with nearly 80 percent of the sediment load in 2013 contributed by the three largest storm events. Annual total nitrogen loads could not be estimated due to poor model performance. The addition of continued monitoring or a continuously recording nitrate sensor could improve estimates of total nitrogen loads. During 2012 and 2013, phosphorus loads in Conewago Creek were approximately 50,000 pounds in each year.Combining data from one high-flow synoptic sampling with the data from routine sampling revealed how the geology and hydrology interact to result in variable water chemistry throughout the Conewago Creek watershed. The areas above the upstream gage in the headwaters are generally underlain by forested non-carbonate bedrock and are characterized by relatively low nitrate, specific conductance, calcium, and magnesium, as well as relatively low concentrations of phosphorus, ammonium, iron, and manganese. The more developed, agricultural areas below the upstream site were generally characterized by higher ionic strength waters with higher nutrient and metal concentrations. An analysis of land-use data and SPAtially Referenced Regressions On Watershed (SPARROW) modeling data indicates that manure sources of nitrogen dominate the input of nitrogen to the watershed.Implementation of conservation practices increased in the Conewago Creek watershed during the study period, and while a broad range of practice types were implemented, the most common practices included residue and tillage management, cover crops, nutrient management, terracing, and stream fencing (for animal exclusion or bank restoration). While the implementation of these conservation practices is encouraging, the cumulative effects of these practices probably will not be detected in Conewago Creek water quality for several years. The magnitude of the effects of these conservation practices on water quality in Conewago Creek will depend largely on the extent to which nutrient loading (septic, manure, and commercial fertilizer) and sediment-producing activities are reduced over time.Difficult RunThe Difficult Run watershed is a 57.82-mi2 watershed that drains to the Potomac River. The long-term Difficult Run base-flow index (from 1936 to 2010) was 57.9, indicating that approximately 58 percent of streamflow exited the watershed as base flow and 42 percent as stormflow; however, with continued development and urbanization of the watershed, the base-flow index has decreased to 50 percent during the last 20 years. This base-flow index was less than those of the other watersheds evaluated in this study, likely because the Difficult Run watershed largely is underlain by crystalline piedmont metamorphic rocks and has a greater proportion of impervious urban land cover. A series of cluster and principal components analyses indicated that most of the variability in Difficult Run water quality could be attributed to hydrologic variability and seasonality. Statistically significant positive correlations with flow were observed for turbidity, dissolved oxygen, suspended sediments, ammonium, orthophosphate, iron, and total phosphorus. Statistically significant inverse correlations with flow were observed for water temperature, pH, specific conductance, bicarbonate, calcium, magnesium, nitrate, δ15N of nitrate, and silica. Statistically significant seasonal patterns were observed for numerous water-quality constituents: water temperature, ammonium, orthophosphate, and δ15N of nitrate were higher during the warm season, and dissolved oxygen, nitrate, and manganese were higher during the cool season. Surrogate regression models were developed to compute sediment and nutrient loading rates. The Difficult Run sediment load was approximately 8,000 tons per year, with greater than 95 percent of the sediment load in the 2013 water year contributed by the seven largest storm events. The total phosphorus load in Difficult Run was approximately 14,000 pounds of phosphorus per year, with the majority of the load contributed during stormflow periods. The total nitrogen load in Difficult Run is estimated to have been approximately 140,000 pounds per year, with total nitrogen accumulation less dominated by stormflow contributions than that of phosphorus and strongly affected by base-flow export of nitrogen from the basin.Extensive water-quality monitoring throughout the Difficult Run watershed revealed relatively uniform generation of flow per unit of watershed area, as well as spatial variation in water quality that is strongly related to land-use activities. Elevated nitrate concentrations were observed in a subset of monitoring sites that are inversely correlated with population density and positively correlated to the septic system density within each subwatershed. The majority of the elevated nitrate concentrations for these sites are hypothesized to be caused by nitrate leaching from septic systems, more so than homeowner fertilizer usage among these subwatersheds that have lower population densities than other parts of the watershed. Nitrate isotope data, temporal patterns in the water-quality data, mass-balance computations, and a separate land-use analysis all generally indicate that leachate from septic systems was the likely source of the elevated nitrate. Another group of water-quality sites have relatively low nitrogen concentrations, are located in areas that are served by city sewer lines, and have experienced stream restoration activities. A final group of sites drained the areas with the highest imperviousness and had strongly elevated specific conductance, chloride, and sodium, which were likely caused by a combination of road salting and other anthropogenic sources draining these urbanized areas in the watershed. A fourth group of sites represents a mixture of water sources and had water quality similar to that at the Difficult Run streamgage. Analysis of the nitrate isotope data generally indicates a broad range of composition indicative of mixed natural and anthropogenic nitrogen sources. Implementation of conservation practices increased in the Difficult Run watershed during the study period, and while a broad range of practice types was implemented, the most common practices included stream restoration. While the implementation of these conservation practices is encouraging, the cumulative effect of these practices probably will not be detected in Difficult Run water quality for several years.

  17. Nutrient concentrations and loads and Escherichia coli densities in tributaries of the Niantic River estuary, southeastern Connecticut, 2005 and 2008–2011

    USGS Publications Warehouse

    Mullaney, John R.

    2013-01-01

    Nutrient concentrations and loads and Escherichia coli (E. coli) densities were studied in 2005 and from 2008 through 2011 in water-quality samples from tributaries of the Niantic River Estuary in southeastern Connecticut. Data from a water-quality survey of the base flow of subbasins in the watershed in June 2005 were used to determine the range of total nitrogen concentrations (0.09 to 2.4 milligrams per liter), instantaneous loads (less than 1 to 62 pounds per day) and the yields of total nitrogen ranging from 0.02 to 11.2 pounds per square mile per day (less than 1 to 7.2 kilograms per hectare per year) from basin segments. Nitrogen yields were positively correlated with the amount of developed land in each subbasin. Stable isotope measurements of nitrate (δ15N) and oxygen (δ18O) ranged from 3.9 to 9.4 per mil and 0.7 to 4.1 per mil, respectively, indicating that likely sources of nitrate in base flow are soil nitrate and ammonium fertilizers, sewage or animal waste, or a mixture of these sources. Continuous streamflow and monthly water-quality sampling, with additional storm event sampling, were conducted at the three major tributaries (Latimer Brook, Oil Mill Brook, and Stony Brook) of the Niantic River from October 2008 through September 2011. Samples were analyzed for nitrogen and phosphorus constituents and E. coli densities. Total freshwater discharge from these tributaries, which is reduced by upstream withdrawals, ranged from 25.9 to 37.8 million gallons per day. Total nitrogen and phosphorus concentrations generally were low, with the mean values below the U.S. Environmental Protection Agency recommended nutrient concentration values of 0.71 milligram per liter and 0.031 milligram per liter, respectively. Total nitrogen was predominantly in the form of total ammonia plus organic nitrogen at the Oil Mill Brook and Stony Brook sites and in the form of nitrate at Latimer Brook. Annual total nitrogen loads that flowed into the Niantic River estuary from the three major tributaries, calculated with the Load Estimator computer program, ranged from 41,400 to 60,700 pounds, with about 52 to 59 percent of the load as total ammonia plus organic nitrogen. Total phosphorus loads ranged from 1,770 to 3,540 pounds per year. Yields of total nitrogen were highest from Latimer Brook, with the range from the three tributaries between 1,100 and 2,720 pounds per square mile per year. Total phosphorus yields ranged from 52 to 185 pounds per square mile per year. The geometric means of E. coli densities in samples from the three Niantic River tributaries were less than the State of Connecticut water-quality standard of 126 colony-forming units per 100 milliliters; however, individual samples from all three tributaries had densities as high as 2,400 to 2,900 colony-forming units per 100 milliliters. High densities of E. coli were more likely to be present in samples collected during wet weather events.

  18. Testing of The Harp Guidelines On A Small Watershed In Finland

    NASA Astrophysics Data System (ADS)

    Granlund, K.; Rekolainen, S.

