Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target.
Nacev, A; Weinberg, I N; Stepanov, P Y; Kupfer, S; Mair, L O; Urdaneta, M G; Shimoji, M; Fricke, S T; Shapiro, B
2015-01-14
The ability to use magnets external to the body to focus therapy to deep tissue targets has remained an elusive goal in magnetic drug targeting. Researchers have hitherto been able to manipulate magnetic nanotherapeutics in vivo with nearby magnets but have remained unable to focus these therapies to targets deep within the body using magnets external to the body. One of the factors that has made focusing of therapy to central targets between magnets challenging is Samuel Earnshaw's theorem as applied to Maxwell's equations. These mathematical formulations imply that external static magnets cannot create a stable potential energy well between them. We posited that fast magnetic pulses could act on ferromagnetic rods before they could realign with the magnetic field. Mathematically, this is equivalent to reversing the sign of the potential energy term in Earnshaw's theorem, thus enabling a quasi-static stable trap between magnets. With in vitro experiments, we demonstrated that quick, shaped magnetic pulses can be successfully used to create inward pointing magnetic forces that, on average, enable external magnets to concentrate ferromagnetic rods to a central location.
NASA Technical Reports Server (NTRS)
Hermance, J. F.
1985-01-01
The Earth's magnetic field at MAGSAT altitudes not only has contributions from the Earth's core and static magnetization in the lithosphere, but also from external electric current systems in the ionosphere and magnetosphere, along with induced electric currents flowing in the conducting earth. Hermance assessed these last two contributions; the external time-varying fields and their associated internal counter-parts which are electromagnetically induced. It is readily recognized that during periods of magnetic disturbance, external currents often contribute from 10's to 100's of nanoteslas (gammas) to observations of the Earth's field. Since static anomalies from lithospheric magnetization are of this same magnitude or less, these external source fields must be taken into account when attempting to delineate gross structural features in the crust.
A Dynamic Model of Mercury's Magnetospheric Magnetic Field
Johnson, Catherine L.; Philpott, Lydia; Tsyganenko, Nikolai A.; Anderson, Brian J.
2017-01-01
Abstract Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's heliocentric distance and magnetic activity. The new, dynamic model reproduces the location of the magnetopause current system as a function of systematic pressure variations encountered during Mercury's eccentric orbit, as well as the increase in the cross‐tail current intensity with increasing magnetic activity. Despite the enhancements in the external field parameterization, the residuals between the observed and modeled magnetic field inside the magnetosphere indicate that the dynamic model achieves only a modest overall improvement over the previous static model. The spatial distribution of the residuals in the magnetic field components shows substantial improvement of the model accuracy near the dayside magnetopause. Elsewhere, the large‐scale distribution of the residuals is similar to those of the static model. This result implies either that magnetic activity varies much faster than can be determined from the spacecraft's passage through the magnetosphere or that the residual fields are due to additional external current systems not represented in the model or both. Birkeland currents flowing along magnetic field lines between the magnetosphere and planetary high‐latitude regions have been identified as one such contribution. PMID:29263560
NASA Astrophysics Data System (ADS)
Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.
2018-02-01
Active control and stabilization of locked modes (LM) via rotating external magnetic perturbations are numerically investigated under a realistic low resistivity condition. To explore plasma responses to rotating and/or static external magnetic perturbations, we have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’. By using AEOLUS-IT, dependencies of mode behavior on frequency and polarity of the rotating magnetic perturbation are successfully clarified. Here, the rotational direction of the rotating magnetic perturbation to the equilibrium plasma rotation in the laboratory frame is referred to as ‘polarity’. The rotating magnetic perturbation acts on the background rotating plasma in the presence of a static field. Under such circumstances, there exist bifurcated states of the background rotating plasma, which should be taken into account when studying the dependence of the mode behavior on the rotating magnetic perturbation. It is found that there exist an optimum frequency and polarity of the rotating magnetic perturbation to control the LM, and that the LM is effectively stabilized by a co-polarity magnetic perturbation in comparison with a counter-polarity one.
Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones
NASA Technical Reports Server (NTRS)
Tsinganos, K.; Low, B. C.
1989-01-01
A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.
Basic physics of nuclear magnetic resonance.
Patz, S
1986-01-01
This review of basic physics of nuclear magnetic resonance (NMR) discusses precession of magnetic nuclei in a static external field, introduces the concept of the rotating frame, and describes excitation of nuclei by an RF field. Treats subject of T1 and T2 relaxation from the dual viewpoints of (1) phenomena of relaxation times for both the longitudinal and transverse magnetization and (2) relaxation resulting from local field fluctuations. It describes practical ways in which T1 and T2 are measured (i.e., inversion recovery and spin-echo) and gives the value of the nuclear magnetization in thermodynamic equilibrium with a static external field. It discusses the reduction of NMR signal resulting from saturation. These concepts are related to clinical use with a set of four spin-echo images of a human head.
NASA Astrophysics Data System (ADS)
Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon
We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.
Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.
Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka
2013-09-07
The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.
NASA Astrophysics Data System (ADS)
Batrudinov, Timur M.; Ambarov, Alexander V.; Elfimova, Ekaterina A.; Zverev, Vladimir S.; Ivanov, Alexey O.
2017-06-01
The dynamic magnetic response of ferrofluid in a static uniform external magnetic field to a weak, linear polarized, alternating magnetic field is investigated theoretically. The ferrofluid is modeled as a system of dipolar hard spheres, suspended in a long cylindrical tube whose long axis is parallel to the direction of the static and alternating magnetic fields. The theory is based on the Fokker-Planck-Brown equation formulated for the case when the both static and alternating magnetic fields are applied. The solution of the Fokker-Planck-Brown equation describing the orientational probability density of a randomly chosen dipolar particle is expressed as a series in terms of the spherical Legendre polynomials. The obtained analytical expression connecting three neighboring coefficients of the series makes possible to determine the probability density with any order of accuracy in terms of Legendre polynomials. The analytical formula for the probability density truncated at the first Legendre polynomial is evaluated and used for the calculation of the magnetization and dynamic susceptibility spectra. In the absence of the static magnetic field the presented theory gives the correct single-particle Debye-theory result, which is the exact solution of the Fokker-Planck-Brown equation for the case of applied weak alternating magnetic field. The influence of the static magnetic field on the dynamic susceptibility is analyzed in terms of the low-frequency behavior of the real part and the position of the peak in the imaginary part.
Static Magnetic Cloak without a Superconductor
NASA Astrophysics Data System (ADS)
Jiang, Wei; Ma, Yungui; He, Sailing
2018-05-01
Similar to its electromagnetic counterpart, magnetic cloaking also has very important technological applications. However, the traditional method to build a static magnetic cloak requires the use of superconducting materials as the diamagnetic component, which seriously limits the practical potential because of the cryogenic condition. We show that a diamagnetic active current boundary combined with a high-permeability magnetic inner shell (MIS) can be designed to solve this problem, rendering an ideal magnetic cloaking effect at zero frequency. We first theoretically prove that a current boundary could magnetically behave as a superconductor to external observers. Based on this phenomena, we introduce a high-permeability MIS made of magnetically ultrasoft metallic sheets (permeability μ >103 ) and experimentally prove that the bilayer combination can exactly balance out the disturbance to the external probing field and, meanwhile, have a large invisible inner space. We also show that the active boundary currents can be accordingly configured to overcome the permeability and frequency band limits, leading to a robust cloak over the entire quasistatic frequency region. Our work creates an efficient way to circumvent the traditional limits of metamaterials to build magnetic cloaks for ultralow frequencies. The active-passive hybrid approach could be generally extended to yield other artificial magnetic devices or systems as well.
NASA Astrophysics Data System (ADS)
Adhikari, K.; Choudhury, S.; Mandal, R.; Barman, S.; Otani, Y.; Barman, A.
2017-01-01
Ferromagnetic nano-cross structures promise exotic static magnetic configurations and very rich and tunable magnetization dynamics leading towards potential applications in magnetic logic and communication devices. Here, we report an experimental study of external magnetic field tunable static magnetic configurations and magnetization dynamics in Ni80Fe20 nano-cross structures with varying arm lengths (L). Broadband ferromagnetic resonance measurements showed a strong variation in the number of spin-wave (SW) modes and mode frequencies (f) with bias field magnitude (H). Simulated static magnetic configurations and SW mode profiles explain the rich variation of the SW spectra, including mode softening, mode crossover, mode splitting, and mode merging. Such variation of SW spectra is further modified by the size of the nano-cross. Remarkably, with decreasing arm length of nano-cross structures, the onion magnetization ground state becomes more stable. Calculated magnetostatic field distributions support the above observations and revealed the non-collective nature of the dynamics in closely packed nano-cross structures. The latter is useful for their possible applications in magnetic storage and memory devices.
Neutral meson properties under an external magnetic field in nonlocal chiral quark models
NASA Astrophysics Data System (ADS)
Gómez Dumm, D.; Izzo Villafañe, M. F.; Scoccola, N. N.
2018-02-01
We study the behavior of neutral meson properties in the presence of a static uniform external magnetic field in the context of nonlocal chiral quark models. The formalism is worked out introducing Ritus transforms of Dirac fields, which allow to obtain closed analytical expressions for π0 and σ meson masses and for the π0 decay constant. Numerical results for these observables are quoted for various parametrizations. In particular, the behavior of the π0 meson mass with the magnetic field is found to be in good agreement with lattice QCD results. It is also seen that the Goldberger-Treiman and Gell-Mann-Oakes-Renner chiral relations remain valid within these models in the presence of the external magnetic field.
NASA Astrophysics Data System (ADS)
Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.
2017-10-01
We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.
Jiang, Pengfei; Zhang, Yixian; Zhu, Chaonan; Zhang, Wenjing; Mao, Zhengwei; Gao, Changyou
2016-12-01
Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles were prepared, which showed a spherical morphology with a diameter below 200 nm, negatively charged surface, and tunable magnetic property. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field, resulting in almost twice intracellular amount of the particles within 21 d compared to that of the magnetic field free control. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a static magnetic field, as evidenced by elevated alkaline phosphatase (ALP) activity, calcium deposition, and expressions of collagen type I and osteocalcin at both mRNA and protein levels. Therefore, uptake of the Fe 3 O 4 /BSA particles brings significant influence on the differentiation of MSCs under magnetic field, and thereby should be paid great attention for practical applications. Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles with a diameter below 200nm, negatively charged surface, tunable Fe 3 O 4 content and subsequently adjustable magnetic property were prepared. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a constant static magnetic field, while the magnetic particles and external magnetic field alone do not influence significantly the osteogenic differentiation potential of MSCs regardless of the uptake amount. The results demonstrate a potential magnetic manipulation method for stem cell differentiation, and also convey the significance of careful evaluation of the safety issue of magnetic particles in real an application situation. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Topological insulator infrared pseudo-bolometer with polarization sensitivity
Sharma, Peter Anand
2017-10-25
Topological insulators can be utilized in a new type of infrared photodetector that is intrinsically sensitive to the polarization of incident light and static magnetic fields. The detector isolates single topological insulator surfaces and allows light collection and exposure to static magnetic fields. The wavelength range of interest is between 750 nm and about 100 microns. This detector eliminates the need for external polarization selective optics. Polarization sensitive infrared photodetectors are useful for optoelectronics applications, such as light detection in environments with low visibility in the visible wavelength regime.
NMR apparatus for in situ analysis of fuel cells
Gerald, II, Rex E; Rathke, Jerome W
2012-11-13
The subject apparatus is a fuel cell toroid cavity detector for in situ analysis of samples through the use of nuclear magnetic resonance. The toroid cavity detector comprises a gas-tight housing forming a toroid cavity where the housing is exposed to an externally applied magnetic field B.sub.0 and contains fuel cell component samples to be analyzed. An NMR spectrometer is electrically coupled and applies a radiofrequency excitation signal pulse to the detector to produce a radiofrequency magnetic field B.sub.1 in the samples and in the toroid cavity. Embedded coils modulate the static external magnetic field to provide a means for spatial selection of the recorded NMR signals.
NASA Astrophysics Data System (ADS)
Stebliy, Maxim; Ognev, Alexey; Samardak, Alexander; Chebotkevich, Ludmila; Verba, Roman; Melkov, Gennadiy; Tiberkevich, Vasil; Slavin, Andrei
2015-06-01
Magnetization reversal in finite chains and square arrays of closely packed cylindrical magnetic dots, having vortex ground state in the absence of the external bias field, has been studied experimentally by measuring static hysteresis loops, and also analyzed theoretically. It has been shown that the field Bn of a vortex nucleation in a dot as a function of the finite number N of dots in the array's side may exhibit a monotonic or an oscillatory behavior depending on the array geometry and the direction of the external bias magnetic field. The oscillations in the dependence Bn(N) are shown to be caused by the quantization of the collective soft spin wave mode, which corresponds to the vortex nucleation in a finite array of dots. These oscillations are directly related to the form and symmetry of the dispersion law of the soft SW mode: the oscillation could appear only if the minimum of the soft mode spectrum is not located at any of the symmetric points inside the first Brillouin zone of the array's lattice. Thus, the purely static measurements of the hysteresis loops in finite arrays of coupled magnetic dots can yield important information about the properties of the collective spin wave excitations in these arrays.
Binary black hole in a double magnetic monopole field
NASA Astrophysics Data System (ADS)
Rodriguez, Maria J.
2018-01-01
Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.
Mitigation of Alfvén activity in a tokamak by externally applied static 3D fields.
Bortolon, A; Heidbrink, W W; Kramer, G J; Park, J-K; Fredrickson, E D; Lore, J D; Podestà, M
2013-06-28
The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfvén modes that are driven unstable by energetic ions. In response to perturbations with an amplitude of δB/B∼0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode. Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes. The experimental evidence represents an important demonstration of the possibility of controlling fast-ion instabilities through "phase-space engineering" of the fast-ion distribution function, by means of externally applied perturbation fields.
Static magnetic susceptibility of radiopaque NiTiPt and NiTiEr
NASA Astrophysics Data System (ADS)
Chovan, Drahomír; Gandhi, Abbasi; Butler, James; Tofail, Syed A. M.
2018-04-01
Magnetic properties of metallic alloys used in biomedical industry are important for the magnetic resonance imaging (MRI). If the alloys were to be used for long term implants or as guiding devices, safety of the patient as well as the medical staff has to be ensured. Strong response to the external magnetic field can cause mechanical damage to the patients body. In this paper we present magnetic susceptibility of nickel rich, ternary NiTiPt and NiTiEr to static magnetic field. We show that the magnetic susceptibility of these radiopaque alloys has values in low paramagnetic region comparable to the binary nickel-titanium. Furthermore, we studied the effect of the thermal and mechanical treatments on magnetic properties. Despite deviation from linear M (H) treated samples spanning small region around H = 0 , the linearity of the M (H) and χ =d M /d H values suggest that these ternary alloys are safe to use under MRI conditions.
Faraday rotation due to excitation of magnetoplasmons in graphene microribbons.
Tymchenko, Mykhailo; Nikitin, Alexey Yu; Martín-Moreno, Luis
2013-11-26
A single graphene sheet, when subjected to a perpendicular static magnetic field, provides a Faraday rotation that, per atomic layer, greatly surpasses that of any other known material. In continuous graphene, Faraday rotation originates from the cyclotron resonance of massless carriers, which allows dynamical tuning through either external electrostatic or magneto-static setting. Furthermore, the rotation direction can be controlled by changing the sign of the carriers in graphene, which can be done by means of an external electric field. However, despite these tuning possibilities, the requirement of large magnetic fields hinders the application of the Faraday effect in real devices, especially for frequencies higher than a few terahertz. In this work we demonstrate that large Faraday rotation can be achieved in arrays of graphene microribbons, through the excitation of the magnetoplasmons of individual ribbons, at larger frequencies than those dictated by the cyclotron resonance. In this way, for a given magnetic field and chemical potential, structuring graphene periodically can produce large Faraday rotation at larger frequencies than what would occur in a continuous graphene sheet. Alternatively, at a given frequency, graphene ribbons produce large Faraday rotation at much smaller magnetic fields than in continuous graphene.
Finite-size effects on the static properties of a single-chain magnet
NASA Astrophysics Data System (ADS)
Bogani, L.; Sessoli, R.; Pini, M. G.; Rettori, A.; Novak, M. A.; Rosa, P.; Massi, M.; Fedi, M. E.; Giuntini, L.; Caneschi, A.; Gatteschi, D.
2005-08-01
We study the role of defects in the “single-chain magnet” CoPhOMe by inserting a controlled number of diamagnetic impurities. The samples are analyzed with unprecedented accuracy with the particle induced x-ray emission technique, and with ac and dc magnetic measurements. In an external applied field the system shows an unexpected behavior, giving rise to a double peak in the susceptibility. The static thermodynamic properties of the randomly diluted Ising chain with alternating g values are then exactly obtained via a transfer matrix approach. These results are compared to the experimental behavior of CoPhOMe, showing qualitative agreement.
Static magnetism and thermal switching in randomly oriented L10 FePt thin films
NASA Astrophysics Data System (ADS)
Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.
2018-05-01
Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.
NASA Technical Reports Server (NTRS)
Canuto, V.
1975-01-01
The papers deal with the role of magnetism in astrophysics and the properties of matter in the presence of unusually large magnetic fields. Topics include a quantum-mechanical treatment of high-energy charged particles radiating in a homogeneous magnetic field, the solution and properties of the Dirac equation for magnetic fields of any strength up to 10 to the 13th power gauss, experimental difficulties encountered and overcome in generating megagauss fields, the effect of strong radiation damping for an ultrarelativistic charge in an external electromagnetic field, magnetic susceptibilities of nuclei and elementary particles, and Compton scattering in strong external electromagnetic fields. Other papers examine static uniform electric and magnetic polarizabilities of the vacuum in arbitrarily strong magnetic fields, quantum-mechanical processes in neutron stars, basic ideas of mean-field magnetohydrodynamics, helical MHD turbulence, relations between cosmic and laboratory plasma physics, and insights into the nature of magnetism provided by relativity and cosmology. Individual items are announced in this issue.
Thermal Noise Reduction of Mechanical Oscillators by Actively Controlled External Dissipative Forces
NASA Technical Reports Server (NTRS)
Liang, Shoudan; Medich, David; Czajkowsky, Daniel M.; Sheng, Sitong; Yuan, Jian-Yang; Shao, Zhifeng
1999-01-01
We show that the thermal fluctuations of very soft mechanical oscillators, such as the cantilever in an atomic force microscope (AFM), can be reduced without changing the stiffness of the spring or having to lower the environment temperature. We derive a theoretical relationship between the thermal fluctuations of an oscillator and an actively external-dissipative force. This relationship is verified by experiments with an AFM cantilever where the external active force is coupled through a magnetic field. With simple instrumentation, we have reduced the thermal noise amplitude of the cantilever by a factor of 3.4, achieving an apparent temperature of 25 K with the environment at 295K. This active noise reduction approach can significantly improve the accuracy of static position or static force measurements in a number of practical applications.
Large Strain Transparent Magneto-Active Polymer Nanocomposites
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra (Inventor); Meador, Michael A (Inventor)
2016-01-01
A large strain polymer nanocomposite actuator is provided that upon subjected to an external stimulus, such as a magnetic field (static or electromagnetic field), an electric field, thermal energy, light, etc., will deform to thereby enable mechanical manipulations of structural components in a remote and wireless manner.
Low-frequency surface waves on semi-bounded magnetized quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir
2016-08-15
The propagation of low-frequency electrostatic surface waves on the interface between a vacuum and an electron-ion quantum plasma is studied in the direction perpendicular to an external static magnetic field which is parallel to the interface. A new dispersion equation is derived by employing both the quantum magnetohydrodynamic and Poisson equations. It is shown that the dispersion equations for forward and backward-going surface waves are different from each other.
Quantum Spin Stabilized Magnetic Levitation
NASA Astrophysics Data System (ADS)
Rusconi, C. C.; Pöchhacker, V.; Kustura, K.; Cirac, J. I.; Romero-Isart, O.
2017-10-01
We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.
Quantum Spin Stabilized Magnetic Levitation.
Rusconi, C C; Pöchhacker, V; Kustura, K; Cirac, J I; Romero-Isart, O
2017-10-20
We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.
CHAMP Magnetic Anomalies of the Antarctic Crust
NASA Technical Reports Server (NTRS)
Kim, Hyung Rae; Gaya-Pique, Luis R.; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo
2003-01-01
Regional magnetic signals of the crust are strongly masked by the core field and its secular variations components and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated- behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar regions relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects. To help isolate regional lithospheric from core field components, the correlations between CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations can also be exploited.. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Orsted and noisier Magsat observations, the CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intracrustal magnetic features and crustal thickness variations of the Antarctic.
Origin and Manipulation of Stable Vortex Ground States in Permalloy Nanotubes.
Zimmermann, Michael; Meier, Thomas Norbert Gerhard; Dirnberger, Florian; Kákay, Attila; Decker, Martin; Wintz, Sebastian; Finizio, Simone; Josten, Elisabeth; Raabe, Jörg; Kronseder, Matthias; Bougeard, Dominique; Lindner, Jürgen; Back, Christian Horst
2018-05-09
We present a detailed study on the static magnetic properties of individual permalloy nanotubes (NTs) with hexagonal cross-sections. Anisotropic magnetoresistance (AMR) measurements and scanning transmission X-ray microscopy (STXM) are used to investigate their magnetic ground states and its stability. We find that the magnetization in zero applied magnetic field is in a very stable vortex state. Its origin is attributed to a strong growth-induced anisotropy with easy axis perpendicular to the long axis of the tubes. AMR measurements of individual NTs in combination with micromagnetic simulations allow the determination of the magnitude of the growth-induced anisotropy for different types of NT coatings. We show that the strength of the anisotropy can be controlled by introducing a buffer layer underneath the magnetic layer. The magnetic ground states depend on the external magnetic field history and are directly imaged using STXM. Stable vortex domains can be introduced by external magnetic fields and can be erased by radio-frequency magnetic fields applied at the center of the tubes via a strip line antenna.
Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction
NASA Astrophysics Data System (ADS)
Kumar, Punit; Singh, Shiv; Ahmad, Nafees
2018-05-01
Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michal, V. P., E-mail: vincent.michal@cea.fr
The formalism for analyzing the magnetic field distribution in the vortex lattice of Pauli-limit heavy-electron superconductors is applied to the evaluation of the vortex lattice static linewidth relevant to the muon spin rotation ({mu}SR) experiment. Based on the Ginzburg-Landau expansion for the superconductor free energy, we study the evolution with respect to the external field of the static linewidth both in the limit of independent vortices (low magnetic field) with a variational expression for the order parameter and in the near H{sub c2}{sup P}(T) regime with an extension of the Abrikosov analysis to Pauli-limit superconductors. We conclude that in themore » Ginzburg-Landau regime in the Pauli-limit, anomalous variations of the static linewidth with the applied field are predicted as a result of the superconductor spin response around a vortex core that dominates the usual charge-response screening supercurrents. We propose the effect as a benchmark for studying new puzzling vortex lattice properties recently observed in CeCoIn{sub 5}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosokai, Tomonao; Zhidkov, Alexei; Yamazaki, Atsushi
2010-03-22
Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in themore » electron energy distribution.« less
MHD Turbulence at Moderate Magnetic Reynolds Number
NASA Technical Reports Server (NTRS)
Knaepen, B.; Kassinos, S.; Carati, D.
2003-01-01
In the present article we will consider the decay of MHD turbulence under the influence of a strong external magnetic field at moderate magnetic Reynolds numbers. Typical values of R(sub m) that are considered here range from R(sub m) approx. 0.1 to R(sub m) approx. 20. As a comparison, the initial kinetic Reynolds number common to all our simulations is Re(sub L) = 199. This means that the range of Prandtl numbers explored is 5 x 10(exp -4) to 10(exp -1). Our motivation is mainly to exhibit how the transition from the QS approximation to FMHD occurs. At the lowest values of R(sub m) studied here, the QS approximation is shown to model the flow faithfully. However, for the higher values of R(sub m) considered, it is clearly inadequate but can be replaced by another approximation which will be referred to as the Quasi-Linear (QL) approximation. Another objective of the present study is to describe how variations in the magnetic Reynolds number (while maintaining all other parameters constant) affect the dynamics of the flow. This complements past studies where variations in either the strength of the external magnetic field or the kinetic Reynolds number were considered. This article is organized as follows. In section 2 we recall the definition of the quasi-static approximation. Section 3 is devoted to the description of the numerical experiments performed using the quasi-static approximation and full MHD. In section 4 we describe the quasi-linear approximation and test it numerically against full MHD. A concluding summary is given in section 5.
NASA Astrophysics Data System (ADS)
Posnansky, Oleg P.
2018-05-01
The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.
NASA Astrophysics Data System (ADS)
Feinberg, Benedict; Gould, Harvey
2018-03-01
Following the application of an external magnetic field to a thin-walled demagnetized Permalloy cylinder, the magnetic flux density at the center of the shielded volume decreases by roughly 20% over periods of hours to days. We measured this effect for applied magnetic fields from 0.48 A/m to 16 A/m, the latter being comparable to the Earths magnetic field at its weakest point. Delayed changes in magnetic flux density are also observed following alternating current demagnetization. We attribute these effects to delayed changes in magnetization, which have previously been observed in thin Permalloy films and small bulk samples of ferromagnetic materials. Phenomenological models of thermal activation are discussed. Some possible effects on experiments that rely on static shielding are noted.
High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)
NASA Astrophysics Data System (ADS)
Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.
