Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce
2017-03-17
Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce
Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less
Ultrasound-Detected Thyroid Nodule Prevalence and Radiation Dose from Fallout
Land, C. E.; Zhumadilov, Z.; Gusev, B. I.; Hartshorne, M. H.; Wiest, P. W.; Woodward, P. W.; Crooks, L. A.; Luckyanov, N. K.; Fillmore, C. M.; Carr, Z.; Abisheva, G.; Beck, H. L.; Bouville, A.; Langer, J.; Weinstock, R.; Gordeev, K. I.; Shinkarev, S.; Simon, S. L.
2014-01-01
Settlements near the Semipalatinsk Test Site (SNTS) in northeastern Kazakhstan were exposed to radioactive fallout during 1949–1962. Thyroid disease prevalence among 2994 residents of eight villages was ascertained by ultrasound screening. Malignancy was determined by cytopathology. Individual thyroid doses from external and internal radiation sources were reconstructed from fallout deposition patterns, residential histories and diet, including childhood milk consumption. Point estimates of individual external and internal dose averaged 0.04 Gy (range 0–0.65) and 0.31 Gy (0–9.6), respectively, with a Pearson correlation coefficient of 0.46. Ultrasound-detected thyroid nodule prevalence was 18% and 39% among males and females, respectively. It was significantly and independently associated with both external and internal dose, the main study finding. The estimated relative biological effectiveness of internal compared to external radiation dose was 0.33, with 95% confidence bounds of 0.09–3.11. Prevalence of papillary cancer was 0.9% and was not significantly associated with radiation dose. In terms of excess relative risk per unit dose, our dose–response findings for nodule prevalence are comparable to those from populations exposed to medical X rays and to acute radiation from the Hiroshima and Nagasaki atomic bombings. PMID:18363427
Fournier, L; Laurent, O; Samson, E; Caër-Lorho, S; Laroche, P; Le Guen, B; Laurier, D; Leuraud, K
2016-11-01
French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.203 Combining internal and external equivalent doses. (a) The total effective dose...
Code of Federal Regulations, 2014 CFR
2014-01-01
... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...
Code of Federal Regulations, 2012 CFR
2012-01-01
... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...
Code of Federal Regulations, 2011 CFR
2011-01-01
... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...
Code of Federal Regulations, 2013 CFR
2013-01-01
... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
... internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive...
Omori, Yasutaka; Tokonami, Shinji; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Hosoda, Masahiro; Kudo, Hiromi; Pornnumpa, Chanis; Nair, Raghu Ram K; Jayalekshmi, Padmavaty Amma; Sebastian, Paul; Akiba, Suminori
2017-03-20
In order to evaluate internal exposure to radon and thoron, concentrations for radon, thoron, and thoron progeny were measured for 259 dwellings located in high background radiation areas (HBRAs, outdoor external dose: 3-5 mGy y -1 ) and low background radiation areas (control areas, outdoor external dose: 1 mGy y -1 ) in Karunagappally Taluk, Kerala, India. The measurements were conducted using passive-type radon-thoron detectors and thoron progeny detectors over two six-month measurement periods from June 2010 to June 2011. The results showed no major differences in radon and thoron progeny concentrations between the HBRAs and the control areas. The geometric mean of the annual effective dose due to radon and thoron was calculated as 0.10 and 0.44 mSv, respectively. The doses were small, but not negligible compared with the external dose in the two areas.
Radiation Dose to Post-Chernobyl Cleanup Workers
Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.
Grigoryeva, Evgeniya S; Haylock, Richard G E; Pikulina, Maria V; Moseeva, Maria B
2015-01-01
Objective: Incidence and mortality from ischaemic heart disease (IHD) was studied in an extended cohort of 22,377 workers first employed at the Mayak Production Association during 1948–82 and followed up to the end of 2008. Methods: Relative risks and excess relative risks per unit dose (ERR/Gy) were calculated based on the maximum likelihood using Epicure software (Hirosoft International Corporation, Seattle, WA). Dose estimates used in analyses were provided by an updated “Mayak Worker Dosimetry System—2008”. Results: A significant increasing linear trend in IHD incidence with total dose from external γ-rays was observed after having adjusted for non-radiation factors and dose from internal radiation {ERR/Gy = 0.10 [95% confidence interval (CI): 0.04 to 0.17]}. The pure quadratic model provided a better fit of the data than did the linear one. No significant association of IHD mortality with total dose from external γ-rays after having adjusted for non-radiation factors and dose from internal alpha radiation was observed in the study cohort [ERR/Gy = 0.06 (95% CI: <0 to 0.15)]. A significant increasing linear trend was observed in IHD mortality with total absorbed dose from internal alpha radiation to the liver after having adjusted for non-radiation factors and dose from external γ-rays in both the whole cohort [ERR/Gy = 0.21 (95% CI: 0.01 to 0.58)] and the subcohort of workers exposed at alpha dose <1.00 Gy [ERR/Gy = 1.08 (95% CI: 0.34 to 2.15)]. No association of IHD incidence with total dose from internal alpha radiation to the liver was found in the whole cohort after having adjusted for non-radiation factors and external gamma dose [ERR/Gy = 0.02 (95% CI: not available to 0.10)]. Statistically significant dose effect was revealed in the subcohort of workers exposed to internal alpha radiation at dose to the liver <1.00 Gy [ERR/Gy = 0.44 (95% CI: 0.09 to 0.85)]. Conclusion: This study provides strong evidence of IHD incidence and mortality association with external γ-ray exposure and some evidence of IHD incidence and mortality association with internal alpha-radiation exposure. Advances in knowledge: It is the first time the validity of internal radiation dose estimates has been shown to affect the risk of IHD incidence. PMID:26224431
Lung cancer mortality among workers at a nuclear materials fabrication plant.
Richardson, David B; Wing, Steve
2006-02-01
The Oak Ridge, Tennessee Y-12 plant has operated as a nuclear materials fabrication plant since the 1940s. Given the work environment, and prior findings that lung cancer mortality was elevated among white male Y-12 workers relative to US white males, we investigated whether lung cancer mortality was associated with occupational radiation exposures. A cohort of 3,864 workers hired between 1947 and 1974 who had been monitored for internal radiation exposure was identified. Vital status was ascertained through 1990. Over the study period 111 lung cancer deaths were observed. Cumulative external radiation dose under a 5-year lag assumption was positively associated with lung cancer mortality (0.54% increase in lung cancer mortality per 10 mSv, se=0.16, likelihood ratio test (LRT)=5.84, 1 degree of freedom [df]); cumulative internal radiation dose exhibited a highly-imprecise negative association with lung cancer mortality. The positive association between external radiation dose and lung cancer mortality was primarily due to exposure occurring in the period 5-14 years after exposure (0.97% increase in lung cancer mortality rate per 10 mSv, se=0.28, LRT=6.35, 1 df). The association between external radiation dose and lung cancer mortality was negative for exposures occurring at ages<35 years and positive for exposures occurring at ages 35-50 and 50+years. There is evidence of a positive association between cumulative external radiation dose and lung cancer mortality in this population. However, a causal interpretation of this association is constrained by the uncertainties in external and internal radiation dose estimates, the lack of information about exposures to other lung carcinogens, and the limited statistical power of the study. Copyright (c) 2005 Wiley-Liss, Inc.
Zhang, Haiying; Jiao, Ling; Cui, Songye; Wang, Liang; Tan, Jian; Zhang, Guizhi; He, Yajing; Ruan, Shuzhou; Fan, Saijun; Zhang, Wenyi
2014-01-01
Radiation safety is an integral part of targeted radionuclide therapy. The aim of this work was to study the external dose rate and retained body activity as functions of time in differentiated thyroid carcinoma patients receiving 131I therapy. Seventy patients were stratified into two groups: the ablation group (A) and the follow-up group (FU). The patients’ external dose rate was measured, and simultaneously, their retained body radiation activity was monitored at various time points. The equations of the external dose rate and the retained body activity, described as a function of hours post administration, were fitted. Additionally, the release time for patients was calculated. The reduction in activity in the group receiving a second or subsequent treatment was more rapid than the group receiving only the initial treatment. Most important, an expeditious method was established to indirectly evaluate the retained body activity of patients by measuring the external dose rate with a portable radiation survey meter. By this method, the calculated external dose rate limits are 19.2, 8.85, 5.08 and 2.32 μSv·h−1 at 1, 1.5, 2 and 3 m, respectively, according to a patient’s released threshold level of retained body activity <400 MBq. This study is beneficial for radiation safety decision-making. PMID:25337944
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
Barron, Heather W; Roberts, Royce E; Latimer, Kenneth S; Hernandez-Divers, Stephen; Northrup, Nicole C
2009-03-01
Currently used dosages for external-beam megavoltage radiation therapy in birds have been extrapolated from mammalian patients and often appear to provide inadequate doses of radiation for effective tumor control. To determine the tolerance doses of cutaneous and mucosal tissues of normal birds in order to provide more effective radiation treatment for tumors that have been shown to be radiation responsive in other species, ingluvial mucosa and the skin over the ingluvies of 9 ring-necked parakeets (Psittacula krameri) were irradiated in 4-Gy fractions to a total dose of either 48, 60, or 72 Gy using an isocentric cobalt-60 teletherapy unit. Minimal radiation-induced epidermal changes were present in the high-dose group histologically. Neither dose-related acute nor chronic radiation effects could be detected in any group grossly in cutaneous or mucosal tissue over a 9-month period. Radiation doses of 72 Gy in 4-Gy fractions were well tolerated in the small number of ring-necked parakeets in this initial tolerance dose study.
Fujimura, Maya Sophia; Komasa, Yukako; Kimura, Shinzo; Shibanuma, Akira; Kitamura, Akiko; Jimba, Masamine
2017-01-01
On March 11, 2011, Japan experienced its largest recorded earthquake with a magnitude of 9.0. The resulting tsunami caused massive damage to the Fukushima Daiichi Nuclear Power Plant reactors, and the surrounding environment was contaminated with radioactive materials. During this period, some residents were exposed to high levels of radiation (up to 5 millisieverts [mSv]), but since then, many residents have been exposed to low levels of radiation (<1 mSv). This study was conducted to assess the effects of lifestyle and attitude factors on external radiation exposure among Fukushima residents. This community-based, cross-sectional study was conducted in Nihonmatsu City of the Fukushima Prefecture from May to July 2014. The population survey targeted 6,884 children between the ages of 0-15 years, and a personal radiation badge and questionnaire were administered to each of the residences. Multiple linear regression analysis was used to assess the impact of lifestyle and attitude factors on external radiation dose. The study participants (population size [n] = 4,571) had an additional mean radiation dose of 0.65 mSv/year, which is small as compared to the mean radiation dose 6 months after the disaster (1.5 mSv/year), in 2012 (1.5 mSv/year), and in 2013 (1.0 mSv/year). External radiation doses statistically varied by socio-demographic and lifestyle factors. Participants living in wooden residences (p-value<0.001) and within 100 meters of a forest (p = 0.001) had higher radiation exposure. Conversely, participants with a cautious attitude towards radiation had lower radiation exposure (beta [b] = -0.124, p = 0.003). Having a cautious attitude towards radiation and being aware of exposure risks proved to be significant in the reduction of external radiation dose. Therefore, in the event of future radiation disasters, attitudes towards and awareness of radiation should be considered in the reduction of exposure risk and implementation of radiation protection.
Zhao, Zhenjun; Johnson, Michael S; Chen, Biyi; Grace, Michael; Ukath, Jaysree; Lee, Vivienne S; McRobb, Lucinda S; Sedger, Lisa M; Stoodley, Marcus A
2016-06-01
OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation causes remarkable cellular changes in endothelial cells. Significant PS externalization is induced by radiation at doses of 15 Gy or higher, concomitant with a block in the cell cycle. Radiation-induced markers/targets may have high discriminating power to be harnessed in vascular targeting for AVM treatment.
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
Ohira, Tetsuya; Takahashi, Hideto; Yasumura, Seiji; Ohtsuru, Akira; Midorikawa, Sanae; Suzuki, Satoru; Fukushima, Toshihiko; Shimura, Hiroki; Ishikawa, Tetsuo; Sakai, Akira; Yamashita, Shunichi; Tanigawa, Koichi; Ohto, Hitoshi; Abe, Masafumi; Suzuki, Shinichi
2016-01-01
Abstract The 2011 Great East Japan Earthquake led to a subsequent nuclear accident at the Fukushima Daiichi Nuclear Power Plant. In its wake, we sought to examine the association between external radiation dose and thyroid cancer in Fukushima Prefecture. We applied a cross-sectional study design with 300,476 participants aged 18 years and younger who underwent thyroid examinations between October 2011 and June 2015. Areas within Fukushima Prefecture were divided into three groups based on individual external doses (≥1% of 5 mSv, <99% of 1 mSv/y, and the other). The odds ratios (ORs) and 95% confidence intervals of thyroid cancer for all areas, with the lowest dose area as reference, were calculated using logistic regression models adjusted for age and sex. Furthermore, the ORs of thyroid cancer for individual external doses of 1 mSv or more and 2 mSv or more, with the external dose less than 1 mSv as reference, were calculated. Prevalence of thyroid cancer for the location groups were 48/100,000 for the highest dose area, 36/100,000 for the middle dose area, and 41/100,000 for the lowest dose area. Compared with the lowest dose area, age-, and sex-adjusted ORs (95% confidence intervals) for the highest-dose and middle-dose areas were 1.49 (0.36–6.23) and 1.00 (0.67–1.50), respectively. The duration between accident and thyroid examination was not associated with thyroid cancer prevalence. There were no significant associations between individual external doses and prevalence of thyroid cancer. External radiation dose was not associated with thyroid cancer prevalence among Fukushima children within the first 4 years after the nuclear accident. PMID:27583855
Ohira, Tetsuya; Takahashi, Hideto; Yasumura, Seiji; Ohtsuru, Akira; Midorikawa, Sanae; Suzuki, Satoru; Fukushima, Toshihiko; Shimura, Hiroki; Ishikawa, Tetsuo; Sakai, Akira; Yamashita, Shunichi; Tanigawa, Koichi; Ohto, Hitoshi; Abe, Masafumi; Suzuki, Shinichi
2016-08-01
The 2011 Great East Japan Earthquake led to a subsequent nuclear accident at the Fukushima Daiichi Nuclear Power Plant. In its wake, we sought to examine the association between external radiation dose and thyroid cancer in Fukushima Prefecture. We applied a cross-sectional study design with 300,476 participants aged 18 years and younger who underwent thyroid examinations between October 2011 and June 2015. Areas within Fukushima Prefecture were divided into three groups based on individual external doses (≥1% of 5 mSv, <99% of 1 mSv/y, and the other). The odds ratios (ORs) and 95% confidence intervals of thyroid cancer for all areas, with the lowest dose area as reference, were calculated using logistic regression models adjusted for age and sex. Furthermore, the ORs of thyroid cancer for individual external doses of 1 mSv or more and 2 mSv or more, with the external dose less than 1 mSv as reference, were calculated. Prevalence of thyroid cancer for the location groups were 48/100,000 for the highest dose area, 36/100,000 for the middle dose area, and 41/100,000 for the lowest dose area. Compared with the lowest dose area, age-, and sex-adjusted ORs (95% confidence intervals) for the highest-dose and middle-dose areas were 1.49 (0.36-6.23) and 1.00 (0.67-1.50), respectively. The duration between accident and thyroid examination was not associated with thyroid cancer prevalence. There were no significant associations between individual external doses and prevalence of thyroid cancer. External radiation dose was not associated with thyroid cancer prevalence among Fukushima children within the first 4 years after the nuclear accident.
NASA Astrophysics Data System (ADS)
Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi
2015-08-01
The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv 94.0%, <2 mSv 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected.
Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi
2015-01-01
The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv; 94.0%, <2 mSv; 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected. PMID:26239643
Spatial interpolation of gamma dose in radioactive waste storage facility
NASA Astrophysics Data System (ADS)
Harun, Nazran; Fathi Sujan, Muhammad; Zaidi Ibrahim, Mohd
2018-01-01
External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.
Han, Sangwon; Yoo, Seon Hee; Koh, Kyung-Nam; Lee, Jong Jin
2017-04-01
Current recommendations suggest that family members should participate in the care of children receiving in-hospital I metaiodobenzylguanidine (MIBG) therapy for neuroblastoma. The present study aimed to measure the external radiation exposure and estimate the internal radiation exposure of caregivers during the hospital stay for I MIBG therapy. Caregivers received radiation safety instructions and a potassium iodide solution for thyroid blockade before patient admission. External radiation exposure was determined using a personal pocket dosimeter. Serial 24-hour urine samples were collected from caregivers during the hospital stay. Estimated internal radiation exposure was calculated based on the urine activity. Twelve cases (mean age, 6.2 ± 3.5 years; range, 2-13 years) were enrolled. The mean administered activity was 233.3 ± 74.9 (range, 150.0-350.0) mCi. The mean external radiation dose was 5.8 ± 7.2 (range, 0.8-19.9) mSv. Caregivers of children older than 4 years had significantly less external radiation exposure than those of children younger than 4 years (1.9 ± 1.0 vs 16.4 ± 5.0 mSv; P = 0.012). The mean estimated internal radiation dose was 11.3 ± 10.2 (range, 1.0-29.8) μSv. Caregivers receive both external and internal radiation exposure while providing in-hospital care to children receiving I MIBG therapy for neuroblastoma. However, the internal radiation exposure was negligible compared with the external radiation exposure.
Simon, Steven L; Baverstock, Keith F; Lindholm, Carita
2003-06-01
The presently available evidence about the magnitude of doses received by members of the public living in villages in the vicinity of Semipalatinsk nuclear test in Kazakhstan, particularly with respect to external radiation, while preliminary, is conflicting. The village of Dolon, in particular, has been identified for many years as the most highly exposed location in the vicinity of the test site. Previous publications cited external doses of more than 2 Gy to residents of Dolon while an expert group assembled by the WHO in 1997 estimated that external doses were likely to have been less than 0.5 Gy. In 2001, a larger expert group workshop was held in Helsinki jointly by the WHO, the National Cancer Institute of the United States, and the Radiation and Nuclear Safety Authority of Finland, with the expressed purpose to acquire data to evaluate the state of knowledge concerning doses received in Kazakhstan. This paper summarizes evidence presented at that workshop. External dose estimates from calculations based on sparse physical measurements and bio-dosimetric estimates based on chromosome abnormalities and electron paramagnetic resonance from a relatively small sample of teeth do not agree well. The physical dose estimates are generally higher than the biodosimetric estimates (1 Gy or more compared to 0.5 Gy or less). When viewed in its entirety, the present body of evidence does not appear to support external doses greater than 0.5 Gy; however, research is continuing to try and resolve the difference in dose estimates from the different methods. Thyroid doses from internal irradiation, which can only be estimated via calculation, are expected to have been several times greater than the doses from external irradiation, especially where received by small children.
NASA Astrophysics Data System (ADS)
Budiyono, T.; Budi, W. S.; Hidayanto, E.
2016-03-01
Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).
Kitamura, Akiko
2017-01-01
Introduction On March 11, 2011, Japan experienced its largest recorded earthquake with a magnitude of 9.0. The resulting tsunami caused massive damage to the Fukushima Daiichi Nuclear Power Plant reactors, and the surrounding environment was contaminated with radioactive materials. During this period, some residents were exposed to high levels of radiation (up to 5 millisieverts [mSv]), but since then, many residents have been exposed to low levels of radiation (<1 mSv). This study was conducted to assess the effects of lifestyle and attitude factors on external radiation exposure among Fukushima residents. Methods This community-based, cross-sectional study was conducted in Nihonmatsu City of the Fukushima Prefecture from May to July 2014. The population survey targeted 6,884 children between the ages of 0–15 years, and a personal radiation badge and questionnaire were administered to each of the residences. Multiple linear regression analysis was used to assess the impact of lifestyle and attitude factors on external radiation dose. Results The study participants (population size [n] = 4,571) had an additional mean radiation dose of 0.65 mSv/year, which is small as compared to the mean radiation dose 6 months after the disaster (1.5 mSv/year), in 2012 (1.5 mSv/year), and in 2013 (1.0 mSv/year). External radiation doses statistically varied by socio-demographic and lifestyle factors. Participants living in wooden residences (p-value<0.001) and within 100 meters of a forest (p = 0.001) had higher radiation exposure. Conversely, participants with a cautious attitude towards radiation had lower radiation exposure (beta [b] = -0.124, p = 0.003). Conclusion Having a cautious attitude towards radiation and being aware of exposure risks proved to be significant in the reduction of external radiation dose. Therefore, in the event of future radiation disasters, attitudes towards and awareness of radiation should be considered in the reduction of exposure risk and implementation of radiation protection. PMID:29236725
Bouville, André; Beck, Harold L; Simon, Steven L
2010-08-01
Annual doses from external irradiation resulting from exposure to fallout from the 65 atmospheric nuclear weapons tests conducted in the Marshall Islands at Bikini and Enewetak between 1946 and 1958 have been estimated for the first time for Marshallese living on all inhabited atolls. All tests that deposited fallout on any of the 23 inhabited atolls or separate reef islands have been considered. The methodology used to estimate the radiation doses at the inhabited atolls is based on test- and location-specific radiation survey data, deposition density estimates of 137Cs, and fallout times-of-arrival provided in a companion paper (Beck et al.), combined with information on the radionuclide composition of the fallout at various times after each test. These estimates of doses from external irradiation have been combined with corresponding estimates of doses from internal irradiation, given in a companion paper (Simon et al.), to assess the cancer risks among the Marshallese population (Land et al.) resulting from exposure to radiation from the nuclear weapons tests.
Kubale, Travis L; Daniels, Robert D; Yiin, James H; Couch, James; Schubauer-Berigan, Mary K; Kinnes, Gregory M; Silver, Sharon R; Nowlin, Susan J; Chen, Pi-Hsueh
2005-12-01
A nested case-control study using conditional logistic regression was conducted to evaluate the exposure-response relationship between external ionizing radiation exposure and leukemia mortality among civilian workers at the Portsmouth Naval Shipyard (PNS), Kittery, Maine. The PNS civilian workers received occupational radiation exposure while performing construction, overhaul, repair and refueling activities on nuclear-powered submarines. The study age-matched 115 leukemia deaths with 460 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992. In addition to radiation doses received in the workplace, a secondary analysis incorporating doses from work-related medical X rays and other occupational radiation exposures was conducted. A significant positive association was found between leukemia mortality and external radiation exposure, adjusting for gender, radiation worker status, and solvent exposure duration (OR = 1.08 at 10 mSv of exposure; 95% CI = 1.01, 1.16). Solvent exposure (including benzene and carbon tetrachloride) was also significantly associated with leukemia mortality adjusting for radiation dose, radiation worker status, and gender. Incorporating doses from work-related medical X rays did not change the estimated leukemia risk per unit of dose.
Electron-proton spectrometer: Summary for critical design review
NASA Technical Reports Server (NTRS)
1972-01-01
The electron-proton spectrometer (EPS) is mounted external to the Skylab module complex on the command service module. It is designed to make a 2 pi omni-directional measurement of electrons and protons which result from solar flares or enhancement of the radiation belts. The EPS data will provide accurate radiation dose information so that uncertain Relative biological effectiveness factors are eliminated by measuring the external particle spectra. Astronaut radiation safety, therefore, can be ensured, as the EPS data can be used to correct or qualify radiation dose measurements recorded by other radiation measuring instrumentation within the Skylab module complex. The EPS has the capability of measuring and extremely wide dynamic radiation dose rate range, approaching 10 to the 7th power. Simultaneously the EPS has the capability to process data from extremely high radiation fields such as might be encountered in the wake of an intense solar flare.
Bernhardsson, C; Zvonova, I; Rääf, C; Mattsson, S
2011-10-15
A Nordic-Soviet programme was initiated in 1990 to evaluate the external and internal radiation exposure of the inhabitants of several villages in the Bryansk region of Russia. This area was one of the number of areas particularly affected by the nuclear accident at the Chernobyl Nuclear Power Plant in 1986. Measurements were carried out yearly until 1998 and after that more irregularly; in 2000, 2006 and 2008 respectively. The effective dose estimates were based on individual thermoluminescent dosemeters and on in vivo measurements of the whole body content of (137)Cs (and (134)Cs during the first years of the programme). The decrease in total effective dose during the almost 2 decade follow-up was due to a continuous decrease in the dominating external exposure and a less decreasing but highly variable exposure from internal irradiation. In 2008, the observed average effective dose (i.e. the sum of external and internal exposure) from Chernobyl (137)Cs to the residents was estimated to be 0.3mSv y(-1). This corresponds to 8% of the estimated annual dose in 1990 and to 1% of the estimated annual dose in 1986. As a mean for the population group and for the period of the present study (2006-2008), the average yearly effective dose from Chernobyl cesium was comparable to the absorbed dose obtained annually from external exposure to cosmic radiation plus internal exposure to naturally occurring radionuclides in the human body. Our data indicate that the effective dose from internal exposure is becoming increasingly important as the body burdens of Chernobyl (137)Cs are decreasing more slowly than the external exposure. However, over the years there have been large individual variations in both the external and internal effective doses, as well as differences between the villages investigated. These variations and differences are presented and discussed in this paper. Copyright © 2011 Elsevier B.V. All rights reserved.
External doses of residents near Semipalatinsk nuclear test site.
Takada, J; Hoshi, M; Nagatomo, T; Yamamoto, M; Endo, S; Takatsuji, T; Yoshikawa, I; Gusev, B I; Sakerbaev, A K; Tchaijunusova, N J
1999-12-01
Accumulated external radiation doses of residents near the Semipalatinsk nuclear test site of the former USSR are presented as a results of study by the thermoluminescence technique for bricks sampled at several settlements in 1995 and 1996. The external doses that we evaluated from exposed bricks were up to about 100 cGy for resident. The external doses at several points in the center of Semipalatinsk City ranged from a background level to 60 cGy, which was remarkably high compared with the previously reported values based on military data.
Metz-Flamant, C; Samson, E; Caër-Lorho, S; Acker, A; Laurier, D
2011-07-01
Studies of nuclear workers make it possible to directly quantify the risks associated with ionizing radiation exposure at low doses and low dose rates. Studies of the CEA (Commissariat à l'Energie Atomique) and AREVA Nuclear Cycle (AREVA NC) cohort, currently the most informative such group in France, describe the long-term risk to nuclear workers associated with external exposure. Our aim is to assess the risk of mortality from solid cancers among CEA and AREVA NC nuclear workers and its association with external radiation exposure. Standardized mortality ratios (SMRs) were calculated and internal Poisson regressions were conducted, controlling for the main confounding factors [sex, attained age, calendar period, company and socioeconomic status (SES)]. During the period 1968-2004, there were 2,035 solid cancers among the 36,769 CEA-AREVA NC workers. Cumulative external radiation exposure was assessed for the period 1950-2004, and the mean cumulative dose was 12.1 mSv. Mortality rates for all causes and all solid cancers were both significantly lower in this cohort than in the general population. A significant excess of deaths from pleural cancer, not associated with cumulative external dose, was observed, probably due to past asbestos exposure. We observed a significant excess of melanoma, also unassociated with dose. Although cumulative external dose was not associated with mortality from all solid cancers, the central estimated excess relative risk (ERR) per Sv of 0.46 for solid cancer mortality was higher than the 0.26 calculated for male Hiroshima and Nagasaki A-bomb survivors 50 years or older and exposed at the age of 30 years or older. The modification of our results after stratification for SES demonstrates the importance of this characteristic in occupational studies, because it makes it possible to take class-based lifestyle differences into account, at least partly. These results show the great potential of a further joint international study of nuclear workers, which should improve knowledge about the risks associated with chronic low doses and provide useful risk estimates for radiation protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardis, E.; Kato, I.; Lave, C.
Studies of the mortality among nuclear industry workforces have been carried out, and nationally combined analyses performed, in the U.S., the UK and Canada. This paper presents the results of internationally combined analyses of mortality data on 95,673 workers (85.4% men) monitored for external exposure to ionizing radiation and employed for 6 months or longer in the nuclear industry of one of the three countries. These analyses were undertaken to obtain a more precise direct assessment of the carcinogenic effects of protracted low-level exposure to external, predominantly {gamma}, radiation. The combination of the data from the various studies increases themore » power to study associations between radiation dose and mortality from all causes or from all cancers. Mortality from leukemia, excluding chronic lymphocytic leukemia (CLL)-the cause of death most strongly and consistently related to radiation dose in studies of atomic bomb survivors and other populations exposed at high dose rates-was significantly associated with cumulative external radiation dose (one-sided P value = 0.046; 119 deaths). Among the 31 other specific types of cancer studied, a significant association was observed only for multiple myeloma (one-sided P value = 0.037; 44 deaths), and this was attributable primarily to the associations reported previously between this disease and radiation dose in the Hanford (U.S.) and Sellafield (UK) cohorts. The excess relative risk (ERR) estimates for all cancers excluding leukemia, and leukemia excluding CLL, the two main groupings of causes of death for which risk estimates have been derived from studies of atomic bomb survivors, were -0.07 per Sv [90% confidence interval (CI):-0.4,0.3] and 2.18 per Sv (90% CI:0.1,5.7), respectively. These values correspond to a relative risk of 0.99 for all cancers excluding leukemia and 1.22 for leukemia excluding CLL for a cumulative protracted dose of 100 mSv compared to O mSv. 53 refs., 1 fig., 8 tabs.« less
Development of Safety Assessment Code for Decommissioning of Nuclear Facilities
NASA Astrophysics Data System (ADS)
Shimada, Taro; Ohshima, Soichiro; Sukegawa, Takenori
A safety assessment code, DecDose, for decommissioning of nuclear facilities has been developed, based on the experiences of the decommissioning project of Japan Power Demonstration Reactor (JPDR) at Japan Atomic Energy Research Institute (currently JAEA). DecDose evaluates the annual exposure dose of the public and workers according to the progress of decommissioning, and also evaluates the public dose at accidental situations including fire and explosion. As for the public, both the internal and the external doses are calculated by considering inhalation, ingestion, direct radiation from radioactive aerosols and radioactive depositions, and skyshine radiation from waste containers. For external dose for workers, the dose rate from contaminated components and structures to be dismantled is calculated. Internal dose for workers is calculated by considering dismantling conditions, e.g. cutting speed, cutting length of the components and exhaust velocity. Estimation models for dose rate and staying time were verified by comparison with the actual external dose of workers which were acquired during JPDR decommissioning project. DecDose code is expected to contribute the safety assessment for decommissioning of nuclear facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna
Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, eithermore » 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.« less
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
Radiological environment within an NPP after a severe nuclear accident
NASA Astrophysics Data System (ADS)
Andgren, Karin; Fritioff, Karin; Buhr, Anna Maria Blixt; Huutoniemi, Tommi
2017-09-01
The radiological environment following a severe nuclear accident can be visualised on building layouts. The direct radiation in an area (or room) can be visualized on the layout by a colouring scheme depending on the dose rate level (for example orange for high gamma dose rate level and purple for an intermediate gamma dose rate level). Following the Fukushima accident, a need for update of these layouts has been identified at the Swedish nuclear power plant of Forsmark. Shielding calculations for areas where access is desired for severe accident management have been performed. Many different sources of radiation together with different types of shielding material contribute to the dose that would be received by a person entering the area. External radiation from radioactivity within e.g. pipes and components is considered and also external radiation from radioactivity in the air (originating from diffuse leakage of the containment atmosphere). Results are presented as dose rates for relevant dose points together with a method for estimating the dose rate levels for each of the rooms of the reactor building.
Orita, Makiko; Hayashida, Naomi; Taira, Yasuyuki; Fukushima, Yoshiko; Ide, Juichi; Endo, Yuuko; Kudo, Takashi; Yamashita, Shunichi; Takamura, Noboru
2015-01-01
To confirm the availability of individual dose evaluation for the return of residents after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP), we evaluated individual doses of radiation as measured by personal dosimeters in residents who temporarily stayed in Evacuation Order Areas in Kawauchi village, which is partially located within a 20 km radius of the FNPP. We also compared individual doses with the external radiation doses estimated from the ambient dose rates and with doses estimated from the concentrations of radionuclides in the soil around each individual’s house. Individual doses were significantly correlated with the ambient doses in front of the entrances to the houses (r = 0.90, p<0.01), in the backyards (r = 0.41, p<0.01) and in the nearby fields (r = 0.80, p<0.01). The maximum cumulative ambient doses in the backyards and fields around the houses were 6.38 and 9.27 mSv/y, respectively. The maximum cumulative individual dose was 3.28 mSv/y, and the median and minimum doses were 1.35 and 0.71 mSv/y. The estimated external effective doses from concentrations of artificial radionuclides in soil samples ranged from 0.03 to 23.42 mSv/y. The individual doses were moderately correlated with external effective doses in the backyards (r = 0.38, p<0.01) and in the fields (r = 0.36, p<0.01); however, the individual doses were not significantly correlated with the external effective doses in front of the entrances (r = 0.01, p = 0.92). Our study confirmed that individual doses are low levels even in the evacuation order area in Kawauchi village, and external effective dose levels are certainly decreasing due to the decay of artificial radionuclides and the decontamination of contaminated soil. Long-term follow-up of individual doses as well as internal-exposure doses, environmental monitoring and reconstruction of infrastructure are needed so that residents may return to their hometowns after a nuclear disaster. PMID:25806523
Orita, Makiko; Hayashida, Naomi; Taira, Yasuyuki; Fukushima, Yoshiko; Ide, Juichi; Endo, Yuuko; Kudo, Takashi; Yamashita, Shunichi; Takamura, Noboru
2015-01-01
To confirm the availability of individual dose evaluation for the return of residents after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP), we evaluated individual doses of radiation as measured by personal dosimeters in residents who temporarily stayed in Evacuation Order Areas in Kawauchi village, which is partially located within a 20 km radius of the FNPP. We also compared individual doses with the external radiation doses estimated from the ambient dose rates and with doses estimated from the concentrations of radionuclides in the soil around each individual's house. Individual doses were significantly correlated with the ambient doses in front of the entrances to the houses (r = 0.90, p<0.01), in the backyards (r = 0.41, p<0.01) and in the nearby fields (r = 0.80, p<0.01). The maximum cumulative ambient doses in the backyards and fields around the houses were 6.38 and 9.27 mSv/y, respectively. The maximum cumulative individual dose was 3.28 mSv/y, and the median and minimum doses were 1.35 and 0.71 mSv/y. The estimated external effective doses from concentrations of artificial radionuclides in soil samples ranged from 0.03 to 23.42 mSv/y. The individual doses were moderately correlated with external effective doses in the backyards (r = 0.38, p<0.01) and in the fields (r = 0.36, p<0.01); however, the individual doses were not significantly correlated with the external effective doses in front of the entrances (r = 0.01, p = 0.92). Our study confirmed that individual doses are low levels even in the evacuation order area in Kawauchi village, and external effective dose levels are certainly decreasing due to the decay of artificial radionuclides and the decontamination of contaminated soil. Long-term follow-up of individual doses as well as internal-exposure doses, environmental monitoring and reconstruction of infrastructure are needed so that residents may return to their hometowns after a nuclear disaster.
Thyroid abnormalities after therapeutic external radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, S.L.; McDougall, I.R.; Constine, L.S.
1995-03-30
The thyroid gland is the largest pure endocrine gland in the body and one of the organs most likely to produce clinically significant abnormalities after therapeutic external radiation. Radiation doses to the thyroid that exceed approximately 26 Gy frequently produce hypothyroidism, which may be clinically overt or subclinical, as manifested by increased serum thyrotropin and normal serum-free thyroxine concentrations. Pituitary or hypothalamic hypothyroidism may arise when the pituitary region receives doses exceeding 50 Gy with conventional, 1.8-2 Gy fractionation. Direct irradiation of the thyroid may increase the risk of Graves` disease or euthyroid Graves` ophthalmopathy. Silent thyroiditis, cystic degeneration, benignmore » adenoma, and thyroid cancer have been observed after therapeutically relevant doses of external radiation. Direct or incidental thyroid irradiation increases the risk for well-differentiated, papillary, and follicular thyroid cancer from 15- to 53-fold. Thyroid cancer risk is highest following radiation at a young age, decreases with increasing age at treatment, and increases with follow-up duration. The potentially prolonged latent period between radiation exposure and the development of thyroid dysfunction, thyroid nodularity, and thyroid cancer means that individuals who have received neck or pituitary irradiation require careful, periodic clinical and laboratory evaluation to avoid excess morbidity. 39 refs.« less
Yasutaka, Tetsuo; Naito, Wataru; Nakanishi, Junko
2013-01-01
The objective of the present study is to evaluate the cost and effectiveness of decontamination strategies in the special decontamination areas in Fukushima in regard to external radiation dose. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, analysis of cost and effectiveness suggests that decontamination costs for agricultural areas account for approximately 80% of the total decontamination cost, of which approximately 60% is associated with storage. In addition, the costs of decontamination per person per unit area are estimated to vary greatly. Appropriate selection of decontamination methods may significantly decrease decontamination costs, allowing more meaningful decontamination in terms of the limited budget. Our analysis can help in examining the prioritization of decontamination areas from the viewpoints of cost and effectiveness in reducing the external dose. Decontamination strategies should be determined according to air dose rates and future land-use plans. PMID:24069398
Yasutaka, Tetsuo; Naito, Wataru; Nakanishi, Junko
2013-01-01
The objective of the present study is to evaluate the cost and effectiveness of decontamination strategies in the special decontamination areas in Fukushima in regard to external radiation dose. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, analysis of cost and effectiveness suggests that decontamination costs for agricultural areas account for approximately 80% of the total decontamination cost, of which approximately 60% is associated with storage. In addition, the costs of decontamination per person per unit area are estimated to vary greatly. Appropriate selection of decontamination methods may significantly decrease decontamination costs, allowing more meaningful decontamination in terms of the limited budget. Our analysis can help in examining the prioritization of decontamination areas from the viewpoints of cost and effectiveness in reducing the external dose. Decontamination strategies should be determined according to air dose rates and future land-use plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, Thomas J.; Chen Changhu; Rabinovitch, Rachel
Purpose: To determine the maximal tolerated dose of bortezomib with concurrent external beam radiation therapy in patients with incurable solid malignant tumors requiring palliative therapy. Methods and Materials: An open label, dose escalation, phase I clinical trial evaluated the safety of three dose levels of bortezomib administered intravenously (1.0 mg/m{sup 2}, 1.3 mg/m{sup 2}, and 1.6 mg/m{sup 2}/ dose) once weekly with concurrent radiation in patients with histologically confirmed solid tumors and a radiographically appreciable lesion suitable for palliative radiation therapy. All patients received 40 Gy in 16 fractions to the target lesion. Dose-limiting toxicity was the primary endpoint, definedmore » as any grade 4 hematologic toxicity, any grade {>=}3 nonhematologic toxicity, or any toxicity requiring treatment to be delayed for {>=}2 weeks. Results: A total of 12 patients were enrolled. Primary sites included prostate (3 patients), head and neck (3 patients), uterus (1 patient), abdomen (1 patient), breast (1 patient), kidney (1 patient), lung (1 patient), and colon (1 patient). The maximum tolerated dose was not realized with a maximum dose of 1.6 mg/m{sup 2}. One case of dose-limiting toxicity was appreciated (grade 3 urosepsis) and felt to be unrelated to bortezomib. The most common grade 3 toxicity was lymphopenia (10 patients). Common grade 1 to 2 events included nausea (7 patients), infection without neutropenia (6 patients), diarrhea (5 patients), and fatigue (5 patients). Conclusions: The combination of palliative external beam radiation with concurrent weekly bortezomib therapy at a dose of 1.6 mg/m{sup 2} is well tolerated in patients with metastatic solid tumors. The maximum tolerated dose of once weekly bortezomib delivered concurrently with radiation therapy is greater than 1.6 mg/m{sup 2}.« less
Shielding design of the Mayo Clinic Scottsdale cyclotron vault
NASA Astrophysics Data System (ADS)
Riper, Kenneth A. Van; Metzger, Robert L.; Nelson, Kevin
2017-09-01
Mayo Clinic Scottsdale (Scottsdale, Arizona) is building a cyclotron vault containing a cyclotron with adjacent targets and a beam line leading to an external target. The targets are irradiated by high energy (15 to 16.5 MeV) protons for the production of radioisotopes. We performed Monte Carlo radiation transport simulations to calculate the radiation dose outside of the vault during irradiation of the cyclotron and external targets. We present the Monte Carlo model including the geometry, sources, and variance reduction methods. Mesh tallies surrounding the vault show the external dose rate is within acceptable limits.
Kirillov, Vladimir; Kuchuro, Joseph; Tolstik, Sergey; Leonova, Tatyana
2010-02-01
Dose reconstruction for citizens of Belarus affected by the Chernobyl accident showed an unexpectedly wide range of doses. Using the EPR tooth enamel dosimetry method, it has been demonstrated that when the tooth enamel dose was formed due to x-rays with effective energy of 34 keV and the additional irradiation of enamel samples was performed by gamma radiation with mean energy of 1,250 keV, it led to a considerable increase in the reconstructed absorbed dose as compared with the applied. In the case when the dose was formed due to gamma radiation and the additional irradiation was performed by x-rays, it led to a considerable decrease in the reconstructed dose as compared with the applied. When the dose formation and the additional irradiation were carried out from external sources of electromagnetic radiation of equal energy, the reconstructed dose value was close to that of the applied. The obtained data show that for adequate reconstruction of individual absorbed doses by the EPR tooth enamel spectra, it is necessary to take into account the contribution from diagnostic x-ray examination of the teeth, jaw, and skull of some individuals who were exposed to a combined effect of the external gamma radiation and x-rays.
Metz-Flamant, C; Samson, E; Caër-Lorho, S; Acker, A; Laurier, D
2012-11-01
Leukemia is one of the earliest cancer effects observed after acute exposure to relatively high doses of ionizing radiation. Leukemia mortality after external exposure at low doses and low-dose rates has been investigated at the French Atomic Energy Commission (CEA) and Nuclear Fuel Company (AREVA NC) after an additional follow-up of 10 years. The cohort included radiation-monitored workers employed for at least one year during 1950-1994 at CEA or AREVA NC and followed during 1968-2004. Association between external exposure and leukemia mortality was estimated with excess relative risk (ERR) models and time-dependent modifying factors were investigated with time windows. The cohort included 36,769 workers, followed for an average of 28 years, among whom 73 leukemia deaths occurred. Among the workers with a positive recorded dose, the mean cumulative external dose was 21.7 mSv. Results under a 2-year lag assumption suggested that the risk of leukemia (except chronic lymphatic leukemia) increased significantly by 8% per 10 mSv. The magnitude of the association for myeloid leukemia was larger. The higher ERR/Sv for doses received 2-14 years earlier suggest that time since exposure modifies the effect. The ERR/Sv also appeared higher for doses received at exposure rates ≥20 mSv per year. These results are consistent with those found in other studies of nuclear workers. However, confidence intervals are still wide. Further analyses should be conducted in pooled cohorts of nuclear workers.
Radiation dose to technologists per nuclear medicine examination and estimation of annual dose.
Bayram, Tuncay; Yilmaz, A Hakan; Demir, Mustafa; Sonmez, Bircan
2011-03-01
Conventional diagnostic nuclear medicine applications have been continuously increasing in most nuclear medicine departments in Turkey, but to our knowledge no one has studied the doses to technologists who perform nuclear medicine procedures. Most nuclear medicine laboratories do not have separate control rooms for technologists, who are quite close to the patient during data acquisition. Technologists must therefore stay behind lead shields while performing their task if they are to reduce the radiation dose received. The aim of this study was to determine external radiation doses to technologists during nuclear medicine procedures with and without a lead shield. Another aim was to investigate the occupational annual external radiation doses to Turkish technologists. This study used a Geiger-Müller detector to measure dose rates to technologists at various distances from patients (0.25, 0.50, 1, and 2 m and behind a lead shield) and determined the average time spent by technologists at these distances. Deep-dose equivalents to technologists were obtained. The following conventional nuclear medicine procedures were considered: thyroid scintigraphy performed using (99m)Tc pertechnetate, whole-body bone scanning performed using (99m)Tc-methylene diphosphonate, myocardial perfusion scanning performed using (99m)Tc-methoxyisobutyl isonitrile, and (201)Tl (thallous chloride) and renal scanning performed using (99m)Tc-dimercaptosuccinic acid. The measured deep-dose equivalent to technologists per procedure was within the range of 0.13 ± 0.05 to 0.43 ± 0.17 μSv using a lead shield and 0.21 ± 0.07 to 1.01 ± 0.46 μSv without a lead shield. Also, the annual individual dose to a technologist performing only a particular scintigraphic procedure throughout a year was estimated. For a total of 95 clinical cases (71 patients), effective external radiation doses to technologists were found to be within the permissible levels. This study showed that a 2-mm lead shield markedly reduced the external dose to technologists. The doses to technologists varied significantly for different diagnostic applications. Consequently, the estimated annual dose to a technologist performing only a particular scintigraphic procedure is very different from one type of procedure to another. The results of this study should help in determining the rotation time of technologists in different procedures and differences in their individual techniques.
Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George
2014-01-01
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET (137)Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George
2013-12-30
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET 137 Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callens, M; Verboven, E; Van Den Abeele, K
2015-06-15
Purpose: Ultrasound contrast agents (UCA’s) based on gas-filled microbubbles encapsulated by an amphiphilic shell are well established as safe and effective echo-enhancers in diagnostic imaging. In view of an alternative application of UCA’s, we investigated the use of targeted microbubbles as radiation sensors for external beam radiation therapy. As radiation induces permanent changes in the microbubble’s physico-chemical properties, a robust measure of these changes can provide a direct or indirect estimate of the applied radiation dose. For instance, by analyzing the ultrasonic dispersion characteristics of microbubble distributions before and after radiation treatment, an estimate of the radiation dose at themore » location of the irradiated volume can be made. To increase the radiation sensitivity of microbubbles, polymerizable diacetylene molecules can be incorporated into the shell. This study focuses on characterizing the acoustic response and quantifying the chemical modifications as a function of radiation dose. Methods: Lipid/diacetylene microbubbles were irradiated with a 6 MV photon beam using dose levels in the range of 0–150 Gy. The acoustic response of the microbubbles was monitored by ultrasonic through-transmission measurements in the range of 500 kHz to 20 MHz, thereby providing the dispersion relations of the phase velocity, attenuation and nonlinear coefficient. In addition, the radiation-induced chemical modifications were quantified using UV-VIS spectroscopy. Results: UV-VIS spectroscopy measurements indicate that ionizing radiation induces the polymerization of diacetylenes incorporated in the microbubble shell. The polymer yield strongly depends on the shell composition and the radiation-dose. The acoustic response is inherently related to the visco-elastic properties of the shell and is strongly influenced by the shell composition and the physico-chemical changes in the environment. Conclusion: Diacetylene-containing microbubbles are polymerizable under influence of ionizing radiation and are a promising design concept within the development of a novel non-invasive in-vivo radiation dosimeter for external beam radiation therapy. This work was funded by the Research Foundation - Flanders (FWO)« less
Determination of naturally radioactive elements in chalk sticks by means of gamma spectroscopy
NASA Astrophysics Data System (ADS)
Abd El-Wahab, Magda; Morsy, Zeinab; El-Faramawy, Nabil
2010-04-01
The radiation hazards due to ingestion of chalkboard dust were investigated. Sixteen samples from three different origin fabricates were used. The estimation of radiation hazard indices were based on the evaluation of the concentration activities of the natural radionuclides 238U, 232Th and 40K. The radium equivalent activity, external hazard index, internal hazard index and the annual dose equivalent associated with the radionuclides were calculated and compared with international recommended values to assess the radiation hazard. The values of internal and external radiation hazard indices were found to be less than unity. The annual effective dose rate obtained, E eff, and the annual gonadal dose equivalent (AGDE) are found to be less than the limit of the doses recommended by the International Commission on Radiological Protection for the general public. The analytical results show that besides the main calcium content, some toxic elements, S, Mo and Pb and Ni and Pb, in the Egyptian and imported chalk stocks, respectively, existed.
Determination of naturally radioactive elements in chalk sticks by means of gamma spectroscopy
NASA Astrophysics Data System (ADS)
El-Wahab, Magda Abd; Morsy, Zeinab; El-Faramawy, Nabil
The radiation hazards due to ingestion of chalkboard dust were investigated. Sixteen samples from three different origin fabricates were used. The estimation of radiation hazard indices were based on the evaluation of the concentration activities of the natural radionuclides 238U, 232Th and 40K. The radium equivalent activity, external hazard index, internal hazard index and the annual dose equivalent associated with the radionuclides were calculated and compared with international recommended values to assess the radiation hazard. The values of internal and external radiation hazard indices were found to be less than unity. The annual effective dose rate obtained, Eeff, and the annual gonadal dose equivalent (AGDE) are found to be less than the limit of the doses recommended by the International Commission on Radiological Protection for the general public. The analytical results show that besides the main calcium content, some toxic elements, S, Mo and Pb and Ni and Pb, in the Egyptian and imported chalk stocks, respectively, existed.
EPR TOOTH DOSIMETRY OF SNTS AREA INHABITANTS.
Sholom, Sergey; Desrosiers, Marc; Bouville, André; Luckyanov, Nicholas; Chumak, Vadim; Simon, Steven L
2007-07-01
The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed "accident doses", were found to lie in the range from zero to approximately 2 Gy, with one exception, a dose for one person from Semipalatinsk city was approximately 9 Gy. The variability of reconstructed doses within each of the settlements demonstrated heterogeneity of the deposited fallout as well as variations in lifestyle. The village mean external gamma doses for residents of nine[ settlements were in the range from a few tens of mGy to approximately 100 mGy.
Summary of Building Protection Factor Studies for External Exposure to Ionizing Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, Michael B.; Kane, Jave; Nasstrom, John
Radiation dose assessments are used to help inform decisions to minimize health risks in the event of an atmospheric release of radioactivity including, for example, from a Radiological Dispersal Device, an Improvised Nuclear Device detonation, or a Nuclear Power Plant accident. During these incidents, radiation dose assessments for both indoor and outdoor populations are needed to make informed decisions. These dose assessments inform emergency plans and decisions including, for example, identifying areas in which people should be sheltered and determining when controlled population evacuations should be made. US dose assessment methodologies allow consideration of the protection, and therefore dose reduction,more » that buildings provide their occupants. However, these methodologies require an understanding of the protection provided by various building types that is currently lacking. To help address this need, Lawrence Livermore National Laboratory, in cooperation with Sandia National Laboratories and the Nuclear Regulatory Commission, was tasked with (a) identifying prior building protection studies, (b) extracting results relevant to US building construction, and (c) summarizing building protection by building type. This report focuses primarily on the protection against radiation from outdoor fallout particles (external gamma radiation).« less
Risk of Radiation Retinopathy in Patients With Orbital and Ocular Lymphoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaushik, Megha; Pulido, Jose S.; Schild, Steven E.
2012-12-01
Purpose: Radiation retinopathy is a potential long-term complication of radiation therapy to the orbit. The risk of developing this adverse effect is dose dependent; however, the threshold is unclear. The aim of this study was to identify the risk of developing radiation retinopathy at increasing radiation doses. Methods and Materials: A 40-year retrospective review was performed of patients who received external beam radiation therapy for ocular/orbital non-Hodgkin lymphoma (NHL). Results: Sixty-seven patients who had at least one ophthalmic follow-up examination were included in this study. Most patients (52%) were diagnosed with NHL involving the orbit. Patients received external beam radiationmore » therapy at doses between 1886 and 5400 cGy (mean, 3033 {+-} 782 cGy). Radiation retinopathy developed in 12% of patients, and the median time to diagnosis was 27 months (range, 15-241months). The mean prescribed radiation dose in patients with retinopathy was 3309 {+-} 585 cGy, and the estimated retinal dose (derived by reviewing the dosimetry) was 3087 {+-} 1030 cGy. The incidence of retinopathy increased with dose. The average prescribed daily fractionated dose was higher in patients who developed retinopathy than in patients who did not (mean, 202 cGy vs 180 cGy, respectively; P = .04). More patients with radiation retinopathy had comorbid diabetes mellitus type 2 than patients without retinopathy (P = .015). In our study, the mean visual acuity of the eyes that received radiation was worse than that of the eyes that did not (P = .027). Other postradiotherapy ocular findings included keratitis (6%), dry eyes (39%), and cataract (33%). Conclusions: Radiation retinopathy, a known complication of radiotherapy for orbital tumors, relates to vascular comorbidities and dose. Higher total doses and larger daily fractions (>180 cGy) appear to be related to higher rates of retinopathy. Future larger studies are required to identify a statistically significant threshold for the development of retinopathy.« less
Respirators, internal dose, and Oyster Creek
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michal, R.
1996-06-01
This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent inmore » fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.51... individual must be instructed in: (1) The fundamentals of radiation protection applied to irradiators (including the differences between external radiation and radioactive contamination, units of radiation dose...
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.51... individual must be instructed in: (1) The fundamentals of radiation protection applied to irradiators (including the differences between external radiation and radioactive contamination, units of radiation dose...
Code of Federal Regulations, 2012 CFR
2012-01-01
... COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.51... individual must be instructed in: (1) The fundamentals of radiation protection applied to irradiators (including the differences between external radiation and radioactive contamination, units of radiation dose...
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.51... individual must be instructed in: (1) The fundamentals of radiation protection applied to irradiators (including the differences between external radiation and radioactive contamination, units of radiation dose...
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation of Irradiators § 36.51... individual must be instructed in: (1) The fundamentals of radiation protection applied to irradiators (including the differences between external radiation and radioactive contamination, units of radiation dose...
EPR TOOTH DOSIMETRY OF SNTS AREA INHABITANTS
Sholom, Sergey; Desrosiers, Marc; Bouville, André; Luckyanov, Nicholas; Chumak, Vadim
2009-01-01
The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed “accident doses”, were found to lie in the range from zero to approximately 2 Gy, with one exception, a dose for one person from Semipalatinsk city was approximately 9 Gy. The variability of reconstructed doses within each of the settlements demonstrated heterogeneity of the deposited fallout as well as variations in lifestyle. The village mean external gamma doses for residents of nine[ settlements were in the range from a few tens of mGy to approximately 100 mGy. PMID:19590746
Napier, Bruce
2012-03-01
A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, are discussed on the basis of a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from damaged reactors and also to the management of wastes that may be generated in both regional cleanup and decommissioning of the Fukushima nuclear power plant.
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
Wieser, A
2012-03-01
Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.
Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan.
Yasutaka, Tetsuo; Naito, Wataru
2016-01-01
Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53-5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55-2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swisher-McClure, Samuel, E-mail: Swisher-Mcclure@uphs.upenn.edu; Leonard Davis Institute of Health Economics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Mitra, Nandita
Purpose: To examine recent practice patterns, using a large national cancer registry, to understand the extent to which dose-escalated external beam radiation therapy (EBRT) has been incorporated into routine clinical practice for men with prostate cancer. Methods and Materials: We conducted a retrospective observational cohort study using the National Cancer Data Base, a nationwide oncology outcomes database in the United States. We identified 98,755 men diagnosed with nonmetastatic prostate cancer between 2006 and 2011 who received definitive EBRT and classified patients into National Comprehensive Cancer Network (NCCN) risk groups. We defined dose-escalated EBRT as total prescribed dose of ≥75.6 Gy. Usingmore » multivariable logistic regression, we examined the association of patient, clinical, and demographic characteristics with the use of dose-escalated EBRT. Results: Overall, 81.6% of men received dose-escalated EBRT during the study period. The use of dose-escalated EBRT did not vary substantially by NCCN risk group. Use of dose-escalated EBRT increased from 70.7% of patients receiving treatment in 2006 to 89.8% of patients receiving treatment in 2011. On multivariable analysis, year of diagnosis and use of intensity modulated radiation therapy were significantly associated with receipt of dose-escalated EBRT. Conclusions: Our study results indicate that dose-escalated EBRT has been widely adopted by radiation oncologists treating prostate cancer in the United States. The proportion of patients receiving dose-escalated EBRT increased nearly 20% between 2006 and 2011. We observed high utilization rates of dose-escalated EBRT within all disease risk groups. Adoption of intensity modulated radiation therapy was strongly associated with use of dose-escalated treatment.« less
Skavysh, V A
2009-01-01
The author considered aetiology of neuro-psychic disorders in liquidators of Chernobyl nuclear power accident consequences, demonstrated scientific value of studying the liquidators cohort, as they were protected from internal radiation factors and reside on radiation "pure" territories. External radiation doses in those liquidators vary from 16 cGy to 18.7 +/- 10.8 cGy, according to the author. Catamnesis enabled to doubt radiation aetiology of psychic organic syndrome revealed in 1991-1994 by clinical and instrumental studies among 53.6% of 213 male examinees. According to the author, prolonged over 1-2 months external radiation of low dose could not cause health deterioration in adult males. Diagnosed psychic organic syndrome and vascular encephalopathy in some cases could have alcohol aetiology. This conclusion is not extrapolated to the whole liquidators cohort.
PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits.more » 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels for the 9977 shipping package using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per particle' for each neutron and photon spectral group. The source spectrum for each isotope generated using the ORIGEN-S and RASTA computer codes was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits contained in 10 CFR 71.47 for dose rate at the surface of the package is determined. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.« less
Radiation dose in the high background radiation area in Kerala, India.
Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P
2012-03-01
A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples.
Elquza, Emad; Babiker, Hani M; Howell, Krisha J; Kovoor, Andrew I; Brown, Thomas David; Patel, Hitendra; Malangone, Steven A; Borad, Mitesh J; Dragovich, Tomislav
2016-01-01
To establish the maximum tolerated dose (MTD) and safety profile of bi-weekly Pemetrexed (PEM) when combined with weekly cisplatin (CDDP) and standard dose external beam radiation (EBRT) in patients with locally advanced or metastatic esophageal and gastroesophageal junction (GEJ) carcinomas. We conducted an open label, single institution, phase I dose escalation study designed to evaluate up to 15-35 patients with advanced or metastatic esophageal and GEJ carcinomas. 10 patients were treated with bi-weekly PEM, weekly CDDP, and EBRT. The MTD of bi-weekly PEM was determined to be 500 mg/m(2).