    TESTING of THE HARP GUIDELINES ON A SMALL WATERSHED IN FIN- LAND K. Granlund, S. Rekolainen Finnish Environment Institute, Research Department kirsti.granlund@vyh.fi Watersheds have emerged as environmental units for assessing, controlling and reduc- ing non-point-source pollution. Within the framework of the international conventions, such as OSPARCOM, HELCOM, and in the implementation of the EU Water Frame- work Directive, the criteria for model selection is of key importance. Harmonized Quantification and Reporting Procedures for Nutrients (HARP) aims at helping the implementation of OSPAR's (Convention for the Protection of the Marine Environ- ment of the North-East Atlantic) strategy in controlling eutrophication and reducing nutrient input to marine ecosystems by 50nitrogen and phosphorus losses from both point and nonpoint sources and help assess the effectiveness of the pollution reduction strategy. The HARP guidelines related respectively to the "Quantification of Nitrogen and Phosphorus Losses from Diffuse Anthropogenic Sources and Natural Background Losses" and to the "Quantification and Reporting of the Retention of Nitrogen and Phosphorus in River Catchments" were tested on a small, well instrumented agricul- tural watershed in Finland. The project was coordinated by the Environment Institute of the Joint Research Centre. Three types of methodologies for estimating nutrient losses to watercourses were eval- uated during the project. Simple methods based on regression equations or loading functions provide a quick method for estimating nutrient losses. Through these meth- ods the pollutant load can be related to parameters such as slope, soil type, land-use, management practices etc. Relevant nutrient loading functions for the study catch- ment were collected during the project. One mid-range model was applied to simulate the nitrogen cycle in a simplified manner in relation to climate, soil properties, land- use and management practices. Physically based models describe in detail the water and nutrient cycle within the watershed. ICECREAM and SWAT models were applied on the study watershed. ICECREAM is a management model based on CREAMS model for predicting field-scale runoff and erosion. The nitrogen and phosphorus sub- models are based on GLEAMS model. SWAT is a continuous time and spatially dis- tributed model, which includes hydrological, sediment and chemical processes in river 1 basins.The simple methods and the mid-range model for nitrogen proved to be fast and easy to apply, but due limited information on crop-specific loading functions and ni- trogen process rates (e.g. mineralisation in soil), only order-of-magnitude estimates for nutrient loads could be calculated. The ICECREAM model was used to estimate crop-specific nutrient losses from the agricultural area. The potential annual nutrient loads for the whole catchment were then calculated by including estimates for nutri- ent loads from other land-use classes (forested area and scattered settlement). Finally, calibration of the SWAT model was started to study in detail the effects of catchment characteristics on nutrient losses. The preliminary results of model testing are pre- sented and the suitability of different methodologies for estimating nutrient losses in Finnish catchments is discussed. 2

  19. Effects of reduced return activated sludge flows and volume on anaerobic zone performance for a septic wastewater biological phosphorus removal system.

    PubMed

    Magro, Daniel; Elias, Steven L; Randall, Andrew Amis

    2005-01-01

    Enhanced biological phosphorous removal (EBPR) performance was found to be adequate with reduced return-activated sludge (RAS) flows (50% of available RAS) to the anaerobic tank and smaller-than-typical anaerobic zone volume (1.08 hours hydraulic retention time [HRT]). Three identical parallel biological nutrient removal pilot plants were fed with strong, highly fermented (160 mg/L volatile fatty acids [VFAs]), domestic and industrial wastewater from a full-scale wastewater treatment facility. The pilot plants were operated at 100, 50, 40, and 25% RAS (percent of available RAS) flows to the anaerobic tank, with the remaining RAS to the anoxic tank. In addition, varying anaerobic HRT (1.08 and 1.5 hours) and increased hydraulic loading (35% increase) were examined. The study was divided into four phases, and the effect of these process variations on EBPR were studied by having one different variable between two identical systems. The most significant conclusion was that returning part of the RAS to the anaerobic zone did not decrease EBPR performance; instead, it changed the location of phosphorous release and uptake. Bringing less RAS to the anaerobic and more to the anoxic tank decreased anaerobic phosphorus release and increased anoxic phosphorus release (or decreased anoxic phosphorus uptake). Equally important is that, with VFA-rich influent wastewater, excessive anaerobic volume was shown to hurt overall phosphorus removal, even when it resulted in increased anaerobic phosphorus release.

  20. Influence of sampling frequency and load calculation methods on quantification of annual river nutrient and suspended solids loads.

    PubMed

    Elwan, Ahmed; Singh, Ranvir; Patterson, Maree; Roygard, Jon; Horne, Dave; Clothier, Brent; Jones, Geoffrey

    2018-01-11

    Better management of water quality in streams, rivers and lakes requires precise and accurate estimates of different contaminant loads. We assessed four sampling frequencies (2 days, weekly, fortnightly and monthly) and five load calculation methods (global mean (GM), rating curve (RC), ratio estimator (RE), flow-stratified (FS) and flow-weighted (FW)) to quantify loads of nitrate-nitrogen (NO 3 - -N), soluble inorganic nitrogen (SIN), total nitrogen (TN), dissolved reactive phosphorus (DRP), total phosphorus (TP) and total suspended solids (TSS), in the Manawatu River, New Zealand. The estimated annual river loads were compared to the reference 'true' loads, calculated using daily measurements of flow and water quality from May 2010 to April 2011, to quantify bias (i.e. accuracy) and root mean square error 'RMSE' (i.e. accuracy and precision). The GM method resulted into relatively higher RMSE values and a consistent negative bias (i.e. underestimation) in estimates of annual river loads across all sampling frequencies. The RC method resulted in the lowest RMSE for TN, TP and TSS at monthly sampling frequency. Yet, RC highly overestimated the loads for parameters that showed dilution effect such as NO 3 - -N and SIN. The FW and RE methods gave similar results, and there was no essential improvement in using RE over FW. In general, FW and RE performed better than FS in terms of bias, but FS performed slightly better than FW and RE in terms of RMSE for most of the water quality parameters (DRP, TP, TN and TSS) using a monthly sampling frequency. We found no significant decrease in RMSE values for estimates of NO 3 - N, SIN, TN and DRP loads when the sampling frequency was increased from monthly to fortnightly. The bias and RMSE values in estimates of TP and TSS loads (estimated by FW, RE and FS), however, showed a significant decrease in the case of weekly or 2-day sampling. This suggests potential for a higher sampling frequency during flow peaks for more precise and accurate estimates of annual river loads for TP and TSS, in the study river and other similar conditions.

  1. Effects of best-management practices in Bower Creek in the East River priority watershed, Wisconsin, 1991-2009

    USGS Publications Warehouse

    Corsi, Steven R.; Horwatich, Judy A.; Rutter, Troy D.; Bannerman, Roger T.

    2013-01-01

    Hydrologic and water-quality data were collected at Bower Creek during the periods before best-management practices (BMPs), and after BMPs were installed for evaluation of water-quality improvements. The monitoring was done between 1990 and 2009 with the pre-BMP period ending in July 1994 and the post-BMP period beginning in October 2006. BMPs installed in this basin included streambank protection and fencing, stream crossings, grade stabilization, buffer strips, various barnyard-runoff controls, nutrient management, and a low degree of upland BMPs. Water-quality evaluations included base-flow concentrations and storm loads for total suspended solids, total phosphorus, and ammonia nitrogen. The only reductions detected between the base-flow samples of the pre- and post-BMP periods were in median concentrations of total phosphorus from base-flow samples, but not for total suspended solids or dissolved ammonia nitrogen. Differences in storm loads for the three water-quality constituents monitored were not observed during the study period.

  2. Nitrogen and phosphorus loading from drained wetlands adjacent to Upper Klamath and Agency lakes, Oregon

    USGS Publications Warehouse

    Snyder, Daniel T.; Morace, Jennifer L.

    1997-01-01

    The results of this study could be useful in helping to prioritize which drained wetlands may provide the greatest benefits with regard to reducing nutrient loads to the lake if restoration or land-use modifications are instituted. Recent acquisition and planned restoration of drained wetland areas at the Wood River and Williamson River North properties may produce significant reduction in the quantity of nutrients released by the decomposition of peat soils of these areas. If the water table rises to predrainage levels, the peats soils may become inundated most of the year, resulting in the continued long-term storage of nutrients within the peat soils by reducing aerobic decomposition. The maximum benefit, in terms of decreasing potential nutrient loss due to peat decomposition, could be the reduction of total nitrogen and total phosphorus loss to about one-half that of the 1994–95 annual loss estimated for all the drained wetlands sampled for this study.

  3. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W.