2016-06-01
Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI). Electronic supplementary information (ESI) available: Detailed IONP synthetic methods, description of magnetic particle relaxometer set-up, TEM of reference IONP (Senior Scientific PrecisionMRX™ 25 nm oleic acid-coated nanoparticles), concentration dependent PSF of all IONP samples, PSF and SAR of Zn-Sph and Zn-Cube mixture sample, upper right quadrant of field-dependent hysteresis curve labelled with static field strengths, and the magnetic hyperthermia temperature profiles with and without the presence of external magnetic fields. See DOI: 10.1039/c6nr01877g
NASA Astrophysics Data System (ADS)
Sun, Wanshuo; Cheng, Junsheng; Li, Lankai; Chen, Shunzhong; Chang, Kun
2017-01-01
Nickel nanowires have successfully been fabricated through a simple liquid reduction in ethylene glycol medium with a 0.3T magnetic field applied. The effect of uniform magnetic field and solvent on the morphology and the crystal structure of magnetic nickel were studied. Scanning electron microscope images and transmission electron scope images s how that the effect of the external magnetic field on the morphology of nickel nanowires. X-ray diffraction shows the crystal structure of as-prepared products. And a energy disperse spectroscopy and a vibrating sample magnetometer are used to analyze the composition and static magnetic properties. The results show that the straight wires with an average diameter of about 100 nm and a length of several microns were obtained and mainly composed by fcc structure in the solvent of ethylene glycol. Magnetic measurements show that the saturation magnetization of the as-obtained products in a 0.3 T external magnetic field is 36 emu/g, less than that of bulk nickel crystal, and the coercivity of them is 186 emu/g, larger than that of bulk crystal with the mole ratio of sodium borohydride to nickel sulfate is 1:1000. This kind of nanowires array has potential applications with the special one-dimensional structures.
Superconducting 3D Transmon Qubits for Analog Quantum Simulations
NASA Astrophysics Data System (ADS)
Gargiulo, Oscar; Oleschko, Stefan; Muppalla, Phani; Dalmonte, Marcello; Zoller, Peter; Kirchmair, Gerhard
We present an experimental investigation of the tunability of a 3D transmon qubit through the use of multiple magnetic fields. The 3D transmon is placed inside a copper cavity with sockets for coils and a hole for a magnetic hose. The magnetic hose is used to guide the magnetic field inside the cavity minimizing Eddy currents in the copper wall. As a first step we analyse the qubit tuning with static magnetic fields applied through the use of external coils. This allows us to set the qubit frequency to the desired bias point. Then we show that we can switch the magnetic field inside the cavity on fast time scales through the use of the magnetic hose. We also investigate the influence of the magnetic hose on the coherence time of the qubit.
NASA Astrophysics Data System (ADS)
Lee, Joanne Haeun; Shah, Rhythm R.; Brazel, Christopher S.
2014-11-01
Targeted drug delivery and localized hyperthermia are being studied as alternatives to conventional cancer treatments, which can affect the whole body and indiscriminately kill healthy cells. Magnetic nanoparticles (MNPs) have potential as drug carriers that can be captured and trigger hyperthermia at the site of the tumor by applying an external magnetic field. This study focuses on comparing the capture efficiency of the magnetic field applied by a static magnet to an alternating current coil. The effect of particle size, degree of dispersion, and the frequency of the AC field on capture and heating were studied using 3 different dispersions: 16 nm maghemite in water, 50 nm maghemite in dopamine, and 20--30 nm magnetite in dimercaptosuccinic acid. A 480G static field captured more MNPs than a similar 480G AC field at either 194 or 428 kHz; however, the AC field also allowed heating. The MNPs in water had a lower capture and heating efficiency than the larger, dopamine-coated MNPs. This finding was supported by dynamic light scattering data showing the particle size distribution and vibrating sample magnetometry data showing that the larger MNPs in the dopamine solution have a higher field of coercivity, exhibit ferrimagnetism and allow for better capture while smaller (16 nm) MNPs exhibit superparamagnetism. The dispersions that captured the best also heated the best. NSF ECE Grant #1358991 supported the first author as an REU student.
A Novel X-ray Diffractometer for the Florida Split Coil 25 Tesla Magnet
NASA Astrophysics Data System (ADS)
Wang, Shengyu; Kovalev, Alexey; Suslov, Alexey; Siegrist, Theo
2014-03-01
At National High Magnetic Field Laboratory (NHMFL), we are developing a unique X-ray diffractometer for the 25 Tesla Florida Split Coil Magnet for scattering experiments under extremely high static magnetic fields. The X-ray source is a sealed tube (copper or molybdenum anode), connected to the magnet by an evacuated beam tunnel. The detectors are either an image plate or a silicon drift detector, with the data acquisition system based on LabVIEW. Our preliminary experimental results showed that the performance of the detector electronics and the X-ray generator is reliable in the fringe magnetic fields produced at the highest field of 25 T. Using this diffractometer, we will make measurements on standard samples, such as LaB6, Al2O3 and Si, to calibrate the diffraction system. Magnetic samples, such as single crystal HoMnO3 and stainless steel 301 alloys will be measured subsequently. The addition of X-ray diffraction to the unique split coil magnet will significantly expand the NHMFL experimental capabilities. Therefore, external users will be able to probe spin - lattice interactions at static magnetic fields up to 25T. This project is supported by NSF-DMR Award No.1257649. NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. DoE.
Instabilities of conducting fluid flows in cylindrical shells under external forcing
NASA Astrophysics Data System (ADS)
Burguete, Javier; Miranda, Montserrat
2010-11-01
Flows created in neutral conducting flows remain one of the less studied topics of fluid dynamics, in spite of their relevance both in fundamental research (dynamo action, turbulence suppression) and applications (continuous casting, aluminium production, biophysics). Here we present the effect of a time-dependent magnetic field parallel to the axis of circular cavities. Due to the Lenz's law, the time-dependent magnetic field generates an azymuthal current, that produces a radial force. This force produces the destabilization of the static fluid layer, and a flow is created. The geommetry of the experimental cell is a disc layer with external diameter smaller than 94 mm, with or without internal hole. The layer is up to 20mm depth, and we use as conducting fluid an In-Ga-Sn alloy. There is no external current applied on the problem, only an external magnetic field. This field evolves harmonically with a frequency up to 10Hz, small enough to not to observe skin depth effects. The magnitude ranges from 0 to 0.1 T. With a threshold of 0.01T a dynamical behaviour is observed, and the main characteristics of this flow have been determined: different temporal resonances and spatial patterns with differents symmetries (squares, hexagonal, triangles,...).
Plasma Braking Due to External Magnetic Perturbations
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Olofsson, Kejo; Brunsell, P. R.; Khan, M. W. M.; Drake, J. R.
2010-11-01
The RFP EXTRAP T2R is equipped with a comprehensive active feedback system (128 active saddle coils in the full-coverage array) and active control of both resonant and non-resonant MHD modes has been demonstrated. The feedback algorithms, based on modern control methodology such as reference mode tracking (both amplitude and phase), are a useful tool to improve the ``state of the art'' of the MHD mode control. But this tool can be used also to improve the understanding and the characterization of other phenomena such as the ELM mitigation with a resonant magnetic perturbation or the plasma viscosity. The present work studies plasma and mode braking due to static RMPs. Results show that a static RMP produces a global braking of the flow profile. The study of the effect of RMPs characterized by different helicities will also give information on the plasma viscosity profile. Experimental results are finally compared to theoretical models.
The Effect of Magnetic Fields on Wound Healing
Henry, Steven L; Concannon, Matthew J; Yee, Gloria J
2008-01-01
Objective: Magnets are purported to aid wound healing despite a paucity of scientific evidence. The purpose of this study was to evaluate the effect of static magnetic fields on cutaneous wound healing in an animal model. The literature was reviewed to explore the historical and scientific basis of magnet therapy and to define its current role in the evidence-based practice of plastic surgery. Methods: Standardized wounds were created on the backs of 33 Sprague-Dawley rats, which were divided into 3 groups with either a 23 gauss magnet (group 1), a sham magnet (group 2), or nothing (group 3) positioned over the wound. The rate of wound closure by secondary intention was compared between the groups. Literature review was conducted through searches of PubMed and Ovid databases for articles pertinent to magnets and wound healing. Results: Wounds in the magnet group healed in an average of 15.3 days, significantly faster than those in either the sham group (20.9 days, P = .006) or control group (20.3 days, P < .0001). There was no statistically significant difference between the sham and control groups (P = .45). Conclusions: An externally applied, low-power, static magnetic field increases the rate of secondary healing. Review of the literature reveals conflicting evidence regarding the use of magnetic energy to aid the healing of bone, tendon, and skin. Level I studies are lacking and difficult to execute but are needed to define conclusively the role of magnets in clinical practice. PMID:18725953
Kalita, Viktor M; Snarskii, Andrei A; Shamonin, Mikhail; Zorinets, Denis
2017-03-01
The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016)10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.
NASA Astrophysics Data System (ADS)
Kalita, Viktor M.; Snarskii, Andrei A.; Shamonin, Mikhail; Zorinets, Denis
2017-03-01
The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016), 10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.
NASA Astrophysics Data System (ADS)
Awasthi, Suneet Kumar; Panda, Ranjita; Chauhan, Prashant Kumar; Shiveshwari, Laxmi
2018-05-01
By using the transfer matrix method, theoretical investigations have been carried out in the microwave region to study the reflection properties of multichannel tunable omnidirectional photonic bandgaps (OPBGs) based on the magneto-optic Faraday effect. The proposed one dimensional ternary plasma photonic crystal consists of alternate layers of quartz, magnetized cold plasma (MCP), and air. In the absence of an external magnetic field, the proposed structure possesses two OPBGs induced by Bragg scattering and is strongly dependent on the incident angle, the polarization of the incident light, and the lattice constant unlike to the single-negative gap and zero- n ¯ gap. Next, the reflection properties of OPBGs have been made tunable by the application of external magnetic field under right hand and left hand polarization configurations. The results of this manuscript may be utilized for the development of a new kind of tunable omnidirectional band stop filter with ability to completely stop single to multiple bands (called channels) of microwave frequencies in the presence of external static magnetic field under left-hand polarization and right-hand polarization configurations, respectively. Moreover, outcomes of this study open a promising way to design tunable magneto-optical devices, omnidirectional total reflectors, and planar waveguides of high Q microcavities as a result of evanescent fields in the MCP layer to allow propagation of light.
Magnetic resonance imaging without field cycling at less than earth's magnetic field
NASA Astrophysics Data System (ADS)
Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min
2015-03-01
A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.
A nonlinear theory for fibre-reinforced magneto-elastic rods
NASA Astrophysics Data System (ADS)
Ciambella, Jacopo; Favata, Antonino; Tomassetti, Giuseppe
2018-01-01
We derive a model for the finite motion of a fibre-reinforced magneto-elastic rod. The reinforcing particles are assumed weakly and uniformly magnetized, rigid and firmly embedded into the elastomeric matrix. We deduce closed-form expressions of the quasi-static motion of the rod in terms of the external magnetic field and of the body forces. The dependences of the motion on the shape of the inclusions, their orientation, their anisotropic magnetic properties and the Young modulus of the matrix are analysed and discussed. Two case studies are presented, in which the rod is used as an actuator suspended in a cantilever configuration. This work can foster new applications in the field of soft-actuators.
Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.
2013-01-01
Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948
Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.
Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C
2015-09-29
NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.
Anomalous transport from holography: part II
NASA Astrophysics Data System (ADS)
Bu, Yanyan; Lublinsky, Michael; Sharon, Amir
2017-03-01
This is a second study of chiral anomaly-induced transport within a holographic model consisting of anomalous U(1)_V× U(1)_A Maxwell theory in Schwarzschild-AdS_5 spacetime. In the first part, chiral magnetic/separation effects (CME/CSE) are considered in the presence of a static spatially inhomogeneous external magnetic field. Gradient corrections to CME/CSE are analytically evaluated up to third order in the derivative expansion. Some of the third order gradient corrections lead to an anomaly-induced negative B^2-correction to the diffusion constant. We also find modifications to the chiral magnetic wave nonlinear in B. In the second part, we focus on the experimentally interesting case of the axial chemical potential being induced dynamically by a constant magnetic and time-dependent electric fields. Constitutive relations for the vector/axial currents are computed employing two different approximations: (a) derivative expansion (up to third order) but fully nonlinear in the external fields, and (b) weak electric field limit but resuming all orders in the derivative expansion. A non-vanishing nonlinear axial current (CSE) is found in the first case. The dependence on magnetic field and frequency of linear transport coefficient functions is explored in the second.
Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer
NASA Astrophysics Data System (ADS)
Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu
2014-10-01
A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m-1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamba, S.; Goian, V.; Savinov, M.
2010-05-15
We prepared multiferroic Y-type hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22} ceramics and compared their magnetic and dielectric properties with single crystal. Magnetic susceptibility and microwave resonance measurement revealed magnetic phase transition at T{sub C}=312 K, similar as in single crystal. Ferroelectric (FE) phase can be induced by external magnetic field in all investigated samples and the phase diagram in ceramics qualitatively resembles that of the single crystal. The range of magnetic fields, where the FE phase is induced, broadens after annealing of single crystal. Ceramics quenched after sintering exhibit several orders of magnitude lower conductivity than the single crystal.more » Heavily damped magnetic resonance was discovered in terahertz spectra at 10 K and its frequency softens below 5 GHz near T{sub C}. Number and symmetry of observed infrared (IR) and Raman active phonons correspond to paraelectric phase with D{sub 3d}{sup 5} hexagonal structure. No evidence for a structural phase transition was found in the IR and Raman spectra on cooling (in zero magnetic field) or in the room-temperature IR spectra with external static magnetic field up to 0.3 T.« less
Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells
NASA Astrophysics Data System (ADS)
Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O.
2018-04-01
Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We demonstrate that further research focusing on the accurate manipulation of the aforementioned magnetic field exposure parameters could lead to the development of successful non-invasive therapeutic anticancer approaches.
Brain Tumor Hyperthermia with Static and Moving Seeds
NASA Astrophysics Data System (ADS)
Molloy, Janelle Arlene
1990-01-01
Thermodynamic studies are presented for both static and moving ferromagnetic "seeds" imbedded in biological media. These studies were performed in support of the development of a system which delivers localized hyperthermia to deep-seated brain tumors. In this system, a magnetic "seed" of approximately 5 mm dimension (length and diameter) is remotely repositioned within the brain by an externally produced magnetic field. The seed is inductively heated and repositioned throughout the tumor volume. An induction heating system was built for experimental use with tissue phantoms and animals. The maximum level of direct tissue heating produced by this system was measured in vivo in three animals. An upper limit on the power absorption was placed at 0.46 mW cm^{ -3}, a factor of 10^{-4 } below the power density produced in ferromagnetic seeds by the same system. Measurements were made of the temporal and spatial dependence of the temperature rise in the vicinity of a statically placed 6 mm diameter nickel sphere, in vivo in four pigs, and in one which was euthanized. These results were compared to a theroetical model which was based on a point source solution to the thermal diffusion equation and estimates of blood flow rates, tissue thermal conductivity and seed power absorption were found using a parameter estimation algorithm. Studies were also made of the temperature gradients produced by a heated iron ellipsoid of 4.8 mm diameter and 9.6 mm length in a brain tissue phantom. Temperature measurements were made both with the seed statically imbedded in the tissue phantom and with the phantom moving at a constant velocity of 0.11 mm s^{-1 } with respect to the seed. These static and moving data were compared to obtain an estimate for the thermal field and convective cooling of a moving seed. In addition, an exploratory study was performed in which the dependence of seed heating efficiency on material and geometry were tested. A "hybrid" seed was developed consisting of a permanent magnet core surrounded by a non -magnetic spacing material and a 0.5 mm thick ferromagnetic outer sleeve. This seed was designed to accommodate potentially conflicting magnetic force and induction heating requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong-Joo, E-mail: sj.lee@kriss.re.kr; Shim, Jeong Hyun; Kim, Kiwoong
A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach,more » the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.« less
Quantum impurity models for magnetic adsorbates on superconductor surfaces
NASA Astrophysics Data System (ADS)
Žitko, Rok
2018-05-01
Magnetic atoms adsorbed on surfaces have a quenched orbital moment while their ground-state spin multiplet is partially split as a consequence of the spin-orbit coupling which, even if intrinsically weak, has a large effect due to the abrupt change of the potential at the surface. Such metal adsorbates should be modelled using quantum impurity models that include the relevant internal degrees of freedom and the interaction terms, in particular the magnetic anisotropy and the Kondo exchange coupling. When adsorbed on superconducting surfaces, these impurities have complex spectra of sub-gap excitations due to magnetic anisotropy splitting and Kondo screening. Both anisotropy splitting and Zeeman splitting due to the external magnetic field are significantly renormalized by the coupling to the substrate electrons. In this work I discuss the quantum-to-classical crossover and the applicability of classical static-local-spin picture for discussing magnetic nanostructures on superconductors.
The effect of band Jahn-Teller distortion on the magnetoresistivity of manganites: a model study.
Rout, G C; Panda, Saswati; Behera, S N
2011-10-05
We present a model study of magnetoresistance through the interplay of magnetisation, structural distortion and external magnetic field for the manganite systems. The manganite system is described by the Hamiltonian which consists of the s-d type double exchange interaction, Heisenberg spin-spin interaction among the core electrons, and the static and dynamic band Jahn-Teller (JT) interaction in the e(g) band. The relaxation time of the e(g) electron is found from the imaginary part of the Green's function using the total Hamiltonian consisting of the interactions due to the electron and phonon. The calculated resistivity exhibits a peak in the pure JT distorted insulating phase separating the low temperature metallic ferromagnetic phase and the high temperature paramagnetic phase. The resistivity is suppressed with the increase of the external magnetic field. The e(g) electron band splitting and its effect on magnetoresistivity is reported here. © 2011 IOP Publishing Ltd
Radio jet refraction in galactic atmospheres with static pressure gradients
NASA Technical Reports Server (NTRS)
Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.
1981-01-01
A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.
NASA Astrophysics Data System (ADS)
Sheykina, Nadiia; Bogatina, Nina
The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.
MRI induced torque and demagnetization in retention magnets for a bone conduction implant.
Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Taghavi, Hamidreza; Eeg-Olofsson, Måns
2014-06-01
Performing magnetic resonance imaging (MRI) examinations in patients who use implantable medical devices involve safety risks both for the patient and the implant. Hearing implants often use two permanent magnets, one implanted and one external, for the retention of the external transmitter coil to the implanted receiver coil to achieve an optimal signal transmission. The implanted magnet is subjected to both demagnetization and torque, magnetically induced by the MRI scanner. In this paper, demagnetization and a comparison between measured and simulated induced torque is studied for the retention magnet used in a bone conduction implant (BCI) system. The torque was measured and simulated in a uniform static magnetic field of 1.5 T. The magnetic field was generated by a dipole electromagnet and permanent magnets with two different types of coercive fields were tested. Demagnetization and maximum torque for the high coercive field magnets was 7.7% ± 2.5% and 0.20 ± 0.01 Nm, respectively and 71.4% ± 19.1% and 0.18 ± 0.01 Nm for the low coercive field magnets, respectively. The simulated maximum torque was 0.34 Nm, deviating from the measured torque in terms of amplitude, mainly related to an insufficient magnet model. The BCI implant with high coercive field magnets is believed to be magnetic resonance (MR) conditional up to 1.5 T if a compression band is used around the skull to fix the implant. This is not approved and requires further investigations, and if removal of the implant is needed, the surgical operation is expected to be simple.
Smith, Carol-Anne M; de la Fuente, Jesus; Pelaz, Beatriz; Furlani, Edward P; Mullin, Margaret; Berry, Catherine C
2010-05-01
Magnetic nanoparticles are widely used in bioapplications such as imaging (MRI), targeted delivery (drugs/genes) and cell transfection (magnetofection). Historically, the impermeable nature of both the plasma and nuclear membranes hinder potential. Researchers combat this by developing techniques to enhance cellular and nuclear uptake. Two current popular methods are using external magnetic fields to remotely control particle direction or functionalising the nanoparticles with a cell penetrating peptide (e.g. tat); both of which facilitate cell entry. This paper compares the success of both methods in terms of nanoparticle uptake, analysing the type of magnetic forces the particles experience, and determines gross cell response in terms of morphology and structure and changes at the gene level via microarray analysis. Results indicated that both methods enhanced uptake via a caveolin dependent manner, with tat peptide being the more efficient and achieving nuclear uptake. On comparison to control cells, many groups of gene changes were observed in response to the particles. Importantly, the magnetic field also caused many change in gene expression, regardless of the nanoparticles, and appeared to cause F-actin alignment in the cells. Results suggest that static fields should be modelled and analysed prior to application in culture as cells clearly respond appropriately. Furthermore, the use of cell penetrating peptides may prove more beneficial in terms of enhancing uptake and maintaining cell homeostasis than a magnetic field. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
"Metamagnetoelectric" effect in multiferroics
NASA Astrophysics Data System (ADS)
Fouokeng, G. C.; Fodouop, F. Kuate; Tchoffo, M.; Fai, L. C.; Randrianantoandro, N.
2018-05-01
We present a theoretical calculation of magnetoelectric properties in a quasi-two dimensional spin chain externally controlled by a static electric field in y-direction and magnetic field in z-direction. Given the diversity of properties in functional materials and their applications in physics, the multiferroic model is investigated. By using the Fermi-Dirac statistics of quantum gases and the Landau theory, we assess the effects of the Dzyaloshinskii-Moriya interaction and the electric polarization on the magnetoelectric coupling that induces at low temperature the "metamagnetoelectric" effet, and likewise affects the ferroelectricity induced through symmetry mechanisms and magnetic properties of the multiferroic system. In fact, the variation of the induced polarisation due to spin arrangement through the Dzyaloshinskii-Moriya interaction gives rise to a multistep interdependent metamagnetic and metaelectric transitions which are settled up by the corresponding Dzyaloshinskii-Moriya parameter and the system then exhibits a spin gap that results from an electric and a magnetic demagnetization field range. This metamagnetoelectric effect observed in these multiferroic materials model is seem to be highly tunable via the external electric and magnetic fields and thus can be crucial in the design of new mechanisms for the processing and storage of data and other spintronic applications.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Waelbroeck, F. L.
2012-03-01
Static external resonant magnetic perturbations (RMPs) have been added to the δf gyrokinetic code GYRO. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr and the corresponding plasma torque (density) R[jrBθ/c], induced by islands that break the toroidal symmetry of a tokamak. This extends previous GYRO simulations for the transport of toroidal angular momentum (TAM) [1,2]. The focus is on full torus radial slice electrostatic simulations of induced q=m/n=6/3 islands with widths 5% of the minor radius. The island torque scales with the radial electric field Er the island width w, and the intensity I of the high-n micro-turbulence, as wErI^1/2. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that there is a small co-directed magnetic acceleration to the small diamagnetic co-rotation corresponding to the zero Er which can be called the residual stress [2] from an externally induced island. Finite-beta GYRO simulations of a core radial slice demonstrate island unlocking and the RMP screening. 6pt[1] R.E. Waltz, et al., Phys. Plasmas 14, 122507 (2007). [2] R.E. Waltz, et al., Phys. Plasmas 18, 042504 (2011).
The Martian crustal magnetic field as seen from MGS and MAVEN
NASA Astrophysics Data System (ADS)
Langlais, B.; Thebault, E.
2017-12-01
We present a new model of the Martian crustal magnetic field. This model combines constraints from all available measurements made by Mars Global Surveyor (1997-2006) and MAVEN (2014-). This is the first time a planet (besides the Earth) is flown twice with spacecraft providing high quality vector magnetic field measurements over its entire surface. Both missions have pros and cons which are fully taken into account and exploited. The constant altitude and local time of MGS during its (high altitude) mapping orbit phases allows to separate static, internal fields from transient, external fields. Low altitude measurements (below 250 km) by MAVEN allow to a posteriori validate MGS magnetic field measurements both on the day and night sides. The indirect estimates of the field intensity by the Electron Reflectometer experiment completes the dataset. The new model in constructed with carefully selected measurements, using local and extrapolated proxies to estimate the level of the external field activity. Tracks are individually checked to remove spurious or noisy measurements. The final model has a horizontal resolution close to 100 km. At a local scale, anomalies are better defined, which should ease their interpretation in terms of magnetization properties and processes. During this presentation we will compare this model to previous ones and discuss its new findings.
Field induced 4f5d [Re(salen)]2O3[Dy(hfac)3(H2O)]2 single molecule magnet.
Pointillart, Fabrice; Bernot, K; Sessoli, R; Gatteschi, D
2010-05-03
The reaction between the mononuclear [ReO(salen)(OMe)] (salen(2-) = N,N'-ethan-1,2-diylbis(salicylidenamine) dianion) and Dy(hfac)(3).2H(2)O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion) complexes lead to the formation of a compound with the formula {[Re(salen)](2)O(3)[Dy(hfac)(3)(H(2)O)](2)}(CHCl(3))(2)(CH(2)Cl(2))(2) noted (Dy(2)Re(2)). This compound has been characterized by single crystal and powder X-ray diffraction and has been found isostructural to the Y(III) derivative (Y(2)Re(2)) that we previously reported. The cyclic voltammetry demonstrates the redox activity of the system. The characterization of both static and dynamic magnetic properties is reported. Static magnetic data has been analyzed after the cancellation of the crystal field contribution by two different methods. Weak ferromagnetic exchange interactions between the Dy(III) ions are highlighted. The compound Dy(2)Re(2) displays slow relaxation of the magnetization when an external magnetic field is applied. Alternating current susceptibility shows a thermally activated behavior with pre-exponential factors of 7.13 (+/-0.10) x 10(-6) and 5.76 (+/-0.27) x 10(-7) s, and energy barriers of 4.19 (+/-0.02) and 8.52 (+/-0.55) K respectively for low and high temperature regimes.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Waelbroeck, F. L.