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2014 CFR
2014-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2012 CFR
2012-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2011 CFR
2011-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2010 CFR
2010-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
Ducasse, Eric; Cosset, Jean-Marc; Eschwege, François; Creusy, Colette; Chevalier, Jacques; Puppinck, Paul; Lartigau, Eric
2004-01-01
In recent years there has been intensive research on the use of ionizing radiation for inhibition of intimal hyperplasia (IH). Results have clearly established that beta ionizing radiation delivered from an endoluminal source after angioplasty inhibits intimal restenosis. This effect has been confirmed by recent multicenter clinical trials in patients undergoing coronary dilatation. The purpose of this study was to determine if gamma radiation therapy delivered superficially from an external source also reduced smooth muscle cell proliferation in two animals models-the first involving experimentally induced restenosis and the second involving anastomosis between a prosthesis and artery. Ultimately we hope to develop a therapeutic application for patients undergoing peripheral anastomoses, especially in the lower extremities. Two different animal models were used in this two-stage study. The first-stage rabbit model (model 1) involved balloon injury of the aorta to validate the dose effect of external beam irradiation. The second-stage porcine model (model 2) involved aortic bypass followed by external beam irradiation of the distal anastomosis site. In model 1 a total of 56 rabbits were studied. They were divided into five groups including one control group in which external radiation was not applied after balloon injury and four test groups in which external radiation was applied in a single fraction on day 0 at four different doses: 10 grays, 15 grays, 20 grays, and 25 grays. In model 2, a total of 24 pigs underwent aortic bypass with a 6-mm PTFE graft followed by irradiation of the distal end-to-side anastomosis at a dose of 20 grays on day 0. In both models specimens were harvested after 6 weeks and studied histologically after staining with HES and orcein, histomorphometrically by measuring intimal hyperplasia, and immunohistochemically using actin and factor VIII/von Willebrand factor (F VIII/vWF). The zones of study on the anastomosis were separated into base of the artery to the tip and heel of the anastomosis and the edge of the arteriotomy. Measurements were compared using the Mann Whitney test. In the first-stage model designed to study IH in rabbits, mean intimal and medial thickness values and the intima-to-media ratio showed no difference between the control group and the groups irradiated at doses of 10 grays and 15 grays (p = 0.111, p = 0.405, and p = 0.14); (p = 0.301, p = 0.206, and p = 0.199). Conversely, there was a significant difference between the control group and the groups irradiated at 20 grays and 25 grays (p < 0.0001, p = 0.107 and p = 0.008; p = 0.008, p = 0.155, and p = 0.008). Histological examination demonstrated extensive changes in the wall with high-grade fibrosis after application of ionizing radiation. In the second-stage swine model, irradiation significantly inhibited development of IH at the level of anastomosis both at the base of the artery (p < 0.01) (tip 0.06 vs. 0.27 mm and heel 0.04 vs. 0.36) and at the level of the arteriotomy at the suture site (p < 0.001) (0.13 vs. 0.86 mm). Immunochemical analysis of the thickened zones showed a positive reaction of endothelial cells to smooth muscle actin and F VII/vWF. Like irradiation applied using an endoluminal source, superficial gamma ionizing radiation from an external source inhibits IH. Analysis of the dose effect showed that the overall dose must be between 15 and 20 grays. External radiation also reduces overall IH at the anastomosis between a prosthesis and artery. Although these experimental data are promising, further study will probably be necessary before attempting to undertake clinical trials using external beam radiation therapy for patients undergoing peripheral anastomoses.
Ambient Dose Equivalent in S. Paulo and Bauru cities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umisedo, Nancy K.; Okuno, Emico; Cancio, Francisco S.
2008-08-07
The Laboratory of Dosimetry (Institute of Physics, University of S. Paulo) performs since 1981 the external individual monitoring of workers exposed to X and gamma rays based on thermoluminescent dosimetry (TLD). Personal dose equivalent refers only to the exposure of workers due to the working activities, and the dose due to background radiation, also measured with TLD, must be subtracted to evaluate it. A compilation of ambient dose equivalent was done to evaluate the dose due to the background radiation in the work places, and also to contribute to the knowledge of the level of indoor radiation to which themore » public is exposed.« less
Ishikawa, Tetsuo; Yasumura, Seiji; Ohtsuru, Akira; Sakai, Akira; Akahane, Keiichi; Yonai, Shunsuke; Sakata, Ritsu; Ozasa, Kotaro; Hayashi, Masayuki; Ohira, Tetsuya; Kamiya, Kenji; Abe, Masafumi
2016-06-01
Many studies have been conducted on radiation doses to residents after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Time spent outdoors is an influential factor for external dose estimation. Since little information was available on actual time spent outdoors for residents, different values of average time spent outdoors per day have been used in dose estimation studies on the FDNPP accident. The most conservative value of 24 h was sometimes used, while 2.4 h was adopted for indoor workers in the UNSCEAR 2013 report. Fukushima Medical University has been estimating individual external doses received by residents as a part of the Fukushima Health Management Survey by collecting information on the records of moves and activities (the Basic Survey) after the accident from each resident. In the present study, these records were analyzed to estimate an average time spent outdoors per day. As an example, in Iitate Village, its arithmetic mean was 2.08 h (95% CI: 1.64-2.51) for a total of 170 persons selected from respondents to the Basic Survey. This is a much smaller value than commonly assumed. When 2.08 h is used for the external dose estimation, the dose is about 25% (23-26% when using the above 95% CI) less compared with the dose estimated for the commonly used value of 8 h.
Wing, S; Richardson, D
2005-01-01
Background: Studies of workers at the plutonium production factory in Hanford, WA have led to conflicting conclusions about the role of age at exposure as a modifier of associations between ionising radiation and cancer. Aims: To evaluate the influence of age at exposure on radiation risk estimates in an updated follow up of Hanford workers. Methods: A cohort of 26 389 workers hired between 1944 and 1978 was followed through 1994 to ascertain vital status and causes of death. External radiation dose estimates were derived from personal dosimeters. Poisson regression was used to estimate associations between mortality and cumulative external radiation dose at all ages, and in specific age ranges. Results: A total of 8153 deaths were identified, 2265 of which included cancer as an underlying or contributory cause. Estimates of the excess relative risk per Sievert (ERR/Sv) for cumulative radiation doses at all ages combined were negative for all cause and leukaemia and positive for all cancer and lung cancer. Cumulative doses accrued at ages below 35, 35–44, and 45–54 showed little association with mortality. For cumulative dose accrued at ages 55 and above (10 year lag), the estimated ERR/Sv for all cancers was 3.24 (90% CI: 0.80 to 6.17), primarily due to an association with lung cancer (ERR/Sv: 9.05, 90% CI: 2.96 to 17.92). Conclusions: Associations between radiation and cancer mortality in this cohort are primarily a function of doses at older ages and deaths from lung cancer. The association of older age radiation exposures and cancer mortality is similar to observations from several other occupational studies. PMID:15961623
Rocky Flats Plant Site Environmental Report for 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirrincione, D.A.; Erdmann, N.L.
1992-12-31
The Rocky Rats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population.
Dose Calculations for [131I] Meta-Iodobenzylguanidine-Induced Bystander Effects
Gow, M. D.; Seymour, C. B.; Boyd, M.; Mairs, R. J.; Prestiwch, W. V.; Mothersill, C. E.
2014-01-01
Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. Methods: Using the Vynckier – Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [131I]MIBG. Results: The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [131I]MIBG-treated cells, to 25 – 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [131I]MIBG treatment were 0.09 – 0.75 Gy/h for UVW/NAT and 0.07 – 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [131I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 – 0.23 Gy for UVW and 0.03 – 0.32 Gy for EJ138. Conclusion: [131I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death. PMID:24659931
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.207 Occupational dose limits for minors. The dose limits for minors occupationally exposed...
Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F
2006-05-01
Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived on a case-by-case basis for workers with committed equivalent doses indicated by screening criteria to be greater than 10 mSv to the organ with the highest internal dose. Overall, 5,801 workers were monitored for radiation at Rocketdyne/AI: 5,743 for external exposure and 2,232 for internal intakes of radionuclides; 41,169 workers were not monitored for radiation. The mean cumulative external dose based on Rocketdyne/AI records alone was 10.0 mSv, and the dose distribution was highly skewed with most workers experiencing low cumulative doses and only a few with high doses (maximum 500 mSv). Only 45 workers received greater than 200 mSv while employed at Rocketdyne/AI. However, nearly 32% (or 1,833) of the Rocketdyne/AI workers had been monitored for radiation at other nuclear facilities and incorporation of these doses increased the mean dose to 13.5 mSv (maximum 1,005 mSv) and the number of workers with >200 mSv to 69. For a small number of workers (n=292), lung doses from internal radionuclide intakes were relatively high (mean 106 mSv; maximum 3,560 mSv) and increased the overall population mean dose to 19.0 mSv and the number of workers with lung dose>200 mSv to 109. Nearly 10% of the radiation workers (584) were monitored for neutron exposures (mean 1.2 mSv) at Rocketdyne/AI, and another 2% were monitored for neutron exposures elsewhere. Interestingly, 1,477 workers not monitored for radiation at Rocketdyne/AI (3.6%) were found to have worn dosimeters at other nuclear facilities (mean external dose of 2.6 mSv, maximum 188 mSv). Without considering all sources of occupational exposure, an incorrect characterization of worker exposure would have occurred with the potential to bias epidemiologic results. For these pioneering workers in the nuclear industry, 26.5% of their total occupational dose (collective dose) was received at other facilities both prior to and after employment at Rocketdyne/AI. In addition, a small number of workers monitored for internal radionuclides contributed disproportionately to the number of workers with high lung doses. Although nearly 12% of radiation workers had been monitored for neutron exposures during their career, the cumulative dose levels were small in comparison with other external and internal exposure. Risk estimates based on nuclear worker data must be interpreted cautiously if internally deposited radionuclides and occupational doses received elsewhere are not considered.
Radiation Doses and Associated Risk From the Fukushima Nuclear Accident.
Ishikawa, Tetsuo
2017-03-01
The magnitude of dose due to the Fukushima Daiichi Accident was estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2013 report published in April 2014. Following this, the UNSCEAR white paper, which comprises a digest of new information for the 2013 Fukushima report, was published in October 2015. Another comprehensive report on radiation dose due to the accident is the International Atomic Energy Agency (IAEA) report on the Fukushima Daiichi Accident published in August 2015. Although the UNSCEAR and IAEA publications well summarize doses received by residents, they review only literature published before the end of December 2014 and the end of March 2015, respectively. However, some studies on dose estimation have been published since then. In addition, the UNSCEAR 2013 report states it was likely that some overestimation had been introduced generally by the methodology used by the Committee. For example, effects of decontamination were not considered in the lifetime external dose estimated. Decontamination is in progress for most living areas in Fukushima Prefecture, which could reduce long-term external dose to residents. This article mainly reviews recent English language articles that may add new information to the UNSCEAR and IAEA publications. Generally, recent articles suggest lower doses than those presented by the UNSCEAR 2013 report.
NASA Astrophysics Data System (ADS)
Hamed, A. E.; Kassem, M. E.; El-Wahidy, E. F.; El-Abshehy, M. A.
1995-03-01
The temperature dependence of specific heat at constant pressure, Cp(T), has been measured for lithium sodium sulphate, LiNaSo4 crystals, at different ?-radiation doses and external bias electric field (Eb), in the temperature range 300-900 K. A nonlinear dependence of transition temperature, T1 and a remarkable change in the thermodynamic parameters, were obtained as the effect of both electric field and ?-radiation. The effect of ?-radiation doses on the phase transition in LiNaSO4 crystals was explained as due to an internal bias field, Eb, originating from the interaction of polar defects with the order parameter of the host lattice. The internal bias field effect on the behaviour of Cp(T) in LiNaSO4 crystals was similar to that of the external electric field (E).
Imanaka, Tetsuji; Fukutani, Satoshi; Yamamoto, Masayoshi; Sakaguchi, Aya; Hoshi, Masaharu
2006-02-01
Dolon village, located about 60 km from the border of the Semipalatinsk Nuclear Test Site, is known to be heavily contaminated by local fallout from the first USSR atomic bomb test in 1949. External radiation in Dolon was evaluated based on recent 137Cs data in soil and calculation of temporal change in the fission product composition. After fitting a log-normal distribution to the soil data, a 137Cs deposition of 32 kBq m-2, which corresponds to the 90th-percentile of the distribution, was tentatively chosen as a value to evaluate the radiation situation in 1949. Our calculation indicated that more than 95% of the cumulative dose for 50 y had been delivered within 1 y after the deposition. The resulting cumulative dose for 1 y after the deposition, normalized to the initial contamination containing 1 kBq m-2 of 137Cs, was 15.6 mGy, assuming a fallout arrival time of 3 h and a medium level of fractionation. Finally, 0.50 Gy of absorbed dose in air was derived as our tentative estimate for 1-year cumulative external dose in Dolon due to local fallout from the first USSR test in 1949.
External dose assessment in the Ukraine following the Chernobyl accident
NASA Astrophysics Data System (ADS)
Frazier, Remi Jordan Lesartre
While the physiological effects of radiation exposure have been well characterized in general, it remains unclear what the relationship is between large-scale radiological events and psychosocial behavior outcomes in individuals or populations. To investigate this, the National Science Foundation funded a research project in 2008 at the University of Colorado in collaboration with Colorado State University to expand the knowledge of complex interactions between radiation exposure, perception of risk, and psychosocial behavior outcomes by modeling outcomes for a representative sample of the population of the Ukraine which had been exposed to radiocontaminant materials released by the reactor accident at Chernobyl on 26 April 1986. In service of this project, a methodology (based substantially on previously published models specific to the Chernobyl disaster and the Ukrainian population) was developed for daily cumulative effective external dose and dose rate assessment for individuals in the Ukraine for as a result of the Chernobyl disaster. A software platform was designed and produced to estimate effective external dose and dose rate for individuals based on their age, occupation, and location of residence on each day between 26 April 1986 and 31 December 2009. A methodology was developed to transform published 137Cs soil deposition contour maps from the Comprehensive Atlas of Caesium Deposition on Europe after the Chernobyl Accident into a geospatial database to access these data as a radiological source term. Cumulative effective external dose and dose rate were computed for each individual in a 703-member cohort of Ukrainians randomly selected to be representative of the population of the country as a whole. Error was estimated for the resulting individual dose and dose rate values with Monte Carlo simulations. Distributions of input parameters for the dose assessment methodology were compared to computed dose and dose rate estimates to determine which parameters were driving the computed results. The mean external effective dose for all individuals in the cohort due to exposure to radiocontamination from the Chernobyl accident between 26 April 1986 and 31 December 2009 was found to be 1.2 mSv; the geometric mean was 0.84 mSv with a geometric standard deviation of 2.1. The mean value is well below the mean external effective dose expected due to typical background radiation (which in the United States over this time period would be 12.0 mSv). Sensitivity analysis suggests that the greatest driver of the distribution of individual dose estimates is lack of specific information about the daily behavior of each individual, specifically the portion of time each individual spent indoors (and shielded from radionuclides deposited on the soil) versus outdoors (and unshielded).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amini, Arya; Westerly, David C.; Waxweiler, Timothy V.
Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involvedmore » lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V{sub 70} (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V{sub 70} was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB.« less
Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A
2015-11-01
Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed doses in tooth enamel and muscle are in agreement with EPR- and FISH-based estimates within uncertainty bounds. Basically, this agreement between the estimates has confirmed the validity of external doses calculated with the TRDS.
Yoon, Jihyung; Xie, Yibo; Zhang, Rui
2018-03-01
The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Weber, N; Monnin, P; Elandoy, C; Ding, S
2015-12-01
Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zumsteg, Zachary S.; Spratt, Daniel E.; Pei, Xin
2013-03-15
Purpose: We investigated the benefit of short-term androgen-deprivation therapy (ADT) in patients with intermediate-risk prostate cancer (PC) receiving dose-escalated external beam radiation therapy. Methods and Materials: The present retrospective study comprised 710 intermediate-risk PC patients receiving external beam radiation therapy with doses of ≥81 Gy at a single institution from 1992 to 2005, including 357 patients receiving neoadjuvant and concurrent ADT. Prostate-specific antigen recurrence-free survival (PSA-RFS) and distant metastasis (DM) were compared using the Kaplan-Meier method and Cox proportional hazards models. PC-specific mortality (PCSM) was assessed using competing-risks analysis. Results: The median follow-up was 7.9 years. Despite being more likelymore » to have higher PSA levels, Gleason score 4 + 3 = 7, multiple National Comprehensive Cancer Network intermediate-risk factors, and older age (P≤.001 for all comparisons), patients receiving ADT had improved PSA-RFS (hazard ratio [HR], 0.598; 95% confidence interval [CI], 0.435-0.841; P=.003), DM (HR, 0.424; 95% CI, 0.219-0.819; P=.011), and PCSM (HR, 0.380; 95% CI, 0.157-0.921; P=.032) on univariate analysis. Using multivariate analysis, ADT was an even stronger predictor of improved PSA-RFS (adjusted HR [AHR], 0.516; 95% CI, 0.360-0.739; P<.001), DM (AHR, 0.347; 95% CI, 0.176-0.685; P=.002), and PCSM (AHR, 0.297; 95% CI, 0.128-0.685; P=.004). Gleason score 4 + 3 = 7 and ≥50% positive biopsy cores were other independent predictors of PCSM. Conclusions: Short-term ADT improves PSA-RFS, DM, and PCSM in patients with intermediate-risk PC undergoing dose-escalated external beam radiation therapy.« less
Radiation-related thyroid autoimmunity and dysfunction
Nagayama, Yuji
2018-01-01
Abstract The thyroid gland is vulnerable not only to external radiation but also to internal radiation, because the thyroid cells can incorporate radioactive iodine when synthesizing thyroid hormones. Since radiation-induction of thyroid neoplasia, including thyroid cancer, is well recognized, the data on radiation-related thyroid autoimmunity and dysfunction are summarized and reviewed. High-dose irradiation, irrespective of being external or internal, is strongly associated with a risk of hypothyroidism (with the prevalence ranging from 2.4% to 31%) and of Graves’ hyperthyroidism (with the prevalence being up to 5%). It is easy to understand that high-dose irradiation induces hypothyroidism with some frequency, because high-dose irradiation destroys the thyroid gland. On the other hand, the basis for development of hyperthyroidism is mechanistically unclear, and it is merely speculative that autoantigens may be released from damaged thyroid glands and recognized by the immune system, leading to the development of anti-thyrotropin receptor antibodies and Graves’ hyperthyroidism in subjects who are immunologically predisposed to this ailment. In contrast, the data on moderate to low-dose irradiation on thyroid autoimmunity and dysfunction are inconsistent. Although it is difficult to draw a definitive conclusion, some data may suggest a transient effect of moderate- to low-dose irradiation on hypothyroidism and autoimmune thyroiditis, implying that the effect, if it exists, is reversible. Finally, no report has shown a statistically significant increase in the prevalence of moderate- to low-dose irradiation–induced Graves’ hyperthyroidism. PMID:29069397
Dose reduction potential of iterative reconstruction algorithms in neck CTA-a simulation study.
Ellmann, Stephan; Kammerer, Ferdinand; Allmendinger, Thomas; Brand, Michael; Janka, Rolf; Hammon, Matthias; Lell, Michael M; Uder, Michael; Kramer, Manuel
2016-10-01
This study aimed to determine the degree of radiation dose reduction in neck CT angiography (CTA) achievable with Sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. 10 consecutive patients scheduled for neck CTA were included in this study. CTA images of the external carotid arteries either were reconstructed with filtered back projection (FBP) at full radiation dose level or underwent simulated dose reduction by proprietary reconstruction software. The dose-reduced images were reconstructed using either SAFIRE 3 or SAFIRE 5 and compared with full-dose FBP images in terms of vessel definition. 5 observers performed a total of 3000 pairwise comparisons. SAFIRE allowed substantial radiation dose reductions in neck CTA while maintaining vessel definition. The possible levels of radiation dose reduction ranged from approximately 34 to approximately 90% and depended on the SAFIRE algorithm strength and the size of the vessel of interest. In general, larger vessels permitted higher degrees of radiation dose reduction, especially with higher SAFIRE strength levels. With small vessels, the superiority of SAFIRE 5 over SAFIRE 3 was lost. Neck CTA can be performed with substantially less radiation dose when SAFIRE is applied. The exact degree of radiation dose reduction should be adapted to the clinical question, in particular to the smallest vessel needing excellent definition.
Papadopoulou, D; Yakoumakis, Em; Sandilos, P; Thanopoulos, V; Makri, Tr; Gialousis, G; Houndas, D; Yakoumakis, N; Georgiou, Ev
2005-01-01
The purpose of this study was to estimate the radiation exposure of children, during cardiac catheterisations for the diagnosis or treatment of congenital heart disease. Radiation doses were estimated for 45 children aged from 1 d to 13 y old. Thermoluminescent dosemeters (TLDs) were used to estimate the posterior entrance dose (DP), the lateral entrance dose (DLAT), the thyroid dose and the gonads dose. A dose-area product (DAP) meter was also attached externally to the tube of the angiographic system and gave a direct value in mGy cm2 for each procedure. Posterior and lateral entrance dose values during cardiac catheterisations ranged from 1 to 197 mGy and from 1.1 to 250.3 mGy, respectively. Radiation exposure to the thyroid and the gonads ranged from 0.3 to 8.4 mGy to 0.1 and 0.7 mGy, respectively. Finally, the DAP meter values ranged between 360 and 33,200 mGy cm2. Radiation doses measured in this study are comparable with those reported to previous studies. Moreover, strong correlation was found between the DAP values and the entrance radiation dose measured with TLDs.
Analyses of Radiation and Mesothelioma in the US Transuranium and Uranium Registries
Fulcher, Keri; Nagarajan, Sumitha; McCord, Stacey; Fallahian, Naz Afarin; Hoffman, Heather J.; Haver, Cary; Tolmachev, Sergei
2013-01-01
Objectives. We examined the relationship between radiation and excess deaths from mesothelioma among deceased nuclear workers who were part of the US Transuranium and Uranium Registries. Methods. We performed univariate analysis with SAS Version 9.1 software. We conducted proportionate mortality ratio (PMR) and proportionate cancer mortality ratio (PCMR) analyses using the National Institute for Occupational Safety and Health Life Table Analysis System with the referent group being all deaths in the United States. Results. We found a PMR of 62.40 (P < .05) and a PCMR of 46.92 (P < .05) for mesothelioma. PMRs for the 4 cumulative external radiation dose quartiles were 61.83, 57.43, 74.46, and 83.31. PCMRs were 36.16, 47.07, 51.35, and 67.73. The PMR and PCMR for trachea, bronchus, and lung cancer were not significantly elevated. Conclusions. The relationship between cumulative external radiation dose and the PMR and PCMR for mesothelioma suggests that external radiation at nuclear facilities is associated with an increased risk of mesothelioma. The lack of a significantly elevated PMR and PCMR for trachea, bronchus, and lung cancer suggests that asbestos did not confound this relationship. PMID:23409888
Harada, Kouji H.; Niisoe, Tamon; Imanaka, Mie; Takahashi, Tomoyuki; Amako, Katsumi; Fujii, Yukiko; Kanameishi, Masatoshi; Ohse, Kenji; Nakai, Yasumichi; Nishikawa, Tamami; Saito, Yuuichi; Sakamoto, Hiroko; Ueyama, Keiko; Hisaki, Kumiko; Ohara, Eiji; Inoue, Tokiko; Yamamoto, Kanako; Matsuoka, Yukiyo; Ohata, Hitomi; Toshima, Kazue; Okada, Ayumi; Sato, Hitomi; Kuwamori, Toyomi; Tani, Hiroko; Suzuki, Reiko; Kashikura, Mai; Nezu, Michiko; Miyachi, Yoko; Arai, Fusako; Kuwamori, Masanori; Harada, Sumiko; Ohmori, Akira; Ishikawa, Hirohiko; Koizumi, Akio
2014-01-01
Radiation dose rates were evaluated in three areas neighboring a restricted area within a 20- to 50-km radius of the Fukushima Daiichi Nuclear Power Plant in August–September 2012 and projected to 2022 and 2062. Study participants wore personal dosimeters measuring external dose equivalents, almost entirely from deposited radionuclides (groundshine). External dose rate equivalents owing to the accident averaged 1.03, 2.75, and 1.66 mSv/y in the village of Kawauchi, the Tamano area of Soma, and the Haramachi area of Minamisoma, respectively. Internal dose rates estimated from dietary intake of radiocesium averaged 0.0058, 0.019, and 0.0088 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. Dose rates from inhalation of resuspended radiocesium were lower than 0.001 mSv/y. In 2012, the average annual doses from radiocesium were close to the average background radiation exposure (2 mSv/y) in Japan. Accounting only for the physical decay of radiocesium, mean annual dose rates in 2022 were estimated as 0.31, 0.87, and 0.53 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. The simple and conservative estimates are comparable with variations in the background dose, and unlikely to exceed the ordinary permissible dose rate (1 mSv/y) for the majority of the Fukushima population. Health risk assessment indicates that post-2012 doses will increase lifetime solid cancer, leukemia, and breast cancer incidences by 1.06%, 0.03% and 0.28% respectively, in Tamano. This assessment was derived from short-term observation with uncertainties and did not evaluate the first-year dose and radioiodine exposure. Nevertheless, this estimate provides perspective on the long-term radiation exposure levels in the three regions. PMID:24567380
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steeb, Jennifer L.; Mertz, Carol J.; Finck, Martha R.
X-ray fluorescence (XRF) is an attractive technique for nuclear forensics applications. We evaluated a handheld, portable XRF device by applying an external radiation field (10 mR/h to 17 R/h) using two types of radiography sources: a 60Co radiography camera to observe effects from high-energy gamma emissions and an 192Ir radiography camera to observe effects from several low-energy gamma (0.604, 0.468, and 0.317 MeV) and decay daughter x-ray emissions. External radiation tests proved that radiation, in general, has a significant effect on the dead time or background at dose rates over 1 R/hr for both the 192Ir and 60Co sources.
NASA Astrophysics Data System (ADS)
Korir, Geoffrey; Wambani, Jeska; Korir, Ian
2011-04-01
This study details the distribution and trends of doses due to occupational radiation exposure among radiation workers from participating medical institutions in Kenya, where monthly dose measurements were collected for a period of one year ranging from January to December in 2007. A total of 367 medical radiation workers were monitored using thermoluminescent dosemeters. They included radiologists (27%), oncologists (2%), dentists (4%), Physicists (5%), technologists (45%), nurses (4%), film processor technicians (3%), auxiliary staff (4%), and radiology office staff (5%). The average annual effective dose of all categories of staff was found to range from 1.19 to 2.52 mSv. This study formed the initiation stage of wider, comprehensive and more frequent monitoring of occupational radiation exposures and long-term investigations into its accumulation patterns in our country.
Scattered radiation from dental metallic crowns in head and neck radiotherapy.
Shimozato, T; Igarashi, Y; Itoh, Y; Yamamoto, N; Okudaira, K; Tabushi, K; Obata, Y; Komori, M; Naganawa, S; Ueda, M
2011-09-07
We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.
Scattered radiation from dental metallic crowns in head and neck radiotherapy
NASA Astrophysics Data System (ADS)
Shimozato, T.; Igarashi, Y.; Itoh, Y.; Yamamoto, N.; Okudaira, K.; Tabushi, K.; Obata, Y.; Komori, M.; Naganawa, S.; Ueda, M.
2011-09-01
We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... external defibrillator AFROC Association of Freestanding Radiation Oncology Centers AHA American Heart... Procedure Coding System HCRIS Healthcare Cost Report Information System HDRT High dose radiation therapy HH... rule with comment period IMRT Intensity-Modulated Radiation Therapy IPPE Initial preventive physical...
[Highly quality-controlled radiation therapy].
Shirato, Hiroki
2005-04-01
Advanced radiation therapy for intracranial disease has focused on set-up accuracy for the past 15 years. However, quality control in the prescribed dose is actually as important as the tumor set-up in radiation therapy. Because of the complexity of the three-dimensional radiation treatment planning system in recent years, the highly quality-controlled prescription of the dose has now been reappraised as the mainstream to improve the treatment outcome of radiation therapy for intracranial disease. The Japanese Committee for Quality Control of Radiation Therapy has developed fundamental requirements such as a QC committee in each hospital, a medical physicist, dosimetrists (QC members), and an external audit.
Omar, R Z; Barber, J A; Smith, P G
1999-01-01
The mortality of all 14 319 workers employed at the Sellafield plant of British Nuclear Fuels between 1947 and 1975 was studied up to the end of 1992, and cancer incidence was examined from 1971 to 1986, in relation to their exposures to plutonium and to external radiation. The cancer mortality rate was 5% lower than that of England and Wales and 3% less than that of Cumbria. The significant excesses of deaths from cancer of the pleura and thyroid found in an earlier study persist with further follow-up (14 observed, 4.0 expected for pleura; 6 observed, 2.2 expected for thyroid). All of the deaths from pleural cancer were among radiation workers. For neither site was there a significant association between the risk of the cancer and accumulated radiation dose. There were significant deficits of deaths from cancers of mouth and pharynx, liver and gall bladder, and larynx and leukaemia when compared with the national rates. Among all radiation workers, there was a significant positive association between accumulated external radiation dose and mortality from cancers of ill-defined and secondary sites (10-year lag, P = 0.04), leukaemia (no lag, P = 0.03; 2-year lag, P = 0.05), multiple myeloma (20-year lag, P = 0.02), all lymphatic and haematopoietic cancers (20-year lag, P = 0.03) and all causes of death combined (20-year lag, P = 0.008). Among plutonium workers, there were significant excesses of deaths from cancer of the breast (6 observed, 2.6 expected) and ill-defined and secondary cancers (29 observed, 20.1 expected). No significant positive trends were observed between the risk of deaths from cancers of any specific site, or all cancers combined, and cumulative plutonium and external radiation doses. For no cancer site was there a significant excess of cancer registrations compared with rates for England and Wales. Analysis of trends in cancer incidence showed significant increases in risk with cumulative plutonium plus external radiation doses for all lymphatic and haematopoietic neoplasms for 0-, 10- and 20-year lag periods. Taken as a whole, our findings do not suggest that workers at Sellafield who have been exposed to plutonium are at an overall significantly increased risk of cancer compared with other radiation workers. © 1999 Cancer Research Campaign PMID:10098774
Omar, R Z; Barber, J A; Smith, P G
1999-03-01
The mortality of all 14 319 workers employed at the Sellafield plant of British Nuclear Fuels between 1947 and 1975 was studied up to the end of 1992, and cancer incidence was examined from 1971 to 1986, in relation to their exposures to plutonium and to external radiation. The cancer mortality rate was 5% lower than that of England and Wales and 3% less than that of Cumbria. The significant excesses of deaths from cancer of the pleura and thyroid found in an earlier study persist with further follow-up (14 observed, 4.0 expected for pleura; 6 observed, 2.2 expected for thyroid). All of the deaths from pleural cancer were among radiation workers. For neither site was there a significant association between the risk of the cancer and accumulated radiation dose. There were significant deficits of deaths from cancers of mouth and pharynx, liver and gall bladder, and larynx and leukaemia when compared with the national rates. Among all radiation workers, there was a significant positive association between accumulated external radiation dose and mortality from cancers of ill-defined and secondary sites (10-year lag, P = 0.04), leukaemia (no lag, P = 0.03; 2-year lag, P = 0.05), multiple myeloma (20-year lag, P = 0.02), all lymphatic and haematopoietic cancers (20-year lag, P= 0.03) and all causes of death combined (20-year lag, P= 0.008). Among plutonium workers, there were significant excesses of deaths from cancer of the breast (6 observed, 2.6 expected) and ill-defined and secondary cancers (29 observed, 20.1 expected). No significant positive trends were observed between the risk of deaths from cancers of any specific site, or all cancers combined, and cumulative plutonium and external radiation doses. For no cancer site was there a significant excess of cancer registrations compared with rates for England and Wales. Analysis of trends in cancer incidence showed significant increases in risk with cumulative plutonium plus external radiation doses for all lymphatic and haematopoietic neoplasms for 0-, 10- and 20-year lag periods. Taken as a whole, our findings do not suggest that workers at Sellafield who have been exposed to plutonium are at an overall significantly increased risk of cancer compared with other radiation workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sole, Claudio V., E-mail: cvsole@uc.cl; School of Medicine, Complutense University, Madrid; Service of Radiation Oncology, Instituto de Radiomedicina, Santiago
Purpose: To perform a joint analysis of data from 3 contributing centers within the intraoperative electron-beam radiation therapy (IOERT)-Spanish program, to determine the potential of IOERT as an anticipated boost before external beam radiation therapy in the multidisciplinary treatment of pediatric extremity soft-tissue sarcomas. Methods and Materials: From June 1993 to May 2013, 62 patients (aged <21 years) with a histologic diagnosis of primary extremity soft-tissue sarcoma with absence of distant metastases, undergoing limb-sparing grossly resected surgery, external beam radiation therapy (median dose 40 Gy) and IOERT (median dose 10 Gy) were considered eligible for this analysis. Results: After a median follow-up ofmore » 66 months (range, 4-235 months), 10-year local control, disease-free survival, and overall survival was 85%, 76%, and 81%, respectively. In multivariate analysis after adjustment for other covariates, tumor size >5 cm (P=.04) and R1 margin status (P=.04) remained significantly associated with local relapse. In regard to overall survival only margin status (P=.04) retained association on multivariate analysis. Ten patients (16%) reported severe chronic toxicity events (all grade 3). Conclusions: An anticipated IOERT boost allowed for external beam radiation therapy dose reduction, with high local control and acceptably low toxicity rates. The combined radiosurgical approach needs to be tested in a prospective trial to confirm these results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.; Loftin, B.; Abramczyk, G.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials, under both normal and accident conditions, to perform the essential functions of material containment, subcriticality, and maintain external radiation levels withinmore » the specified limits. By placing the contents in a helium leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large dose rate outside the package. Quantifying the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings provides bounding shielding calculations that define mass limits compliant with 10 CFR 71.47 for a set of proposed SGQ isotopes. The approach is based on energy superposition with dose response calculated for a set of spectral groups for a baseline physical packaging configuration. The methodology includes using the MCNP radiation transport code to evaluate a family of neutron and photon spectral groups using the 9977 shipping package and its associated shielded containers as the base case. This results in a set of multipliers for 'dose per particle' for each spectral group. For a given isotope, the source spectrum is folded with the response for each group. The summed contribution from all isotopes determines the total dose from the RAM in the container.« less
Yeh, Jekwon; Lehrich, Brandon; Tran, Carolyn; Mesa, Albert; Baghdassarian, Ruben; Yoshida, Jeffrey; Torrey, Robert; Gazzaniga, Michael; Weinberg, Alan; Chalfin, Stuart; Ravera, John; Tokita, Kenneth
2016-01-01
To present rectal toxicity rates in patients administered a polyethylene glycol (PEG) hydrogel rectal spacer in conjunction with combination high-dose-rate brachytherapy and external beam radiotherapy. Between February 2010 and April 2015, 326 prostate carcinoma patients underwent combination high-dose-rate brachytherapy of 16 Gy (average dose 15.5 Gy; standard deviation [SD] = 1.6 Gy) and external beam radiotherapy of 59.4 Gy (average dose 60.2 Gy; SD = 2.9 Gy). In conjunction with the radiation therapy regimen, each patient was injected with 10 mL of a PEG hydrogel in the anterior perirectal fat space. The injectable spacer (rectal spacer) creates a gap between the prostate and the rectum. The rectum is displaced from the radiation field, and rectal dose is substantially reduced. The goal is a reduction in rectal radiation toxicity. Clinical efficacy was determined by measuring acute and chronic rectal toxicity using the National Cancer Center Institute Common Terminology Criteria for Adverse Events v4.0 grading scheme. Median followup was 16 months. The mean anterior-posterior separation achieved was 1.6 cm (SD = 0.4 cm). Rates of acute Grade 1 and 2 rectal toxicity were 37.4% and 2.8%, respectively. There were no acute Grade 3/4 toxicities. Rates of late Grade 1, 2, and 3 rectal toxicity were 12.7%, 1.4%, and 0.7%, respectively. There were no late Grade 4 toxicities. PEG rectal spacer implantation is safe and well tolerated. Acute and chronic rectal toxicities are low despite aggressive dose escalation. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bougrov, N. G.; Goksu, H. Y.; Haskell, E.; Degteva, M. O.; Meckbach, R.; Jacob, P.; Neta, P. I. (Principal Investigator)
1998-01-01
The potential of thermoluminescence measurements of bricks from the contaminated area of the Techa river valley, Southern Urals, Russia, for reconstructing external exposures of affected population groups has been studied. Thermoluminescence dating of background samples was used to evaluate the age of old buildings available on the river banks. The anthropogenic gamma dose accrued in exposed samples is determined by subtracting the natural radiation background dose for the corresponding age from the accumulated dose measured by thermoluminescence. For a site in the upper Techa river region, where the levels of external exposures were extremely high, the depth-dose distribution in bricks and the dependence of accidental dose on the height of the sampling position were determined. For the same site, Monte Carlo simulations of radiation transport were performed for different source configurations corresponding to the situation before and after the construction of a reservoir on the river and evacuation of the population in 1956. A comparison of the results provides an understanding of the features of the measured depth-dose distributions and height dependencies in terms of the source configurations and shows that bricks from the higher sampling positions are likely to have accrued a larger fraction of anthropogenic dose from the time before the construction of the reservoir. The applicability of the thermoluminescent dosimetry method to environmental dose reconstruction in the middle Techa region, where the external exposure was relatively low, was also investigated.
Harrison, J D; Muirhead, C R
2003-01-01
To compare quantitative estimates of lifetime cancer risk in humans for exposures to internally deposited radionuclides and external radiation. To assess the possibility that risks from radionuclide exposures may be underestimated. Risk estimates following internal exposures can be made for a small number of alpha-particle-emitting nuclides. (1) Lung cancer in underground miners exposed by inhalation to radon-222 gas and its short-lived progeny. Studies of residential (222)Rn exposure are generally consistent with predictions from the miner studies. (2) Liver cancer and leukaemia in patients given intravascular injections of Thorotrast, a thorium-232 oxide preparation that concentrates in liver, spleen and bone marrow. (3) Bone cancer in patients given injections of radium-224, and in workers exposed occupationally to (226)Ra and (228)Ra, mainly by ingestion. (4) Lung cancer in Mayak workers exposed to plutonium-239, mainly by inhalation. Liver and bone cancers were also seen, but the dosimetry is not yet sufficiently good enough to provide quantitative estimates of risks. Comparisons can be made between risk estimates for radiation-induced cancer derived for radionuclide exposure and those derived for the A-bomb survivors, exposed mainly to low-LET (linear energy transfer) external radiation. Data from animal studies, using dogs and rodents, allow comparisons of cancer induction by a range of alpha- and beta-/gamma-emitting radionuclides. They provide information on relative biological effectiveness (RBE), dose-response relationships, dose-rate effects and the location of target cells for different malignancies. For lung and liver cancer, the estimated values of risk per Sv for internal exposure, assuming an RBE for alpha-particles of 20, are reasonably consistent with estimates for external exposure to low-LET radiation. This also applies to bone cancer when risk is calculated on the basis of average bone dose, but consideration of dose to target cells on bone surfaces suggests a low RBE for alpha-particles. Similarly, for leukaemia, the comparison of risks from alpha-irradiation ((232)Th and progeny) and external radiation suggest a low alpha RBE; this conclusion is supported by animal data. Risk estimates for internal exposure are dependent on the assumptions made in calculating dose. Account is taken of the distribution of radionuclides within tissues and the distribution of target cells for cancer induction. For the lungs and liver, the available human and animal data provide support for current assumptions. However, for bone cancer and leukaemia, it may be that changes are required. Bone cancer risk may be best assessed by calculating dose to a 50 micro m layer of marrow adjacent to endosteal (inner) bone surfaces rather than to a single 10 micro m cell layer as currently assumed. Target cells for leukaemia may be concentrated towards the centre of marrow cavities so that the risk of leukaemia from bone-seeking radionuclides, particularly alpha emitters, may be overestimated by the current assumption of uniform distribution of target cells throughout red bone marrow. The lifetime risk estimates considered here for exposure to internally deposited radionuclides and to external radiation are subject to uncertainties, arising from the dosimetric assumptions made, from the quality of cancer incidence and mortality data and from aspects of risk modelling; including variations in baseline rates between populations for some cancer types. Bearing in mind such uncertainties, comparisons of risk estimates for internal emitters and external radiation show good agreement for lung and liver cancers. For leukaemia, the available data suggest that the assumption of an alpha-particle RBE of 20 can result in overestimates of risk. For bone cancer, it also appears that current assumptions will overestimate risks from alpha-particle-emitting nuclides, particularly at low doses.
Land, Charles E; Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian; Drozdovitch, Vladimir; Bouville, André; Beck, Harold; Luckyanov, Nicholas; Weinstock, Robert M; Simon, Steven L
2015-02-01
Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semipalatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point "best estimates". In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response.
Assessment of radiation doses from residential smoke detectors that contain americium-241
NASA Astrophysics Data System (ADS)
Odonnell, F. R.; Etnier, E. L.; Holton, G. A.; Travis, C. C.
1981-10-01
External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv to 20 nSv for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 micro-Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 micro-Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft squared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degteva, M. O.; Shagina, N. B.; Shishkina, Elena A.
Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949–1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teethmore » and bones that served as a source of confounding local exposures. In order to estimate and subtract doses from incorporated 89,90Sr, the EPR and FISH assays were supported by measurements of 90Sr-body burdens and estimates of 90Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR and FISH measurements for residents of the upper Techa River were found to be consistent: the mean values vary from 510 – 550 mGy for the villages located close to the site of radioactive release to 130 – 160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2 – 2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the Techa River Dosimetry System (TRDS). The TRDS external dose assessments were based on the data on contamination of the Techa River floodplain, simulation of ai r kerma above the contaminated soil, age-dependent life-styles and individual residence histories. For correct comparison TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from 137Cs incorporated in donors’ soft tissues. The TRDS-based absorbed doses in tooth enamel and muscle were in agreement with with EPR- and FISH-based estimates within uncertainty bounds. Basically, the agreement between the estimates has confirmed the validity of external doses calculated with the Techa River Dosimetry System.« less
RADIOLOGICAL IMPACTS ASSESSMENT FOR WORKERS IN CERAMIC INDUSTRY IN SERBIA.
Todorovic, Nataša; Mrda, Dušan; Hansman, Jan; Todorovic, Slavko; Nikolov, Jovana; Krmar, Miodrag
2017-11-01
Studies have been carried out to determine the natural radioactivity in some materials used in ceramic industry (zircon, zirkosil, Zircobit MO/S, zircon silicate, zirklonil frit, hematite, bentonite, wollastonite, raw kaolin, kaolinized granite, sileks ball, feldspar, pigment, white base serigraphic, engobe) and their associated radiation hazard. The external hazard index, Hex, values, radium equivalent activity, Raeq, total absorbed dose rates, D and annual effective dose, De were derived for all measured materials and compared with the recommended values to assess the external radiation hazards to workers who worked in ceramic industries in Serbia. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Federal Guidance Report No. 15: External Exposure to Radionuclides in Air, Water and Soil
FGR 15 updates the 1993 Federal Guidance Report No. 12 (FGR 12), External Exposure to Radionuclides in Air, Water, and Soil. FGR 15 incorporates advances in radiation protection science regarding how organ/tissue doses change with age and sex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
THOMAS, PAUL; JANAVE, M. T.
Mangoes were gamma-irradiated at a dose rate of 4 Krad per min in doses of 15 to 200 Krad. Methods are described for extraction of the enzyme, assay of enzyme activity, and estimation of total phenolic constituents, ascorbic acid, and pH. Above doses of 75 Krad discoloration increased with dose and longer storage periods. An increase in activity of polyphenol oxidase was found with increasing radiation doses; a several-fold increase was observed at 200 Krad. This increase was correlated with external manifestations of radiation injury. Possible ways in which the activation of polyphenol oxidase in mango fruits is brought aboutmore » by irradiation are discussed. (HLW)« less
Updated Mortality Analysis of Radiation Workers at Rocketdyne (Atomics International), 1948-2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boice Jr JD, Colen SS, Mumma MT, Ellis ED, Eckerman DF, Leggett RW, Boecker BB, Brill B, Henderson BE
Updated analyses of mortality data are presented on 46,970 workers employed 1948-1999 at Rocketdyne (Atomics International). Overall, 5,801 workers were involved in radiation activities, including 2,232 who were monitored for intakes of radionuclides, and 41,169 workers were engaged in rocket testing or other non-radiation activities. The worker population is unique in that lifetime occupational doses from all places of employment were sought, updated and incorporated into the analyses. Further, radiation doses from intakes of 14 different radionuclides were calculated for 16 organs or tissues using biokinetic models of the International Commission on Radiation Protection (ICRP). Because only negligible exposures weremore » received by the 247 workers monitored for radiation activities after 1999, the mean dose from external radiation remained essentially the same at 13.5 mSv (maximum 1 Sv) as reported previously, as did the mean lung dose from external and internal radiation combined at 19.0 mSv (maximum 3.6 Sv). An additional 9 years of follow-up, from December 31,1999 through 2008, increased the person-years of observation for the radiation workers by 21.7% to 196,674 (mean 33.9 years) and the number of cancer deaths by 50% to 684. Analyses included external comparisons with the general population and the computation of standardized mortality ratios (SMRs) and internal comparisons using proportional hazards models and the computation of relative risks (RRs). A low SMR for all causes of death (SMR 0.82; 95% CI 0.78-0.85) continued to indicate that the Rocketdyne radiation workers were healthier than the general population and were less likely to die. The SMRs for all cancers taken together (SMR 0.88; 95% CI 0.81-0.95), lung cancer (SMR 0.87; 95% CI 0.76-1.00) and leukemia other than chronic lymphocytic leukemia (CLL) (SMR 1.04; 95% 0.67-1.53) were not significantly elevated. Cox regression analyses revealed no significant dose-response trends for any cancer. For all cancers excluding leukemia, the RR at 100 mSv was estimated as 0.98 (95% CI 0.82-1.17), and for all leukemia other than CLL it was 1.06 (95% CI 0.50-2.23). Uranium was the primary radionuclide contributing to internal exposures, but no significant increases in lung and kidney disease were seen. The extended follow-up reinforces the findings in the previous study in failing to observe a detectable increase in cancer deaths associated with radiation, but strong conclusions still cannot be drawn because of small numbers and relatively low career doses. Larger combined studies of early workers in the United States using similar methodologies are warranted to refine and clarify radiation risks after protracted exposures.« less
The Study of Natural Radiation Distribution in Soil of Sao Bernardo do Campo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, M. M.; Silveira, M. A. G.; Medina, N. H.
2008-08-07
We have studied the distribution of natural radioactivity in the soil of five sites of the city Sao Bernardo do Campo, Sao Paulo, Brazil. The main contribution of the radiation dose is due to the isotope {sup 40}K, with smaller contributions from the elements of the series of {sup 238}U and {sup 232}Th. The results indicate the dose in all of the studied areas is around the average international dose due to external exposure to gamma rays (0.48 mSv/yr) proceeding from natural terrestrial elements.
Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silveira, M. A. G.; Moreira, R. H.; Bellini, B. S.
2010-08-04
We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sao Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sao Paulo, and soil from Sao Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.
beta- and gamma-Comparative dose estimates on Enewetak Atoll.
Crase, K W; Gudiksen, P H; Robison, W L
1982-05-01
Enewetak Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.
Naito, Wataru; Uesaka, Motoki; Yamada, Chie; Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki
2016-01-01
The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding airborne monitoring-based ambient doses and time-activity patterns of individuals. Moreover, the results provide important information for predicting future cumulative doses after the return of residents to evacuation order areas in Fukushima.
Kurosawa, Tadahiro; Yasutaka, Tetsuo; Ishii, Hideki
2016-01-01
The accident at Fukushima Daiichi Nuclear Power Plant on March 11, 2011, released radioactive material into the atmosphere and contaminated the land in Fukushima and several neighboring prefectures. Five years after the nuclear disaster, the radiation levels have greatly decreased due to physical decay, weathering, and decontamination operations in Fukushima. The populations of 12 communities were forced to evacuate after the accident; as of March 2016, the evacuation order has been lifted in only a limited area, and permanent habitation is still prohibited in most of the areas. In order for the government to lift the evacuation order and for individuals to return to their original residential areas, it is important to assess current and future realistic individual external doses. Here, we used personal dosimeters along with the Global Positioning System and Geographic Information System to understand realistic individual external doses and to relate individual external doses, ambient doses, and activity-patterns of individuals in the affected areas in Fukushima. The results showed that the additional individual external doses were well correlated to the additional ambient doses based on the airborne monitoring survey. The results of linear regression analysis suggested that the additional individual external doses were on average about one-fifth that of the additional ambient doses. The reduction factors, which are defined as the ratios of the additional individual external doses to the additional ambient doses, were calculated to be on average 0.14 and 0.32 for time spent at home and outdoors, respectively. Analysis of the contribution of various activity patterns to the total individual external dose demonstrated good agreement with the average fraction of time spent daily in each activity, but the contribution due to being outdoors varied widely. These results are a valuable contribution to understanding realistic individual external doses and the corresponding airborne monitoring-based ambient doses and time-activity patterns of individuals. Moreover, the results provide important information for predicting future cumulative doses after the return of residents to evacuation order areas in Fukushima. PMID:27494021
Occupational external exposure to ionising radiation in France (2005-2011).
Feuardent, J; Scanff, P; Crescini, D; Rannou, A
2013-12-01
The Institute for Radiological Protection and Nuclear Safety (IRSN) produces the French annual report on occupational exposure to ionising radiation, collecting all national data and aggregating the results according to a unique activity classification expected to be shared by all involved in personal dosimetric monitoring (employers, external dosimetry services and IRSN). Nearly 344,000 monitored workers were counted in France in 2011, with a collective dose of 64.24 man.Sv. The average annual dose (as calculated over the number of measurably exposed workers) differed among the main activity fields: 0.54 mSv in medical and veterinary activities, 1.18 mSv in the nuclear field, 1.60 mSv in non-nuclear industry and 0.47 mSv in research activities. Because of improved knowledge about worker activities, the results for year 2011 are detailed per activity sectors in each field. Lasting limitations prevent from having complete and reliable worker activity information. Solutions are considered to reduce the inaccuracy in the annually published statistics. The evolution of occupational external exposure to ionising radiation from 2005 to 2011 in France is then presented for the main activity fields.
Bohl, Michael A; Goswami, Roopa; Strassner, Brett; Stanger, Paula
2016-08-01
The purpose of this investigation was to evaluate the potential of using the ACR's Dose Index Registry(®) to meet The Joint Commission's requirements to identify incidents in which the radiation dose index from diagnostic CT examinations exceeded the protocol's expected dose index range. In total, 10,970 records in the Dose Index Registry were statistically analyzed to establish both an upper and lower expected dose index for each protocol. All 2015 studies to date were then retrospectively reviewed to identify examinations whose total examination dose index exceeded the protocol's defined upper threshold. Each dose incident was then logged and reviewed per the new Joint Commission requirements. Facilities may leverage their participation in the ACR's Dose Index Registry to fully meet The Joint Commission's dose incident identification review and external benchmarking requirements. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Veiga, Lene H S; Holmberg, Erik; Anderson, Harald; Pottern, Linda; Sadetzki, Siegal; Adams, M Jacob; Sakata, Ritsu; Schneider, Arthur B; Inskip, Peter; Bhatti, Parveen; Johansson, Robert; Neta, Gila; Shore, Roy; de Vathaire, Florent; Damber, Lena; Kleinerman, Ruth; Hawkins, Michael M; Tucker, Margaret; Lundell, Marie; Lubin, Jay H
2016-05-01
Studies have causally linked external thyroid radiation exposure in childhood with thyroid cancer. In 1995, investigators conducted relative risk analyses of pooled data from seven epidemiologic studies. Doses were mostly <10 Gy, although childhood cancer therapies can result in thyroid doses >50 Gy. We pooled data from 12 studies of thyroid cancer patients who were exposed to radiation in childhood (ages <20 years), more than doubling the data, including 1,070 (927 exposed) thyroid cancers and 5.3 million (3.4 million exposed) person-years. Relative risks increased supralinearly through 2-4 Gy, leveled off between 10-30 Gy and declined thereafter, remaining significantly elevated above 50 Gy. There was a significant relative risk trend for doses <0.10 Gy (P < 0.01), with no departure from linearity (P = 0.36). We observed radiogenic effects for both papillary and nonpapillary tumors. Estimates of excess relative risk per Gy (ERR/Gy) were homogeneous by sex (P = 0.35) and number of radiation treatments (P = 0.84) and increased with decreasing age at the time of exposure. The ERR/Gy estimate was significant within ten years of radiation exposure, 2.76 (95% CI, 0.94-4.98), based on 42 exposed cases, and remained elevated 50 years and more after exposure. Finally, exposure to chemotherapy was significantly associated with thyroid cancer, with results supporting a nonsynergistic (additive) association with radiation.
Sima, Chao; Amundson, Sally A.; Zenhausern, Frederic
2018-01-01
Purpose To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. Methods Eligible studies were identified through extensive searches of the online databases from 1978 to 2017. Original English-language publications of microarray studies assessing radiation-induced changes in gene expression levels in human blood after external IR were included. Genes identified in at least half of the selected studies were retained for bio-statistical analysis in order to evaluate their diagnostic ability. Results 24 studies met the criteria and were included in this study. Radiation-induced expression of 10,170 unique genes was identified and the 31 genes that have been identified in at least 50% of studies (12/24 studies) were selected for diagnostic power analysis. Twenty-seven genes showed a significant Spearman’s correlation with radiation dose. Individually, TNFSF4, FDXR, MYC, ZMAT3 and GADD45A provided the best discrimination of radiation dose < 2 Gy and dose ≥ 2 Gy according to according to their maximized Youden’s index (0.67, 0.55, 0.55, 0.55 and 0.53 respectively). Moreover, 12 combinations of three genes display an area under the Receiver Operating Curve (ROC) curve (AUC) = 1 reinforcing the concept of biomarker combinations instead of looking for an ideal and unique biomarker. Conclusion Gene expression is a promising approach for radiation dosimetry assessment. A list of robust candidate biomarkers has been identified from analysis of the studies published to date, confirming for example the potential of well-known genes such as FDXR and TNFSF4 or highlighting other promising gene such as ZMAT3. However, heterogeneity in protocols and analysis methods will require additional studies to confirm these results. PMID:29879226
Updated mortality analysis of radiation workers at Rocketdyne (Atomics International), 1948-2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boice, John; Cohen, Sarah; Mumma, Michael
Updated analyses of mortality data are presented on 5,801 radiation workers, including 2,232 monitored for radionuclide intakes, and 41,169 non-radiation workers employed 1948-1999 at Rocketdyne (Atomics International). The worker population is unique in that lifetime occupational doses from all places of employment were sought and incorporated into the analyses. Further, radiation doses from intakes of 14 different radionuclides were calculated for 16 organs or tissues using biokinetic models of the International Commission on Radiation Protection (ICRP). The mean dose from external radiation was 13.5 mSv (maximum 1 Sv), and the mean lung dose from external and internal radiation combined wasmore » 19.0 mSv (maximum 3.6 Sv). An additional nine years of follow-up, from December 31,1999 through 2008, increased the person-years of observation by 21.7% to 196,674 (mean 33.9 years) and the number of cancer deaths by 50% to 684. Analyses included comparisons with the general population and the computation of standardized mortality ratios (SMRs), and internal comparisons using proportional hazards models. All cancers taken together (SMR 0.88; 95% CI 0.81-0.95), lung cancer (SMR 0.87; 95% CI 0.76-1.00) and leukemia other than chronic lymphocytic leukemia (CLL) (SMR 1.04; 95% 0.67-1.53) were not significantly elevated. Cox regression analyses revealed no significant dose-response trends for any cancer. For all cancers excluding leukemia, the relative risk (RR) at 100 mSv was estimated as 0.98 (95% CI 0.82-1.17) and for all leukemia other than CLL it was 1.06 (95% CI 0.50-2.23). Uranium was the primary radionuclide contributing to internal exposures, but significant increases in lung and kidney disease were not seen. The extended follow-up re-enforces the findings in the previous study in failing to observe a detectable increase in cancer deaths associated with radiation, but strong conclusions still cannot be drawn because of small numbers and relatively low career doses. Larger combined studies of early workers in the United States following similar methodologies are warranted to refine and clarify radiation risks following protracted exposures.« less
NASA Astrophysics Data System (ADS)
Kirillov, V. A.; Kuchuro, I. I.
2010-03-01
Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.
Wilson, Lydia J; Newhauser, Wayne D
2015-01-01
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 minutes. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models. PMID:26040833
Jagetic, Lydia J; Newhauser, Wayne D
2015-06-21
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models.
Ören, Ünal; Hiller, Mauritius; Andersson, M
2017-04-28
A Monte Carlo-based stand-alone program, IDACstar (Internal Dose Assessment by Computer), was developed, dedicated to perform radiation dose calculations using complex voxel simulations. To test the program, two irradiation situations were simulated, one hypothetical contamination case with 600 MBq of 99mTc and one extravasation case involving 370 MBq of 18F-FDG. The effective dose was estimated to be 0.042 mSv for the contamination case and 4.5 mSv for the extravasation case. IDACstar has demonstrated that dosimetry results from contamination or extravasation cases can be acquired with great ease. An effective tool for radiation protection applications is provided with IDACstar allowing physicists at nuclear medicine departments to easily quantify the radiation risk of stochastic effects when a radiation accident has occurred. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hoffman, F. Owen; Moroz, Brian; Drozdovitch, Vladimir; Bouville, André; Beck, Harold; Luckyanov, Nicholas; Weinstock, Robert M.; Simon, Steven L.
2015-01-01
Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semi-palatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point “best estimates”. In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response. PMID:25574587
Cosmic Radiation Exposure of Biological Test Systems During the EXPOSE-E Mission
Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther
2012-01-01
Abstract In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5–12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples. Key Words: Space radiation—Dosimetry—Passive radiation detectors—Thermoluminescence—EXPOSE-E. Astrobiology 12, 387–392. PMID:22680685
Leukaemia mortality and low-dose ionising radiation in the WISMUT uranium miner cohort (1946-2013).