    2008-01-01

    Seasonal hypoxia in the northern Gulf of Mexico has been linked to increased nitrogen fluxes from the Mississippi and Atchafalaya River Basins, though recent evidence shows that phosphorus also influences productivity in the Gulf. We developed a spatially explicit and structurally detailed SPARROW water-quality model that reveals important differences in the sources and transport processes that control nitrogen (N) and phosphorus (P) delivery to the Gulf. Our model simulations indicate that agricultural sources in the watersheds contribute more than 70% of the delivered N and P. However, corn and soybean cultivation is the largest contributor of N (52%), followed by atmospheric deposition sources (16%); whereas P originates primarily from animal manure on pasture and rangelands (37%), followed by corn and soybeans (25%), other crops (18%), and urban sources (12%). The fraction of in-stream P and N load delivered to the Gulf increases with stream size, but reservoir trapping of P causes large local- and regional-scale differences in delivery. Our results indicate the diversity of management approaches required to achieve efficient control of nutrient loads to the Gulf. These include recognition of important differences in the agricultural sources of N and P, the role of atmospheric N, attention to P sources downstream from reservoirs, and better control of both N and P in close proximity to large rivers. ?? 2008 American Chemical Society.

  4. Biomechanical evaluation of an innovative spring-loaded axillary crutch design.

    PubMed

    Zhang, Yanxin; Liu, Guangyu; Xie, Shengquan; Liger, Aurélien

    2011-01-01

    We evaluated an innovative spring-loaded crutch design by comparing its performance with standard crutches through a biomechanical approach. Gait analysis was conducted for 7 male subjects under two conditions: walking with standard crutches and with spring-loaded crutches. Three-dimensional kinematic data and ground reaction force were recorded. Spatiotemporal variables, external mechanical work, and elastic energy (for spring crutches) were calculated based on recorded data. The trajectories of vertical ground reaction forces with standard crutches had two main peaks before and after mid-stance, and those with optimized spring-loaded crutches had only one main peak. The magnitude of external mechanical work was significantly higher with spring-loaded crutches than with standard crutches for all subjects, and the transferred elastic energy made an important contribution to the total external work for spring-loaded crutches. No significant differences in the spatiotemporal parameters were observed. Optimized spring-loaded crutches can efficiently propel crutch walkers and could reduce the total energy expenditure in crutch walking. Further research using optimized spring-loaded crutches with respect to energy efficiency is recommended.

  5. Effects of External Loads on Human Head Movement Control Systems

    NASA Technical Reports Server (NTRS)

    Nam, M. H.; Choi, O. M.

    1984-01-01

    The central and reflexive control strategies underlying movements were elucidated by studying the effects of external loads on human head movement control systems. Some experimental results are presented on dynamic changes weigh the addition of aviation helmet (SPH4) and lead weights (6 kg). Intended time-optimal movements, their dynamics and electromyographic activity of neck muscles in normal movements, and also in movements made with external weights applied to the head were measured. It was observed that, when the external loads were added, the subject went through complex adapting processes and the head movement trajectory and its derivatives reached steady conditions only after transient adapting period. The steady adapted state was reached after 15 to 20 seconds (i.e., 5 to 6 movements).

  6. In vitro modeling of human tibial strains during exercise in micro-gravity

    NASA Technical Reports Server (NTRS)

    Peterman, M. M.; Hamel, A. J.; Cavanagh, P. R.; Piazza, S. J.; Sharkey, N. A.

    2001-01-01

    Prolonged exposure to micro-gravity causes substantial bone loss (Leblanc et al., Journal of Bone Mineral Research 11 (1996) S323) and treadmill exercise under gravity replacement loads (GRLs) has been advocated as a countermeasure. To date, the magnitudes of GRLs employed for locomotion in space have been substantially less than the loads imposed in the earthbound 1G environment, which may account for the poor performance of locomotion as an intervention. The success of future treadmill interventions will likely require GRLs of greater magnitude. It is widely held that mechanical tissue strain is an important intermediary signal in the transduction pathway linking the external loading environment to bone maintenance and functional adaptation; yet, to our knowledge, no data exist linking alterations in external skeletal loading to alterations in bone strain. In this preliminary study, we used unique cadaver simulations of micro-gravity locomotion to determine relationships between localized tibial bone strains and external loading as a means to better predict the efficacy of future exercise interventions proposed for bone maintenance on orbit. Bone strain magnitudes in the distal tibia were found to be linearly related to ground reaction force magnitude (R(2)>0.7). Strain distributions indicated that the primary mode of tibial loading was in bending, with little variation in the neutral axis over the stance phase of gait. The greatest strains, as well as the greatest strain sensitivity to altered external loading, occurred within the anterior crest and posterior aspect of the tibia, the sites furthest removed from the neutral axis of bending. We established a technique for estimating local strain magnitudes from external loads, and equations for predicting strain during simulated micro-gravity walking are presented.

  7. Flight Testing and Real-Time System Identification Analysis of a UH-60A Black Hawk Helicopter with an Instrumented External Sling Load

    NASA Technical Reports Server (NTRS)

    McCoy, Allen H.

    1998-01-01

    Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near-real time system identification was also demonstrated during the flight test program.

  8. Hydrology, water quality, and phosphorus loading of Little St Germain Lake, Vilas County, Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2000-01-01

    The lake was monitored in detail again during 1991-94 by the U.S. Geological Survey (USGS) as part of a cooperative study with the Lake District. This study demonstrated water-quality variation among the basins of Little St. Germain Lake and extensive areas of winter anoxia (absence of oxygen). Further in-depth studies were then conducted during 1994-2000 to define the extent of winter anoxia, refine the hydrologic and phosphorus budgets of the lake, quantify the effects of annual drawdowns, and provide information needed to develop a comprehensive lake-management plan. This report presents the results of the studies since 1991.

  9. Assessment of hydrologic and water quality data collected in Abbotts Lagoon watershed, Point Reyes National Seashore, California, during water years 1999 and 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Saleh, Dina K.; Zamora, Celia

    2006-01-01

    Abbotts Lagoon is part of Point Reyes National Seashore, located about 40 miles northwest of San Francisco and about 20 miles south of Bodega Bay. Water-quality samples were collected quarterly during water year 1999 at a site in each of three connected lagoons that make up Abbotts Lagoon and at a site in its most significant tributary. The quarterly samples were analyzed for major ions, nutrients, and chlorophyll-a. A bed-sediment sample was collected in each lagoon during August 1999 and was analyzed for organic carbon, iron, and total phosphorus. Seven tributaries were sampled during a February 1999 storm and four during an April 1999 storm. These samples were analyzed only for nutrients. One storm sample collected in April 1999 from a tributary downstream of the I Ranch dairy was analyzed for a suite of 47 compounds indicative of wastewater. Continuous water-level recorders were installed in the most significant tributary and the two largest lagoons for portions of the study. A water budget analysis for an April 2000 storm indicated that the main tributary accounted for 85 percent of surface inflows to Abbotts Lagoon. The portion of the surface inflow from the main tributary was lower in the February 1999 storms and is a function of upstream storage and vegetative growth in the tributary basins. Another water budget analysis for a period of no surface inflow (June and July 2000) indicated that the net ground-water contribution was an outflow (seepage) from Abbotts Lagoon of about 0.3 ft3/s. Salinity increased and nutrient concentrations decreased from upstream to downstream in the chain of lagoons. The lower lagoon, nearest the ocean, had less organic carbon and total phosphorus in the bed sediment than the upper lagoons. The two tributaries originating in the I Ranch dairy had the highest concentrations of nutrients in storm runoff, and the highest loading rates and yields of ammonia and phosphorus. These tributaries account for only 10.3 percent of the area drained by the sampled tributaries, but contributed 83 percent of the ammonia load and 79 percent of the orthophosphate load. The basins with the highest nutrient loading rates and yields had the highest percentage of dairy and (or) ranching impacted land use and, to a lesser extent, grazing land use. The ratios of inorganic nitrogen to phosphorus in the lagoons ranged from 0.1 to 9.5 in the upper lagoon, 0.10 to 0.15 in the middle lagoon, and 0.05 to 0.10 in the lower lagoon. Thus, there is an abundance of phosphorus in the lagoons, and nitrogen appears to be limiting the growth of phytoplankton. Two sterols indicative of fecal material were among 11 compounds detected in the sample collected for analysis of wastewater indicators from a tributary downstream of the I Ranch dairy.