2012-03-01
Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.
Interlayer-coupled spin vortex pairs and their response to external magnetic fields
NASA Astrophysics Data System (ADS)
Wintz, Sebastian; Bunce, Christopher; Banholzer, Anja; Körner, Michael; Strache, Thomas; Mattheis, Roland; McCord, Jeffrey; Raabe, Jörg; Quitmann, Christoph; Erbe, Artur; Fassbender, Jürgen
2012-06-01
We report on the response of multilayer spin textures to static magnetic fields. Coupled magnetic vortex pairs in trilayer elements (ferromagnetic/nonmagnetic/ferromagnetic) are imaged directly by means of layer-selective magnetic x-ray microscopy. We observe two different circulation configurations with parallel and opposing senses of magnetization rotation at remanence. Upon application of a field, all of the vortex pairs investigated react with a displacement of their cores. For purely dipolar coupled pairs, the individual core displacements are similar to those of an isolated single-layer vortex, but also a noticeable effect of the mutual stray fields is detected. Vortex pairs that are linked by an additional interlayer exchange coupling (IEC), which is either ferromagnetic or antiferromagnetic, mainly exhibit a layer-congruent response. We find that, apart from a possible decoupling at higher fields, these strict IEC vortex pairs can be described by a single-layer model with effective material parameters. This result implies the possibility to design multilayer spin structures with arbitrary effective magnetization.
Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O.
Vrábel, P; Orendáč, M; Orendáčová, A; Čižmár, E; Tarasenko, R; Zvyagin, S; Wosnitza, J; Prokleška, J; Sechovský, V; Pavlík, V; Gao, S
2013-05-08
We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.
Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas
NASA Astrophysics Data System (ADS)
Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.
2010-10-01
A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.
Stability of magnetohydrodynamic Dean Flow as applied to centrifugally confined plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassam, A.B.
1999-10-01
Dean Flow is the azimuthal flow of fluid between static concentric cylinders. In a magnetized plasma, there may also be radial stratification of the pressure. The ideal magnetohydrodynamic stability of such a flow in the presence of a strong axial magnetic field and an added radial gravitational force is examined. It is shown that both the Kelvin{endash}Helmholtz instability and pressure-gradient-driven interchanges can be stabilized if the flow is driven by a unidirectional external force and if the plasma annulus is sufficiently thin (large aspect ratio). These results find application in schemes using centrifugal confinement of plasma for fusion. {copyright} {italmore » 1999 American Institute of Physics.}« less
Ensemble of single quadrupolar nuclei in rotating solids: sidebands in NMR spectrum.
Kundla, Enn
2006-07-01
A novel way is proposed to describe the evolution of nuclear magnetic polarization and the induced NMR spectrum. In this method, the effect of a high-intensity external static magnetic field and the effects of proper Hamiltonian left over interaction components, which commute with the first, are taken into account simultaneously and equivalently. The method suits any concrete NMR problem. This brings forth the really existing details in the registered spectra, evoked by Hamiltonian secular terms, which may be otherwise smoothed due to approximate treatment of the effects of the secular terms. Complete analytical expressions are obtained describing the NMR spectra including the rotational sideband sets of single quadrupolar nuclei in rotating solids.
NASA Astrophysics Data System (ADS)
Huang, J. G.; Slavcheva, G.; Hess, O.
2008-04-01
We propose a dynamical model for description of the nonlinear Faraday rotation experienced by a short pulse propagating in a resonant medium subject to an ultra-strong static magnetic field. Under the assumptions of a sufficiently strong external magnetic field, such that the Zeeman splitting of the quantum system energy levels is large compared to the linewidth of the optical transitions involved and the bandwidth of the incident light, the light effectively interacts with a two-level system. Our numerical simulations show that the Faraday effect under these conditions is significantly distinctive from the one caused by weak to moderately strong magnetic field. Nonlinear coherent effects such as inhomogeneous polarization rotation along the pulse duration and an onset of a circularly polarized stimulated emission and coherent ringing have been demonstrated. Some views on the experimental observation of the predicted phenomena are given.
Broadband and Resonant Approaches to Axion Dark Matter Detection.
Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse
2016-09-30
When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6} eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.
An electromagnetically actuated fiber optic switch using magnetized ferromagnetic materials
NASA Astrophysics Data System (ADS)
Pandojirao-S, Praveen; Dhaubanjar, Naresh; Phuyal, Pratibha C.; Chiao, Mu; Chiao, J.-C.
2008-03-01
This paper presents the design, fabrication and testing of a fiber optic switch actuated electromagnetically. The ferromagnetic gel coated optical fiber is actuated using external electromagnetic fields. The ferromagnetic gel consists of ferromagnetic powders dispersed in epoxy. The fabrication utilizes a simple cost-effective coating setup. A direct fiberto-fiber alignment eliminates the need for complementary optical parts and the displacement of fiber switches the laser coupling. The magnetic characteristics of magnetized ferromagnetic materials are performed using alternating gradient magnetometer and the magnetic hysteresis curves are measured for different ferromagnetic materials including iron, cobalt, and nickel. Optical fiber switches with various fiber lengths are actuated and their static and dynamic responses for the same volume of ferromagnetic gel are summarized. The highest displacement is 1.345 mm with an input current of 260mA. In this paper, the performance of fiber switches with various coating materials is presented.
NASA Astrophysics Data System (ADS)
Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong
2018-02-01
On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.
Bowman, J D; Thomas, D C; London, S J; Peters, J M
1995-01-01
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 microT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 microT and 50.6 microT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4-30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 microT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 microT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands; 95% CI = 1.3-64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed.
Noncontact orientation of objects in three-dimensional space using magnetic levitation
Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K.; Soh, Siowling; Whitesides, George M.
2014-01-01
This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136
Noncontact orientation of objects in three-dimensional space using magnetic levitation.
Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M
2014-09-09
This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.
Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption
Jiang, Chaowei; Wu, S. T.; Feng, Xuesheng; Hu, Qiang
2016-01-01
Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling. PMID:27181846
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W. R., II; Jara-Almonte, J.
2014-12-01
Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (potential) and internal (plasma-generated) magnetic fields. We find that forces due to the line-tied toroidal magnetic field, which are not included in the basic torus instability theory, can play a major role in preventing eruptions. The dependence of these toroidal magnetic forces on various potential field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).
Resonance dependence of gravitropicreactionof cress roots in weak combined magnetic fields.
NASA Astrophysics Data System (ADS)
Bogatina, N. I.; Sheykina, N. V.; Kordyum, E. L.
The gravitropic reaction of cress was studied in combined magnetic fields, that is the static magnetic field of the order of Earth's one and parallel to it alternating magnetic field. The frequency region for alternating magnetic field was varied in wide diapason ( from 1 Hz up to 45 Hz). The magnitude of alternating magnetic field was equal to 6 microT. The magnetic field conditions were well reproducible. For this purpose the external magnetic field was shielded in the work volume and artificial magnetic field was created in the volume. Both ferromagnetic metal shield and superconductive one with warm volume for work were used. The magnetic noises inside both of ferromagnetic metal and superconductive shields were measured to provide the well reproducible characteristics of artificial field created in the work volume. The objects of investigation were the roots of cress after 2-3-days germination. They were located in the closed humid room, that was located inside the shield in the artificially created magnetic field. All roots were in the darkness. For control we used the analogous roots located in the analogous volume but only in the static magnetic field of the Earth. We measured the divergence angle of the root from its primary direction of growing. We obtained the following results. The curve of dependence of measured angles on the frequency of alternating component of magnetic field had series of sharp peaks. These peaks were well reproducible and their location depended on the magnitude of the static component of magnetic field. The frequency of peak location is in direct proportion with its magnitude. The analysis showed that the location of peaks coincided very well with the cyclotron frequencies of the following ions: Ca+2, Cu+1 , K+1: Fe+3: Ag+1: and with the cyclotron frequencies of ions of phytohormons such as ions of indolile-acetic acid, abscise acid and gibberellins. Some quantitive analogies between the gravitropic process and the effect of combined magnetic field are discussed at the molecular level. In particularly it was shown that in the gravity field the pressure difference between the upper and down parts of the root was of the order of the pressure difference created by the Lorenz force. The displacement of the point where the pressure approached the maximum value on membrane surface could lead to the changes in the ion transport direction and so to the changes of the gravitropic reaction direction. The possibilities of the method for the studying the gravitropic reaction were discussed.
NASA Astrophysics Data System (ADS)
Jaafarian, Rokhsare; Ganjovi, Alireza; Etaati, Gholamreza
2018-01-01
In this work, a Particle in Cell-Monte Carlo Collision simulation technique is used to study the operating parameters of a typical helicon plasma source. These parameters mainly include the gas pressure, externally applied static magnetic field, the length and radius of the helicon antenna, and the frequency and voltage amplitude of the applied RF power on the helicon antenna. It is shown that, while the strong radial gradient of the formed plasma density in the proximity of the plasma surface is substantially proportional to the energy absorption from the existing Trivelpiece-Gould (TG) modes, the observed high electron temperature in the helicon source at lower static magnetic fields is significant evidence for the energy absorption from the helicon modes. Furthermore, it is found that, at higher gas pressures, both the plasma electron density and temperature are reduced. Besides, it is shown that, at higher static magnetic fields, owing to the enhancement of the energy absorption by the plasma charged species, the plasma electron density is linearly increased. Moreover, it is seen that, at the higher spatial dimensions of the antenna, both the plasma electron density and temperature are reduced. Additionally, while, for the applied frequencies of 13.56 MHz and 27.12 MHz on the helicon antenna, the TG modes appear, for the applied frequency of 18.12 MHz on the helicon antenna, the existence of helicon modes is proved. Moreover, by increasing the applied voltage amplitude on the antenna, the generation of mono-energetic electrons is more probable.
Enhancement of sedimentation and coagulation with static magnetic field
NASA Astrophysics Data System (ADS)
Zieliński, Marcin; Dębowski, Marcin; Hajduk, Anna; Rusanowska, Paulina
2017-11-01
The static magnetic field can be an alternative method for wastewater treatment. It has been proved that this physical factor, accelerates the biochemical processes, catalyzes advanced oxidation, intensifies anaerobic and aerobic processes or reduces swelling of activated sludge. There are also reports proving the positive impact of the static magnetic field on the coagulation and sedimentation, as well as the conditioning and dewatering of sludge. In order to be applied in larger scale the published results should be verified and confirmed. In the studies, the enhancement of sedimentation by the static magnetic field was observed. The best sedimentation was noted in the experiment, where magnetizers were placed on activated sludge bioreactor and secondary settling tank. No effect of the static magnetic field on coagulation with the utilization of PIX 113 was observed. However, the static magnetic field enhanced coagulation with the utilization of PAX-XL9. The results suggest that increased sedimentation of colloids and activated sludge, can in practice mean a reduction in the size of the necessary equipment for sedimentation with an unchanged efficiency of the process.
NASA Astrophysics Data System (ADS)
N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.
A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.
... NCCIH NCCIH At a Glance Mission and Vision Organizational Structure ... been studied for pain. Static or permanent magnets : Static magnets have magnetic fields that do not change. The activity of electrons in the metal causes ...
Electrostatic Field Invisibility Cloak
NASA Astrophysics Data System (ADS)
Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji
2015-11-01
The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications.
Magnetic control of magnetohydrodynamic instabilities in tokamaks
Strait, Edward J.
2014-11-24
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB/B ~ 10 -3 to 10 -4) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic responsemore » of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode — a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields at low beta and resistive wall modes at high beta. Furthermore, these and other scientific advances, and their application to control of MHD instabilities, will be reviewed with emphasis on the most recent results and their applicability to ITER.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1992-05-01
Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result ofmore » recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.« less
Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis
NASA Astrophysics Data System (ADS)
Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek
2012-10-01
Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.
Todorović, Dajana; Marković, Tamara; Prolić, Zlatko; Mihajlović, Spomenko; Rauš, Snežana; Nikolić, Ljiljana; Janać, Branka
2013-01-01
There is considerable concern about potential effects associated with exposure to magnetic fields on organisms. Therefore, duration of pupa-adult development and motor behaviour of adults were analyzed in Tenebrio obscursus and T. molitor after exposure to static magnetic field (50 mT). The experimental groups were: Control (kept 5 m from the magnets), groups which pupae and adults were placed closer to the North pole, or closer to the South pole of magnetic dipole. The pupae were exposed to the magnetic field until the moment of adult eclosion. The pupa-adult development dynamics were recorded daily. Subsequently, behaviour (distance travelled, average speed and immobility) of adults exposed to the magnetic field was monitored in a circular open field arena. Static magnetic field did not affect pupa-adult developmental dynamic of examined Tenebrio species. Exposure to magnetic field did not significantly change motor behaviour of T. obscurus adults. The changes in the motor behaviour of T. molitor induced by static magnetic field were opposite in two experimental groups developed closer to the North pole or closer to the South pole of magnetic dipole. Static magnetic field (50 mT) did not affect on pupa-adult development dynamic of two examined Tenebrio species, but modulated their motor behaviour.
Learning about static electricity and magnetism in a fourth-grade classroom
NASA Astrophysics Data System (ADS)
Henry, David Roy
Students begin to develop mental models to explain electrostatic and magnetic phenomena throughout childhood, middle childhood and high school, although these mental models are often incoherent and unscientific (Borges, Tenico, & Gilbert, 1998; Maloney, 1985). This is a case study of a classroom of grade four students and the mental models of magnetism and static electricity they used during a six-week science unit. The 22 students studied magnetism and static electricity using inquiry activities structured to create an environment where students would be likely to construct powerful scientific ideas (Goldberg & Bendall, 1995). Multiple data sources, including students' writing, student assessments, teacher interviews, student interviews, teacher journals, and classroom video and audio recordings were used to uncover how fourth grade students made sense of static electricity and magnetism before, during, and after instruction. The data were analyzed using a social constructivist framework to determine if students were able to develop target scientific ideas about static electricity and magnetism. In general, students were found to have three core mental models prior to instruction: (1) Static electricity and magnetism are the same "substance"; (2) This substance exists on the surface of a magnet or a charged object and can be rubbed off, and (3) Opposite substances attract. During the activities, students had many opportunities to observe evidence that contradicted these core mental models. Using evidence from direct observations, the students practiced differentiating between evidence and ideas. Through group and class discussions, they developed evidenced-based (scientific) ideas. Final assessments revealed that students were able to construct target ideas such as: (1) static electricity and magnetism are fundamentally different; (2) there are two kinds of static "charge;" (3) magnet-rubbed wires act like a magnet; and (4) opposite substances move toward each other, like substances push away from each other. Some target ideas, such as "Magnetic materials are made up of magnetic domains that align to give an overall magnetic effect" were found to be difficult for students this age to develop. This case study will augment research about effective science teaching, teacher development and the support necessary for curriculum change.
Poinapen, Danny; Brown, Daniel C W; Beeharry, Girish K
2013-09-15
Different factors (e.g., light, humidity, and temperature) including exposure to static magnetic fields (SMFs), referred here as critical factors, can significantly affect horticultural seed performance. However, the link between magnetic field parameters and other interdependent factors affecting seed viability is unclear. The importance of these critical factors affecting tomato (Solanum lycopersicum L.) var. MST/32 seed performance was assessed after performing several treatments based on a L9 (3(4)) (four factors at three levels) orthogonal array (OA) design. The variable factors in the design were magnetic flux density (R1=332.1±37.8mT; R2=108.7±26.9mT; and R3=50.6±10.5mT), exposure time (1, 2, and 24h), seed orientation (North polarity, South polarity, and control - no magnetic field), and relative humidity (RH) (7.0, 25.5, and 75.5%). After seed moisture content stabilisation at the different chosen RH, seeds were exposed in dark under laboratory conditions to several treatments based on the OA design before performance evaluation. Treatments not employing magnetic field exposure were used as controls. Results indicate that electrolyte leakage rate was reduced by a factor of 1.62 times during seed imbibition when non-uniform SMFs were employed. Higher germination (∼11.0%) was observed in magnetically-exposed seeds than in non-exposed ones, although seedlings emerging from SMF treatments did not show a consistent increase in biomass accumulation. The respective influence of the four critical factors tested on seed performance was ranked (in decreasing order) as seed orientation to external magnetic fields, magnetic field strength, RH, and exposure time. This study suggests a significant effect of non-uniform SMFs on seed performance with respect to RH, and more pronounced effects are observed during seed imbibition rather than during later developmental stages. Copyright © 2013 Elsevier GmbH. All rights reserved.
Multifunctional superparamagnetic nanocrystals for imaging and targeted drug delivery to the lung
NASA Astrophysics Data System (ADS)
Armijo, Leisha M.; Brandt, Yekaterina I.; Withers, Nathan J.; Plumley, John B.; Cook, Nathaniel C.; Rivera, Antonio C.; Yadav, Surabhi; Smolyakov, Gennady A.; Monson, Todd; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek
2012-03-01
Iron oxide colloidal nanocrystals (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanocrystals to increase the effectiveness of inhalation aerosol antibiotics therapy through two mechanisms: directed particle movement in the presence of a static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm thereby increasing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Nanocrystals in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide-zinc selenide core-shell nanoparticles were prepared in parallel in order to allow imaging of the iron oxide nanoparticles.
Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log
NASA Astrophysics Data System (ADS)
Li, Shiyong; Yee, Ho-Ung
2018-03-01
We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).
Siphon flows in isolated magnetic flux tubes. III - The equilibrium path of the flux-tube arch
NASA Technical Reports Server (NTRS)
Thomas, John H.; Montesinos, Benjamin
1990-01-01
It is shown how to calculate the equilibrium path of a thin magnetic flux tube in a stratified, nonmagnetic atmosphere when the flux tube contains a steady siphon flow. The equilbrium path of a static thin flux tube in an infinite stratified atmosphere generally takes the form of a symmetric arch of finite width, with the flux tube becoming vertical at either end of the arch. A siphon flow within the flux tube increases the curvature of the arched equilibrium path in order that the net magnetic tension force can balance the inertial force of the flow, which tries to straighten the flux tube. Thus, a siphon flow reduces the width of the arched equilibrium path, with faster flows producing narrower arches. The effect of the siphon flow on the equilibrium path is generally greater for flux tubes of weaker magnetic field strength. Examples of the equilibrium are shown for both isothemal and adiabatic siphon flows in thin flux tubes in an isothermal external atmosphere.
Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelc, D.; Grafe, H. -J.; Gu, G. D.
In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less
Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4
Pelc, D.; Grafe, H. -J.; Gu, G. D.; ...
2017-02-15
In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less
An Experimental Design of Bypass Magneto-Rheological (MR) damper
NASA Astrophysics Data System (ADS)
Rashid, MM; Aziz, Mohammad Abdul; Raisuddin Khan, Md.
2017-11-01
The magnetorheological (MR) fluid bypass damper fluid flow through a bypass by utilizing an external channel which allows the controllability of MR fluid in the channel. The Bypass MR damper (BMRD) contains a rectangular bypass flow channel, current controlled movable piston shaft arrangement and MR fluid. The static piston coil case is winding by a coil which is used inside the piston head arrangement. The current controlled coil case provides a magnetic flux through the BMRD cylinder for controllability. The high strength of alloy steel materials are used for making piston shaft which allows magnetic flux propagation throughout the BMRD cylinder. Using the above design materials, a Bypass MR damper is designed and tested. An excitation of current is applied during the experiment which characterizes the BMRD controllability. It is shown that the BMRD with external flow channel allows a high controllable damping force using an excitation current. The experimental result of damping force-displacement characteristics with current excitation and without current excitation are compared in this research. The BMRD model is validated by the experimental result at various frequencies and applied excitation current.
New theoretical results for the Lehmann effect in cholesteric liquid crystals
NASA Technical Reports Server (NTRS)
Brand, Helmut R.; Pleiner, Harald
1988-01-01
The Lehmann effect arising in a cholesteric liquid crystal drop when a temperature gradient is applied parallel to its helical axis is investigated theoretically using a local approach. A pseudoscalar quantity is introduced to allow for cross couplings which are absent in nematic liquid crystals, and the statics and dissipative dynamics are analyzed in detail. It is shown that the Lehmann effect is purely dynamic for the case of an external electric field and purely static for an external density gradient, but includes both dynamic and static coupling contributions for the cases of external temperature or concentration gradients.
Interaction mechanisms and biological effects of static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals,more » there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.« less
Response of plasma rotation to resonant magnetic perturbations in J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Yan, W.; Chen, Z. Y.; Huang, D. W.; Hu, Q. M.; Shi, Y. J.; Ding, Y. H.; Cheng, Z. F.; Yang, Z. J.; Pan, X. M.; Lee, S. G.; Tong, R. H.; Wei, Y. N.; Dong, Y. B.; J-TEXT Team
2018-03-01
The response of plasma toroidal rotation to the external resonant magnetic perturbations (RMP) has been investigated in Joint Texas Experimental Tokamak (J-TEXT) ohmic heating plasmas. For the J-TEXT’s plasmas without the application of RMP, the core toroidal rotation is in the counter-current direction while the edge rotation is near zero or slightly in the co-current direction. Both static RMP experiments and rotating RMP experiments have been applied to investigate the plasma toroidal rotation. The core toroidal rotation decreases to lower level with static RMP. At the same time, the edge rotation can spin to more than 20 km s-1 in co-current direction. On the other hand, the core plasma rotation can be slowed down or be accelerated with the rotating RMP. When the rotating RMP frequency is higher than mode frequency, the plasma rotation can be accelerated to the rotating RMP frequency. The plasma confinement is improved with high frequency rotating RMP. The plasma rotation is decelerated to the rotating RMP frequency when the rotating RMP frequency is lower than the mode frequency. The plasma confinement also degrades with low frequency rotating RMP.
Magnetic-time model at off-season germination
NASA Astrophysics Data System (ADS)
Mahajan, Tarlochan Singh; Pandey, Om Prakash
2014-03-01
Effect of static magnetic field on germination of mung beans is described. Seeds of mung beans, were exposed in batches to static magnetic fields of 87 to 226 mT intensity for 100 min. Magnetic time constant - 60.743 Th (Tesla hour) was determined experimentally. High value of magnetic time constant signifies lower effect of magnetic field on germination rate as this germination was carried out at off-season (13°C). Using decay function, germination magnetic constant was calculated. There was a linear increase in germination magnetic constant with increasing intensity of magnetic field. Calculated values of mean germination time, mean germination rate, germination rate coefficient, germination magnetic constant, transition time, water uptake, indicate that the impact of applied static magnetic field improves the germination of mung beans seeds even in off-season
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Zhang, Xingyi, E-mail: zhangxingyi@lzu.edu.cn; Liu, Cong
We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strandmore » is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.« less
Suppressing magnetic island growth by resonant magnetic perturbation
NASA Astrophysics Data System (ADS)
Yu, Q.; Günter, S.; Lackner, K.
2018-05-01
The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.
Magnetic field detection using magnetorheological optical resonators
NASA Astrophysics Data System (ADS)
Rubino, Edoardo; Ioppolo, Tindaro
2018-02-01
In this paper, we investigate the feasibility of a magnetic field sensor that is based on a magnetorheological micro-optical resonator. The optical resonator has a spherical shape and a diameter of a few hundred micrometers. The resonator is fabricated by using a polymeric matrix made of polyvinyl chloride (PVC) plastisol with embedded magnetically polarizable micro-particles. When the optical resonator is subjected to an external magnetic field, the morphology (radius and refractive index) of the resonator is perturbed by the magnetic forces acting on it, leading to a shift of the optical resonances also known as whispering gallery modes (WGM). In this study, the effect of a static and harmonic magnetic field, as well as the concentration of the magnetic micro-particles on the optical mode shift is investigated. The optical resonances obtained with the PVC plastisol resonator showed a quality factor of 106 . The dynamical behavior of the optical resonator is investigated in the range between 0 and 200 Hz. The sensitivity of the optical resonator reaches a maximum value for a ratio between micro-particles and the polymeric matrix of 2:1 in weight. Experimental results indicate a sensitivity of 0.297 pm/mT leading to a resolution of 336 μT.
NASA Astrophysics Data System (ADS)
Zhong, Hua; Li, Chuanjun; Ren, Zhongming; Rettenmayr, Markus; Zhong, Yunbo; Yu, Jianbo; Wang, Jiang
2016-04-01
The Al-4.5 wt%Cu alloy has been directionally solidified under a high static magnetic field up to 6 T. A novel α-Al dendrite morphology was presented when the <001> primary trunk aligned to the magnetic field and temperature gradient. It is observed that tertiary dendrites grew asymmetrically on secondary arms in the plane perpendicular to the primary trunk, and a pinwheel-like pattern formed. A numerical simulation was performed using finite-element code COMSOL software to investigate the thermoelectric magnetic convection (TEMC) induced by the external magnetic field. The results show that the velocity of the TEMC increases with the increasing of the magnetic field and reaches a maximum value near 6 T. Meanwhile, the magnitude of the TEMC on two sides of the secondary arm becomes unequal. Comparison of the experimental and numerical results reveals that the development of the pinwheel-like appearance is in accordance with the flow pattern of the TEMC. It is implies that the modification of the tertiary dendrite could be attributed to the TEMC generated on dendrite scale. This work also provides direct experimental evidence that a high magnetic field (>1 T) induces fluid flow in mushy zone.