Kreuzer, Michaela; Sobotzki, Christina; Fenske, Nora; Marsh, James W; Schnelzer, Maria
2017-03-01
To examine the risk of death from leukaemia in relation to occupational chronic low-level external and internal radiation exposure in a cohort of 58 972 former German uranium miners with mortality follow-up from 1946 to 2013. The red bone marrow (RBM) dose from low-linear energy transfer (LET) (mainly external γ-radiation) and high-LET (mainly radon gas) radiation was estimated based on a job-exposure matrix and biokinetic/dosimetric models. Linear excess relative risks (ERR) and 95% CIs were estimated via Poisson regression for chronic lymphatic leukaemia (CLL) and non-CLL. The mean cumulative low-LET and high-LET RBM doses among the 86% radiation-exposed workers were 48 and 9 mGy, respectively. There was a positive non-significant dose-response for mortality from non-CLL (n=120) in relation to low-LET (ERR/Gy=2.18; 95% CI -0.41 to 6.37) and high-LET radiation (ERR/Gy=16.65; 95% -1.13 to 46.75). A statistically significant excess was found for the subgroup chronic myeloid leukaemia (n=31) in relation to low-LET radiation (ERR/Gy=7.20; 95% CI 0.48 to 24.54) and the subgroup myeloid leukaemia (n=99) (ERR/Gy=26.02; 95% CI 2.55 to 68.99) for high-LET radiation. The ERR/Gy tended to be about five to ten times higher for high-LET versus low-LET radiation; however, the CIs largely overlapped. Results indicate no association of death from CLL (n=70) with either type of radiation. Our findings indicate an increased risk of death for specific subtypes from non-CLL in relation to chronic low-LET and high-LET radiation, but no such relation for CLL. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Jönsson, Mattias; Tondel, Martin; Isaksson, Mats; Finck, Robert; Wålinder, Robert; Mamour, Afrah; Rääf, Christopher
2017-11-01
In connection with the Chernobyl fallout and the subsequent deposition of radionuclides in Sweden, Swedish municipalities launched a measurement program to monitor the external radiation exposure. This program encompasses measurements of the ambient dose equivalent rate 1 m above ground at selected locations, and repeats those measurements at the same locations at 7-month intervals. Measurement data compiled from the seven locations with the highest deposition were combined with data from aerial surveys since May 1986 of ground deposition of 137 Cs, high-resolution gamma spectrometry performed at four locations in May 1986, and measurements from fixed continuous air gamma rate monitoring stations from 28 April to 15 May 1986. Based on these datasets, a model of the time pattern of the external dose rate in terms of ambient dose equivalent rate from the Chernobyl fallout was developed. The decrease in the ambient dose equivalent rate could, on average, be described by a four-component exponential decay function with effective half-times of 6.8 ± 0.3 d, 104 ± 26 d, 1.0 ± 0.02 y and 5.5 ± 0.09 y, respectively. The predominant contributions to the external dose rate in the first month were from short-lived fission products superseded by 134 Cs and then 137 Cs. Integrated over 70 y and using extrapolation of the curve fits, our model predicts that 137 Cs contributes about 60% and 134 Cs contributes about 30% of the external effective dose at these seven locations. The projected time-integrated 70 y external effective dose to an unshielded person from all nuclides per unit total activity deposition of 137 Cs is estimated to be 0.29 ± 0.0.08 mSv/(kBq m -2 ). These results are in agreement with those found in Chernobyl contaminated Russian forest areas, and emphasize the usefulness of maintaining a long-term and regular measurement program in contaminated areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Ghorabie, Fayez H.H.
2005-06-01
This paper describes measurements of external gamma radiation dose rate from terrestrial gamma-rays 1 m above the ground in three different mountainous locations in the western region of the Kingdom of Saudi Arabia. These locations are At-Taif city, Al-Hada village, and Ash-Shafa village. CaSO{sub 4}:Dy (TLD-900) thermoluminescent dosimeters were used for the detection of terrestrial gamma radiation at 40 different places in the three locations. The values of terrestrial gamma radiation dose rate measured ranged between 14 and 279 nGy h{sup -1} for the time interval from June 2001 to June 2002. The measured dose rate varied with the seasonmore » of the year. The average gamma radiation dose rates were 468, 541, and 781 {mu}Gy y{sup -1} for At-Taif city, Al-Hada village, and Ash-Shafa village, respectively. The corresponding average absorbed doses to the population of the three locations were 328, 379, and 547 {mu}Sv y{sup -1}, respectively. The quality factor of 0.7 Sv Gy{sup -1} was applied in the calculations of the absorbed dose to humans.« less
Assessment of radiation doses from residential smoke detectors that contain americium-241
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.
1981-10-01
External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 ..mu..Ci) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 ..mu..rem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 ..mu..Svmore » (0.0006 to 8 mrem) to total body and from 0.06 to 800 ..mu..Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft/sup 2/).« less
Multicentre dose audit for clinical trials of radiation therapy in Asia.
Mizuno, Hideyuki; Fukuda, Shigekazu; Fukumura, Akifumi; Nakamura, Yuzuru-Kutsutani; Jianping, Cao; Cho, Chul-Koo; Supriana, Nana; Dung, To Anh; Calaguas, Miriam Joy; Devi, C R Beena; Chansilpa, Yaowalak; Banu, Parvin Akhter; Riaz, Masooma; Esentayeva, Surya; Kato, Shingo; Karasawa, Kumiko; Tsujii, Hirohiko
2017-05-01
A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Hauri, Pascal; Schneider, Uwe
2018-04-01
Long-term survivors of cancer who were treated with radiotherapy are at risk of a radiation-induced tumor. Hence, it is important to model the out-of-field dose resulting from a cancer treatment. These models have to be verified with measurements, due to the small size, the high sensitivity to ionizing radiation and the tissue-equivalent composition, LiF thermoluminescence dosimeters (TLD) are well-suited for out-of-field dose measurements. However, the photon energy variation of the stray dose leads to systematic dose errors caused by the variation in response with radiation energy of the TLDs. We present a dosimeter which automatically corrects for the energy variation of the measured photons by combining LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD100H) chips. The response with radiation energy of TLD100 and TLD100H compared to 60 Co was taken from the literature. For the measurement, a TLD100H was placed on top of a TLD100 chip. The dose ratio between the TLD100 and TLD100H, combined with the ratio of the response curves was used to determine the mean energy. With the energy, the individual correction factors for TLD100 and TLD100H could be found. The accuracy in determining the in- and out-of-field dose for a nominal beam energy of 6MV using the double-TLD unit was evaluated by an end-to-end measurement. Furthermore, published Monte Carlo (M.C.) simulations of the mean photon energy for brachytherapy sources, stray radiation of a treatment machine and cone beam CT (CBCT) were compared to the measured mean energies. Finally, the photon energy distribution in an Alderson phantom was measured for different treatment techniques applied with a linear accelerator. Additionally, a treatment plan was measured with a cobalt machine combined with an MRI. For external radiotherapy, the presented double-TLD unit showed a relative type A uncertainty in doses of -1%±2% at the two standard deviation level compared to an ionization chamber. The type A uncertainty in dose was in agreement with the theoretically calculated type B uncertainty. The measured energies for brachytherapy sources, stray radiation of a treatment machine and CBCT imaging were in agreement with M.C. simulations. A shift in energy with increasing distance to the isocenter was noticed for the various treatment plans measured with the Alderson phantom. The calculated type B uncertainties in energy were in line with the experimentally evaluated type A uncertainties. The double-TLD unit is able to predict the photon energy of scatter radiation in external radiotherapy, X-ray imagine and brachytherapy sources. For external radiotherapy, the individual energy correction factors enabled a more accurate dose determination compared to conventional TLD measurements. Copyright © 2017. Published by Elsevier GmbH.
Cosmic radiation exposure of biological test systems during the EXPOSE-E mission.
Berger, Thomas; Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther
2012-05-01
In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.
EVA dosimetry in manned spacecraft.
Thomson, I
1999-12-06
Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.
Effects of radiation type and delivery mode on a radioresistant eukaryote Cryptococcus neoformans
Shuryak, Igor; Bryan, Ruth A.; Broitman, Jack; Marino, Stephen A.; Morgenstern, Alfred; Apostolidis, Christos; Dadachova, Ekaterina
2015-01-01
Introduction Most research on radioresistant fungi, particularly on human pathogens such as Cryptococcus neoformans, involves sparsely-ionizing radiation. Consequently, fungal responses to densely-ionizing radiation, which can be harnessed to treat life-threatening fungal infections, remain incompletely understood. Methods We addressed this issue by quantifying and comparing the effects of densely-ionizing α-particles (delivered either by external beam or by 213Bi-labeled monoclonal antibodies), and sparsely-ionizing 137Cs γ-rays, on Cryptococus neoformans. Results The best-fit linear-quadratic parameters for clonogenic survival were the following: α=0.24×10−2 Gy−1 for γ-rays and 1.07×10−2 Gy−1 for external-beam α-particles, and β=1.44×10−5 Gy−2 for both radiation types. Fungal cell killing by radiolabeled antibodies was consistent with predictions based on the α-particle dose to the cell nucleus and the linear-quadratic parameters for external-beam α-particles. The estimated RBE (for α-particles vs γ-rays) at low doses was 4.47 for the initial portion of the α-particle track, and 7.66 for the Bragg peak. Non-radiological antibody effects accounted for up to 23% of cell death. Conclusions These results quantify the degree of C. neoformans resistance to densely-ionizing radiations, and show how this resistance can be overcome with fungus-specific radiolabeled antibodies. PMID:25800676
Natural Radiation from Soil using Gamma-Ray Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silveira, M. A. G.; Moreira, R. H.; Paula, A. L. C. de
2009-06-03
We have studied the distribution of natural radioactivity in the soil of Interlagos, in Sao Paulo city and Billings Reservoir, in Sao Bernardo do Campo, Sao Paulo, Brazil. The main contribution of the effective radiation dose is due to the elements of the {sup 238}Th decay series, with smaller contributions from {sup 40}K and the elements of the series of {sup 238}U. The results indicate the dose in all of the studied areas is around the average international dose due to external exposure to gamma rays (0.48 mSv/yr) proceeding from natural terrestrial elements.
Cancer in the offspring of radiation workers: a record linkage study.
Draper, G. J.; Little, M. P.; Sorahan, T.; Kinlen, L. J.; Bunch, K. J.; Conquest, A. J.; Kendall, G. M.; Kneale, G. W.; Lancashire, R. J.; Muirhead, C. R.; O'Connor, C. M.; Vincent, T. J.
1997-01-01
OBJECTIVES: To test the "Gardner hypothesis" that childhood leukaemia and non-Hodgkin lymphoma can be caused by fathers' exposure to ionising radiation before the conception of the child, and, more generally, to investigate whether such radiation exposure of either parent is a cause of childhood cancer. DESIGN: Case-control study. SETTING: Great Britain. SUBJECTS: 35,949 children diagnosed as having cancer, together with matched controls. MAIN OUTCOME MEASURES: Parental employment as radiation worker as defined by inclusion in the National Registry for Radiation Workers and being monitored for external radiation before conception of child; cumulative dose of external ionising radiation for various periods of employment before conception; dose during pregnancy. RESULTS: After cases studied by Gardner and colleagues were excluded, fathers of children with leukaemia or non-Hodgkin lymphoma were significantly more likely than fathers of controls to have been radiation workers (relative risk 1.77, 95% confidence interval 1.05 to 3.03) but there was no dose-response relation for any of the exposure periods studied; indeed, the association was greatest for those with doses below the level of detection. No increased risk was found for fathers with a lifetime preconception dose of 100 mSv or more, or with a dose in the 6 months before conception of 10 mSv or more. There was no increased risk for the group of other childhood cancers. Mothers' radiation work was associated with a significant increase of childhood cancer (relative risk 5.00, 1.42 to 26.94; based on 15 cases and 3 controls). Only four of the case mothers and no controls were radiation workers during pregnancy. CONCLUSIONS: These results do not support the hypothesis that paternal preconception irradiation is a cause of childhood leukaemia and non-Hodgkin lymphoma; the observed associations may be chance findings or results from exposure to infective or other agents. If there is any increased risk for the children of fathers who are radiation workers, it is small in absolute terms: in Britain the average risk by age 15 years is 6.5 per 10,000; our best estimate, using all available data, is that the increase is 5.4 per 10,000. For mothers, the numbers are too small for reliable estimates of the risk, if any, to be made. PMID:9393219
Sakumi, Akira; Miyagawa, Ryu; Tamari, Yuki; Nawa, Kanabu; Sakura, Osamu; Nakagawa, Keiichi
2016-03-01
Since the Great East Japan Earthquake on 11 March 2011, Iitate Village has continued to be classified as a deliberate evacuation area, in which residents are estimated to receive an annual additional effective radiation dose of >20 mSv. Some companies still operate in Iitate Village, with a special permit from the Cabinet Office Team in Charge of Assisting the Lives of Disaster Victims. In this study, we measured the annual effective radiation dose to workers in Iitate Village from 15 January to 13 December 2013. The workers stayed in Iitate for 10 h and left the village for the remaining 14 h each working day. They worked for 5 days each week in Iitate Village, but stayed outside of the village for the remaining 2 days each week. We found that the effective radiation dose of 70% of the workers was <2 mSv, including natural radiation; the maximum dose was 3.6 mSv. We estimated the potential annual additional effective radiation dose if people returned full-time to Iitate. Our analysis supports the plan for people to return to their home village at the end of 2017. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vives i Batlle, Jordi; Cuypers, Ann
2014-07-01
There is a need for a better understanding of biological effects of radiation exposure in non-human biota. Correct description of these effects requires a more detailed model of dosimetry than that available in current risk assessment tools, particularly for plants. In this paper, we propose a simple model for dose calculations in roots and shoots of Arabidopsis thaliana seedlings exposed to radionuclides in a hydroponic exposure setup. This model is used to compare absorbed doses for three radionuclides, (241)Am (α-radiation), (90)Sr (β-radiation) and (133)Ba (γ radiation). Using established dosimetric calculation methods, dose conversion coefficient values were determined for each organ separately based on uptake data from the different plant organs. These calculations were then compared to the DCC values obtained with the ERICA tool under equivalent geometry assumptions. When comparing with our new method, the ERICA tool appears to overestimate internal doses and underestimate external doses in the roots for all three radionuclides, though each to a different extent. These observations might help to refine dose-response relationships. The DCC values for (90)Sr in roots are shown to deviate the most. A dose-effect curve for (90)Sr β-radiation has been established on biomass and photosynthesis endpoints, but no significant dose-dependent effects are observed. This indicates the need for use of endpoints at the molecular and physiological scale. Copyright © 2013 Elsevier Ltd. All rights reserved.
Five-year ALARA review of dosimetry results :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Luke R.
2013-08-01
A review of personnel dosimetry (external and internal) and environmental monitoring results from 1 January 2008 through 31 December 2012 performed at Sandia National Laboratories, New Mexico was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform with the ALARA philosophy. ALARA is the philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limitmore » but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.« less
Effects of chronic external gamma irradiation on growth and reproductive success of Daphnia magna.
Gilbin, Rodolphe; Alonzo, Frédéric; Garnier-Laplace, Jacqueline
2008-01-01
Aquatic invertebrates (water flea Daphnia magna) were exposed to low dose rates of external gamma radiation (from 0.4 to 31mGyh(-1)) over a 23-day period (i.e. 5 broods). Gamma radiation caused changes in neither survival nor somatic growth. Mass-specific respiration rate was significantly lower at 31mGyh(-1) than in the control. Reproduction was affected through early release and reduced size of broods after 15 days of exposure at 31mGyh(-1) (broods 3-5), resulting in a 21% fecundity decrease at 31mGyh(-1) compared to the control. A decreased resistance of neonates to starvation was observed in relation to dose rates. Possible mechanisms of gamma radiotoxicity for daphnid reproduction and implications for radioprotection are discussed.
Simon, Steven L.; Bouville, André; Land, Charles E.; Beck, Harold L.
2014-01-01
Nuclear weapons testing conducted at Bikini and Enewetak Atolls during 1946–1958 resulted in exposures of the resident population of the present-day Republic of the Marshall Islands to radioactive fallout. This paper summarizes the results of a thorough and systematic reconstruction of radiation doses to that population, by year, age at exposure, and atoll of residence, and the related cancer risks. Detailed methods and results are presented in a series of companion papers in this volume. From our analysis, we concluded that 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in measurable fallout deposition on one or more of the inhabited atolls of the Marshall Islands. In this work, we estimated deposition densities (kBq m−2) of all important dose-contributing radionuclides at each of the 32 atolls and separate reef islands of the Marshall Islands. Quantitative deposition estimates were made for 63 radionuclides from each test at each atoll. Those estimates along with reported measurements of exposure rates at various times after fallout were used to estimate radiation absorbed doses to the red bone marrow, thyroid gland, stomach wall, and colon wall of atoll residents from both external and internal exposure. Annual doses were estimated for six age groups ranging from newborns to adults. We found that the total deposition of 137Cs, external dose, internal organ doses, and cancer risks followed the same geographic pattern with the large population of the southern atolls receiving the lowest doses. Permanent residents of the southern atolls who were of adult age at the beginning of the testing period received external doses ranging from 5 to 12 mGy on average; the external doses to adults at the mid-latitude atolls ranged from 22 to 59 mGy on average, while the residents of the northern atolls received external doses in the hundreds to over 1,000 mGy. Internal doses varied significantly by age at exposure, location, and organ. Except for internal doses to the thyroid gland, external exposure was generally the major contributor to organ doses, particularly for red bone marrow and stomach wall. Internal doses to the stomach wall and red bone marrow were similar in magnitude, about 1 mGy to 7 mGy for permanent residents of the southern and mid-latitude atolls. However, adult residents of Utrik and Rongelap Island, which are part of the northern atolls, received much higher internal doses because of intakes of short-lived radionuclides leading to doses from 20 mGy to more than 500 mGy to red bone marrow and stomach wall. In general, internal doses to the colon wall were four to ten times greater than those to the red bone marrow and internal doses to the thyroid gland were 20 to 30 times greater than to the red bone marrow. Adult internal thyroid doses for the Utrik community and for the Rongelap Island community were about 760 mGy and 7,600 mGy, respectively. The highest doses were to the thyroid glands of young children exposed on Rongelap at the time of the Castle Bravo test of 1 March 1954 and were about three times higher than for adults. Internal doses from chronic intakes, related to residual activities of long-lived radionuclides in the environment, were, in general, low in comparison with acute exposure resulting from the intakes of radionuclides immediately or soon after the deposition of fallout. The annual doses and the population sizes at each atoll in each year were used to develop estimates of cancer risks for the permanent residents of all atolls that were inhabited during the testing period as well as for the Marshallese population groups that were relocated prior to the testing or after it had begun. About 170 excess cancers (radiation-related cases) are projected to occur among more than 25,000 Marshallese, half of whom were born before 1948. All but about 65 of those cancers are estimated to have already been expressed. The 170 excess cancers are in comparison to about 10,600 cancers that would spontaneously arise, unrelated to radioactive fallout, among the same cohort of Marshallese people. PMID:20622547
Simon, Steven L; Bouville, André; Land, Charles E; Beck, Harold L
2010-08-01
Nuclear weapons testing conducted at Bikini and Enewetak Atolls during 1946-1958 resulted in exposures of the resident population of the present-day Republic of the Marshall Islands to radioactive fallout. This paper summarizes the results of a thorough and systematic reconstruction of radiation doses to that population, by year, age at exposure, and atoll of residence, and the related cancer risks. Detailed methods and results are presented in a series of companion papers in this volume. From our analysis, we concluded that 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in measurable fallout deposition on one or more of the inhabited atolls of the Marshall Islands. In this work, we estimated deposition densities (kBq m(-2)) of all important dose-contributing radionuclides at each of the 32 atolls and separate reef islands of the Marshall Islands. Quantitative deposition estimates were made for 63 radionuclides from each test at each atoll. Those estimates along with reported measurements of exposure rates at various times after fallout were used to estimate radiation absorbed doses to the red bone marrow, thyroid gland, stomach wall, and colon wall of atoll residents from both external and internal exposure. Annual doses were estimated for six age groups ranging from newborns to adults. We found that the total deposition of 137Cs, external dose, internal organ doses, and cancer risks followed the same geographic pattern with the large population of the southern atolls receiving the lowest doses. Permanent residents of the southern atolls who were of adult age at the beginning of the testing period received external doses ranging from 5 to 12 mGy on average; the external doses to adults at the mid-latitude atolls ranged from 22 to 59 mGy on average, while the residents of the northern atolls received external doses in the hundreds to over 1,000 mGy. Internal doses varied significantly by age at exposure, location, and organ. Except for internal doses to the thyroid gland, external exposure was generally the major contributor to organ doses, particularly for red bone marrow and stomach wall. Internal doses to the stomach wall and red bone marrow were similar in magnitude, about 1 mGy to 7 mGy for permanent residents of the southern and mid-latitude atolls. However, adult residents of Utrik and Rongelap Island, which are part of the northern atolls, received much higher internal doses because of intakes of short-lived radionuclides leading to doses from 20 mGy to more than 500 mGy to red bone marrow and stomach wall. In general, internal doses to the colon wall were four to ten times greater than those to the red bone marrow and internal doses to the thyroid gland were 20 to 30 times greater than to the red bone marrow. Adult internal thyroid doses for the Utrik community and for the Rongelap Island community were about 760 mGy and 7,600 mGy, respectively. The highest doses were to the thyroid glands of young children exposed on Rongelap at the time of the Castle Bravo test of 1 March 1954 and were about three times higher than for adults. Internal doses from chronic intakes, related to residual activities of long-lived radionuclides in the environment, were, in general, low in comparison with acute exposure resulting from the intakes of radionuclides immediately or soon after the deposition of fallout. The annual doses and the population sizes at each atoll in each year were used to develop estimates of cancer risks for the permanent residents of all atolls that were inhabited during the testing period as well as for the Marshallese population groups that were relocated prior to the testing or after it had begun. About 170 excess cancers (radiation-related cases) are projected to occur among more than 25,000 Marshallese, half of whom were born before 1948. All but about 65 of those cancers are estimated to have already been expressed. The 170 excess cancers are in comparison to about 10,600 cancers that would spontaneously arise, unrelated to radioactive fallout, among the same cohort of Marshallese people.
Goudarzi, Maryam; Chauthe, Siddheshwar; Strawn, Steven J; Weber, Waylon M; Brenner, David J; Fornace, Albert J
2016-05-20
With the safety of existing nuclear power plants being brought into question after the Fukushima disaster and the increased level of concern over terrorism-sponsored use of improvised nuclear devices, it is more crucial to develop well-defined radiation injury markers in easily accessible biofluids to help emergency-responders with injury assessment during patient triage. Here, we focused on utilizing ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to identify and quantitate the unique changes in the urinary excretion of two metabolite markers, calcitroic acid and citrulline, in mice induced by different forms of irradiation; external γ irradiation at a low dose rate (LDR) of 3.0 mGy/min and a high dose rate (HDR) of 1.1 Gy/min, and internal exposure to Cesium-137 ((137)Cs) and Strontium-90 ((90)Sr). The multiple reaction monitoring analysis showed that, while exposure to (137)Cs and (90)Sr induced a statistically significant and persistent decrease, similar doses of external γ beam at the HDR had the opposite effect, and the LDR had no effect on the urinary levels of these two metabolites. This suggests that the source of exposure and the dose rate strongly modulate the in vivo metabolomic injury responses, which may have utility in clinical biodosimetry assays for the assessment of exposure in an affected population. This study complements our previous investigations into the metabolomic profile of urine from mice internally exposed to (90)Sr and (137)Cs and to external γ beam radiation.
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. de Andrade
2004-03-01
The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.
Wollschläger, Daniel; Hammer, Gaël Paul; Schafft, Thomas; Dreger, Steffen; Blettner, Maria; Zeeb, Hajo
2018-05-01
Exposure to ionizing radiation of cosmic origin is an occupational risk factor in commercial aircrew. In a historic cohort of 26,774 German aircrew, radiation exposure was previously estimated only for cockpit crew using a job-exposure matrix (JEM). Here, a new method for retrospectively estimating cabin crew dose is developed. The German Federal Radiation Registry (SSR) documents individual monthly effective doses for all aircrew. SSR-provided doses on 12,941 aircrew from 2004 to 2015 were used to model cabin crew dose as a function of age, sex, job category, solar activity, and male pilots' dose; the mean annual effective dose was 2.25 mSv (range 0.01-6.39 mSv). In addition to an inverse association with solar activity, exposure followed age- and sex-dependent patterns related to individual career development and life phases. JEM-derived annual cockpit crew doses agreed with SSR-provided doses for 2004 (correlation 0.90, 0.40 mSv root mean squared error), while the estimated average annual effective dose for cabin crew had a prediction error of 0.16 mSv, equaling 7.2% of average annual dose. Past average annual cabin crew dose can be modeled by exploiting systematic external influences as well as individual behavioral determinants of radiation exposure, thereby enabling future dose-response analyses of the full aircrew cohort including measurement error information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Neubeck, Claere; Geniza, Matthew; Kauer, Paula M.
Outside the protection of earth’s atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events atmore » the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin’s barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.« less
Veiga, Lene H. S.; Holmberg, Erik; Anderson, Harald; Pottern, Linda; Sadetzki, Siegal; Adams, M. Jacob; Sakata, Ritsu; Schneider, Arthur B.; Inskip, Peter; Bhatti, Parveen; Johansson, Robert; Neta, Gila; Shore, Roy; de Vathaire, Florent; Damber, Lena; Kleinerman, Ruth; Hawkins, Michael M.; Tucker, Margaret; Lundell, Marie; Lubin, Jay H.
2016-01-01
Studies have causally linked external thyroid radiation exposure in childhood with thyroid cancer. In 1995, investigators conducted relative risk analyses of pooled data from seven epidemiologic studies. Doses were mostly <10 Gy, although childhood cancer therapies can result in thyroid doses >50 Gy. We pooled data from 12 studies of thyroid cancer patients who were exposed to radiation in childhood (ages <20 years), more than doubling the data, including 1,070 (927 exposed) thyroid cancers and 5.3 million (3.4 million exposed) person-years. Relative risks increased supralinearly through 2–4 Gy, leveled off between 10–30 Gy and declined thereafter, remaining significantly elevated above 50 Gy. There was a significant relative risk trend for doses <0.10 Gy (P < 0.01), with no departure from linearity (P = 0.36). We observed radiogenic effects for both papillary and nonpapillary tumors. Estimates of excess relative risk per Gy (ERR/Gy) were homogeneous by sex (P = 0.35) and number of radiation treatments (P = 0.84) and increased with decreasing age at the time of exposure. The ERR/Gy estimate was significant within ten years of radiation exposure, 2.76 (95% CI, 0.94–4.98), based on 42 exposed cases, and remained elevated 50 years and more after exposure. Finally, exposure to chemotherapy was significantly associated with thyroid cancer, with results supporting a nonsynergistic (additive) association with radiation. PMID:27128740
Sakumi, Akira; Miyagawa, Ryu; Tamari, Yuki; Nawa, Kanabu; Sakura, Osamu; Nakagawa, Keiichi
2016-01-01
Since the Great East Japan Earthquake on 11 March 2011, Iitate Village has continued to be classified as a deliberate evacuation area, in which residents are estimated to receive an annual additional effective radiation dose of >20 mSv. Some companies still operate in Iitate Village, with a special permit from the Cabinet Office Team in Charge of Assisting the Lives of Disaster Victims. In this study, we measured the annual effective radiation dose to workers in Iitate Village from 15 January to 13 December 2013. The workers stayed in Iitate for 10 h and left the village for the remaining 14 h each working day. They worked for 5 days each week in Iitate Village, but stayed outside of the village for the remaining 2 days each week. We found that the effective radiation dose of 70% of the workers was <2 mSv, including natural radiation; the maximum dose was 3.6 mSv. We estimated the potential annual additional effective radiation dose if people returned full-time to Iitate. Our analysis supports the plan for people to return to their home village at the end of 2017. PMID:26661855
Renner, Franziska
2016-09-01
Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.
Flashes of light-radiation therapy to the brain.
Blumenthal, Deborah T; Corn, Benjamin W; Shtraus, Natan
2015-08-01
We present a series of three patients who received therapeutic external beam radiation to the brain and experienced a phenomenon of the sensation of flashes of bright or blue light, simultaneous with radiation delivery. We relate this benign phenomenon to low-dose exposure to the eye fields and postulate that the occurrence is underreported in this treated population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hiller, M M; Woda, C; Bougrov, N G; Degteva, M O; Ivanov, O; Ulanovsky, A; Romanov, S
2017-05-01
In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa River Dosimetry System within a factor of two.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, Janet K., E-mail: janet.horton@duke.edu; Blitzblau, Rachel C.; Yoo, Sua
Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative,more » estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should be tested in future clinical trials because it has the potential to challenge the current treatment paradigm and provide a path forward to identify radiation response biomarkers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, J.T.; Bova, F.J.; Million, R.R.
1994-11-15
To investigate the risk of radiation-induced optic neuropathy according to total radiotherapy dose and fraction size, based on both retrospective and prospectively collected data. Between October 1964 and May 1989, 215 optic nerves in 131 patients received fractionated external-beam irradiation during the treatment of primary extracranial head and neck tumors. All patients had a minimum of 3 years of ophthalmologic follow-up (range, 3 to 21 years). The clinical end point was visual acuity of 20/100 or worse as a result of optic nerve injury. Anterior ischemic optic neuropathy developed in five nerves (at mean and median times of 32 andmore » 30 months, respectively, and a range of 2-4 years). Retrobulbar optic neuropathy developed in 12 nerves (at mean and median times of 47 and 28 months, respectively, and a range of 1-14 years). No injuries were observed in 106 optic nerves that received a total dose of <59 Gy. Among nerves that received doses of {ge} 60 Gy, the dose per fraction was more important than the total dose in producing optic neuropathy. The 15-year actuarial risk of optic compared with 47% when given in fraction sizes {ge}1.9 Gy. The data also suggest an increased risk of optic nerve injury with increasing age. As there is no effective treatment of radiation-induced optic neuropathy, efforts should be directed at its prevention by minimizing the total dose, paying attention to the dose per fraction to the nerve, and using reduced field techniques where appropriate to limit the volume of tissues that receive high-dose irradiation. 32 refs., 5 figs., 5 tabs.« less
Hodgkin's disease: thyroid dysfunction following external irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, K.; Shimaoka, K.
1981-01-01
The thyroid gland is commonly included in the field of radiation therapy for patients with malignant lymphoma and with head and neck tumors. The radiation dose for malignant diseases varies considerably depending on the purpose of treatment and the institutional policies. A substantial number of these patients are developing subclinical and clinical hypothyroidism. The risk of developing hypothyroidism after a moderate radiation dose of 2000 to 4500 rads has been reported to be 10 to 20 percent. In addition, subclinical hypothyroidism is induced further in one third of the patients. There are also suggestions that external irradiation of the thyroidmore » gland in patients with malignant lymphomas, as well as internal irradiation with radioiodine of the normal and hyperthyroid human thyroid glands, would induce elevations of serum antithyroid autoantibody titers. However, only a few cases of Graves disease following irradiation to the thyroid gland have been reported. We encountered a young woman who received radiation therapy to the mantle field for her Hodgkin's disease and developed hypothyroxinemia without overt signs and symptoms of hypothyroidism, followed by appearance of nodular goiter and then full-blown Graves disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, B; Sajo, E; Ouyang, Z
2016-06-15
Purpose: A recent publication has shown that by delivering titanium dioxide nanoparticles (titania) as a photosensitizer into tumors, Cerenkov radiation (CR) produced by radionuclides could be used for substantially boosting damage to cancer cells. The present work compares CR production by various clinically relevant radiation sources including internal radionuclides and external beam radiotherapy (EBRT), and provides preliminarily computational results of CR absorption by titania. Methods: 1) Geant4.10.1 was used to simulate ionizing radiation-induced CR production in a 1cm diameter spherical volume using external radiotherapy sources: Varian Clinac IX 6MV and Eldorado {sup 60}Co, both with 10*10 cm{sup 2} field size.more » In each case the volume was placed at the maximum dose depth (1.5cm for 6MV source and 0.5cm for {sup 60}Co). In addition, {sup 18}F, {sup 192}Ir and {sup 60}Co were simulated using Geant4 radioactive decay models as internal sources. Dose deposition and CR production spectra in 200nm-400nm range were calculated as it is the excitation range of titania. 2) Using 6MV external source, the absorption by titania was calculated via the track length of CR in the spherical volume. The nanoparticle concentration was varied from 0.25 to 5µg/g. Results: Among different radioactive sources, results showed that {sup 18}F induced the highest amount of CR per disintegration, but {sup 60}Co had the highest yield per unit dose. When compared with external sources, 6MV source was shown to be the most efficient for the the same delivered dose. Simulations indicated increased absorption for increasing concentrations, with up to 68% absorption of generated CR for 5µg/g titania concentration. Conclusion: The results demonstrate that 6MV beam is favored with a higher CR yield, compared to radionuclides, and that the use of higher concentrations of titania may increase photosensitization. From the findings, we propose that if sufficiently potent concentrations of titania are delivered to tumors this could substantially boost EBRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.
2010-09-15
Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to lower equivalent doses compared to other tissues.« less
Estimates of the occupational exposure to tenorm in the phosphoric acid production plant in Iran.
Fathabadi, N; Vasheghani Farahani, M; Moradi, M; Hadadi, B
2012-09-01
Phosphate rock is used world wide for manufacturing phosphoric acid and several chemical fertilisers. It is known that the phosphate rock contains various concentrations of uranium, thorium, radium and their daughters. The subject of this study is the evaluation of the radiation exposure to workers in the phosphoric acid production plant due to technologically enhanced naturally occurring radioactive materials that can result from the presence of naturally occurring radioactive materials in phosphate ores used in the manufacturing of phosphoric acid. Radiation exposure due to direct gamma radiation, dust inhalation and radon gas has been investigated and external and internal doses of exposed workers have been calculated. Natural radioactivity due to (40)K, (226)Ra and (232)Th have been measured in phosphate rock, phosphogypsum, chemical fertilisers and other samples by gamma spectrometry system with a high-purity germanium. The average concentrations of (226)Ra and (40)K observed in the phosphate rock are 760 and 80 Bq kg(-1), respectively. Annual effective dose from external radiation had a mean value of ∼0.673 mSv y(-1). Dust sampling revealed greatest values in the storage area. The annual average effective dose from inhalation of long-lived airborne was 0.113 mSv y(-1). Radon gas concentrations in the processing plant and storage area were found to be of the same value as the background. In this study the estimated annual effective doses to workers were below 1 mSv y(-1).
Past and Future Work on Radiobiology Mega-Studies: A Case Study At Argonne National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haley, Benjamin; Wang, Qiong; Wanzer, Beau
2011-09-06
Between 1952 and 1992, more than 200 large radiobiology studies were conducted in research institutes throughout Europe, North America, and Japan to determine the effects of external irradiation and internal emitters on the lifespan and tissue toxicity development in animals. At Argonne National Laboratory, 22 external beam studies were conducted on nearly 700 beagle dogs and 50,000 mice between 1969 and 1992. These studies helped to characterize the effects of neutron and gamma irradiation on lifespan, tumorigenesis, and mutagenesis across a range of doses and dosing patterns. The records and tissues collected at Argonne during that time period have beenmore » carefully preserved and redisseminated. Using these archived data, ongoing statistical work has been done and continues to characterize quality of radiation, dose, dose rate, tissue, and gender-specific differences in the radiation responses of exposed animals. The ongoing application of newly-developed molecular biology techniques to the archived tissues has revealed gene-specific mutation rates following exposure to ionizing irradiation. The original and ongoing work with this tissue archive is presented here as a case study of a more general trend in the radiobiology megastudies. These experiments helped form the modern understanding of radiation responses in animals and continue to inform development of new radiation models. Recent archival efforts have facilitated open access to the data and materials produced by these studies, and so a unique opportunity exists to expand this continued research.« less
Multicentre dose audit for clinical trials of radiation therapy in Asia
Fukuda, Shigekazu; Fukumura, Akifumi; Nakamura, Yuzuru-Kutsutani; Jianping, Cao; Cho, Chul-Koo; Supriana, Nana; Dung, To Anh; Calaguas, Miriam Joy; Devi, C.R. Beena; Chansilpa, Yaowalak; Banu, Parvin Akhter; Riaz, Masooma; Esentayeva, Surya; Kato, Shingo; Karasawa, Kumiko; Tsujii, Hirohiko
2017-01-01
Abstract A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy. PMID:27864507
Gustafsson, H; Lund, E; Olsson, S
2008-09-07
The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor kappa = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.
NASA Astrophysics Data System (ADS)
Gustafsson, H.; Lund, E.; Olsson, S.
2008-09-01
The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.
Investigation of natural effective gamma dose rates case study: Ardebil Province in Iran
2012-01-01
Gamma rays pose enough energy to induce chemical changes that may be biologically important for the normal functioning of body cells. The external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined. In this research natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardebil province. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed doses for Ardebil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSv/h, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardebil province was estimated as 1.73 (1.35–2.39) mSv, which is on average 2 times higher than the world population weighted average. PMID:23369115
Carcinoma of the cervix, stage III. Results of radiation therapy.
Montana, G S; Fowler, W C; Varia, M A; Walton, L A; Mack, Y; Shemanski, L
1986-01-01
From April 1969 through December 1980, 203 patients with Stage III epidermoid carcinoma of the cervix were treated with radiation therapy with curative intent. The disease-free survival at 2, 5, and 10 years was 50%, 33%, and 27%, respectively. The survival was better for patients with Stage IIIB disease than for those with Stage IIIA disease. Eighty-eight patients were treated with external beam therapy only, and 115 received external beam and brachytherapy. The disease-free survival was better for the combination therapy group initially, but this difference was not sustained beyond 5 years. One hundred eight patients experienced recurrence within the irradiated field, for a locoregional recurrence rate of 53%. Twenty-seven patients had complications (13%). The complications were mild in 13 patients, moderate in 4 patients, and severe in 10 patients. A study was made of the relationship of the dose to Point A and the occurrence of complications. Similar analyses were made of the bladder and rectal doses and the subsequent occurrence of urinary and intestinal complications. In these analyses, the mean dose to Point A and the critical organs was higher for the groups of patients with complications than for those patients without complications. This relationship was also observed when the patients were stratified for treatment with either external beam plus brachytherapy or external beam therapy alone.
Hirai, Yuko; Kodama, Yoshiaki; Cullings, Harry M; Miyazawa, Chuzo; Nakamura, Nori
2011-01-01
The atomic bombs in Hiroshima and Nagasaki led to two different types of radiation exposure; one was direct and brief and the other was indirect and persistent. The latter (so-called exposure to residual radiation) resulted from the presence of neutron activation products in the soil, or from fission products present in the fallout. Compared with the doses from direct exposures, estimations of individual doses from residual radiation have been much more complicated, and estimates vary widely among researchers. The present report bases its conclusions on radiation doses recorded in tooth enamel from survivors in Hiroshima. Those survivors were present at distances of about 3 km or greater from the hypocenter at the time of the explosion, and have DS02 estimated doses (direct exposure doses) of less than 5 mGy (and are regarded as control subjects). Individual doses were estimated by measuring CO(2)(-) radicals in tooth enamel with the electron spin resonance (ESR; or electron paramagnetic resonance, EPR) method. The results from 56 molars donated by 49 survivors provided estimated doses which vary from -200 mGy to 500 mGy, and the median dose was 17 mGy (25% and 75% quartiles are -54 mGy and 137 mGy, respectively) for the buccal parts and 13 mGy (25% and 75% quartiles: -49 mGy and 87 mGy, respectively) for the lingual parts of the molars. Three molars had ESR-estimated doses of 300 to 400 mGy for both the buccal and lingual parts, which indicates possible exposures to excess doses of penetrating radiation, although the origin of such radiation remains to be determined. The results did not support claims that a large fraction of distally-exposed survivors received large doses (e.g. 1 Gy) of external penetrating radiation resulting from residual radiation.
Soft-tissue reactions following irradiation of primary brain and pituitary tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglan, R.J.; Marks, J.E.
1981-04-01
One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface.more » Patients treated with small portals (<70 cm/sup 2/) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams.« less
[Combined internal-external radiotherapy (CIERT) in a cell model].
Oehme, Liane; Bartzsch, Thomas; Maucksch, Ute; Freudenberg, Robert; Wunderlich, Gerd; Kotzerke, Jörg
2018-06-01
Combined internal-external radiotherapy (CIERT) requires a unified assessment of biologic radiation effects in addition to the total dose. The concept of biological effective dose (BED) was evaluated in a cell model. The thyroid NIS-positive cell line FRTL-5 was irradiated with X-ray and the radiotracer Tc-99m pertechnetate either alone or in combination. The cellular uptake of the radionuclide during the incubation time of 24 h was controlled by the presence or absence of perchlorate. Dose calculation was performed based on measured uptake values. Cell specific radiobiologic parameters were derived from dose effect curves using the colony forming assay as biological endpoint. For the combination of the radiation qualities the sequence and time difference were varied. Cell survival was compared with the prediction of the BED model. The radiobiologic parameters from X-ray dose response were α = (0.22 ± 0.02) Gy -1 and β = (0.021 ± 0.001) Gy -2 . The half life for repair was (1.51 ± 0.21) h. These values could also explain the dose response curves for Tc-99m-irradiation with exponential decreasing dose rate. CIERT experiments showed no significant differences in cell survival regarding sequence and irradiation break. When the radionuclide uptake was not prevented the cell survival for the combination of X-ray and Tc-99m was lower than the prediction by BED calculations. The validity of the BED formalism for different dose rates and radiation qualities was verified. Supraaddive effects measured in the combination of X-ray and intracellular Tc-99m might be caused by Auger and conversion electrons, however further experiments are necessary. Schattauer GmbH.
Scherthan, Harry; Sotnik, Natalia; Peper, Michel; Schrock, Gerrit; Azizova, Tamara; Abend, Michael
2016-06-01
Telomeres consist of GC-rich DNA repeats and the "shelterin" protein complex that together protect chromosome ends from fusion and degradation. Telomeres shorten with age due to incomplete end replication and upon exposure to environmental and intrinsic stressors. Exposure to ionizing radiation is known to modulate telomere length. However, the response of telomere length in humans chronically exposed to radiation is poorly understood. Here, we studied relative telomere length (RTL) by IQ-FISH to leukocyte nuclei in a group of 100 workers from the plutonium production facility at the Mayak Production Association (PA) who were chronically exposed to alpha-emitting ((239)Pu) radiation and/or gamma (photon) radiation, and 51 local residents serving as controls, with a similar mean age of about 80 years. We applied generalized linear statistical models adjusted for age at biosampling and the second exposure type on a linear scale and observed an age-dependent telomere length reduction. In those individuals with the lowest exposure, a significant reduction of about 20% RTL was observed, both for external gamma radiation (≤1 Gy) and internal alpha radiation (≤0.05-0.1 Gy to the red bone marrow). In highly exposed individuals (>0.1 Gy alpha, 1-1.5 Gy gamma), the RTL was similar to control. Stratification by gender revealed a significant (∼30%) telomere reduction in low-dose-exposed males, which was absent in females. While the gender differences in RTL may reflect different working conditions, lifestyle and/or telomere biology, absence of a dose response in the highly exposed individuals may reflect selection against cells with short telomeres or induction of telomere-protective effects. Our observations suggest that chronic systemic exposure to radiation leads to variable dose-dependent effects on telomere length.
Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy.
Zhang, Rongxiao; Gladstone, David J; Jarvis, Lesley A; Strawbridge, Rendall R; Jack Hoopes, P; Friedman, Oscar D; Glaser, Adam K; Pogue, Brian W
2013-11-01
Cherenkov radiation is induced when charged particles travel through dielectric media (such as biological tissue) faster than the speed of light through that medium. Detection of this radiation or excited luminescence during megavoltage external beam radiotherapy (EBRT) can allow emergence of a new approach to superficial dose estimation, functional imaging, and quality assurance for radiation therapy dosimetry. In this letter, the first in vivo Cherenkov images of a real-time Cherenkoscopy during EBRT are presented. The imaging system consisted of a time-gated intensified charge coupled device (ICCD) coupled with a commercial lens. The ICCD was synchronized to the linear accelerator to detect Cherenkov photons only during the 3.25-μs radiation bursts. Images of a tissue phantom under irradiation show that the intensity of Cherenkov emission is directly proportional to radiation dose, and images can be acquired at 4.7 frames/s with SNR>30. Cherenkoscopy was obtained from the superficial regions of a canine oral tumor during planned, Institutional Animal Care and Use Committee approved, conventional (therapeutically appropriate) EBRT irradiation. Coregistration between photography and Cherenkoscopy validated that Cherenkov photons were detected from the planned treatment region. Real-time images correctly monitored the beam field changes corresponding to the planned dynamic wedge movement, with accurate extent of overall beam field, and expected cold and hot regions.
Mortality among workers monitored for radiation exposure at the French nuclear fuel company.
Metz-Flamant, C; Rogel, A; Caër, S; Samson, E; Laurier, D; Acker, A; Tirmarche, M
2009-01-01
A cohort of 9,285 nuclear workers employed at the French company AREVA NC specializing in the nuclear fuel cycle was established. Vital status, causes of death, employment characteristics and annual exposure to ionizing radiation were reconstructed for each individual over the time period 1977-2004. Standardized mortality ratios (SMRs) were computed using national mortality rates as an external reference. Tests for trends in mortality with duration of employment and cumulative external dose were performed. The all-cause and all-cancer mortality was significantly lower than expected from the French population. No significant excess among cancer sites studied was observed. Significant positive trends with cumulative dose were observed for colon and liver cancer and for respiratory diseases. Isolated significant trends should be carefully interpreted and considered in line with the large number of trend tests performed.
Mortality among mound workers exposed to polonium-210 and other sources of radiation, 1944-1979.
Boice, John D; Cohen, Sarah S; Mumma, Michael T; Ellis, Elizabeth Dupree; Cragle, Donna L; Eckerman, Keith F; Wallace, Phillip W; Chadda, Bandana; Sonderman, Jennifer S; Wiggs, Laurie D; Richter, Bonnie S; Leggett, Richard W
2014-02-01
Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. Cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944-1972) in combination with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88-0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79-0.93), lung cancer (SMR 0.85; 95% CI 0.74-0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15-2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23-1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97-1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63-1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95-1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.
Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979
Boice, John D.; Cohen, Sarah S.; Mumma, Michael T.; ...
2014-02-14
Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. In this paper, cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944–1972) in combinationmore » with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88–0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79–0.93), lung cancer (SMR 0.85; 95% CI 0.74–0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15–2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23–1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97–1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63–1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95–1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Finally, larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.« less
Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boice, John D.; Cohen, Sarah S.; Mumma, Michael T.
Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. In this paper, cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944–1972) in combinationmore » with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88–0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79–0.93), lung cancer (SMR 0.85; 95% CI 0.74–0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15–2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23–1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97–1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63–1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95–1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Finally, larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.« less
Advanced dosimetry systems for the space transport and space station
NASA Technical Reports Server (NTRS)
Wailly, L. F.; Schneider, M. F.; Clark, B. C.
1972-01-01
Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.
Fractionated changes in prostate cancer radiotherapy using cone-beam computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw; Department of Biomedical Informatics, Asia University, Taichung City, Taiwan; Chou, Kuei-Ting
2015-10-01
The high mobility of the bladder and the rectum causes uncertainty in radiation doses prescribed to patients with prostate cancer who undergo radiotherapy (RT) multifraction treatments. The purpose of this study was to estimate the dose received by the bladder, rectum, and prostate from multifraction treatments using daily cone-beam computed tomography (CBCT). Overall, 28 patients with prostate cancer who planned to receive radiation treatments were enrolled in the study. The acquired CBCT before the treatment delivery was registered with the planning CT to map the dose distribution used in the treatment plan for estimating the received dose during clinical treatment.more » For all 28 patients with 112 data sets, the mean percentage differences (± standard deviation) in the volume and radiation dose were 44% (± 41) and 18% (± 17) for the bladder, 20% (± 21) and 2% (± 2) for the prostate, and 36% (± 29) and 22% (± 15) for the rectum, respectively. Substantial differences between the volumes and radiation dose and those specified in treatment plans were observed. Besides the use of image-guided RT to improve patient setup accuracy, further consideration of large changes in bladder and rectum volumes is strongly suggested when using external beam radiation for prostate cancer.« less
Spratt, Daniel E; Soni, Payal D; McLaughlin, Patrick W; Merrick, Gregory S; Stock, Richard G; Blasko, John C; Zelefsky, Michael J
To review outcomes for high-risk prostate cancer treated with combined modality radiation therapy (CMRT) utilizing external beam radiation therapy (EBRT) with a brachytherapy boost. The available literature for high-risk prostate cancer treated with combined modality radiation therapy was reviewed and summarized. At this time, the literature suggests that the majority of high-risk cancers are curable with multimodal treatment. Several large retrospective studies and three prospective randomized trials comparing CMRT to dose-escalated EBRT have demonstrated superior biochemical control with CMRT. Longer followup of the randomized trials will be required to determine if this will translate to a benefit in metastasis-free survival, disease-specific survival, and overall survival. Although greater toxicity has been associated with CMRT compared to EBRT, recent studies suggest that technological advances that allow better definition and sparing of critical adjacent structures as well as increasing experience with brachytherapy have improved implant quality and the toxicity profile of brachytherapy. The role of androgen deprivation therapy is well established in the external beam literature for high-risk disease, but there is controversy regarding the applicability of these data in the setting of dose escalation. At this time, there is not sufficient evidence for the omission of androgen deprivation therapy with dose escalation in this population. Comparisons with surgery remain limited by differences in patient selection, but the evidence would suggest better disease control with CMRT compared to surgery alone. Due to a series of technological advances, modern combination series have demonstrated unparalleled rates of disease control in the high-risk population. Given the evidence from recent randomized trials, combination therapy may become the standard of care for high-risk cancers. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I
1989-01-01
In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation.
Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan
2016-03-01
A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Suleiman, Suleiman Ameir; Qi, Yaping; Pi, Yifei; George Xu, X
2018-05-01
The use of 60Co teletherapy unit for the treatment of unilateral retinoblastoma (Rb) patients is a very common procedure in many developing countries including Tanzania. The aim of this study was to estimate organ-specific absorbed doses from an external beam radiation therapy 60Co unit for unilateral Rb and to assess the risks of the patients developing a secondary primary cancer. The absorbed dose estimations were based on a Monte Carlo method and a set of age-dependent computational male phantoms. The estimated doses were used to calculate the secondary cancer risks in out-of-field organs using the Biological Effects of Ionising Radiation VII risk models. The survival information and baseline cancer risks were based on relevant statistics for the Tanzanian population. The resulting out-of-field organ doses data showed that organs which are close to the target volume, such as the brain, salivary glands and thyroid glands, received the highest absorbed dose from scattered photons during the treatment of Rb. It was also found that the resulting photons dose to specific organs depends on the patient's age. Younger patients are more sensitive to radiation and also received higher dose contributions from the treatment head due to a larger part of the body exposed to the photon radiation. In all sites considered, the overall risks associated with radiation-induced secondary cancer were relatively lower than the baseline risks. Thus, the results in this article can help to provide good estimations of radiation-induced secondary cancer after radiation treatment of unilateral Rb using 60Co teletherapy unit in Tanzania and other developing countries.
2014-03-01
sources. 15. SUBJECT TERMS Operation Tomodachi, Radiation Dose, Department of Defense, Japan, Fukushima , Earthquake, Tsunami, Cosmic Radiation 16...were reported along with data collected after the releases from the Fukushima Daiichi Nuclear Power Station (FDNPS) began contributing to the...Araki, S.; Ohta, Y.; Ikeuchi, Y.; 2012. “Changes of Radionuclides in the Environment in Chiba, Japan, after the Fukushima Nuclear Power Plant Accident
Radiotherapy Dose Perturbation of Esophageal Stents Examined in an Experimental Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwood, Todd F.; Hsu, Annie; Ogara, Maydeen M.
2012-04-01
Purpose: To investigate the radiotherapy dose perturbations caused by esophageal stents in patients undergoing external beam treatments for esophageal cancer. Methods and Materials: Four esophageal stents were examined (three metallic stents: WallFlex, Ultraflex, and Alveolus; one nonmetallic stent with limited radiopaque markers for visualization: Polyflex). All experiments were performed in a liquid water phantom with a custom acrylic stent holder. Radiochromic film was used to measure the dose distributions adjacent to the stents at locations proximal and distal to the radiation source. The stents were placed in an air-filled cavity to simulate the esophagus. Treatment plans were created and deliveredmore » for photon energies of 6 and 15 MV, and data analysis was performed on uniform regions of interest, according to the size and geometric placement of the films, to quantify the dose perturbations. Results: The three metallic stents produced the largest dose perturbations with distinct patterns of 'hot' spots (increased dose) measured proximal to the radiation source (up to 15.4%) and both 'cold' (decreased dose) and hot spots measured distal to the radiation source (range, -6.1%-5.8%). The polymeric Polyflex stent produced similar dose perturbations when the radiopaque markers were examined (range, -7.6%-15.4%). However, when the radiopaque markers were excluded from the analysis, the Polyflex stent produced significantly smaller dose perturbations, with maximum hot spots of 7.3% and cold spots of -3.2%. Conclusions: The dose perturbations caused by esophageal stents during the treatment of esophageal cancer using external beam radiotherapy should be understood. These perturbations will result in hot and cold spots in the esophageal mucosa, with varying magnitudes depending on the stent. The nonmetallic Polyflex stent appears to be the most suitable for patients undergoing radiotherapy, but further studies are necessary to determine the clinical significance of the dose perturbations.« less
Radiotherapy dose perturbation of esophageal stents examined in an experimental model.
Atwood, Todd F; Hsu, Annie; Ogara, Maydeen M; Luba, Daniel G; Tamler, Bradley J; Disario, James A; Maxim, Peter G
2012-04-01
To investigate the radiotherapy dose perturbations caused by esophageal stents in patients undergoing external beam treatments for esophageal cancer. Four esophageal stents were examined (three metallic stents: WallFlex, Ultraflex, and Alveolus; one nonmetallic stent with limited radiopaque markers for visualization: Polyflex). All experiments were performed in a liquid water phantom with a custom acrylic stent holder. Radiochromic film was used to measure the dose distributions adjacent to the stents at locations proximal and distal to the radiation source. The stents were placed in an air-filled cavity to simulate the esophagus. Treatment plans were created and delivered for photon energies of 6 and 15 MV, and data analysis was performed on uniform regions of interest, according to the size and geometric placement of the films, to quantify the dose perturbations. The three metallic stents produced the largest dose perturbations with distinct patterns of "hot" spots (increased dose) measured proximal to the radiation source (up to 15.4%) and both "cold" (decreased dose) and hot spots measured distal to the radiation source (range, -6.1%-5.8%). The polymeric Polyflex stent produced similar dose perturbations when the radiopaque markers were examined (range, -7.6%-15.4%). However, when the radiopaque markers were excluded from the analysis, the Polyflex stent produced significantly smaller dose perturbations, with maximum hot spots of 7.3% and cold spots of -3.2%. The dose perturbations caused by esophageal stents during the treatment of esophageal cancer using external beam radiotherapy should be understood. These perturbations will result in hot and cold spots in the esophageal mucosa, with varying magnitudes depending on the stent. The nonmetallic Polyflex stent appears to be the most suitable for patients undergoing radiotherapy, but further studies are necessary to determine the clinical significance of the dose perturbations. Copyright © 2012 Elsevier Inc. All rights reserved.
Overview of the ISS Radiation Environment Observed during the ESA EXPOSE-R2 Mission in 2014-2016
NASA Astrophysics Data System (ADS)
Dachev, T. P.; Bankov, N. G.; Tomov, B. T.; Matviichuk, Yu. N.; Dimitrov, Pl. G.; Häder, D.-P.; Horneck, G.
2017-11-01
The radiation risk radiometer-dosimeter (R3D)-R2 solid-state detector performed radiation measurements at the European Space Agency EXPOSE-R2 platform outside of the Russian "Zvezda" module at the International Space Station (ISS) from 24 October 2014 to 11 January 2016. The ISS orbital parameters were average altitude of 415 km and 51.6° inclination. We developed special software and used experimentally obtained formulas to determine the radiation flux-to-dose ratio from the R3DR2 Liulin-type deposited-energy spectrometer. We provide for the first time simultaneous, long-term estimates of radiation dose external to the ISS for four source categories: (i) galactic cosmic ray particles and their secondary products; (ii) protons in the South Atlantic Anomaly region of the inner radiation belt (IRB); (iii) relativistic electrons and/or bremsstrahlung in the outer radiation belt (ORB); and (iv) solar energetic particle (SEP) events. The latter category is new in this study. Additionally, in this study, secondary particles (SP) resulting from energetic particle interaction with the detector and nearby materials are identified. These are observed continuously at high latitudes. The detected SPs are identified using the same sorting requirements as SEP protons. The IRB protons provide the highest consistent hourly dose, while the ORB electrons and SEPs provide the most extreme hourly doses. SEPs were observed 11 times during the study interval. The R3DR2 data support calculation of average equivalent doses. The 30 day and 1 year average equivalent doses are much smaller than the skin and eyes doses recommendations by the National Council on Radiation Protection (Report 132), which provides radiation protection guidance for Low Earth Orbit.
Morciano, Patrizia; Iorio, Roberto; Iovino, Daniela; Cipressa, Francesca; Esposito, Giuseppe; Porrazzo, Antonella; Satta, Luigi; Alesse, Edoardo; Tabocchini, Maria Antonella; Cenci, Giovanni
2018-01-01
Natural background radiation of Earth and cosmic rays played a relevant role during the evolution of living organisms. However, how chronic low doses of radiation can affect biological processes is still unclear. Previous data have indicated that cells grown at the Gran Sasso Underground Laboratory (LNGS, L'Aquila) of National Institute of Nuclear Physics (INFN) of Italy, where the dose rate of cosmic rays and neutrons is significantly reduced with respect to the external environment, elicited an impaired response against endogenous damage as compared to cells grown outside LNGS. This suggests that environmental radiation contributes to the development of defense mechanisms at cellular level. To further understand how environmental radiation affects metabolism of living organisms, we have recently launched the FLYINGLOW program that aims at exploiting Drosophila melanogaster as a model for evaluating the effects of low doses/dose rates of radiation at the organismal level. Here, we will present a comparative data set on lifespan, motility and fertility from different Drosophila strains grown in parallel at LNGS and in a reference laboratory at the University of L'Aquila. Our data suggest the reduced radiation environment can influence Drosophila development and, depending on the genetic background, may affect viability for several generations even when flies are moved back to normal background radiation. As flies are considered a valuable model for human biology, our results might shed some light on understanding the effect of low dose radiation also in humans. © 2017 Wiley Periodicals, Inc.
Thyroid Cancer Following Childhood Low-Dose Radiation Exposure: A Pooled Analysis of Nine Cohorts.
Lubin, Jay H; Adams, M Jacob; Shore, Roy; Holmberg, Erik; Schneider, Arthur B; Hawkins, Michael M; Robison, Leslie L; Inskip, Peter D; Lundell, Marie; Johansson, Robert; Kleinerman, Ruth A; de Vathaire, Florent; Damber, Lena; Sadetzki, Siegal; Tucker, Margaret; Sakata, Ritsu; Veiga, Lene H S
2017-07-01
The increased use of diagnostic and therapeutic procedures that involve radiation raises concerns about radiation effects, particularly in children and the radiosensitive thyroid gland. Evaluation of relative risk (RR) trends for thyroid radiation doses <0.2 gray (Gy); evidence of a threshold dose; and possible modifiers of the dose-response, e.g., sex, age at exposure, time since exposure. Pooled data from nine cohort studies of childhood external radiation exposure and thyroid cancer with individualized dose estimates, ≥1000 irradiated subjects or ≥10 thyroid cancer cases, with data limited to individuals receiving doses <0.2 Gy. Cohorts included the following: childhood cancer survivors (n = 2); children treated for benign diseases (n = 6); and children who survived the atomic bombings in Japan (n = 1). There were 252 cases and 2,588,559 person-years in irradiated individuals and 142 cases and 1,865,957 person-years in nonirradiated individuals. There were no interventions. Incident thyroid cancers. For both <0.2 and <0.1 Gy, RRs increased with thyroid dose (P < 0.01), without significant departure from linearity (P = 0.77 and P = 0.66, respectively). Estimates of threshold dose ranged from 0.0 to 0.03 Gy, with an upper 95% confidence bound of 0.04 Gy. The increasing dose-response trend persisted >45 years after exposure, was greater at younger age at exposure and younger attained age, and was similar by sex and number of treatments. Our analyses reaffirmed linearity of the dose response as the most plausible relationship for "as low as reasonably achievable" assessments for pediatric low-dose radiation-associated thyroid cancer risk. Copyright © 2017 Endocrine Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jani, Ashesh B.; Hand, Christopher M.; Lujan, Anthony E.