  10. Statistical summary of selected physical, chemical, and toxicity characteristics and estimates of annual constituent loads in urban stormwater, Maricopa County, Arizona

    USGS Publications Warehouse

    Fossum, Kenneth D.; O'Day, Christie M.; Wilson, Barbara J.; Monical, Jim E.

    2001-01-01

    Stormwater and streamflow in Maricopa County were monitored to (1) describe the physical, chemical, and toxicity characteristics of stormwater from areas having different land uses, (2) describe the physical, chemical, and toxicity characteristics of streamflow from areas that receive urban stormwater, and (3) estimate constituent loads in stormwater. Urban stormwater and streamflow had similar ranges in most constituent concentrations. The mean concentration of dissolved solids in urban stormwater was lower than in streamflow from the Salt River and Indian Bend Wash. Urban stormwater, however, had a greater chemical oxygen demand and higher concentrations of most nutrients. Mean seasonal loads and mean annual loads of 11 constituents and volumes of runoff were estimated for municipalities in the metropolitan Phoenix area, Arizona, by adjusting regional regression equations of loads. This adjustment procedure uses the original regional regression equation and additional explanatory variables that were not included in the original equation. The adjusted equations had standard errors that ranged from 161 to 196 percent. The large standard errors of the prediction result from the large variability of the constituent concentration data used in the regression analysis. Adjustment procedures produced unsatisfactory results for nine of the regressions?suspended solids, dissolved solids, total phosphorus, dissolved phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, total recoverable zinc, and storm runoff. These equations had no consistent direction of bias and no other additional explanatory variables correlated with the observed loads. A stepwise-multiple regression or a three-variable regression (total storm rainfall, drainage area, and impervious area) and local data were used to develop local regression equations for these nine constituents. These equations had standard errors from 15 to 183 percent.

  11. Sensitivity Analysis of the Agricultural Policy/Environmental eXtender (APEX) for Phosphorus Loads in Tile-Drained Landscapes.

    PubMed

    Ford, W; King, K; Williams, M; Williams, J; Fausey, N

    2015-07-01

    Numerical modeling is an economical and feasible approach for quantifying the effects of best management practices on dissolved reactive phosphorus (DRP) loadings from agricultural fields. However, tools that simulate both surface and subsurface DRP pathways are limited and have not been robustly evaluated in tile-drained landscapes. The objectives of this study were to test the ability of the Agricultural Policy/Environmental eXtender (APEX), a widely used field-scale model, to simulate surface and tile P loadings over management, hydrologic, biologic, tile, and soil gradients and to better understand the behavior of P delivery at the edge-of-field in tile-drained midwestern landscapes. To do this, a global, variance-based sensitivity analysis was performed, and model outputs were compared with measured P loads obtained from 14 surface and subsurface edge-of-field sites across central and northwestern Ohio. Results of the sensitivity analysis showed that response variables for DRP were highly sensitive to coupled interactions between presumed important parameters, suggesting nonlinearity of DRP delivery at the edge-of-field. Comparison of model results to edge-of-field data showcased the ability of APEX to simulate surface and subsurface runoff and the associated DRP loading at monthly to annual timescales; however, some high DRP concentrations and fluxes were not reflected in the model, suggesting the presence of preferential flow. Results from this study provide new insights into baseline tile DRP loadings that exceed thresholds for algal proliferation. Further, negative feedbacks between surface and subsurface DRP delivery suggest caution is needed when implementing DRP-based best management practices designed for a specific flow pathway. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15

    USGS Publications Warehouse

    Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.

    2017-02-23

    The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.

  13. Effects of agricultural best-management practices on the Brush Run Creek headwaters, Adams County, Pennsylvania, prior to and during nutrient management

    USGS Publications Warehouse

    Langland, M.J.; Fishel, D.K.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, investigated the effects of agricultural best-management practices on surface-water quality as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. This report characterizes a 0.63-square- mile agricultural watershed underlain by shale, mudstone, and red arkosic sandstone in the Lower Susquehanna River Basin. The water quality of the Brush Run Creek site was studied from October 1985 through September 1991, prior to and during the implementation of nutrient management designed to reduce sediment and nutrient discharges into Conewago Creek, a tributary to the Chesapeake Bay. The original study area was 0.38 square mile and included an area immediately upstream from a manure lagoon. The study area was increased to 0.63 square mile in the fall of 1987 after an extensive tile-drain network was discovered upstream and downstream from the established streamflow gage, and the farm owner made plans to spray irrigate manure to the downstream fields. Land use for about 64 percent of the 0.63 square mile watershed is cropland, 14 percent is pasture, 7 percent is forest, and the remaining 15 percent is yards, buildings, water, or gardens. About 73 percent of the cropland was used to produce corn during the study. The average annual animal population consisted of 57,000 chickens, 1,530 hogs, and 15 sheep during the study. About 59,340 pounds of nitrogen and 13,710 pounds of phosphorus were applied as manure and commercial fertilizer to fields within the subbasin during the 3-year period prior to implementation of nutrient management. During nutrient management, about 14 percent less nitrogen and 57 percent less phosphorus were applied as commercial and manure fertilizer. Precipitation totaled 209 inches, or 13 percent less than the long-term normal, during the 6-year study. Concentrations of total ammonia in precipitation were as high as 2.7 mg/L (milligrams per liter); in dry deposition the concentrations were as high as 5.4 mg/L, probably because of the ammonia that had volatilized from the manure-storage lagoon. Nitrate nitrogen in the upper 4 feet of the soil ranged from 17 to 452 pounds per acre and soluble phosphorus content ranged from 0.29 to 65 pounds per acre. The maximum concentration of total nitrogen was 2,400 mg/L on September 10, 1986, in discharge from the tile drain near the streamflow gage. Median concentrations of total nitrogen and dissolved nitrite plus nitrate in base flow at the water-quality gage were 14 mg/L and 4.4 mg/L, respectively; prior to nutrient management and during nutrient management, median concentrations were 14 mg/L and 6.2 mg/L, respectively. Significant reductions in total phosphorus and suspended-sediment concentrations occurred at the water-quality gage. The maximum concentrations of total phosphorus (160 mg/L) and suspended sediment (3,530 mg/L) were measured at a tile line above the water-quality gage. Concentrations of total nitrogen, dissolved ammonia, and total phosphorus in base flow increased during dry periods when discharges from the tile drain were not diluted. During nutrient management, only base-flow loads of suspended sediment increased. Total streamflow was about 121.8 inches. About 81 percent was storm runoff. Loads of total nitrogen, total phosphorus in stormflow, and suspended sediment increased 14, 44, and 41 percent during nutrient management, respectively. A load of about 787,780 pounds of sediment, 22,418 pounds of nitrogen, and 5,479 pounds of phosphorus was measured during 214 sampled stormflow days that represented 84 percent of the stormflow. About 812,924 pounds of sediment, 38,421 pounds of nitrogen, and 6,377 pounds of phosphorus were discharged during the 6-year study.

  14. Evaluating lake phytoplanton response to human disturbance and climate change using satellite imagery

    NASA Astrophysics Data System (ADS)