Revival of cloaking effect in a driven bilayer graphene vector barrier
NASA Astrophysics Data System (ADS)
Maiti, S.; Panigrahi, A.; Biswas, R.; Sinha, C.
2018-05-01
Transmission profiles in bilayer graphene are studied theoretically through a rectangular vector potential (magnetic) barrier with and without the presence of an oscillatory potential. Unlike the electrostatic barrier, the Fano resonances (FR) are noted in the transmission spectra both for normal and glancing incidences due to non-conservation of chirality for a static vector barrier. The results for normal incidence indicate that the cloaking effect is a manifestation of the chirality conservation in charge transport through bilayer graphene scalar barriers. It is also noted that the aforesaid FR for a static vector barrier might disappear (photon induced electronic cloaking effect) due to the predominant photon exchange processes in presence of an external oscillating potential. The study of Fano resonances in transmission spectrum is in high demand in respect of localization of charge carriers in graphene nano structures for its potential applications in digital device fabrications.
NASA Astrophysics Data System (ADS)
Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo
2017-04-01
Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system.
Effect of static magnetic fields and phloretin on antioxidant defense system of human fibroblasts.
Pawłowska-Góral, Katarzyna; Kimsa-Dudek, Magdalena; Synowiec-Wojtarowicz, Agnieszka; Orchel, Joanna; Glinka, Marek; Gawron, Stanisław
2016-08-01
The available evidence from in vitro and in vivo studies is deemed not sufficient to draw conclusions about the potential health effects of static magnetic field (SMF) exposure. Therefore, the aim of the present study was to determine the influence of static magnetic fields and phloretin on the redox homeostasis of human dermal fibroblasts. Control fibroblasts and fibroblasts treated with phloretin were subjected to the influence of static magnetic fields. Three chambers with static magnetic fields of different intensities (0.4, 0.55, and 0.7 T) were used in the study. Quantification of superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPX1), microsomal glutathione S-transferase 1 (MGST1), glutathione reductase (GSR), and catalase (CAT) messenger RNAs (mRNAs) was performed by means of real-time reverse transcription PCR (QRT-PCR) technique. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were measured using a commercially available kit. No significant differences were found in SOD1, SOD2, GPX1, MGST1, GSR, and CAT mRNA levels among the studied groups in comparison to the control culture without phloretin and without the magnet. There were also no changes in SOD, GPx, and CAT activities. In conclusion, our study indicated that static magnetic fields generated by permanent magnets do not exert a negative influence on the oxidative status of human dermal fibroblasts. Based on these studies, it may also be concluded that phloretin does not increase its antioxidant properties under the influence of static magnetic fields. However, SMF-induced modifications at the cellular and molecular level require further clarification.
Russo, Alessandro; Bianchi, Michele; Sartori, Maria; Parrilli, Annapaola; Panseri, Silvia; Ortolani, Alessandro; Sandri, Monica; Boi, Marco; Salter, Donald M; Maltarello, Maria Cristina; Giavaresi, Gianluca; Fini, Milena; Dediu, Valentin; Tampieri, Anna; Marcacci, Maurilio
2016-03-01
The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.
NASA Astrophysics Data System (ADS)
Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; D'Angelo, Raffaele; Zeni, Olga
2016-01-01
The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components.
Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d’Angelo, Raffaele; Zeni, Olga
2016-01-01
The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783
Nonlinear generation of sum and difference frequency waves by two helicon waves in a semiconductor
NASA Astrophysics Data System (ADS)
Salimullah, M.; Ferdous, T.
1984-05-01
This paper presents a theoretical investigation of the nonlinear generation of electrostatic waves at the sum and the difference frequency when two high amplitude elliptically polarized helicon waves propagate along the direction of the externally applied static magnetic field in an n-type semiconductor. The nonlinearity arises through the ponderomotive force on electrons. It is noticed that the power conversion efficiency of the difference frequency generation is much larger than that of the sum frequency generation. The power conversion efficiency may be easily increased by increasing the density of electrons in the semiconductor.
Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, C. E.; Yamada, M.; Ji, H.
Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less
Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes
Myers, C. E.; Yamada, M.; Ji, H.; ...
2016-11-22
Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less
Pecher, Oliver; Halat, David M; Lee, Jeongjae; Liu, Zigeng; Griffith, Kent J; Braun, Marco; Grey, Clare P
2017-02-01
We have developed and explored an external automatic tuning/matching (eATM) robot that can be attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spectrometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated "on-the-fly" re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tuning/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping (variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight) and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching capacitor (and/or coil) settings for desired frequencies (e.g. 7 Li and 31 P at 117 and 122MHz, respectively, at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling automated measurements of multiple nuclei for one sample with no manual adjustment required by the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experiments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic 7 Li and 31 P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO 4 ; (2) paramagnetic 17 O VT-NMR of the solid oxide fuel cell cathode material La 2 NiO 4+δ ; (3) broadband 93 Nb static NMR of the Li-ion battery material BNb 2 O 5 ; and (4) broadband static 127 I NMR of a potential Li-air battery product LiIO 3 . In each case, insight into local atomic structure and dynamics arises primarily from the highly broadened (1-25MHz) NMR lineshapes that the eATM robot is uniquely suited to collect. These new developments in automation of NMR experiments are likely to advance the application of in and ex situ NMR investigations to an ever-increasing range of energy storage materials and systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pecher, Oliver; Halat, David M.; Lee, Jeongjae; Liu, Zigeng; Griffith, Kent J.; Braun, Marco; Grey, Clare P.
2017-02-01
We have developed and explored an external automatic tuning/matching (eATM) robot that can be attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spectrometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated "on-the-fly" re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tuning/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping (variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight) and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching capacitor (and/or coil) settings for desired frequencies (e.g.7Li and 31P at 117 and 122 MHz, respectively, at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling automated measurements of multiple nuclei for one sample with no manual adjustment required by the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experiments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic 7Li and 31P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO4; (2) paramagnetic 17O VT-NMR of the solid oxide fuel cell cathode material La2NiO4+δ; (3) broadband 93Nb static NMR of the Li-ion battery material BNb2O5; and (4) broadband static 127I NMR of a potential Li-air battery product LiIO3. In each case, insight into local atomic structure and dynamics arises primarily from the highly broadened (1-25 MHz) NMR lineshapes that the eATM robot is uniquely suited to collect. These new developments in automation of NMR experiments are likely to advance the application of in and ex situ NMR investigations to an ever-increasing range of energy storage materials and systems.
NASA Technical Reports Server (NTRS)
vonFrese, Ralph R. B.; Kim, Hyung Rae; Gaya-Pique, Luis R.; Taylor, Patrick T.; Golynsky, Alexander V.; Kim, Jeong Woo
2004-01-01
Significant improvement in predicting near-surface magnetic anomalies can result from the highly accurate magnetic observations of the CHAMP satellite that is orbiting at about 400 km altitude. In general, regional magnetic signals of the crust are strongly masked by the core field and its secular variations due to wavelength coupling in the spherical harmonic representation and thus are difficult to isolate in the satellite measurements. However, efforts to isolate the regional lithospheric from core field components can exploit the correlations between the CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations. In addition, we can use spectral correlation theory to filter the static lithospheric field components from the dynamic external field effects. Employing these procedures, we processed the CHAMP magnetic conservations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Oersted and noisier Magsat observations, CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intra-crustal magnetic features and crustal thickness variations of the Antarctic. Moreover, these results greatly facilitate predicting magnetic anomalies in the regional coverage gaps of the ADMAP compilation of Antarctic magnetic anomalies from shipborne, airborne and ground surveys. Our analysis suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer.
3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis.
Paun, Irina Alexandra; Popescu, Roxana Cristina; Calin, Bogdan Stefanita; Mustaciosu, Cosmin Catalin; Dinescu, Maria; Luculescu, Catalin Romeo
2018-02-07
We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20-40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase) production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field.
3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis
Paun, Irina Alexandra; Popescu, Roxana Cristina; Calin, Bogdan Stefanita; Mustaciosu, Cosmin Catalin; Dinescu, Maria; Luculescu, Catalin Romeo
2018-01-01
We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20–40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase) production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field. PMID:29414875
Magnetically targeted delivery through cartilage
NASA Astrophysics Data System (ADS)
Jafari, Sahar; Mair, Lamar O.; Chowdhury, Sagar; Nacev, Alek; Hilaman, Ryan; Stepanov, Pavel; Baker-McKee, James; Ijanaten, Said; Koudelka, Christian; English, Bradley; Malik, Pulkit; Weinberg, Irving N.
2018-05-01
In this study, we have invented a method of delivering drugs deep into articular cartilage with shaped dynamic magnetic fields acting on small metallic magnetic nanoparticles with polyethylene glycol coating and average diameter of 30 nm. It was shown that transport of magnetic nanoparticles through the entire thickness of bovine articular cartilage can be controlled by a combined alternating magnetic field at 100 Hz frequency and static magnetic field of 0.8 tesla (T) generated by 1" dia. x 2" thick permanent magnet. Magnetic nanoparticles transport through bovine articular cartilage samples was investigated at various settings of magnetic field and time durations. Combined application of an alternating magnetic field and the static field gradient resulted in a nearly 50 times increase in magnetic nanoparticles transport in bovine articular cartilage tissue as compared with static field conditions. This method can be applied to locally deliver therapeutic-loaded magnetic nanoparticles deep into articular cartilage to prevent cartilage degeneration and promote cartilage repair in osteoarthritis.
NASA Astrophysics Data System (ADS)
Nakamura, Yuki; Takahashi, Ryuji; Shoji, Eita; Kubo, Masaki; Tsukada, Takao; Uchikoshi, Masahito; Fukuyama, Hiroyuki
2017-12-01
The thermal conductivity of molten Cu-Co alloy with different compositions around the liquidus line temperature was measured by the periodic laser-heating method using an electromagnetic levitator superimposed with a static magnetic field to suppress convection in a levitated droplet sample. During the measurement, a static magnetic field of 10 T was applied to the levitated droplet. To confirm that the strength of the static magnetic field was sufficient to suppress convection in the droplet, numerical simulations were performed for the flow and thermal fields in an electromagnetically levitated droplet under a static magnetic field, and moreover, for the periodic laser-heating method to determine the thermal conductivity. It was found that the thermal conductivity of molten Cu-Co alloy increased gradually with increasing Cu composition up to 80 at. pct, beyond which it increased markedly and reached that of pure Cu. In addition, it was found that the composition dependence of the thermal conductivity can be explainable by the Wiedemann-Franz law.
Fluorescent lamp with static magnetic field generating means
Moskowitz, Philip E.; Maya, Jakob
1987-01-01
A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.
Fluorescent lamp with static magnetic field generating means
Moskowitz, P.E.; Maya, J.
1987-09-08
A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuqing; Cai, Shuhui; Yang, Yu
2016-03-14
High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this methodmore » are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.« less
Marechal, Luc; Shaohui Foong; Zhenglong Sun; Wood, Kristin L
2015-08-01
Motivated by the need for developing a neuronavigation system to improve efficacy of intracranial surgical procedures, a localization system using passive magnetic fields for real-time monitoring of the insertion process of an external ventricular drain (EVD) catheter is conceived and developed. This system operates on the principle of measuring the static magnetic field of a magnetic marker using an array of magnetic sensors. An artificial neural network (ANN) is directly used for solving the inverse problem of magnetic dipole localization for improved efficiency and precision. As the accuracy of localization system is highly dependent on the sensor spatial location, an optimization framework, based on understanding and classification of experimental sensor characteristics as well as prior knowledge of the general trajectory of the localization pathway, for design of such sensing assemblies is described and investigated in this paper. Both optimized and non-optimized sensor configurations were experimentally evaluated and results show superior performance from the optimized configuration. While the approach presented here utilizes ventriculostomy as an illustrative platform, it can be extended to other medical applications that require localization inside the body.
NASA Astrophysics Data System (ADS)
Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.
2011-09-01
The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.
NASA Astrophysics Data System (ADS)
English, Niall J.; Garate, José-A.
2016-08-01
An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ˜0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.
English, Niall J; Garate, José-A
2016-08-28
An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ∼0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.
Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor
Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin
2015-01-01
Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972
Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.
Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham
2015-07-27
Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.
Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering
NASA Astrophysics Data System (ADS)
Clancy, J. P.; Ruff, J. P. C.; Dunsiger, S. R.; Zhao, Y.; Dabkowska, H. A.; Gardner, J. S.; Qiu, Y.; Copley, J. R. D.; Jenkins, T.; Gaulin, B. D.
2009-01-01
Elastic and inelastic neutron-scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7 . Measurements in zero applied magnetic field show that the disordered spin-ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone-boundary scattering seen in its sister compound Dy2Ti2O7 . Well-defined peaks in the zone-boundary scattering develop only within the spin-ice ground state below ˜2K . In contrast, the overall diffuse-scattering pattern evolves on a much higher-temperature scale of ˜17K . The diffuse scattering at small wave vectors below [001] is found to vanish on going to Q=0 , an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin-ice ground state below ˜2K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10-9s . Measurements in a magnetic field applied along the [11¯0] direction in zero-field-cooled conditions show that the system can be broken up into orthogonal sets of polarized α chains along [11¯0] and quasi-one-dimensional β chains along [110]. Three-dimensional correlations between β chains are shown to be very sensitive to the precise alignment of the [11¯0] externally applied magnetic field.
On Whether Angular Momentum in Electric and Magnetic Fields Radiates to Infinity
NASA Technical Reports Server (NTRS)
Canning, Francis X.; Knudsen, Steven
2006-01-01
The Feynman Disk experiment and a related thought experiment with a static magnetic field and capacitor are studied. The mechanical torque integrated over time (angular impulse) is related to the angular momentum in the electric/magnetic field. This is not called an electromagnetic field since quasi-static as well as electromagnetic effects are included. The angular momentum in the electric/magnetic field is examined to determine its static and radiative components. This comparison was then examined to see if it clarified the Abraham-Minkowski paradox.
NASA Astrophysics Data System (ADS)
Ershov, N. V.; Fedorov, V. I.; Chernenkov, Yu. P.; Lukshina, V. A.; Shishkin, D. A.
2017-09-01
The changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type.
NASA Astrophysics Data System (ADS)
Chun, Sae Hwan; Shin, Kwang Woo; Kim, Hyung Joon; Jung, Seonghoon; Park, Jaehun; Bahk, Young-Mi; Park, Hyeong-Ryeol; Kyoung, Jisoo; Choi, Da-Hye; Kim, Dai-Sik; Park, Gun-Sik; Mitchell, J. F.; Kim, Kee Hoon
2018-01-01
An electromagnon in the magnetoelectric (ME) hexaferrite Ba0.5Sr2.5Co2Fe24O41 (Co2Z -type) single crystal is identified by time-domain terahertz (THz) spectroscopy. The associated THz resonance is active on the electric field (Eω ) of the THz light parallel to the c axis (∥ [001 ] ), whose spectral weight develops at a markedly high temperature, coinciding with a transverse conical magnetic order below 410 K. The resonance frequency of 1.03 THz at 20 K changes -8.7 % and +5.8 % under external magnetic field (H ) of 2 kOe along [001] and [120], respectively. A model Hamiltonian describing the conical magnetic order elucidates that the dynamical ME effect arises from antiphase motion of spins which are coupled with modulating electric dipoles through the exchange striction mechanism. Moreover, the calculated frequency shift points to the key role of the Dzyaloshinskii-Moriya interaction that is altered by static electric polarization change under different H .
Kundla, Enn
2007-04-01
The evolution of the magnetic polarization of an ensemble of paired spin(-1/2) nuclei in an MAS NMR (nuclear magnetic resonance) experiment and the induced spectrum are described theoretically by means of a Liouville-von Neumann equation representation in a wobbling rotating frame in combination with the averaged Hamiltonian theory. In this method, the effect of a high-intensity external static magnetic field and the effects of the leftover interaction components of the Hamiltonian that commute with the approximate Hamiltonian are taken into account simultaneously and equivalently. This method reproduces details that really exist in the recorded spectra, caused by secular terms in the Hamiltonian, which might otherwise be smoothed out owing to the approximate treatment of the effects of the secular terms. Complete analytical expressions, which describe the whole NMR spectrum including the rotational sideband sets, and which consider all the relevant intermolecular interactions, are obtained.
Gasparov, V. A.; Drigo, L.; Audouard, A.; ...
2016-07-11
Heterostructures made of a layer of a cuprate insulator La 2CuO 4 on the top of a layer of a nonsuperconducting cuprate metal La 1.55Sr 0.45CuO 4 show high-T c interface superconductivity confined within a single CuO 2 plane. Given this extreme quasi-two-dimensional quantum confinement, it is of interest to find out how interface superconductivity behaves when exposed to an external magnetic field. With this motivation, we have performed contactless tunnel-diode-oscillator-based measurements in pulsed magnetic fields up to 56 T as well as measurements of the complex mutual inductance between a spiral coil and the film in static fields upmore » to 3 T. Remarkably, we observe that interface superconductivity survives up to very high perpendicular fields, in excess of 40 T. Additionally, the critical magnetic field H m(T) reveals an upward divergence with decreasing temperature, in line with vortex melting as in bulk superconducting cuprates.« less
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W.; Jara-Almonte, J.; Gao, L.
2014-10-01
Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (vacuum) and internal (plasma-generated) magnetic fields. We find that the line-tied tension force--a force that is not included in the basic torus instability theory--plays a major role in preventing eruptions. The dependence of this tension force on various vacuum field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).
Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials.
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav
2015-08-03
The control of quasi-static magnetic fields is of considerable interest in applications including the reduction of electromagnetic interference (EMI), wireless power transfer (WPT), and magnetic resonance imaging (MRI). The shielding of static or quasi-static magnetic fields is typically accomplished through the use of inherently magnetic materials with large magnetic permeability, such as ferrites, used sometimes in combination with metallic sheets and/or active field cancellation. Ferrite materials, however, can be expensive, heavy and brittle. Inspired by recent demonstrations of epsilon-, mu- and index-near-zero metamaterials, here we show how a longitudinal mu-near-zero (LMNZ) layer can serve as a strong frequency-selective reflector of magnetic fields when operating in the near-field region of dipole-like sources. Experimental measurements with a fabricated LMNZ sheet constructed from an artificial magnetic conductor - formed from non-magnetic, conducting, metamaterial elements - confirm that the artificial structure provides significantly improved shielding as compared with a commercially available ferrite of the same size. Furthermore, we design a structure to shield simultaneously at the fundamental and first harmonic frequencies. Such frequency-selective behavior can be potentially useful for shielding electromagnetic sources that may also generate higher order harmonics, while leaving the transmission of other frequencies unaffected.
NASA Astrophysics Data System (ADS)
Lewis, Ray A.; Modanese, Giovanni
Vibrating media offer an important testing ground for reconciling conflicts between General Relativity, Quantum Mechanics and other branches of physics. For sources like a Weber bar, the standard covariant formalism for elastic bodies can be applied. The vibrating string, however, is a source of gravitational waves which requires novel computational techniques, based on the explicit construction of a conserved and renormalized energy-momentum tensor. Renormalization (in a classical sense) is necessary to take into account the effect of external constraints, which affect the emission considerably. Our computation also relaxes usual simplifying assumptions like far-field approximation, spherical or plane wave symmetry, TT gauge and absence of internal interference. In a further step towards unification, the method is then adapted to give the radiation field of a transversal Alfven wave in a rarefied astrophysical plasma, where the tension is produced by an external static magnetic field.
A Novel Method of Localization for Moving Objects with an Alternating Magnetic Field
Gao, Xiang; Yan, Shenggang; Li, Bin
2017-01-01
Magnetic detection technology has wide applications in the fields of geological exploration, biomedical treatment, wreck removal and localization of unexploded ordinance. A large number of methods have been developed to locate targets with static magnetic fields, however, the relation between the problem of localization of moving objectives with alternating magnetic fields and the localization with a static magnetic field is rarely studied. A novel method of target localization based on coherent demodulation was proposed in this paper. The problem of localization of moving objects with an alternating magnetic field was transformed into the localization with a static magnetic field. The Levenberg-Marquardt (L-M) algorithm was applied to calculate the position of the target with magnetic field data measured by a single three-component magnetic sensor. Theoretical simulation and experimental results demonstrate the effectiveness of the proposed method. PMID:28430153
Heun, Yvonn; Hildebrand, Staffan; Heidsieck, Alexandra; Gleich, Bernhard; Anton, Martina; Pircher, Joachim; Ribeiro, Andrea; Mykhaylyk, Olga; Eberbeck, Dietmar; Wenzel, Daniela; Pfeifer, Alexander; Woernle, Markus; Krötz, Florian; Pohl, Ulrich; Mannell, Hanna
2017-01-01
In the field of vascular gene therapy, targeting systems are promising advancements to improve site-specificity of gene delivery. Here, we studied whether incorporation of magnetic nanoparticles (MNP) with different magnetic properties into ultrasound sensitive microbubbles may represent an efficient way to enable gene targeting in the vascular system after systemic application. Thus, we associated novel silicon oxide-coated magnetic nanoparticle containing microbubbles (SO-Mag MMB) with lentiviral particles carrying therapeutic genes and determined their physico-chemical as well as biological properties compared to MMB coated with polyethylenimine-coated magnetic nanoparticles (PEI-Mag MMB). While there were no differences between both MMB types concerning size and lentivirus binding, SO-Mag MMB exhibited superior characteristics regarding magnetic moment, magnetizability as well as transduction efficiency under static and flow conditions in vitro . Focal disruption of lentiviral SO-Mag MMB by ultrasound within isolated vessels exposed to an external magnetic field decisively improved localized VEGF expression in aortic endothelium ex vivo and enhanced the angiogenic response. Using the same system in vivo , we achieved a highly effective, site-specific lentiviral transgene expression in microvessels of the mouse dorsal skin after arterial injection. Thus, we established a novel lentiviral MMB technique, which has great potential towards site-directed vascular gene therapy.
NASA Astrophysics Data System (ADS)
Elblbesy, Mohamed A.
2017-12-01
Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.
Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón
2017-12-01
Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Mammals' response and adaptation to static magnetic fields as a nonspecific stressor
NASA Astrophysics Data System (ADS)
Nakagawa, Masayoshi
1990-06-01
Biological effects of static magnetic fields are still unclear and sometimes contradictory, and it has not been possible to connect this situation directly to some explanations of the mechanisms of the effects of static magnetic fields at the molecular level. Some researchers have pointed out that the process through which animals respond at the whole-body level to static magnetic fields follows the same pattern as the GAS (general adaptation syndrome) described by Selye. This biological or behavioral pattern is considered to be a common process followed by animals which are affected by environmental stimulants; they are depressed first, then surpass the deteriorated conditions and recover their normal conditions, or sometimes overshoot it. When this process is observed with mammals subjected to the magnetic fields, it can be concluded that magnetism has affected the organism. In this paper, the author reviews reports in which magnetic field density and minimum exposure time were determined with certain effects produced under certain conditions, and proposes a regression model for estimating the minimum amount of exposure which produces some effect on mammals.
Evolution of magnetic therapy from alternative to traditional medicine.
Vallbona, C; Richards, T
1999-08-01
Static or electromagnetic fields have been used for centuries to control pain and other biologic problems, but scientific evidence of their effect had not been gathered until recently. This article explores the value of magnetic therapy in rehabilitation medicine in terms of static magnetic fields and time varying magnetic fields (electromagnetic). A historical review is given and the discussion covers the areas of scientific criteria, modalities of magnetic therapy, mechanisms of the biologic effects of magnetic fields, and perspectives on the future of magnetic therapy.
Magnetogenetics: Remote Control of Cellular Signaling with Magnetic Fields
NASA Astrophysics Data System (ADS)
Sauer, Jeremy P.
Means for temporally regulating gene expression and cellular activity are invaluable for elucidating the underlying physiological processes and have therapeutic implications. Here we report the development of a system for remote regulation of gene expression by low frequency radiowaves (RF) or by a static magnetic field. We accomplished this by first adding iron oxide nanoparticles - either exogenously or as genetically encoded ferritin/ferric oxyhydroxide particle. These particles have been designed with affinity to the plasma membrane ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) by a conjugated antibody. Application of a magnetic field stimulates the particle to gate the ion channel and this, in turn, initiates calcium-dependent transgene expression. We first demonstrated in vitro that TRPV1 can be actuated to cause calcium flux into the cell by directly applying a localized magnetic field. In mice expressing these genetically encoded components, application of external magnetic field caused remote stimulation of insulin transgene expression and significantly lowered blood glucose. In addition, we are investigating mechanisms by which iron oxide nanoparticles can absorb RF, and transduce this energy to cause channel opening. This robust, repeatable method for remote cellular regulation in vivo may ultimately have applications in basic science, as well as in technology and therapeutics.
NASA Astrophysics Data System (ADS)
Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe
2016-07-01
We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.
Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe
2016-07-01
We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.
ERIC Educational Resources Information Center
Donoso, Guillermo; Ladera, Celso L.