2004-03-31
We report a methodology for comparing and combining dose information from external beam radiotherapy (EBRT) and interstitial brachytherapy (IB) components of prostate cancer treatment using the biological effective dose (BED). On a prototype early-stage prostate cancer patient treated with EBRT and low-dose rate I-125 brachytherapy, a 3-dimensional dose distribution was calculated for each of the EBRT and IB portions of treatment. For each component of treatment, the BED was calculated on a point-by-point basis to produce a BED distribution. These individual BED distributions could then be summed for combined therapies. BED dose-volume histograms (DVHs) of the prostate, urethra, rectum, andmore » bladder were produced and compared for various combinations of EBRT and IB. Transformation to BED enabled computation of the relative contribution of each modality to the prostate dose, as the relative weighting of EBRT and IB was varied. The BED-DVHs of the prostate and urethra demonstrated dramatically increased inhomogeneity with the introduction of even a small component of IB. However, increasing the IB portion relative to the EBRT component resulted in lower dose to the surrounding normal structures, as evidenced by the BED-DVHs of the bladder and rectum. Conformal EBRT and low-dose rate IB conventional dose distributions were successfully transformed to the common 'language' of BED distributions for comparison and for merging prostate cancer radiation treatment plans. The results of this analysis can assist physicians in quantitatively determining the best combination and weighting of radiation treatment modalities for individual patients.« less
Late complications of pelvic irradiation in 16 dogs.
Anderson, Christine R; McNiel, Elizabeth A; Gillette, Edward L; Powers, Barbara E; LaRue, Susan M
2002-01-01
When external beam radiation therapy is administered to the pelvis, normal tissues irradiated may include the colon, small intestine, urethra, bladder, bone, and spinal cord. The objectives of this retrospective study were to determine the incidence and severity of late radiation effects following pelvic irradiation in dogs and to identify factors that increase the risk of these effects. Medical records of all dogs treated with curative intent external beam radiation therapy to the pelvic region between 1993 and 1999 were reviewed. Patients with follow-up longer than 9 months or any patient that developed late complications earlier than 9 months were evaluated. Sixteen dogs met criteria for inclusion in this study. All dogs were treated with a 6-MV linear accelerator with bilaterally opposed beams. Diseases treated included transitional cell carcinoma of the bladder, transitional cell carcinoma of the prostate, and anal sac apocrine gland adenocarcinoma. Four dose/fractionation schemes were used: 49.5 Gy in 3.3 Gy fractions, 54 Gy in 3.0 Gy fractions, 54 Gy in 2.7 Gy fractions, and 18 Gy intraoperative radiation therapy followed by 43 Gy external beam radiation therapy in 2.9 Gy fractions. Implantable chemotherapy in the form of an OPLA-Pt sponge was used in six dogs as a radiation potentiator. Colitis was the major late effect following pelvic irradiation, occurring in nine dogs (56%). Colitis was characterized as mild in three dogs, moderate in one dog, and severe in five dogs. Three of the dogs with severe effects suffered gastrointestinal perforation. All dogs with severe late effects received 3 or 3.3 Gy per fraction, and 80% received radiation potentiators. In the seven dogs that received 2.7 Gy or 2.9 Gy per fraction, late effects were classified as none (n = 5), mild colitis (n = 1), and moderate colitis (n = 1). Radiation therapy can be administered to the pelvic region with a minimal risk of late effects to the colon by giving smaller doses per fraction and avoiding systemic radiation potentiators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitz, R.; Thomas, C.; Klemm, J.
1982-03-03
External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details themore » results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitz, R.; Thomas, C.; Klemm, J.
1982-03-03
External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details themore » results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those, approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.« less
Zecchin, Massimo; Artico, Jessica; Morea, Gaetano; Severgnini, Mara; Bianco, Elisabetta; De Luca, Antonio; Fantasia, Anna Zorzin; Salvatore, Luca; Milan, Vittorino; Lucarelli, Matteo; Dissegna, Roberta; Cannatà, Antonio; Sinagra, Gianfranco
2018-04-01
During radiotherapy, in patients with implantable cardioverter-defibrillators (ICDs) malfunctions are considered more likely if doses more than 2 Gy reach the ICD site; however, most malfunctions occur with high-energy (>10 MV) radiations, and the risk is less defined using 6-MV linear accelerators. The purpose of the study is to experimentally evaluate the occurrence of malfunctions in ICDs radiated with a 6-MV linear accelerator at increasing photon doses. Thirty-two ICDs from all manufacturers (31 explanted and one demo) were evaluated; all devices with a sufficient battery charge underwent multiple radiations with a 6-MV photon beam reaching a cumulative dose at ICD site of 0.5, 1, 2, 3, 5 and 10 Gy and interrogated after every session. All antitachycardia therapies were left enabled; two ICDs were connected to a rhythm simulator (one simulating a complete atrioventricular block without ventricular activity) and visually monitored by external ECG and the ICD programmer during radiation. Thirteen ICDs were excluded before radiation because of battery depletion; after radiation up to the cumulative dose at the cardiac implantable electronic device site of 10 Gy, in the remaining 19 devices, programmation and battery charge remained unchanged and no switch to safety mode was observed; oversensing, pacing inhibition or inappropriate antitachycardia therapy were neither recorded nor visually observed during radiation. With a low-energy accelerator, neither malfunctions nor electromagnetic interferences were detected radiating the ICDs at doses usually reaching the ICD pocket during radiotherapy sessions. In this context, magnet application to avoid oversensing and inappropriate therapy seems, therefore, useless.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appelt, Ane L., E-mail: ane.lindegaard.appelt@slb.regionsyddanmark.dk; University of Southern Denmark, Odense; Ploen, John
2013-01-01
Purpose: Preoperative chemoradiation therapy (CRT) is part of the standard treatment of locally advanced rectal cancers. Tumor regression at the time of operation is desirable, but not much is known about the relationship between radiation dose and tumor regression. In the present study we estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from themore » histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D{sub 50,i}, and the normalized dose-response gradient, {gamma}{sub 50,i}. Results: A highly significant dose-response relationship was found (P=.002). For complete response (TRG1), the dose-response parameters were D{sub 50,TRG1} = 92.0 Gy (95% confidence interval [CI] 79.3-144.9 Gy), {gamma}{sub 50,TRG1} = 0.982 (CI 0.533-1.429), and for major response (TRG1-2) D{sub 50,TRG1} and {sub 2} = 72.1 Gy (CI 65.3-94.0 Gy), {gamma}{sub 50,TRG1} and {sub 2} = 0.770 (CI 0.338-1.201). Tumor size and N category both had a significant effect on the dose-response relationships. Conclusions: This study demonstrated a significant dose-response relationship for tumor regression after preoperative CRT for locally advanced rectal cancer for tumor dose levels in the range of 50.4-70 Gy, which is higher than the dose range usually considered.« less
Carini, Fabrizio; Bucalo, Concetta; Saggese, Vito; Monai, Dario; Porcaro, Gianluca
2012-01-01
Summary Aims the assessment of the limit dose for the organs at risk in external radiotherapy is a fundamental step to guarantee an optimal risk-benefit ratio. The aim of this study was to assess, through contouring the single dental cavities, the absorbed radiation dose on irradiated alveolar bones during the treatment of cervico-facial tumours, so as to test the correlation between the absorbed dose of radiation at alveolar level and the level of individual surgical risk for osteonecrosis. Materials and methods we selected 45 out of 89 patients on the basis of different exclusion criteria. Nine of these patients showed evidence of osteoradionecrosis. The patients were treated either with 3D conformational radiation therapy (3D-CRT) or with intensity-modulated radiation therapy (IMRT), there after alveolar bones were contoured using computed axial tomography (CAT scans) carried out following oncological and dental treatment. The dose-volume histograms (DVH) were obtained on the basis of such data, which included those relating to the dental cavities in addition to those inherent to the tumours and the organs at risk. Results all patients, irrespective of type of treatment, received an average of 60 to 70 grays in 30/35 sittings. The patients treated with IMRT showed higher variation in absorbed radiation dose than those treated with 3D-CRT. The alveolar encirclement allowed the assessment of the absorbed radiation dose, and consequently it also allowed to assess the individual surgical risk for osteonecrosis in patients with head and neck tumours who underwent radiography treatment. Conclusions the study of DVH allows the assessment of limit dose and the detection of the areas at greater risk for osteoradionecrosis before dental surgery. PMID:23285316
Dosimetric calculations for uranium miners for epidemiological studies.
Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L
2012-05-01
Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chuanben; Fei, Zhaodong; Chen, Lisha
This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contoursmore » were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Victor Ho Fun, E-mail: vhflee@hku.hk; Ng, Sherry Chor Yi; Kwong, Dora Lai Wan
The aim of this study was to investigate if intravenous contrast injection affected the radiation doses to carotid arteries and thyroid during intensity-modulated radiation therapy (IMRT) planning for nasopharyngeal carcinoma (NPC). Thirty consecutive patients with NPC underwent plain computed tomography (CT) followed by repeated scanning after contrast injection. Carotid arteries (common, external, internal), thyroid, target volumes, and other organs-at-risk (OARs), as well as IMRT planning, were based on contrast-enhanced CT (CE-CT) images. All these structures and the IMRT plans were then copied and transferred to the non–contrast-enhanced CT (NCE-CT) images, and dose calculation without optimization was performed again. The radiationmore » doses to the carotid arteries and the thyroid based on CE-CT and NCE-CT were then compared. Based on CE-CT, no statistical differences, despite minute numeric decreases, were noted in all dosimetric parameters (minimum, maximum, mean, median, D05, and D01) of the target volumes, the OARs, the carotid arteries, and the thyroid compared with NCE-CT. Our results suggested that compared with NCE-CT planning, CE-CT scanning should be performed during IMRT for better target and OAR delineation, without discernible change in radiation doses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Yutaka, E-mail: shiraishi@rad.med.keio.ac.jp; Hanada, Takashi; Ohashi, Toshio
2013-09-01
Purpose: To propose a novel parameter predicting rectal bleeding on the basis of generalized equivalent uniform doses (gEUD) after {sup 125}I prostate brachytherapy combined with external beam radiation therapy and to assess the predictive value of this parameter. Methods and Materials: To account for differences among radiation treatment modalities and fractionation schedules, rectal dose–volume histograms (DVHs) of 369 patients with localized prostate cancer undergoing combined therapy retrieved from corresponding treatment planning systems were converted to equivalent dose-based DVHs. The gEUDs for the rectum were calculated from these converted DVHs. The total gEUD (gEUD{sub sum}) was determined by a summation ofmore » the brachytherapy and external-beam radiation therapy components. Results: Thirty-eight patients (10.3%) developed grade 2+ rectal bleeding. The grade 2+ rectal bleeding rate increased as the gEUD{sub sum} increased: 2.0% (2 of 102 patients) for <70 Gy, 10.3% (15 of 145 patients) for 70-80 Gy, 15.8% (12 of 76 patients) for 80-90 Gy, and 19.6% (9 of 46 patients) for >90 Gy (P=.002). Multivariate analysis identified age (P=.024) and gEUD{sub sum} (P=.000) as risk factors for grade 2+ rectal bleeding. Conclusions: Our results demonstrate gEUD to be a potential predictive factor for grade 2+ late rectal bleeding after combined therapy for prostate cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Marnix G.E.H.; Department of Radiology and Nuclear Medicine, University Medical Center Utrecht; Abdelmaksoud, Mohamed H.K.
2013-10-01
Purpose: Previous external beam radiation therapy (EBRT) is theoretically contraindicated for yttrium-90 ({sup 90}Y) radioembolization (RE) because the liver has a lifetime tolerance to radiation before becoming vulnerable to radiation-induced liver disease. We analyzed the safety of RE as salvage treatment in patients who had previously undergone EBRT. Methods and Materials: Between June 2004 and December 2010, a total of 31 patients who had previously undergone EBRT were treated with RE. Three-dimensional treatment planning with dose–volume histogram (DVH) analysis of the liver was used to calculate the EBRT liver dose. Liver-related toxicities including RE-induced liver disease (REILD) were reviewed andmore » classified according to Common Terminology Criteria for Adverse Events version 4.02. Results: The mean EBRT and RE liver doses were 4.40 Gy (range, 0-23.13 Gy) and 57.9 Gy (range, 27.0-125.9 Gy), respectively. Patients who experienced hepatotoxicity (≥grade2; n=12) had higher EBRT mean liver doses (7.96 ± 8.55 Gy vs 1.62 ± 3.39 Gy; P=.037), the only independent predictor in multivariate analysis. DVH analysis showed that the fraction of liver exposed to ≥30 Gy (V30) was the strongest predictor of hepatotoxicity (10.14% ± 12.75% vs 0.84% ± 3.24%; P=.006). All patients with V30 >13% experienced hepatotoxicity. Fatal REILD (n=2) occurred at the 2 highest EBRT mean liver doses (20.9 Gy and 23.1 Gy) but also at the highest cumulative liver doses (91.8 Gy and 149 Gy). Conclusions: Prior exposure of the liver to EBRT may lead to increased liver toxicity after RE treatment, depending on fractional liver exposure and dose level. The V30 was the strongest predictor of toxicity. RE appears to be safe for the treatment of hepatic malignancies only in patients who have had limited hepatic exposure to prior EBRT.« less
Gusev, B I; Abylkassimova, Z N; Apsalikov, K N
1997-09-01
As a result of atmospheric nuclear tests at the Semipalatinsk test site 'Polygon', adjacent territories were contaminated by radionuclide fallout. The population of some districts in the Semipalatinsk oblast were exposed to elevated levels of radiation. Contamination and exposure mostly resulted from early atmospheric tests. The radiological situation of the Semipalatinsk oblast is described. Effective dose estimates due to external and internal exposure attributable to the 1949 and 1953 tests in villages near the Polygon range from 70 mSv to 4470 mSv.
Salvage image guided radiation therapy to the prostate after cryotherapy failure.
Hopper, Austin B; Sandhu, Ajay P S; Parsons, J Kellogg; Rose, Brent; Einck, John P
2018-01-01
Cryotherapy is an option for the primary treatment of localized prostate cancer, along with radical prostatectomy, external beam radiation therapy, and brachytherapy. Although it is known that local recurrence can occur in >20% of patients treated with primary cryotherapy, unfortunately there is a paucity of data on later salvage treatments. The use of external beam radiation therapy is an attractive option after cryotherapy failure, but there is little data on its efficacy and toxicity. We evaluated the biochemical control and complication rates of salvage dose-escalated image guided intensity modulated radiation therapy (IG-IMRT) after cryotherapy failure. Patients who were treated at our institution from 2005 to 2016 were reviewed for those who underwent cryotherapy as initial treatment followed by salvage IGRT. Patients were treated with dose-escalated IG-IMRT using standard treatment margins of 3 mm posterior and 7 mm in all other directions and daily cone beam computed tomography or kv imaging to implanted fiducial markers. Biochemical progression was defined in accordance with the Phoenix consensus conference definition. Eight patients were identified as having received post-cryotherapy salvage radiation within the study period. The median total dose was 77.7 Gy (range, 75.6-81.0 Gy). Median follow-up was 55 months (range, 6-88 months). Six patients remained biochemically controlled at the latest follow-up. One patient developed distant metastases after 22 months and one experienced biochemical failure at 30 months with no evidence of distant metastases. No patients experienced acute gastrointestinal toxicities of grade 2 or higher. There were no cases of late gastrointestinal or genitourinary toxicity. High-dose IG-IMRT results in high rates of salvage and extremely low rates of serious late toxicity for patients with locally recurrent prostate cancer after cryotherapy. Although the results are encouraging, given the small number of patients in this and other series, we remain cautious with regard to this treatment and believe the use of salvage radiation therapy after cryotherapy warrants further study.
Katsura, Kouji; Utsunomiya, Satoru; Abe, Eisuke; Sakai, Hironori; Kushima, Naotaka; Tanabe, Satoshi; Yamada, Takumi; Hayakawa, Takahide; Yamanoi, Yoshihiko; Kimura, Syuhei; Wada, Shinichi; Aoyama, Hidefumi; Hayashi, Takafumi
2016-11-01
The changes in dose distribution caused by backscatter radiation from a common commercial dental alloy (Au-Ag-Pd dental alloy; DA) were investigated to identify the optimal material and thicknesses of a dental device (DD) for effective prevention of mucositis. To this end, 1 cm 3 of DA was irradiated with a 6-MV X-ray beam (100 MU) in a field size of 10 × 10 cm 2 using a Novalis TX linear accelerator. Ethylene vinyl acetate copolymer, polyolefin elastomer, and polyethylene terephthalate (PET) were selected as DD materials. The depth dose along the central axis was determined with respect to the presence/absence of DA and DDs at thicknesses of 1-10 mm using a parallel-plate ionization chamber. The dose in the absence of DDs showed the lowest value at a distance of 5 mm from the DA surface and gradually increased with distance between the measurement point and the DA surface for distances of ≥5 mm. Except for PET, no significant difference between the DA dose curves for the presence and absence of DDs was observed. In the dose curve, PET showed a slightly higher dose for DA with DD than for DA without DD for thicknesses of ≥4 mm. The findings herein suggest that the optimal DD material for preventing local dose enhancement of the mucosa caused by DA backscatter radiation should have a relatively low atomic number and physical density and that optimal DD thickness should be chosen considering backscatter radiation and percentage depth dose. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimoto, Tetsuo; Katoh, Hiroyuki; Kitamoto, Yoshizumi
2006-06-01
Purpose: To evaluate the incidence of Grade 2 or worse rectal bleeding after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiotherapy (EBRT), with special emphasis on the relationship between the incidence of rectal bleeding and the rectal dose from HDR brachytherapy. Methods and Materials: The records of 100 patients who were treated by HDR brachytherapy combined with EBRT for {>=}12 months were analyzed. The fractionation schema for HDR brachytherapy was prospectively changed, and the total radiation dose for EBRT was fixed at 51 Gy. The distribution of the fractionation schema used in the patients was as follows: 5 Gy xmore » 5 in 13 patients; 7 Gy x 3 in 19 patients; and 9 Gy x 2 in 68 patients. Results: Ten patients (10%) developed Grade 2 or worse rectal bleeding. Regarding the correlation with dosimetric factors, no significant differences were found in the average percentage of the entire rectal volume receiving 30%, 50%, 80%, and 90% of the prescribed radiation dose from EBRT between those with bleeding and those without. The average percentage of the entire rectal volume receiving 10%, 30%, 50%, 80%, and 90% of the prescribed radiation dose from HDR brachytherapy in those who developed rectal bleeding was 77.9%, 28.6%, 9.0%, 1.5%, and 0.3%, respectively, and was 69.2%, 22.2%, 6.6%, 0.9%, and 0.4%, respectively, in those without bleeding. The differences in the percentages of the entire rectal volume receiving 10%, 30%, and 50% between those with and without bleeding were statistically significant. Conclusions: The rectal dose from HDR brachytherapy for patients with prostate cancer may have a significant impact on the incidence of Grade 2 or worse rectal bleeding.« less
Five-Year ALARA Review of Dosimetry Results 1 January 2010 through 31 December 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Luke R.
2015-06-01
A review of dosimetry results from 1 January 2010 through 31 December 2014 was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform to the philosophy to keep exposures to radiation As Low As is Reasonably Achievable (ALARA). This included a review and evaluation of personnel dosimetry (external and internal) results at Sandia National Laboratories, New Mexico as well as at Sandia National Laboratories, California. Additionally, results of environmental monitoring efforts at Sandia National Laboratories, New Mexico were reviewed. ALARA is a philosophical approach to radiation protection by managing and controlling radiation exposures (individualmore » and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.« less
Radiation exposures due to fossil fuel combustion
NASA Astrophysics Data System (ADS)
Beck, Harold L.
The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.
Code of Federal Regulations, 2014 CFR
2014-01-01
... this chapter; and (iii) Under accident conditions (such as fire and explosion) associated with handling, storage and use of the device, it is unlikely that any person would receive an external radiation dose or..., “Caution-Radioactive Material,” the radiation symbol described in § 20.1901 of this chapter, and the name...
Code of Federal Regulations, 2013 CFR
2013-01-01
... this chapter; and (iii) Under accident conditions (such as fire and explosion) associated with handling, storage and use of the device, it is unlikely that any person would receive an external radiation dose or..., “Caution-Radioactive Material,” the radiation symbol described in § 20.1901 of this chapter, and the name...
Code of Federal Regulations, 2011 CFR
2011-01-01
... this chapter; and (iii) Under accident conditions (such as fire and explosion) associated with handling, storage and use of the device, it is unlikely that any person would receive an external radiation dose or..., “Caution-Radioactive Material,” the radiation symbol described in § 20.1901 of this chapter, and the name...
Code of Federal Regulations, 2012 CFR
2012-01-01
... this chapter; and (iii) Under accident conditions (such as fire and explosion) associated with handling, storage and use of the device, it is unlikely that any person would receive an external radiation dose or..., “Caution-Radioactive Material,” the radiation symbol described in § 20.1901 of this chapter, and the name...
Assessing exposure to granite countertops--Part 1: Radiation.
Myatt, Theodore A; Allen, Joseph G; Minegishi, Taeko; McCarthy, William B; Stewart, James H; Macintosh, David L; McCarthy, John F
2010-05-01
Humans are continuously exposed to low levels of ionizing radiation. Known sources include radon, soil, cosmic rays, medical treatment, food, and building products such as gypsum board and concrete. Little information exists about radiation emissions and associated doses from natural stone finish materials such as granite countertops in homes. To address this knowledge gap, gross radioactivity, gamma ray activity, and dose rate were determined for slabs of granite marketed for use as countertops. Annual effective radiation doses were estimated from measured dose rates and human activity patterns while accounting for the geometry of granite countertops in a model kitchen. Gross radioactivity, gamma activity, and dose rate varied significantly among and within slabs of granite with ranges for median levels at the slab surface of ND to 3000 cpm, ND to 98,000 cpm, and ND to 1.5E-4 mSv/h, respectively. The maximum activity concentrations of the (40)K, (232)Th, and (226)Ra series were 2715, 231, and 450 Bq/kg, respectively. The estimated annual radiation dose from spending 4 h/day in a hypothetical kitchen ranged from 0.005 to 0.18 mSv/a depending on the type of granite. In summary, our results show that the types of granite characterized in this study contain varying levels of radioactive isotopes and that their observed emissions are consistent with those reported in the scientific literature. We also conclude from our analyses that these emissions are likely to be a minor source of external radiation dose when used as countertop material within the home and present a negligible risk to human health.
Miyatake, Hirokazu; Yoshizawa, Nobuaki; Suzuki, Gen
2018-05-11
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in a release of radionuclides into the environment. Since the accident, measurements of radiation in the environment such as air dose rate and deposition density of radionuclides have been performed by various organizations and universities. In particular, Japan Atomic Energy Agency (JAEA) has been performing observations of air dose rate using a car-borne survey system continuously over widespread areas. Based on the data measured by JAEA, we estimated effective dose from external exposure in the prefectures surrounding Fukushima. Since car-borne survey started a few months after the accident, the main contribution to measured data comes from 137Cs and 134Cs whose half-lives are relatively long. Using air dose rate of 137Cs and 134Cs and the ratio of deposition density of short-lived nuclides to that of 137Cs and 134Cs, we also estimated contributions to the effective dose from other short-lived nuclides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Masahiko, E-mail: masaoka@showa.gunma-u.ac.jp; Ishikawa, Hitoshi; Ebara, Takeshi
2012-02-01
Purpose: To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose-volume histogram analysis. Methods and Materials: The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy Multiplication-Sign five times in 3 days or 7 Gy Multiplication-Sign three, 10.5 Gy Multiplication-Sign two, or 9 Gy Multiplication-Sign two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. Results: In 20 patients Grade 2more » or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED{sub 3} at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED{sub 3-5%} and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED{sub 3-5%} was found to be the only significant factor on multivariate analysis. Conclusions: The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.« less
Romanenko, A.Ye.; Finch, S.; Hatch, M.; Lubin, J.; Bebeshko, V.G.; Bazyka, D.A.; Gudzenko, N.; Dyagil, I.S.; Reiss, R.; Bouville, A.; Chumak, V.V.; Trotsiuk, N.K.; Babkina, N.G.; Belayev, Y.; Masnyk; Ron, E.; Howe, G.R.; Zablotska, L.B.
2010-01-01
Leukemia is one of the cancers most susceptible to induction by ionizing radiation, but the effects of lower doses delivered over time have not been adequately quantified. Following the Chornobyl (Chernobyl) accident in Ukraine in April 1986, several hundred thousand workers who were involved in cleaning up the site and its surroundings received fractionated exposure, primarily from external gamma radiation. To increase our understanding of the role of protracted low-dose radiation exposure in the etiology of leukemia, we conducted a nested case-control study of leukemia in a cohort of cleanup workers identified from the Chornobyl State Registry of Ukraine. The analysis is based on 71 cases of histologically confirmed leukemia diagnosed in 1986–2000 and 501 age- and residence-matched controls selected from the same cohort. Study subjects or their proxies were interviewed about their cleanup activities and other relevant factors. Individual bone marrow radiation doses were estimated by the RADRUE dose reconstruction method (mean dose=76.4 (SD=213.4) milligray (mGy)). We used conditional logistic regression to estimate leukemia risks. The excess relative risk of total leukemia was 3.44 per Gy (95% confidence interval 0.47–9.78, p<0.01). The dose-response was linear and did not significantly differ by calendar period of first work in the 30-km Chornobyl zone, duration or type of work. We found a similar dose-response relationship for chronic and non-chronic lymphocytic leukemia. PMID:19138038
Thomas, Patricia; Tracy, Bliss; Ping, Tilly; Baweja, Anar; Wickstrom, Mark; Sidhu, Narinder; Hiebert, Linda
2007-03-01
Northern peoples can receive elevated radiation doses (1- 10 mSv/y) from transfer of polonium-210 (210Po) through the lichen-caribou-human food chain. Ingested 210Po is primarily blood-borne and thus many of its short range alpha particles irradiate the endothelial cells lining the blood vessels. The relative biological effectiveness (RBE) of alpha particles vs. x-rays was examined in porcine aortic endothelial cells as a surrogate for understanding what might happen to human endothelial cells in northern populations consuming traditional foods. Cultured porcine aortic endothelial cells were exposed to x-ray and 210Po alpha particle radiation. Alpha irradiation was applied to the cell cultures internally via the culture medium and externally, using thin-bottomed culture dishes. The results given here are based on the external irradiation method, which was found to be more reliable. Dose-response curves were compared for four lethal endpoints (cell viability, live cell fraction, release of lactate dehydrogenase [LDH] and clonogenic survival) to determine the relative biological effectiveness (RBE) of alpha radiation. The alpha RBE for porcine cells varied from 1.6-21, depending on the endpoint: 21.2+/-4.5 for cell viability, 12.9+/-2.7 for decrease in live cell number, 5.3+/-0.4 for LDH release to the medium but only 1.6 +/-0.1 for clonogenic survival. The low RBE of 1.6 was due to x-ray hypersensitivity of endothelial cells at low doses.
Murray, Louise; Mason, Joshua; Henry, Ann M; Hoskin, Peter; Siebert, Frank-Andre; Venselaar, Jack; Bownes, Peter
2016-08-01
To estimate the risks of radiation-induced rectal and bladder cancers following low dose rate (LDR) and high dose rate (HDR) brachytherapy as monotherapy for localised prostate cancer and compare to external beam radiotherapy techniques. LDR and HDR brachytherapy monotherapy plans were generated for three prostate CT datasets. Second cancer risks were assessed using Schneider's concept of organ equivalent dose. LDR risks were assessed according to a mechanistic model and a bell-shaped model. HDR risks were assessed according to a bell-shaped model. Relative risks and excess absolute risks were estimated and compared to external beam techniques. Excess absolute risks of second rectal or bladder cancer were low for both LDR (irrespective of the model used for calculation) and HDR techniques. Average excess absolute risks of rectal cancer for LDR brachytherapy according to the mechanistic model were 0.71 per 10,000 person-years (PY) and 0.84 per 10,000 PY respectively, and according to the bell-shaped model, were 0.47 and 0.78 per 10,000 PY respectively. For HDR, the average excess absolute risks for second rectal and bladder cancers were 0.74 and 1.62 per 10,000 PY respectively. The absolute differences between techniques were very low and clinically irrelevant. Compared to external beam prostate radiotherapy techniques, LDR and HDR brachytherapy resulted in the lowest risks of second rectal and bladder cancer. This study shows both LDR and HDR brachytherapy monotherapy result in low estimated risks of radiation-induced rectal and bladder cancer. LDR resulted in lower bladder cancer risks than HDR, and lower or similar risks of rectal cancer. In absolute terms these differences between techniques were very small. Compared to external beam techniques, second rectal and bladder cancer risks were lowest for brachytherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D; Dyer, B; Kumaran Nair, C
Purpose: The Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area, linac-mounted ion chamber used to monitor photon fluence during patient treatment. Our previous work evaluated the change of the ion chamber’s response to deviations from static 1×1 cm2 and 10×10 cm2 photon beams and other characteristics integral to use in external beam detection. The aim of this work is to simulate two external beam radiation delivery errors, quantify the detection of simulated errors and evaluate the reduction in patient harm resulting from detection. Methods: Two well documented radiation oncology delivery errors were selected formore » simulation. The first error was recreated by modifying a wedged whole breast treatment, removing the physical wedge and calculating the planned dose with Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI). The second error was recreated by modifying a static-gantry IMRT pharyngeal tonsil plan to be delivered in 3 unmodulated fractions. A radiation oncologist evaluated the dose for simulated errors and predicted morbidity and mortality commiserate with the original reported toxicity, indicating that reported errors were approximately simulated. The ion chamber signal of unmodified treatments was compared to the simulated error signal and evaluated in Pinnacle TPS again with radiation oncologist prediction of simulated patient harm. Results: Previous work established that transmission detector system measurements are stable within 0.5% standard deviation (SD). Errors causing signal change greater than 20 SD (10%) were considered detected. The whole breast and pharyngeal tonsil IMRT simulated error increased signal by 215% and 969%, respectively, indicating error detection after the first fraction and IMRT segment, respectively. Conclusion: The transmission detector system demonstrated utility in detecting clinically significant errors and reducing patient toxicity/harm in simulated external beam delivery. Future work will evaluate detection of other smaller magnitude delivery errors.« less
NASA Astrophysics Data System (ADS)
Zhumadilov, Kassym; Ivannikov, Alexander; Khailov, Artem; Orlenko, Sergei; Skvortsov, Valeriy; Stepanenko, Valeriy; Kuterbekov, Kairat; Toyoda, Shin; Kazymbet, Polat; Hoshi, Masaharu
2017-11-01
In order to estimate radiation effects on uranium enterprise staff and population teeth samples were collected for EPR tooth enamel dosimetry from population of Stepnogorsk city and staff of uranium mining enterprise in Shantobe settlment (Akmola region, North of Kazakhstan). By measurements of tooth enamel EPR spectra, the total absorbed dose in the enamel samples and added doses after subtraction of the contribution of natural background radiation are determined. For the population of Stepnogorsk city average added dose value of 4 +/- 11 mGy with variation of 51 mGy was obtained. For the staff of uranium mining enterprise in Shantobe settlment average value of added dose 95 +/- 20 mGy, with 85 mGy variation was obtained. Higher doses and the average value and a large variation for the staff, probably is due to the contribution of occupational exposure.
Williams, G A; O'Brien, R S; Grzechnik, M; Wise, K N
2017-04-28
A group of Aboriginal people was camped at Wallatinna in South Australia, ~170 km downwind from Emu Field, where an atomic test (the Totem 1 test) was carried out at 07.00 on 15 October 1953 local time (21.30 on 14 October 1953 GMT (Greenwich Mean Time)). They left the camp ~24 hours later. These people stated that a phenomenon that has become known as a 'black mist' rolled through their camp site ~5 hours after detonation and that some of them subsequently became sick, displaying skin reddening and nausea. They feared that the sickness was a result of exposure to high levels of radiation. The purpose of this paper is to determine if these people could have received ionising radiation doses high enough to cause the symptoms displayed. The methodology used for the dose estimates is described in the paper. The exposure modes considered were external exposure due to the passage of a contaminated plume over the camp site, inhalation of material from this plume, external exposure from material deposited on the ground as the plume passed, and consumption of contaminated food and water. The contaminants considered in the airborne cloud and the ground plume were fission products and unburnt plutonium from the nuclear detonation, and neutron activation products caused by vaporisation of the tower used to position the weapon. The source was approximated by a line source. An upper estimate of the effective doses received is ~4 mSv, which is well below the level at which acute radiation effects are observed. This estimate is consistent with earlier assessments, which did not consider inhalation of the contribution from neutron activation products. © Crown copyright 2016.
Radiation arteriopathy in the transgenic arteriovenous fistula model.
Lawton, Michael T; Arnold, Christine M; Kim, Yung J; Bogarin, Ernesto A; Stewart, Campbell L; Wulfstat, Amanda A; Derugin, Nikita; Deen, Dennis; Young, William L
2008-05-01
The transgenic arteriovenous fistula model, surgically constructed with transgenic mouse aorta interposed in common carotid artery-to-external jugular vein fistulae in nude rats, has a 4-month experimental window because patency and transgenic phenotype are lost over time. We adapted this model to investigate occlusive arteriopathy in brain arteriovenous malformations after radiosurgery by radiating grafted aorta before insertion in the fistula. We hypothesized that high-dose radiation would reproduce the arteriopathy observed clinically within the experimental time window and that deletions of endoglin (ENG) and endothelial nitric oxide synthase (eNOS) genes would modify the radiation response. Radiation arteriopathy in the common carotid arteries of 171 wild-type mice was examined with doses of 25, 80, 120, or 200 Gy (Experiment 1). Radiation arteriopathy in 68 wild-type arteriovenous fistulae was examined histologically and morphometrically with preoperative radiation doses of 0, 25, or 200 Gy (Experiment 2). Radiation arteriopathy in 51 transgenic arteriovenous fistulae (36 ENG and 15 eNOS knock-out fistulae) was examined using preoperative radiation doses of 0, 25, or 200 Gy (Experiment 3). High-dose radiation (200 Gy) of mouse common carotid arteries induced only mild arteriopathy (mean score, 0.66) without intimal hyperplasia and with high mortality (68%). Radiation arteriopathy in wild-type arteriovenous fistulae was severe (mean score, 3.5 at 200 Gy), with intimal hyperplasia and medial disruption at 3 months, decreasing luminal areas with increasing dose, and no mortality. Arteriopathy was robust in transgenic arteriovenous fistulae with ENG +/- and with eNOS +/-, with thick intimal hyperplasia in the former and distinct smooth muscle cell proliferation in the latter. The transgenic arteriovenous fistula model can be adapted to rapidly reproduce radiation arteriopathy observed in resected brain arteriovenous malformations after radiosurgery. High radiation doses accelerate the progression of arteriopathy to fit the 4-month time limitation of the model, allowing transgenic tissues to retain their phenotypes throughout the experimental window. Modified radiation responses in ENG and eNOS knock-out fistulae indicate that arteriopathy after arteriovenous malformation radiosurgery might potentially be enhanced by altered gene expression.
Trans-oral miniature X-ray radiation delivery system with endoscopic optical feedback.
Boese, Axel; Johnson, Fredrick; Ebert, Till; Mahmoud-Pashazadeh, Ali; Arens, Christoph; Friebe, Michael
2017-11-01
Surgery, chemo- and/or external radiation therapy are the standard therapy options for the treatment of laryngeal cancer. Trans-oral access for the surgery reduces traumata and hospitalization time. A new trend in treatment is organ-preserving surgery. To avoid regrowth of cancer, this type of surgery can be combined with radiation therapy. Since external radiation includes healthy tissue surrounding the cancerous zone, a local and direct intraoral radiation delivery would be beneficial. A general concept for a trans-oral radiation system was designed, based on clinical need identification with a medical user. A miniaturized X-ray tube was used as the radiation source for the intraoperative radiation delivery. To reduce dose distribution on healthy areas, the X-ray source was collimated by a newly designed adjustable shielding system as part of the housing. For direct optical visualization of the radiation zone, a miniature flexible endoscope was integrated into the system. The endoscopic light cone and the field of view were aligned with the zone of the collimated radiation. The intraoperative radiation system was mounted on a semi-automatic medical holder that was combined with a frontal actuator for rotational and translational movement using piezoelectric motors to provide precise placement. The entire technical set-up was tested in a simulated environment. The shielding of the X-ray source was verified by performing conventional detector-based dose measurements. The delivered dose was estimated by an ionization chamber. The adjustment of the radiation zone was performed by a manual controlling mechanism integrated into the hand piece of the device. An endoscopic fibre was also added to offer visualization and illumination of the radiation zone. The combination of the radiation system with the semi-automatic holder and actuator offered precise and stable positioning of the device in range of micrometres and will allow for future combination with a radiation planning system. The presented system was designed for radiation therapy of the oral cavity and the larynx. This first set-up tried to cover all clinical aspects that are necessary for a later use in surgery. The miniaturized X-ray tube offers the size and the power for intraoperative radiation therapy. The adjustable shielding system in combination with the holder and actuator provides a precise placement. The visualization of radiation zone allows a targeting and observation of the radiation zone.
Brodecki, Marcin; Domienik, Joanna U; Zmyślony, Marek
2012-01-01
The current system of dosimetric quantities has been defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU). Complexity of the system implies the physical nature of ionizing radiation, resulting from the presence of different types of radiation of different ionization capabilities, as well as the individual radiation sensitivity of biological material exposed. According to the latest recommendations, there are three types of dosimeter quantities relevant to radiation protection and radiological assessment of occupational exposure. These are the basic quantities, safety quantities and operational quantities. Dose limits for occupational exposure relate directly to the protection quantities, i.e. the equivalent dose and effective dose, while these quantities are practically unmeasurable in real measurement conditions. For this reason, in the system of dosimetric quantities directly measurable operating volumes were defined. They represent equivalents of the protection quantities that allow for a reliable assessment of equivalent and effective dose by conducting routine monitoring of occupational exposure. This paper presents the characteristics of these quantities, their relationships and importance in assessing individual effects of radiation. Also the methods for their implementation in personal and environmental dosimetry were showcased. The material contained in the article is a compendium of essential information about dosimetric quantities with reference to the contemporary requirements of the law, including the changed annual occupational exposure limit for the lens of the eye. The material is especially addressed to those responsible for dosimetry monitoring in the workplace, radiation protection inspectors and occupational health physicians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aluwini, Shafak, E-mail: s.aluwini@erasmusmc.nl; Rooij, Peter H.E. van; Kirkels, Wim J.
2014-03-01
Purpose: To report long-term results of a bladder preservation strategy for muscle-invasive bladder cancer (MIBC) using external beam radiation therapy and brachytherapy/interstitial radiation therapy (IRT). Methods and Materials: Between May 1989 and October 2011, 192 selected patients with MIBC were treated with a combined regimen of preoperative external beam radiation therapy and subsequent surgical exploration with or without partial cystectomy and insertion of source carrier tubes for afterloading IRT using low dose rate and pulsed dose rate. Data for oncologic and functional outcomes were prospectively collected. The primary endpoints were local recurrence-free survival (LRFS), bladder function preservation survival, and salvage cystectomy-freemore » survival. The endpoints were constructed according to the Kaplan-Meier method. Results: The mean follow-up period was 105.5 months. The LRFS rate was 80% and 73% at 5 and 10 years, respectively. Salvage cystectomy-free survival at 5 and 10 years was 93% and 85%. The 5- and 10-year overall survival rates were 65% and 46%, whereas cancer-specific survival at 5 and 10 years was 75% and 67%. The distant metastases-free survival rate was 76% and 69% at 5 and 10 years. Multivariate analysis revealed no independent predictors of LRFS. Radiation Therapy Oncology Group grade ≥3 late bladder and rectum toxicity were recorded in 11 patients (5.7%) and 2 patients (1%), respectively. Conclusions: A multimodality bladder-sparing regimen using IRT offers excellent long-term oncologic outcome in selected patients with MIBC. The late toxicity rate is low, and the majority of patients preserve their functional bladder.« less
Photoneutron radiation field of ducts in barrier of 15 MV medical electron accelerators
NASA Astrophysics Data System (ADS)
Deng, Lei; Zhou, Ning; Chen, Yi-shui; Tu, Yu
2017-11-01
Shielding body of the high-energy medical electron accelerators is always penetrated by ducts, which would influence the shielding capability of local barrier. In order to quantitatively analyze the duct's impact on shielding of the photoneutron from 15 MV accelerators, the ambient dose equivalent rate and energy spectrum at the center of a typical duct and the external mouth of duct were calculated based on MCNP program for the first time. The results demonstrate that leakage neutrons at the external mouth of duct are mainly thermal neutron, and its dose rate is decreased with the increase of the intersection angle between duct and wall as well as the reduction of duct diameter. When a duct in a diameter no more than 30 cm penetrates the wall unidirectionally and the inclined Angle (θ) is 60°, neutron dose rate at the external mouth of duct could meet the requirements of protection. At last, according to the calculation results, some suggestions are proposed for the shielding design of ducts in walls.
Assessment of human exposure doses received by activation of medical linear accelerator components
NASA Astrophysics Data System (ADS)
Lee, D.-Y.; Kim, J.-H.; Park, E.-T.
2017-08-01
This study analyzes the radiation exposure dose that an operator can receive from radioactive components during maintenance or repair of a linear accelerator. This study further aims to evaluate radiological safety. Simulations are performed on 10 MV and 15 MV photon beams, which are the most frequently used high-energy beams in clinics. The simulation analyzes components in order of activity and the human exposure dose based on the amount of neutrons received. As a result, the neutron dose, radiation dose, and human exposure dose are ranked in order of target, primary collimator, flattening filter, multi-leaf collimator, and secondary collimator, where the minimum dose is 9.34E-07 mSv/h and the maximum is 1.71E-02 mSv/h. When applying the general dose limit (radiation worker 20 mSv/year, pubic 1 mSv/year) in accordance with the Nuclear Safety Act, all components of a linear accelerator are evaluated as below the threshold value. Therefore, the results suggest that there is no serious safety issue for operators in maintaining and repairing a linear accelerator. Nevertheless, if an operator recognizes an exposure from the components of a linear accelerator during operation and considers the operating time and shielding against external exposure, exposure of the operator is expected to be minimized.
Dose-Escalated Robotic SBRT for Stage I–II Prostate Cancer
Meier, Robert
2015-01-01
Stereotactic body radiotherapy (SBRT) is the precise external delivery of very high-dose radiotherapy to targets in the body, with treatment completed in one to five fractions. SBRT should be an ideal approach for organ-confined prostate cancer because (I) dose-escalation should yield improved rates of cancer control; (II) the unique radiobiology of prostate cancer favors hypofractionation; and (III) the conformal nature of SBRT minimizes high-dose radiation delivery to immediately adjacent organs, potentially reducing complications. This approach is also more convenient for patients, and is cheaper than intensity-modulated radiotherapy (IMRT). Several external beam platforms are capable of delivering SBRT for early-stage prostate cancer, although most of the mature reported series have employed a robotic non-coplanar platform (i.e., CyberKnife). Several large studies report 5-year biochemical relapse rates which compare favorably to IMRT. Rates of late GU toxicity are similar to those seen with IMRT, and rates of late rectal toxicity may be less than with IMRT and low-dose rate brachytherapy. Patient-reported quality of life (QOL) outcomes appear similar to IMRT in the urinary domain. Bowel QOL may be less adversely affected by SBRT than with other radiation modalities. After 5 years of follow-up, SBRT delivered on a robotic platform is yielding outcomes at least as favorable as IMRT, and may be considered appropriate therapy for stage I–II prostate cancer. PMID:25905037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreuzer, W.
External and internal natural radiation exposure seems to be relatively and absolutely higher in livestock, mainly in herbivores, than in man. The artificial internal and external radiation exposure hardly exists in animals, even not in the vicinity of nuclear reactors. The external radiation exposure resulting from the radionuclides of the fallout of nuclear weapon experiments was negligibly small in Central Europe. The internal radiation exposure after intake of radionuclides with food of animal origin and their accumulation in the organism of the consumer is important. Milk and dairy products may contain considerable amounts of/sup 131/I, /sup 137/Cs, and /sup 90/Sr.more » In meat, /sup 137/Cs-contaminations were found sporadically that were higher than the permissible maximal dose. In total, the artificial radiation exposure did not yet reach the dimensions of the natural radiation exposure, neither in livestock nor in men, even not in reindeers or their breeders in Lapland, where the extreme /sup 137/Cs-contamination of the lichen causes high /sup 137/Csactivity, both in reindeers and in reindeer breeders who live almost exclusively on meat, blood, and milk of the animals. The radioactive contamination of livestock and food of animal origin may cause concern in case of a crisis or emengency. (GE)« less
Comparison of PDR brachytherapy and external beam radiation therapy in the case of breast cancer
NASA Astrophysics Data System (ADS)
Teymournia, L.; Berger, D.; Kauer-Dorner, D.; Poljanc, K.; Seitz, W.; Aiginger, H.; Kirisits, C.
2009-04-01
Pulsed dose rate brachytherapy (PDR) was compared to external beam radiation therapy (EBRT) in the case of breast cancer. The benefits were figured out by evaluation of dosimetric parameters and calculating the normal tissue complication probability (NTCP). PDR plans were set up for five randomly chosen left-sided breast cancer patients delivering a total dose of 50.4 Gy to the target (dose rate 0.8 Gy h-1). For EBRT five left-sided breast cancer patients were planned using 3D-conformal tangential photon beams with a prescribed total dose of 50 Gy (2 Gy/fraction) to the total breast volume. For plan ranking and NTCP calculation the physical dose was first converted into the biologically effective dose (BED) and then into the normalized total dose (NTD) using the linear quadratic model with an α/β ratio of 3 Gy. In PDR the relative effectiveness (RE) was calculated for each dose bin of the differential dose volume histogram to get the BED. NTCPs were calculated for the ipsilateral lung and the heart as contoured on CT slices based on the Lyman model and the Kutcher reduction scheme. Dosimetric parameters as Vth (percentage of the total volume exceeding a threshold dose) and Jackson's fdam (fraction of the organ damaged) were also used to figure out the benefits. The comparison of calculated NTCPs in PDR and EBRT showed no difference between these two modalities. All values were below 0.01%. fdam derived from EBRT was always higher (mean value 8.95% versus 1.21% for the lung). The mean V10 and V20 of the lung related to BED were 6.32% and 1.72% for PDR versus 11.72% and 9.59% for EBRT. When using dosimetric parameters as Vth and fdam, PDR was mostly superior to EBRT in respect of sparing normal tissues. NTCP calculation as a single method of modality ranking showed a lack of information, especially when normal tissue was exposed to low radiation doses.
NASA Astrophysics Data System (ADS)
Bérces, A.; Egyeki, M.; Fekete, A.; Horneck, G.; Kovács, G.; Panitz, C.
2015-01-01
The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose-effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (λ<200 nm) to UVA (315 nm<λ<400 nm), which causes photolesions (photoproducts) in the nucleic acids/their components either by photoionization or excitation. However, these wavelengths cause not only photolesions but in a wavelength-dependent efficiency the reversion of some photolesions, too. Our biological detectors measured in situ conditions the resultant of both reactions induced by the extraterrestrial UV radiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.
Studying radiation hardness of a cadmium tungstate crystal based radiation detector
NASA Astrophysics Data System (ADS)
Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu
2016-06-01
The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.
NASA Technical Reports Server (NTRS)
Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.
2006-01-01
Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose-rate dose to the bone marrow (mean = 2.5 Gy) was consistent with the measured ERR (0.62, 95% Cl =-0.2 to 1.9). Conclusions: An extended, biologically based model for leukemia that includes HSC initiation, inactivation, proliferation, and, uniquely for leukemia, long-range HSC migration predicts, %Kith reasonable accuracy, risks for radiationinduced leukemia associated with exposure to therapeutic doses of radiation.
The dosimetry of brachytherapy-induced erectile dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrick, Gregory S.; Butler, Wayne M
2003-12-31
There is emerging evidence that brachytherapy-induced erectile dysfunction (ED) is technique-related and may be minimized by careful attention to source placement. Herein, we review the relationship between radiation doses to the prostate gland/surrounding structures and the development of brachytherapy-induced ED. The permanent prostate brachytherapy literature was reviewed using MEDLINE searches to ensure completeness. Although the site-specific structure associated with brachytherapy-induced ED remains unknown, there is an increasing body of data implicating the proximal penis. With day 0 CT-based dosimetry, the dose to 50% (D{sub 50}) and 25% (D{sub 25}) of the bulb of the penis should be maintained below 40%more » and 60% mPD, respectively, while the crura D{sub 50} should be maintained below 28% mPD to maximize post-brachytherapy potency. To date, there is no data to suggest that either radiation doses to the neurovascular bundles or choice of isotope is associated with brachytherapy-induced ED, while conflicting data has been reported regarding radiation dose to the prostate and the use of supplemental external beam radiation therapy. Although the etiology of brachytherapy-induced ED is likely multifactorial, the available data supports the proximal penis as an important site-specific structure. Refinements in implant technique, including preplanning and intraoperative seed placement, will result in lower radiation doses to the proximal penis with potential improvement in potency preservation.« less
Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P
2015-03-01
Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.
Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Fox, Colleen J.; Pogue, Brian W.
2013-01-01
Purpose: Čerenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the Čerenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical Čerenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams. Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. Čerenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on Čerenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm2), incident angles (0°–70°) and imaging regions were all varied. Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their Čerenkov emission is proportional to dose. Directly simulated local intensity of Čerenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of Čerenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the results show there is good potential for real-time superficial dose monitoring. Dose imaging under normal ambient room lighting was validated, using gated detection and a breast phantom. Conclusions: This study indicates that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging in real time for external beam radiotherapy with megavoltage x-ray beams. PMID:24089916
Ozaki, Y; Watanabe, H; Kaida, A; Miura, M; Nakagawa, K; Toda, K; Yoshimura, R; Sumi, Y; Kurabayashi, T
2017-07-01
Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy
NASA Astrophysics Data System (ADS)
Götz, Th I.; Ermer, M.; Salas-González, D.; Kellermeier, M.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.
2017-10-01
High dose rate brachytherapy affords a frequent reassurance of the precise dwell positions of the radiation source. The current investigation proposes a multi-dimensional scaling transformation of both data sets to estimate dwell positions without any external reference. Furthermore, the related distributions of dwell positions are characterized by uni—or bi—modal heavy—tailed distributions. The latter are well represented by α—stable distributions. The newly proposed data analysis provides dwell position deviations with high accuracy, and, furthermore, offers a convenient visualization of the actual shapes of the catheters which guide the radiation source during the treatment.
Jangda, Abdul Qadir; Hussein, Sherali
2012-05-01
In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility.
Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F
2009-01-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.
Bauer, S; Gusev, B I; Pivina, L M; Apsalikov, K N; Grosche, B
2006-01-01
This paper describes the Semipalatinsk historical cohort study and, in particular, examines the association between combined external and internal radiation exposure and esophagus cancer. Esophagus cancer is the most frequent single cancer site in the cause of death follow-up for the Semipalatinsk cohort. Set up in the 1960s, this historical cohort included 10 exposed settlements in the vicinity of the Semipalatinsk nuclear test site in East Kazakhstan as well as 6 comparison settlements in a low exposure area of the same region. The external and internal radiation doses to the population of the settlements under study were mainly due to local fallout from atmospheric nuclear testing (1949-1962). The database includes dosimetry and health information for 19.545 inhabitants of exposed and comparison villages in the Semipalatinsk region, comprising a total of 582.750 person-years of follow-up between 1960 and 1999. Cumulative effective dose estimates in this cohort range from 20 mSv to -4 Sv, with a mean dose of 634 mSv in the exposed group. Relative risks were calculated in terms of rate ratios, using a Poisson regression model for grouped person-time data. Esophagus cancer was found substantially elevated, with a statistically significant increase of the relative risk with dose and an ERR/Sv of 2.37 (1.45; 3.28) for the total cohort. If the data set was restricted to the exposed group only, the ERR/Sv was found considerably lower (0.18 (-0.16; 0.52)), whereas the dose-response remained significant only in women. Overall, our results based on the Semipalatinsk historical cohort indicate an association between fallout exposure and the risk of esophagus cancer that should be further investigated.
Benton, Michael G; Somasundaram, Swetha; Glasner, Jeremy D; Palecek, Sean P
2006-12-01
One of the most crucial tasks for a cell to ensure its long term survival is preserving the integrity of its genetic heritage via maintenance of DNA structure and sequence. While the DNA damage response in the yeast Saccharomyces cerevisiae, a model eukaryotic organism, has been extensively studied, much remains to be elucidated about how the organism senses and responds to different types and doses of DNA damage. We have measured the global transcriptional response of S. cerevisiae to multiple doses of two representative DNA damaging agents, methyl methanesulfonate (MMS) and gamma radiation. Hierarchical clustering of genes with a statistically significant change in transcription illustrated the differences in the cellular responses to MMS and gamma radiation. Overall, MMS produced a larger transcriptional response than gamma radiation, and many of the genes modulated in response to MMS are involved in protein and translational regulation. Several clusters of coregulated genes whose responses varied with DNA damaging agent dose were identified. Perhaps the most interesting cluster contained four genes exhibiting biphasic induction in response to MMS dose. All of the genes (DUN1, RNR2, RNR4, and HUG1) are involved in the Mec1p kinase pathway known to respond to MMS, presumably due to stalled DNA replication forks. The biphasic responses of these genes suggest that the pathway is induced at lower levels as MMS dose increases. The genes in this cluster with a threefold or greater transcriptional response to gamma radiation all showed an increased induction with increasing gamma radiation dosage. Analyzing genome-wide transcriptional changes to multiple doses of external stresses enabled the identification of cellular responses that are modulated by magnitude of the stress, providing insights into how a cell deals with genotoxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, R.; Brandao-Mello, C.E.; Oliveira, A.R.
In September 1987, the Goiania radiological accident involving a source of {sup 137}Cs culminated in about 140 victims who presented internal and/or external contamination and/or external exposure to radiation and/or radiation burns. Internal contamination was verified through analysis of urine and fecal samples. Internal contamination was also evaluated by measurements performed at the whole-body counter installed in Goiania in November 1987. To enhance the decorporation of 137Cs, patients were treated with the following: (1) Prussian Blue, oral administration, in 46 patients; (2) diuretics, oral administration, in 17 patients; (3) induced perspiration, increasing {sup 137}Cs elimination. These procedures were done undermore » rigorous clinical evaluation and considering the data from assay of excreta and data obtained from the whole-body counter. The doses of Prussian Blue exceeded about 6.5 times the dose previously indicated in the literature. It was the first time diuretics were used in humans to treat {sup 137}Cs internal contamination. The results of these procedures are discussed.« less
Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan
2012-01-01
A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.
NASA Astrophysics Data System (ADS)
Røthe Arnesen, Marius; Paulsen Hellebust, Taran; Malinen, Eirik
2017-03-01
Tumour shrinkage occurs during fractionated radiotherapy and is regulated by radiation induced cellular damage, repopulation of viable cells and clearance of dead cells. In some cases additional tumour shrinkage during external beam therapy may be beneficial, particularly for locally advanced cervical cancer where a small tumour volume may simplify and improve brachytherapy. In the current work, a mathematical tumour model is utilized to investigate how local dose escalation affects tumour shrinkage, focusing on implications for brachytherapy. The iterative two-compartment model is based upon linear-quadratic radiation response, a doubling time for viable cells and a half-time for clearance of dead cells. The model was individually fitted to clinical tumour volume data from fractionated radiotherapy of 25 cervical cancer patients. Three different fractionation patterns for dose escalation, all with an additional dose of 12.2 Gy, were simulated and compared to standard fractionation in terms of tumour shrinkage. An adaptive strategy where dose escalation was initiated after one week of treatment was also considered. For 22 out of 25 patients, a good model fit was achieved to the observed tumour shrinkage. A large degree of inter-patient variation was seen in predicted volume reduction following dose escalation. For the 10 best responding patients, a mean tumour volume reduction of 34 ± 3% (relative to standard treatment) was estimated at the time of brachytherapy. Timing of initiating dose escalation had a larger impact than the number of fractions applied. In conclusion, the model was found useful in evaluating the impact from dose escalation on tumour shrinkage. The results indicate that dose escalation could be conducted from the start of external beam radiotherapy in order to obtain additional tumour shrinkage before brachytherapy.
Kubota, Yoshihisa; Takahashi, Hiroyuki; Watanabe, Yoshito; Fuma, Shoichi; Kawaguchi, Isao; Aoki, Masanari; Kubota, Masahide; Furuhata, Yoshiaki; Shigemura, Yusaku; Yamada, Fumio; Ishikawa, Takahiro; Obara, Satoshi; Yoshida, Satoshi
2015-04-01
The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium ((134)Cs and (137)Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (<10% of the total absorbed dose rate). The average total absorbed dose rate to wild rodents inhabiting the sampling area was estimated to be approximately 52 μGy h(-1) (1.2 mGy d(-1)), even 3 years after the accident. This dose rate exceeds 0.1-1 mGy d(-1) derived consideration reference level for Reference rat proposed by the International Commission on Radiological Protection (ICRP). Copyright © 2015 Elsevier Ltd. All rights reserved.