    Novitski, Linda Nicole

    Accurate and cost-effective assessment of water quality is necessary for proper management and restoration of inland water bodies susceptible to algal bloom conditions. Landsat and MODIS satellite images were used to create chlorophyll and Secchi depth predictive models for algal assessment of Great Lakes and other lakes of the United States. Boosted regression tree (BRT) models using satellite imagery are both easy to use and can have high predictive performance. BRT models inferred chlorophyll and Secchi depth more accurately than linear regression models for all study locations. Inferred chlorophyll of inner Saginaw Bay was subsequently used in ecological models to help understand the ecological drivers of algal blooms in this ecosystem. For small lakes (non-Great Lakes), the best national Landsat model for ln-transformed chlorophyll was the BRT model and had a cross-validation R 2 of 0.44 and a 0.76 ln-transformed mug/L RMSE. The best national Landsat model for Secchi depth was also a BRT model that had an adjusted R 2 of 0.52 and a 0.80 m RMSE. We assessed the applicability of the national chlorophyll model for ecological analysis by comparing the total phosphorus- chlorophyll relationship with chlorophyll determined from sampling or remote sensing, which showed the total phosphorus- chlorophyll relationship had an adjusted R2 = 0.58 and 1.02 ln-transformed microg/L RMSE with sampled chlorophyll versus an adjusted R2 = 0.56 and 1.04 ln-transformed mug/L RMSE with chlorophyll determined by the boosted regression tree remote sensing model. For Great Lakes models, the MODIS BRT model predicted chlorophyll most accurately of the three BRT models and compared well to other models in the literature. BRT models for Landsat ETM+ and TM more accurately predicted chlorophyll than the MSS model and all Landsat models had favorable results when compared to the literature. BRT chlorophyll predictive models are useful in helping to understand historical, long-term chlorophyll trends and to inform us of how climate change may alter ecosystems in the future. In inner Saginaw Bay, annual average and upper quartile Landsat-derived chlorophyll decreased from 7.44 to 6.62 and 8.38 to 7.38 mug/L between 1973-1982, and annual upper quartile of 8-day phosphorus loads increased from 5.29 to 6.79 kg between 1973-2012. Simple linear and multiple regression models and Wilcoxon rank test results for MODIS and Landsat-derived chlorophyll indicate that distance from the Saginaw River mouth influences chlorophyll concentration in Saginaw Bay; Landsat-derived surface water temperature and phosphorus loads to a lesser extent. Mixed-effect models for MODIS and Landsat-derived chlorophyll were related to chlorophyll better than simple linear or multiple regressions, with random effects of pixel and sample date contributing substantially to predictive power (NSE=0.35-70), though phosphorus loads, distance to Saginaw River mouth, and water were significant fixed effects in most models. Water quality changes in Saginaw Bay between 1972-2012 were influenced by phosphorus loading and distance to the Saginaw River's mouth. Landsat and MODIS imagery are complementary platforms because of the long history of Landsat operation and the finer spectral resolution and image frequency of MODIS. Remote sensing water quality assessment tools can be valuable for limnological study, ecological assessment, and water resource management.

  15. A possible trade-off between clean air and clean water

    USDA-ARS?s Scientific Manuscript database

    Harmful algal blooms in Lake Erie have increased since 2002, coincidentally during this same period soluble reactive phosphorus loads have increased from rivers that flow into the lake. Also during this time, reductions in atmospheric sulfur emissions have resulted in marked increases in rainfall p...

  16. Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point

    ERIC Educational Resources Information Center

    Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf

    2011-01-01

    An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…

  17. Characterisation of diffuse pollutions from forested watersheds in Japan during storm events - its association with rainfall and watershed features.

    PubMed

    Zhang, Zhao; Fukushima, Takehiko; Onda, Yuichi; Mizugaki, Shigeru; Gomi, Takashi; Kosugi, Ken'ichirou; Hiramatsu, Shinya; Kitahara, Hikaru; Kuraji, Koichiro; Terajima, Tomomi; Matsushige, Kazuo; Tao, Fulu

    2008-02-01

    Forest areas have been identified as important sources of nonpoint pollution in Japan. The managers must estimate stormwater quality and quantities from forested watersheds to develop effective management strategies. Therefore, stormwater runoff loads and concentrations of 10 constituents (total suspended solids, dissolved organic carbon, PO(4)-P, dissolved total phosphorus, total phosphorus, NH(4)-N, NO(2)-N, NO(3)-N, dissolved total nitrogen, and total nitrogen) for 72 events across five regions (Aichi, Kochi, Mie, Nagano, and Tokyo) were characterised. Most loads were significantly and positively correlated with stormwater variables (total event rainfall, event duration, and rainfall intensity), but most discharge-weighted event concentrations (DWECs) showed negative correlations with rainfall intensity. Mean water quality concentration during baseflow was correlated significantly with storm concentrations (r=0.41-0.77). Although all pollutant load equations showed high coefficients of determination (R(2)=0.55-0.80), no models predicted well pollutant concentrations, except those for the three N constituents (R(2)=0.59-0.67). Linear regressions to estimate stormwater concentrations and loads were greatly improved by regional grouping. The lower prediction capability of the concentration models for Mie, compared with the other four regions, indicated that other watershed or storm characteristics should be included in the prediction models. Significant differences among regions were found more frequently in concentrations than in loads for all constituents. Since baseflow conditions implied available pollutant sources for stormwater, the similar spatial characteristics of pollutant concentrations between baseflow and stormflow conditions were an important control for stormwater quality.

  18. Evaluating the performance of a retrofitted stormwater wet pond for treatment of urban runoff.

    PubMed

    Schwartz, Daniel; Sample, David J; Grizzard, Thomas J

    2017-06-01

    This paper describes the performance of a retrofitted stormwater retention pond (Ashby Pond) in Northern Virginia, USA. Retrofitting is a common practice which involves modifying existing structures and/or urban landscapes to improve water quality treatment, often compromising standards to meet budgetary and site constraints. Ashby Pond is located in a highly developed headwater watershed of the Potomac River and the Chesapeake Bay. A total maximum daily load (TMDL) was imposed on the Bay watershed by the US Environmental Protection Agency in 2010 due to excessive sediment and nutrient loadings leading to eutrophication of the estuary. As a result of the TMDL, reducing nutrient and sediment discharged loads has become the key objective of many stormwater programs in the Bay watershed. The Ashby Pond retrofit project included dredging of accumulated sediment to increase storage, construction of an outlet structure to control flows, and repairs to the dam. Due to space limitations, pond volume was less than ideal. Despite this shortcoming, Ashby Pond provided statistically significant reductions of phosphorus, nitrogen, and suspended sediments. Compared to the treatment credited to retention ponds built to current state standards, the retrofitted pond provided less phosphorus but more nitrogen reduction. Retrofitting the existing stock of ponds in a watershed to at least partially meet current design standards could be a straightforward way for communities to attain downstream water quality goals, as these improvements represent reductions in baseline loads, whereas new ponds in new urban developments simply limit future load increases or maintain the status quo.

  19. Determining storm sampling requirements for improving precision of annual load estimates of nutrients from a small forested watershed.

    PubMed

    Ide, Jun'ichiro; Chiwa, Masaaki; Higashi, Naoko; Maruno, Ryoko; Mori, Yasushi; Otsuki, Kyoichi

    2012-08-01

    This study sought to determine the lowest number of storm events required for adequate estimation of annual nutrient loads from a forested watershed using the regression equation between cumulative load (∑L) and cumulative stream discharge (∑Q). Hydrological surveys were conducted for 4 years, and stream water was sampled sequentially at 15-60-min intervals during 24 h in 20 events, as well as weekly in a small forested watershed. The bootstrap sampling technique was used to determine the regression (∑L-∑Q) equations of dissolved nitrogen (DN) and phosphorus (DP), particulate nitrogen (PN) and phosphorus (PP), dissolved inorganic nitrogen (DIN), and suspended solid (SS) for each dataset of ∑L and ∑Q. For dissolved nutrients (DN, DP, DIN), the coefficient of variance (CV) in 100 replicates of 4-year average annual load estimates was below 20% with datasets composed of five storm events. For particulate nutrients (PN, PP, SS), the CV exceeded 20%, even with datasets composed of more than ten storm events. The differences in the number of storm events required for precise load estimates between dissolved and particulate nutrients were attributed to the goodness of fit of the ∑L-∑Q equations. Bootstrap simulation based on flow-stratified sampling resulted in fewer storm events than the simulation based on random sampling and showed that only three storm events were required to give a CV below 20% for dissolved nutrients. These results indicate that a sampling design considering discharge levels reduces the frequency of laborious chemical analyses of water samples required throughout the year.