2012-01-01
The parametric oscillations of an oscillator driven electromagnetically are presented. The oscillator is a conductive pipe hung from a spring, and driven by the oscillating magnetic field of a surrounding coil in the presence of a static magnetic field. It is an interesting case of parametric oscillations since the pipe is neither a magnet nor a…
Sirmatel, O; Sert, C; Sirmatel, F; Selek, S; Yokus, B
2007-06-01
The aim of this study was to investigate the effects of a high-strength magnetic field produced by a magnetic resonance imaging (MRI) apparatus on oxidative stress. The effects of a 1.5 T static magnetic field on the total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) in male subjects were investigated. In this study, 33 male volunteers were exposed to a 1.5 T static magnetic field for a short time and the TAC, TOS and OSI of each subject were determined. Magnetic field exposure was provided using a magnetic resonance apparatus; radiofrequency was not applied. Blood samples were taken from subjects and TAC, TOS and OSI values were measured using the methods of Erel. TAC showed a significant increase in post-exposures compared to pre-exposures to the magnetic field (p < 0.05). OSI and TOS showed a significant decrease in post-exposures compared to pre-exposures to a 1.5 T magnetic field (for each of two, p < 0.01). The 1.5 T static magnetic field used in the MRI apparatus did not yield a negative effect; on the contrary, it produced the positive effect of decreasing oxidative stress in men following short-term exposure.
Coherent-Anomaly Method in Critical Phenomena. IV.
NASA Astrophysics Data System (ADS)
Hu, Xiao; Suzuki, Masuo
The systematic Weiss-like and Bethe-like approximations based on the mean-field transfer-matrix method are used to investigate the asymptotic behavior of the induced magnetization on a semi-infinite square lattice, and to investigate the wave-number dependence of the susceptibility in a nonuniform external field. The critical exponents ν, ν', ηi and η are estimated following the general CAM prescription. A new scaling relation ν·ηi=β is obtained in the framework of the finite-degree-of-approximation scaling. Together with previous papers, all the static critical exponents have been estimated by the CAM, and are shown to satisfy the well-known scaling relations.
[Factors for Degaussing of a Cochlear Implant Magnet in the MR Scanner].
Koganezawa, Takumi; Uchiyama, Naoko; Teshigawara, Mai; Ogura, Akio
This study examined the conditions influencing degauss of the magnet using magnetic resonance imaging (MRI). Poly methyl methacrylate (PMMA) was used to fix the measurement magnets to the MRI bed at angles from 0° to 180° for the magnetic flux vector of static magnetic field. The PMMA was moved in the MRI magnetic field. Magnetic flux density was measured before and after bed movement, and the rate of degauss was calculated. The contents examined are as follows: (1) the angle of the magnetic flux vector of the measurement magnets for the magnetic flux vector of the static magnetic field, (2) the number of movements, (3) moving velocity, and (4) the movement on the spatial gradient of magnetic field. Mann-Whitney U test was used for statistical analysis of the data. In conclusion, the effect of the angle of the magnetic flux vector of the implant magnet was high under the conditions of degauss in this study. Therefore, during the MRI examination of a patient with a cochlear implant magnet, the operators identified the directions of the magnetic flux vector and static magnetic field of the implant magnet.
Static magnetotherapy for the treatment of insomnia.
Shieh, Yao Y; Tsai, Fong Y
2008-01-01
Magnets have been used for centuries to treat a number of physical disorders. The vast majority of research, however, on static magnet therapy for insomnia has been confined to the auricular type of therapy, with publications limited to Chinese journals. Most of these studies have depended on the subjective self-assessment of participants rather than objective scientific measurements. In this study, the authors report the positive preliminary results of insomnia treatment using pillows with embedded magnets, magnetic insoles and TriPhase bracelets. The analysis is based on objective actigraphic and polysomnographic data. A theory of accelerated transition from wakefulness to sleep is proposed to explain the process of insomnia relief through low-strength static magnetic fields. Analysis by functional Magnetic Resonance Imaging (fMRI) is used to further investigate the theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodega, G.; Forcada, I.; Suarez, I.
This paper reports the effects of exposure to static, sinusoidal (50 Hz), and combined static/sinusoidal magnetic fields on cultured astroglial cells. Confluent primary cultures of astroglial cells were exposed to a 1-mT sinusoidal, static, or combined magnetic field for 1 h. In another experiment, cells were exposed to the combined magnetic field for 1, 2, and 4 h. The hsp25, hsp60, hsp70, actin, and glial fibrillary acidic protein contents of the astroglial cells were determined by immunoblotting 24 h after exposure. No significant differences were seen between control and exposed cells with respect to their contents of these proteins, neithermore » were any changes in cell morphology observed. In a third experiment to determine the effect of a chronic (11-day) exposure to a combined 1-mT static/sinusoidal magnetic field on the proliferation of cultured astroglial cells, no significant differences were seen between control, sham-exposed, or exposed cells. These results suggest that exposure to 1-mT sinusoidal, static, or combined magnetic fields has no significant effects on the stress, cytoskeletal protein levels in, or proliferation of cultured astroglial cells.« less
ERIC Educational Resources Information Center
Goff, Eric E.; Reindl, Katie M.; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G.; Schroeder, Noah L.; White, Alan R.
2017-01-01
The use of external representations (ERs) to introduce concepts in undergraduate biology has become increasingly common. Two of the most prevalent are static images and dynamic animations. While previous studies comparing static images and dynamic animations have resulted in somewhat conflicting findings in regards to learning outcomes, the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulagin, D. V.; Levchenko, G. G.; Savchenko, A. S.
The features of refraction (including the Goos-Hanchen effect) of a TM or TE bulk electromagnetic wave incident from outside on the surface of a chiral magnetoelectric with the homogeneous antisymmetric magnetoelectric interaction has been analytically studied on an example of the two-sublattice model of a multiferroic. In particular, it has been shown that the requirement that the diagonal components of the permeability and permittivity tensors are simultaneously negative is not necessary for the implementation of the properties of a left-handed medium. The results have been generalized to the case of an easy-axis antiferromagnet with an antisymmetry center with the 4{submore » z}{sup {+-}}2{sub x}{sup +}I{sup -} structure in the static external magnetic field perpendicular to the easy axis of magnetization. Some results of this work were preliminarily reported in D.V. Kulagin, G.G. Levchenko, A.S. Savchenko, A.S. Tarasenko, and S.V. Tarasenko, JETP Lett. 92, 511 (2010).« less
Topological phase transitions and quantum Hall effect in the graphene family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledwith, Patrick John; Kort-Kamp, Wilton Junior de Melo; Dalvit, Diego Alejandro Roberto
Monolayer staggered materials of the graphene family present intrinsic spin-orbit coupling and can be driven through several topological phase transitions using external circularly polarized lasers and static electric or magnetic fields. We show how topological features arising from photoinduced phase transitions and the magnetic-field-induced quantum Hall effect coexist in these materials and simultaneously impact their Hall conductivity through their corresponding charge Chern numbers. We also show that the spectral response of the longitudinal conductivity contains signatures of the various phase-transition boundaries, that the transverse conductivity encodes information about the topology of the band structure, and that both present resonant peaksmore » which can be unequivocally associated with one of the four inequivalent Dirac cones present in these materials. As a result, this complex optoelectronic response can be probed with straightforward Faraday rotation experiments, allowing the study of the crossroads between quantum Hall physics, spintronics, and valleytronics.« less
NASA Astrophysics Data System (ADS)
Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.
2017-11-01
An active stabilization effect of a rotating control field against an error field penetration is numerically studied. We have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’, which can simulate plasma responses to rotating/static external magnetic field. Adopting non-uniform flux coordinates system, the AEOLUS-IT simulation can employ high magnetic Reynolds number condition relevant to present tokamaks. By AEOLUS-IT, we successfully clarified the stabilization mechanism of the control field against the error field penetration. Physical processes of a plasma rotation drive via the control field are demonstrated by the nonlinear simulation, which reveals that the rotation amplitude at a resonant surface is not a monotonic function of the control field frequency, but has an extremum. Consequently, two ‘bifurcated’ frequency ranges of the control field are found for the stabilization of the error field penetration.
Topological phase transitions and quantum Hall effect in the graphene family
NASA Astrophysics Data System (ADS)
Ledwith, P.; Kort-Kamp, W. J. M.; Dalvit, D. A. R.
2018-04-01
Monolayer staggered materials of the graphene family present intrinsic spin-orbit coupling and can be driven through several topological phase transitions using external circularly polarized lasers and static electric or magnetic fields. We show how topological features arising from photoinduced phase transitions and the magnetic-field-induced quantum Hall effect coexist in these materials and simultaneously impact their Hall conductivity through their corresponding charge Chern numbers. We also show that the spectral response of the longitudinal conductivity contains signatures of the various phase-transition boundaries, that the transverse conductivity encodes information about the topology of the band structure, and that both present resonant peaks which can be unequivocally associated with one of the four inequivalent Dirac cones present in these materials. This complex optoelectronic response can be probed with straightforward Faraday rotation experiments, allowing the study of the crossroads between quantum Hall physics, spintronics, and valleytronics.
Topological phase transitions and quantum Hall effect in the graphene family
Ledwith, Patrick John; Kort-Kamp, Wilton Junior de Melo; Dalvit, Diego Alejandro Roberto
2018-04-15
Monolayer staggered materials of the graphene family present intrinsic spin-orbit coupling and can be driven through several topological phase transitions using external circularly polarized lasers and static electric or magnetic fields. We show how topological features arising from photoinduced phase transitions and the magnetic-field-induced quantum Hall effect coexist in these materials and simultaneously impact their Hall conductivity through their corresponding charge Chern numbers. We also show that the spectral response of the longitudinal conductivity contains signatures of the various phase-transition boundaries, that the transverse conductivity encodes information about the topology of the band structure, and that both present resonant peaksmore » which can be unequivocally associated with one of the four inequivalent Dirac cones present in these materials. As a result, this complex optoelectronic response can be probed with straightforward Faraday rotation experiments, allowing the study of the crossroads between quantum Hall physics, spintronics, and valleytronics.« less
Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch
NASA Technical Reports Server (NTRS)
Thomas, John H.; Montesinis, Benjamin
1989-01-01
The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.
Magnetic field effects on charge structure factors of gapped graphene structure
NASA Astrophysics Data System (ADS)
Rezania, Hamed; Tawoose, Nasrin
2018-02-01
We present the behaviors of dynamical and static charge susceptibilities of undoped gapped graphene using the Green's function approach in the context of tight binding model Hamiltonian. Specially, the effects of magnetic field on the plasmon modes of gapped graphene structure are investigated via calculating correlation function of charge density operators. Our results show the increase of magnetic field leads to disappear high frequency plasmon mode for gapped case. We also show that low frequency plasmon mode has not affected by increase of magnetic field and chemical potential. Finally the temperature dependence of static charge structure factor of gapp graphene structure is studied. The effects of both magnetic field and gap parameter on the static structure factor are discusses in details.
Ergoregions in magnetized black hole spacetimes
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Mujtaba, A. H.; Pope, C. N.
2013-06-01
The spacetimes obtained by Ernst’s procedure for appending an external magnetic field B to a seed Kerr-Newman black hole are commonly believed to be asymptotic to the static Melvin metric. We show that this is not in general true. Unless the electric charge of the black hole satisfies Q= jB(1+{\\textstyle {\\frac{\\scriptstyle 1}{\\scriptstyle 4} } } j^2 B^4), where j is the angular momentum of the original seed solution, an ergoregion extends all the way from the black hole horizon to infinity. We find that if the condition on the electric charge is satisfied then the metric is asymptotic to the static Melvin metric, and the electromagnetic field carries not only magnetic, but also electric, flux along the axis. We give a self-contained account of the solution-generating procedure, including explicit formulae for the metric and the vector potential. In the case when Q= jB(1+{\\textstyle {\\frac{\\scriptstyle 1}{\\scriptstyle 4} } } j^2 B^4), we show that there is an arbitrariness in the choice of asymptotically timelike Killing field K_\\Omega = {\\partial }/{\\partial }t+ \\Omega \\, {\\partial }/{\\partial }\\phi, because there is no canonical choice of Ω. For one choice, Ω = Ωs, the metric is asymptotically static, and there is an ergoregion confined to the neighbourhood of the horizon. On the other hand, by choosing Ω = ΩH, so that K_{\\Omega _H} is co-rotating with the horizon, then for sufficiently large B numerical studies indicate there is no ergoregion at all. For smaller values, in a range B- < B < B+, there is a toroidal ergoregion outside and disjoint from the horizon. If B ⩽ B- this ergoregion expands all the way to infinity in a cylindrical region near to the rotation axis. For black holes whose size is small compared to the Melvin radius 2/B, and neglecting back-reaction of the electromagnetic field, we recover Wald’s result that it is energetically favourable for the hole to acquire a charge 2jB.
Liboff, A R
2009-01-01
Wellness can be described in physical terms as a state that is a function of the organism's electric polarization vector P(r, t). One can alter P by invasive application of electric fields or by non invasive external pulsed magnetic fields (PMF) or ion cyclotron resonance (ICR)-like combinations of static and sinusoidal magnetic fields. Changes in human (total) body bioimpedance are significantly altered during exposure to ICR magnetic field combinations. The conductivities of polar amino acids in solution exhibit sharp discontinuities at ICR magnetic fields tuned to the specific charge to mass ratio of the amino acid. It has been reported that protein peptide bonds are broken by such amino acid ICR fields. Remarkably, some of these effects are only found at ultra-low AC magnetic intensities, on the order of .05 muT. This is approximately 10(3) below accepted levels determined by engineering estimates. Such strikingly low magnetic intensities imply the existence of physically equivalent endogenous weak electric field oscillations. These observations not only make claims related to electromagnetic pollution more credible but also provide a basis for future electromagnetic applications in medicine. They also reinforce the notion that physical factors acting to influence the electric polarization in living organisms play a key role in biology.
Study on static and dynamic characteristics of moving magnet linear compressors
NASA Astrophysics Data System (ADS)
Chen, N.; Tang, Y. J.; Wu, Y. N.; Chen, X.; Xu, L.
2007-09-01
With the development of high-strength NdFeB magnetic material, moving magnet linear compressors have been gradually introduced in the fields of refrigeration and cryogenic engineering, especially in Stirling and pulse tube cryocoolers. This paper presents simulation and experimental investigations on the static and dynamic characteristics of a moving magnet linear motor and a moving magnet linear compressor. Both equivalent magnetic circuits and finite element approaches have been used to model the moving magnet linear motor. Subsequently, the force and equilibrium characteristics of the linear motor have been predicted and verified by detailed static experimental analyses. In combination with a harmonic analysis, experimental investigations were conducted on a prototype of a moving magnet linear compressor. A voltage-stroke relationship, the effect of charging pressure on the performance and dynamic frequency response characteristics are investigated. Finally, the method to identify optimal points of the linear compressor has been described, which is indispensable to the design and operation of moving magnet linear compressors.
Magnetic vortex nucleation modes in static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanatka, Marek; Urbanek, Michal; Jira, Roman
The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less
Magnetic vortex nucleation modes in static magnetic fields
Vanatka, Marek; Urbanek, Michal; Jira, Roman; ...
2017-10-03
The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less
Electron acceleration by a focused laser pulse in a static magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shihua; Wu Fengmin; Zhao Xianghao
2007-12-15
The model given by K. P. Singh [Phys. Rev. E 69, 056410 (2004)] for vacuum laser acceleration in a static magnetic field is revisited by including the effects of diffraction and the longitudinal electric field of a focused laser beam. Compared with a similar model without a static magnetic field, a simulation shows that electrons can gain much more net energy in this model even using the fifth-order corrected equations for the field of a focused laser beam. The acceleration mechanism and the acceleration efficiency are also investigated.
Electron heating in the laser and static electric and magnetic fields
NASA Astrophysics Data System (ADS)
Zhang, Yanzeng; Krasheninnikov, S. I.
2018-01-01
A 2D slab approximation of the interactions of electrons with intense linearly polarized laser radiation and static electric and magnetic fields is widely used for both numerical simulations and simplified semi-analytical models. It is shown that in this case, electron dynamics can be conveniently described in the framework of the 3/2 dimensional Hamiltonian approach. The electron acceleration beyond a standard ponderomotive scaling, caused by the synergistic effects of the laser and static electro-magnetic fields, is due to an onset of stochastic electron motion.
Li, Xi; Fautrelle, Yves; Ren, Zhongming; Moreau, Rene
2017-01-01
Understanding the macrosegregation formed by applying magnetic fields is of high commercial importance. This work investigates how static magnetic fields control the solute and primary phase distributions in four directionally solidified alloys (i.e., Al-Cu, Al-Si, Al-Ni and Zn-Cu alloys). Experimental results demonstrate that significant axial macrosegregation of the solute and primary phases (i.e., Al2Cu, Si, Al3Ni and Zn5Cu phases) occurs at the initial solidification stage of the samples. This finding is accompanied by two interface transitions in the mushy zone: quasi planar → sloping → quasi planar. The amplitude of the macrosegregation of the primary phases under the magnetic field is related to the magnetic field intensity, temperature gradient and growth speed. The corresponding numerical simulations present a unidirectional thermoelectric (TE) magnetic convection pattern in the mushy zone as a consequence of the interaction between the magnetic field and TE current. Furthermore, a model is proposed to explain the peculiar macrosegregation phenomenon by considering the effect of the forced TE magnetic convection on the solute distribution. The present study not only offers a new approach to control the solute distribution by applying a static magnetic field but also facilitates the understanding of crystal growth in the solute that is controlled by the static magnetic field during directional solidification. PMID:28367991
Characteristics on electodynamic suspension simulator with HTS levitation magnet
NASA Astrophysics Data System (ADS)
Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.
2009-10-01
High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.
ERIC Educational Resources Information Center
Ladera, Celso L.; Donoso, Guillermo
2011-01-01
A short conducting pipe that hangs from a weak spring is forced to oscillate by the magnetic field of a surrounding coaxial coil that has been excited by a low-frequency current source in the presence of an additional static magnetic field. Induced oscillating currents appear in the pipe. The pipe motion becomes damped by the dragging forces…
NASA Astrophysics Data System (ADS)
Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran
2016-03-01
Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.
NASA Astrophysics Data System (ADS)
Lee, Hwanhee; Magara, Tetsuya
2018-06-01
We present a magnetohydrodynamic model of solar eruption based on the dynamic state transition from the quasi-static state to the eruptive state of an active region (AR) magnetic field. For the quasi-static state before an eruption, we consider the existence of a slow solar wind originating from an AR, which may continuously make the AR magnetic field deviate from mechanical equilibrium. In this model, we perform a three-dimensional magnetohydrodynamic simulation of AR 12158 producing a coronal mass ejection, where the initial magnetic structure of the simulation is given by a nonlinear force-free field derived from an observed photospheric vector magnetic field. We then apply a pressure-driven outflow to the upper part of the magnetic structure to achieve a quasi-static pre-eruptive state. The simulation shows that the eruptive process observed in this AR may be caused by the dynamic state transition of an AR magnetic field, which is essentially different from the destabilization of a static magnetic field. The dynamic state transition is determined from the shape evolution of the magnetic field line according to the κH-mechanism. This work demonstrates how the mechanism works to produce a solar eruption in the dynamic solar corona governed by the gravitational field and the continuous outflows of solar wind.
Reduction of the Earth's magnetic field inhibits growth rates of model cancer cell lines.
Martino, Carlos F; Portelli, Lucas; McCabe, Kevin; Hernandez, Mark; Barnes, Frank
2010-12-01
Small alterations in static magnetic fields have been shown to affect certain chemical reaction rates ex vivo. In this manuscript, we present data demonstrating that similar small changes in static magnetic fields between individual cell culture incubators results in significantly altered cell cycle rates for multiple cancer-derived cell lines. This change as assessed by cell number is not a result of apoptosis, necrosis, or cell cycle alterations. While the underlying mechanism is unclear, the implications for all cell culture experiments are clear; static magnetic field conditions within incubators must be considered and/or controlled just as one does for temperature, humidity, and carbon dioxide concentration. Copyright © 2010 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Croell, Arne; Dold, P.; Kaiser, Th.; Szofran, Frank; Benz, K. W.
1999-01-01
Hear and mass transfer in float-zone processing are strongly influenced by convective flows in the zone. They are caused by buoyancy convection, thermocapillary (Marangoni) convection, or artificial sources such as rotation and radio frequency heating. Flows in conducting melts can be controlled by the use of magnetic fields, either by damping fluid motion with static fields or by generating a def@ned flow with rotating fields. The possibilities of using static and rotating magnetic fields in silicon floating-zone growth have been investigated by experiments in axial static fields up to ST and in transverse rotating magnetic fields up to 7.S mT. Static fields of a few 100 MT already suppress most striations but are detrimental to the radial segregation by introducing a coring effect. A complete suppression of dopant striations caused by time-dependent thermocapillary convection and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, is possible with static fields ? 1T. However, under certain conditions the use of high axial magnetic fields can lead to the appearance of a new type of pronounced dopant striations, caused by thermoelec:romagnetic convection. The use of a transverse rotating magnetic field influences the microscopic segregation at quite low inductions, of the order of a few mT. The field shifts time-dependent flows and the resulting striation patterns from a broad range of low frequencies at high amplitudes to a few high frequencies at low amplitudes
NASA Technical Reports Server (NTRS)
Croll, A.; Dold, P.; Kaiser, Th.; Szofran, F. R.; Benz, K. W.
1999-01-01
Heat and mass transfer in float-zone processing are strongly influenced by convective flows in the zone. They are caused by buoyancy convection, thermocapillary (Marangoni) convection, or artificial sources such as rotation and radio-frequency heating. Flows in conducting melts can be controlled by the use of magnetic fields, either by damping fluid motion with static fields or by generating a defined flow with rotating fields. The possibilities of using static and rotating magnetic fields in silicon floating-zone growth have been investigated by experiments in axial static fields up to 5 T and in transverse rotating magnetic fields up to 7.5 mT. Static fields of a few 100 mT already suppress most striations but are detrimental to the radial segregation by introducing a coring effect. A complete suppression of dopant striations caused by time-dependent thermocapillary convection and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile toward a more diffusion-limited case, is possible with static fields greater than or equal to 1 T. However, under certain conditions the use of high axial magnetic fields can lead to the appearance of a new type of pronounced dopant striations, caused by thermoelectromagnetic convection. The use of a transverse rotating magnetic field influences the microscopic segregation at quite low inductions, of the order of a few millitesla. The field shifts time- dependent flows and the resulting striation patterns from a broad range of low frequencies at high amplitudes to a few high frequencies at low amplitudes.
Modeling the static fringe field of superconducting magnets.
Jeglic, P; Lebar, A; Apih, T; Dolinsek, J
2001-05-01
The resonance frequency-space and the frequency gradient-space relations are evaluated analytically for the static fringe magnetic field of superconducting magnets used in the NMR diffusion measurements. The model takes into account the actual design of the high-homogeneity magnet coil system that consists of the main coil and the cryoshim coils and enables a precise calibration of the on-axis magnetic field gradient and the resonance frequency inside and outside of the superconducting coil. Copyright 2001 Academic Press.
Jan, Luka; Fefer, Dušan; Košmelj, Katarina; Gaberščik, Alenka; Jerman, Igor
2015-04-01
The geomagnetic field (GMF) varies over Earth's surface and changes over time, but it is generally not considered as a factor that could influence plant growth. The effects of reduced and enhanced GMFs and a strong static magnetic field on growth and chlorophyll a (Chl a) fluorescence of Lemna minor plants were investigated under controlled conditions. A standard 7 day test was conducted in extreme geomagnetic environments of 4 µT and 100 µT as well as in a strong static magnetic field environment of 150 mT. Specific growth rates as well as slow and fast Chl a fluorescence kinetics were measured after 7 days incubation. The results, compared to those of controls, showed that the reduced GMF significantly stimulated growth rate of the total frond area in the magnetically treated plants. However, the enhanced GMF pointed towards inhibition of growth rate in exposed plants in comparison to control, but the difference was not statistically significant. This trend was not observed in the case of treatments with strong static magnetic fields. Our measurements suggest that the efficiency of photosystem II is not affected by variations in GMF. In contrast, the strong static magnetic field seems to have the potential to increase initial Chl a fluorescence and energy dissipation in Lemna minor plants. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog
2018-05-01
We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.
The ST environment: Expected charged particle radiation levels
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.
1978-01-01
The external (surface incident) charged particle radiation, predicted for the ST satellite at the three different mission altitudes, was determined in two ways: (1) by orbital flux-integration and (2) by geographical instantaneous flux-mapping. The latest standard models of the environment were used in this effort. Magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions were obtained from a current field model. Spatial and temporal variations or conditions affecting the static environment models were considered and accounted for, wherever possible. Limited shielding and dose evaluations were performed for a simple geometry. Results, given in tabular and graphical form, are analyzed, explained, and discussed. Conclusions are included.
ERIC Educational Resources Information Center
Onorato, P.; Mascheretti, P.; DeAmbrosis, A.