Denham, James W; Steigler, Allison; Joseph, David; Lamb, David S; Spry, Nigel A; Duchesne, Gillian; Atkinson, Chris; Matthews, John; Turner, Sandra; Kenny, Lizbeth; Tai, Keen-Hun; Gogna, Nirdosh Kumar; Gill, Suki; Tan, Hendrick; Kearvell, Rachel; Murray, Judy; Ebert, Martin; Haworth, Annette; Kennedy, Angel; Delahunt, Brett; Oldmeadow, Christopher; Holliday, Elizabeth G; Attia, John
2015-06-01
The relative effects of radiation dose escalation (RDE) and androgen suppression (AS) duration on local prostatic progression (LP) remain unclear. We addressed this in the TROG 03.04 RADAR trial by incorporating a RDE programme by stratification at randomisation. Men were allocated 6 or 18 months AS±18 months zoledronate (Z). The main endpoint was a composite of clinically diagnosed LP or PSA progression with a PSA doubling time ⩾6 months. Fine and Gray competing risk modelling with adjustment for site clustering produced cumulative incidence estimates at 6.5 years for each RDE group. Composite LP declined coherently in the 66, 70 and 74 Gy external beam dosing groups and was lowest in the high dose rate brachytherapy boost (HDRB) group. At 6.5 years, adjusted cumulative incidences were 22%, 15%, 13% and 7% respectively. Compared to 6 months AS, 18 months AS also significantly reduced LP (p<0.001). Post-radiation urethral strictures were documented in 45 subjects and increased incrementally in the dosing groups. Crude incidences were 0.8%, 0.9%, 3.8% and 12.7% respectively. RDE and increasing AS independently reduce LP and increase urethral strictures. The risks and benefits to the individual must be balanced when selecting radiation dose and AS duration. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ramos, Miguel; Montoro, Alegria; Almonacid, Miguel; Ferrer, Silvia; Barquinero, Joan Francesc; Tortosa, Ricardo; Verdú, Gumersindo; Rodríguez, Pilar; Barrios, Lleonard; Villaescusa, Juan Ignacio
2008-01-01
Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation, which extend during all their professional activities. These exposures can derive, due to the irradiation of skin tissues and peripheral blood, in deterministic effects (radiodermitis, aged skin, hands depilation) or stochastic ones (skin and non-solid cancers incidence). Epidemiological studies of population exposed to ionizing radiation provide information of radio-induced effects. The radiation risk or radiological detriment has been estimated from a group of six exposed interventionist radiologists of the Hospital La Fe (Valencia, Spain). Dosimetry has been periodically registered from TLDs and wrist dosimeters (physical methods) and estimated through translocations in lymphocytes of peripheral blood (biological methods), by extrapolating the yield of translocations to their respective dose-effect curves. The probability of non-melanoma skin cancer and leukaemia (acute myelogenous, acute lymphocytic and chronic myelogenous leukaemia) incidence has been estimated through the software RADRISK. This software is based on a transport model from epidemiological studies of population exposed to external low-LET ionizing radiation [1]. Other non-solid carcinomas have not been considered due to their low statistical power, such as myeloid and non-Hodgkin lymphomas. The discrepancies observed between the physically recorded doses and biological estimated doses could indicate that exposed workers did not always wear their dosimeters or these dosimeters were not always exposed to the radiation field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Pei-Jan P., E-mail: Pei-Jan.Lin@vcuhealth.org; Schueler, Beth A.; Balter, Stephen
2015-12-15
Due to the proliferation of disciplines employing fluoroscopy as their primary imaging tool and the prolonged extensive use of fluoroscopy in interventional and cardiovascular angiography procedures, “dose-area-product” (DAP) meters were installed to monitor and record the radiation dose delivered to patients. In some cases, the radiation dose or the output value is calculated, rather than measured, using the pertinent radiological parameters and geometrical information. The AAPM Task Group 190 (TG-190) was established to evaluate the accuracy of the DAP meter in 2008. Since then, the term “DAP-meter” has been revised to air kerma-area product (KAP) meter. The charge of TGmore » 190 (Accuracy and Calibration of Integrated Radiation Output Indicators in Diagnostic Radiology) has also been realigned to investigate the “Accuracy and Calibration of Integrated Radiation Output Indicators” which is reflected in the title of the task group, to include situations where the KAP may be acquired with or without the presence of a physical “meter.” To accomplish this goal, validation test protocols were developed to compare the displayed radiation output value to an external measurement. These test protocols were applied to a number of clinical systems to collect information on the accuracy of dose display values in the field.« less
Willegaignon, José; Crema, Karin Paola; Oliveira, Nathaliê Canhameiro; Pelissoni, Rogério Alexandre; Coura-Filho, George Barberio; Sapienza, Marcelo Tatit; Buchpiguel, Carlos Alberto
2018-06-19
I-metaiodobenzylguanidine (I-MIBG) has been used in the diagnosis and therapy of neuroblastoma in adult and pediatric patients for many years. In this study, we evaluated whole-body I-MIBG clearance and radiation doses received by patients, family caregivers, and medical staff to establish appropriate radiation safety measures to be used in therapy applications. Research was focused on 23 children and adolescents with metastatic neuroblastoma, with ages ranging from 1.8 to 13 years, being treated with I-MIBG. Based on measured external dose rates from patients, dosimetric data to patients, family members, and others were calculated. The mean ± SD I-MIBG activity administered was 8.55 ± 1.69 GBq. Percent whole-body retention rates of I-MIBG at 24, 48, and 72 hours after administration were 48% ± 7%, 23% ± 7%, and 12% ± 6%, with a whole-body I-MIBG effective half-life of 23 ± 5 hours for all patients. The mean doses for patients were 0.234 ± 0.096 mGy·MBq to red-marrow and 0.251 ± 0.101 mGy·MBq to whole body. The maximum potential radiation doses transmitted by patients to others at 1.0 m was estimated to be 11.9 ± 3.4 mSv, with 97% of this dose occurring over 120 hours after therapy administration. Measured mean dose received by the 22 family caregivers was 1.88 ± 1.85 mSv, and that received by the 19 pediatric physicians was 43 ± 51 μSv. In this study, we evaluated the whole-body clearance of I-MIBG in 23 pediatric patients, and the radiation doses received by family caregivers and medical staff during these therapy procedures, thus facilitating the establishment of radiation safety measures to be applied in pediatric therapy.
Hurwitz, Mark D
2008-11-01
External-beam radiation therapy (EBRT) combined with brachytherapy is an attractive treatment option for selected patients with clinically localized prostate cancer. This therapeutic strategy offers dosimetric coverage if local-regional microscopic disease is present and provides a highly conformal boost of radiation to the prostate and immediate surrounding tissues. Either low-dose-rate (LDR) permanent brachytherapy or high-dose-rate (HDR) temporary brachytherapy can be combined with EBRT; such combined-modality therapy (CMT) is typically used to treat patients with intermediate-risk to high-risk, clinically localized disease. Controversy persists with regard to indications for CMT, choice of LDR or HDR boost, isotope selection for LDR, and integration of EBRT and brachytherapy. Initial findings from prospective, multicenter trials of CMT support the feasibility of this strategy. Updated results from these trials as well as those of ongoing and new phase III trials should help to define the role of CMT in the management of prostate cancer. In the meantime, long-term expectations for outcomes of CMT are based largely on the experience of single institutions, which demonstrate that CMT with EBRT and either LDR or HDR brachytherapy can provide freedom from disease recurrence with acceptable toxicity.
AN ESTIMATION OF THE EXPOSURE OF THE POPULATION OF ISRAEL TO NATURAL SOURCES OF IONIZING RADIATION.
Epstein, L; Koch, J; Riemer, T; Haquin, G; Orion, I
2017-11-01
The radiation dose to the population of Israel due to exposure to natural sources of ionizing radiation was assessed. The main contributor to the dose is radon that accounts for 60% of the exposure to natural sources. The dose due to radon inhalation was assessed by combining the results of a radon survey in single-family houses with the results of a survey in apartments in multi-storey buildings. The average annual dose due to radon inhalation was found to be 1.2 mSv. The dose rate due to exposure to cosmic radiation was assessed using a code that calculates the dose rate at different heights above sea level, taking into account the solar cycle. The annual dose was calculated based on the fraction of time spent indoors and the attenuation provided by buildings and was found to be 0.2 mSv. The annual dose due to external exposure to the terrestrial radionuclides was similarly assessed. The indoor dose rate was calculated using a model that takes into account the concentrations of the natural radionuclides in building materials, the density and the thickness of the walls. The dose rate outdoors was calculated based on the concentrations of the natural radionuclides in different geological units in Israel as measured in an aerial survey and measurements above ground. The annual dose was found to be 0.2 mSv. Doses due to internal exposure other than exposure to radon were also calculated and were found to be 0.4 mSv. The overall annual exposure of the population of Israel to natural sources of ionizing radiation is therefore 2 mSv and ranges between 1.7 and 2.7 mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Activity measurement and effective dose modelling of natural radionuclides in building material.
Maringer, F J; Baumgartner, A; Rechberger, F; Seidel, C; Stietka, M
2013-11-01
In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pi, Yifei; Zhang, Lian; Huo, Wanli; Feng, Mang; Chen, Zhi; Xu, X. George
2017-09-01
A group of mesh-based and age-dependent family phantoms for Chinese populations were developed in this study. We implemented a method for deforming original RPI-AM and RPI-AF models into phantoms of different ages: 5, 10 ,15 and adult. More than 120 organs for each model were processed to match with the values of the Chinese reference parameters within 0.5%. All of these phantoms were then converted to voxel format for Monte Carlo simulations. Dose coefficients for adult models were counted to compare with those of RPI-AM and RPI-AF. The results show that there are significant differences between absorbed doses of RPI phantoms and these of our adult phantoms at low energies. Comparisons for the dose coefficients among different ages and genders were also made. it was found that teenagers receive more radiation doses than adults under the same irradiation condition. This set of phantoms can be utilized to estimate dosimetry for Chinese population for radiation protection, medical imaging, and radiotherapy.
10 CFR 835.209 - Concentrations of radioactive material in air.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 835.209 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on bioassay...
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
2013-12-01
Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harriss-Phillips, Wendy M., E-mail: wharrphil@gmail.com; School of Chemistry and Physics, University of Adelaide, Adelaide, South Australia; Bezak, Eva
Purpose: To simulate stereotactic ablative radiation therapy on hypoxic and well-oxygenated in silico tumors, incorporating probabilistic parameter distributions and linear-quadratic versus linear-quadratic-cubic methodology and the evaluation of optimal fractionation schemes using biological effective dose (BED{sub α/β=10} {sub or} {sub 3}) comparisons. Methods and Materials: A temporal tumor growth and radiation therapy algorithm simulated high-dose external beam radiation therapy using stochastic methods. Realistic biological proliferative cellular hierarchy and pO{sub 2} histograms were incorporated into the 10{sup 8}-cell tumor model, with randomized radiation therapy applied during continual cell proliferation and volume-based gradual tumor reoxygenation. Dose fractions ranged from 6-35 Gy, with predictive outcomes presentedmore » in terms of the total doses (converted to BED) required to eliminate all cells that could potentially regenerate the tumor. Results: Well-oxygenated tumor control BED{sub 10} outcomes were not significantly different for high-dose versus conventional radiation therapy (BED{sub 10}: 79-84 Gy; Equivalent Dose in 2 Gy fractions with α/β of 10: 66-70 Gy); however, total treatment times decreased from 7 down to 1-3 weeks. For hypoxic tumors, an additional 28 Gy (51 Gy BED{sub 10}) was required, with BED{sub 10} increasing with dose per fraction due to wasted dose in the final fraction. Fractions of 9 Gy compromised well for total treatment time and BED, with BED{sub 10}:BED{sub 3} of 84:176 Gy for oxic and 132:278 Gy for non-reoxygenating hypoxic tumors. Initial doses of 12 Gy followed by 6 Gy further increased the therapeutic ratio. When delivering ≥9 Gy per fraction, applying reoxygenation and/or linear-quadratic-cubic cell survival both affected tumor control doses by a significant 1-2 fractions. Conclusions: The complex temporal dynamics of tumor oxygenation combined with probabilistic cell kinetics in the modeling of radiation therapy requires sophisticated stochastic modeling to predict tumor cell kill. For stereotactic ablative radiation therapy, high doses in the first week followed by doses that are more moderate may be beneficial because a high percentage of hypoxic cells could be eradicated early while keeping the required BED{sub 10} relatively low and BED{sub 3} toxicity to tolerable levels.« less
Weinstein, Jeff I; Payne, Sarah; Poulson, Jean M; Azuma, Chieko
2009-01-01
A standard of therapy for osteosarcoma includes amputation with or without adjuvant chemotherapy. There is a subset of dogs with osteosarcoma that are unsuitable for amputation. We evaluated kinetic variables in dogs with appendicular osteosarcoma treated with a single 8 Gy dose of radiation. Eighteen pet dogs with appendicular osteosarcoma received one 8 Gy fraction of palliative radiation on day 0. Force plate measurements and clinical assessments were made on days 0, 7, 14, and 21. Peak vertical forces (Fz) were recorded for each limb and a symmetric index (SI) was calculated. There were no significant changes in kinetic parameters after one 8 Gy dose of radiation therapy. Nine of these 18 dogs exhibited increased limb function at day 21 based on force plate analysis. Significant factors affecting Fz included gender and tumor location. There was a significant correlation between Fz and response to therapy based on SI at day 21. SI seems to be useful to objectively assess response in this mixed population of dogs. One 8 Gy fraction of radiation therapy alone did not reduce lameness associated with appendicular osteosarcoma, but a subset of dogs did have improved limb function after a single dose.
NASA Astrophysics Data System (ADS)
Fraser, Danielle
In radiation therapy an uncertainty in the delivered dose always exists because anatomic changes are unpredictable and patient specific. Image guided radiation therapy (IGRT) relies on imaging in the treatment room to monitor the tumour and surrounding tissue to ensure their prescribed position in the radiation beam. The goal of this thesis was to determine the dosimetric impact on the misaligned radiation therapy target for three cancer sites due to common setup errors; organ motion, tumour tissue deformation, changes in body habitus, and treatment planning errors. For this purpose, a novel 3D ultrasound system (Restitu, Resonant Medical, Inc.) was used to acquire a reference image of the target in the computed tomography simulation room at the time of treatment planning, to acquire daily images in the treatment room at the time of treatment delivery, and to compare the daily images to the reference image. The measured differences in position and volume between daily and reference geometries were incorporated into Monte Carlo (MC) dose calculations. The EGSnrc (National Research Council, Canada) family of codes was used to model Varian linear accelerators and patient specific beam parameters, as well as to estimate the dose to the target and organs at risk under several different scenarios. After validating the necessity of MC dose calculations in the pelvic region, the impact of interfraction prostate motion, and subsequent patient realignment under the treatment beams, on the delivered dose was investigated. For 32 patients it is demonstrated that using 3D conformal radiation therapy techniques and a 7 mm margin, the prescribed dose to the prostate, rectum, and bladder is recovered within 0.5% of that planned when patient setup is corrected for prostate motion, despite the beams interacting with a new external surface and internal tissue boundaries. In collaboration with the manufacturer, the ultrasound system was adapted from transabdominal imaging to neck imaging. Two case studies of nasopharyngeal cancer are discussed. The deformation of disease-positive cervical lymph nodes was monitored throughout treatment. Node volumes shrunk to 17% of the initial volume, moved up 1.3 cm, and received up to a 12% lower dose than that prescribed. It is shown that difficulties in imaging soft tissue in the neck region are circumvented with ultrasound imaging, and after dosimetric verification it is argued that adaptive replanning may be more beneficial than patient realignment when intensity modulated radiation therapy techniques are used. Some of the largest dose delivery errors were found in external electron beam treatments for breast cancer patients who underwent breast conserving surgery. Inaccuracies in conventional treatment planning resulted in substantial target dose discrepancies of up to 88%. When patient setup errors, interfraction tumour bed motion, and tissue remodeling were considered, inadequate target coverage was exacerbated. This thesis quantifies the dose discrepancy between that prescribed and that delivered. I delve into detail for common IGRT treatment sites, and illuminate problems that have not received much attention for less common IGRT treatment sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jeffrey M.; Handorf, Elizabeth A.; Price, Robert A.
A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 receivedmore » a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.« less
NASA Astrophysics Data System (ADS)
Xu, X. George; Bednarz, Bryan; Paganetti, Harald
2008-07-01
It has been long known that patients treated with ionizing radiation carry a risk of developing a second cancer in their lifetimes. Factors contributing to the recently renewed concern about the second cancer include improved cancer survival rate, younger patient population as well as emerging treatment modalities such as intensity-modulated radiation treatment (IMRT) and proton therapy that can potentially elevate secondary exposures to healthy tissues distant from the target volume. In the past 30 years, external-beam treatment technologies have evolved significantly, and a large amount of data exist but appear to be difficult to comprehend and compare. This review article aims to provide readers with an understanding of the principles and methods related to scattered doses in radiation therapy by summarizing a large collection of dosimetry and clinical studies. Basic concepts and terminology are introduced at the beginning. That is followed by a comprehensive review of dosimetry studies for external-beam treatment modalities including classical radiation therapy, 3D-conformal x-ray therapy, intensity-modulated x-ray therapy (IMRT and tomotherapy) and proton therapy. Selected clinical data on second cancer induction among radiotherapy patients are also covered. Problems in past studies and controversial issues are discussed. The needs for future studies are presented at the end.
Okamoto, Daisuke; Nishie, Akihiro; Asayama, Yoshiki; Tajima, Tsuyoshi; Ishigami, Kousei; Kakihara, Daisuke; Nakayama, Tomohiro; Ohga, Saiji; Yoshitake, Tadamasa; Shioyama, Yoshiyuki; Honda, Hiroshi
2014-07-01
To evaluate if Gd-EOB-DTPA-enhanced MRI could identify liver tissue damage caused by radiation exposure in patients undergoing external beam radiation therapy. We enrolled 11 patients who underwent Gd-EOB-DTPA-enhanced MRI during or after radiotherapy in which the radiation field included the liver. External beam radiotherapy was delivered through multiple fields using a 10-MV linear accelerator. The hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI were qualitatively evaluated for the presence of a decreased uptake of Gd-EOB-DTPA in the irradiated area in the liver. Next, signal intensity (SI) ratio of the irradiated area to the non-irradiated liver parenchyma was also calculated. The absorbed dose of the irradiated area in the liver was standardized using equivalent dose in 2Gy fraction (EQD2) and biological effective dose (BED). The results of qualitative analysis were compared with EQD2 or BED, and linear regression analysis was performed between EQD2 or BED and SI ratio. Twenty-two irradiated areas were evaluated. Qualitative analysis revealed a decreased uptake of Gd-EOB-DTPA in 14 areas and no decreased uptake of Gd-EOB-DTPA in eight areas. The thresholds of EQD2 and BED causing a decreased uptake of Gd-EOB-DTPA were considered to be 24 to 29Gy and 29 to 35Gy, respectively. Quantitatively, SI ratio decreased as EQD2 or BED increased (r=0.89, p<0.001), and the inverse relationship between signal enhancement and the absorbed dose in the irradiated area was obtained. One area with EQD2 of 50Gy and BED of 60Gy showed a slightly decreased uptake of Gd-EOB-DTPA on the 40th day but a clearly decreased uptake of Gd-EOB-DTPA on the 123rd day from initiation of radiotherapy. Gd-EOB-DTPA-enhanced MRI described RLI as a decreased uptake of Gd-EOB-DTPA matching the irradiated area. The occurrence of this finding was significantly correlated with the absorbed dose of the irradiated area in the liver. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahmud, M. H.; Nordin, A. J.; Saad, F. F. Ahmad; Fattah Azman, A. Z.
2014-11-01
This study aims to estimate the radiation effective dose resulting from whole body fluorine-18 flourodeoxyglucose Positron Emission Tomography (18F-FDG PET) scanning as compared to conservative Computed Tomography (CT) techniques in evaluating oncology patients. We reviewed 19 oncology patients who underwent 18F-FDG PET/CT at our centre for cancer staging. Internal and external doses were estimated using radioactivity of injected FDG and volume CT Dose Index (CTDIvol), respectively with employment of the published and modified dose coefficients. The median differences of dose among the conservative CT and PET protocols were determined using Kruskal Wallis test with p < 0.05 considered as significant. The median (interquartile range, IQR) effective doses of non-contrasted CT, contrasted CT and PET scanning protocols were 7.50 (9.35) mSv, 9.76 (3.67) mSv and 6.30 (1.20) mSv, respectively, resulting in the total dose of 21.46 (8.58) mSv. Statistically significant difference was observed in the median effective dose between the three protocols (p < 0.01). The effective doses of whole body 18F-FDG PET technique may be effective the lowest amongst the conventional CT imaging techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wielen, Gerard J. van der; Hoogeman, Mischa S.; Dohle, Gert R.
2008-07-01
Purpose: To analyze the correlation between dose-volume parameters of the corpora cavernosa and erectile dysfunction (ED) after external beam radiotherapy (EBRT) for prostate cancer. Methods and Materials: Between June 1997 and February 2003, a randomized dose-escalation trial comparing 68 Gy and 78 Gy was conducted. Patients at our institute were asked to participate in an additional part of the trial evaluating sexual function. After exclusion of patients with less than 2 years of follow-up, ED at baseline, or treatment with hormonal therapy, 96 patients were eligible. The proximal corpora cavernosa (crura), the superiormost 1-cm segment of the crura, and themore » penile bulb were contoured on the planning computed tomography scan and dose-volume parameters were calculated. Results: Two years after EBRT, 35 of the 96 patients had developed ED. No statistically significant correlations between ED 2 years after EBRT and dose-volume parameters of the crura, the superiormost 1-cm segment of the crura, or the penile bulb were found. The few patients using potency aids typically indicated to have ED. Conclusion: No correlation was found between ED after EBRT for prostate cancer and radiation dose to the crura or penile bulb. The present study is the largest study evaluating the correlation between ED and radiation dose to the corpora cavernosa after EBRT for prostate cancer. Until there is clear evidence that sparing the penile bulb or crura will reduce ED after EBRT, we advise to be careful in sparing these structures, especially when this involves reducing treatment margins.« less
Construction of new skin models and calculation of skin dose coefficients for electron exposures
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi
2016-08-01
The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.
The Application of FLUKA to Dosimetry and Radiation Therapy
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni
2005-01-01
Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.
Cancer Risks Associated with External Radiation From Diagnostic Imaging Procedures
Linet, Martha S.; Slovis, Thomas L.; Miller, Donald L.; Kleinerman, Ruth; Lee, Choonsik; Rajaraman, Preetha; de Gonzalez, Amy Berrington
2012-01-01
The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate widespread use of evidence-based appropriateness criteria for decisions about imaging procedures, oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives, development of electronic lifetime records of imaging procedures for patients and their physicians, and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures. PMID:22307864
Dose assessment in environmental radiological protection: State of the art and perspectives.
Stark, Karolina; Goméz-Ros, José M; Vives I Batlle, Jordi; Lindbo Hansen, Elisabeth; Beaugelin-Seiller, Karine; Kapustka, Lawrence A; Wood, Michael D; Bradshaw, Clare; Real, Almudena; McGuire, Corynne; Hinton, Thomas G
2017-09-01
Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zaebst, D D; Seel, E A; Yiin, J H; Nowlin, S J; Chen, P
2009-07-01
In support of a nested case-control study at a U.S. naval shipyard, the results of the reconstruction of historical exposures were summarized, and an analysis was undertaken to determine the impact of historical exposures to potential chemical confounders. The nested case-control study (N = 4388) primarily assessed the relationship between lung cancer and external ionizing radiation. Chemical confounders considered important were asbestos and welding fume (as iron oxide fume), and the chromium and nickel content of welding fume. Exposures to the potential confounders were estimated by an expert panel based on a set of quantitatively defined categories of exposure. Distributions of the estimated exposures and trends in exposures over time were examined for the study population. Scatter plots and Spearman rank correlation coefficients were used to assess the degree of association between the estimates of exposure to asbestos, welding fume, and ionizing radiation. Correlation coefficients were calculated separately for 0-, 15-, 20-, and 25-year time-lagged cumulative exposures, total radiation dose (which included medical X-ray dose) and occupational radiation dose. Exposed workers' estimated cumulative exposures to asbestos ranged from 0.01 fiber-days/cm(3) to just under 20,000 fiber-days/cm(3), with a median of 29.0 fiber-days/cm(3). Estimated cumulative exposures to welding fume ranged from 0.16 mg-days/m(3) to just over 30,000 mg-days/m(3), with a median of 603 mg-days/m(3). Spearman correlation coefficients between cumulative radiation dose and cumulative asbestos exposures ranged from 0.09 (occupational dose) to 0.47 (total radiation dose), and those between radiation and welding fume from 0.14 to 0.47. The estimates of relative risk for ionizing radiation and lung cancer were unchanged when lowest and highest estimates of asbestos and welding fume were considered. These results suggest a fairly large proportion of study population workers were exposed to asbestos and welding fume, that the absolute level of confounding exposure did not affect the risk estimates, and that weak relationships existed between monitored lifetime cumulative occupational radiation dose and asbestos or welding fume.
High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study
NASA Astrophysics Data System (ADS)
Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana
2017-01-01
Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased radioresistance caused by hypoxia if fast reoxygenation is assumed.
Five-Year ALARA Review of Dosimetry Results 1 January 2009 through 31 December 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Luke R
2014-08-01
A review of dosimetry results from 1 January 2009 through 31 December 2013 was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform to the ALARA philosophy. This included a review and evaluation of personnel dosimetry (external and internal) results at Sandia National Laboratories, New Mexico as well as at Sandia National Laboratories, California. Additionally, results of environmental monitoring efforts at Sandia National Laboratories, New Mexico were reviewed. ALARA is a philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general publicmore » to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.« less
Assessment of medical occupational radiation doses in Costa Rica.
Mora, P; Acuña, M
2011-09-01
Participation of the University of Costa Rica (UCR) in activities in an IAEA Regional Project RLA/9/066 through training, equipment and expert missions, has enabled to setting up of a national personal monitoring laboratory. Since 2007, the UCR has been in charge of monitoring around 1800 medical radiation workers of the Social Security System. Individual external doses are measured with thermoluminescent dosemeter using a Harshaw 6600 Plus reader. The service has accreditation with ISO/IEC 17025:2005. Distribution of monitored medical personnel is as follows: 83 % in diagnostic radiology, 6 % in nuclear medicine and 6 % in radiotherapy. Preliminary values for the 75 percentile of annual H(p)(10) in mSv are: radiology 0.37; interventional radiology 0.41; radiotherapy 0.53 and nuclear medicine 1.55. The service provided by the UCR in a steady and reliable way can help to implement actions to limit the doses received by the medical workers and optimise their radiation protection programs.
On the need for quality assurance in superficial kilovoltage radiotherapy.
Austerlitz, C; Mota, H; Gay, H; Campos, D; Allison, R; Sibata, C
2008-01-01
External auditing of beam output and energy qualities of four therapeutic X-ray machines were performed in three radiation oncology centres in northeastern Brazil. The output and half-value layers (HVLs) were determined using a parallel-plate ionisation chamber and high-purity aluminium foils, respectively. The obtained values of absorbed dose to water and energy qualities were compared with those obtained by the respective institutions. The impact on the prescribed dose was analysed by determining the half-value depth (D(1/2)). The beam outputs presented percent differences ranging from -13 to +25%. The ratio between the HVL in use by the institution and the measurements obtained in this study ranged from 0.75 to 2.33. Such deviations in HVL result in percent differences in dose at D(1/2) ranging from -52 to +8%. It was concluded that dosimetric quality audit programmes in radiation therapy should be expanded to include dermatological radiation therapy and such audits should include HVL verification.
Public exposure due to external gamma background radiation in boundary areas of Iran.
Pooya, S M Hosseini; Dashtipour, M R; Enferadi, A; Orouji, T
2015-09-01
A monitoring program in boundary areas of a country is an appropriate way to indicate the level of public exposure. In this research, gamma background radiation was measured using TL dosimeters at 12 boundary areas as well as in the capital city of Iran during the period 2010 to 2011. The measurements were carried out in semi-annual time intervals from January to June and July to December in each year. The maximum average dose equivalent value measured was approximately 70 μSv/month for Tehran city. Also, the average dose values obtained were less than 40 μSv/month for all the cities located at the sea level except that of high level natural radiation area of Ramsar, and more than 55 μSv/month for the higher elevation cities. The public exposure due to ambient gamma dose equivalent in Iran is within the levels reported by UNSCEAR. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preliminary results of radiation measurements on EURECA
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.
1995-01-01
The eleven-month duration of the EURECA mission allows long-term radiation effects to be studied similarly to those of the Long Duration Exposure Facility (LDEF). Basic data can be generated for projections to crew doses and electronic and computer reliability on spacecraft missions. A radiation experiment has been designed for EURECA which uses passive integrating detectors to measure average radiation levels. The components include a Trackoscope, which employs fourteen plastic nuclear track detector (PNTD) stacks to measure the angular dependence of high LET (greater than or equal to 6 keV/micro m) radiation. Also included are TLD's for total absorbed doses, thermal/resonance neutron detectors (TRND's) for low energy neutron fluences and a thick PNTD stack for depth dependence measurements. LET spectra are derived from the PNTD measurements. Preliminary TLD results from seven levels within the detector array show that integrated does inside the flight canister varied from 18.8 +/- 0.6 cGy to 38.9 +/- 1.2 cGy. The TLD's oriented toward the least shielded direction averaged 53% higher in dose than those oriented away from the least shielded direction (minimum shielding toward the least shielded direction varied from 1.13 to 7.9 g/cm(exp 2), Al equivalent). The maximum dose rate on EURECA (1.16 mGy/day) was 37% of the maximum measured on LDEF and dose rates at all depths were less than measured on LDEF. The shielding external to the flight canister covered a greater solid angle about the canister than the LDEF experiments.
The evaluation the magnitude radiation exposure dose rate in digital radiography room design
NASA Astrophysics Data System (ADS)
Dwiyanto, Agung; Setia Budi, Wahyu; Hardiman, Gagoek
2017-12-01
This study discusses the dose rate in digital radiography room, buit according to meet the provisions of KEMENKES No.1014 / Menkes / SK / XI / 2008 and Regulation of BAPETEN No. 8 / 2011. The provisions primary concern of radiation safety, not comfort, by considering the space design. There are five aspects to consider in designing the space: functionality, comfort, security, movement activities and aesthetics. However provisions only met three aspects of the design, which are a function, security and movement activity. Therefore, it is necessary to evaluate digital radiography room in terms of its ability to control external radiation exposure to be safe and comfortable The dose rate is measured by the range of primary and secondary radiation in the observation points by using Surveymeter. All data are obtained by the preliminary survey prior to the study. Furthermore, the review of digital radiography room is done based on architectural design theory. The dose rate for recommended improvement room is recalculated using the same method as the actual room with the help of computer modeling. The result of dose rate calculation at the inner and outer part of digital radiography observation room shows that in-room dose for a week at each measuring point exceeds the allowable dose limit both for staff and public. During a week of observation, the outdoor dose at some measuring points exceeds the dose limit set by the KEMENKES No.1014 / Menkes / SK / XI / 2008 and Regulation BEPETEN No 8/2011. Meanwhile, the result of dose rate calculation in the inner and outer part of the improved digital radiography room can meet the applicable regulations better.
Öğretici, Akın; Çakır, Aydın; Akbaş, Uğur; Köksal, Canan; Kalafat, Ümmühan; Tambaş, Makbule; Bilge, Hatice
2017-01-01
Purpose: This study aims to investigate the factors that reduce fetal dose in pregnant patients with breast cancer throughout their radiation treatment. Two main factors in a standard radiation oncology center are considered as the treatment planning systems (TPSs) and simple shielding for intensity modulated radiation therapy technique. Materials and Methods: TPS factor was evaluated with two different planning algorithms: Anisotropic analytical algorithm and Acuros XB (external beam). To evaluate the shielding factor, a standard radiological purpose lead apron was chosen. For both studies, thermoluminescence dosimeters were used to measure the point dose, and an Alderson RANDO-phantom was used to simulate a female pregnant patient in this study. Thirteen measurement points were chosen in the 32nd slice of the phantom to cover all possible locations of a fetus up to 8th week of gestation. Results: The results show that both of the TPS algorithms are incapable of calculating the fetal doses, therefore, unable to reduce them at the planning stage. Shielding with a standard lead apron, however, showed a slight radiation protection (about 4.7%) to the fetus decreasing the mean fetal dose from 84.8 mGy to 80.8 mGy, which cannot be disregarded in case of fetal irradiation. Conclusions: Using a lead apron for shielding the abdominal region of a pregnant patient during breast irradiation showed a minor advantage; however, its possible side effects (i.e., increased scattered radiation and skin dose) should also be investigated further to solidify its benefits. PMID:28974857
Influence of a detailed model of man on proton depth/dose calculation
NASA Technical Reports Server (NTRS)
Kase, P. G.
1972-01-01
The development of a detailed radiation shielding model of man is discussed. This model will be used to plan for manned space missions in which sensitive human tissues may be subjected to excessive radiation. The model has two configurations: standing and seated. More than 2500 individual elements were used to depict the external conformation, skeleton, and principal organs. The model is briefly described and several examples of its application to mission planning are given.
Effect of respiratory motion on internal radiation dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205
Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transportmore » code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic anatomical model provides more accurate internal radiation dosimetry estimates for the lungs and abdominal organs based on realistic modeling of respiratory motion. This work also contributes to a better understanding of model-induced uncertainties in internal radiation dosimetry.« less
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2010-01-01
Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts, because organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. Assessment of astronauts organ doses and ARS from the exposure to historically large SPEs is in support of mission design and operation planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI product, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.
Radioimmunotherapy with monoclonal antibodies. A new horizon in nuclear medicine therapy?
Sautter-Bihl, M L; Bihl, H
1994-08-01
Radioimmunotherapy (RIT) with labeled tumor-associated monoclonal antibodies (MAbs) is a promising concept in oncology, which essentially consists of biological targeting of ionising radiation to tumors. Some encouraging clinical results have been achieved with RIT. However, there are severe problems associated with both understanding the mechanisms and predicting the effectiveness of RIT. This paper reviews the results of some major clinical trials, especially in malignant lymphomas and in some solid tumors. Furthermore, problems with RIT are described such as the significance of dose inhomogeneity and dose-rate effects, the appropriate dose calculation method, the toxicity of RIT and the development of HAMAs. It is suggested that newer technologies including chimeric antibodies, multiple-step targeting protocols, bone marrow transplantation, parallel application of external radiation, heat or bioreductive drugs will enable RIT to make an essential contribution to strategies for combating cancer.
Babkina, V V; Chernova, G V; Allenova, E A; Endebera, O P; Naumkina, E N
2013-01-01
Biological effects of exposure to red light (lambda = 660 +/- 10 nm) on the viability and morphophysiological characteristics of Drosophila melanogaster have been studied. The ability of this physical agent to modify these features is shown. The degree of expression and impact of biological effects depend on the dose, functional and genetic status of the organism. The study of the life expectancy of the exposed to EHF and white light D. melanogaster has revealed that expression of the features depends on the radiation doses, genotype, sex, the nature of the position of wings and lighting conditions. It has been found that the dark mode (24 h-night) is more favorable than the artificial lighting. Individuals with the left wing at the top are more sensitive to the external factors.
Niagara Falls Storage Site annual site environmental monitoring report. Calendar year 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-04-01
During 1985, an environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of low-level radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. Monitoring results show that the NFSS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/yr. The applicable limits have been revisedmore » since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/yr; the limits applied for the 1985 are based on a standard of 100 mrem/yr. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program measured radon gas concentrations in air; uranium and radium concentrations in surface water, groundwater, and sediments; and external gamma dose rates. Environmental samples collected were analyzed to determine compliance with applicable standards. Potential radiation doses to the public were also calculated.« less
NASA Astrophysics Data System (ADS)
Paganetti, Harald
2017-01-01
Cancer therapy is a multi-modality approach including surgery, systemic or targeted chemotherapy, radiation (external beam or radionuclide), and immunotherapy. Radiation is typically administered using external beam photon therapy. Proton therapy has been around for more than 60 years but was restricted to research laboratories until the 1990s. Since then clinical proton therapy has been growing rapidly with currently more than 50 facilities worldwide. The interest in proton therapy stems from the physical properties of protons allowing for advanced dose sculpting around the target and sparing of healthy tissue. This review first evaluates the basics of proton therapy physics and technology and then outlines some of the current physical, biological, and clinical challenges. Solving these will ultimately determine whether proton therapy will continue on its path to becoming mainstream.
RCT: Module 2.06, Air Sampling Program and Methods, Course 8772
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillmer, Kurt T.
The inhalation of radioactive particles is the largest cause of an internal radiation dose. Airborne radioactivity measurements are necessary to ensure that the control measures are and continue to be effective. Regulations govern the allowable effective dose equivalent to an individual. The effective dose equivalent is determined by combining the external and internal dose equivalent values. Typically, airborne radioactivity levels are maintained well below allowable levels to keep the total effective dose equivalent small. This course will prepare the student with the skills necessary for RCT qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examinationmore » (TEST 27566) and will provide in-the-field skills.« less
Xie, Tianwu; Zaidi, Habib
2016-12-01
Molecular imaging using PET and hybrid (PET/CT and PET/MR) modalities nowadays plays a pivotal role in the clinical setting for diagnosis and staging, treatment response monitoring, and radiation therapy treatment planning of a wide range of oncologic malignancies. The developing embryo/fetus presents a high sensitivity to ionizing radiation. Therefore, estimation of the radiation dose delivered to the embryo/fetus and pregnant patients from PET examinations to assess potential radiation risks is highly praised. We constructed eight embryo/fetus models at various gestation periods with 25 identified tissues according to reference data recommended by the ICRP publication 89 representing the anatomy of the developing embryo/fetus. The developed embryo/fetus models were integrated into realistic anthropomorphic computational phantoms of the pregnant female and used for estimating, using Monte Carlo calculations, S-values of common positron-emitting radionuclides, organ absorbed dose, and effective dose of a number of positron-emitting labeled radiotracers. The absorbed dose is nonuniformly distributed in the fetus. The absorbed dose of the kidney and liver of the 8-week-old fetus are about 47.45 % and 44.76 % higher than the average absorbed dose of the fetal total body for all investigated radiotracers. For 18 F-FDG, the fetal effective doses are 2.90E-02, 3.09E-02, 1.79E-02, 1.59E-02, 1.47E-02, 1.40E-02, 1.37E-02, and 1.27E-02 mSv/MBq at the 8th, 10th, 15th, 20th, 25th, 30th, 35th, and 38th weeks of gestation, respectively. The developed pregnant female/fetus models matching the ICRP reference data can be exploited by dedicated software packages for internal and external dose calculations. The generated S-values will be useful to produce new standardized dose estimates to pregnant patients and embryo/fetus from a variety of positron-emitting labeled radiotracers.
Contribution of internal exposures to the radiological consequences of the Chernobyl accident.
Balonov, M I; Anspaugh, L R; Bouville, A; Likhtarev, I A
2007-01-01
The main pathways leading to exposure of members of the general public due to the Chernobyl accident were external exposure from radionuclides deposited on the ground and ingestion of contaminated terrestrial food products. The collective dose to the thyroid was nearly 1.5 million man Gy in Belarus, Russia and Ukraine with nearly half received by children and adolescents. The collective effective dose received in 1986-2005 by approximately five million residents living in the affected areas of the three countries was approximately 50,000 man Sv with approximately 40% from ingestion. That contribution might have been larger if countermeasures had not been applied. The main radionuclide contributing to both external and internal effective dose is 137Cs with smaller contributions of 134Cs and 90Sr and negligible contribution of transuranic elements. The major demonstrated radiation-caused health effect of the Chernobyl accident has been an elevated incidence of thyroid cancer in children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolly, S; Mutic, S; Anastasio, M
Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework wasmore » developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for incorporation of additional modules to include any aspect of the treatment process, and therefore has great potential for both assessment and optimization within radiation therapy.« less
Ozaki, Y.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.
2017-01-01
Abstract Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. PMID:28339846
Grosche, Bernd; Lackland, Daniel T; Land, Charles E; Simon, Steven L; Apsalikov, Kazbek N; Pivina, Ludmilla M; Bauer, Susanne; Gusev, Boris I
2011-11-01
The data on risk of mortality from cardiovascular disease due to radiation exposure at low or medium doses are inconsistent. This paper reports an analysis of the Semipalatinsk historical cohort exposed to radioactive fallout from nuclear testing in the vicinity of the Semipalatinsk Nuclear Test Site, Kazakhstan. The cohort study, which includes 19,545 persons of exposed and comparison villages in the Semipalatinsk region, had been set up in the 1960s and comprises 582,656 person-years of follow-up between 1960 and 1999. A dosimetric approach developed by the U.S. National Cancer Institute (NCI) has been used. Radiation dose estimates in this cohort range from 0 to 630 mGy (whole-body external). Overall, the exposed population showed a high mortality from cardiovascular disease. Rates of mortality from cardiovascular disease in the exposed group substantially exceeded those of the comparison group. Dose-response analyses were conducted for both the entire cohort and the exposed group only. A dose-response relationship that was found when analyzing the entire cohort could be explained completely by differences between the baseline rates in exposed and unexposed groups. When taking this difference into account, no statistically significant dose-response relationship for all cardiovascular disease, for heart disease, or for stroke was found. Our results suggest that within this population and at the level of doses estimated, there is no detectable risk of radiation-related mortality from cardiovascular disease.
Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speiser, B.L.; Spratling, L.
The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% formore » the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.« less
Simon, Steven L.
2014-01-01
While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel, e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies, e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs), i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma, those factors have been primarily published for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factors values for (i) continuous distributions of energy typical of diagnostic medical x rays (bremsstrahlung radiation), and (ii) for energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probability of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the ICRP/ICRU mono-energetic DCCs and the functions integrated over the air-kerma weighted photon fluence of the 12 defined x-ray spectra. The air kerma-weighted DCCs in this work were developed specifically for an irradiation geometry of anterior to posterior (AP) and for the following tissues: thyroid, breast, ovary, lens of eye, lung, colon, testes, heart, skin (anterior side only), red bone marrow (RBM), heart, and brain. In addition, a series of functional relationships to predict DT per Ka values for RBM dependent on body mass index [BMI (kg m−2) ≡ weight per height2] and average photon energy were derived from a published analysis. Factors to account for attenuation of radiation by protective lead aprons were also developed. Because lead protective aprons often worn by radiology personnel not only reduce the intensity of x-ray exposure but also appreciably harden the transmitted fluence of bremsstrahlung x rays, DCCs were separately calculated for organs possibly protected by lead aprons by considering three cases: no apron, 0.25 mm Pb apron, and 0.5 mm Pb apron. For estimation of organ doses from conducting procedures with radioisotopes, continuous functions of the reported mono-energetic values were developed and DCCs were derived by estimation of the function at relevant energies. By considering the temporal changes in primary exposure-related parameters, e.g., energy distribution, the derived DCCs and transmission factors presented here allow for more realistic historical dose reconstructions for medical personnel when monitoring badge readings are the primary data on which estimation of an individual's organ doses are based. PMID:21617389
Simon, Steven L
2011-07-01
While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel; e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies; e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs) (i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma), those factors have been published primarily for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factor values for (1) continuous distributions of energy typical of diagnostic medical x-rays (bremsstrahlung radiation), and (2) energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probabilities of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the ICRP/ICRU mono-energetic DCCs and the functions integrated over the air-kerma weighted photon fluence of the 12 defined x-ray spectra. The air kerma-weighted DCCs in this work were developed specifically for an irradiation geometry of anterior to posterior (AP) and for the following tissues: thyroid, breast, ovary, lens of eye, lung, colon, testes, heart, skin (anterior side only), red bone marrow (RBM), and brain. In addition, a series of functional relationships to predict DT Ka-1 values for RBM dependent on body mass index [BMI (kg m-2) ≡ weight per height] and average photon energy were derived from a published analysis. Factors to account for attenuation of radiation by protective lead aprons were also developed. Because lead protective aprons often worn by radiology personnel not only reduce the intensity of x-ray exposure but also appreciably harden the transmitted fluence of bremsstrahlung x-rays, DCCs were separately calculated for organs possibly protected by lead aprons by considering three cases: no apron, 0.25 mm Pb apron, and 0.5 mm Pb apron. For estimation of organ doses from conducting procedures with radioisotopes, continuous functions of the reported mono-energetic values were developed, and DCCs were derived by estimation of the function at relevant energies. By considering the temporal changes in primary exposure-related parameters (e.g., energy distribution), the derived DCCs and transmission factors presented here allow for more realistic historical dose reconstructions for medical personnel when monitoring badge readings are the primary data on which estimation of an individual's organ doses are based.
Hazelwood Interim Storage Site: Annual site environment report, Calendar year 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-11-01
The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE Derived Concentration Guides (DCGs) and radiation protection standards. During 1985, annual average radon concentrations ranged from 10 to 23% of the DCG. The highest external dose rate at the HISS was 287 mrem/yr. The measured background dose rate for the HISS area is 99 mrem/yr. The highest average annual concentration of uranium in surface water monitored in the vicinity of the HISS was 0.7% of the DOE DCG; for /sup 226/Ra itmore » was 0.3% of the applicable DCG, and for /sup 230/Th it was 1.7%. In groundwater, the highest annual average concentration of uranium was 12% of the DCG; for /sup 226/Ra it was 3.6% of the applicable DCG, and for /sup 230/Th it was 1.8%. While there are no concentration guides for stream sediments, the highest concentration of total uranium was 19 pCi/g, the highest concentration of /sup 226/Ra was 4 pCi/g, and the highest concentration of /sup 230/Th was 300 pCi/g. Radon concentrations, external gamma dose rates, and radionuclide concentrations in groundwater at the site were lower than those measured in 1984; radionuclide concentrations in surface water were roughly equivalent to 1984 levels. For sediments, a meaningful comparison with 1984 concentrations cannot be made since samples were obtained at only two locations and were only analyzed for /sup 230/Th. The calculated radiation dose to the maximally exposed individual at the HISS, considering several exposure pathways, was 5.4 mrem, which is 5% of the radiation protection standard.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-01
During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The monitoring program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) aremore » not applicable to SLAPS, but are included only as a basis for comparison. The DOE DCGs and the DOE radiation protection standard have been revised. (Appendix B). During 1985, annual average radon levels in air at the SLAPS were below the DCG for uncontrolled areas. External gamma monitoring in 1985 showed measured annual gamma dose rates ranging from 3 to 2087 mrem/y, with the highest value occurring in an area known to be contaminated. The calculated maximum dose at the site boundary, assuming limited occupancy, would be 6 mrem/y. Average annual concentrations of /sup 230/Th, /sup 226/Ra, and total uranium in surface waters remained below the DOE DCG. The on-site groundwater measurements showed that average annual concentrations of /sup 230/Th, /sup 226/Ra and total uranium were within the DOE DCGs. Although there are no DCGs for sediments, all concentrations of total uraniu, /sup 230/Th, and /sup 226/Ra were below the FUSRAP Guidelines.« less
Salem, A; Salem, A F; Al-Ibraheem, A; Lataifeh, I; Almousa, A; Jaradat, I
2011-01-01
In recent years, the role of positron emission tomography (PET) in the staging and management of gynecological cancers has been increasing. The aim of this study was to systematically review the role of PET in radiotherapy planning and brachytherapy treatment optimization in patients with cervical cancer. Systematic literature review. Systematic review of relevant literature addressing the utilization of PET and/or PET-computed tomography (CT) in external-beam radiotherapy planning and brachytherapy treatment optimization. We performed an extensive PubMed database search on 20 April 2011. Nineteen studies, including 759 patients, formed the basis of this systematic review. PET/ PET-CT is the most sensitive imaging modality for detecting nodal metastases in patients with cervical cancer and has been shown to impact external-beam radiotherapy planning by modifying the treatment field and customizing the radiation dose. This particularly applies to detection of previously uncovered para-aortic and inguinal nodal metastases. Furthermore, PET/ PET-CT guided intensity-modulated radiation therapy (IMRT) allows delivery of higher doses of radiation to the primary tumor, if brachytherapy is unsuitable, and to grossly involved nodal disease while minimizing treatment-related toxicity. PET/ PET-CT based brachytherapy optimization allows improved tumor-volume dose distribution and detailed 3D dosimetric evaluation of risk organs. Sequential PET/ PET-CT imaging performed during the course of brachytherapy form the basis of âadaptiveâ brachytherapy in cervical cancer. This review demonstrates the effectiveness of pretreatment PET/ PET-CT in cervical cancer patients treated by radiotherapy. Further prospective studies are required to define the group of patients who would benefit the most from this procedure.
Calibration factors for the SNOOPY NP-100 neutron dosimeter
NASA Astrophysics Data System (ADS)
Moscu, D. F.; McNeill, F. E.; Chase, J.
2007-10-01
Within CANDU nuclear power facilities, only a small fraction of workers are exposed to neutron radiation. For these individuals, roughly 4.5% of the total radiation equivalent dose is the result of exposure to neutrons. When this figure is considered across all workers receiving external exposure of any kind, only 0.25% of the total radiation equivalent dose is the result of exposure to neutrons. At many facilities, the NP-100 neutron dosimeter, manufactured by Canberra Industries Incorporated, is employed in both direct and indirect dosimetry methods. Also known as "SNOOPY", these detectors undergo calibration, which results in a calibration factor relating the neutron count rate to the ambient dose equivalent rate, using a standard Am-Be neutron source. Using measurements presented in a technical note, readings from the dosimeter for six different neutron fields in six source-detector orientations were used, to determine a calibration factor for each of these sources. The calibration factor depends on the neutron energy spectrum and the radiation weighting factor to link neutron fluence to equivalent dose. Although the neutron energy spectra measured in the CANDU workplace are quite different than that of the Am-Be calibration source, the calibration factor remains constant - within acceptable limits - regardless of the neutron source used in the calibration; for the specified calibration orientation and current radiation weighting factors. However, changing the value of the radiation weighting factors would result in changes to the calibration factor. In the event of changes to the radiation weighting factors, it will be necessary to assess whether a change to the calibration process or resulting calibration factor is warranted.
Emergency department management of patients internally contaminated with radioactive material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz
After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.
Emergency department management of patients internally contaminated with radioactive material
Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; ...
2014-11-15
After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.
Hand and body radiation exposure with the use of mini C-arm fluoroscopy.
Tuohy, Christopher J; Weikert, Douglas R; Watson, Jeffry T; Lee, Donald H
2011-04-01
To determine whole body and hand radiation exposure to the hand surgeon wearing a lead apron during routine intraoperative use of the mini C-arm fluoroscope. Four surgeons (3 hand attending surgeons and 1 hand fellow) monitored their radiation exposure for a total of 200 consecutive cases (50 cases per surgeon) requiring mini C-arm fluoroscopy. Each surgeon measured radiation exposure with a badge dosimeter placed on the outside breast pocket of the lead apron (external whole body exposure), a second badge dosimeter under the lead apron (shielded whole body exposure), and a ring dosimeter (hand exposure). Completed records were noted in 198 cases, with an average fluoroscopy time of 133.52 seconds and average cumulative dose of 19,260 rem-cm(2) per case. The total measured radiation exposures for the (1) external whole body exposure dosimeters were 16 mrem (for shallow depth), 7 mrem (for eye depth), and less than 1 mrem (for deep depth); (2) shielded whole body badge dosimeters recorded less than 1 mrem; and (3) ring dosimeters totaled 170 mrem. The total radial exposure for 4 ring dosimeters that had registered a threshold of 30 mrem or more of radiation exposure was 170 mrem at the skin level, for an average of 42.5 mrem per dosimeter ring or 6.3 mrem per case. This study of whole body and hand radiation exposure from the mini C-arm includes the largest number of surgical cases in the published literature. The measured whole body and hand radiation exposure received by the hand surgeon from the mini C-arm represents a minimal risk of radiation, based on the current National Council on Radiation Protection and Management standards of annual dose limits (5,000 mrem per year for whole body and 50,000 mrem per year to the extremities). Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Nuclear disaster after the earthquake and tsunami of March 11.
Shigematsu, Naoyuki; Fukada, Junichi; Ohashi, Toshio; Kawaguchi, Osamu; Kawata, Tetsuya
2012-01-01
We would like to explain the effects of radiation on human health and discuss the actual effects of the contamination with radioactive material present in Tokyo. Currently, external exposure doses are within the allowable range in Tokyo and will have no adverse health effects on adults or children. As for internal exposure doses, there will likely be no problems as regards our ordinary dietary intakes. However, hot spots of Cs-134, Sr-90 and others should be monitored further.
Sahai, Puja; Kumar, Senthil
2017-08-01
This review aims to summarize the currently available evidence for the role of external radiotherapy and brachytherapy in the management of cholangiocarcinoma. High locoregional disease recurrence rates after surgical resection alone for both the extrahepatic cholangiocarcinoma (EHCC) and intrahepatic cholangiocarcinoma (IHCC) provide a rationale for using adjuvant radiotherapy with chemotherapy. We performed a literature search related to radiotherapy in cholangiocarcinoma published between 2000 and 2016. The role of radiation is discussed in the adjuvant, neoadjuvant, definitive and the palliative setting. Evidence from Phase II trials have demonstrated efficacy of adjuvant chemoradiation in combination with chemotherapy in EHCC. Locally advanced cholangiocarcinoma may be treated with neoadjuvant chemoradiotherapy. In the case of downsizing, assessment for resection may be considered. Brachytherapy offers dose escalation after external radiotherapy. Selected unresectable cases of cholangiocarcinoma may be considered for stereotactic body radiation therapy with neoadjuvant and/or concurrent chemotherapy. Liver transplantation is a treatment option in selected patients with EHCC and IHCC after neoadjuvant chemoradiation. Stenting in combination with palliative external radiotherapy and/or brachytherapy provides improved stent patency and survival. Newer advanced radiation techniques provide a scope for achieving better disease control with reduced morbidity. Effective multimodality treatment incorporating radiotherapy is the way forward for improving survival in patients with cholangiocarcinoma.
National survey on dose data analysis in computed tomography.
Heilmaier, Christina; Treier, Reto; Merkle, Elmar Max; Alkhadi, Hatem; Weishaupt, Dominik; Schindera, Sebastian
2018-05-28
A nationwide survey was performed assessing current practice of dose data analysis in computed tomography (CT). All radiological departments in Switzerland were asked to participate in the on-line survey composed of 19 questions (16 multiple choice, 3 free text). It consisted of four sections: (1) general information on the department, (2) dose data analysis, (3) use of a dose management software (DMS) and (4) radiation protection activities. In total, 152 out of 241 Swiss radiological departments filled in the whole questionnaire (return rate, 63%). Seventy-nine per cent of the departments (n = 120/152) analyse dose data on a regular basis with considerable heterogeneity in the frequency (1-2 times per year, 45%, n = 54/120; every month, 35%, n = 42/120) and method of analysis. Manual analysis is carried out by 58% (n = 70/120) compared with 42% (n = 50/120) of departments using a DMS. Purchase of a DMS is planned by 43% (n = 30/70) of the departments with manual analysis. Real-time analysis of dose data is performed by 42% (n = 21/50) of the departments with a DMS; however, residents can access the DMS in clinical routine only in 20% (n = 10/50) of the departments. An interdisciplinary dose team, which among other things communicates dose data internally (63%, n = 76/120) and externally, is already implemented in 57% (n = 68/120) departments. Swiss radiological departments are committed to radiation safety. However, there is high heterogeneity among them regarding the frequency and method of dose data analysis as well as the use of DMS and radiation protection activities. • Swiss radiological departments are committed to and interest in radiation safety as proven by a 63% return rate of the survey. • Seventy-nine per cent of departments analyse dose data on a regular basis with differences in the frequency and method of analysis: 42% use a dose management software, while 58% currently perform manual dose data analysis. Of the latter, 43% plan to buy a dose management software. • Currently, only 25% of the departments add radiation exposure data to the final CT report.
Al-Jundi, J; Ulanovsky, A; Pröhl, G
2009-10-01
The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.
Shared Dosimetry Error in Epidemiological Dose-Response Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail
2015-03-23
Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, Habib; Meigooni, A S.; University of Nevada Las Vegas
Purpose: Recently, different applicators are designed for treatment of the skin cancer such as scalp and legs, using Ir-192 HDR Brachytherapy Sources (IR-HDRS), Miniature Electronic Brachytherapy Sources (MEBXS), and External Electron Beam Radiation Therapy (EEBRT). Although, all of these methodologies may deliver the desired radiation dose to the skin, the dose to the underlying bone may become the limiting factor for selection of the optimum treatment technique. In this project the radiation dose delivered to the underlying bone has been evaluated as a function of the radiation source and thickness of the underlying bone. Methods: MC simulations were performed usingmore » MCNP5 code. In these simulations, the mono-energetic and non-divergent photon beams of 30 keV, 50 keV, and 70 keV for MEBXS, 380 keV photons for IR-HDRS, and 6 MeV mono-energetic electron beam for EEBRT were modeled. A 0.5 cm thick soft tissue (0.3 cm skin and 0.2 cm adipose) with underlying 0.5 cm cortical bone followed by 14 cm soft tissue are utilized for simulations. Results: Dose values to bone tissue as a function of beam energy and beam type, for a delivery of 5000 cGy dose to skin, were compared. These results indicate that for delivery of 5000 cGy dose to the skin surface with 30 keV, 50 keV, 70 keV of MEBXS, IR-HDRS, and EEBRT techniques, bone will receive 31750 cGy, 27450 cGy, 18550 cGy, 4875 cGy, and 10450 cGy, respectively. Conclusion: The results of these investigations indicate that, for delivery of the same skin dose, average doses received by the underlying bone are 5.2 and 2.2 times larger with a 50 keV MEBXS and EEBRT techniques than IR-HDRS, respectively.« less
Strategies to tackle the challenges of external beam radiotherapy for liver tumors.
Lock, Michael I; Klein, Jonathan; Chung, Hans T; Herman, Joseph M; Kim, Edward Y; Small, William; Mayr, Nina A; Lo, Simon S
2017-05-18
Primary and metastatic liver cancer is an increasingly common and difficult to control disease entity. Radiation offers a non-invasive treatment alternative for these patients who often have few options and a poor prognosis. However, the anatomy and aggressiveness of liver cancer poses significant challenges such as accurate localization at simulation and treatment, management of motion and appropriate selection of dose regimen. This article aims to review the options available and provide information for the practical implementation and/or improvement of liver cancer radiation programs within the context of stereotactic body radiotherapy and image-guided radiotherapy guidelines. Specific patient inclusion and exclusion criteria are presented given the significant toxicity found in certain sub-populations treated with radiation. Indeed, certain sub-populations, such as those with tumor thrombosis or those with larger lesions treated with transarterial chemoembolization, have been shown to have significant improvements in outcome with the addition of radiation and merit special consideration. Implementing a liver radiation program requires three primary challenges to be addressed: (1) immobilization and motion management; (2) localization; and (3) dose regimen and constraint selection. Strategies to deal with motion include simple internal target volume (ITV) expansions, non-gated ITV reduction strategies, breath hold methods, and surrogate marker methods to enable gating or tracking. Localization of the tumor and organs-at-risk are addressed using contrast infusion techniques to take advantage of different normal liver and cancer vascular anatomy, imaging modalities, and margin management. Finally, a dose response has been demonstrated and dose regimens appear to be converging. A more uniform approach to treatment in terms of technique, dose selection and patient selection will allow us to study liver radiation in larger and, hopefully, multicenter randomized studies.