  20. The Relationships Between Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis.

    PubMed

    McLaren, Shaun J; Macpherson, Tom W; Coutts, Aaron J; Hurst, Christopher; Spears, Iain R; Weston, Matthew

    2018-03-01

    The associations between internal and external measures of training load and intensity are important in understanding the training process and the validity of specific internal measures. We aimed to provide meta-analytic estimates of the relationships, as determined by a correlation coefficient, between internal and external measures of load and intensity during team-sport training and competition. A further aim was to examine the moderating effects of training mode on these relationships. We searched six electronic databases (Scopus, Web of Science, PubMed, MEDLINE, SPORTDiscus, CINAHL) for original research articles published up to September 2017. A Boolean search phrase was created to include search terms relevant to team-sport athletes (population; 37 keywords), internal load (dependent variable; 35 keywords), and external load (independent variable; 81 keywords). Articles were considered for meta-analysis when a correlation coefficient describing the association between at least one internal and one external measure of session load or intensity, measured in the time or frequency domain, was obtained from team-sport athletes during normal training or match-play (i.e., unstructured observational study). The final data sample included 122 estimates from 13 independent studies describing 15 unique relationships between three internal and nine external measures of load and intensity. This sample included 295 athletes and 10,418 individual session observations. Internal measures were session ratings of perceived exertion (sRPE), sRPE training load (sRPE-TL), and heart-rate-derived training impulse (TRIMP). External measures were total distance (TD), the distance covered at high and very high speeds (HSRD ≥ 13.1-15.0 km h -1 and VHSRD ≥ 16.9-19.8 km h -1 , respectively), accelerometer load (AL), and the number of sustained impacts (Impacts > 2-5 G). Distinct training modes were identified as either mixed (reference condition), skills, metabolic, or neuromuscular. Separate random effects meta-analyses were conducted for each dataset (n = 15) to determine the pooled relationships between internal and external measures of load and intensity. The moderating effects of training mode were examined using random-effects meta-regression for datasets with at least ten estimates (n = 4). Magnitude-based inferences were used to interpret analyses outcomes. During all training modes combined, the external load relationships for sRPE-TL were possibly very large with TD [r = 0.79; 90% confidence interval (CI) 0.74 to 0.83], possibly large with AL (r = 0.63; 90% CI 0.54 to 0.70) and Impacts (r = 0.57; 90% CI 0.47 to 0.64), and likely moderate with HSRD (r = 0.47; 90% CI 0.32 to 0.59). The relationship between TRIMP and AL was possibly large (r = 0.54; 90% CI 0.40 to 0.66). All other relationships were unclear or not possible to infer (r range 0.17-0.74, n = 10 datasets). Between-estimate heterogeneity [standard deviations (SDs) representing unexplained variation; τ] in the pooled internal-external relationships were trivial to extremely large for sRPE (τ range = 0.00-0.47), small to large for sRPE-TL (τ range = 0.07-0.31), and trivial to moderate for TRIMP (τ range= 0.00-0.17). The internal-external load relationships during mixed training were possibly very large for sRPE-TL with TD (r = 0.82; 90% CI 0.75 to 0.87) and AL (r = 0.81; 90% CI 0.74 to 0.86), and TRIMP with AL (r = 0.72; 90% CI 0.55 to 0.84), and possibly large for sRPE-TL with HSRD (r = 0.65; 90% CI 0.44 to 0.80). A reduction in these correlation magnitudes was evident for all other training modes (range of the change in r when compared with mixed training - 0.08 to - 0.58), with these differences being unclear to possibly large. Training mode explained 24-100% of the between-estimate variance in the internal-external load relationships. Measures of internal load derived from perceived exertion and heart rate show consistently positive associations with running- and accelerometer-derived external loads and intensity during team-sport training and competition, but the magnitude and uncertainty of these relationships are measure and training mode dependent.

  1. Rhodhiss Lake, North Carolina; analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics, 1993-94

    USGS Publications Warehouse

    Giorgino, M.J.; Bales, J.D.

    1997-01-01

    From January 1993 through March 1994, the U.S. Geological Survey conducted an investigation of Rhodhiss Lake in cooperation with the Western Piedmont Council of Governments. Objectives of the investigation were to describe ambient hydrologic and water-quality conditions, to estimate loadings of nutrients and suspended solids from selected tributaries and point sources, and to simulate hydraulic circulation and water-quality characteristics in Rhodhiss Lake using a hydrodynamic computer model. The riverine headwaters of Rhodhiss Lake were unstratified, well oxygenated, and contained relatively high concentrations of suspended solids and nutrients throughout the study period. In general, concentrations of suspended solids, nitrate, orthophosphate, and total phosphorus decreased in a downstream direction from the headwaters to the Rhodhiss Dam. However, increases in specific conductance frequently were observed downstream from a wastewater discharge near mid-reservoir. From mid-reservoir to the dam, Rhodhiss Lake thermally stratified during the summer of 1993. In this reach, dissolved oxygen was rapidly depleted from the bottom waters beginning in May 1993, and anoxic conditions persisted in the hypolimnion through the summer. During summer stratification, concentrations of nitrite plus nitrate, ammonia, and orthophosphate were low in the epilimnion, but concentrations of ammonia, orthophosphate, and total phosphorus increased in the hypolimnion. During fall and winter, Rhodhiss Lake was characterized by alternating periods of stratification and mixing. A maximum chlorophyll-a concentration of 52 micrograms per liter was observed at mid-reservoir on November 17, 1993, and was the only value that exceeded the North Carolina water-quality standard of 40 micrograms per liter. Concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in the headwaters of Rhodhiss Lake 37 percent of the time, and at mid-reservoir and in the forebay 16 percent of the time. In Lower Creek, a tributary to Rhodhiss Lake, concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in 76 percent of the samples. This stream also contained elevated concentrations of nitrite plus nitrate, phosphorus, and specific conductance. Loading estimates showed that almost all of the suspended solids and the majority of the nitrogen and phosphorus entering the headwaters of Rhodhiss Lake originated from nonpoint sources. During the investigation, point sources accounted for less than 1 percent of the suspended solids load to the reservoir headwaters, but point sources accounted for up to 27 and 22 percent of the total nitrogen and total phosphorus loads, respectively. Additional loadings of nitrogen and phosphorus entered Rhodhiss Lake by municipal wastewater discharge near mid-reservoir. The U.S. Army Corps of Engineers CE-QUAL-W2 model is a two-dimensional, laterally averaged model that simulates hydrodynamics and water quality. The model was applied to Rhodhiss Lake from Huffman Bridge to Rhodhiss Dam--a distance of 18.5 kilometers--and was calibrated using data collected from April 1993 through March 1994. During the simulation period, measured water levels varied a total of 1.32 meters, and water temperatures ranged from 4 to 30 degrees Celsius. The calibrated model provided good agreement between measured and simu- lated water levels at Rhodhiss Dam. Likewise, simulated water temperatures were generally within 2 degrees Celsius of measured values; however, the model tended to overpredict temperatures near the bottom of the reservoir by 1 to 3 degrees Celsius during warm months. This suggests that the model, as calibrated, overpredicts vertical mixing. Simulated dissolved oxygen concentrations followed the same general patterns and magnitudes as measured values, and there was good agreement between simulated and measured frequency of occurrence of dissolved oxygen concentrations less than 5 milligra

  2. 14 CFR 25.301 - Loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... significantly change the distribution of external or internal loads, this redistribution must be taken into... loads multiplied by prescribed factors of safety). Unless otherwise provided, prescribed loads are limit...

  3. The influence of operational and environmental loads on the process of assessing damages in beams

    NASA Astrophysics Data System (ADS)

    Furdui, H.; Muntean, F.; Minda, A. A.; Praisach, Z. I.; Gillich, N.

    2015-07-01

    Damage detection methods based on vibration analysis make use of the modal parameter changes. Natural frequencies are the features that can be acquired most simply and inexpensively. But this parameter is influenced by environmental conditions, e.g. temperature and operational loads as additional masses or axial loads induced by restraint displacements. The effect of these factors is not completely known, but in the numerous actual research it is considered that they affect negatively the damage assessment process. This is justified by the small frequency changes occurring due to damage, which can be masked by the frequency shifts due to external loads. The paper intends to clarify the effect of external loads on the natural frequencies of beams and truss elements, and to show in which manner the damage detection process is affected by these loads. The finite element analysis, performed on diverse structures for a large range of temperature values, has shown that the temperature itself has a very limited effect on the frequency changes. Thus, axial forces resulted due to obstructed displacements can influence more substantially the frequency changes. These facts are demonstrated by experimental and theoretical studies. Finally, we succeed to adapt a prior contrived relation providing the frequency changes due to damage in order to fit the case of known external loads. Whereas a new baseline for damage detection was found, considering the effect of temperature and external loads, this process can be performed without other complication.

  4. Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model.

    PubMed

    Setoodeh, A R; Farahmand, H

    2018-01-24

    In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress-stretch and density of strain-stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.

  5. Levels of Phosphate Esters in Spirodela

    PubMed Central

    Bieleski, R. L.