2012-01-01
In this paper, we describe how simple experiments realizable by using easily found and low-cost materials allow students to explore quantitatively the magnetic interaction thanks to the help of an Open Source Physics tool, the Tracker Video Analysis software. The static equilibrium of a "column" of permanents magnets is carefully investigated by…
Static magnetic Faraday rotation spectroscopy combined with a differential scheme for OH detection
NASA Astrophysics Data System (ADS)
Zhao, Weixiong; Deng, Lunhua; Qian, Xiaodong; Fang, Bo; Gai, Yanbo; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun
2015-04-01
The hydroxyl (OH) radical plays a critical role in atmospheric chemistry due to its high reactivity with volatile organic compounds (VOCs) and other trace gaseous species. Because of its very short life time and very low concentration in the atmosphere, interference-free high sensitivity in-situ OH monitoring by laser spectroscopy represents a real challenge. Faraday rotation spectroscopy (FRS) relies on the particular magneto-optic effect observed for paramagnetic species, which makes it capable of enhancing the detection sensitivity and mitigation of spectral interferences from diamagnetic species in the atmosphere. When an AC magnetic field is used, the Zeeman splitting of the molecular absorption line (and thus the magnetic circular birefringence) is modulated. This provides an 'internal modulation' of the sample, which permits to suppress the external noise like interference fringes. An alternative FRS detection scheme is to use a static magnetic field (DC-field) associated with laser wavelength modulation to effectively modulate the Zeeman splitting of the absorption lines. In the DC field case, wavelength modulation of the laser frequency can provide excellent performance compared to most of the sensing systems based on direct absorption and wavelength modulation spectroscopy. The dimension of the DC solenoid is not limited by the resonant frequency of the RLC circuit, which makes large dimension solenoid coil achievable and the absorption base length could be further increased. By employing a combination of the environmental photochemical reactor or smog chamber with multipass absorption cell, one can lower the minimum detection limit for high accuracy atmospheric chemistry studies. In this paper, we report on the development of a DC field based FRS in conjunction with a balanced detection scheme for OH radical detection at 2.8 μm and the construction of OH chemistry research platform which combined a large dimension superconducting magnetic coil with the multipass cell and photochemical reactor chamber for real time in-situ measurement of OH radical concentration in the chamber.
Fahrig, R; Wen, Z; Ganguly, A; DeCrescenzo, G; Rowlands, J A; Stevens, G M; Saunders, R F; Pelc, N J
2005-06-01
Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.
Role of the d -d interaction in the antiferromagnetic phase of λ -(BEDT-STF ) 2FeCl4
NASA Astrophysics Data System (ADS)
Minamidate, Takaaki; Shindo, Hironori; Ihara, Yoshihiko; Kawamoto, Atsushi; Matsunaga, Noriaki; Nomura, Kazushige
2018-03-01
Magnetic susceptibility and proton nuclear magnetic resonance (1H-NMR ) measurements were performed for the quasi-two-dimensional π -d interacting system λ -(BEDT-STF ) 2FeCl4 at ambient pressure. Magnetic susceptibility arising from the 3 d spins of the FeCl4 anion show an anisotropy at low temperature and its temperature dependence for the external field parallel to the c axis is described as a broad peak structure at 8 K. A sharp peak in the temperature dependence of T1-1 associated with the antiferromagnetic (AF) transition is observed at TAF=16 K, together with the drastic splitting of the NMR spectrum below TAF. The relation between the static susceptibility and the splitting of the NMR shift suggests the existence of the relatively strong d -d AF interaction. These results can be explained by the model considering the AF-coupled d -spin system in the AF long-range-ordered π -spin system. We find that the AF phases in λ -type salts can be universally explained by this model.
NASA Astrophysics Data System (ADS)
Yin, Zhu-Hua; Zhang, Jian-Min
2016-10-01
The structural stability, electronic, magnetic and optical properties of zincblende Zn0.5V0.5Te under pressures 0-5 GPa are investigated by the spin-polarized first-principles calculation. Under pressure, the Zn0.5V0.5Te is always half-metal with the total magnetic moment μtot of 3μB / cell mainly contributed by V2+ ion, but the spin-down channel opens a band gap. The Zn0.5V0.5Te also behaves in a ductile manner and is mechanical stable until 3.78 GPa pressure. The static dielectric function ε1 (0) and refractive index n (0) increase with pressure. The two absorption peaks located in energy regions 0-20 eV and 35-50 eV not only increase but also shift to the higher energy region (blue shift) with pressure. So the electronic and optical properties of Zn0.5V0.5Te could be tuned through external pressure, which is beneficial to the electronic and optical applications.
Chiral current generation in QED by longitudinal photons
NASA Astrophysics Data System (ADS)
Acosta Avalo, J. L.; Pérez Rojas, H.
2016-08-01
We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.
Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites
NASA Astrophysics Data System (ADS)
Kao, A.; Gao, J.; Pericleous, K.
2018-01-01
In the undercooled solidification of pure metals, the dendrite tip velocity has been shown experimentally to have a strong dependence on the intensity of an external magnetic field, exhibiting several maxima and minima. In the experiments conducted in China, the undercooled solidification dynamics of pure Ni was studied using the glass fluxing method. Visual recordings of the progress of solidification are compared at different static fields up to 6 T. The introduction of microscopic convective transport through thermoelectric magnetohydrodynamics is a promising explanation for the observed changes of tip velocities. To address this problem, a purpose-built numerical code was used to solve the coupled equations representing the magnetohydrodynamic, thermal and solidification mechanisms. The underlying phenomena can be attributed to two competing flow fields, which were generated by orthogonal components of the magnetic field, parallel and transverse to the direction of growth. Their effects are either intensified or damped out with increasing magnetic field intensity, leading to the observed behaviour of the tip velocity. The results obtained reflect well the experimental findings. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Mori, Koichiro
2009-02-01
The purpose of this short article is to set static and dynamic models for optimal floodplain management and to compare policy implications from the models. River floodplains are important multiple resources in that they provide various ecosystem services. It is fundamentally significant to consider environmental externalities that accrue from ecosystem services of natural floodplains. There is an interesting gap between static and dynamic models about policy implications for floodplain management, although they are based on the same assumptions. Essentially, we can derive the same optimal conditions, which imply that the marginal benefits must equal the sum of the marginal costs and the social external costs related to ecosystem services. Thus, we have to internalise the external costs by market-based policies. In this respect, market-based policies seem to be effective in a static model. However, they are not sufficient in the context of a dynamic model because the optimal steady state turns out to be unstable. Based on a dynamic model, we need more coercive regulation policies.
Regularity in an environment produces an internal torque pattern for biped balance control.
Ito, Satoshi; Kawasaki, Haruhisa
2005-04-01
In this paper, we present a control method for achieving biped static balance under unknown periodic external forces whose periods are only known. In order to maintain static balance adaptively in an uncertain environment, it is essential to have information on the ground reaction forces. However, when the biped is exposed to a steady environment that provides an external force periodically, uncertain factors on the regularity with respect to a steady environment are gradually clarified using learning process, and finally a torque pattern for balancing motion is acquired. Consequently, static balance is maintained without feedback from ground reaction forces and achieved in a feedforward manner.
NASA Astrophysics Data System (ADS)
Guan, Wei; Shi, Peng; Hu, Hengshan
2018-01-01
In this study, we theoretically analyse the contributions of the four poroelastic-wave potentials to seismoelectromagnetic (SEM) wavefields, verify the validity of the quasi-static calculation of the electric field and provide a method to calculate the magnetic field by using the curl-free electric field. Calculations show that both the fast and slow P waves and the SH and SV waves have non-negligible contributions to the SEM fields. The S waves have indirect contribution to the electric field through the EM conversion from the magnetic field, although the direct contribution due to streaming current is negligible if EM wavenumbers are much smaller than those of the S waves. The P waves have indirect contribution to the magnetic field through EM conversion from the electric field, although the direct contribution is absent. The quasi-static calculation of the electric field is practicable since it is normally satisfied in reality that the EM wavenumbers are much smaller than those of poroelastic waves. While the direct contribution of the S waves and the higher-order EM conversions are ignored, the first-order EM conversion from the S-wave-induced magnetic field is reserved through the continuity of the electric-current density. To calculate the magnetic field on this basis, we separate the quasi-static electric field into a rotational and an irrotational part. The magnetic-field solutions are derived through Hertz vectors in which the coefficients of the magnetic Hertz vector are determined from the magnetic-field continuities and those of the electric Hertz vector originate from the irrotational part of the quasi-static electric field.
Orientation of Magnetized MnBi in a Strong Static Magnetic Field
NASA Astrophysics Data System (ADS)
Zheng, Tianxiang; Zhong, Yunbo; Dong, Licheng; Zhou, Bangfei; Ren, Zhongming; Debray, Francois; Beaugnon, Eric
2018-06-01
Solidification of Bi-4.5 wt pct Mn alloy was investigated in the presence and absence of a strong static magnetic field (SSMF). A cooling rate ( R) of 60 K/min caused MnBi to orient with the SSMF, owing to the force moment and attractive force. The attractive force and magnetic gradient force induced formation of multilayered MnBi when R was 5 K/min. The magnetic gradient force was damped when R was 60 K/min. Low cooling rates favored the aggregation process.
Manipulating Cells with Static Magnetic Fields
NASA Astrophysics Data System (ADS)
Valles, J. M.; Guevorkian, K.
2005-07-01
We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.
NASA Astrophysics Data System (ADS)
Bogatina, Nina; Sheykina, Nadiia
Dependencies of gravitropic reactions in the static magnetic field and at different frequencies of alternative component of the combined magnetic fields were investigated. These frequencies were equal to the cyclotron frequencies of Ca2+, Mg2+ ions and ions of auxin and abscisic acid. It was shown that the increasing of magnetic field noise assisted both to the observation of biological effects and to the acceleration of adaptation processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girka, I. O., E-mail: igorgirka@karazin.ua; Girka, V. O.; Sydora, R. D.
2016-06-15
The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1.more » An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.« less
14 CFR 27.865 - External loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...
14 CFR 27.865 - External loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...
14 CFR 27.865 - External loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...
14 CFR 27.865 - External loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...
14 CFR 27.865 - External loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, Tanja; Engel, Dieter; Ehresmann, Arno
2008-12-15
A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.
Long-term exposure of several marine benthic animals to static magnetic fields.
Bochert, R; Zettler, M L
2004-10-01
Electrical currents in underwater sea cables could induce magnetic fields. The sea cables lie on or within the sea bottom and this is the living area for many invertebrate and vertebrate species. North Sea prawn Crangon crangon (Crustacea, Decapoda), round crab Rhithropanopeus harrisii (Crustacea, Brachyura), glacial relict isopod Saduria entomon (Crustacea, Isopoda), blue mussel Mytilus edulis (Bivalvia), and young flounder Plathichthys flesus (Pisces) were exposed to a static magnetic field (MF) of 3.7 mT for several weeks. The results showed no differences in survival between experimental and control animals. Mussels M. edulis were kept under static magnetic field conditions for 3 months during their reproductive period in spring. The determination of gonad index and condition index revealed no significant differences to the control group. 2004 Wiley-Liss, Inc.
[Effect of static magnetic field on deep wound healing of SD rats].
Shen, Jian-Guo; Chen, Wei-Shan; Wang, Chang-Xing; Jiang, Tao; Dong, Li-Qiang
2009-05-01
To investigate the effect of static magnetic field on deep wound healing of SD rats and VEGF during the wound healing and different strength static magnetic field on deep wound healing of SD rats. Divided forty-eight SD rats into three groups: 0.16 T magnetic disk treatment (0.16 T group), 0.32 T magnetic disk treatment (0.32 T group), control group. General wounds healing situation was observated on the 3, 6, 9, 12 day. The area of every wound was calculated. The tissue of granulation was dyeing by immune tissue chemical decoration method, in which VEGF protein content with its range in tissue was measured. The healing index of 0.16 T magnetic group wounds were larger than that of control group on 6th and 9th day, there were statistical difference. The healing index of 0.32 T magnetic group wounds were larger than that of control group on 3rd, 6th, 9th and 12th day, there were statistical difference. The healing index of 0.32 T group wounds contrasted to that of 0.16 T group wounds had no statistical significance. Observation of VEGF at the course of wound healing:the expressing of VEGF in magnetic group wounds on 3rd and 6th was stronger than in control group wounds, there were statistical difference. While there were no obvious difference between them on 9th and 12th day (P>0.05). But the contrast between that in 0.32 T group and in 0.16 T group had no statistical difference. The expressing strength of VEGF in magnetic group reached the peak amplitude on the 6th day, and that in control group reached peak amplitude on 9th day. And the peak amplitude of magnetic group was stronger than that of control group. Static magnetic disc of 0.16T and 0.32 T can promote deep wound of SD rats heal. The mechanism of static magnetic field promoting wound heal may be relative to the expressing highly of VEGF during early and middle time.
Landing Biomechanics in Participants With Different Static Lower Extremity Alignment Profiles
Nguyen, Anh-Dung; Shultz, Sandra J.; Schmitz, Randy J.
2015-01-01
Context: Whereas static lower extremity alignment (LEA) has been identified as a risk factor for anterior cruciate ligament injury, little is known about its influence on joint motion and moments commonly associated with anterior cruciate ligament injury. Objective: To cluster participants according to combinations of LEA variables and compare these clusters in hip- and knee-joint kinematics and kinetics during the landing phase of a drop-jump task. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: A total of 141 participants (50 men: age = 22.2 ± 2.8 years, height = 177.9 ± 9.3 cm, weight = 80.9 ± 13.3 kg; 91 women: age = 21.2 ± 2.6 years, height = 163.9 ± 6.6 cm, weight = 61.1 ± 8.7 kg). Main Outcome Measure(s): Static LEA included pelvic angle, femoral anteversion, quadriceps angle, tibiofemoral angle, genu recurvatum, tibial torsion, and navicular drop. Cluster analysis grouped participants according to their static LEA profiles, and these groups were compared on their hip- and knee-joint kinematics and external moments during the landing phase of a double-legged drop jump. Results: Three distinct clusters (C1–C3) were identified based on their static LEAs. Participants in clusters characterized with static internally rotated hip and valgus knee posture (C1) and externally rotated knee and valgus knee posture (C3) alignments demonstrated greater knee-valgus motion and smaller hip-flexion moments than the cluster with more neutral static alignment (C2). Participants in C1 also experienced greater hip internal-rotation and knee external-rotation moments than those in C2 and C3. Conclusions: Static LEA clusters that are positioned anatomically with a more rotated and valgus knee posture experienced greater dynamic valgus along with hip and knee moments during landing. Whereas static LEA contributes to differences in hip and knee rotational moments, sex may influence the differences in frontal-plane knee kinematics and sagittal-plane hip moments. PMID:25658815
Evaluation of magnetic resonance imaging issues for implantable microfabricated magnetic actuators.
Lee, Hyowon; Xu, Qing; Shellock, Frank G; Bergsneider, Marvin; Judy, Jack W
2014-02-01
The mechanical robustness of microfabricated torsional magnetic actuators in withstanding the strong static fields (7 T) and time-varying field gradients (17 T/m) produced by an MR system was studied in this investigation. The static and dynamic mechanical characteristics of 30 devices were quantitatively measured before and after exposure to both strong uniform and non-uniform magnetic fields. The results showed no statistically significant change in both the static and dynamic mechanical performance, which mitigate concerns about the mechanical stability of these devices in association with MR systems under the conditions used for this assessment. The MR-induced heating was also measured in a 3-T/128-MHz MR system. The results showed a minimal increase (1.6 °C) in temperature due to the presence of the magnetic microactuator array. Finally, the size of the MR-image artifacts created by the magnetic microdevices were quantified. The signal loss caused by the devices was approximately four times greater than the size of the device.
NASA Astrophysics Data System (ADS)
Slonczewski, John
2013-03-01
Consider two nanoscopic monodomain magnets connected by a spacer that is composed of a non-magnetic metal or a tunnel barrier. Any externally applied electric current flowing through these three layers contributes tiny pseudo-torques to both magnetic moments (J . S . 1989). Such a weak spin-transfer torque (STT) may counteract and overcome a comparably small torque caused by viscous dissipation (L. Berger1996; J . S . 1996). Any initial motion (e. g. excited by ambient temperature) of one moment (or both), may grow in amplitude and culminate in steady precession or a transient switch to a new direction of static equilibrium. In a memory element, the STT effect writes 0 or 1 in a magnetic-tunnel junction. Indeed, world-wide developments of memory arrays and radio-frequency oscillators utilizing current-driven STT today enjoy a nine-digit dollar commitment. But the fact that transfer of each half-unit of spin momentum h/4 π through a barrier requires the transfer of at least one unit of electric charge limits its efficiency. Arguably, STT should also arise from the flow of external heat, in either direction, between an insulating magnet, of ferrite or garnet (e. g. YIG) composition, and a metallic spacer (J . S . 2010). Whenever s-d exchange annihilates a hot magnon at the insulator/metal-spacer interface, it transfers one unit h/2 π of spin momentum to the spacer. Conduction electrons within the spacer will transport this spin momentum to the second magnet without requiring an electric current. Such a thermagnonicmethod, modestly powered by a Joule-effect heater, can substantially increase the efficiency of STT. Support for this prediction comes from (1) an estimate of the sd-exchange coefficient from data on spin relaxation in magnetically dilute (Cu,Ag,Au):Mn alloys; (2) a DFT computation (J. Xiao et al 2010); and (3) most persuasively, data from spin pumping driven across a YIG/Au interface by ferromagnetic resonance (B. Heinrich et al 2011; C. Burrowes et al 2012).
Oblique abdominal muscle activity in response to external perturbations when pushing a cart.
Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H
2010-05-07
Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis. Copyright 2010 Elsevier Ltd. All rights reserved.
14 CFR 29.865 - External loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...
14 CFR 29.865 - External loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...
14 CFR 29.865 - External loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...
14 CFR 29.865 - External loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...
14 CFR 29.865 - External loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) It must be shown by analysis, test, or both, that the rotorcraft external load attaching means for rotorcraft-load combinations to be used for nonhuman external cargo applications can withstand a limit static...
Chun, Sae Hwan; Shin, Kwang Woo; Kim, Hyung Joon; ...
2018-01-12
An electromagnon in the magnetoelectric (ME) hexaferrite Ba 0.5Sr 2.5Co 2Fe 24O 41 (Co 2 Z-type) single cystal is identified by time-domain terahertz (THz) spectroscopy. The associated THz resonance is active on the electric field (E ω) of the THz light parallel to the c axis (∥ [001]), whose spectral weight develops at a markedly high temperature, coinciding with a transverse conical magnetic order below 410 K. The resonance frequency of 1.03 THz at 20 K changes -8.7% and +5.8% under external magnetic field (H) of 2 kOe along [001] and [120], respectively. A model Hamiltonian describing the conical magneticmore » order elucidates that the dynamical ME effect arises from antiphase motion of spins which are coupled with modulating electric dipoles through the exchange striction mechanism. Moreover, the calculated frequency shift points to the key role of the Dzyaloshinskii-Moriya interaction that is altered by static electric polarization change under different H.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chun, Sae Hwan; Shin, Kwang Woo; Kim, Hyung Joon
An electromagnon in the magnetoelectric (ME) hexaferrite Ba 0.5Sr 2.5Co 2Fe 24O 41 (Co 2 Z-type) single cystal is identified by time-domain terahertz (THz) spectroscopy. The associated THz resonance is active on the electric field (E ω) of the THz light parallel to the c axis (∥ [001]), whose spectral weight develops at a markedly high temperature, coinciding with a transverse conical magnetic order below 410 K. The resonance frequency of 1.03 THz at 20 K changes -8.7% and +5.8% under external magnetic field (H) of 2 kOe along [001] and [120], respectively. A model Hamiltonian describing the conical magneticmore » order elucidates that the dynamical ME effect arises from antiphase motion of spins which are coupled with modulating electric dipoles through the exchange striction mechanism. Moreover, the calculated frequency shift points to the key role of the Dzyaloshinskii-Moriya interaction that is altered by static electric polarization change under different H.« less
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Ranoo, Surojit; Muthukumaran, T.; Philip, John
2018-04-01
The effects of initial susceptibility and size polydispersity on magnetic hyperthermia efficiency in two water based ferrofluids containing phosphate and TMAOH coated superparamagnetic Fe3O4 nanoparticles were studied. Experiments were performed at a fixed frequency of 126 kHz on four different concentrations of both samples and under different external field amplitudes. It was observed that for field amplitudes beyond 45.0 kAm-1, the maximum temperature rise was in the vicinity of 42°C (hyperthermia limit) which indicated the suitability of the water based ferrofluids for hyperthermia applications. The maximum temperature rise and specific absorption rate were found to vary linearly with square of the applied field amplitudes, in accordance with theoretical predictions. It was further observed that for a fixed sample concentration, specific absorption rate was higher for the phosphate coated samples which was attributed to the higher initial static susceptibility and lower size polydispersity of phosphate coated Fe3O4.
Method And Apparatus For High Resolution Ex-Situ Nmr Spectroscopy
Pines, Alexander; Meriles, Carlos A.; Heise, Henrike; Sakellariou, Dimitrios; Moule, Adam
2004-01-06
A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.
Coulomb structures of charged macroparticles in static magnetic traps at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Vasiliev, M. M.; Petrov, O. F.; Statsenko, K. B.
2015-12-01
Electrically charged (up to 107 e) macroscopic superconducting particles with sizes in the micrometer range confined in a static magnetic trap in liquid nitrogen and in nitrogen vapor at temperatures of 77-91 K are observed experimentally. The macroparticles with sizes up to 60 μm levitate in a nonuniform static magnetic field B ~ 2500 G. The formation of strongly correlated structures comprising as many as ~103 particles is reported. The average particle distance in these structures amounts to 475 μm. The coupling parameter and the Lindemann parameter of these structures are estimated to be ~107 and ~0.03, respectively, which is characteristic of strongly correlated crystalline or glasslike structures.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Schulze, Darrell G.; Lauer, Howard V., Jr.; Agresti, David G.; Shelfer, Tad D.
1992-01-01
The effect of substituting iron by aluminum in polymorphs of Fe2O3 and FeOOH on their reflectivity characteristics was investigated by comparing data on visible and NIR reflectivities and on static magnetic, XRD, and Moessbauer properties for a family of aluminum-substituted hematites alpha-(Fe,Al)2O3, with compositions where the values of the Al/(Al+Fe) ratio were up to 0.61. Samples were prepared by oxidation of magnetite, dehydroxylation of goethite, and direct precipitation. The analytical methods used for obtaining diffuse reflectivity spectra (350-2200 nm), Moessbauer spectra, and static magnetic data are those described by Morris et al. (1989).
NASA Astrophysics Data System (ADS)
Hu, Xiao; Suzuki, Masuo
1988-03-01
The systematic Weiss-like and Bethe-like approximations based on the mean-field transfer-matrix method are used to investigate the asymptotic behavior of the induced magnetization on a semi-infinite square lattice, and to investigate the wave-number dependence of the susceptibility in a nonuniform external field. The critical exponents ν, ν', ηi and η are estimated following the general CAM prescription. A new scaling relation ν{\\cdot}ηi{=}β is obtained in the framework of the finite-degree-of-approximation scaling. Together with previous papers, all the static critical exponents have been estimated by the CAM, and are shown to satisfy the well-known scaling relations.
Development of superconducting magnetic bearing using superconducting coil and bulk superconductor
NASA Astrophysics Data System (ADS)
Seino, H.; Nagashima, K.; Arai, Y.
2008-02-01
The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.
External magnetic field-induced selective biodistribution of magnetoliposomes in mice
NASA Astrophysics Data System (ADS)
García-Jimeno, Sonia; Escribano, Elvira; Queralt, Josep; Estelrich, Joan
2012-08-01
This study looked at the effect of an external magnet on the biodistribution of magnetoliposomes intravenously administrated in mice (8 mg iron/kg) with and without induced acute inflammation. Our results showed that due to enhanced vascular permeability, magnetoliposomes accumulated at the site of inflammation in the absence of an external magnetic field, but the amount of iron present increased under the effect of a magnet located at the inflammation zone. This increase was dependent on the time (20 or 60 min) of exposure of the external magnetic field. It was also observed that the presence of the magnet was associated with lower amounts of iron in the liver, spleen, and plasma than was found in mice in which a magnet had not been applied. The results of this study confirm that it is possible to target drugs encapsulated in magnetic particles by means of an external magnet.
Sun, Zhen-Jun; Ye, Bo; Sun, Yi; Zhang, Hong-Hai; Liu, Sheng
2014-07-01
This article describes a novel magnetically maneuverable capsule endoscope system with direction reference for image navigation. This direction reference was employed by utilizing a specific magnet configuration between a pair of external permanent magnets and a magnetic shell coated on the external capsule endoscope surface. A pair of customized Cartesian robots, each with only 4 degrees of freedom, was built to hold the external permanent magnets as their end-effectors. These robots, together with their external permanent magnets, were placed on two opposite sides of a "patient bed." Because of the optimized configuration based on magnetic analysis between the external permanent magnets and the magnetic shell, a simplified control strategy was proposed, and only two parameters, yaw step angle and moving step, were necessary for the employed robotic system. Step-by-step experiments demonstrated that the proposed system is capable of magnetically maneuvering the capsule endoscope while providing direction reference for image navigation. © IMechE 2014.
Semiconductor Crystal Growth in Static and Rotating Magnetic fields
NASA Technical Reports Server (NTRS)
Volz, Martin
2004-01-01
Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a critical magnetic field value. Growth conditions in which static magnetic fields rotational magnetic fields, and reduced gravitational levels can have a beneficial role will be described.
Effects of Equilibrium Toroidal Flow on Locked Mode and Plasma Response in a Tokamak
NASA Astrophysics Data System (ADS)
Zhu, Ping; Huang, Wenlong; Yan, Xingting
2016-10-01
It is widely believed that plasma flow plays significant roles in regulating the processes of mode locking and plasma response in a tokamak in presence of external resonant magnetic perturbations (RMPs). Recently a common analytic relation for both locked mode and plasma response has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance. The analytic relation predicts the size of the magnetic island of a locked mode or a static nonlinear plasma response for a given RMP amplitude, and rigorously proves a screening effect of the equilibrium toroidal flow. To test the theory, we solve for the locked mode and the nonlinear plasma response in presence of RMP for a circular-shaped limiter tokamak equilibrium with constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. The comparison between the simulation results and the theory prediction, in terms of the quantitative screening effects of equilibrium toroidal flow, will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.