Strategies to tackle the challenges of external beam radiotherapy for liver tumors
Lock, Michael I; Klein, Jonathan; Chung, Hans T; Herman, Joseph M; Kim, Edward Y; Small, William; Mayr, Nina A; Lo, Simon S
2017-01-01
Primary and metastatic liver cancer is an increasingly common and difficult to control disease entity. Radiation offers a non-invasive treatment alternative for these patients who often have few options and a poor prognosis. However, the anatomy and aggressiveness of liver cancer poses significant challenges such as accurate localization at simulation and treatment, management of motion and appropriate selection of dose regimen. This article aims to review the options available and provide information for the practical implementation and/or improvement of liver cancer radiation programs within the context of stereotactic body radiotherapy and image-guided radiotherapy guidelines. Specific patient inclusion and exclusion criteria are presented given the significant toxicity found in certain sub-populations treated with radiation. Indeed, certain sub-populations, such as those with tumor thrombosis or those with larger lesions treated with transarterial chemoembolization, have been shown to have significant improvements in outcome with the addition of radiation and merit special consideration. Implementing a liver radiation program requires three primary challenges to be addressed: (1) immobilization and motion management; (2) localization; and (3) dose regimen and constraint selection. Strategies to deal with motion include simple internal target volume (ITV) expansions, non-gated ITV reduction strategies, breath hold methods, and surrogate marker methods to enable gating or tracking. Localization of the tumor and organs-at-risk are addressed using contrast infusion techniques to take advantage of different normal liver and cancer vascular anatomy, imaging modalities, and margin management. Finally, a dose response has been demonstrated and dose regimens appear to be converging. A more uniform approach to treatment in terms of technique, dose selection and patient selection will allow us to study liver radiation in larger and, hopefully, multicenter randomized studies. PMID:28588749
NASA Astrophysics Data System (ADS)
Miyatake, Hirokazu; Yoshizawa, Nobuaki; Hirakawa, Sachiko; Murakami, Kana; Takizawa, Mari; Kawai, Masaki; Sato, Osamu; Takagi, Shunji; Suzuki, Gen
2017-09-01
The Fukushima Daiichi Nuclear Power Plant accident caused a release of radionuclides. Radionuclides were deposited on the ground not only in Fukushima prefecture but also in nearby prefectures. Since the accident, measurement of radiation in environment such as air dose rate and deposition density of radionuclides has been performed by many organizations and universities. In particular, Japan Atomic Energy Agency (JAEA) has been performing observations of air dose rate using a car-borne survey system continuously and over wide areas. In our study, using the data measured by JAEA, we estimated effective dose from external exposure in the six prefectures adjacent to Fukushima prefecture. Since car-borne survey was started a few months later after the accident, measured air dose rate in this method is mainly contributed by 137Cs and 134Cs whose half-lives are relatively long. Therefore, based on air dose rate of 137Cs and 134Cs and the ratio of deposition density of short-half-life nuclides to that of 137Cs and 134Cs, we also estimated effective dose contributed from not only 137Cs and 134Cs but also other short-half-life nuclides. We compared the effective dose estimated by the method above with that of UNSCEAR and measured data using personal dosimeters in some areas.
Benchmark Analysis of Pion Contribution from Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Aghara, Sukesh K.; Blattnig, Steve R.; Norbury, John W.; Singleterry, Robert C., Jr.
2008-01-01
Shielding strategies for extended stays in space must include a comprehensive resolution of the secondary radiation environment inside the spacecraft induced by the primary, external radiation. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. A systematic verification and validation effort is underway for HZETRN, which is a space radiation transport code currently used by NASA. It performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. The question naturally arises as to what is the contribution of these particles to space radiation. The pion has a production kinetic energy threshold of about 280 MeV. The Galactic cosmic ray (GCR) spectra, coincidentally, reaches flux maxima in the hundreds of MeV range, corresponding to the pion production threshold. We present results from the Monte Carlo code MCNPX, showing the effect of lepton and meson physics when produced and transported explicitly in a GCR environment.
Space radiation dosimetry on US and Soviet manned missions
NASA Technical Reports Server (NTRS)
Parnell, T. A.; Benton, E. V.
1995-01-01
Radiation measurements obtained on board U.S. and Soviet spacecraft are presented and discussed. A considerable amount of data has now been collected and analyzed from measurements with a variety of detector types in low-Earth orbit. The objectives of these measurements have been to investigate the dose and Linear Energy Transfer (LET) spectra within the complex shielding of large spacecraft. The shielding modifies the external radiation (trapped protons, electrons, cosmic ray nuclei) which, in turn, is quite dependent on orbital parameters (altitude, inclination). For manned flights, these measurements provide a crew exposure record and a data base for future spacecraft design and flight planning. For the scientific community they provide useful information for planning and analyzing data from experiments with high sensitivity to radiation. In this paper, results of measurements by both passive and active detectors are described. High-LET spectra measurements were obtained by means of plastic nuclear track detectors (PNTD's) while thermoluminescent dosimeters (TLD's) measured the dose.
Arduino based radiation survey meter
NASA Astrophysics Data System (ADS)
Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee
2016-01-01
This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.
Hachiya, Misao; Akashi, Makoto
2016-09-01
A huge earthquake struck the northeast coast of the main island of Japan on 11 March 2011 triggering an extremely large tsunami to hit the area. The earthquake and tsunami caused serious damage to the Fukushima nuclear power plants (NPPs) of Tokyo Electric Power Company (TEPCO), resulting in large amounts of radioactive materials being released into the environment. The major nuclides released were (131)I, (134)Cs and (137)Cs. The deposition of these radioactive materials on land resulted in a high ambient dose of radiation around the NPPs, especially within a 20-km radius. Dose assessments based on behavior survey and ambient dose rates revealed that external doses to most residents were lower than 5 mSv, with the maximum dose being 25 mSv. It was fortunate that no workers from the NPPs required treatment from the viewpoint of deterministic effects of radiation. However, a lack of exact knowledge of radiation and its effects prevented the system for medical care and transportation of contaminated personnel from functioning. After the accident, demands or requests for training courses have been increasing. We have learned from the response to this disaster that basic knowledge of radiation and its effects is extremely important for not only professionals such as health care providers but also for other professionals including teachers. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.
Utilization of MAX and FAX human phantoms for space radiation exposure calculations using HZETRN
NASA Astrophysics Data System (ADS)
Qualls, Garry; Slaba, Tony; Clowdsley, Martha; Blattnig, Steve; Walker, Steven; Simonsen, Lisa
To estimate astronaut health risk due to space radiation, one must have the ability to calculate, for known radiation environments external to the body, particle spectra, LET spectra, dose, dose equivalent, or gray equivalent that are averaged over specific organs or tissue types. This may be accomplished using radiation transport software and computational human body tissue models. Historically, NASA scientists have used the HZETRN software to calculate radiation transport through both vehicle shielding materials and body tissue. The Computerized Anatomical Man (CAM) and the Computerized Anatomical Female (CAF) body models, combined with the CAMERA software, have been used for body tissue self-shielding calculations. The CAM and CAF, which were developed in 1973 and 1992, respectively, model the 50th percentile U.S. Air Force male and female and are constructed using individual quadric surfaces that combine to form thousands of solid regions that represent specific tissues and structures within the body. In order to transport an external radiation environment to a point within one of the body models using HZETRN, a directional distribution of the tissues surrounding that point is needed. The CAMERA software is used to "ray trace" the CAM and CAF models, providing the thickness of each tissue type traversed along each of a large number of rays originating at a dose point. More recently, R. Kramer of the Departmento de Energia Nuclear, Universidade Federal de Pernambuco in Brazil and his co-workers developed the Male Adult voXel (MAX) model and the Female Adult voXel (FAX). These voxel-based body models were developed using segmented Computed Tomography (CT) scans of adult cadavers, and the quantities and distributions of various body tissues have been adjusted to match those specified in the International Commission on Radiological Protection (ICRP) reference adult male and female. A new set of tools has been developed to facilitate space radiation exposure calculation using HZETRN and the MAX and FAX models. A new ray tracer was developed for these body models, as was a methodology for evaluating organ-averaged quantities. Both tools are described in this paper and utilized in sample calculations.
COMPILATION OF CONVERSION COEFFICIENTS FOR THE DOSE TO THE LENS OF THE EYE
2017-01-01
Abstract A compilation of fluence-to-absorbed dose conversion coefficients for the dose to the lens of the eye is presented. The compilation consists of both previously published data and newly calculated values: photon data (5 keV–50 MeV for both kerma approximation and full electron transport), electron data (10 keV–50 MeV), and positron data (1 keV–50 MeV) – neutron data will be published separately. Values are given for angles of incidence from 0° up to 90° in steps of 15° and for rotational irradiation. The data presented can be downloaded from this article's website and they are ready for use by Report Committee (RC) 26. This committee has been set up by the International Commission on Radiation Units and Measurements (ICRU) and is working on a ‘proposal for a redefinition of the operational quantities for external radiation exposure’. PMID:27542816
Misra, Ravi S; Johnston, Carl J; Groves, Angela M; DeDiego, Marta L; St Martin, Joe; Reed, Christina; Hernady, Eric; Miller, Jen-Nie; Love, Tanzy; Finkelstein, Jacob N; Williams, Jacqueline P
2015-07-01
A number of investigators have suggested that exposure to low-dose radiation may pose a potentially serious health risk. However, the majority of these studies have focused on the short-term rather than long-term effects of exposure to fixed source radiation, and few have examined the effects of internal contamination. Additionally, very few studies have focused on exposure in juveniles, when organs are still developing and could be more sensitive to the toxic effects of radiation. To specifically address whether early-life radiation injury may affect long-term immune competence, we studied 14-day-old juvenile pups that were either 5 Gy total-body irradiated or injected internally with 50 μCi soluble (137)Cs, then infected with influenza A virus at 26 weeks after exposure. After influenza infection, all groups demonstrated immediate weight loss. We found that externally irradiated, infected animals failed to recover weight relative to age-matched infected controls, but internally (137)Cs contaminated and infected animals had a weight recovery with a similar rate and degree as controls. Externally and internally irradiated mice demonstrated reduced levels of club cell secretory protein (CCSP) message in their lungs after influenza infection. The externally irradiated group did not recover CCSP expression even at the two-week time point after infection. Although the antibody response and viral titers did not appear to be affected by either radiation modality, there was a slight increase in monocyte chemoattractant protein (MCP)-1 expression in the lungs of externally irradiated animals 14 days after influenza infection, with increased cellular infiltration present. Notably, an increase in the number of regulatory T cells was seen in the mediastinal lymph nodes of irradiated mice relative to uninfected mice. These data confirm the hypothesis that early-life irradiation may have long-term consequences on the immune system, leading to an altered antiviral response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, M.; Cohen, M.O.
1975-02-01
The adjoint Monte Carlo method previously developed by MAGI has been applied to the calculation of initial radiation dose due to air secondary gamma rays and fission product gamma rays at detector points within buildings for a wide variety of problems. These provide an in-depth survey of structure shielding effects as well as many new benchmark problems for matching by simplified models. Specifically, elevated ring source results were obtained in the following areas: doses at on-and off-centerline detectors in four concrete blockhouse structures; doses at detector positions along the centerline of a high-rise structure without walls; dose mapping at basementmore » detector positions in the high-rise structure; doses at detector points within a complex concrete structure containing exterior windows and walls and interior partitions; modeling of the complex structure by replacing interior partitions by additional material at exterior walls; effects of elevation angle changes; effects on the dose of changes in fission product ambient spectra; and modeling of mutual shielding due to external structures. In addition, point source results yielding dose extremes about the ring source average were obtained. (auth)« less
Moharram, B M; Suliman, M N; Zahran, N F; Shennawy, S E; El Sayed, A R
2012-01-01
Using of building materials containing naturally occurring radionuclides as (238)U, (232)Th and (40)K and their progeny results in an external exposures of the housing of such buildings. In the present study, indoor dose rates for typical Egyptian rooms are calculated using the analytical method and activity concentrations of natural radionuclides in some building materials. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling assumed. Different room models are assumed to discuss variation of indoor dose rates according to variation in room construction. Activity concentrations of (238)U, (232)Th and (40)K content in eight samples representative Clay soil and different building materials used in most recent Egyptian building were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The specific activity for (238)U, (232)Th and (40)K, from the selected samples, were in the range 14.15-60.64, 2.75-84.66 and 7.35-554.4Bqkg(-1), respectively. The average indoor absorbed dose rates in air ranged from 0.005μGyh(-1) to 0.071μGyh(-1) and the corresponding population-weighted annual effective dose due to external gamma radiation varies from 0.025 to 0.345mSv. An outdoor dose rate for typical building samples in addition to some radiological hazards has been introduced for comparison. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.; Benton, E. R.
1998-01-01
As part of the NASA/Mir Phase 1B Science Program, the ionizing radiation environment inside and outside the Russian Mir's Space Station was monitored using a combination of Thermoluminescent Detectors (TLD) and CR-39 Plastic Nuclear Track Detectors (PNTD). Radiation measurements inside the Mir station were carried out using six Area Passive Dosimeters (APD), four located inside the Mir Base Block and two located inside the Kvant 2 module, during the NASA-2/Mir-21, NASA-3/Mir-22 and NASA-4/Mir-23 missions. The radiation environment under low shielding was measured using an External Dosimeter Array (EDA) mounted on the outer surface of the Kvant 2 module. The external radiation environment and a location inside the Kvant 2 roughly corresponding to the location of the EDA were monitored for 130 days during the NASA- 4/Mir-23 and NASA-5/Mir-24 missions. Dose rates measured by APD TLDs ranged from 271 to 407 microGy/d during the NASA-2/Mir-21 mission, from 265 to 378 microGy/d during the NASA-3/Mir-22 mission, and from 287 to 421 microGy/d during the NASA-4/Mir-23 mission. APD PNTDs have been analyzed and LET spectra have been Cenerated for the five APDs exposed on the NASA-2/Mir-21 mission and for two APD PNTDs exposed on the NASA-3/Mir-22 mission. Dose equivalent rates on the NASA-2/Mir-21 mission ranged from 513 microSv/d in the Kvant 2 module to 710 microSv/d on the floor of the Base Block. Dose as a function of shielding depth in TLDs has been measured in the thin TLD stacks including in the EDA. EDA dose range from 72.5 Gy under 0.0146 g/sq cm to 0.093 Gy under 3.25 g/sq cm of shielding. Readout and analysis of the reaming PNTDs form the NASA-3/Mir-22 mission and PNTDs from the NASA-4/Mir-23 mission (including those from the EDA) is ongoing and will be completed during the final year of this experiment. Dose equivalent rates for the NASA-3/Mir-22 and NASA-4/Mir-23 APDs will then be determined and comparisons will be made with both model calculations and with results from similar measurements.
Bai, Penggang; Du, Min; Ni, Xiaolei; Ke, Dongzhong; Tong, Tong
2017-01-01
The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg), which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency. PMID:28388623
Dickie, Colleen I; Parent, Amy L; Griffin, Anthony M; Fung, Sharon; Chung, Peter W M; Catton, Charles N; Ferguson, Peter C; Wunder, Jay S; Bell, Robert S; Sharpe, Michael B; O'Sullivan, Brian
2009-11-15
To examine the relationship between tumor location, bone dose, and irradiated bone length on the development of radiation-induced fractures for lower extremity soft tissue sarcoma (LE-STS) patients treated with limb-sparing surgery and radiotherapy (RT). Of 691 LE-STS patients treated from 1989 to 2005, 31 patients developed radiation-induced fractures. Analysis was limited to 21 fracture patients (24 fractures) who were matched based on tumor size and location, age, beam arrangement, and mean total cumulative RT dose to a random sample of 53 nonfracture patients and compared for fracture risk factors. Mean dose to bone, RT field size (FS), maximum dose to a 2-cc volume of bone, and volume of bone irradiated to >or=40 Gy (V40) were compared. Fracture site dose was determined by comparing radiographic images and surgical reports to fracture location on the dose distribution. For fracture patients, mean dose to bone was 45 +/- 8 Gy (mean dose at fracture site 59 +/- 7 Gy), mean FS was 37 +/- 8 cm, maximum dose was 64 +/- 7 Gy, and V40 was 76 +/- 17%, compared with 37 +/- 11 Gy, 32 +/- 9 cm, 59 +/- 8 Gy, and 64 +/- 22% for nonfracture patients. Differences in mean, maximum dose, and V40 were statistically significant (p = 0.01, p = 0.02, p = 0.01). Leg fractures were more common above the knee joint. The risk of radiation-induced fracture appears to be reduced if V40 <64%. Fracture incidence was lower when the mean dose to bone was <37 Gy or maximum dose anywhere along the length of bone was <59 Gy. There was a trend toward lower mean FS for nonfracture patients.
NASA Astrophysics Data System (ADS)
Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.
2017-08-01
The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG consensus guidelines.
Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer.
Schweitzer, Andrew D; Revskaya, Ekaterina; Chu, Peter; Pazo, Valeria; Friedman, Matthew; Nosanchuk, Joshua D; Cahill, Sean; Frases, Susana; Casadevall, Arturo; Dadachova, Ekaterina
2010-12-01
Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's "self-sieving" ability, protecting it against ionizing radiation. The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plain silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of (188)Re-labeled 6D2 melanin-binding antibody. Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation based on prevention of free radical formation by melanin. Copyright © 2010 Elsevier Inc. All rights reserved.
Herskind, Carsten; Griebel, Jürgen; Kraus-Tiefenbacher, Uta; Wenz, Frederik
2008-12-01
Accelerated partial breast radiotherapy with low-energy photons from a miniature X-ray machine is undergoing a randomized clinical trial (Targeted Intra-operative Radiation Therapy [TARGIT]) in a selected subgroup of patients treated with breast-conserving surgery. The steep radial dose gradient implies reduced tumor cell control with increasing depth in the tumor bed. The purpose was to compare the expected risk of local recurrence in this nonuniform radiation field with that after conventional external beam radiotherapy. The relative biologic effectiveness of low-energy photons was modeled using the linear-quadratic formalism including repair of sublethal lesions during protracted irradiation. Doses of 50-kV X-rays (Intrabeam) were converted to equivalent fractionated doses, EQD2, as function of depth in the tumor bed. The probability of local control was estimated using a logistic dose-response relationship fitted to clinical data from fractionated radiotherapy. The model calculations show that, for a cohort of patients, the increase in local control in the high-dose region near the applicator partly compensates the reduction of local control at greater distances. Thus a "sphere of equivalence" exists within which the risk of recurrence is equal to that after external fractionated radiotherapy. The spatial distribution of recurrences inside this sphere will be different from that after conventional radiotherapy. A novel target volume concept is presented here. The incidence of recurrences arising in the tumor bed around the excised tumor will test the validity of this concept and the efficacy of the treatment. Recurrences elsewhere will have implications for the rationale of TARGIT.
Lupatsch, Judith E.; Zwahlen, Marcel; Röösli, Martin; Niggli, Felix; Grotzer, Michael A.; Rischewski, Johannes; Egger, Matthias; Kuehni, Claudia E.
2015-01-01
Background Exposure to medium or high doses of ionizing radiation is a known risk factor for cancer in children. The extent to which low-dose radiation from natural sources contributes to the risk of childhood cancer remains unclear. Objectives In a nationwide census-based cohort study, we investigated whether the incidence of childhood cancer was associated with background radiation from terrestrial gamma and cosmic rays. Methods Children < 16 years of age in the Swiss National Censuses in 1990 and 2000 were included. The follow-up period lasted until 2008, and incident cancer cases were identified from the Swiss Childhood Cancer Registry. A radiation model was used to predict dose rates from terrestrial and cosmic radiation at locations of residence. Cox regression models were used to assess associations between cancer risk and dose rates and cumulative dose since birth. Results Among 2,093,660 children included at census, 1,782 incident cases of cancer were identified including 530 with leukemia, 328 with lymphoma, and 423 with a tumor of the central nervous system (CNS). Hazard ratios for each millisievert increase in cumulative dose of external radiation were 1.03 (95% CI: 1.01, 1.05) for any cancer, 1.04 (95% CI: 1.00, 1.08) for leukemia, 1.01 (95% CI: 0.96, 1.05) for lymphoma, and 1.04 (95% CI: 1.00, 1.08) for CNS tumors. Adjustment for a range of potential confounders had little effect on the results. Conclusions Our study suggests that background radiation may contribute to the risk of cancer in children, including leukemia and CNS tumors. Citation Spycher BD, Lupatsch JE, Zwahlen M, Röösli M, Niggli F, Grotzer MA, Rischewski J, Egger M, Kuehni CE, for the Swiss Pediatric Oncology Group and the Swiss National Cohort. 2015. Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect 123:622–628; http://dx.doi.org/10.1289/ehp.1408548 PMID:25707026
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuipers, T.
1982-06-01
Radiation therapy of cervix carcinoma is applied in this Institute by means of modified Stockholm method in combination with external beam irradiation. In 1968, parametrial portals were replaced by large planeparallel opposed fields extending cranially to LIII/LIV with central shielding in order to avoid overdosage in the area of intracavitary treatment. This resulted in a marked increased incidence of serere sigmoid-colon radiation lesions from 0.25% to 4%; predominantly in Stage I and II patients. Therefore two measures have been introduced: beginning in 1972 measures were taken to prevent the cranial displacement of the uterus during intracavitary treatment in order tomore » avoid shortening the distance between the radioactive sources and the sigmoid-colon; from 1973 stereo X ray photogrammetry (SRM) was applied for dose determinations at points of the sigmoid-colon, which were seen to be located close to the applicator. When SRM data indicated that a high dose at the sigmoid-colon might occur, treatment modifications enabled prevention of radiation damage. Change of position of the applicator was the first to be considered. In the last seven years no surgical intervention had to be performed because of a sigmoid-colon lesion resulting from an unexpected high radiation dose delivered by intrauterine sources. The local recurrence rate was not increased following treatment modifications for prevention of sigmoid-colon radiation damage.« less
Analysis of results of radiation therapy for Stage II carcinoma of the cervix.
Montana, G S; Fowler, W C; Varia, M A; Walton, L A; Mack, Y
1985-03-01
From April 1969 through December 1980, 251 patients with invasive, epidermoid carcinoma of the cervix received radical radiation therapy consisting of a combination of external beam and intracavitary therapy designed to deliver 7000 to 8000 rad to Point A and 6000 to 6500 rad to the pelvic lymph nodes. The disease-free survival at 2, 5, and 10 years for patients with Stage IIA disease was 90%, 76%, and 76%, respectively, whereas for patients with Stage IIB disease it was 77%, 62%, and 59%, respectively. The survival for the entire group at 2, 5, and 10 years was 80%, 65%, and 62%, respectively. Sixty-eight patients had a recurrence within the irradiated volume, for a locoregional recurrence rate of 27% (68/251). In 49 patients complications developed for an overall complication rate of 19.5% (49/251). An analysis of the complications and their degree of severity revealed a correlation with the dose of intracavitary plus external beam therapy given to Point A and to the rectum. The mean dose to Point A for patients with and without complications were 7877 rad (standard error [SE] +/- 95) and 7593 rad (SE +/- 67), respectively. The mean rectal dose for patients with and without intestinal complications were 6767 rad (SE +/- 157) and 6426 rad (SE +/- 78), respectively. The dose difference between patients with and without complications was statistically significant for Point A (P = to 0.0163) but not for the rectal dose (P = to 0.0887). There was no correlation between the bladder dose and urinary complications. Other treatment methods as well as patient and tumor parameters, are being currently analyzed to identify which factors, singly or in combination, may contribute to the development of treatment failures or complications.
Ultra-Low-Dropout Linear Regulator
NASA Technical Reports Server (NTRS)
Thornton, Trevor; Lepkowski, William; Wilk, Seth
2011-01-01
A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.
Radiation Shielding for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Caffrey, Jarvis A.
2016-01-01
Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.
Pathology effects at radiation doses below those causing increased mortality
NASA Technical Reports Server (NTRS)
Carnes, Bruce A.; Gavrilova, Natalia; Grahn, Douglas
2002-01-01
Mortality data from experiments conducted at the Argonne National Laboratory (ANL) on the long-term effects of external whole-body irradiation on B6CF(1) mice were used to investigate radiation-induced effects at intermediate doses of (60)Co gamma rays or fission-spectrum neutrons either delivered as a single exposure or protracted over 60 once-weekly exposures. Kaplan-Meier analyses were used to identify the lowest dose in the ANL data (within radiation quality, pattern of exposure, and sex) at which radiation-induced mortality caused by primary tumors could be detected (approximately 1-2 Gy for gamma rays and 10-15 cGy for neutrons). Doses at and below these levels were then examined for radiation-induced shifts in the spectrum of pathology detected at death. To do this, specific pathology events were pooled into larger assemblages based on whether they were cancer, cardiovascular disease or non-neoplastic diseases detected within the lungs and pleura, liver and biliary tract, reproductive organs, or urinary tract. Cancer and cardiovascular disease were further subdivided into categories based on whether they caused death, contributed to death, or were simply observed at death. Counts of how often events falling within each of these combined pathology categories occurred within a mouse were then used as predictor variables in logistic regression to determine whether irradiated mice could be distinguished from control mice. Increased pathology burdens were detected in irradiated mice at doses lower than those causing detectable shifts in mortality-22 cGy for gamma rays and 2 cGy for neutrons. These findings suggest that (1) models based on mortality data alone may underestimate radiation effects, (2) radiation may have adverse health consequences (i.e. elevated health risks) even when mortality risks are not detected, and (3) radiation-induced pathologies other than cancer do occur, and they involve multiple organ systems.
Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria
NASA Astrophysics Data System (ADS)
Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.
2018-02-01
It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.
Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria
NASA Astrophysics Data System (ADS)
Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.
2018-05-01
It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.
Severgnini, Mara; de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo
2014-01-08
Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose-optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off-line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%.
Monroe, Alan T; Pikaart, Dirk; Peddada, Anuj V
2013-06-01
To report two year clinical outcomes of image guided radiation therapy (IGRT) to the vaginal cuff and pelvic lymph nodes in a series of high-risk endometrial cancer patients. Twenty-six consecutive high-risk endometrial cancer patients requiring adjuvant radiation to the vaginal cuff and regional lymph nodes were treated with vaginal cuff fiducial-based IGRT. Seventeen (65%) received sequential chemotherapy, most commonly with a sandwich technique. Brachytherapy followed external radiation in 11 patients to a median dose of 18 Gy in 3 fractions. The median external beam dose delivered was 47.5 Gy in 25 fractions. All 656 fractions were successfully imaged and treated. The median overall translational shift required for correction was 9.1 mm (standard deviation, 5.2 mm) relative to clinical set-up with skin tattoos. Shifts of 1 cm, 1.5 cm, and 2 cm or greater were performed in 43%, 14%, and 4% of patients, respectively. Acute grade 2 gastrointestinal (GI) toxicity occurred in eight patients (30%) and grade 3 toxicity occurred in one. At two years, there have been no local or regional failures and actuarial overall survival is 95%. Daily image guidance for high-risk endometrial cancer results in a low incidence of acute GI/genitourinary (GU) toxicity with uncompromised tumor control at two years. Vaginal cuff translations can be substantial and may possibly result in underdosing if not properly considered.
2009-01-01
Background The International Commission on Radiological Protection (ICRP) recommended annual occupational dose limit is 20 mSv. Cancer mortality in Japanese A-bomb survivors exposed to less than 20 mSv external radiation in 1945 was analysed previously, using a latency model with non-linear dose response. Questions were raised regarding statistical inference with this model. Methods Cancers with over 100 deaths in the 0 - 20 mSv subcohort of the 1950-1990 Life Span Study are analysed with Poisson regression models incorporating latency, allowing linear and non-linear dose response. Bootstrap percentile and Bias-corrected accelerated (BCa) methods and simulation of the Likelihood Ratio Test lead to Confidence Intervals for Excess Relative Risk (ERR) and tests against the linear model. Results The linear model shows significant large, positive values of ERR for liver and urinary cancers at latencies from 37 - 43 years. Dose response below 20 mSv is strongly non-linear at the optimal latencies for the stomach (11.89 years), liver (36.9), lung (13.6), leukaemia (23.66), and pancreas (11.86) and across broad latency ranges. Confidence Intervals for ERR are comparable using Bootstrap and Likelihood Ratio Test methods and BCa 95% Confidence Intervals are strictly positive across latency ranges for all 5 cancers. Similar risk estimates for 10 mSv (lagged dose) are obtained from the 0 - 20 mSv and 5 - 500 mSv data for the stomach, liver, lung and leukaemia. Dose response for the latter 3 cancers is significantly non-linear in the 5 - 500 mSv range. Conclusion Liver and urinary cancer mortality risk is significantly raised using a latency model with linear dose response. A non-linear model is strongly superior for the stomach, liver, lung, pancreas and leukaemia. Bootstrap and Likelihood-based confidence intervals are broadly comparable and ERR is strictly positive by bootstrap methods for all 5 cancers. Except for the pancreas, similar estimates of latency and risk from 10 mSv are obtained from the 0 - 20 mSv and 5 - 500 mSv subcohorts. Large and significant cancer risks for Japanese survivors exposed to less than 20 mSv external radiation from the atomic bombs in 1945 cast doubt on the ICRP recommended annual occupational dose limit. PMID:20003238
Derin, Mary Thomas; Vijayagopal, Perumal; Venkatraman, Balasubramaniam; Chaubey, Ramesh Chandra; Gopinathan, Anilkumar
2012-01-01
The present paper describes a detailed study on the distribution of radionuclides along Chavara – Neendakara placer deposit, a high background radiation area (HBRA) along the Southwest coast of India (Kerala). Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium (238U), Thorium (232Th) and Potassium (40K) are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between 238U and 232Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti) and zircon (Zr) are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h−1) computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED) and average annual gonadal dose equivalent (AGDE) values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA. PMID:23185629
Esophageal cancer management controversies: Radiation oncology point of view
Tai, Patricia; Yu, Edward
2014-01-01
Esophageal cancer treatment has evolved from single modality to trimodality therapy. There are some controversies of the role, target volumes and dose of radiotherapy (RT) in the literature over decades. The present review focuses primarily on RT as part of the treatment modalities, and highlight on the RT volume and its dose in the management of esophageal cancer. The randomized adjuvant chemoradiation (CRT) trial, intergroup trial (INT 0116) enrolled 559 patients with resected adenocarcinoma of the stomach or gastroesophageal junction. They were randomly assigned to surgery plus postoperative CRT or surgery alone. Analyses show robust treatment benefit of adjuvant CRT in most subsets for postoperative CRT. The Chemoradiotherapy for Oesophageal Cancer Followed by Surgery Study (CROSS) used a lower RT dose of 41.4 Gray in 23 fractions with newer chemotherapeutic agents carboplatin and paclitaxel to achieve an excellent result. Target volume of external beam radiation therapy and its coverage have been in debate for years among radiation oncologists. Pre-operative and post-operative target volumes are designed to optimize for disease control. Esophageal brachytherapy is effective in the palliation of dysphagia, but should not be given concomitantly with chemotherapy or external beam RT. The role of brachytherapy in multimodality management requires further investigation. On-going studies of multidisciplinary treatment in locally advanced cancer include: ZTOG1201 trial (a phase II trial of neoadjuvant and adjuvant CRT) and QUINTETT (a phase III trial of neoadjuvant vs adjuvant therapy with quality of life analysis). These trials hopefully will shed more light on the future management of esophageal cancer. PMID:25132924
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Y; Altundal, Y; Sajo, E
Purpose: This study investigates, for the first time, the dose enhancement to lung tumors due to cisplatin nanoparticles (CNPs) and carboplatin nanoparticles (CBNPs) administered via inhalation route (IR) during external beam radiotherapy. Methods: Using Monte Carlo generated 6 MV energy fluence spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumor due to radiation-induced photoelectrons from CNPs administered via IR in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung tumor via IV. Meanwhile recent experimental studies indicate that 3.5–14.6 times higher concentrations of CNPs canmore » reach the lung tumors by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the dose with and without CNPs was calculated for field size of 10 cm × 10 cm (sweeping gap), for a range of tumor depths and tumor sizes. Similar calculations were done for CBNPs. Results: For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of 1.19–1.30 were obtained for CNPs at 3–10 cm depth, respectively, in comparison to 1.06–1.09 for IV. For CBNPs, DEF values of 1.26–1.41 were obtained in comparison to 1.07–1.12 for IV. For IR with 14.6 times higher concentrations, higher DEF values were obtained e.g. 1.81–2.27 for CNPs. DEF increased with increasing field size or decreasing tumor size. Conclusions: Our preliminary results indicate that major dose enhancement to lung tumors can be achieved using CNPs/CBNPs administered via IR, in contrast to IV administration during external beam radiotherapy. These findings highlight a potential new approach for radiation boosting to lung tumors using CNPs/CBNPs administered via IR. This would, especially, be applicable during concomitant chemoradiotherapy, potentially allowing for dose enhancement while minimizing normal tissue toxicities.« less
Lenka, Pradyumna; Sahoo, S K; Mohapatra, S; Patra, A C; Dubey, J S; Vidyasagar, D; Tripathi, R M; Puranik, V D
2013-03-01
A natural high background radiation area is located in Chhatrapur, Odisha in the eastern part of India. The inhabitants of this area are exposed to external radiation levels higher than the global average background values, due to the presence of uranium, thorium and its decay products in the monazite sands bearing placer deposits in its beaches. The concentrations of (232)Th, (238)U, (226)Ra, (40)K and (137)Cs were determined in cereals (rice and wheat), pulses and drinking water consumed by the population residing around this region and the corresponding annual ingestion dose was calculated. The annual ingestion doses from cereals, pulses and drinking water varied in the range of 109.4-936.8, 10.2-307.5 and 0.5-2.8 µSv y(-1), respectively. The estimated total annual average effective dose due to the ingestion of these radionuclides in cereals, pulses and drinking water was 530 µSv y(-1). The ingestion dose from cereals was the highest mainly due to a high consumption rate. The highest contribution of dose was found to be from (226)Ra for cereals and drinking water and (40)K was the major dose contributor from the intake of pulses. The contribution of man-made radionuclide (137)Cs to the total dose was found to be minimum. (226)Ra was found to be the largest contributor to ingestion dose from all sources.
Is Dose Deformation–Invariance Hypothesis Verified in Prostate IGRT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Antoine, E-mail: antoine.simon@univ-rennes1.fr; Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, 35000 Rennes; Le Maitre, Amandine
Purpose: To assess dose uncertainties resulting from the dose deformation–invariance hypothesis in prostate cone beam computed tomography (CT)–based image guided radiation therapy (IGRT), namely to evaluate whether rigidly propagated planned dose distribution enables good estimation of fraction dose distributions. Methods and Materials: Twenty patients underwent a CT scan for planning intensity modulated radiation therapy–IGRT delivering 80 Gy to the prostate, followed by weekly CT scans. Two methods were used to obtain the dose distributions on the weekly CT scans: (1) recalculating the dose using the original treatment plan; and (2) rigidly propagating the planned dose distribution. The cumulative doses were then estimatedmore » in the organs at risk for each dose distribution by deformable image registration. The differences between recalculated and propagated doses were finally calculated for the fraction and the cumulative dose distributions, by use of per-voxel and dose-volume histogram (DVH) metrics. Results: For the fraction dose, the mean per-voxel absolute dose difference was <1 Gy for 98% and 95% of the fractions for the rectum and bladder, respectively. The maximum dose difference within 1 voxel reached, however, 7.4 Gy in the bladder and 8.0 Gy in the rectum. The mean dose differences were correlated with gas volume for the rectum and patient external contour variations for the bladder. The mean absolute differences for the considered volume receiving greater than or equal to dose x (V{sub x}) of the DVH were between 0.37% and 0.70% for the rectum and between 0.53% and 1.22% for the bladder. For the cumulative dose, the mean differences in the DVH were between 0.23% and 1.11% for the rectum and between 0.55% and 1.66% for the bladder. The largest dose difference was 6.86%, for bladder V{sub 80Gy}. The mean dose differences were <1.1 Gy for the rectum and <1 Gy for the bladder. Conclusions: The deformation–invariance hypothesis was corroborated for the organs at risk in prostate IGRT except in cases of a large disappearance or appearance of rectal gas for the rectum and large external contour variations for the bladder.« less
NASA Astrophysics Data System (ADS)
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-07
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong
2016-04-13
One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.
Meulepas, Johanna M; Ronckers, Cécile M; Smets, Anne M J B; Nievelstein, Rutger A J; Jahnen, Andreas; Lee, Choonsik; Kieft, Mariëtte; Laméris, Johan S; van Herk, Marcel; Greuter, Marcel J W; Jeukens, Cécile R L P N; van Straten, Marcel; Visser, Otto; van Leeuwen, Flora E; Hauptmann, Michael
2014-04-01
Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation.
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
2013-01-01
Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRTmore » plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamstra, Daniel A., E-mail: dhamm@med.umich.edu; Conlon, Anna S.C.; Daignault, Stephanie
Purpose: To evaluate patients treated with external beam radiation therapy as part of the multicenter Prostate Cancer Outcomes and Satisfaction with Treatment Quality Assessment (PROSTQA), to identify factors associated with posttreatment patient-reported bowel health-related quality of life (HRQOL). Methods and Materials: Pretreatment characteristics and treatment details among 292 men were evaluated using a general linear mixed model for their association with measured HRQOL by the Expanded Prostate Cancer Index Composite instrument through 2 years after enrollment. Results: Bowel HRQOL had a median score of 100 (interquartile range 91.7-100) pretreatment and 95.8 (interquartile range 83.3-100) at 2 years, representing new moderate/bigmore » problems in 11% for urgency, 7% for frequency, 4% for bloody stools, and 8% for an overall bowel problems. Baseline bowel score was the strongest predictor for all 2-year endpoints. In multivariable models, a volume of rectum ≥25% treated to 70 Gy (V70) yielded a clinically significant 9.3-point lower bowel score (95% confidence interval [CI] 16.8-1.7, P=.015) and predicted increased risks for moderate to big fecal incontinence (P=.0008). No other radiation therapy treatment-related variables influenced moderate to big changes in rectal HRQOL. However, on multivariate analyses V70 ≥25% was associated with increases in small, moderate, or big problems with the following: incontinence (3.9-fold; 95% CI 1.1-13.4, P=.03), rectal bleeding (3.6-fold; 95% CI 1.3-10.2, P=.018), and bowel urgency (2.9-fold; 95% CI 1.1-7.6, P=.026). Aspirin use correlated with a clinically significant 4.7-point lower bowel summary score (95% CI 9.0-0.4, P=.03) and an increase in small, moderate, or big problems with bloody stools (2.8-fold; 95% CI 1.2-6.4, P=.018). Intensity modulated radiation therapy was associated with higher radiation therapy doses to the prostate and lower doses to the rectum but did not independently correlate with bowel HRQOL. Conclusion: After contemporary dose-escalated external beam radiation therapy up to 11% of patients have newly identified moderate/big problems with bowel HRQOL 2 years after treatment. Bowel HRQOL is related to baseline function, rectal V70, and aspirin use. Finally, our findings validate the commonly utilized cut-point of rectal V70 ≥25% as having significant impact on patient-reported outcomes.« less
Technologist radiation exposure in routine clinical practice with 18F-FDG PET.
Guillet, Benjamin; Quentin, Pierre; Waultier, Serge; Bourrelly, Marc; Pisano, Pascale; Mundler, Olivier
2005-09-01
The use of 18F-FDG for clinical PET studies increases technologist radiation dose exposure because of the higher gamma-radiation energy of this isotope than of other conventional medical gamma-radiation-emitting isotopes. Therefore, 18F-FDG imaging necessitates stronger radiation protection requirements. The aims of this study were to assess technologist whole-body and extremity exposure in our PET department and to evaluate the efficiency of our radiation protection devices (homemade syringe drawing device, semiautomated injector, and video tracking of patients). Radiation dose assessment was performed for monodose as well as for multidose 18F-FDG packaging with both LiF thermoluminescence dosimeters (TLD) and electronic personal dosimeters (ED) during 5 successive 18F-FDG PET steps (from syringe filling to patient departure). The mean +/- SD total effective doses received by technologists (n = 50) during all of the working steps were 3.24 +/- 2.1 and 3.01 +/- 1.4 microSv, respectively, as measured with ED and TLD (345 +/- 84 MBq injected). These values were confirmed by daily TLD technologist whole-body dose measurements (2.98 +/- 1.8 microSv; 294 +/- 78 MBq injected; n = 48). Finger irradiation doses during preparation of single 18F-FDG syringes were 204.9 +/- 24 and 198.4 +/- 23 microSv with multidose vials (345 +/- 93 MBq injected) and 127.3 +/- 76 and 55.9 +/- 47 microSv with monodose vials (302 +/- 43 MBq injected) for the right hand and the left hand, respectively. The protection afforded by the semiautomated injector, estimated as the ratio of the doses received by TLD placed on the syringe shield and on the external face of the injector, was near 2,000. These results showed that technologist radiation doses in our PET department were lower than those reported in the literature. This finding may be explained by the use of a homemade syringe drawing device, a semiautomated injector, and patient video tracking, allowing a shorter duration of contact between the technologist and the patient. Extrapolation of these results to an annual dose (4 patients per day per technologist) revealed that the annual extrapolated exposure values remained under the authorized limits for workers classified to work in a radioactivity-controlled area.
Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny
2015-12-01
The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 μGy h(-1) up to 1.5 Gy h(-1). Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h(-1). A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR10) was estimated at 95 ± 7 mGy h(-1), followed by 153 ± 13 mGy h(-1) and 169 ± 12 mGy h(-1) on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h(-1), antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h(-1) which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic stress conditions can induce endoreduplication events. Here an increase in ploidy level was observed at the highest tested dose rate. In conclusion, the results revealed that in plants several mechanisms and pathways interplay to cope with radiation induced stress. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fontenot, Jonas David
External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100.
Ozasa, Kotaro; Shimizu, Yukiko; Suyama, Akihiko; Kasagi, Fumiyoshi; Soda, Midori; Grant, Eric J; Sakata, Ritsu; Sugiyama, Hiromi; Kodama, Kazunori
2012-03-01
This is the 14th report in a series of periodic general reports on mortality in the Life Span Study (LSS) cohort of atomic bomb survivors followed by the Radiation Effects Research Foundation to investigate the late health effects of the radiation from the atomic bombs. During the period 1950-2003, 58% of the 86,611 LSS cohort members with DS02 dose estimates have died. The 6 years of additional follow-up since the previous report provide substantially more information at longer periods after radiation exposure (17% more cancer deaths), especially among those under age 10 at exposure (58% more deaths). Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, and effect modification by gender, age at exposure, and attained age. The risk of all causes of death was positively associated with radiation dose. Importantly, for solid cancers the additive radiation risk (i.e., excess cancer cases per 10(4) person-years per Gy) continues to increase throughout life with a linear dose-response relationship. The sex-averaged excess relative risk per Gy was 0.42 [95% confidence interval (CI): 0.32, 0.53] for all solid cancer at age 70 years after exposure at age 30 based on a linear model. The risk increased by about 29% per decade decrease in age at exposure (95% CI: 17%, 41%). The estimated lowest dose range with a significant ERR for all solid cancer was 0 to 0.20 Gy, and a formal dose-threshold analysis indicated no threshold; i.e., zero dose was the best estimate of the threshold. The risk of cancer mortality increased significantly for most major sites, including stomach, lung, liver, colon, breast, gallbladder, esophagus, bladder and ovary, whereas rectum, pancreas, uterus, prostate and kidney parenchyma did not have significantly increased risks. An increased risk of non-neoplastic diseases including the circulatory, respiratory and digestive systems was observed, but whether these are causal relationships requires further investigation. There was no evidence of a radiation effect for infectious or external causes of death.
Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy.
Wang, Xudong; Charlton, Michael A; Esquivel, Carlos; Eng, Tony Y; Li, Ying; Papanikolaou, Nikos
2013-09-01
To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (Hn,D and HG), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied. A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The Hn,D and HG were measured using an Andersson-Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO(®) phantom. Within the measurement uncertainty, there is no significant difference between the Hn,D and HG with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (± 0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (± 1.6) min and 15.3 (± 4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test. This work indicates that there is no significant change of the Hn,D and HG in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.
Tack, Denis; Jahnen, Andreas; Kohler, Sarah; Harpes, Nico; De Maertelaer, Viviane; Back, Carlo; Gevenois, Pierre Alain
2014-01-01
To report short- and long-term effects of an audit process intended to optimise the radiation dose from multidetector row computed tomography (MDCT). A survey of radiation dose from all eight MDCT departments in the state of Luxembourg performed in 2007 served as baseline, and involved the most frequently imaged regions (head, sinus, cervical spine, thorax, abdomen, and lumbar spine). CT dose index volume (CTDIvol), dose-length product per acquisition (DLP/acq), and DLP per examination (DLP/exa) were recorded, and their mean, median, 25th and 75th percentiles compared. In 2008, an audit conducted in each department helped to optimise doses. In 2009 and 2010, two further surveys evaluated the audit's impact on the dose delivered. Between 2007 and 2009, DLP/exa significantly decreased by 32-69 % for all regions (P < 0.001) except the lumbar spine (5 %, P = 0.455). Between 2009 and 2010, DLP/exa significantly decreased by 13-18 % for sinus, cervical and lumbar spine (P ranging from 0.016 to less than 0.001). Between 2007 and 2010, DLP/exa significantly decreased for all regions (18-75 %, P < 0.001). Collective dose decreased by 30 % and the 75th percentile (diagnostic reference level, DRL) by 20-78 %. The audit process resulted in long-lasting dose reduction, with DRLs reduced by 20-78 %, mean DLP/examination by 18-75 %, and collective dose by 30 %. • External support through clinical audit may optimise default parameters of routine CT. • Reduction of 75th percentiles used as reference diagnostic levels is 18-75 %. • The effect of this audit is sustainable over time. • Dose savings through optimisation can be added to those achievable through CT.
de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo
2014-01-01
Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose‐optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off‐line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%. PACS number: 87.55.kh
NASA Astrophysics Data System (ADS)
Al-Mayah, Adil; Moseley, Joanne; Hunter, Shannon; Brock, Kristy
2015-11-01
Biomechanical-based deformable image registration is conducted on the head and neck region. Patient specific 3D finite element models consisting of parotid glands (PG), submandibular glands (SG), tumor, vertebrae (VB), mandible, and external body are used to register pre-treatment MRI to post-treatment MR images to model the dose response using image data of five patients. The images are registered using combinations of vertebrae and mandible alignments, and surface projection of the external body as boundary conditions. In addition, the dose response is simulated by applying a new loading technique in the form of a dose-induced shrinkage using the dose-volume relationship. The dose-induced load is applied as dose-induced shrinkage of the tumor and four salivary glands. The Dice Similarity Coefficient (DSC) is calculated for the four salivary glands, and tumor to calculate the volume overlap of the structures after deformable registration. A substantial improvement in the registration is found by including the dose-induced shrinkage. The greatest registration improvement is found in the four glands where the average DSC increases from 0.53, 0.55, 0.32, and 0.37 to 0.68, 0.68, 0.51, and 0.49 in the left PG, right PG, left SG, and right SG, respectively by using bony alignment of vertebrae and mandible (M), body (B) surface projection and dose (D) (VB+M+B+D).
2017-01-01
ABSTRACT The A-bomb blast released a huge amount of energy: thermal radiation (35%), blast energy (50%), and nuclear radiation (15%). Of the 15%, 5% was initial radiation released within 30 s and 10% was residual radiation, the majority of which was fallout. Exposure doses of hibakusha (A-bomb survivors) were estimated solely on the basis of the initial radiation. The effects of the residual radiation on hibakusha have been considered controversial; some groups assert that the residual radiation was negligible, but others refute that assertion. I recently discovered a six-decade-old article written in Japanese by a medical doctor, Gensaku Obo, from Hiroshima City. This article clearly indicates that the area around the epicenter in Hiroshima was heavily contaminated with residual radiation. It reports that non-hibakusha who entered Hiroshima soon after the blast suffered from severe acute radiation sickness, including burns, external injuries, fever, diarrhea, skin bleeding, sore throat and loss of hair—as if they were real hibakusha. This means that (i) some of those who entered Hiroshima in the early days after the blast could be regarded as indirect hibakusha; (ii) ‘in-the-city-control’ people in the Life Span Study (LSS) must have been irradiated more or less from residual radiation and could not function properly as the negative control; (iii) exposure doses of hibakusha were largely underestimated; and (iv) cancer risk in the LSS was largely overestimated. Obo's article is very important to understand the health effects of A-bombs so that the essence of it is translated from Japanese to English with the permission of the publisher. PMID:29088449
Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle.
Di Lillo, Francesca; Mettivier, Giovanni; Castriconi, Roberta; Sarno, Antonio; Stevenson, Andrew W; Hall, Chris J; Häusermann, Daniel; Russo, Paolo
2018-05-01
The principle of rotational summation of the absorbed dose for breast cancer treatment with orthovoltage X-ray beams was proposed by J. Boone in 2012. Here, use of X-ray synchrotron radiation for image guided external beam rotational radiotherapy treatment of breast cancer is proposed. Tumor irradiation occurs with the patient in the prone position hosted on a rotating bed, with her breast hanging from a hole in the bed, which rotates around a vertical axis passing through the tumor site. Horizontal collimation of the X-ray beam provides for whole breast or partial breast irradiation, while vertical translation of the bed and successive rotations allow for irradiation of the full tumor volume, with dose rates which permit also hypofractionated treatments. In this work, which follows a previous preliminary report, results are shown of a full series of measurements on polyethylene and acrylic cylindrical phantoms carried out at the Australian Synchrotron, confirmed by Geant4 Monte Carlo simulations, intended to demonstrate the proof of principle of the technique. Dose measurements were carried out with calibrated ion chambers, radiochromic films and thermoluminescence dosimeters. The photon energy investigated was 60 keV. Image guidance may occur with the transmitted beam for contrast-enhanced breast computed tomography. For a horizontal beam collimation of 1.5 cm and rotation around the central axis of a 14 cm-diameter polyethylene phantom, a periphery-to-center dose ratio of 14% was measured. The simulations showed that under the same conditions the dose ratio decreases with increasing photon energy down to 10% at 175 keV. These values are comparable with those achievable with conventional megavoltage radiotherapy of breast cancer with a medical linear accelerator. Dose painting was demonstrated with two off-center `cancer foci' with 1.3 Gy and 0.6 Gy target doses. The use of a radiosensitizing agent for dose enhancement is foreseen.
NASA Astrophysics Data System (ADS)
Taddei, Phillip J.; Chell, Erik; Hansen, Steven; Gertner, Michael; Newhauser, Wayne D.
2010-12-01
Age-related macular degeneration (AMD), a leading cause of blindness in the United States, is a neovascular disease that may be controlled with radiation therapy. Early patient outcomes of external beam radiotherapy, however, have been mixed. Recently, a novel multimodality treatment was developed, comprising external beam radiotherapy and concomitant treatment with a vascular endothelial growth factor inhibitor. The radiotherapy arm is performed by stereotactic radiosurgery, delivering a 16 Gy dose in the macula (clinical target volume, CTV) using three external low-energy x-ray fields while adequately sparing normal tissues. The purpose of our study was to test the sensitivity of the delivery of the prescribed dose in the CTV using this technique and of the adequate sparing of normal tissues to all plausible variations in the position and gaze angle of the eye. Using Monte Carlo simulations of a 16 Gy treatment, we varied the gaze angle by ±5° in the polar and azimuthal directions, the linear displacement of the eye ±1 mm in all orthogonal directions, and observed the union of the three fields on the posterior wall of spheres concentric with the eye that had diameters between 20 and 28 mm. In all cases, the dose in the CTV fluctuated <6%, the maximum dose in the sclera was <20 Gy, the dose in the optic disc, optic nerve, lens and cornea were <0.7 Gy and the three-field junction was adequately preserved. The results of this study provide strong evidence that for plausible variations in the position of the eye during treatment, either by the setup error or intrafraction motion, the prescribed dose will be delivered to the CTV and the dose in structures at risk will be kept far below tolerance doses.
On the development of a VIPARnd radiotherapy 3D polymer gel dosimeter
NASA Astrophysics Data System (ADS)
Kozicki, Marek; Jaszczak, Malwina; Maras, Piotr; Dudek, Mariusz; Cłapa, Marian
2017-02-01
This work presents an improvement of the VIPARnd (‘nd’ stands for ‘normoxic, double’, or VIP) polymer gel dosimeter. The gel composition was altered by increasing the concentration of the monomeric components, N-vinylpyrrolidone (NVP) and N,N‧-methylenebisacrylamide (MBA), in co-solvent solutions. The optimal composition (VIPARCT, where ‘CT’ stands for computed tomography, or VIC) comprised: 17% NVP, 8% MBA, 12% t-BuOH, 7.5% gelatine, 0.007% ascorbic acid, 0.0008% CuSO4 × 5H2O and 0.02% hydroquinone. The following characteristics of VIC were achieved: (i) linear dose range of 0.9_30 Gy, (ii) saturation for radiation doses of over 50 Gy, (iii) threshold dose of about 0.5 Gy, (iv) dose sensitivity of 0.171 Gy-1 s-1, which is roughly 2.2 times higher than that of VIP (for nuclear magnetic resonance measurements). It was also found that VIC is dose- rate-independent, and its dose response does not alter if the radiation source is changed from electrons to photons for external beam radiotherapy. The gel responded similarly to irradiation with small changes in radiation energy but was sensitive to larger energy changes. The VIC gel retained temporal stability from 20 h until at least 10 d after irradiation, whereas spatial stability was retained from 20 h until at least 6 d after irradiation. The scheme adopted for VIC manufacturing yields repeatable gels in terms of radiation dose response. The VIC was also shown to perform better than VIP using x-ray computed tomography as a readout method; the dose sensitivity of VIC (0.397 HU Gy-1) was 1.5 times higher than that of VIP. Also, the dose resolution of VIC was better than that of VIP in the whole dose range examined.
Analytic concepts for assessing risk as applied to human space flight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrick, B J
Quantitative risk assessment (QRA) principles provide an effective framework for quantifying individual elements of risk, including the risk to astronauts and spacecraft of the radiation environment of space flight. The concept of QRA is based on a structured set of scenarios that could lead to different damage states initiated by either hardware failure, human error, or external events. In the context of a spacecraft risk assessment, radiation may be considered as an external event and analyzed in the same basic way as any other contributor to risk. It is possible to turn up the microscope on any particular contributor tomore » risk and ask more detailed questions than might be necessary to simply assess safety. The methods of QRA allow for as much fine structure in the analysis as is desired. For the purpose of developing a basis for comprehensive risk management and considering the tendency to {open_quotes}fear anything nuclear,{close_quotes} radiation risk is a prime candidate for examination beyond that necessary to answer the basic question of risk. Thus, rather than considering only the customary damage states of fatalities or loss of a spacecraft, it is suggested that the full range of damage be analyzed to quantify radiation risk. Radiation dose levels in the form of a risk curve accomplish such a result. If the risk curve is the complementary cumulative distribution function, then it answers the extended question of what is the likelihood of receiving a specific dose of radiation or greater. Such results can be converted to specific health effects as desired. Knowing the full range of the radiation risk of a space mission and the contributors to that risk provides the information necessary to take risk management actions [operational, design, scheduling of missions around solar particle events (SPE), etc.] that clearly control radiation exposure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package in compliance with 10 CFR Part 71 external radiation level limits regulations. The neutron and photon sources were calculated using both ORIGEN-S and RASTA. The response from a unit source in each neutron and photon group was calculated using MCNP5 with eachmore » unshielded and shielded container configuration. Effects of self-shielding on both neutron and photon response were evaluated by including either plutonium oxide or iron in the source region for the case with no shielded container. For the cases of actinides mixed with light elements, beryllium is the bounding light element. The added beryllium (10 to 90 percent of the actinide mass) in the cases studied represents between 9 and 47 percent concentration of the total mixture mass. For beryllium concentrations larger than 50 percent, the increase in the neutron source term and dose rate tend to increase at a much lower rate than at concentrations lower than 50%. The intimately mixed actinide-beryllium form used in these models is very conservative and thus the limits presented in this report are practical bounds on the mass that can be safely shipped. The calculated dose rate from one gram of each isotope was then used to determin the maximum amount of a single isotope that could be shipped in the Model 9977 Package (or packagings having the same or larger external dimensions as well as similar structural materials) and have the external radiation level within the regulatory dose limits at the surface of the package. The estimates of the mass limits presented would also serve as conservative limits for both the Models 9975 and 9978 packages. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. It should be noted that the SGQ masses presented in this report represent limits that would comply with the external radiation limits under 10CFR Part 71. They do not necessarily bound lower limits that may be required to comply with other factors such as heat load of the package.« less
Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper
2012-05-01
To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel-Titanium (Ni-Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. A new concept for urethra dose reduction is presented. The method relies on the use of a Ni-Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Estimation of external dose by car-borne survey in Kerala, India.
Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi
2015-01-01
A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y.
Alekseeva, N P; Alekseev, A O; Vakhtin, Iu B; Kravtsov, V Iu; Kuzovatov, S N; Skorikova, T I
2008-01-01
Distributions of nuclear morphology anomalies in transplantable rabdomiosarcoma RA-23 cell populations were investigated under effect of ionizing radiation from 0 to 45 Gy. Internuclear bridges, nuclear protrusions and dumbbell-shaped nuclei were accepted for morphological anomalies. Empirical distributions of the number of anomalies per 100 nuclei were used. The adequate model of reentrant binomial distribution has been found. The sum of binomial random variables with binomial number of summands has such distribution. Averages of these random variables were named, accordingly, internal and external average reentrant components. Their maximum likelihood estimations were received. Statistical properties of these estimations were investigated by means of statistical modeling. It has been received that at equally significant correlation between the radiation dose and the average of nuclear anomalies in cell populations after two-three cellular cycles from the moment of irradiation in vivo the irradiation doze significantly correlates with internal average reentrant component, and in remote descendants of cell transplants irradiated in vitro - with external one.
Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A
2017-10-27
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.
2017-11-01
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinerman, Ruth A., E-mail: kleinerr@mail.nih.gov; Smith, Susan A.; Holowaty, Eric
2013-08-01
Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy,more » mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ≥5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P{sub trend}=.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P{sub trend}=.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P{sub trend}=.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer.« less
Neutron fluence-to-dose conversion coefficients for embryo and fetus.
Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica
2004-01-01
A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.