    1968-01-01

    The duckweed Spirodela oligorrhiza was grown in sterile nutrient solutions that contained 1 mm phosphate-32P at various specific activities. In solutions with activities higher than 2 μc per μmole per ml, plant growth was inhibited after a time, and the physical appearance of the plants was affected. The critical level of radiation, at which growth was first affected, corresponded to 5 kilorads. Plants were grown for 9 days (5 generations) in a culture solution containing phosphate at 0.5 μc per μmole per ml (radiation load approx 0.5 kilorads) so that all phosphorus-containing materials in the tissue became uniformly labeled. The various radioactive compounds were extracted, chromatographed, identified, and their radioactivity was measured. From this radioactivity plus the specific activity of the supplied phosphate, the amount of each compound was calculated. The data constitute a complete balance-sheet for phosphorus in a plant tissue. The identity of 98% of the phosphorus in the tissue was determined. Inorganic phosphate (32,700 mμmoles/g fr wt) was the predominant phosphorus-containing compound; RNA (5100 mμmoles P/g fr wt) was the main organic phosphate; phosphatidyl choline (1600 mμmoles/g fr wt) was the main phospholipid, and glucose-6-phosphate (500 mμmoles/g fr wt) the main acid-soluble phosphate ester. Amounts of other phosphorus compounds are given. Images PMID:16656910

  6. Estimation of constituent concentrations, densities, loads, and yields in lower Kansas River, northeast Kansas, using regression models and continuous water-quality monitoring, January 2000 through December 2003

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Ziegler, Andrew C.; Rasmussen, Patrick P.

    2005-01-01

    The lower Kansas River is an important source of drinking water for hundreds of thousands of people in northeast Kansas. Constituents of concern identified by the Kansas Department of Health and Environment (KDHE) for streams in the lower Kansas River Basin include sulfate, chloride, nutrients, atrazine, bacteria, and sediment. Real-time continuous water-quality monitors were operated at three locations along the lower Kansas River from July 1999 through September 2004 to provide in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen and to estimate concentrations for constituents of concern. Estimates of concentration and densities were combined with streamflow to calculate constituent loads and yields from January 2000 through December 2003. The Wamego monitoring site is located 44 river miles upstream from the Topeka monitoring site, which is 65 river miles upstream from the DeSoto monitoring site, which is 18 river miles upstream from where the Kansas River flows into the Missouri River. Land use in the Kansas River Basin is dominated by grassland and cropland, and streamflow is affected substantially by reservoirs. Water quality at the three monitoring sites varied with hydrologic conditions, season, and proximity to constituent sources. Nutrient and sediment concentrations and bacteria densities were substantially larger during periods of increased streamflow, indicating important contributions from nonpoint sources in the drainage basin. During the study period, pH remained well above the KDHE lower criterion of 6.5 standard units at all sites in all years, but exceeded the upper criterion of 8.5 standard units annually between 2 percent of the time (Wamego in 2001) and 65 percent of the time (DeSoto in 2003). The dissolved oxygen concentration was less than the minimum aquatic-life-support criterion of 5.0 milligrams per liter less than 1 percent of the time at all sites. Dissolved solids, a measure of the dissolved material in water, exceeded 500 milligrams per liter about one-half of the time at the three Kansas River sites. Larger dissolved-solids concentrations upstream likely were a result of water inflow from the highly mineralized Smoky Hill River that is diluted by tributary flow as it moves downstream. Concentrations of total nitrogen and total phosphorus at the three monitoring sites exceeded the ecoregion water-quality criteria suggested by the U.S. Environmental Protection Agency during the entire study period. Median nitrogen and phosphorus concentrations were similar at all three sites, and nutrient load increased moving from the upstream to downstream sites. Total nitrogen and total phosphorus yields were nearly the same from site to site indicating that nutrient sources were evenly distributed throughout the lower Kansas River Basin. About 11 percent of the total nitrogen load and 12 percent of the total phosphorus load at DeSoto during 2000-03 originated from wastewater-treatment facilities. Escherichia coli bacteria densities were largest at the middle site, Topeka. On average, 83 percent of the annual bacteria load at DeSoto during 2000-03 occurred during 10 percent of the time, primarily in conjunction with runoff. The average annual sediment loads at the middle and downstream monitoring sites (Topeka and DeSoto) were nearly double those at the upstream site (Wamego). The average annual sediment yield was largest at Topeka. On average, 64 percent of the annual suspended-sediment load at DeSoto during 2000-03 occurred during 10 percent of the time. Trapping of sediment by reservoirs located on contributing tributaries decreases transport of sediment and sediment-related constituents. The average annual suspended-sediment load in the Kansas River at DeSoto during 2000-03 was estimated at 1.66 million tons. An estimated 13 percent of this load consisted of sand-size particles, so approximately 216,000 tons of sand were transported

  7. Evaluation of Streamflow, Water Quality, and Permitted and Nonpermitted Loads and Yields in the Raritan River Basin, New Jersey, Water Years 1991-98

    USGS Publications Warehouse

    Reiser, Robert G.

    2003-01-01

    Seventeen water-quality constituents were analyzed in samples collected from 21 surface-water sampling sites in the Raritan River Basin during water years 1991-97. Loads were computed for seven constituents. Thirteen constituents have associated instream water-quality standards that are used as reference levels when evaluating the data. Nine of the 13 constituents did not meet water-quality reference levels in all samples at all sites. The constituents that most commonly failed to meet the water-quality reference levels in the 801 samples analyzed were total phosphorus (greater than 0.1 mg/L (milligrams per liter) in 32 percent of samples), fecal coliform bacteria (greater than 400 counts/100 milliliters in 29 percent), hardness (less than 50 mg/L in 21 percent), pH (greater than 8.5 or less than 6.5 in 17 percent), and water temperature in designated trout waters (greater than 20 degrees Celsius in 12 percent of samples). Concentrations of chloride, total dissolved solids, nitrate plus nitrite, and sulfate did not exceed water-quality reference levels in any sample. Results from previous studies on pesticides and volatile organic compounds in streamwater during 1996-98, and organic compounds and trace elements in sediments during 1976-93, were summarized for this study. Concentrations of pesticides in some samples exceeded the relevant standards. Water-quality data varied significantly as season and streamflow changed. Concentrations or values of 12 constituents were significantly higher in the growing season than in the nongrowing season at 1 to 21 sites, and concentrations of 6 constituents were significantly higher in the nongrowing season at 1 to 21 sites. Concentrations or values of seven constituents decreased significantly with increased streamflow, indicating a more significant contribution from base flow or permitted sources than from runoff. Concentrations or values of four constituents increased with increased flow, indicating a more significant contribution from runoff than from base flow or permitted sources. Phosphorus concentrations increased with flow at two sites with no point sources and decreased with flow at five sites with four or more permitted point sources. Concentrations of five constituents did not vary significantly with changes in streamflow at any of the sites. Concentrations of constituents differed significantly between sites. The sites with the most desirable values for the most constituents were Mulhockaway Creek, Spruce Run, Millstone River at Manalapan, Manalapan Brook, and Lamington River at Pottersville. The sites with the least desirable values for the most constituents were Millstone River at Blackwells Mills, Matchaponix Brook, Raritan River at Bound Brook, Neshanic River, and Millstone River at Grovers Mill. The total instream loads of seven constituents - total ammonia plus organic nitrogen (TKN), biochemical oxygen demand (BOD), total dissolved solids (TDS), nitrate plus nitrite (NO3+NO2), total organic carbon (TOC), total phosphorus, and total suspended solids (TSS) - were analyzed at low, median, and high flows. The quantities of total instream load that originated from facilities with permits issued by the New Jersey Department of Environmental Protection to discharge effluent to streams (permitted sources) and from other sources (nonpermitted sources) were estimated for each sampling site. TOC and TSS loads primarily were contributed by nonpermitted sources at all flows. BOD and TDS loads primarily were contributed by nonpermitted sources at median and high flows. At low flow, permitted sources contributed more than one-third of the TDS load at 10 sites and more than one-third of the BOD load at 3 sites. Permitted sources contributed more than one-third of the total phosphorus load at 15 and 14 sites at low and median flows, respectively. Permitted sources accounted for more than one-third of total instream load of NO3+NO2 at low- and median-flow conditions at nearly