NASA Astrophysics Data System (ADS)
Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang
2007-04-01
The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.
NASA Astrophysics Data System (ADS)
Hallali, N.; Clerc, P.; Fourmy, D.; Gigoux, V.; Carrey, J.
2016-07-01
Studies with transplanted tumors in animals and clinical trials have provided the proof-of-concept of magnetic hyperthermia (MH) therapy of cancers using iron oxide nanoparticles. Interestingly, in several studies, the application of an alternating magnetic field (AMF) to tumor cells having internalized and accumulated magnetic nanoparticles (MNPs) into their lysosomes can induce cell death without detectable temperature increase. To explain these results, among other hypotheses, it was proposed that cell death could be due to the high-frequency translational motion of MNPs under the influence of the AMF gradient generated involuntarily by most inductors. Such mechanical actions of MNPs might cause cellular damages and participate in the induction of cell death under MH conditions. To test this hypothesis, we developed a setup maximizing this effect. It is composed of an anti-Helmholtz coil and two permanent magnets, which produce an AMF gradient and a superimposed static MF. We have measured the MNP heating power and treated tumor cells by a standard AMF and by an AMF gradient, on which was added or not a static magnetic field. We showed that the presence of a static magnetic field prevents MNP heating and cell death in standard MH conditions. The heating power of MNPs in an AMF gradient is weak, position-dependent, and related to the presence of a non-zero AMF. Under an AMF gradient and a static field, no MNP heating and cell death were measured. Consequently, the hypothesis that translational motions could be involved in cell death during MH experiments is ruled out by our experiments.
NASA Astrophysics Data System (ADS)
Yethiraj, Anand
2010-03-01
External fields affect self-organization in Brownian colloidal suspensions in many different ways [1]. High-frequency time varying a.c. electric fields can induce effectively quasi-static dipolar inter-particle interactions. While dipolar interactions can provide access to multiple open equilibrium crystal structures [2] whose origin is now reasonably well understood, they can also give rise to competing interactions on short and long length scales that produce unexpected low-density ordered phases [3]. Farther from equilibrium, competing external fields are active in colloid spincoating. Drying colloidal suspensions on a spinning substrate produces a ``perfect polycrystal'' - tiny polycrystalline domains that exhibit long-range inter-domain orientational order [4] with resultant spectacular optical effects that are decoupled from single-crystallinity. High-speed movies of drying crystals yield insights into mechanisms of structure formation. Phenomena arising from multiple spatially- and temporally-varying external fields can give rise to further control of order and disorder, with potential application as patterned (photonic and magnetic) materials. [4pt] [1] A. Yethiraj, Soft Matter 3, 1099 (2007). [2] A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003). [3] A.K. Agarwal, A. Yethiraj, Phys. Rev. Lett ,102, 198301 (2009). [4] C. Arcos, K. Kumar, W. Gonz'alez-Viñas, R. Sirera, K. Poduska, A. Yethiraj, Phys. Rev. E ,77, 050402(R) (2008).
Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan
2014-09-01
An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.
Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Christopher T.
We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.
Suppression of multipactor discharge on a dielectric surface by an external magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Libing; Zhu Xiangqin; Wang Yue
2011-07-15
The multipactor discharge on a dielectric surface in an external magnetic field is simulated by using the particle-in-cell method, and the electron number, energy, the velocity of the yield of secondary electrons, and the power deposited on dielectric surface in the process of multipactor discharge are investigated. The effects of the strength of the external magnetic field on multipactor are studied. The results show that when the external magnetic field reaches a certain value, the multipactor is weaker than that in the case of no external magnetic field and becomes much lighter versus the strength of the external magnetic fieldmore » in the half microwave period in which the ExB drift pulls the electrons back to dielectric surface. And in the other half microwave period in which the ExB drift pushes the electrons away from the dielectric surface, the multipactor is cut off. So the power capability can be increased to the fourfold by the suppression of multipactor by applying an external magnetic field.« less
Physics of Magnetospheric Variability
NASA Astrophysics Data System (ADS)
Vasyliūnas, Vytenis M.
2011-01-01
Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell's equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm's law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms.
NASA Astrophysics Data System (ADS)
Orth, Th.; Pelzl, J.; Chantrell, R. W.; Veitch, R.; Jakusch, H.
1993-05-01
The FMR absorption of different particulate recording tapes was investigated at microwave frequencies in the X band and Q band using temperatures from 70 to 400 K. The FMR spectra as a function of the external magnetic field were recorded for four different orientations of the static and high frequency magnetic fields with respect to the tape. Particular interest of the experimental and theoretical study was devoted to the interaction fields between the particles, texture effects within the tape sample and the effective anisotropy fields. Tape samples with different particle materials, varying packing densities and orientation ratios were prepared. The shape and line position of the FMR spectra obtained are strongly dependent on the pigment material and the tape parameters mentioned above. The experimental data are compared with theoretical calculations, based on a phenomenological model and a computer simulation. This comparison gives information on the orientational distribution of the particles, which is the most important source for inhomogeneous line broadening, the mean interaction, and anisotropy fields which govern the line position, the effective magnetization of the tape, and the relaxation time. The influence of the crystalline anisotropy can be investigated via temperature dependent measurements. The results are proved by additional transverse susceptibility measurements.
NASA Astrophysics Data System (ADS)
Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Jiang, Jun; Ma, Kun; Yan, Xin-Hu; Lv, Hai-Jiang
2018-05-01
We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy (NV) color center with a nearest neighbor 13C nuclear spin in diamond to detect the strength and direction (including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance (ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor 13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave (CW) spectrum. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Education Department Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).
Reducing and Inducing Convection in Ge-Si Melts with Static Magnetic Field
NASA Technical Reports Server (NTRS)
Szofran, Frank R.
1999-01-01
Results of a study of the effectiveness of using static magnetic fields to reduce convection in Ge-Si melts will be presented. Lenz's law causes a retardation of convection when a static magnetic field is applied to an electrically conducting liquid. However, during the solidification of a solid-solution system such as Ge-Si, the interface is neither isothermal nor isoconcentrational. The variation of temperature and chemical composition along the interface causes thermoelectric currents to be generated within the solidifying material (and the container if it is electrically conductive). These currents, in the presence of a magnetic field, can cause movement (stirring, convection) in the melt which can exceed convection induced by normal thermosolutal mechanisms. Crystals have been grown by both the Bridgman and floating-zone methods. Clear evidence for the existence of this thermoelectromagnetic convection, especially in the case of Si floating-zone growth, will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrudan, R.; Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin; Brüssing, F.
2015-06-15
We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses tomore » excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.« less
Taskin, Mesut; Esim, Nevzat; Genisel, Mucip; Ortucu, Serkan; Hasenekoglu, Ismet; Canli, Ozden; Erdal, Serkan
2013-01-01
The aim of this study is to investigate the effect of low-intensity static magnetic fields (SMFs) on invertase activity and growth on different newly identified molds. The most positive effect of SMFs on invertase activity and growth was observed for Aspergillus niger OZ-3. The submerged production of invertase was performed with the spores obtained at the different exposure times (120, 144, 168, and 196 hr) and magnetic field intensities (0.45, 3, 5, 7, and 9 mT). The normal magnetic field of the laboratory was assayed as 0.45 mT (control). Optimization of magnetic field intensity and exposure time significantly increased biomass production and invertase activity compared to 0.45 mT. The maximum invertase activity (51.14 U/mL) and biomass concentration (4.36 g/L) were achieved with the spores obtained at the 144 hr exposure time and 5 mT magnetic field intensity. The effect of low-intensity static magnetic fields (SMFs) on invertase activities of molds was investigated for the first time in the present study. As an additional contribution, a new hyper-invertase-producing mold strain was isolated.
NASA Astrophysics Data System (ADS)
Takano, Yukinori; Hirata, Akimasa; Fujiwara, Osamu
Human exposed to electric and/or magnetic fields at low frequencies may cause direct effect such as nerve stimulation and excitation. Therefore, basic restriction is regulated in terms of induced current density in the ICNIRP guidelines and in-situ electric field in the IEEE standard. External electric or magnetic field which does not produce induced quantities exceeding the basic restriction is used as a reference level. The relationship between the basic restriction and reference level for low-frequency electric and magnetic fields has been investigated using European anatomic models, while limited for Japanese model, especially for electric field exposures. In addition, that relationship has not well been discussed. In the present study, we calculated the induced quantities in anatomic Japanese male and female models exposed to electric and magnetic fields at reference level. A quasi static finite-difference time-domain (FDTD) method was applied to analyze this problem. As a result, spatially averaged induced current density was found to be more sensitive to averaging algorithms than that of in-situ electric field. For electric and magnetic field exposure at the ICNIRP reference level, the maximum values of the induced current density for different averaging algorithm were smaller than the basic restriction for most cases. For exposures at the reference level in the IEEE standard, the maximum electric fields in the brain were larger than the basic restriction in the brain while smaller for the spinal cord and heart.
No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory
NASA Astrophysics Data System (ADS)
Kunduri, Hari K.; Lucietti, James
2018-03-01
We prove that any asymptotically flat static spacetime in higher dimensional Einstein–Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black holes in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein–Maxwell theory.
Interactions of waves on electron streams or plasmas are studied for several geometric configurations of finite cross section in a finite magnetic...velocity parallel to the magnetic field. It is further assumed that either macroscopic neutrality exists or static spacecharge forces are negligible. For...the most part the quasi-static analysis is used. For the case of two drifting streams cyclotron waves act to giveinstabilities which are either
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahrig, R.; Wen, Z.; Ganguly, A.
2005-06-15
Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo{sup TM} flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP{sup TM}) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for fieldmore » strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.« less
Ramundo-Orlando, A; Mattia, F; Palombo, A; D'Inzeo, G
2000-10-01
Observations recently reported by our group indicate that combined 7 Hz sinusoidal (B(acpeak) = 50 mu T) and parallel static (B(dc) = 50 mu T) magnetic fields can induce a significant increase in diffusion rate of substrate across carbonic anhydrase (CA)-loaded liposomes (DPPC:Chol:SA). A direct involvement of charges of stearylamine (SA) on the lipid membrane surface was also demonstrated. Kinetic studies showed that CA was mainly entrapped in liposomes at 5:3:2 molar ratio, although a small amount (17%) of enzyme was also located on the external surface of these cationic liposomes. In this paper we report steady state kinetic studies on this latter CA after ELF-EMFs exposure. No difference in the apparent K(m) between exposed and sham samples was observed. On the contrary the apparent V(max) was increased by approximately a factor of 2 after field exposure. In spite of the proteolytic digestion of this external CA, a significant increase of enzymatic activity, as a function of increase in the diffusion rate of substrate across the lipid bilayer, was observed in the exposed samples. Based on these results, a conformational change induced by the field on the CA located on the external surface of 5:3:2 liposomes is excluded as an explanation for our previous observations, supporting the primary role of bilayer SA in the interaction with ELF. A model of ELF interaction, based on the Larmor precession theory, explaining the physical phenomenon induced on the dipole of SA has been developed. Copyright 2000 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Futera, Zdenek; English, Niall J.
2017-07-01
The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.
Hubbard pair cluster in the external fields. Studies of the magnetic properties
NASA Astrophysics Data System (ADS)
Balcerzak, T.; Szałowski, K.
2018-06-01
The magnetic properties of the two-site Hubbard cluster (dimer or pair), embedded in the external electric and magnetic fields and treated as the open system, are studied by means of the exact diagonalization of the Hamiltonian. The formalism of the grand canonical ensemble is adopted. The phase diagrams, on-site magnetizations, spin-spin correlations, mean occupation numbers and hopping energy are investigated and illustrated in figures. An influence of temperature, mean electron concentration, Coulomb U parameter and external fields on the quantities of interest is presented and discussed. In particular, the anomalous behaviour of the magnetization and correlation function vs. temperature near the critical magnetic field is found. Also, the effect of magnetization switching by the external fields is demonstrated.
Continuous Solidification of Immiscible Alloys and Microstructure Control
NASA Astrophysics Data System (ADS)
Jiang, Hongxiang; Zhao, Jiuzhou
2018-05-01
Immiscible alloys have aroused considerable interest in last few decades due to their excellent physical and mechanical characteristics as well as potential industrial applications. Up to date, plenty of researches have been carried out to investigate the solidification of immiscible alloys on the ground or in space and great progress has been made. It is demonstrated that the continuous solidification technique have great future in the manufacturing of immiscible alloys, it also indicates that the addition of surface active micro-alloying or inoculants for the nucleation of the minority phase droplets and proper application of external fields, e.g., static magnetic field, electric current, microgravity field, etc. may promote the formation of immiscible alloys with an expected microstructure. The objective of this article is to review the research work in this field.
First measurement of the neutron beta asymmetry with ultracold neutrons.
Pattie, R W; Anaya, J; Back, H O; Boissevain, J G; Bowles, T J; Broussard, L J; Carr, R; Clark, D J; Currie, S; Du, S; Filippone, B W; Geltenbort, P; García, A; Hawari, A; Hickerson, K P; Hill, R; Hino, M; Hoedl, S A; Hogan, G E; Holley, A T; Ito, T M; Kawai, T; Kirch, K; Kitagaki, S; Lamoreaux, S K; Liu, C-Y; Liu, J; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Meier, N; Mendenhall, M P; Morris, C L; Mortensen, R; Pichlmaier, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Sabourov, K; Sallaska, A L; Saunders, A; Schmid, R; Seestrom, S; Servicky, C; Sjue, S K L; Smith, D; Sondheim, W E; Tatar, E; Teasdale, W; Terai, C; Tipton, B; Utsuro, M; Vogelaar, R B; Wehring, B W; Xu, Y P; Young, A R; Yuan, J
2009-01-09
We report the first measurement of an angular correlation parameter in neutron beta decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for approximately 30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2x2pi solenoidal spectrometer. We determine a value for the beta-asymmetry parameter A_{0}=-0.1138+/-0.0046+/-0.0021.
Static magnetic field effects on the sagittal suture in Rattus norvegicus.
Camilleri, S; McDonald, F
1993-03-01
Twenty-day-old Wistar albino rats were exposed to static magnetic fields by placing a neodymium-iron-boron magnetic over their sagittal suture. Cellular activity was monitored by the uptake of tritiated thymidine in control, north, south, and unoperated animals at 1, 3, 5, and 10 days (n = 10 per group). A total of 160 animals were used for this part of the study, with the animals examined 1, 3, 5, and 10 days after surgery. Bone remodeling was examined by tetracycline fluorescence with 10 animals allocated to 5- and 10-day periods for north and south poles (n = 10 per group) and control experiments. This consisted of the placement of unmagnetized alloy, similar in size and shape to the magnets, and also included unoperated animals (n = 5 per group). A total of 60 animals were used for the tetracycline study and were examined at 5 and 10 days after surgery. While the tetracycline examination revealed very little change, the thymidine reflected a reduction in thymidine uptake subsequent to placement of the magnet, reaching a maximal effect at 3 days and returning to a normal value thereafter. This questions the potential of static magnetic fields affecting cell mitotic activity as previously reported.
Static and dynamic parasitic magnetizations and their control in superconducting accelerator dipoles
NASA Astrophysics Data System (ADS)
Collings, E. W.; Sumption, M. D.
2001-05-01
Long dipole magnets guide the particle beams in synchrotron-type high energy accelerators. In principal Cu-wound DC-excited dipoles could be designed to deliver a very uniform transverse bore field, i.e. with small or negligible harmonic (multipolar) distortion. But if the Cu is replaced by (a) superconducting strand that is (b) wound into a Rutherford cable carrying a time-varying transport current, extra magnetizations present within the windings cause distortions of the otherwise uniform field. The static (persistent-current) strand magnetization can be reduced by reducing the filament diameter, and the residue compensated or corrected by strategically placed active or passive components. The cable’s interstrand coupling currents can be controlled by increasing the interstrand contact resistance by: adjusting the level of native oxidation of the strand, coating it, or by inserting a ribbon-like core into the cable itself. Methods of locally compensating the magnetization of NbTi and Nb 3Sn strand and cable are discussed, progress in coupling-current suppression through the use of coatings and cores is reviewed, and a method of simultaneously reducing both the static and dynamic magnetizations of a NbTi cable by means of a thin Ni core is suggested.
Case reports: molar distalization with static repelling magnets. Part II.
Steger, E R; Blechman, A M
1995-11-01
The following two nonextraction therapy case reports demonstrate four important points: (1) Static repelling magnets, with certain characteristic parameters, distalize molars rapidly without adverse effects that are clinically discernable. Beneficial properties such as considerably reduced patient compliance requirements for force application, reduced mobility and discomfort, and mostly bodily movement are demonstrated clinically. (2) Anchorage can be controlled by using conventional techniques of anchorage augmentation or force reduction. (3) Treatment can be satisfactorily completed and documented in accord with contemporary criteria, with conventional therapeutic methods, once the initial, most difficult, magnetic molar distalization is completed. (4) The mechanism of action that accounts for the bioeffects remains unclear. However, we hypothesize that observed reduction of mobility and discomfort during rapid movement, combined with basic research and other clinical data, are attributable to the simultaneous, synergistic property of the magnetic force field, which disrupts the local equilibrium and also the static magnetic bioeffect. Among others, one distinguishing and pertinent bioeffect may be an increased rate of osteogenesis and bone remodeling, which may be very dependent on correct dosage through a possible biologic window and the field geometry.
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
NASA Astrophysics Data System (ADS)
Casola, Francesco; van der Sar, Toeno; Yacoby, Amir
2018-01-01
The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.
Static-stress analysis of dual-axis safety vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
An 8 ft diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the 'shell to nozzle' interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.
The mechanisms of the effects of magnetic fields on cells
NASA Astrophysics Data System (ADS)
Kondrachuk, A.
The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins presented in the cells. 5) Electronic interactions. Static magnetic fields can alter energy levels and spin orientation of electrons. Similar interactions can also occur with nuclear spins, but these are very weak compared to electron interactions. 6) Free radicals. Magnetic fields alter the spin states of the radicals, which, in turn, changes the relative probabilities of recombination and other interactions, possibly with biological consequences. 7) Non-linear effects. A number of non-linear mechanisms of magnetic effects on cells were recently proposed to explain how the cell could extract a weak magnetic signal from noise (e.g. stochastic non-linear resonance, self-tuned Hopf bifurcations). These new models need further experimental testing.
NASA Astrophysics Data System (ADS)
Finegold, Leonard
2000-03-01
Many people are convinced that static magnets—applied to their skin—will heal ills, and many businesses sell such magnets. The biophysics of such healing was reviewed [1] together with the general biophysics of static fields. Birds and insects do use the earth’s magnetic field for navigation. While insect and frog egg development can clearly be influenced by high fields (7 T and 17 T respectively), there is no experimental evidence that small magnetic fields (of less than 0.5 T) might heal, and much evidence that they cannot heal. A puzzle to the physics community is: How to show laypersons that simple magnets (very probably) do not heal, however attractive that idea might be. [1] L. Finegold, The Physics of "Alternative Medicine": Magnet Therapy, The Scientific Review of Alternative Medicine 3:26-33 (1999).
Magnetic Torque in Single Crystal Ni-Mn-Ga
NASA Astrophysics Data System (ADS)
Hobza, Anthony; Müllner, Peter
2017-06-01
Magnetic shape memory alloys deform in an external magnetic field in two distinct ways: by axial straining—known as magnetic-field-induced strain—and by bending when exposed to torque. Here, we examine the magnetic torque that a magnetic field exerts on a long Ni-Mn-Ga rod. A single crystal specimen of Ni-Mn-Ga was constrained with respect to bending and subjected to an external magnetic field. The torque required to rotate the specimen in the field was measured as a function of the orientation of the sample with the external magnetic field, strain, and the magnitude of the external magnetic field. The torque was analyzed based on the changes in the free energy with the angle between the field and the sample. The contributions of magnetocrystalline anisotropy and shape anisotropy to the Zeeman energy determine the net torque. The torque is large when magneotcrystalline and shape anisotropies act synergistically and small when these anisotropies act antagonistically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shihua; Wu Fengmin
2006-12-15
K. P. Singh [Phys. Rev. E 69, 056410 (2004)] put forward a scheme of vacuum laser acceleration in a static magnetic field. We point out that one of the assumptions used in their model does not stand on a solid physical ground and that it seriously influences electrons to obtain net energy gains from the laser field.
Passive magnetic bearing system
Post, Richard F.
2014-09-02
An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.
Change of magnetic properties of nanocrystalline alloys under influence of external factors
NASA Astrophysics Data System (ADS)
Sitek, Jozef; Holková, Dominika; Dekan, Julius; Novák, Patrik
2016-10-01
Nanocrystalline (Fe3Ni1)81Nb7B12 alloys were irradiated using different types of radiation and subsequently studied by Mössbauer spectroscopy. External magnetic field of 0.5 T, electron-beam irradiation up to 4 MGy, neutron irradiation up to 1017 neutrons/cm2 and irradiation with Cu ions were applied on the samples. All types of external factors had an influence on the magnetic microstructure manifested as a change in the direction of the net magnetic moment, intensity of the internal magnetic field and volumetric fraction of the constituent phases. The direction of the net magnetic moment was the most sensitive parameter. Changes of the microscopic magnetic parameters were compared after different external influence and results of nanocrystalline samples were compared with their amorphous precursors.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-11-25
A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.
Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields
NASA Astrophysics Data System (ADS)
Gong, Tao; Zheng, Jian; Li, Zhichao; Ding, Yongkun; Yang, Dong; Hu, Guangyue; Zhao, Bin
2015-09-01
A simple model, based on energy and pressure equilibrium, is proposed to deal with the effect of external magnetic fields on the plasma parameters inside the laser path, which shows that the electron temperature can be significantly enhanced as the intensity of the external magnetic fields increases. With the combination of this model and a 1D three-wave coupling code, the effect of external magnetic fields on the reflectivities of stimulated scattering processes is studied. The results indicate that a magnetic field with an intensity of tens of Tesla can decrease the reflectivities of stimulated scattering processes by several orders of magnitude.
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2018-04-01
Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.
Mariappan, Leo; Hu, Gang; He, Bin
2014-02-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼ 1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xue, E-mail: zhangxue.iecas@yahoo.com; Wang, Yong; Fan, Junjie
2015-02-15
To suppress the surface multipactor phenomenon and improve the transmitting power of the high-power microwave window, the application of external magnetic fields is theoretically analyzed and simulated. A Monte Carlo algorithm is used to track the secondary electron trajectories and study the multipactor scenario on the surface of a cylinder window. It is confirmed that over-resonant magnetic fields (an external magnetic field whose magnitude is slightly greater than that of a resonant magnetic field) will generate a compensating trajectory and collision, which can suppress the secondary electron avalanche. The optimal value of this external magnetic field that will avoid themore » multipactor phenomenon on cylinder windows is discussed.« less
Visual display and alarm system for wind tunnel static and dynamic loads
NASA Technical Reports Server (NTRS)
Hanly, Richard D.; Fogarty, James T.
1987-01-01
A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanisms, or tunnel shutdown.
Visual display and alarm system for wind tunnel static and dynamic loads
NASA Technical Reports Server (NTRS)
Hanly, Richard D.; Fogarty, James T.
1987-01-01
A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanism, or tunnel shutdown.
NASA Astrophysics Data System (ADS)
Romero-Salazar, C.
2016-04-01
A critical-state model is postulated that incorporates, for the first time, the structural anisotropy and flux-line cutting effect in a type-II superconductor. The model is constructed starting from the theoretical scheme of Romero-Salazar and Pérez-Rodríguez to study the anisotropy induced by flux cutting. Here, numerical calculations of the magnetic induction and static magnetization are presented for samples under an alternating magnetic field, orthogonal to a static dc-bias one. The interplay of the two anisotropies is analysed by comparing the numerical results with available experimental data for an yttrium barium copper oxide (YBCO) plate, and a vanadium-titanium (VTi) strip, subjected to a slowly oscillating field {H}y({H}z) in the presence of a static field {H}z({H}y).
NASA Technical Reports Server (NTRS)
Thornton, D. E.
1976-01-01
Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.
[The influence of continuous magnetic field on periodontal tissues under overdentures].
Brković-Popović, Snezana; Stamenković, Dragoslav; Stanisić-Sinobad, Darinka; Rakocević, Zoran; Zelić, Obra
2009-01-01
Last remained teeth with reduced alveolar support do not have long-term prognosis, which is the reason for prolonging the life and thus providing a stable support of overdenture. The data from literature point out that static magnetic field has certain possibilities in resolving such problems. Having in mind the pathogenetic factors which cause the reduction of the alveolar ridge and periodontal problems in our population, as well as osteoblastic and antiinflamatory activity, the aim of this investigation was to assess the effect of static magnetic field on periodontal tissue under the overdenture. The investigation involved 38 partially edentulous patients, of both sexes and similar oral status who were bearers of a lower complete overdenture and upper classic complete denture as antagonist restoration. In the base of the lower overdenture the micromagnets were installed in the region of the remained teeth, which had static concentrated field of 60-80 mT power. The evaluation was done after 3, 6 and 12 months using the method of light densitometry. Periodontologic analysis was performed by standard and modified periodontologic tests. In patients with overdentures, after exposure to a magnetic field, the density of bone was not significantly changed, but the use of ANOVA disclosed changes in the observed interval. The tendency of increased density of the alveolar part of the observed region was noted. The region of the corresponding tooth of the contralateral side without magnetic influence showed decreased density of this region in the observed intervals. Plaque index and gingival index were improved underthe influence of the magnetic field, while after 6 and 12 months following the magnet insertion statistically significant changes were confirmed. The magnetic devices did not show any influence on the level of the gingival margin and junction epithelium. Static magnetic field is to be considered as a noninvasive procedure which is recommended to patients with reduced number of teeth and alveolar support.