Piruzan, Elham; Haghighatafshar, Mahdi; Faghihi, Reza; Entezarmahdi, Seyed Mohammad
2016-01-01
Abstract Radioiodine therapy is known as the most effective treatment of differentiated thyroid carcinoma (DTC) to ablate remnant thyroid tissue after surgery. In patients with DTC treated with radioiodine, internal radiation dosimetry of radioiodine is useful for radiation risk assessment. The aim of this study is to describe a method to estimate the absorbed dose to the blood using medical internal radiation dosimetry methods. In this study, 23 patients with DTC with different administrated activities, 3.7, 4.62, and 5.55 GBq after thyroidectomy, were randomly selected. Blood dosimetry of treated patients was performed with external whole body counting using a dual-head gamma camera imaging device and also with blood sample activity measurements using a dose calibrator. Absorbed dose to the blood was measured at 2, 6, 12, 24, 48, and 96 hours after the administration of radioiodine with the 2 methods. Based on the results of whole body counting and blood sample activity dose rate measurements, 96 hours after administration of 3.7, 4.62, and 5.55 GBq of radioiodine, absorbed doses to patients’ blood were 0.65 ± 0.20, 0.67 ± 0.18, 0.79 ± 0.51 Gy, respectively. Increasing radioiodine activity from 3.7 to 5.55 GBq increased blood dose significantly, while there was no significant difference in blood dose between radioiodine dosages of 3.7 and 4.62 GBq. Our results revealed a significant correlation between the blood absorbed dose and blood sample activity and between the blood absorbed dose and whole body counts 24 to 48 hours after the administration of radioiodine. PMID:26986171
Piruzan, Elham; Haghighatafshar, Mahdi; Faghihi, Reza; Entezarmahdi, Seyed Mohammad
2016-03-01
Radioiodine therapy is known as the most effective treatment of differentiated thyroid carcinoma (DTC) to ablate remnant thyroid tissue after surgery. In patients with DTC treated with radioiodine, internal radiation dosimetry of radioiodine is useful for radiation risk assessment. The aim of this study is to describe a method to estimate the absorbed dose to the blood using medical internal radiation dosimetry methods. In this study, 23 patients with DTC with different administrated activities, 3.7, 4.62, and 5.55 GBq after thyroidectomy, were randomly selected. Blood dosimetry of treated patients was performed with external whole body counting using a dual-head gamma camera imaging device and also with blood sample activity measurements using a dose calibrator. Absorbed dose to the blood was measured at 2, 6, 12, 24, 48, and 96 hours after the administration of radioiodine with the 2 methods. Based on the results of whole body counting and blood sample activity dose rate measurements, 96 hours after administration of 3.7, 4.62, and 5.55 GBq of radioiodine, absorbed doses to patients' blood were 0.65 ± 0.20, 0.67 ± 0.18, 0.79 ± 0.51 Gy, respectively. Increasing radioiodine activity from 3.7 to 5.55 GBq increased blood dose significantly, while there was no significant difference in blood dose between radioiodine dosages of 3.7 and 4.62 GBq. Our results revealed a significant correlation between the blood absorbed dose and blood sample activity and between the blood absorbed dose and whole body counts 24 to 48 hours after the administration of radioiodine.
Müller, M C; Strauss, A; Pflugmacher, R; Nähle, C P; Pennekamp, P H; Burger, C; Wirtz, D C
2014-08-01
There is a positive correlation between operation time and staff exposure to radiation during intraoperative use of C-arm fluoroscopy. Due to harmful effects of exposure to long-term low-dose radiation for both the patient and the operating team it should be kept to a minimum. AIM of this study was to evaluate a novel dosimeter system called Dose Aware® (DA) enabling radiation exposure feedback of the personal in an orthopaedic and trauma operation theatre in real-time. Within a prospective study over a period of four month, DA was applied by the operation team during 104 orthopaedic and trauma operations in which the C-arm fluoroscope was used in 2D-mode. During ten operation techniques, radiation exposure of the surgeon, the first assistant, the theatre nurse and the anaesthesiologist was evaluated. Seventy-three operations were analysed. The surgeon achieved the highest radiation exposure during dorsolumbar spinal osteosynthesis, kyphoplasty and screw fixation of sacral fractures. The first assistant received a higher radiation exposure compared to the surgeon during plate osteosynthesis of distal radius fractures (157 %), intramedullary nailing of pertrochanteric fractures (143 %) and dorsolumbar spinal osteosynthesis (240 %). During external fixation of ankle fractures (68 %) and screw fixation of sacral fractures (66 %) radiation exposure of the theatre nurse exceeded 50 % of the surgeon's radiation exposure. During plate osteosynthesis of distal radius fractures (157 %) and intramedullary splinting of clavicular fractures (115 %), the anaesthesiologist received a higher radiation exposure than the surgeon. The novel dosimeter system DA provides real-time radiation exposure feedback of the personnel in an orthopaedic and trauma operation theatre for the first time. Data of this study demonstrate that radiation exposure of the personnel depends on the operation type. The first assistant, the theatre nurse and the anaesthesiologist might be exposed to higher radiation doses than the surgeon. DA might help to increase awareness concerning irradiation in an orthopaedic and trauma operation theatre and might enhance staff compliance in using radiation protection techniques. Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, David W., E-mail: David.Chang@petermac.org; Marvelde, Luc te; Chua, Boon H.
Purpose: To report the local recurrence rate and late toxicity of intraoperative radiation therapy (IORT) boost to the tumor bed using the Intrabeam System followed by external-beam whole-breast irradiation (WBI) in women with early-stage breast cancer in a prospective single-institution study. Methods and Materials: Women with breast cancer ≤3 cm were recruited between February 2003 and May 2005. After breast-conserving surgery, a single dose of 5 Gy IORT boost was delivered using 50-kV x-rays to a depth of 10 mm from the applicator surface. This was followed by WBI to a total dose of 50 Gy in 25 fractions. Patientsmore » were reviewed at regular, predefined intervals. Late toxicities were recorded using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring systems. Results: Fifty-five patients completed both IORT boost and external-beam WBI. Median follow-up was 3.3 years (range, 1.4-4.1 years). There was no reported locoregional recurrence or death. One patient developed distant metastases. Grade 2 and 3 subcutaneous fibrosis was detected in 29 (53%) and 8 patients (15%), respectively. Conclusions: The use of IORT as a tumor bed boost using kV x-rays in breast-conserving therapy was associated with good local control but a clinically significant rate of grade 2 and 3 subcutaneous fibrosis.« less
Horn, Kevin M [Albuquerque, NM
2008-05-20
A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.W.; Safai, C.; Goffinet, D.R.
Eleven patients with obstructive jaundice from unresectable cholangiocarcinoma, metastatic porta hepatis adenopathy, or direct compression from a pancreatic malignancy were treated at the Stanford University Medical Center from 1978-1983 with an external drainage procedure followed by high-dose external-beam radiotherapy and by an intracavitary boost to the site of obstruction with Iridium/sup 192/ (Ir/sup 192/). A median dose of 5000 cGy was delivered with 4-6 Mv photons to the tumor bed and regional lymphatics in 9 patients, 1 patient received 2100 cGy to the liver in accelerated fractions because of extensive intrahepatic disease, and 1 patient received 7000 equivalent cGy tomore » his pancreatic tumor bed and regional lymphatics with neon heavy particles. An Ir/sup 192/ wire source later delivered a 3100-10,647 cGy boost to the site of biliary obstruction in each patient, for a mean combined dose of 10,202 cGy to a point 5 mm from the line source. Few acute complications were noted, but 3/11 patients (27%) subsequently developed upper gastrointestinal bleeding from duodenitis or frank duodenal ulceration 4 weeks, 4 months, and 7.5 months following treatment. Eight patients died - 5 with local recurrence +/- distant metastasis, 2 with sepsis, and 1 with widespread systemic metastasis. Autopsies revealed no evidence of biliary tree obstruction in 3/3 patients. Evolution of radiation treatment technqiues for biliary obstruction in the literature is reviewed. High-dose external-beam therapy followed by high-dose Ir/sup 192/ intracavitary boost is well tolerated and provides significant palliation.« less
Chan, Tabitha Y; Tan, Poh Wee; Tan, Chek Wee; Tang, Johann I
2015-12-01
This study aims to quantify dosimetric reduction to the left anterior descending (LAD) artery, heart and lung when comparing whole breast external beam radiotherapy (WBEBRT) with multicatheter accelerated partial breast irradiation (MCABPI) for early stage left breast cancer. Planning CT data sets of 15 patients with left breast cancer receiving multicatheter brachytherapy post breast conserving surgery were used to create two independent treatment plans - WBEBRT prescribed to 50 Gy/25 fractions and MCABPI prescribed to 34 Gy/10 fractions. Dose parameters for (i) LAD artery, (ii) heart, and (iii) ipsilateral lung were calculated and compared between the two treatment modalities. After adjusting for Equivalent Dose in 2 Gy fractions(EQD2), and comparing MCAPBI with WBEBRT, the largest dose reduction was for the LAD artery whose mean dose differed by a factor of 7.7, followed by the ipsilateral lung and heart with a factor of 4.6 and 2.6 respectively. Compared to WBEBRT, the mean MCAPBI LAD was significantly lower compared to WBEBRT (6.0 Gy vs 45.9 Gy; p<0.01). Mean MCAPBI heart D(0.1cc) (representing the dose received by the most highly exposed 0.1 cc of the risk organ, i.e. the dose peak) was significantly lower (16.3 Gy vs 50.6 Gy; p<0.01). Likewise, the mean heart dose (MHD) was significantly lower (2.3 Gy vs 6.0 Gy; p<0.01). Peak dose and mean lung dose (MLD) for ipsilateral lung was also lower for MCAPBI compared to WBEBRT (Peak dose: 22.2 Gy vs 52.0 Gy; p<0.01; MLD: 2.3 Gy vs 10.7 Gy; p<0.01). Compared to WBEBRT, MCAPBI showed a significant reduction in radiation dose for the LAD, heart and lung. This may translate into better cardiac and pulmonary toxicities for patients undergoing MCAPBI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, A.P.
From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind frommore » Chernobyl. Radioactive /sup 131/I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of /sup 131/I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 10/sup 6/ person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 10/sup 7/ person-rem (2 x 10/sup 5/ Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs.« less
ESR dating of submarine hydrothermal activities using barite in sulfide deposition
NASA Astrophysics Data System (ADS)
Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.
2012-12-01
The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). Determining the ages of the hydrothermal deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine hydrothermal deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine hydrothermal sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine hydrothermal area where the radiation level is much higher than usual sea water. (5) The decay of 226Ra has to be considered. (6) Major terms of dose rate are the internal alpha dose rate and the external beta and gamma dose rates. (7) The alpha effectiveness, the ratio of forming the radical by internal alpha particles to by beta and gamma rays, was obtained to be 0.043±0.018. (8) The shape of the chimney sample should be considered for gamma ray dose. Examples of dating results for submarine hydrothermal deposits from South Mariana and Okinawa Trough will be presented.
NASA Astrophysics Data System (ADS)
Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas
2018-05-01
The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkert, Michael R.; Tong, William Y.; LaQuaglia, Michael P.
Purpose: To assess outcomes and toxicity of high-dose-rate intraoperative radiation therapy (HDR-IORT) in the management of pediatric sarcoma. Methods and Materials: Seventy-five pediatric patients underwent HDR-IORT for sarcoma from May 1993 to November 2013. The median age was 9 years old (36 patients were ≤6 years old). HDR-IORT was part of initial therapy in 37 patients (49%) and for recurrent disease in 38 patients (51%). Forty-one patients (55%) received HDR-IORT and postoperative external beam RT (PORT), and 22 patients (29%) were previously treated with external beam radiation therapy to the IORT site. Local control (LC), overall survival (OS) and event-free survival (EFS)more » were estimated using Kaplan-Meier methods. Results: At a median follow-up of 7.8 years for surviving patients, 5-year projected rates of LC, EFS, and OS were 63% (95% confidence interval [CI] 50%-76%), 33% (95% CI 21%-45%), and 43% (95% CI 30%-55%), with a median survival of 3.1 years. The 5-year LC, EFS, and OS rates for patients with recurrent disease were 46% (95% CI, 28%-64%), 30% (95% CI, 13%-46%), and 36% (95% CI, 18%-54%). Acute toxicity ≥grade 3 occurred in 2 (2.5%) treatments; late toxicity ≥grade 3 occurred in 4 (5.3%) patients 0.3-9.9 years after HDR-IORT. The incidence of toxicity ≥grade 3 was not associated with HDR-IORT applicator size, HDR-IORT dose, prior RT or PORT, or prior or postoperative chemotherapy, but all toxicity ≥grade 3 occurred in patients ≤6 years treated with HDR-IORT doses ≥12 Gy. Conclusions: HDR-IORT is a well-tolerated component of multimodality therapy for pediatric sarcoma, allowing additional local treatment while reducing external beam exposure. Taking clinical considerations into account, doses between 8-12 Gy are appropriate for HDR-IORT in patients ≤6 years of age.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herschtal, Alan, E-mail: Alan.Herschtal@petermac.org; Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne; Te Marvelde, Luc
Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predictmore » future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.« less
Beam related response of in vivo diode detectors for external radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baci, Syrja, E-mail: sbarci2013@gmail.com; Telhaj, Ervis; Malkaj, Partizan
2016-03-25
In Vivo Dosimetry (IVD) is a set of methods used in cancer treatment clinics to determine the real dose of radiation absorbed by target volume in a patient’s body. IVD has been widely implemented in radiotherapy treatment centers and is now recommended part of Quality Assurance program by many International health and radiation organizations. Because of cost and lack of specialized personnel, IVD has not been practiced as yet, in Albanian radiotherapy clinics. At Hygeia Hospital Tirana, patients are irradiated with high energy photons generated by Elekta Synergy Accelerators. We have recently started experimenting with the purpose of establishing anmore » IVD practice at this hospital. The first set of experiments was aimed at calibration of diodes that are going to be used for IVD. PMMA, phantoms by PTW were used to calibrate p – type Si, semiconductor diode dosimeters, made by PTW Freiburg for entrance dose. Response of the detectors is affected by energy of the beam, accumulated radiation dose, dose rate, temperature, angle against the beam axis, etc. Here we present the work done for calculating calibration factor and correction factors of source to surface distance, field size, and beam incidence for the entrance dose for both 6 MV photon beam and 18 MV photon beam. Dependence of dosimeter response was found to be more pronounced with source to surface distance as compared to other variables investigated.« less
Novel treatment for radiation optic neuropathy with intravenous bevacizumab.
Farooq, Osman; Lincoff, Norah S; Saikali, Nicolas; Prasad, Dheerendra; Miletich, Robert S; Mechtler, Laszlo L
2012-12-01
Radiation optic neuropathy is a devastating form of vision loss that can occur months to years after radiation therapy for tumors and other lesions located in close proximity to the visual pathways. We present the case of a 24-year-old woman who underwent external beam radiation for treatment of a tectal pilocytic astrocytoma, and 5 years later she developed bilateral radiation optic neuropathy and radiation necrosis of the right temporal lobe. We opted to treat her with intravenous bevacizumab with 3 doses every 3 weeks, as well as dexamethasone and pentoxifylline. After the first infusion of bevacizumab, the patient noted improvement in vision and color vision, and a follow-up magnetic resonance imaging study showed that the previous enhancement of the optic nerves and chiasm was diminishing. Her vision improved dramatically and has remained stable over a 3-year period.
Radiological criteria for unrestricted use of sites containing norm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, D.E.; Rogers, V.C.; Nielson, K.K.
1996-06-01
Natural occurring radioactive materia (NORM) is redistributed in the environment as a result of many mineral recovery and processing industries. There are not federal regulations specifying criteria for NORM contaminated sites; however, several states have promulgated regulations. The regulations promulgated by the states generally focus on NORM from oil and gas production, the primary focus of the assessments for this paper. The criteria for residual NORM in soil are generally (1) 0.18 Bq g{sup -1} in the surface 15 cm of soil and 0.6 Bq g{sup -1} at depth or (2) 1.1 Bq g{sup -1}, with a limitation on themore » radon flux. The primary radiation dose pathways for unrestricted use of land are external gamma exposure and exposure related to indoor radon. Radiation doses vary by over an order of magnitude based on different ratios of {sup 226}Ra to {sup 228}Ra concentrations, biological uptake parameters related to NORM, and the different radon emanation factors for oil field scale and sludge. A {sup 226}Ra criterion of 1.1 Bq g{sup -1} results in a dose of about 2 mSv y{sup -1} from external gamma and about 3 mSv y{sup -1} from radon for a general crawl-space type residence home scenario. The chemical and physical characteristics of the NORM and site-specific factors are important considerations in the assessments. The radon dose would be about 3 times higher for NORM in sludge, vs. the assumption of pipe scale. The structural characteristics of residences (e.g., slab-on-grade, crawl-space, or trailer) also have a significant impact on the potential doses to residences.« less
Sharma, Arunkumar B; Singh, Tomcha Th; Singh, Khelendra N; Gartia, R K
2009-01-01
To study dosimetry of patients during the external radiotherapy of head and neck cancers from different hospitals of the northeastern region (NER) of India. 35 confirmed cases of head and neck cancers reporting to three different hospitals in the NER of India who underwent radiation treatment were the materials for the study. Dosimetry was carried out at 8(eight) anatomical points to these patients, namely, target (entrance and exit points), forehead, chest, abdomen, gonad, arm, and leg respectively by thermoluminescence (TL) as well as optically stimulated luminescence (OSL) dosimeters. Unlike conventional appliances, we used common iodized salt as TL/OSL phosphor. Patient dosimetry was found to vary with an average of 1.17 +/- 0.39 Sv at forehead, 1.24 +/- 0.39 Sv at chest, 0.52 +/- 0.13 Sv at gonad to a minimum of 0.26 +/- 0.07 Sv at leg areas when exposed to a cumulative dose of 65 Sv at the target. Maximum dose received from a stray radiation is about 1.5 Sv at forehead/chest and dosimetry of patient among the three centers is not significantly different at the 5% level of probability.
The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005
McGeoghegan, Dave; Binks, Keith; Gillies, Michael; Jones, Steve; Whaley, Steve
2008-01-01
Background Recent studies of the Hiroshima and Nagasaki A-bomb survivors, together with some (but not all) cohorts exposed occupationally or medically to ionizing radiation, have found an increasing trend in mortality from non-malignant disease with increasing radiation dose. The aim of this study was to establish whether such a trend could be found in a large cohort of employees in the UK nuclear industry. Methods The cohort comprised 64 937 individuals ever employed at the study sites between 1946 and 2002, followed up to 2005; radiation exposures as measured by personal dosimeters (‘film badges’) were available for 42 426 individuals classified as ‘radiation workers’. Poisson regression models were used to investigate the relationship between excess mortality rates and cumulative radiation exposure, using both relative and additive risk models. Results The cohort shows a pronounced ‘healthy worker’ effect. Overall, socio-economic status as indicated by employment status has a greater influence on mortality than does radiation exposure status. For male radiation workers, there is an apparent dose response for mortality from circulatory system disease [P < 0.001, ERR = 0.65 (90% CI 0.36–0.98) Sv−1]. However there is evidence for inhomogeneity in the apparent dose response (P = 0.016), arising principally at cumulative doses in excess of 300 mSv, when the four categories of employment and radiation exposure status are examined separately. Conclusions We have found evidence for an association between mortality from non-cancer causes of death, particularly circulatory system disease, and external exposure to ionizing radiation in this cohort. However, the tentative nature of biological mechanisms that might explain such an effect at low chronic doses and the above inhomogeneities in apparent dose–response, mean that the results of our analysis are not consistent with any simple causal interpretation. Further work is required to explain these inhomogeneities, and on the possible role of factors associated with socio-economic status and shift working, before any further conclusions can be drawn. PMID:18319298
Waldenström, Ann-Charlotte; Olsson, Caroline; Wilderäng, Ulrica; Dunberger, Gail; Lind, Helena; al-Abany, Massoud; Palm, Åsa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar
2011-07-15
To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥ 52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldenstroem, Ann-Charlotte, E-mail: ann-charlotte.waldenstrom@oncology.gu.se; Department of Oncology, Sahlgrenska University Hospital, Gothenburg; Olsson, Caroline
Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-upmore » of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses {>=}52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.« less
NASA Astrophysics Data System (ADS)
Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.
2012-04-01
On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.
Radiation dermatitis caused by a bolus effect from an abdominal compression device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, Michael; Wei, Randy L.; Yu, Suhong
American Association of Physicists in Medicine (AAPM) Task Group 176 evaluated the dosimetric effects caused by couch tops and immobilization devices. The report analyzed the extensive physics-based literature on couch tops, stereotactic body radiation therapy (SBRT) frames, and body immobilization bags, while noting the scarcity of clinical reports of skin toxicity because of external devices. Here, we present a clinical case report of grade 1 abdominal skin toxicity owing to an abdominal compression device. We discuss the dosimetric implications of the utilized treatment plan as well as post hoc alternative plans and quantify differences in attenuation and skin dose/build-up betweenmore » the device, a lower-density alternative device, and an open field. The description of the case includes a 66-year-old male with HER2 amplified poorly differentiated distal esophageal adenocarcinoma treated with neoadjuvant chemo-radiation and the use of an abdominal compression device. Radiation was delivered using volumetric modulated arc therapy (VMAT) with 2 arcs using abdominal compression and image guidance. The total dose was 50.4 Gy delivered over 40 elapsed days. With 2 fractions remaining, the patient developed dermatitis in the area of the compression device. The original treatment plan did not include a contour of the device. Alternative post hoc treatment plans were generated, one to contour the device and a second with anterior avoidance. In conclusion, replanning with the device contoured revealed the bolus effect. The skin dose increased from 27 to 36 Gy. planned target volume (PTV) coverage at 45 Gy was reduced to 76.5% from 95.8%. The second VMAT treatment plan with an anterior avoidance sector and more oblique beam angles maintained PTV coverage and spared the anterior wall, however at the expense of substantially increased dose to lung. This case report provides an important reminder of the bolus effect from external devices such as abdominal compression. Special consideration must be given to contour and/or avoiding beam entrance to the device, and to the use of such devices in patients who may have heightened radiosensitivity, such as those who are human immunodeficiency virus (HIV)–positive.« less
Pregnancy and Radiation Protection
NASA Astrophysics Data System (ADS)
Gerogiannis, J.; Stefanoyiannis, A. P.
2010-01-01
Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating oncologist, other team and family members should carefully discuss for the decision of abortion. Important factors must be considered such as the stage and aggressiveness of the tumour, the location of the tumour, the stage of pregnancy, various therapies etc.
Pregnancy and Radiation Protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerogiannis, J.; Stefanoyiannis, A. P.
Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation ofmore » the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating oncologist, other team and family members should carefully discuss for the decision of abortion. Important factors must be considered such as the stage and aggressiveness of the tumour, the location of the tumour, the stage of pregnancy, various therapies etc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsadius, David, E-mail: david.alsadius@oncology.gu.se; Hedelin, Maria; Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm
2012-10-01
Purpose: To supplement previous findings that the absorbed dose of ionizing radiation to the anal sphincter or lower rectum affects the occurrence of fecal leakage among irradiated prostate-cancer survivors. We also wanted to determine whether anatomically defining the anal-sphincter region as the organ at risk could increase the degree of evidence underlying clinical guidelines for restriction doses to eliminate this excess risk. Methods and Materials: We identified 985 men irradiated for prostate cancer between 1993 and 2006. In 2008, we assessed long-term gastrointestinal symptoms among these men using a study-specific questionnaire. We restrict the analysis to the 414 men whomore » had been treated with external beam radiation therapy only (no brachytherapy) to a total dose of 70 Gy in 2-Gy daily fractions to the prostate or postoperative prostatic region. On reconstructed original radiation therapy dose plans, we delineated the anal-sphincter region as an organ at risk. Results: We found that the prevalence of long-term fecal leakage at least once per month was strongly correlated with the mean dose to the anal-sphincter region. Examining different dose intervals, we found a large increase at 40 Gy; {>=}40 Gy compared with <40 Gy gave a prevalence ratio of 3.8 (95% confidence interval 1.6-8.6). Conclusions: This long-term study shows that mean absorbed dose to the anal-sphincter region is associated with the occurrence of long-term fecal leakage among irradiated prostate-cancer survivors; delineating the anal-sphincter region separately from the rectum and applying a restriction of a mean dose <40 Gy will, according to our data, reduce the risk considerably.« less
Residual splenic function in the presence of thorotrast-associated hepatic tumor: case report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, R.P.; Turner, J.W.; Syed, I.B.
1976-03-01
A 50-year-old man had received intravenous colloidal thorium dioxide (thorotrast) 27 years previously. Scintiscans with both $sup 99$/sup m/Tc-sulfur colloid and $sup 131$I-rose bengal revealed an extensive intrahepatic defect. At operation, the lesion proved to be an infiltrating hemangiosarcoma. The spleen was small but the chronic internal radiation of the spleen had not completely destroyed the function of radiocolloid uptake. Review of the literature disclosed other cases in which th spleen was still capable of accumulating radiocolloid some years after thorotrast administration. In at least one other instance, radiocolloid uptake was not accompanied by splenic ability to clear Howell--Jolly bodies:more » a disassociation of splenic functions. The effects of the internal radiation dose to the spleen from thorotrast are discussed and compared with the effects of external radiation. The discrepancy between the effects of the two doses may be related to the high relative biologic effectiveness of the alpha rays from thorotrast compared with x-radiation, to nonuniformity of distribution, and to the effects of reticuloendothelial blockade. (auth)« less
Peripheral photon and neutron doses from prostate cancer external beam irradiation.
Bezak, Eva; Takam, Rundgham; Marcu, Loredana G
2015-12-01
Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Oertel, Susanne; Niethammer, Andreas G; Krempien, Robert; Roeder, Falk; Eble, Michael J; Baer, Claudia; Huber, Peter E; Kulozik, Andreas; Waag, Karl-Ludwig; Treiber, Martina; Debus, Juergen
2006-01-01
Intraoperative electron-beam radiotherapy (IOERT) has been applied for local dose escalation in over 1,400 patients in Heidelberg since 1991. Among these were 30 children, in 18 of whom IOERT was employed in radiation treatment with external-beam radiotherapy (EBRT) on account of incomplete resection. We address the question whether IOERT is able to compensate for microscopic or macroscopic tumor residue if employed in the overall radiation regimen. The data of the aforementioned 18 children were analyzed with regard to local recurrence, overall survival, and complication rates. All children suffered from either sarcomas or neuroblastomas. In all children, IOERT was employed for local dose escalation after or before EBRT. After a median follow-up of 60.5 months, 15 of the treated children are alive. One local failure has been observed. Six children show clinically significant late morbidity, including the loss of a treated limb (Radiation Therapy Oncology Group Grade 4 [RTOG 4]), a severe nerve lesion (RTOG 3), an orthopedic complication (RTOG 2), a ureteral stenosis (not clinically significant), and a kidney hypotrophy (not clinically significant). In 1 child a fracture due to radionecrosis (RTOG 4) was diagnosed; however, in the follow-up, local tumor relapse was diagnosed as another possible reason for the fracture. Regarding the low incidence of local failure, IOERT seems to be able to compensate incomplete tumor resection in childhood sarcoma and neuroblastoma patients. The incidence of late morbidity is low enough to justify the employment of IOERT as part of the radiation treatment regimen for pediatric patients.
NASA Astrophysics Data System (ADS)
Hao, Yao; Altundal, Yucel; Moreau, Michele; Sajo, Erno; Kumar, Rajiv; Ngwa, Wilfred
2015-09-01
Nanoparticle-aided radiation therapy is emerging as a promising modality to enhance radiotherapy via the radiosensitizing action of high atomic number (Z) nanoparticles. However, the delivery of sufficiently potent concentrations of such nanoparticles to the tumor remain a challenge. This study investigates the dose enhancement to lung tumors due to high-Z nanoparticles (NPs) administered via inhalation during external beam radiotherapy. Here NPs investigated include: cisplatin nanoparticles (CNPs), carboplatin nanoparticles (CBNPs), and gold nanoparticles (GNPs). Using Monte Carlo-generated megavoltage energy spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumors due to radiation-induced photoelectrons from the NPs administered via inhalation route (IR) in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung via IV. Meanwhile recent experimental studies indicate that 3.5-14.6 times higher concentrations of NPs can reach the lung by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the radiotherapy dose with and without nanoparticles was calculated for a range of NPs concentrations and tumor sizes. The DEF for IR was then compared with that for IV. For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of up to 1.19, 1.26, and 1.51 were obtained for CNPs, CBNPs and GNPs. In comparison values of 1.06, 1.08, and 1.15 were obtained via IV administration. For IR with 14.6 times higher concentrations, even higher DEF values were obtained e.g. 1.81 for CNPs. Results also showed that the DEF increased with increasing field size or decreasing tumor volume, as expected. The results of this work indicate that IR administration of targeted high-Z CNPs/CBNPs/GNPs could enable clinically significant DEF to lung tumors compared to IV administration during external beam radiotherapy. For FDA approved concentrations of CNPs or CBNPs considered, this could allow for additional dose enhancement to tumors via photoelectric mechanism during concomitant chemoradiotherapy.
Shared dosimetry error in epidemiological dose-response analyses
Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; ...
2015-03-23
Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweitzer, Andrew D.; Howard Hughes Medical Institute-Medical Fellows Program, Chevy Chase, MD; The Mount Sinai School of Medicine, New York, NY
Purpose: Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's 'self-sieving' ability, protecting it against ionizing radiation. Methods and Materials: The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plainmore » silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of {sup 188}Re-labeled 6D2 melanin-binding antibody. Results: Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. Conclusions: MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation based on prevention of free radical formation by melanin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camingue, Pamela; Christian, Rochelle; Ng, Davin
The purpose of this study was to compare 4 different external beam radiation therapy treatment techniques for the treatment of T1-2, N0, M0 glottic cancers: traditional lateral beams with wedges (3D), 5-field intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and proton therapy. Treatment plans in each technique were created for 10 patients using consistent planning parameters. The photon treatment plans were optimized using Philips Pinnacle{sub 3} v.9 and the IMRT and VMAT plans used the Direct Machine Parameter Optimization algorithm. The proton treatment plans were optimized using Varian Eclipse Proton v.8.9. The prescription used for each plan wasmore » 63 Gy in 28 fractions. The contours for spinal cord, right carotid artery, left carotid artery, and normal tissue were created with respect to the patient's bony anatomy so that proper comparisons of doses could be made with respect to volume. An example of the different isodose distributions will be shown. The data collection for comparison purposes includes: clinical treatment volume coverage, dose to spinal cord, dose to carotid arteries, and dose to normal tissue. Data comparisons will be displayed graphically showing the maximum, mean, median, and ranges of doses.« less
Romesser, Paul B; Pei, Xin; Shi, Weiji; Zhang, Zhigang; Kollmeier, Marisa; McBride, Sean M; Zelefsky, Michael J
2018-01-01
To evaluate the difference in prostate-specific antigen (PSA) recurrence-free, distant metastasis-free, overall, and cancer-specific survival between PSA bounce (PSA-B) and non-bounce patients treated with dose-escalated external beam radiation therapy (DE-EBRT). During 1990-2010, 1898 prostate adenocarcinoma patients were treated with DE-EBRT to ≥75 Gy with ≥5 years follow-up. Patients receiving neoadjuvant/concurrent androgen-deprivation therapy (n=1035) or with fewer than 4 PSA values obtained 6 months or more after post-EBRT completion (n=87) were excluded. The evaluable 776 patients were treated (median, 81.0 Gy). Prostate-specific antigen bounce was defined as a ≥0.2-ng/mL increase above the interval PSA nadir, followed by a decrease to nadir or below. Prostate-specific antigen relapse was defined as post-radiation therapy PSA nadir + 2 ng/mL. Median follow-up was 9.2 years (interquartile range, 6.9-11.3 years). One hundred twenty-three patients (15.9%) experienced PSA-B after DE-EBRT at a median of 24.6 months (interquartile range, 16.1-38.5 months). On multivariate analysis, younger age (P=.001), lower Gleason score (P=.0003), and higher radiation therapy dose (P=.0002) independently predicted PSA-B. Prostate-specific antigen bounce was independently associated with decreased risk for PSA relapse (hazard ratio [HR] 0.53; 95% confidence interval [CI] 0.33-0.85; P=.008), distant metastatic disease (HR 0.34; 95% CI 0.12-0.94; P=.04), and all-cause mortality (HR 0.53; 95% CI 0.29-0.96; P=.04) on multivariate Cox analysis. Because all 50 prostate cancer-specific deaths in patients without PSA-B were in the non-bounce cohort, competing-risks analysis was not applicable. A nonparametric competing-risks test demonstrated that patients with PSA-B had superior cancer-specific survival compared with patients without PSA-B (P=.004). Patients treated with dose-escalated radiation therapy for prostate adenocarcinoma who experience posttreatment PSA-B have improved PSA recurrence-free survival, distant metastasis-free survival, overall survival, and cancer-specific survival outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
COMPILATION OF CONVERSION COEFFICIENTS FOR THE DOSE TO THE LENS OF THE EYE.
Behrens, R
2017-04-28
A compilation of fluence-to-absorbed dose conversion coefficients for the dose to the lens of the eye is presented. The compilation consists of both previously published data and newly calculated values: photon data (5 keV-50 MeV for both kerma approximation and full electron transport), electron data (10 keV-50 MeV), and positron data (1 keV-50 MeV) - neutron data will be published separately. Values are given for angles of incidence from 0° up to 90° in steps of 15° and for rotational irradiation. The data presented can be downloaded from this article's website and they are ready for use by Report Committee (RC) 26. This committee has been set up by the International Commission on Radiation Units and Measurements (ICRU) and is working on a 'proposal for a redefinition of the operational quantities for external radiation exposure'. © The Author 2016. Published by Oxford University Press.
Environmental Radiation Measurements on MIR Station
NASA Astrophysics Data System (ADS)
Benton, E. V.; Frank, A. L.; Benton, E. R.
1997-04-01
Environmental radiation levels on the Russian space station Mir are being monitored under differing shielding conditions by a series of six area passive dosimeters (APDs) placed at individual locations inside the Core and Kvant 2 modules, and by an External Dosimeter Array (EDA) to be-deployed on the exterior surface of the Kvant 2 module. Each APD and the EDA contains CR-39 plastic nuclear track detectors (PNTDs) for measurement of LET spectra and TLDs for absorbed dose measurements. Two of the missions, NASA-2/Mir-21 and NASA-3/Mir-22 have been completed and the six APDs from each mission returned to Earth from Mir. This report covers progress to date on the analysis of TLDs and PNTDs from these two missions. For NASA-2/Mir-21, average mission absorbed dose rates varied from 271 to 407 micro-Gy/d at the APDS. For NASA-3/Mir-22, average mission absorbed dose rates varied from 265 to 421 micro-Gy/d.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shechmeister, I. L.; Watson, L. J.; Cole, V. W.
1962-01-01
Graded doses (l00 to l0000 r) of whole-body x radiation were administered to goldfish, Carassius auratus. The x ray LD/sub 50(30)/ was found to be 2315 r. Survival time decreased with increase in x-ray dose. Exposure to 100 r resulted in 100% mortality in 363 days; all fish exposed to l0,000 r succumbed in 11 to 14 days. Gross pathologic effects resulting from x irradiation are discussed. The transient phenomenon of external pigmentation development due to ionizing radiation was noted. The swim bladder, a hydrostatic organ, was frequently observed to be in a deflated condition after exposure to doses greatermore » than 500 r, resulting in loss of buoyancy. The increase in the susceptibility of irradiated animals to an experimentally induced bacterial infection, Aeromonas salmonicida, and to a naturally acquired ectoparasitic trematode, Gyrodactylus spp., was also observed. (auth)« less
Environmental Radiation Measurements on MIR Station. Program 1; Internal Experiment
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.; Benton, E. R.
1997-01-01
Environmental radiation levels on the Russian space station Mir are being monitored under differing shielding conditions by a series of six area passive dosimeters (APDs) placed at individual locations inside the Core and Kvant 2 modules, and by an External Dosimeter Array (EDA) to be-deployed on the exterior surface of the Kvant 2 module. Each APD and the EDA contains CR-39 plastic nuclear track detectors (PNTDs) for measurement of LET spectra and TLDs for absorbed dose measurements. Two of the missions, NASA-2/Mir-21 and NASA-3/Mir-22 have been completed and the six APDs from each mission returned to Earth from Mir. This report covers progress to date on the analysis of TLDs and PNTDs from these two missions. For NASA-2/Mir-21, average mission absorbed dose rates varied from 271 to 407 micro-Gy/d at the APDS. For NASA-3/Mir-22, average mission absorbed dose rates varied from 265 to 421 micro-Gy/d.
Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey
NASA Astrophysics Data System (ADS)
Mavi, B.; Akkurt, I.
2010-09-01
The activity concentrations of uranium, thorium and potassium can vary from material to material and it should be measured as the radiation is hazardous for human health. Thus first studies have been planned to obtain radioactivity of building material used in the Isparta region of Turkey. The radioactivity of some building materials used in this region has been measured using a γ-ray spectrometry, which contains a NaI(Tl) detector connected to MCA. The specific activity for 226Ra, 232Th and 40K, from the selected building materials, were in the range 17.91-58.88, 6.77-19.49 and 65.72-248.76 Bq/kg, respectively. Absorbed dose rate in air ( D), annual effective dose (AED), radium equivalent activities (Ra eq), and external hazard index ( Hex) associated with the natural radionuclide are calculated to assess the radiation hazard of the natural radioactivity in the building materials. It was found that none of the results exceeds the recommended limit value.
Kamran, Sophia C; Harshman, Lauren C; Bhagwat, Mandar S; Muralidhar, Vinayak; Nguyen, Paul L; Martin, Neil E; La Follette, Stephanie; Faso, Sarah; Viswanathan, Akila N; Efstathiou, Jason A; Beard, Clair J
2017-01-01
The use of large-field external beam reirradiation (re-RT) after pelvic radiation therapy (RT) for genitourinary (GU) cancers has not been reported. We report the results of such treatment in patients with either symptomatic GU second malignant neoplasms or locally recurrent pelvic tumors after initial RT for whom surgery or further systemic therapy was not an option. The records of 28 consecutive patients with advanced, bulky GU malignancies treated with high-dose, large-field re-RT with palliative intent between 2008 and 2014 were retrospectively reviewed. Descriptive outcome analyses focused on toxicities and symptom control, and responses were evaluated by 2 independent observers. Twenty-seven male patients (96%) were included. Median initial external beam RT dose was 64 Gy (range, 30-75.6 Gy). The median time between initial RT and re-RT was 9.5 years (range, 0.2-32 years). At the time of re-RT, there were 16 local recurrences and 12 second malignant neoplasms together comprising 16 bladder, 10 prostate, 1 ureteral, and 1 penile cancer. Indications for re-RT were pain and bleeding/hemorrhage. The median equivalent sphere diameter planning target volume for re-RT was 8.6 cm (range, 4.7-16.3 cm). Given the severity of the symptoms and the bulk of the disease at the time of re-RT, a higher dose of RT was administered. The median re-RT dose was 50 Gy (range, 27.5-66 Gy). For patients who received <60 Gy, hypofractionation of 250 cGy was used. The median cumulative dose was 113.9 Gy (range, 81.5-132.8 Gy). Re-RT was well tolerated with no Radiation Therapy Oncology Group grade 3-4 toxicities. Twenty-four patients (92%) had complete resolution of symptoms, and relief was durable in 67% of patients. The median overall survival was 5.8 months (range, 0.3-38.9 months). Of those patients who are still alive, 100% remain free of initial symptoms. This small series suggests that aggressive re-RT of inoperable and symptomatic GU malignancies that is undertaken with meticulous treatment planning is well tolerated and provides excellent, durable relief without undue short-term toxicity. Validation in a larger prospective cohort is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corn, Paul G., E-mail: pcorn@mdanderson.org; Song, Danny Y.; Heath, Elisabeth
Purpose: To evaluate the feasibility of administering sunitinib in combination with androgen deprivation therapy and external-beam intensity modulated radiation therapy (XRT) in patients with localized high-risk prostate cancer. Methods and Materials: Seventeen men with localized adenocarcinoma of the prostate with cT2c-cT4 or Gleason 8-10 or prostate-specific antigen >20 ng/mL received initial androgen deprivation (leuprolide 22.5 mg every 12 weeks plus oral bicalutamide 50 mg daily) for 4-8 weeks before oral sunitinib 12.5, 25, or 37.5 mg daily for 4 weeks as lead-in, then concurrently with and 4 weeks after XRT (75.6 Gy in 42 fractions to prostate and seminal vesicles).more » A 3+3 sequential dose-escalation design was used to assess the frequency of dose-limiting toxicity (DLT) and establish a maximal tolerated dose of sunitinib. Results: Sunitinib at 12.5- and 25-mg dose levels was well tolerated. The first 4 patients enrolled at 37.5 mg experienced a DLT during lead-in, and a drug interaction between sunitinib and bicalutamide was suspected. The protocol was revised and concurrent bicalutamide omitted. Of the next 3 patients enrolled at 37.5 mg, 2 of 3 receiving concurrent therapy experienced DLTs during radiation: grade 3 diarrhea and grade 3 proctitis, respectively. Only 1 of 7 patients completed sunitinib at 37.5 mg daily, whereas 3 of 3 patients (25 mg as starting dose) and 3 of 4 patients (25 mg as reduced dose) completed therapy. Conclusions: The feasibility of combined vascular endothelial growth factor receptor (VEGFR)/platelet-derived growth factor receptor (PDGFR) inhibitor therapy, androgen deprivation, and radiation therapy for prostate cancer was established. Using a daily dosing regimen with lead-in, concurrent, and post-XRT therapy, the recommended phase 2 dose of sunitinib is 25 mg daily.« less
Doai, Mariko; Watanabe, Naoto; Takahashi, Tomoko; Taniguchi, Mitsuru; Tonami, Hisao; Iwabuchi, Kuniyoshi; Kayano, Daiki; Fukuoka, Makoto; Kinuya, Seigo
2013-04-01
The purpose of our study was to evaluate the degree of radiotoxicity to lymphocytes in thyroid cancer after iodine-131(I-131) therapy using γ-H2AX foci immunodetection. This study focused on 15 patients who underwent I-131 therapy for differentiated thyroid cancer after surgery. All patients received 3.7 GBq of I-131. Venous blood samples were collected from each patient before therapy and 4 days thereafter. Lymphocytes were isolated from the blood samples and subjected to γ-H2AX immunofluorescence staining. The number (mean ± SD) of foci per lymphocyte nucleus was 0.41 ± 0.51 before and 6.19 ± 1.80 after radioiodine therapy, and this difference was statistically significant (P = 0.001 < 0.05). Absorbed doses estimated for the 15 patients were 0.77 ± 0.31 Gy applying standard line in vitro external radiation doses. γ-H2AX foci immunodetection in lymphocytes may detect radiation-induced DNA damage associated with I-131 therapy for thyroid cancer, and may facilitate estimation of the radiation doses absorbed with this therapy.
Temporally separating Cherenkov radiation in a scintillator probe exposed to a pulsed X-ray beam.
Archer, James; Madden, Levi; Li, Enbang; Carolan, Martin; Petasecca, Marco; Metcalfe, Peter; Rosenfeld, Anatoly
2017-10-01
Cherenkov radiation is generated in optical systems exposed to ionising radiation. In water or plastic devices, if the incident radiation has components with high enough energy (for example, electrons or positrons with energy greater than 175keV), Cherenkov radiation will be generated. A scintillator dosimeter that collects optical light, guided by optical fibre, will have Cherenkov radiation generated throughout the length of fibre exposed to the radiation field and compromise the signal. We present a novel algorithm to separate Cherenkov radiation signal that requires only a single probe, provided the radiation source is pulsed, such as a linear accelerator in external beam radiation therapy. We use a slow scintillator (BC-444) that, in a constant beam of radiation, reaches peak light output after 1 microsecond, while the Cherenkov signal is detected nearly instantly. This allows our algorithm to separate the scintillator signal from the Cherenkov signal. The relative beam profile and depth dose of a linear accelerator 6MV X-ray field were reconstructed using the algorithm. The optimisation method improved the fit to the ionisation chamber data and improved the reliability of the measurements. The algorithm was able to remove 74% of the Cherenkov light, at the expense of only 1.5% scintillation light. Further characterisation of the Cherenkov radiation signal has the potential to improve the results and allow this method to be used as a simpler optical fibre dosimeter for quality assurance in external beam therapy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leavitt, Jacqueline A., E-mail: leavitt.jacqueline@mayo.edu; Stafford, Scott L.; Link, Michael J.
2013-11-01
Purpose: To determine the long-term risk of radiation-induced optic neuropathy (RION) in patients having single-fraction stereotactic radiosurgery (SRS) for benign skull base tumors. Methods and Materials: Retrospective review of 222 patients having Gamma Knife radiosurgery for benign tumors adjacent to the anterior visual pathway (AVP) between 1991 and 1999. Excluded were patients with prior or concurrent external beam radiation therapy or SRS. One hundred twenty-nine patients (58%) had undergone previous surgery. Tumor types included confirmed World Health Organization grade 1 or presumed cavernous sinus meningioma (n=143), pituitary adenoma (n=72), and craniopharyngioma (n=7). The maximum dose to the AVP was ≤8.0more » Gy (n=126), 8.1-10.0 Gy (n=39), 10.1-12.0 Gy (n=47), and >12 Gy (n=10). Results: The mean clinical and imaging follow-up periods were 83 and 123 months, respectively. One patient (0.5%) who received a maximum radiation dose of 12.8 Gy to the AVP developed unilateral blindness 18 months after SRS. The chance of RION according to the maximum radiation dose received by the AVP was 0 (95% confidence interval [CI] 0-3.6%), 0 (95% CI 0-10.7%), 0 (95% CI 0-9.0%), and 10% (95% CI 0-43.0%) for patients receiving ≤8 Gy, 8.1-10.0 Gy, 10.1-12.0 Gy, and >12 Gy, respectively. The overall risk of RION in patients receiving >8 Gy to the AVP was 1.0% (95% CI 0-6.2%). Conclusions: The risk of RION after single-fraction SRS in patients with benign skull base tumors who have no prior radiation exposure is very low if the maximum dose to the AVP is ≤12 Gy. Physicians performing single-fraction SRS should remain cautious when treating lesions adjacent to the AVP, especially when the maximum dose exceeds 10 Gy.« less
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2010-01-01
The space radiation environment, particularly solar particle events (SPEs), poses the risk of acute radiation sickness (ARS) to humans; and organ doses from SPE exposure may reach critical levels during extra vehicular activities (EVAs) or within lightly shielded spacecraft. NASA has developed an organ dose projection model using the BRYNTRN with SUMDOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUMDOSE, written in FORTRAN, are a Baryon transport code and an output data processing code, respectively. The ARR code is written in C. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. BRYNTRN code operation requires extensive input preparation. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN in friendly way. A GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. The ARRBOD GUI will serve as a proof-of-concept example for future integration of other human space applications risk projection models. The current version of the ARRBOD GUI is a new self-contained product and will have follow-on versions, as options are added: 1) human geometries of MAX/FAX in addition to CAM/CAF; 2) shielding distributions for spacecraft, Mars surface and atmosphere; 3) various space environmental and biophysical models; and 4) other response models to be connected to the BRYNTRN. The major components of the overall system, the subsystem interconnections, and external interfaces are described in this report; and the ARRBOD GUI product is explained step by step in order to serve as a tutorial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsitt, Mitchell M., E-mail: goodsitt@umich.edu; Shenoy, Apeksha; Howard, David
2014-05-15
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correctionmore » factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.« less
Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.
2014-01-01
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380
Sutou, Shizuyo
2017-09-01
The A-bomb blast released a huge amount of energy: thermal radiation (35%), blast energy (50%), and nuclear radiation (15%). Of the 15%, 5% was initial radiation released within 30 s and 10% was residual radiation, the majority of which was fallout. Exposure doses of hibakusha (A-bomb survivors) were estimated solely on the basis of the initial radiation. The effects of the residual radiation on hibakusha have been considered controversial; some groups assert that the residual radiation was negligible, but others refute that assertion. I recently discovered a six-decade-old article written in Japanese by a medical doctor, Gensaku Obo, from Hiroshima City. This article clearly indicates that the area around the epicenter in Hiroshima was heavily contaminated with residual radiation. It reports that non-hibakusha who entered Hiroshima soon after the blast suffered from severe acute radiation sickness, including burns, external injuries, fever, diarrhea, skin bleeding, sore throat and loss of hair-as if they were real hibakusha. This means that (i) some of those who entered Hiroshima in the early days after the blast could be regarded as indirect hibakusha; (ii) 'in-the-city-control' people in the Life Span Study (LSS) must have been irradiated more or less from residual radiation and could not function properly as the negative control; (iii) exposure doses of hibakusha were largely underestimated; and (iv) cancer risk in the LSS was largely overestimated. Obo's article is very important to understand the health effects of A-bombs so that the essence of it is translated from Japanese to English with the permission of the publisher. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Vishal; Mychalczak, Borys; Krug, Lee
Purpose: To evaluate pleurectomy/decortication (P/D) and adjuvant radiotherapy (RT) in the treatment of malignant pleural mesothelioma (MPM). Methods and Materials: In a retrospective review, we included MPM patients treated with P/D and adjuvant RT at Memorial Sloan-Kettering Cancer Center from 1974 to 2003. When indicated, patients received intraoperative brachytherapy to residual tumor. Results: All 123 patients received external beam RT (median dose, 42.5 Gy; range, 7.2-67.8 Gy) to the ipsilateral hemithorax postoperatively. Fifty-four patients underwent brachytherapy (matched peripheral dose, 160 Gy). The median and 2-year overall survival for all patients was 13.5 months (range, 1-199 months) and 23%, respectively. One-yearmore » actuarial local control for all patients was 42%. Multivariate analysis for overall survival revealed radiation dose <40 Gy (p = 0.001), nonepithelioid histology (p = 0.002), left-sided disease (p = 0.01), and the use of an implant (p = 0.02) to be unfavorable. Two patients (1.6%) died from Grade 5 toxicity within 1 month of treatment. Conclusions: Pleurectomy/decortication with adjuvant radiotherapy is not an effective treatment option for patients with MPM. Our results imply that residual disease cannot be eradicated with external RT with or without brachytherapy and that a more extensive surgery followed by external RT might be required to improve local control and overall survival.« less
Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan
2016-01-01
A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852
Mortality among workers with chronic radiation sickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shilnikova, N.S.; Koshurnikova, N.A.; Bolotnikova, M.G.
1996-07-01
This study is based on a registry containing medical and dosimetric data of the employees who began working at different plants of the Mayak nuclear complex between 1948 and 1958 who developed chronic radiation sickness. Mayak is the first nuclear weapons plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production plant.Workers whose employment began between 1948 and 1958 exhibited a 6-28% incidence of chronic radiation sickness at the different facilities. Theremore » were no cases of chronic radiation sickness among those who began working after 1958. Data on doses of external whole-body gamma-irradiation and mortality in workers with chronic radiation sickness are presented. 6 refs., 5 tabs.« less
Impact of radiation dose on nuclear shuttle configuration
NASA Technical Reports Server (NTRS)
Goetz, C. A.; Billings, M. A.
1972-01-01
The impact of nuclear radiation (from the NERVA propulsion system) on the selection of a reference configuration for each of two classes of the reusable nuclear shuttle is considered. One class was characterized by a single propellant tank, the shape of whose bottom was found to have a pronounced effect on crew radiation levels and associated shield weight requirements. A trade study of shield weight versus structural weight indicated that the minimum-weight configuration for this class had a tank bottom in the shape of a frustum of a 10 deg-half-angle cone. A hybrid version of this configuration was found to affect crew radiation levels in substantially the same manner. The other class of RNS consisted of a propulsion module and eight propellant modules. Radiation analyses of various module arrangements led to a design configuration with no external shield requirements.
Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy
NASA Astrophysics Data System (ADS)
Bednarz, Bryan; Besemer, Abigail
2017-09-01
The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.
Radiation dose and subsequent risk for stomach cancer in long-term survivors of cervical cancer
Kleinerman, Ruth A.; Smith, Susan A.; Holowaty, Eric; Hall, Per; Pukkala, Eero; Vaalavirta, Leila; Stovall, Marilyn; Weathers, Rita; Gilbert, Ethel; Aleman, Berthe M.P.; Kaijser, Magnus; Andersson, Michael; Storm, Hans; Joensuu, Heikki; Lynch, Charles F.; Dores, Graça M.; Travis, Lois B.; Morton, Lindsay M.; Curtis, Rochelle E.
2013-01-01
Purpose To assess the dose-response relationship for stomach cancer following radiotherapy for cervical cancer. Methods and Materials We conducted a nested, matched case-control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943–1995, from five international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 gray [Gy], range 0.03–46.1 and following parallel opposed pelvic fields, 1.63 Gy, range 0.12–6.3). Results Over 90% of women received radiotherapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was non-significantly increased (odds ratios [ORs] 1.27–2.28) for women receiving between 0.5–4.9 Gy to the stomach cancer site and significantly increased at doses ≥5 Gy (OR=4.20, 95% confidence interval, 1.41–13.4, Ptrend=0.047) compared to non-irradiated women. A highly significant radiation dose-response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (Ptrend=0.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (Ptrend=0.23). Conclusions Our findings showed for the first time a significant linear dose-response relationship for risk of stomach cancer in long-term survivors of cervical cancer. PMID:23707149
Sharma, Dayananda S; Jalali, Rakesh; Tambe, Chandrashekhar M; Animesh; Deshpande, Deepak D
2004-01-01
The aim of this work was to measure the dose to foetus both in vivo and in vitro during three-dimensional conformal radiation therapy (3DCRT) in a pregnant patient with a pituitary adenoma. The study was then extended to assess the components contributing to the foetal dose such as collimator scatter, internal scatter, head leakage, wedge scatter and multileaf collimator (MLC) effect. A 30-year-old pregnant woman with a non-functioning pituitary macroadenoma was planned for 3DCRT with 6MV X-ray using four equally weighted MLC-shaped non-coplanar wedged portals. In vivo dosimetry was carried out using thermoluminescent (TL) phosphor powder, which was placed at different positions on the patient, corresponding to different locations in the uterus and also at external os. In vitro measurements were also performed on a simulated phantom using the same set-up parameters and beam arrangement to verify the in vivo measured dose. Experiments were carried out to measure the respective contributions of different components towards peripheral dose. In vitro measured dose to foetus was found to be slightly more than that of in vivo measurement with a maximum of 0.044% of the prescribed dose of 45Gy, which corresponded to 0.0199+/-0.0008Gy. Thermoluminescence dosimeter (TLD) kept at the external os of the patient showed a dose of 0.031% of the prescribed dose. Among the various components of the peripheral dose (foetal dose) measured, head leakage was found to be the leading cause contributing 52%, followed by wedge scatter (31%), collimator scatter (14%) and internal scatter (13%). The use of MLC reduced not only the volume of normal brain irradiation as compared to open fields but also the peripheral dose by 10%. Radiotherapy of brain tumours during pregnancy poses a unique clinical situation and decisions to deliver radiotherapy should be taken after detailed in vitro and in vivo dosimetric measurements. Our findings suggest that the beam arrangement using 3-4-fields generally used for 3DCRT of brain tumour with MLC for optimal coverage can be employed for pregnant patients even in early trimester. A possible increase in foetal dose from wedges to a large extent can be compensated with the use of MLC.
Reduced Variance using ADVANTG in Monte Carlo Calculations of Dose Coefficients to Stylized Phantoms
NASA Astrophysics Data System (ADS)
Hiller, Mauritius; Bellamy, Michael; Eckerman, Keith; Hertel, Nolan
2017-09-01
The estimation of dose coefficients of external radiation sources to the organs in phantoms becomes increasingly difficult for lower photon source energies. This study focus on the estimation of photon emitters around the phantom. The computer time needed to calculate a result within a certain precision can be lowered by several orders of magnitude using ADVANTG compared to a standard run. Using ADVANTG which employs the DENOVO adjoint calculation package enables the user to create a fully populated set of weight windows and source biasing instructions for an MCNP calculation.
Antidepressants Alter Cerebrovascular Permeability and Metabolic Rate in Primates
NASA Astrophysics Data System (ADS)
Preskorn, Sheldon H.; Raichle, Marcus E.; Hartman, Boyd K.
1982-07-01
External detection of the annihilation radiation produced by water labeled with oxygen-15 was used to measure cerebrovascular permeability and cerebral blood flow in six rhesus monkeys. Use of oxygen-15 also permitted assessment of cerebral metabolic rate in two of the monkeys. Amitriptyline produced a dose-dependent, reversible increase in permeability at plasma drug concentrations which are therapeutic for depressed patients. At the same concentrations the drug also produced a 20 to 30 percent reduction in cerebral metabolic rate. At higher doses normal autoregulation of cerebral blood flow was suspended, but responsivity to arterial carbon dioxide was normal.
Roch-Lefèvre, Sandrine; Grégoire, Eric; Martin-Bodiot, Cécile; Flegal, Matthew; Fréneau, Amélie; Blimkie, Melinda; Bannister, Laura; Wyatt, Heather; Barquinero, Joan-Francesc; Roy, Laurence; Benadjaoud, Mohamed; Priest, Nick; Jourdain, Jean-René; Klokov, Dmitry
2018-06-08
The aim of this study was to carry out a comprehensive examination of potential genotoxic effects of low doses of tritium delivered chronically to mice and to compare these effects to the ones resulting from equivalent doses of gamma-irradiation. Mice were chronically exposed for one or eight months to either tritiated water (HTO) or organically bound tritium (OBT) in drinking water at concentrations of 10 kBq/L, 1 MBq/L or 20 MBq/L. Dose rates of internal β-particle resulting from such tritium treatments were calculated and matching external gamma-exposures were carried out. We measured cytogenetic damage in bone marrow and in peripheral blood lymphocytes (PBLs) and the cumulative tritium doses (0.009 - 181 mGy) were used to evaluate the dose-response of OBT in PBLs, as well as its relative biological effectiveness (RBE). Neither tritium, nor gamma exposures produced genotoxic effects in bone marrow. However, significant increases in chromosome damage rates in PBLs were found as a result of chronic OBT exposures at 1 and 20 M Bq/L, but not at 10 kBq/L. When compared to an external acute gamma-exposure ex vivo , the RBE of OBT for chromosome aberrations induction was evaluated to be significantly higher than 1 at cumulative tritium doses below 10 mGy. Although found non-existent at 10 kBq/L (the WHO limit), the genotoxic potential of low doses of tritium (>10 kBq/L), mainly OBT, may be higher than currently assumed.
Radiation Safety System for SPIDER Neutral Beam Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandri, S.; Poggi, C.; Coniglio, A.
2011-12-13
SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports havemore » been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.« less
Radiation Risks of Leukemia, Lymphoma and Multiple Myeloma Incidence in the Mayak Cohort: 1948–2004
Kuznetsova, Irina S.; Labutina, Elena V.; Hunter, Nezahat
2016-01-01
Incidence of all types of lymphatic and hematopoietic cancers, including Hodgkin’s lymphoma, non-Hodgkin's lymphoma, multiple myeloma, acute and chronic myeloid leukemia (AML and CML respectively), chronic lymphocytic leukemia (CLL) and other forms of leukemia have been studied in a cohort of 22,373 workers employed at the Mayak Production Association (PA) main facilities during 536,126 person-years of follow-up from the start of employment between 1948 and 1982 to the end of 2004. Risk assessment was performed for both external gamma-radiation and internal alpha-exposure of red bone marrow due to incorporated Pu-239 using Mayak Workers Dosimetry System 2008 taking into account non-radiation factors. The incidence of leukemia excluding CLL showed a non-linear dose response relationship for external gamma exposure with exponential effect modifiers based on time since exposure and age at exposure. Among the major subtypes of leukemia, the excess risk of AML was the highest within the first 2–5 years of external exposure (ERR per Gy: 38.40; 90% CI: 13.92–121.4) and decreased substantially thereafter, but the risks remained statistically significant (ERR per Gy: 2.63; 90% CI: 0.07–12.55). In comparison, excess CML first occurred 5 years after exposure and decreased about 10 years after exposure, although the association was not statistically significant (ERR per Gy: 1.39; 90% CI: -0.22–7.32). The study found no evidence of an association between leukemia and occupational exposure to internal plutonium ERR per Gy 2.13; 90% CI: <0–9.45). There was also no indication of any relationship with either external gamma or internal plutonium radiation exposure for either incidence of Hodgkin or non-Hodgkin lymphoma or multiple myeloma. PMID:27631102
A case control study of multiple myeloma at four nuclear facilities.