  8. Evaluation of nonpoint-source contamination, Wisconsin: Land-use and Best-Management-Practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmelt-runoff analysis, water year 1994

    USGS Publications Warehouse

    Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

    1995-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to isolate contamination in the sample bottle, the automatic sampler and splitter, and the filtration system. Significant contamination caused excessive concentrations of dissolved chloride, alkalinity, and biochemical oxygen demand. The level of contamination may be large enough to affect data for water samples in which these analytes are present at low concentration. Further investigation is being done to determine the source of contamination and take measures to minimize its effect on the sampling. A preliminary regression analysis was done for the rural sites using data collected during water years 1989-93. Loads of suspended solids and total phosphorus in stormflow were regressed against various precipitation-related measures. The results indicate that, for most sites, changes in constituent load on the order of 40 to 50 percent could be detected with a statistical test. For two sites, the change would have to be 60 to 70 percent to be detected. A detailed comparison of snowmelt runoff and rainfall stormflow in urban and rural areas was done using data collected during water years 1985-93. For the rural sites where statistically significant differences were found between constituent loads in snowmelt and storm runoff, the loads of suspended solids and total phosphorus in snowmelt runoff were greater than those in storm runoff. For the urban sites where statistically significant differences were found between snowmelt and storm runoff, the loads of suspended solids and total phosphorus in storm runoff were greater than those in snowmelt runoff. The importance of including snowmelt runoff in designing and analyzing the effects of BMP's on streamwater quality, particularly in rural areas, is emphasized by these results.

  9. Molecular engineering of phosphole-based conjugated materials

    NASA Astrophysics Data System (ADS)

    Ren, Yi

    The work in this thesis focuses on the molecular engineering of phosphorus-based conjugated materials. In the first part (Chapters Two and Three), new phosphorus-based conjugated systems were designed and synthesized to study the effect of the heteroelement on the electronic properties of the π-conjugated systems. The second part (Chapters Four and Five) deals with the self-assembly features of specifically designed phosphorus-based conjugated systems. In Chapter Two, electron-poor and electron-rich aromatic substituents were introduced to the dithienophosphole core in order to balance the electron-accepting and electron-donating character of the systems. Furthermore, an intriguing intramolecular charge transfer process could be observed between two dithienophosphole cores in a bridged bisphosphole-system. In Chapter Three, a secondary heteroelement (Si, P, S) was incorporated in the phosphorus-based conjugated systems. Extensive structure-property studies revealed that the secondary heteroelement can effectively manipulate the communication in phosphinine-based systems. The study of a heterotetracene system allowed for selectively applying distinct heteroatom (S/P) chemistries, which offers a powerful tool for the modification of the electronic structure of the system. More importantly, the heteroatom-specific electronic nature (S/P) can be utilized to selectively control different photophysical aspects (energy gap and fluorescence quantum yield). Furthermore, additional molecular engineering of the heterotetracene provided access to well-defined 1D microstructures, which opened the door for designing multi-functional self-assembled phosphorus-based materials. In Chapter Four, the self-organizing phosphole-lipid system is introduced, which combines the features of phospholipids with the electronics of phospholes. Its amphiphilic nature induces intriguing self-assembly features - liquid crystal and soft crystal architectures, both exhibiting well-organized lamellar structure at a wide range of temperatures. Importantly, its dynamic structure endows the phosphole-lipid system with intriguing external stimuli-responsive features allowing for the modification of the emission of the system without further chemical modification. Chapter Five describes how further molecular engineering allowed for access to a series of new highly fluorescent phosphole-lipid organogels. Remarkably, the external-stimuli responsive features of the system can be amplified in a donor-acceptor system accessible through changes in long distance fluorescence resonance energy transfer processes. In addition, the first fluorescent liquid phospholes could also be accessed in the context of the work on the new phosphole-lipid system.

  10. Long-term Changes in Water Quality and Productivity in the Patuxent River Estuary: 1985 to 2003

    EPA Science Inventory

    We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and non-point nutrient inputs to the Patuxent River estuary. We analyzed a 19-year data set o...

  11. Managing farmed closed depressional areas using blind inlets to minimize phosphorus and nitrogen losses

    USDA-ARS?s Scientific Manuscript database

    Through watershed scale research in the St. Joseph River watershed in the United States, farmed potholes have been identified as contributing to nutrient loading of streams. Most farmed potholes are drained with tile risers, which are direct conduits for runoff water and associated contaminants dire...

  12. Managing manure for sustainable livestock production in the Chesapeake Bay Watershed

    USDA-ARS?s Scientific Manuscript database

    Manure presents one of the greatest challenges to livestock operations in the Chesapeake Bay Watershed. The Chesapeake Bay is threatened by excessive nutrient loadings and, according to the U.S. Environmental Protection Agency, manure is the source of 18% of the nitrogen and 27% of the phosphorus en...

  13. Soil nutrient variability and groundwater nitrate-N in agricultural fields

    USDA-ARS?s Scientific Manuscript database

    Landscape and management often result in uneven nutrient loads within a field. The hypotheses of this study are that 1) phosphorus accumulates at low areas in the landscape adjacent to waterways, and 2) nitrate at lower landscape positions will be decreased in the subsoil due to denitrification and ...

  14. Technical guidance for assessing phosphorus indices

    USDA-ARS?s Scientific Manuscript database

    Disparate nutrient and land management recommendations generated by P Indices among states, a perceived lack of change in P-based management, and persistent P loading problems in many of the nation’s waters, led to a revision of the 590 Standard. The revision requires an assessment of P Indices acro...

  15. On-site assessment of extractable soil nutrients after long-term biosolids applications to perennial forage

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate soil nutrient loading and depth distributions of extractable nitrogen (N), phosphorus (P), and potassium (K) after long-term, continuous annual surface-applications of anaerobically-digested Class B biosolids at a municipal recycling facility in central Te...

  16. Effects of urbanization on the water quality of lakes in Eagan, Minnesota

    USGS Publications Warehouse

    Ayers, M.A.; Payne, G.A.; Have, Mark A.

    1980-01-01

    Three phosphorus-prediction models developed during the study are applicable to shallow (less than about 12 feet), nonstratifying lakes and ponds. The data base was not sufficient to select an appropriate model to predict the effects of future loading from continuing urbanization on the deeper lakes.

  17. EFFECT OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND HIGH SALT MARSH, SPARTINA PATNES, (AITON MUHL)

    EPA Science Inventory

    Coastal marshes represent an important transitional zone between uplands and estuaries and can assimilate nutrient inputs from uplands. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing sea...

  18. Denitrification and gas emissions from organic soils under different water-table and flooding management

    USDA-ARS?s Scientific Manuscript database

    Draining the Florida Everglades for agricultural use has led to land subsidence and increase phosphorus loads to the southern Everglades, environmental concerns which can be limited by controlling water table depth. The resulting anaerobic conditions in saturated soils may lead to increased denitrif...

  19. Hydrodynamic interactions induce movement against an external load in a ratchet dimer Brownian motor.

    PubMed

    Fornés, José A

    2010-01-15

    We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of a elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. For a given set of parameters we observe direct movement against the load force if hydrodynamic interactions were considered.

  20. Estimated anthropogenic nitrogen and phosphorus inputs to the land surface of the conterminous United States--1992, 1997, and 2002

    USGS Publications Warehouse

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2013-01-01

    Anthropogenic inputs of nitrogen and phosphorus to each county in the conterminous United States and to the watersheds of 495 surface-water sites studied as part of the U.S. Geological Survey National Water-Quality Assessment Program were quantified for the years 1992, 1997, and 2002. Estimates of inputs of nitrogen and phosphorus from biological fixation by crops (for nitrogen only), human consumption, crop production for human consumption, animal production for human consumption, animal consumption, and crop production for animal consumption for each county are provided in a tabular dataset. These county-level estimates were allocated to the watersheds of the surface-water sites to estimate watershed-level inputs from the same sources; these estimates also are provided in a tabular dataset, together with calculated estimates of net import of food and net import of feed and previously published estimates of inputs from atmospheric deposition, fertilizer, and recoverable manure. The previously published inputs are provided for each watershed so that final estimates of total anthropogenic nutrient inputs could be calculated. Estimates of total anthropogenic inputs are presented together with previously published estimates of riverine loads of total nitrogen and total phosphorus for reference.

Top