Wing, S; Richardson, D; Wolf, S; Mihlan, G; Crawford-Brown, D; Wood, J
2000-04-01
Reported elevations of multiple myeloma among nuclear workers exposed to external penetrating ionizing radiation, based on small numbers of cases, prompted this multi-facility study of workers at US Department of Energy facilities. Ninety-eight multiple myeloma deaths and 391 age-matched controls were selected from the combined roster of 115,143 workers hired before 1979 at Hanford, Los Alamos National Laboratory, Oak Ridge National Laboratory, and the Savannah River site. These workers were followed for vital status through 1990 (1986 for Hanford). Demographic, work history, and occupational exposure data were derived from personnel, occupational medicine, industrial hygiene, and health physics records. Exposure-disease associations were evaluated using conditional logistic regression. Cases were disproportionately African American, male, and hired prior to 1948. Lifetime cumulative whole body ionizing radiation dose was not associated with multiple myeloma, however, there was a significant effect of age at exposure, with positive associations between multiple myeloma and doses received at older ages. Dose response associations increased in magnitude with exposure age (from 40 to 50) and lag assumption (from 5 to 15 years), while a likelihood ratio goodness of fit test reached the highest value for cumulative doses received at ages above 45 with a 5-year lag (X2=5.43,1 df; relative risk = 6.9% per 10 mSv). Dose response associations persisted with adjustment for potential confounders. Multiple myeloma was associated with low level whole body penetrating ionizing radiation doses at older ages. The exposure age effect is at odds with interpretations of A-bomb survivor studies but in agreement with several studies of cancer among nuclear workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei Xin; Qian Chengyuan; Qing Yi
Purpose: To observe, by retrospective analysis, the curative effects and complications due to californium-252 ({sup 252}Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. Methods and Materials: From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with {sup 252}Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7-12 Gy per insertion per week, with a total dose of 29-45 Gy to reference pointmore » A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16-38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44-56 Gy. The total treatment course was 5 to 6 weeks. Results: Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. Conclusion: Results of this series suggest that the combined use of {sup 252}Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.« less
Drozdovitch, Vladimir; Khrouch, Valeri; Maceika, Evaldas; Zvonova, Irina; Vlasov, Oleg; Bratilova, Angelica; Gavrilin, Yury; Goulko, Guennadi; Hoshi, Masaharu; Kesminiene, Ausrele; Shinkarev, Sergey; Tenet, Vanessa; Cardis, Elisabeth; Bouville, Andre
2010-01-01
A population-based case-control study of thyroid cancer was carried out in contaminated regions of Belarus and Russia among persons who were exposed during childhood and adolescence to fallout from the Chernobyl accident. For each study subject, individual thyroid doses were reconstructed for the following pathways of exposure: (1) intake of 131I via inhalation and ingestion; (2) intake of short-lived radioiodines (132I, 133I, and 135I) and radiotelluriums (131mTe, 132Te) via inhalation and ingestion; (3) external dose from radionuclides deposited on the ground; and (4) ingestion of 134Cs and 137Cs. A series of intercomparison exercises validated the models used for reconstruction of average doses to populations of specific age groups as well as of individual doses. Median thyroid doses from all factors for study subjects were estimated to be 0.37 and 0.034 Gy in Belarus and Russia, respectively. The highest individual thyroid doses among the subjects were 10.2 Gy in Belarus and 5.3 Gy in Russia. Iodine-131 intake was the main pathway for thyroid exposure. Estimated doses from short-lived radioiodines and radiotelluriums ranged up to 0.53 Gy. Reconstructed individual thyroid doses from external exposure ranged up to 0.1 Gy, while those from internal exposure due to ingested cesium did not exceed 0.05 Gy. The uncertainty of the reconstructed individual thyroid doses, characterized by the geometric standard deviation, varies from 1.7 to 4.0 with a median of 2.2. PMID:20539120
NASA Astrophysics Data System (ADS)
Idriss, Hajo; Salih, Isam; Alaamer, Abdulaziz S.; AL-Rajhi, M. A.; Osman, Alshfia; Adreani, Tahir Elamin; Abdelgalil, M. Y.; Ali, Nagi I.
2018-06-01
This study shows the assessment of radiation hazard parameters due to terrestrial radionuclides in the soil around artisanal gold mining for addressing the issue of natural radioactivity in mining areas. Hence, the levels 238U, 232Th, 40K and 226Ra in soil (using gamma spectrometry), 222Rn in soil and 222Rn in air were determined. Radiation hazard parameters were then computed. These include absorbed dose D, annual effective dose E, radium equivalent activity Raeq, external hazard H ex, annual gonadal dose equivalent hazard index AGDE and excess lifetime cancer risk ELCR due to the inhalation of radon (222Rn) and consumption of radium (226Ra) in vegetation. Uranium (238U), thorium (232Th) and potassium (40K) averages were, respectively, 26, 36 and 685 Becquerel per kilogram (Bq kg-1). Soil radon (4671 Bq m-3) and radon in air (14.77 Bq m-3) were found to be less than worldwide data. Nevertheless, the average 40K concentration was 685 Bq kg-1. This is slightly higher than the United Nations Scientific Committee on the Effects of Atomic Radiation average value of 412 Bq kg-1. The obtained result indicates that some of the radiation hazard parameters seem unsavory. The mean value of absorbed dose rate (62.49 nGy h-1) was slightly higher than average value of 57 nGy h-1 ( 45% from 40K), and that of AGDE (444 μSv year-1) was higher than worldwide average reported value (300 μSv year-1). This study highlights the necessity to launch extensive nationwide radiation protection program in the mining areas for regulatory control.
Preston, Dale L; Sokolnikov, Mikhail E; Krestinina, Lyudmila Yu; Stram, Daniel O
2017-04-01
For almost 50 y, the Life Span Study cohort of atomic bomb survivor studies has been the primary source of the quantitative estimates of cancer and non-cancer risks that form the basis of international radiation protection standards. However, the long-term follow-up and extensive individual dose reconstruction for the Russian Mayak worker cohort (MWC) and Techa River cohort (TRC) are providing quantitative information about radiation effects on cancer risks that complement the atomic bomb survivor-based risk estimates. The MWC, which includes ~26 000 men and women who began working at Mayak between 1948 and 1982, is the primary source for estimates of the effects of plutonium on cancer risks and also provides information on the effects of low-dose rate external gamma exposures. The TRC consists of ~30 000 men and women of all ages who received low-dose-rate, low-dose exposures as a consequence of Mayak's release of radioactive material into the Techa River. The TRC data are of interest because the exposures are broadly similar to those experienced by populations exposed as a consequence of nuclear accidents such as Chernobyl. In this presentation, it is described the strengths and limitations of these three cohorts, outline and compare recent solid cancer and leukemia risk estimates and discussed why information from the Mayak and Techa River studies might play a role in the development and refinement of the radiation risk estimates that form the basis for radiation protection standards. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
In vivo real-time rectal wall dosimetry for prostate radiotherapy
Hardcastle, Nicholas; Cutajar, Dean L.; Metcalfe, Peter E.; Lerch, Michael L. F.; Perevertaylo, Vladimir L.; Tomé, Wolfgang A.; Rosenfeld, Anatoly B.
2010-01-01
Rectal balloons are used in external beam prostate radiotherapy to provide reproducible anatomy and rectal dose reductions. This is an investigation into the combination of a MOSFET radiation detector with a rectal balloon for real time in vivo rectal wall dosimetry. The MOSFET used in the study is a radiation detector that provides a water equivalent depth of measurement of 70μm. Two MOSFETs were combined in a face-to-face orientation. The reproducibility, sensitivity and angular dependence were measured for the dual MOSFET in a 6MV photon beam. The dual MOSFET was combined with a rectal balloon and irradiated with hypothetical prostate treatments in a phantom. The anterior rectal wall dose was measured in real time and compared with the planning system calculated dose. The dual MOSFET showed angular dependence within ± 2.5% in the azimuth and +2.5%/-4% in the polar axes. When compared with an ion chamber measurement in a phantom, the dual MOSFET agreed within 2.5% for a range of radiation path lengths and incident angles. The dual MOSFET had reproducible sensitivity for fraction sizes of 2-10Gy. For the hypothetical prostate treatments the measured anterior rectal wall dose was 2.6% and 3.2% lower than the calculated dose for 3DCRT and IMRT plans. This was expected due to limitations of the dose calculation method used at the balloon cavity interface. A dual MOSFET combined with a commercial rectal balloon was shown to provide reproducible measurements of the anterior rectal wall dose in real time. The measured anterior rectal wall dose agreed with the expected dose from the treatment plan for 3DCRT and IMRT plans. The dual MOSFET could be read out in real time during the irradiation, providing capability for real time dose monitoring of the rectal wall dose during treatment. PMID:20571209
Robison, William L; Hamilton, Terry F
2010-01-01
Radiation doses calculated for people resettling Bikini Island at Bikini Atoll, Enjebi Island at Enewetak Atoll, Rongelap Island at Rongelap Atoll, and Utrōk Island at Utrōk Atoll are presented. Residence is assumed to begin in 2010. In previous dose assessments it was shown that (137)Cs accounts for about 98% of the total dose for returning residents. About 85 to 90% (depending on the atoll) is via consumption of locally grown foods containing (137)Cs, and about 10 to 15% is due to external exposure from (137)Cs in the soil. These assessments were made using only the radiological half-life of (137)Cs (30.1 y). We have shown since that there is an environmental loss of (137)Cs from soil to groundwater that results in a more rapid loss of (137)Cs from the atoll ecosystem. The mean effective half-life of (137)Cs at the atolls is 8.5 y. Moreover, treatment of coconut trees with potassium (K) reduces (137)Cs concentration in drinking coconut meat at Bikini Atoll to about 5% of pretreatment concentrations. The magnitude of reduction is dependent on the concentration of (137)Cs in soil, and thereby in food crops, and is less for Enjebi and Rongelap Islands than for Bikini Island. Treatment of food crops and fruit trees with K and removal of the top 15 cm of soil around houses and community buildings prior to construction to reduce external exposure where people spend most of their time has been presented to the communities as a "Combined Option" remediation strategy. Doses presented here are calculated using the Combined Option, effective half-life of (137)Cs at the atolls, and a diet of both imported and local foods. The average natural background dose in the Marshall Islands, plus the anthropogenic nuclear test-related dose at Bikini, Enjebi, and Rongelap Islands, is less for each of the islands than the average background dose in the U.S. and Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, M; Choi, E; Chuong, M
Purpose: To evaluate weather the current radiobiological models can predict the normal liver complications of radioactive Yttrium-90 ({sup 90}Y) selective-internal-radiation-treatment (SIRT) for metastatic liver lesions based on the post-infusion {sup 90}Y PET images. Methods: A total of 20 patients with metastatic liver tumors treated with SIRT that received a post-infusion {sup 90}Y-PET/CT scan were analyzed in this work. The 3D activity distribution of the PET images was converted into a 3D dose distribution via a kernel convolution process. The physical dose distribution was converted into the equivalent dose (EQ2) delivered at 2 Gy based on the linear-quadratic (LQ) model consideringmore » the dose rate effect. The biological endpoint of this work was radiation-induce liver disease (RILD). The NTCPs were calculated with four different repair-times (T1/2-Liver-Repair= 0,0.5,1.0,2.0 hr) and three published NTCP models (Lyman-external-RT, Lyman 90Y-HCC-SIRT, parallel model) were compared to the incidence of RILD of the recruited patients to evaluate their ability of outcome prediction. Results: The mean normal liver physical dose (avg. 51.9 Gy, range 31.9–69.8 Gy) is higher than the suggested liver dose constraint for external beam treatment (∼30 Gy). However, none of the patients in our study developed RILD after the SIRT. The estimated probability of ‘no patient developing RILD’ obtained from the two Lyman models are 46.3% to 48.3% (T1/2-Liver-Repair= 0hr) and <1% for all other repair times. For the parallel model, the estimated probability is 97.3% (0hr), 51.7% (0.5hr), 2.0% (1.0hr) and <1% (2.0hr). Conclusion: Molecular-images providing the distribution of {sup 90}Y enable the dose-volume based dose/outcome analysis for SIRT. Current NTCP models fail to predict RILD complications in our patient population, unless a very short repair-time for the liver is assumed. The discrepancy between the Lyman {sup 90}Y-HCC-SIRT model predicted and the clinically observed outcomes further demonstrates the need of an NTCP model specific to the metastatic liver SIRT.« less
Treatment of Head and Neck Paragangliomas With External Beam Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupin, Charles, E-mail: c.dupin@bordeaux.unicancer.fr; Lang, Philippe; Dessard-Diana, Bernadette
2014-06-01
Purpose: To retrospectively assess the outcomes of radiation therapy in patients with head and neck paragangliomas. Methods and Materials: From 1990 to 2009, 66 patients with 81 head and neck paragangliomas were treated by conventional external beam radiation therapy in 25 fractions at a median dose of 45 Gy (range, 41.4-68 Gy). One case was malignant. The median gross target volume and planning target volume were 30 cm{sup 3} (range, 0.9-243 cm{sup 3}) and 116 cm{sup 3} (range, 24-731 cm{sup 3}), respectively. Median age was 57.4 years (range, 15-84 years). Eleven patients had multicentric lesions, and 8 had family histories ofmore » paraganglioma. Paragangliomas were located in the temporal bone, the carotid body, and the glomus vagal in 51, 18, and 10 patients, respectively. Forty-six patients had exclusive radiation therapy, and 20 had salvage radiation therapy. The median follow-up was 4.1 years (range, 0.1-21.2 years). Results: One patient had a recurrence of temporal bone paraganglioma 8 years after treatment. The actuarial local control rates were 100% at 5 years and 98.7% at 10 years. Patients with multifocal tumors and family histories were significantly younger (42 years vs 58 years [P=.002] and 37 years vs 58 years [P=.0003], respectively). The association between family predisposition and multifocality was significant (P<.001). Two patients had cause-specific death within the 6 months after irradiation. During radiation therapy, 9 patients required hospitalization for weight loss, nausea, mucositis, or ophthalmic zoster. Two late vascular complications occurred (middle cerebral artery and carotid stenosis), and 2 late radiation-related meningiomas appeared 15 and 18 years after treatment. Conclusion: Conventional external beam radiation therapy is an effective and safe treatment option that achieves excellent local control; it should be considered as a first-line treatment of choice for head and neck paragangliomas.« less
Thyroid cancer following exposure to radioactive iodine.
Robbins, J; Schneider, A B
2000-04-01
The thyroid gland is one of the most sensitive organs for radiation-induced oncogenesis and the magnitude of the risk from external radiation is well understood. This is not the case for internal radiation derived from the radioiodines, a matter of practical importance because of medical use and potential accidental exposure. This article reviews current knowledge derived from the follow-up of patients receiving diagnostic or therapeutic 131I and populations exposed to radioactive fallout. The latter includes the nuclear power station accident at Chernobyl and the results of atomic bomb development and testing at Hanford, the Nevada Test Site and the Marshall Islands. The most cogent information comes from Chernobyl where an epidemic of childhood thyroid cancer has followed exposure to radioiodine that was mainly 131I. Although much has been learned from this experience about the nature of radioiodine induced thyroid cancer in young children, the reconstruction of thyroid radiation doses is too preliminary to provide accurate knowledge of the risk in comparison to that from external radiation. In the Marshall Islands, much of the exposure was from short-lived radioiodines as well as external radiation, obviating the possibility to determine the risk from 131I. Exposure to 131I in the continental United States from atomic bomb testing is expected to have caused some thyroid cancers, but only in the immediate vicinity of the Nevada Test Site has any evidence of radiation-induced thyroid neoplasms been adduced. This evidence is minimally significant statistically, and not significant for thyroid cancer per se. Medical use of radioiodine has not been observed to cause thyroid cancer but very few of the patients studied were young children, the group most sensitive to thyroid radiation. Despite these limitations, this information is sufficient to make some suggestions concerning protective measures in the case of nuclear accidents and the follow up of individuals who have been exposed.
Energy optimization in gold nanoparticle enhanced radiation therapy.
Sung, Wonmo; Schuemann, Jan
2018-06-25
Gold nanoparticles (GNPs) have been demonstrated as radiation dose enhancing agents. Kilovoltage external photon beams have been shown to yield the largest enhancement due to the high interaction probability with gold. While orthovoltage irradiations are feasible and promising, they suffer from a reduced tissue penetrating power. This study quantifies the effect of varying photon beam energies on various beam arrangements, body, tumor, and cellular GNP uptake geometries. Cell survival was modeled based on our previously developed GNP-local effect model with radial doses calculated using the TOPAS-nBio Monte Carlo code. Cell survival curves calculated for tumor sites with GNPs were used to calculate the relative biological effectiveness (RBE)-weighted dose. In order to evaluate the plan quality, the ratio of the mean dose between the tumor and normal tissue for 50-250 kVp beams with GNPs was compared to the standard of care using 6 MV photon beams without GNPs for breast and brain tumors. For breast using a single photon beam, kV + GNP was found to yield up to 2.73 times higher mean RBE-weighted dose to the tumor than two tangential megavoltage beams while delivering the same dose to healthy tissue. For irradiation of brain tumors using multiple photon beams, the GNP dose enhancement was found to be effective for energies above 50 keV. A small tumor at shallow depths was found to be the most effective treatment conditions for GNP enhanced radiation therapy. GNP uptake distributions in the cell (with or without nuclear uptake) and the beam arrangement were found to be important factors in determining the optimal photon beam energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-04-01
The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/y. The applicable limits have been revised since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/y; the limits applied for 1985 are based on a standard of 100 mrem/y. The HISSmore » is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program at the HISS measures uranium, radium, and thorium concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; and external gamma radiation exposure rates. Potential radiation doses to the public are also calculated. The HISS was designated for remedial action under FUSRAP because radioactivity above applicable limits was found to exist at the site and its vicinity. Elevated levels of radiation still exist in areas where remedial action has not yet been completed.« less
Garnier-Laplace, J; Geras'kin, S; Della-Vedova, C; Beaugelin-Seiller, K; Hinton, T G; Real, A; Oudalova, A
2013-07-01
The discrepancy between laboratory or controlled conditions ecotoxicity tests and field data on wildlife chronically exposed to ionising radiation is presented for the first time. We reviewed the available chronic radiotoxicity data acquired in contaminated fields and used a statistical methodology to support the comparison with knowledge on inter-species variation of sensitivity to controlled external γ irradiation. We focus on the Chernobyl Exclusion Zone and effects data on terrestrial wildlife reported in the literature corresponding to chronic dose rate exposure situations (from background ~100 nGy/h up to ~10 mGy/h). When needed, we reconstructed the dose rate to organisms and obtained consistent unbiased data sets necessary to establish the dose rate-effect relationship for a number of different species and endpoints. Then, we compared the range of variation of radiosensitivity of species from the Chernobyl-Exclusion Zone with the statistical distribution established for terrestrial species chronically exposed to purely gamma external irradiation (or chronic Species radioSensitivity Distribution - SSD). We found that the best estimate of the median value (HDR50) of the distribution established for field conditions at Chernobyl (about 100 μGy/h) was eight times lower than the one from controlled experiments (about 850 μGy/h), suggesting that organisms in their natural environmental were more sensitive to radiation. This first comparison highlights the lack of mechanistic understanding and the potential confusion coming from sampling strategies in the field. To confirm the apparent higher sensitive of wildlife in the Chernobyl Exclusion Zone, we call for more a robust strategy in field, with adequate design to deal with confounding factors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Abbady, Adel G E; El-Arabi, A M
2006-12-01
The activity concentrations and the gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides (226)Ra and (232)Th were determined in samples of bauxite, alumina and aluminium dross tailings industrial waste (used to produce two types of alums) using high purity germanium (HPGe) gamma ray spectrometry. The bauxite and alumina are imported by Egyptalum (The Egyptian Aluminium Company, Nag Hammady, Egypt) from Guinea and India. The activity concentrations in the bauxite range from 29 +/- 1 to 112 +/- 6 Bq kg(-1) for (226)Ra, and 151 +/- 8 to 525 +/- 12 Bq kg(-1) for (232)Th, with mean values of 62 +/- 8 and 378 +/- 50 Bq kg(-1), respectively. With respect to alumina and tail, the mean values are 5.7 +/- 1.1 and 8.4 +/- 0.8 Bq kg(-1) for (226)Ra and 7.2 +/- 1.6 and 10.7 +/- 1.2 Bq kg(-1) for (232)Th. Potassium-40 was not detected in any of the studied samples. The measured activity concentrations of (226)Ra and (232)Th in bauxite are higher than the world average while in alumina and tail they are lower. As a measure of radiation hazard to the occupational workers and members of the public, the Ra equivalent activities and external gamma dose rates due to natural radionuclides at 1 m above the ground surface were calculated. The external gamma-radiation doses received by the Egyptalum workers are 97, 409, 8.5 and 12.7 microSv y(-1) for the Guinean and Indian bauxite, the alumina and tail, respectively, which is well below the recommended allowed dose of 1 mSv y(-1) for non-exposed workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, Felipe A.; School of Medicine, Complutense University, Madrid; Sole, Claudio V., E-mail: cvsole@uc.cl
Background: A joint analysis of data from centers involved in the Spanish Cooperative Initiative for Intraoperative Electron Radiotherapy was performed to investigate long-term outcomes of locally recurrent soft tissue sarcoma (LR-STS) patients treated with a multidisciplinary approach. Methods and Materials: Patients with a histologic diagnosis of LR-STS (extremity, 43%; trunk wall, 24%; retroperitoneum, 33%) and no distant metastases who underwent radical surgery and intraoperative electron radiation therapy (IOERT; median dose, 12.5 Gy) were considered eligible for participation in this study. In addition, 62% received external beam radiation therapy (EBRT; median dose, 50 Gy). Results: From 1986 to 2012, a totalmore » of 103 patients from 3 Spanish expert IOERT institutions were analyzed. With a median follow-up of 57 months (range, 2-311 months), 5-year local control (LC) was 60%. The 5-year IORT in-field control, disease-free survival (DFS), and overall survival were 73%, 43%, and 52%, respectively. In the multivariate analysis, no EBRT to treat the LR-STS (P=.02) and microscopically involved margin resection status (P=.04) retained significance in relation to LC. With regard to IORT in-field control, only not delivering EBRT to the LR-STS retained significance in the multivariate analysis (P=.03). Conclusion: This joint analysis revealed that surgical margin and EBRT affect LC but that, given the high risk of distant metastases, DFS remains modest. Intensified local treatment needs to be further tested in the context of more efficient concurrent, neoadjuvant, and adjuvant systemic therapy.« less
Characterization of the Radiological Environment at J-Village during Operation Tomodachi
2013-02-01
individual as compared to those for the helicopter crew members (Appendix A). 3.2.2. Other Relevant Dosimetry Results Thermoluminescent dosimeter ( TLD ...internal monitoring results are available for 14 of these individuals. External dosimetry data (EPD and TLD ) showed that the maximum recorded dose for an...Washington, DC. http://www.NNSAResponseData.net. Accessed December 7. USAFCRD (U. S. Air Force Center for Radiation Dosimetry ), 2011. Electronic Pocket
NASA Astrophysics Data System (ADS)
Kry, Stephen
Introduction. External beam photon radiotherapy is a common treatment for many malignancies, but results in the exposure of the patient to radiation away from the treatment site. This out-of-field radiation irradiates healthy tissue and may lead to the induction of secondary malignancies. Out-of-field radiation is composed of photons and, at high treatment energies, neutrons. Measurement of this out-of-field dose is time consuming, often difficult, and is specific to the conditions of the measurements. Monte Carlo simulations may be a viable approach to determining the out-of-field dose quickly, accurately, and for arbitrary irradiation conditions. Methods. An accelerator head, gantry, and treatment vault were modeled with MCNPX and 6 MV and 18 MV beams were simulated. Photon doses were calculated in-field and compared to measurements made with an ion chamber in a water tank. Photon doses were also calculated out-of-field from static fields and compared to measurements made with thermoluminescent dosimeters in acrylic. Neutron fluences were calculated and compared to measurements made with gold foils. Finally, photon and neutron dose equivalents were calculated in an anthropomorphic phantom following intensity-modulated radiation therapy and compared to previously published dose equivalents. Results. The Monte Carlo model was able to accurately calculate the in-field dose. From static treatment fields, the model was also able to calculate the out-of-field photon dose within 16% at 6 MV and 17% at 18 MV and the neutron fluence within 19% on average. From the simulated IMRT treatments, the calculated out-of-field photon dose was within 14% of measurement at 6 MV and 13% at 18 MV on average. The calculated neutron dose equivalent was much lower than the measured value but is likely accurate because the measured neutron dose equivalent was based on an overestimated neutron energy. Based on the calculated out-of-field doses generated by the Monte Carlo model, it was possible to estimate the risk of fatal secondary malignancy, which was consistent with previous estimates except for the neutron discrepancy. Conclusions. The Monte Carlo model developed here is well suited to studying the out-of-field dose equivalent from photons and neutrons under a variety of irradiation configurations, including complex treatments on complex phantoms. Based on the calculated dose equivalents, it is possible to estimate the risk of secondary malignancy associated with out-of-field doses. The Monte Carlo model should be used to study, quantify, and minimize the out-of-field dose equivalent and associated risks received by patients undergoing radiation therapy.
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764
Mice and the A-Bomb: Irradiation Systems for Realistic Exposure Scenarios.
Garty, Guy; Xu, Yanping; Elliston, Carl; Marino, Stephen A; Randers-Pehrson, Gerhard; Brenner, David J
2017-04-01
Validation of biodosimetry assays is normally performed with acute exposures to uniform external photon fields. Realistically, exposure to a radiological dispersal device or reactor leak will include exposure to low dose rates and likely exposure to ingested radionuclides. An improvised nuclear device will likely include a significant neutron component in addition to a mixture of high- and low-dose-rate photons and ingested radionuclides. We present here several novel irradiation systems developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry to provide more realistic exposures for testing of novel biodosimetric assays. These irradiators provide a wide range of dose rates (from Gy/s to Gy/week) as well as mixed neutron/photon fields mimicking an improvised nuclear device.
Mice and the A-Bomb: Irradiation Systems for Realistic Exposure Scenarios
Garty, Guy; Xu, Yanping; Elliston, Carl; Marino, Stephen A.; Randers-Pehrson, Gerhard; Brenner, David J.
2017-01-01
Validation of biodosimetry assays is normally performed with acute exposures to uniform external photon fields. Realistically, exposure to a radiological dispersal device or reactor leak will include exposure to low dose rates and likely exposure to ingested radionuclides. An improvised nuclear device will likely include a significant neutron component in addition to a mixture of high- and low-dose-rate photons and ingested radionuclides. We present here several novel irradiation systems developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry to provide more realistic exposures for testing of novel biodosimetric assays. These irradiators provide a wide range of dose rates (from Gy/s to Gy/week) as well as mixed neutron/photon fields mimicking an improvised nuclear device. PMID:28211757
Ionizing radiation fluxes and dose measurements during the Kosmos 1887 satellite flight.
Charvat, J; Spurny, F; Kopecka, B; Votockova, I
1990-01-01
The results of dosimetric experiments performed during the flight of Kosmos 1887 biosatellite are presented. Two kinds of measurements were performed on the external surface of the satellite. First, the fluences and spectra of low energy charged particles were established. It was found that most of the particles registered by means of solid state nuclear track detectors are helium nuclei. Tracks of oxygen nuclei and some heavier charged particles were also observed. Thermoluminescent detectors were used to establish absorbed doses in open space on the satellite's surface and behind thin shielding. It was found that these doses were rather high; nevertheless, their decrease with shielding thickness is very rapid. Dosimetric and other consequences of the results obtained are analyzed and discussed.
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.; Barth, J. M.
1984-01-01
The space radiation environment of the TOPEX spacecraft is investigated. A single trajectory was considered. The external (surface incident) charged particle radiation, predicted for the satellite, is determined by orbital flux integration for the specified trajectory. The latest standard models of the environment are used in the calculations. The evaluation is performed for solar maximum conditions. The spacecraft exposure to cosmic rays of galactic origin is evaluated over its flight path through the magnetosphere in terms of geomagnetic shielding effects, both for surface incident heavy ions and for particles emerging behind different material thickness. Limited shielding and dose evaluations are performed for simple infinite slab and spherical geometries. Results, given in graphical and tabular form, are analyzed, explained, and discussed. Conclusions are presented and commented on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Three Mile Island (TMI) Unit 2 accident on March 28, 1979 was and is of great concern to the nuclear industry; electric power generating companies and their customers, regulatory and other government agencies, the entire nuclear community, and to the country as a whole. While the accident resulted in only limited external plant radiation exposure, the plant itself suffered extensive damage with high radiation contamination within the reactor and auxiliary system facilities. The GEND Planning Report for cleanup activities at TMI-2 covers the areas of: instrumentation and electrical equipment survivability; fission product transport; decontamination/radiation dose reduction technology; data bankmore » organization and sample archive facility; characterization of primary system pressure boundary and mechanical components; core damage assessment; and fuel handling, removal, examination and disposal.« less
Ćujić, Mirjana; Dragović, Snežana
2018-08-01
This paper presents the environmental radiation risk assessment based on two software program approaches ERICA Tool (version 1.2) and RESRAD BIOTA (version 1.5) to estimate dose rates to terrestrial biota in the area around the largest coal fired power plant in Serbia. For dose rate assessment software's default reference animals and plants and the best estimated values of activity concentrations of 238 U, 234 U, 234 Th, 232 Th, 230 Th, 226 Ra, 210 Pb, 210 Po, 137 Cs in soil were used. Both approaches revealed the highest contribution to the internal dose rate due to 226 Ra and 210 Po, while 137 Cs contributed the most to the external dose rate. In the investigated area total dose rate to biota derived using ERICA Tool ranged from 0.3 to 14.4 μGy h -1 . The natural radionuclides exhibited significantly higher contribution to the total dose rate than the artificial one. In the investigated area, only dose rate for lichens and bryophytes exceeded ERICA Tool screening value of total dose rate of 10 μGy h -1 suggested as confident that environmental risks are negligible. The assessed total dose rates for reference animals and plants using RESRAD BIOTA were found to be 7 and 3 μGy h -1 , respectively. In RESRAD BIOTA - Level 3, 10 species (Lumbricus terrestris, Rana lessonae, Sciurus vulgaris, Anas platyrhynchos, Lepus europaeus, Vulpes vulpes, Capreolus capreolus, Suss crofa, Quercu srobur, Tilia spp.) representative for the study area were modeled. Among them the highest total dose rate (4.5 μGy h -1 ) was obtained for large mammals. Differences in the predicted dose rates to biota using the two software programs are the consequence of the difference in the values of transfer parameters used to calculate activity concentrations in biota. Doses of ionizing radiation estimated in this study will not exhibit deterministic effects at the population level. Thus, the obtained results indicate no significant radiation impact of coal fired power plant operation on terrestrial biota. This paper confirms the use ERICA Tool and RESRAD BIOTA softwares as flexible and effective means of radiation impact assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bolívar, J P; García-Tenorio, R; Mosqueda, F; Gázquez, M J; López-Coto, I; Adame, J A; Vaca, F
2013-03-01
In order to fill a gap in the open literature, occupational exposures and activity concentrations have been assessed in two NORM industrial plants, located in the south-west of Spain, devoted to the production of mono-ammonium phosphate (MAP) and di-ammonium phosphate (DAP) fertilisers. The annual effective doses received by the workers from these plants are clearly below 1 mSv yr(-1) and the contribution due to external radiation is similar to that due to inhalation. The contribution to the maximum effective doses due to inhalation of particulate matter has been estimated to be about 0.12 mSv yr(-1), while the (222)Rn concentrations inside the plants are of no concern. Consequently, no additional actions or radiological protection measures need to be taken to decrease the natural radiation received by the workers in these facilities.
Real-time detection of fast and thermal neutrons in radiotherapy with CMOS sensors.
Arbor, Nicolas; Higueret, Stephane; Elazhar, Halima; Combe, Rodolphe; Meyer, Philippe; Dehaynin, Nicolas; Taupin, Florence; Husson, Daniel
2017-03-07
The peripheral dose distribution is a growing concern for the improvement of new external radiation modalities. Secondary particles, especially photo-neutrons produced by the accelerator, irradiate the patient more than tens of centimeters away from the tumor volume. However the out-of-field dose is still not estimated accurately by the treatment planning softwares. This study demonstrates the possibility of using a specially designed CMOS sensor for fast and thermal neutron monitoring in radiotherapy. The 14 microns-thick sensitive layer and the integrated electronic chain of the CMOS are particularly suitable for real-time measurements in γ/n mixed fields. An experimental field size dependency of the fast neutron production rate, supported by Monte Carlo simulations and CR-39 data, has been observed. This dependency points out the potential benefits of a real-time monitoring of fast and thermal neutron during beam intensity modulated radiation therapies.
Chouksey, Swati; Singh, Alpana; Thakur, Rajendra Singh; Deshmukh, Reena
2013-10-01
The custard apple (Annona squamosa) fruits were procured from local market, irradiated with radiation doses 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 kGy and then treated with benzyl adenine (50 and 100 part per million) and stored at ambient temperature (25 ± 5 °C, Relative Humidity 90 ± 2%) for 12 days. The treated fruits were evaluated for sensory (viz; flavour, texture, internal and external colour) and chemical constituents (viz; Total Soluble Solids, titrable acidity, ascorbic acid, free soluble sugar, reducing sugar. non reducing sugar, carbohydrate) during storage. The study concluded that radiation dose of 1.5 kilo Gray along with 50 ppm benzyl adenine enhanced in shelf-life of custard apple fruits by 6 days at ambient temperature with good pulp texture, flavour, colour and nutritional quality as compared to control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, J; Pelletier, C; Lee, C
Purpose: Organ doses for the Hodgkin’s lymphoma patients treated with cobalt-60 radiation were estimated using an anthropomorphic model and Monte Carlo modeling. Methods: A cobalt-60 treatment unit modeled in the BEAMnrc Monte Carlo code was used to produce phase space data. The Monte Carlo simulation was verified with percent depth dose measurement in water at various field sizes. Radiation transport through the lung blocks were modeled by adjusting the weights of phase space data. We imported a precontoured adult female hybrid model and generated a treatment plan. The adjusted phase space data and the human model were imported to themore » XVMC Monte Carlo code for dose calculation. The organ mean doses were estimated and dose volume histograms were plotted. Results: The percent depth dose agreement between measurement and calculation in water phantom was within 2% for all field sizes. The mean organ doses of heart, left breast, right breast, and spleen for the selected case were 44.3, 24.1, 14.6 and 3.4 Gy, respectively with the midline prescription dose of 40.0 Gy. Conclusion: Organ doses were estimated for the patient group whose threedimensional images are not available. This development may open the door to more accurate dose reconstruction and estimates of uncertainties in secondary cancer risk for Hodgkin’s lymphoma patients. This work was partially supported by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coen, John J., E-mail: jcoen@partners.org; Bae, Kyounghwa; Zietman, Anthony L.
Purpose: Several randomized trials have shown a benefit of dose escalation to 78 to 79 Gy for men treated with external radiation for localized prostate cancer. Single-institution data suggest a benefit with even higher doses. American College of Radiology 03-12 is a Phase II trial testing the safety and efficacy of 82 GyE (Gray equivalent) delivered with conformal proton radiation. Methods and Materials: From 2003-2006, 85 men with localized prostate cancer were accrued to American College of Radiology 03-12. Eighty-four were eligible for analysis. They were treated with conformal proton radiation alone to a total dose of 82 GyE. Themore » study was designed to test whether the rate of 18-month Grade 3+ late toxicity was greater than 10%. Results: The median follow-up was 31.6 months. Regarding treatment-related acute toxicity, there were 39 Grade 1 cases (46%), 19 Grade 2 cases (23%) and 2 Grade 3 cases (2%). Regarding genitourinary/gastrointestinal toxicity, there were 42 Grade 1 cases (50%), 12 Grade 2 cases (14%) and 1 Grade 3 case (1%). Regarding late toxicity, there were 28 Grade 1 cases (33%), 22 Grade 2 cases (26%), 6 Grade 3 cases (7%), and 1 Grade 4 case (1%). The late genitourinary/gastrointestinal rates were the same. The estimated rate of Grade 3+ late toxicity at 18 months was 6.08%. Conclusions: Although not free of late toxicity, 82 GyE at 2 GyE per fraction delivered with conformal proton radiation did not exceed the late morbidity target tested in this trial. There was sufficient morbidity, however, that this may be the maximal dose that can be delivered safely with this technique and fractionation.« less
The Thermoluminescence Response of Ge-Doped Flat Fibers to Gamma Radiation
Mat Nawi, Siti Nurasiah Binti; Wahib, Nor Fadira Binti; Zulkepely, Nurul Najua Binti; Amin, Yusoff Bin Mohd; Min, Ung Ngie; Bradley, David Andrew; Md Nor, Roslan Bin; Maah, Mohd Jamil
2015-01-01
Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a 60Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium. PMID:26307987
Radon dose assessment in underground mines in Brazil.
Santos, T O; Rocha, Z; Cruz, P; Gouvea, V A; Siqueira, J B; Oliveira, A H
2014-07-01
Underground miners are internally exposed to radon, thoron and their short-lived decay products during the mineral processing. There is also an external exposure due to the gamma emitters present in the rock and dust of the mine. However, the short-lived radon decay products are recognised as the main radiation health risk. When inhaled, they are deposited in the respiratory system and may cause lung cancer. To address this concern, concentration measurements of radon and its progeny were performed, the equilibrium factor was determined and the effective dose received was estimated in six Brazilian underground mines. The radon concentration was measured by using E-PERM, AlphaGUARD and CR-39 detectors. The radon progeny was determined by using DOSEman. The annual effective dose for the miners was estimated according to United Nations Scientific Committee on the Effects of Atomic Radiation methodologies. The mean value of the equilibrium factor was 0.4. The workers' estimated effective dose ranged from 1 to 21 mSv a(-1) (mean 9 mSv a(-1)). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Biokinetics and dosimetry of several radiolabelled peptides in cancer cells
NASA Astrophysics Data System (ADS)
Rodríguez-Cortés, J.; Ferro-Flores, G.; de Murphy, C. Arteaga; Pedraza-López, M.; Ramírez-Iglesias, M. A. T.
Radiolabelled peptides have been used as target-specific radiopharmaceuticals. The goal of this research was the in vitro assessment of the uptake, internalization, externalization, and efflux of five radiolabelled peptides in cancer cells to estimate radiation-absorbed doses from experimental biokinetic data. 177Lu-DOTA-octreotate, 188Re-lanreotide, and 99mTc-HYNIC-octreotide were studied in the AR42J cell line. The PC3 and NCIH69 cells were used for 99mTc-HYNIC-bombesin and 177Lu-DOTA-minigastrin, respectively. The cumulated activities in the membrane and cytoplasm were calculated by integration of the experimental time-activity curves and used for dosimetry calculations according to the Medical Internal Radiation Dose (MIRD) cellular methodology. The mean absorbed dose to the cell nucleus were 0.69±0.09, 0.11±0.08, 0.55±0.09, 3.45±0.48, and 3.30±0.65 Gy/Bq for 99mTc-HYNIC-bombesin, 99mTc-HYNIC-octreotide, 177Lu-DOTA-minigastrin, 177Lu-DOTA-octreotate, and 188Re-lanreotide, respectively. If radiopharmaceutical cell kinetics were not used and only uptake data were considered, the calculated doses would be overestimated up to 25 times.
Fadol, Nooreldin; Idriss, Hajo; Salih, Isam; Ragab, Nserdin A; Osman, Safa; Sam, Adam K
2018-06-01
This study was conducted to assess the level of radioactivity and the radiation hazards associated with granite rocks used for construction of buildings. The measurement of radioactivity content of the rock samples was performed with gamma-spectrometry equipped with Nal (TI) detector. From the results obtained in this study the average activity concentrations of 226Ra, 232Th and 40K were 20.64, 30.50 and 295.19 Bq kg-1, respectively. The absorbed dose rate in air at 1 m above ground level, the annual effective dose and the gamma index were determined with the aim to assess the possible radiological impact on inhabitants of dwellings built using such rocks. The mean value of the absorbed dose rate, the annual effective dose and the gamma index (Iγ) was 36.36 nGy h-1, 40.79 μSv y-1 and 0.51 μSv y-1, respectively. Radium equivalent activities, and external and internal hazard indices, were also calculated. These data indicated that the area of study lies within areas recognized as normal background radiation and the granite rocks are safe to be used as building material and other structural purposes.
The role of external beam radiotherapy in the treatment of hepatocellular cancer.
Chino, Fumiko; Stephens, Sarah Jo; Choi, Steve S; Marin, Daniele; Kim, Charles Y; Morse, Michael A; Godfrey, Devon J; Czito, Brian G; Willett, Christopher G; Palta, Manisha
2018-04-12
Hepatocellular carcinoma (HCC) is increasing in incidence and mortality. Although the prognosis remains poor, long-term survival has improved from 3% in 1970 to an 18% 5-year survival rate today. This is likely because of the introduction of well tolerated, oral antiviral therapies for hepatitis C. Curative options for patients with HCC are often limited by underlying liver dysfunction/cirrhosis and medical comorbidities. Less than one-third of patients are candidates for surgery, which is the current gold standard for cure. Nonsurgical treatments include embolotherapies, percutaneous ablation, and ablative radiation. Technological advances in radiation delivery in the past several decades now allow for safe and effective ablative doses to the liver. Conformal techniques allow for both dose escalation to target volumes and normal tissue sparing. Multiple retrospective and prospective studies have demonstrated that hypofractionated image-guided radiation therapy, used as monotherapy or in combination with other liver-directed therapies, can provide excellent local control that is cost effective. Therefore, as the HCC treatment paradigm continues to evolve, ablative radiation treatment has moved from a palliative treatment to both a "bridge to transplant" and a definitive treatment. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.
Key Performance Indicators in the Evaluation of the Quality of Radiation Safety Programs.
Schultz, Cheryl Culver; Shaffer, Sheila; Fink-Bennett, Darlene; Winokur, Kay
2016-08-01
Beaumont is a multiple hospital health care system with a centralized radiation safety department. The health system operates under a broad scope Nuclear Regulatory Commission license but also maintains several other limited use NRC licenses in off-site facilities and clinics. The hospital-based program is expansive including diagnostic radiology and nuclear medicine (molecular imaging), interventional radiology, a comprehensive cardiovascular program, multiple forms of radiation therapy (low dose rate brachytherapy, high dose rate brachytherapy, external beam radiotherapy, and gamma knife), and the Research Institute (including basic bench top, human and animal). Each year, in the annual report, data is analyzed and then tracked and trended. While any summary report will, by nature, include items such as the number of pieces of equipment, inspections performed, staff monitored and educated and other similar parameters, not all include an objective review of the quality and effectiveness of the program. Through objective numerical data Beaumont adopted seven key performance indicators. The assertion made is that key performance indicators can be used to establish benchmarks for evaluation and comparison of the effectiveness and quality of radiation safety programs. Based on over a decade of data collection, and adoption of key performance indicators, this paper demonstrates one way to establish objective benchmarking for radiation safety programs in the health care environment.
Dose Reconstruction for the Million Worker Study: Status and Guidelines
Bouville, André; Toohey, Richard E.; Boice, John D.; ...
2015-02-01
The primary aim of the epidemiologic study of one million U.S. radiation workers and veterans (the Million-Worker study) is to provide scientifically valid information on the level of radiation risk when exposures are received gradually over time, and not acutely as was the case for Japanese atomic bomb survivors. The primary outcome of the epidemiological study is cancer mortality but other causes of death such as cardiovascular disease and cerebrovascular disease will be evaluated. The success of the study is tied to the validity of the dose reconstruction approaches to provide unbiased estimates of organ-specific radiation absorbed doses and theirmore » accompanying uncertainties. The dosimetry aspects for the Million-Worker study are challenging in that they address diverse exposure scenarios for diverse occupational groups being studied over a period of up to 70 years. The dosimetric issues differ among the varied exposed populations that are considered: atomic veterans, DOE workers exposed to both penetrating radiation and intakes of radionuclides, nuclear power plant workers, medical radiation workers, and industrial radiographers. While a major source of radiation exposure to the study population comes from external gamma-ray or x-ray sources, for certain of the study groups there is a meaningful component of radionuclide intakes that require internal radiation dosimetry measures. Scientific Committee 6-9 has been established by NCRP to produce a report on the comprehensive organ dose assessment (including uncertainty analysis) for the Million-Worker study. The Committee’s report will cover the specifics of practical dose reconstruction for the ongoing epidemiologic studies with uncertainty analysis discussions and will be a specific application of the guidance provided in NCRP Reports 158, 163, 164, and 171. The main role of the Committee is to provide guidelines to the various groups of dosimetrists involved in the various components of the Million-Worker study to make sure that certain dosimetry criteria are respected: calculation of annual absorbed doses in the organs of interest, separation of low-LET and high-LET components, evaluation of uncertainties, and quality assurance and quality control. Lastly, we recognize that the Million-Worker study and its approaches to dosimetry are a work in progress and that there will be flexibility and changes in direction as new information is obtained, both with regard to dosimetry and with regard to the epidemiologic features of the study components.« less
Dose Reconstruction for the Million Worker Study: Status and Guidelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouville, André; Toohey, Richard E.; Boice, John D.
The primary aim of the epidemiologic study of one million U.S. radiation workers and veterans (the Million-Worker study) is to provide scientifically valid information on the level of radiation risk when exposures are received gradually over time, and not acutely as was the case for Japanese atomic bomb survivors. The primary outcome of the epidemiological study is cancer mortality but other causes of death such as cardiovascular disease and cerebrovascular disease will be evaluated. The success of the study is tied to the validity of the dose reconstruction approaches to provide unbiased estimates of organ-specific radiation absorbed doses and theirmore » accompanying uncertainties. The dosimetry aspects for the Million-Worker study are challenging in that they address diverse exposure scenarios for diverse occupational groups being studied over a period of up to 70 years. The dosimetric issues differ among the varied exposed populations that are considered: atomic veterans, DOE workers exposed to both penetrating radiation and intakes of radionuclides, nuclear power plant workers, medical radiation workers, and industrial radiographers. While a major source of radiation exposure to the study population comes from external gamma-ray or x-ray sources, for certain of the study groups there is a meaningful component of radionuclide intakes that require internal radiation dosimetry measures. Scientific Committee 6-9 has been established by NCRP to produce a report on the comprehensive organ dose assessment (including uncertainty analysis) for the Million-Worker study. The Committee’s report will cover the specifics of practical dose reconstruction for the ongoing epidemiologic studies with uncertainty analysis discussions and will be a specific application of the guidance provided in NCRP Reports 158, 163, 164, and 171. The main role of the Committee is to provide guidelines to the various groups of dosimetrists involved in the various components of the Million-Worker study to make sure that certain dosimetry criteria are respected: calculation of annual absorbed doses in the organs of interest, separation of low-LET and high-LET components, evaluation of uncertainties, and quality assurance and quality control. Lastly, we recognize that the Million-Worker study and its approaches to dosimetry are a work in progress and that there will be flexibility and changes in direction as new information is obtained, both with regard to dosimetry and with regard to the epidemiologic features of the study components.« less
Radiation Dose-Volume Effects and the Penile Bulb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Mack, E-mail: mroach@radonc.ucsf.ed; Nam, Jiho; Gagliardi, Giovanna
2010-03-01
The dose, volume, and clinical outcome data for penile bulb are reviewed for patients treated with external-beam radiotherapy. Most, but not all, studies find an association between impotence and dosimetric parameters (e.g., threshold doses) and clinical factors (e.g., age, comorbid diseases). According to the data available, it is prudent to keep the mean dose to 95% of the penile bulb volume to <50 Gy. It may also be prudent to limit the D70 and D90 to 70 Gy and 50 Gy, respectively, but coverage of the planning target volume should not be compromised. It is acknowledged that the penile bulbmore » may not be the critical component of the erectile apparatus, but it seems to be a surrogate for yet to be determined structure(s) critical for erectile function for at least some techniques.« less
SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Rensselaer Polytechnic Inst., Troy, NY; Liu, T
Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, andmore » the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)« less
Omar-Nazir, Laila; Shi, Xiaopei; Moller, Anders; Mousseau, Timothy; Byun, Soohyun; Hancock, Samuel; Seymour, Colin; Mothersill, Carmel
2018-08-01
The impact of the Chernobyl NPP accident on the environment is documented to be greater than expected, with higher mutation rates than expected at the current, chronic low dose rate. In this paper we suggest that the historic acute exposure and resulting non-targeted effects (NTE) such as delayed mutations and genomic instability could account at least in part for currently measured mutation rates and provide an initial test of this concept. Data from Møller and Mousseau on the phenotypic mutation rates of Chernobyl birds 9-11 generations post the Chernobyl accident were used and the reconstructed dose response for mutations was compared with delayed reproductive death dose responses (as a measure of genomic instability) in cell cultures exposed to a similar range of doses. The dose to birds present during the Chernobyl NPP accident was reconstructed through the external pathway due to Cs-137 with an estimate of the uncertainty associated with such reconstruction. The percentage of Chernobyl birds several generations after the accident without mutations followed the general shape of the clonogenic survival percentage of the progeny of irradiated cells, and it plateaued at low doses. This is the expected result if NTE of radiation are involved. We suggest therefore, that NTE induced by the historic dose may play a role in generating mutations in progeny many generations following the initial disaster. Copyright © 2018 Elsevier Inc. All rights reserved.
Age-Based Methods to Explore Time-Related Variables in Occupational Epidemiology Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janice P. Watkins, Edward L. Frome, Donna L. Cragle
2005-08-31
Although age is recognized as the strongest predictor of mortality in chronic disease epidemiology, a calendar-based approach is often employed when evaluating time-related variables. An age-based analysis file, created by determining the value of each time-dependent variable for each age that a cohort member is followed, provides a clear definition of age at exposure and allows development of diverse analytic models. To demonstrate methods, the relationship between cancer mortality and external radiation was analyzed with Poisson regression for 14,095 Oak Ridge National Laboratory workers. Based on previous analysis of this cohort, a model with ten-year lagged cumulative radiation doses partitionedmore » by receipt before (dose-young) or after (dose-old) age 45 was examined. Dose-response estimates were similar to calendar-year-based results with elevated risk for dose-old, but not when film badge readings were weekly before 1957. Complementary results showed increasing risk with older hire ages and earlier birth cohorts, since workers hired after age 45 were born before 1915, and dose-young and dose-old were distributed differently by birth cohorts. Risks were generally higher for smokingrelated than non-smoking-related cancers. It was difficult to single out specific variables associated with elevated cancer mortality because of: (1) birth cohort differences in hire age and mortality experience completeness, and (2) time-period differences in working conditions, dose potential, and exposure assessment. This research demonstrated the utility and versatility of the age-based approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.
To identify effects of chronic internal and external radiation exposure for components of terrestrial ecosystems, a comprehensive study of Scots pine trees in the Chernobyl Exclusion Zone was performed. The experimental plan included over 1,100 young trees (up to 20 years old) selected from areas with varying levels of radioactive contamination. These pine trees were planted after the 1986 Chernobyl Nuclear Power Plant accident mainly to prevent radionuclide resuspension and soil erosion. For each tree, the major morphological parameters and radioactive contamination values were identified. Cytological analyses were performed for selected trees representing all dose rate ranges. A specially developedmore » dosimetric model capable of taking into account radiation from the incorporated radionuclides in the trees was developed for the apical meristem. The calculated dose rates for the trees in the study varied within three orders of magnitude, from close to background values in the control area (about 5 mGy y{sup -1}) to approximately 7 Gy y{sup -1} in the Red Forest area located in the immediate vicinity of the Chernobyl Nuclear Power Plant site. Dose rate/effect relationships for morphological changes and cytogenetic defects were identified and correlations for radiation effects occurring on the morphological and cellular level were established.« less
Bangotra, Pargin; Mehra, Rohit; Kaur, Kirandeep; Jakhu, Rajan
2016-10-01
The activity concentration of 226 Ra (radium), 232 Th (thorium) and 40 K (potassium) has been measured in the soil samples collected from Mansa and Muktsar districts of Punjab (India) using NaI (Tikl) gamma detector. The concentration of three radionuclides ( 226 Ra, 232 Th and 40 K) in the studied area has been varied from 18±4 to 46±5, 53±7 to 98±8 and 248±54 to 756±110 Bq kg -1 , respectively. Radium equivalent activities (Ra eq ) have been calculated in soil samples for the assessment of the radiation hazards arising due to the use of these soil samples. The absorbed dose rate of 226 Ra, 232 Th and 40 K in studied area has been varied from 8 to 21, 33 to 61 and 9 to 25 nGy h -1 , respectively. The corresponding indoor and outdoor annual effective dose in studied area was 0.38 and 0.09 mSv, respectively. The external and internal hazard has been also calculated for the assessment of radiation hazards in the studied area. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment
NASA Astrophysics Data System (ADS)
Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.
2007-02-01
The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle hyperthermia is more effective than non-nanoparticle tumor heating techniques when similar thermal doses are applied. Initial electron and light microscopy studies of iron oxide nanoparticle and AMF exposed tumor cells show a rapid uptake of particles and acute cytotoxicity following AMF exposure.
Wong, K K; Tso, W K; Lee, Victor; Luk, M Y; Tong, C C; Chu, Ferdinand
2017-01-01
Objective: To describe a method to reduce the external radiation exposure emitted from the patient after liver-directed radioembolization using 90Y glass microspheres, to quantitatively estimate the occupational dose of medical personnel providing patient care to the patient radioembolized with the use of the method and to discuss radiation exposure to patients who are adjacent if the patient radioembolized needs hospitalization. Methods: A lead-lined blanket of lead equivalence of 0.5 mm was used to cover the patient abdomen immediately after the 90Y radioembolization procedure, in order to reduce the radiation emitted from the patient. The interventional radiologist used a rod-type puncture site compressor for haemostasis to avoid direct contact with possible residual radioactivity at the puncture site. Dose rates were measured at the interventional radiologist chest and hand positions during puncture site pressing for haemostasis with and without the use of the blanket. The measurement results were applied to estimate the occupational dose of colleagues performing patient care to the patient radioembolized. The exposure to patients adjacent in the ward was estimated if the patient radioembolized was hospitalized. Results: The radiation exposures measured at the radiologist chest and hand positions have been significantly reduced with the lead-lined blanket in place. The radiologist, performing puncture site pressing at the end of radioembolization procedure, would receive an average hand dose of 1.95 μSv and body dose under his own lead apron of 0.30 μSv for an average 90Y microsphere radioactivity of 2.54 GBq. Other medical personnel, nurses and porters, would receive occupational doses corresponding to an hour of background radiation. If the patient radioembolized using 90Y needs hospitalization in a common ward, using the lead-lined blanket to cover the abdomen of the patient and keeping a distance of 2 m from the patient who is adjacent would reduce the exposure by 0.42% of dose limit for the general public. Conclusion: By placing a lead-lined blanket on the patient abdominal region after 90Y radioembolization, hospital staff receive minimal radiation exposure in order to comply with the radiation protection “as low as reasonably achievable” principle. There will be no increase in radiation level in ward if the patient radioembolized using 90Y needs to be hospitalized. Therefore, the patient radioembolized can be accommodated alternatively at a corner bed of a common ward if an isolation room with private toilet facility is not available. Advances in knowledge: To reduce exposure to personnel providing patient care to patients radioembolized using 90Y. PMID:27993095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faillace, E.R.; Cheng, J.J.; Yu, C.
A series of benchmarking runs were conducted so that results obtained with the RESRAD code could be compared against those obtained with six pathway analysis models used to determine the radiation dose to an individual living on a radiologically contaminated site. The RESRAD computer code was benchmarked against five other computer codes - GENII-S, GENII, DECOM, PRESTO-EPA-CPG, and PATHRAE-EPA - and the uncodified methodology presented in the NUREG/CR-5512 report. Estimated doses for the external gamma pathway; the dust inhalation pathway; and the soil, food, and water ingestion pathways were calculated for each methodology by matching, to the extent possible, inputmore » parameters such as occupancy, shielding, and consumption factors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orman, Amber; Koru-Sengul, Tulay; Miao, Feng
2014-12-01
Purpose/Objective(s): To evaluate the effects of various patient characteristics and radiation therapy treatment variables on outcomes in advanced-stage retinoblastoma. Methods and Materials: This was a retrospective review of 41 eyes of 30 patients treated with external beam radiation therapy between June 1, 1992, and March 31, 2012, with a median follow-up time of 133 months (11 years). Outcome measures included overall survival, progression-free survival, local control, eye preservation rate, and toxicity. Results: Over 90% of the eyes were stage V. Definitive external beam radiation therapy (EBRT) was delivered in 43.9% of eyes, adjuvant EBRT in 22% of eyes, and second-line/salvage EBRT inmore » 34.1% of eyes. A relative lens sparing (RLS) technique was used in 68.3% of eyes and modified lens sparing (MLS) in 24.4% of eyes. Three eyes were treated with other techniques. Doses ≥45 Gy were used in 68.3% of eyes. Chemotherapy was a component of treatment in 53.7% of eyes. The 10-year overall survival was 87.7%, progression-free survival was 80.5%, and local control was 87.8%. White patients had significantly better overall survival than did African-American patients in univariate analysis (hazard ratio 0.09; 95% confidence interval 0.01-0.84; P=.035). Toxicity was seen in 68.3% of eyes, including 24.3% with isolated acute dermatitis. Conclusions: External beam radiation therapy continues to be an effective treatment modality for advanced retinoblastoma, achieving excellent long-term local control and survival with low rates of treatment-related toxicity and secondary malignancy.« less
Radiological risk assessment and biosphere modelling for radioactive waste disposal in Switzerland.
Brennwald, M S; van Dorp, F
2009-12-01
Long-term safety assessments for geological disposal of radioactive waste in Switzerland involve the demonstration that the annual radiation dose to humans due to the potential release of radionuclides from the waste repository into the biosphere will not exceed the regulatory limit of 0.1 mSv. Here, we describe the simple but robust approach used by Nagra (Swiss National Cooperative for the Disposal of Radioactive Waste) to quantify the dose to humans as a result to time-dependent release of radionuclides from the geosphere into the biosphere. The model calculates the concentrations of radionuclides in different terrestrial and aquatic compartments of the surface environment. The fluxes of water and solids within the environment are the drivers for the exchange of radionuclides between these compartments. The calculated radionuclide concentrations in the biosphere are then used to estimate the radiation doses to humans due to various exposure paths (e.g. ingestion of radionuclides via drinking water and food, inhalation of radionuclides, external irradiation from radionuclides in soils). In this paper we also discuss recent new achievements and planned future work.