Elastic metamaterial beam with remotely tunable stiffness
NASA Astrophysics Data System (ADS)
Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.
2016-02-01
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Mimicking multichannel scattering with single-channel approaches
NASA Astrophysics Data System (ADS)
Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro
2010-02-01
The collision of two atoms is an intrinsic multichannel (MC) problem, as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold Li6 and Rb87 atoms in the ground state and in the presence of a static magnetic field B. The obtained MC solutions are used to test various existing as well as presently developed SC approaches. It was found that many aspects even at short internuclear distances are qualitatively well reflected. This can be used to investigate molecular processes in the presence of an external trap or in many-body systems that can be feasibly treated only within the framework of the SC approximation. The applicability of various SC approximations is tested for a transition to the absolute vibrational ground state around an MFR. The conformance of the SC approaches is explained by the two-channel approximation for the MFR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.
2015-12-15
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used tomore » infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
NASA Astrophysics Data System (ADS)
Ma, X.; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.
2015-12-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.
Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...
2015-12-22
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
Nonlinear resonance of the rotating circular plate under static loads in magnetic field
NASA Astrophysics Data System (ADS)
Hu, Yuda; Wang, Tong
2015-11-01
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.
Terahertz Radiation from Laser Created Plasma by Applying a Transverse Static Electric Field
NASA Astrophysics Data System (ADS)
Fukuda, Takuya; Katahira, Koji; Yugami, Noboru; Sentoku, Yasuhiko; Sakagami, Hitoshi; Nagatomo, Hideo
2016-10-01
Terahertz (THz) radiation, which is emitted in narrow cone in the forward direction from laser created plasma has been observed by N.Yugami et al.. Additionally, Löffler et al. have observed that a significantly increased THz emission intensity in the forward direction when the transverse static electric field is applied to the plasma. The purpose of our study is to derive the mechanism of the THz radiation from laser created plasma by applying the transverse static electric field. To study the radiation mechanism, we conducted 2D-PIC simulation. With the static electric field of 10 kV/cm and gas density of 1020 cm-3, we obtain 1.2 THz single cycle pulse radiation, whose intensity is 1.3 ×105 W/cm2. The magnetic field called ``picket fence mode'' is generated in the laser created plasma. At the boundary surface between the plasma and vacuum, the magnetic field is canceled because eddy current flows. We conclude that the temporal behavior of the magnetic field at the boundary surface radiates the THz wave.
Orienting Paramecium with intense static magnetic fields
NASA Astrophysics Data System (ADS)
Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl
2004-03-01
Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-12-30
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2004-12-28
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
Quasi-Static Evolution, Catastrophe, and Failed Eruption of Solar Flux Ropes
2016-12-30
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6794--16-9710 Quasi -Static Evolution, Catastrophe, and “Failed” Eruption of Solar Flux...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Quasi -Static Evolution, Catastrophe...evolution of solar flux ropes subject to slowly increasing magnetic energy, encompassing quasi -static evolution, “catastrophic” transition to an eruptive
Fundamental considerations in ski binding analysis.
Mote, C D; Hull, M L
1976-01-01
1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier should be able to release his bindings in every mode by simply pulling or twisting his foot outward. If that cannot be done without injury, the skier has identified for himself one type of fall that will result in injury. 8. And lastly, a little advice from Ben Franklin--"Carelessness does more harm than a want of knowledge."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliseev, L. G.; Ivanov, N. V., E-mail: ivanov-nv@nrcki.ru; Kakurin, A. M.
2015-05-15
Experimental comparison of the m = 2, n = 1 mode and plasma rotation velocities at q = 2 magnetic surface in a wide range of the mode amplitudes is presented. Phase velocity of the mode rotation is measured with a set of poloidal magnetic field sensors located at the inner side of the vacuum vessel wall. Plasma rotation velocity at the q = 2 magnetic surface in the direction of the mode phase velocity is measured with the heavy ion beam probe diagnostics. In the presence of a static Resonant Magnetic Perturbation (RMP), the rotation is irregular that appears as cyclical variations of the mode and plasmamore » instantaneous velocities. The period of these variations is equal to the period of the mode oscillations. In the case of high mode amplitude, the rotation irregularity of the mode is consistent with the rotation irregularity of the resonant plasma layer. On the contrary, the observed rise of the mode rotation irregularity in the case of low mode amplitude occurs without an increase of the rotation irregularity of the resonant plasma layer. The experimental results are simulated and analyzed with the TEAR code based on the two-fluid MHD approximation. Calculated irregularities of the mode and plasma rotation depend on the mode amplitude similar to the experimental data. For large islands, the rotation irregularity is attributed to oscillations of the electromagnetic torque applied to the resonant plasma layer. For small islands, the deviation of the mode rotation velocity from the plasma velocity occurs due to the effect of finite plasma resistivity.« less
Some effects of external stores on the static stability of fighter airplanes
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1972-01-01
Fighter airplanes may have a seemingly limitless number of external store arrangements. Some practical considerations and some aerodynamic considerations must be taken into account in the arrangements of the external stores. The nature of the problems concerning the type of store arrangement involved and the type of airplane on which the stores are installed are reported.
Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi
2011-08-01
To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.
Static Magnetic Fields in Semiconductor Floating-Zone Growth
NASA Technical Reports Server (NTRS)
Croll, Arne; Benz, K. W.
1999-01-01
Heat and mass transfer in semiconductor float-zone processing are strongly influenced by convective flows in the zone, originating from sources such as buoyancy convection, thermocapillary (Marangoni) convection, differential rotation, or radio frequency heating. Because semiconductor melts are conducting, flows can be damped by the use of static magnetic fields to influence the interface shape and the segregation of dopants and impurities. An important objective is often the suppression of time-dependent flows and the ensuing dopant striations. In RF-heated Si-FZ - crystals, fields up to O.STesla show some flattening of the interface curvature and a reduction of striation amplitudes. In radiation-heated (small-scale) SI-FZ crystals, fields of 0.2 - 0.5 Tesla already suppress the majority of the dopant striations. The uniformity of the radial segregation is often compromised by using a magnetic field, due to the directional nature of the damping. Transverse fields lead to an asymmetric interface shape and thus require crystal rotation (resulting in rotational dopant striations) to achieve a radially symmetric interface, whereas axial fields introduce a coring effect. A complete suppression of dopant striations and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, are possible with axial static fields in excess of 1 Tesla. Strong static magnetic fields, however, can also lead to the appearance of thermoelectromagnetic convection, caused by the interaction of thermoelectric currents with the magnetic field.
NASA Astrophysics Data System (ADS)
Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.
1982-05-01
Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.
Observation of beta-induced Alfvén Eigenmode in J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Liu, Linzi; He, Jiyang; Hu, Qiming; Zhuang, Ge
2015-06-01
High-frequency oscillations have been frequently observed under the conditions of tearing modes and runaway electrons in J-TEXT Ohmic plasmas. It is found the frequencies of these oscillations range from 20 to 45 kHz, being consistent with the beta-induced Alfvén Eigenmodes (BAEs) with the same order of the low-frequency gap induced by finite beta effects and the coupling of the shear Alfvén wave with the compressional response of the plasma. The exciting conditions for BAEs are investigated, which indicate that runaway electrons, as well as magnetic perturbations contributed by magnetic islands, are indispensable in the excitation of BAEs. In addition, externally applied static resonant magnetic perturbations (RMPs) are used to excite BAEs successfully for the first time in J-TEXT, as indicated by high frequency oscillations (~30 kHz). Further studies show that BAEs can be excited only when the coil current of RMP is stronger than 4 kA, and the strength of BAEs becomes stronger with stronger RMP. To assess the verification of the BAEs, the frequencies of observed modes are compared to the calculated frequencies of the BAE frequency gap in the Alfvén continuum, namely the continuum accumulation point (CAP), and they are found to be close.
NASA Astrophysics Data System (ADS)
Chernodub, M. N.
2013-01-01
Recently, we have demonstrated that for a certain class of Casimir-type systems (“devices”) the energy of zero-point vacuum fluctuations reaches its global minimum when the device rotates about a certain axis rather than remains static. This rotational vacuum effect may lead to the emergence of permanently rotating objects provided the negative rotational energy of zero-point fluctuations cancels the positive rotational energy of the device itself. In this paper, we show that for massless electrically charged particles the rotational vacuum effect should be drastically (astronomically) enhanced in the presence of a magnetic field. As an illustration, we show that in a background of experimentally available magnetic fields the zero-point energy of massless excitations in rotating torus-shaped doped carbon nanotubes may indeed overwhelm the classical energy of rotation for certain angular frequencies so that the permanently rotating state is energetically favored. The suggested “zero-point-driven” devices—which have no internally moving parts—correspond to a perpetuum mobile of a new, fourth kind: They do not produce any work despite the fact that their equilibrium (ground) state corresponds to a permanent rotation even in the presence of an external environment. We show that our proposal is consistent with the laws of thermodynamics.
Characterization facility for magneto-optic media and systems
NASA Technical Reports Server (NTRS)
Mansuripur, M.; Fu, H.; Gadetsky, S.; Sugaya, S.; Wu, T. H.; Zambuto, J.; Gerber, R.; Goodman, T.; Erwin, J. K.
1993-01-01
Objectives of this research are: (1) to measure the hysteresis loop, Kerr rotation angle, anisotropy energy profile, Hall voltage, and magnetoresistance of thin-film magneto-optic media using our loop-tracer; (2) measure the wavelength-dependence of the Kerr rotation angle, Theta(sub k), and ellipticity, epsilon(sub k), for thin-film media using our magneto-optic Kerr spectrometer (MOKS); (3) measure the dielectric tensor of thin-film and multilayer samples using our variable-angle magneto-optic ellipsometer (VAMOE); (4) measure the hysteresis loop, coercivity, remanent magnetization, saturation magnetization, and anisotropy energy constant for thin film magnetic media using vibrating sample magnetometry; (5) observe small magnetic domains and investigate their interaction with defects using magnetic force microscopy; (6) perform static read/write/erase experiments on thin-film magneto-optic media using our static test station; (7) integrate the existing models of magnetization, magneto-optic effects, coercivity, and anisotropy in an interactive and user-friendly environment, and analyze the characterization data obtained in the various experiments, using this modeling package; (8) measure focusing- and tracking-error signals on a static testbed, determine the 'feedthrough' for various focusing schemes, investigate the effects of polarization and birefringence, and compare the results with diffraction-based calculations; and (9) measure the birefringence of optical disk substrates using two variable angle ellipsometers.
The Roles of Mental Animations and External Animations in Understanding Mechanical Systems
ERIC Educational Resources Information Center
Hegarty, Mary; Kriz, Sarah; Cate, Christina
2003-01-01
The effects of computer animations and mental animation on people's mental models of a mechanical system are examined. In 3 experiments, students learned how a mechanical system works from various instructional treatments including viewing a static diagram of the machine, predicting motion from static diagrams, viewing computer animations, and…
NASA Technical Reports Server (NTRS)
Pennock, A. P.; Swift, G.; Marbert, J. A.
1975-01-01
Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.
Brushed permanent magnet DC MLC motor operation in an external magnetic field.
Yun, J; St Aubin, J; Rathee, S; Fallone, B G
2010-05-01
Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of magnetic shielding would be required.
NASA Astrophysics Data System (ADS)
Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang
2018-05-01
The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.
Quasi-static evolution of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Longcope, D. W.; Sudan, R. N.
1992-01-01
A formalism is developed to describe the purely quasi-static part of the evolution of a coronal loop driven by its footpoints. This is accomplished under assumptions of a long, thin loop. The quasi-static equations reveal the possibility for sudden 'loss of equilibrium' at which time the system evolves dynamically rather than quasi-statically. Such quasi-static crises produce high-frequency Alfven waves and, in conjunction with Alfven wave dissipation models, form a viable coronal heating mechanism. Furthermore, an approximate solution to the quasi-static equations by perturbation method verifies the development of small-scale spatial current structure.
Inductively-Charged High-Temperature Superconductors And Methods Of Use
Bromberg, Leslie
2003-09-16
The invention provides methods of charging superconducting materials and, in particular, methods of charging high-temperature superconducting materials. The methods generally involve cooling a superconducting material to a temperature below its critical temperature. Then, an external magnetic field is applied to charge the material at a nearly constant temperature. The external magnetic field first drives the superconducting material to a critical state and then penetrates into the material. When in the critical state, the superconducting material loses all the pinning ability and therefore is in the flux-flow regime. In some embodiments, a first magnetic field may be used to drive the superconducting material to the critical state and then a second magnetic field may be used to penetrate the superconducting material. When the external field or combination of external fields are removed, the magnetic field that has penetrated into the material remains trapped. The charged superconducting material may be used as solenoidal magnets, dipole magnets, or other higher order multipole magnets in many applications.
Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition
NASA Astrophysics Data System (ADS)
Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team
2017-10-01
We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.
NASA Astrophysics Data System (ADS)
Wu, D.; Luan, S. X.; Wang, J. W.; Yu, W.; Gong, J. X.; Cao, L. H.; Zheng, C. Y.; He, X. T.
2017-06-01
The two-stage electron acceleration/heating model (Wu et al 2017 Nucl. Fusion 57 016007 and Wu et al 2016 Phys. Plasmas 23 123116) is extended to the study of laser magnetized-plasmas interactions at relativistic intensities and in the presence of large-scale preformed plasmas. It is shown that the electron-heating efficiency is a controllable value by the external magnetic fields. Detailed studies indicate that for a right-hand circularly polarized laser, the electron heating efficiency depends on both strength and directions of external magnetic fields. The electron-heating is dramatically enhanced when the external magnetic field is of B\\equiv {ω }c/{ω }0> 1. When magnetic field is of negative direction, i.e. B< 0, it trends to suppress the electron heating. The underlining physics—the dependences of electron-heating on both the strength and directions of the external magnetic fields—is uncovered. With -∞ < B< 1, the electron-heating is explained by the synergetic effects by longitudinal charge separation electric field and the reflected ‘envelop-modulated’ CP laser. It is indicated that the ‘modulation depth’ of reflected CP laser is significantly determined by the external magnetic fields, which will in turn influence the efficiency of the electron-heating. While with B> 1, a laser front sharpening mechanism is identified at relativistic laser magnetized-plasmas interactions, which is responsible for the dramatical enhancement of electron-heating.
Compressing the fluctuation of the magnetic field by dynamic compensation
NASA Astrophysics Data System (ADS)
Wang, Wenli; Dong, Richang; Wei, Rong; Chen, Tingting; Wang, Qian; Wang, Yuzhu
2018-03-01
We present a dynamic compensation method to compress the spatial fluctuation of the static magnetic field (C-field) that provides a quantization axis in the atomic fountain clock. The coil current of the C-field is point-by-point modulated in accordance with the atoms probing the magnetic field along the flight trajectory. A homogeneous field with a 0.2 nT inhomogeneity is produced compared to a 5 nT under the static magnetic field with a constant current during the Ramsey interrogation. The corresponding uncertainty associated with the second-order Zeeman shift that we calculate is improved by one order of magnitude. The technique provides an alternative method to improve the uniformity of the magnetic field, particularly for large-scale equipment that is difficult to construct with an effective magnetic shielding. Our method is simple, robust, and essentially important in frequency evaluations concerning the dominant uncertainty contribution due to the quadratic Zeeman shift.
Magneto-capillary dynamics of amphiphilic Janus particles at curved liquid interfaces.
Fei, Wenjie; Driscoll, Michelle M; Chaikin, Paul M; Bishop, Kyle J M
2018-05-11
A homogeneous magnetic field can exert no net force on a colloidal particle. However, by coupling the particle's orientation to its position on a curved interface, even static homogeneous fields can be used to drive rapid particle motions. Here, we demonstrate this effect using magnetic Janus particles with amphiphilic surface chemistry adsorbed at the spherical interface of a water drop in decane. Application of a static homogeneous field drives particle motion to the drop equator where the particle's magnetic moment can align parallel to the field. As explained quantitatively by a simple model, the effective magnetic force on the particle scales linearly with the curvature of the interface. For particles adsorbed on small droplets such as those found in emulsions, these magneto-capillary forces can far exceed those due to magnetic field gradients in both magnitude and range. This mechanism may be useful in creating highly responsive emulsions and foams stabilized by magnetic particles.
NASA Astrophysics Data System (ADS)
Anjum, Safia; Rafique, M. S.; Khaleeq-ur-Rahaman, M.; Siraj, K.; Usman, Arslan; Ahsan, A.; Naseem, S.; Khan, K.
2011-06-01
Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 and Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films with different concentrations of Mn and Zr have been deposited on single crystal n-Si (400) at room temperature (RT) by pulse laser deposition technique (PLD). The films have been deposited under two conditions: (i) with the applied external magnetic field across the propagation of the plume (ii) without applied external magnetic field ( B=0). XRD results show the films have spinel cubic structure when deposited in the presence of magnetic field. SEM and AFM observations clearly show the effect of external applied magnetic field on the growth of films in terms of small particle size, improved uniformity and lower r.m.s. roughness. Thin films deposited under the influence of external magnetic field exhibit higher magnetization as measured by the VSM. The optical band gap energy Eg, refractive index n, reflection, absorption and the thickness of the thin films were measured by spectroscopy ellipsometer. The reflection of Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films is higher than Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 thin films due to the greater concentration of Zr. The thicknesses of the thin films under the influence of external magnetic field are larger than the films grown without field for both samples. The optical band gap energy Eg decreases with increasing film thickness. The films with external magnetic field are found highly absorbing in nature due to the larger film thickness.
Wiecki, P.; Nandi, M.; Bohmer, Anna; ...
2017-11-13
Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiecki, P.; Nandi, M.; Bohmer, Anna
Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.
Anti-Le-Chatelet behavior driven by strong natural light
NASA Astrophysics Data System (ADS)
Antonyuk, B. P.
2007-01-01
We show that strong incoherent broad band light causes positive feedback in response to a static electric field in random media: electric current flows in opposite to a voltage drop direction; static polarization is induced in opposition to an applied electric field. This type of the electron motion amplifies the external action revealing anti-Le-Chatelet behavior. The applied static electric field is amplified up to the domain of optical damage of a silica glass ≈10 7 V/cm.
Effect of external magnetic field on locking range of spintronic feedback nano oscillator
NASA Astrophysics Data System (ADS)
Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.
2018-05-01
In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.
Jacobson, J I; Yamanashi, W S
1995-04-01
The recent clinical studies describing the treatment of some neurological disorders with an externally applied pico Tesla (10(-12) Tesla, or 10(-8) gauss) magnetic field are considered from a physical view point. An equation relating the intrinsic (or rest) energy of a charged particle of mass m with its energy of interaction in an externally applied magnetic field B is presented. The equation represents an initial basic physical interaction as a part of a more complex biological mechanism to explain the therapeutic effects of externally applied magnetic fields in these and other neurologic disorders.
Jacobson, J I; Yamanashi, W S
1995-06-01
The clinical studies describing the treatment of some neurological disorders with an externally applied pico Tesla (10R Tesla, or 10(-8) gauss) magnetic field are considered from a physical view point. An equation relating the intrinsic or "rest" energy of a charged particle of mass with its energy of interaction in an externally applied magnetic field B is presented. The equation is proposed to represent an initial basic physical interaction as a part of a more complex biological mechanism to explain the therapeutic effects of externally applied magnetic fields in these and other neurologic disorders.
Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu
2008-01-01
The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors, together with the increased microwave power and magnet intensity will allow for a detection of high-frequency gravitational waves (HFGWs) exhibiting amplitudes, A, of the time-varying spacetime strains on the order of 10-30 to 10-34.
A thick-walled sphere rotating in a uniform magnetic field: The next step to de-spin a space object
NASA Astrophysics Data System (ADS)
Nurge, Mark A.; Youngquist, Robert C.; Caracciolo, Ryan A.; Peck, Mason; Leve, Frederick A.
2017-08-01
Modeling the interaction between a moving conductor and a static magnetic field is critical to understanding the operation of induction motors, eddy current braking, and the dynamics of satellites moving through Earth's magnetic field. Here, we develop the case of a thick-walled sphere rotating in a uniform magnetic field, which is the simplest, non-trivial, magneto-statics problem that leads to complete closed-form expressions for the resulting potentials, fields, and currents. This solution requires knowledge of all of Maxwell's time independent equations, scalar and vector potential equations, and the Lorentz force law. The paper presents four cases and their associated experimental results, making this topic appropriate for an advanced student lab project.
NASA Astrophysics Data System (ADS)
Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.
2018-04-01
Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.
Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman
2014-04-15
The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, themore » energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.« less
Stable solitary waves in super dense plasmas at external magnetic fields
NASA Astrophysics Data System (ADS)
Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen
2015-07-01
Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.
Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing
2017-11-08
Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.
Finite element analysis and performance study of switched reluctance generator
NASA Astrophysics Data System (ADS)
Zhang, Qianhan; Guo, Yingjun; Xu, Qi; Yu, Xiaoying; Guo, Yajie
2017-03-01
Analyses a three-phase 12/8 switched reluctance generator (SRG) which is based on its structure and performance principle. The initial size data were calculated by MathCAD, and the simulation model was set up in the ANSOFT software environment with the maximum efficiency and the maximum output power as the main reference parameters. The outer diameter of the stator and the inner diameter of the rotor were parameterized. The static magnetic field distribution, magnetic flux, magnetic energy, torque, inductance characteristics, back electromotive force and phase current waveform of SRG is obtained by analyzing the static magnetic field and the steady state motion of two-dimensional transient magnetic field in ANSOFT environment. Finally, the experimental data of the prototype are compared with the simulation results, which provide a reliable basis for the design and research of SRG wind turbine system.
NASA Astrophysics Data System (ADS)
Silva, E. F.; Corrêa, M. A.; Della Pace, R. D.; Plá Cid, C. C.; Kern, P. R.; Carara, M.; Chesman, C.; Alves Santos, O.; Rodríguez-Suárez, R. L.; Azevedo, A.; Rezende, S. M.; Bohn, F.
2017-05-01
We investigate the thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. We go beyond quasi-static measurements and focus on the dynamic magnetic response by considering three complementary techniques: the ferromagnetic resonance, magnetoimpedance and magnetic permeability measurements. We verify remarkable modifications in the magnetic anisotropy, i.e. the well-known behavior of in-plane uniaxial magnetic anisotropy systems gives place to a complex magnetic behavior as the thickness increases, and splits the films in two groups according to the magnetic properties. We identify magnetoimpedance and magnetic permeability curves with multiple resonance peaks, as well as the evolution of the ferromagnetic resonance absorption spectra, as fingerprints of strong changes of the magnetic properties associated to the vanishing of the in-plane magnetic anisotropy and to the emergence of non-homogeneous magnetization configuration, local anisotropies and out-of-plane anisotropy contribution arisen as a consequence of the non-uniformities of the stress stored in the film as the thickness is increased and/or to the columnar growth of the film. We interpret the experimental results in terms of the structural and morphological properties, quasi-static magnetic behavior, magnetic domain structure and different mechanisms governing the magnetization dynamics at distinct frequency ranges.
Forced magnetohydrodynamic turbulence in a uniform external magnetic field
NASA Technical Reports Server (NTRS)
Hossain, M.; Vahala, G.; Montgomery, D.
1985-01-01
Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx, ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence.
Forced MHD turbulence in a uniform external magnetic field
NASA Technical Reports Server (NTRS)
Hossain, M.; Vahala, G.; Montgomery, D.
1985-01-01
Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx' ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence.
NASA Astrophysics Data System (ADS)
Yao, Hui; Niu, Peng-Bin; Zhang, Chao; Xu, Wei-Ping; Li, Zhi-Jian; Nie, Yi-Hang
2018-03-01
We theoretically study the thermoelectric transport properties in a quantum dot system with two ferromagnetic leads, the spin-flip scattering and the external magnetic field. The results show that the spin polarization of the leads strongly influences thermoelectric coefficients of the device. For the parallel configuration the peak of figure of merit increases with the increase of polarization strength and non-collinear configuration trends to destroy the improvement of figure of merit induced by lead polarization. While the modulation of the spin-flip scattering on the figure of merit is effective only in the absence of external magnetic field or small magnetic field. In terms of improving the thermoelectric efficiency, the external magnetic field plays a more important role than spin-flip scattering. The thermoelectric efficiency can be significantly enhanced by the magnetic field for a given spin-flip scattering strength.
NASA Astrophysics Data System (ADS)
Wang, Haiyan; Li, Mingjie; Li, Xueai
2016-12-01
The carbonyl iron particles were dispersed in a polychloroprene rubber (CR) matrix under a magnetic field for a practical application as microwave absorption composites film. In comparison with the carbonyl iron particles (CIP)/CR composites film prepared by general route, such films made with external magnetic field exhibit excellent microwave absorption properties, strongly depending on the increment of anisotropy and rearrangement of magnetic particles. The film made under external magnetic field with a thickness of only 0.54 mm shows least reflection loss of -15.98 dB and the reflection loss value less than -10.0 dB over the frequency range of 11.4˜14.8 GHz. The results indicated the composite film made under external magnetic field have excellent microwave absorption properties, which suggest that the composites thin film could be used as a thinner and lighter microwave absorber.
Student Learning about Biomolecular Self-Assembly Using Two Different External Representations
ERIC Educational Resources Information Center
Host, Gunnar E.; Larsson, Caroline; Olson, Arthur; Tibell, Lena A. E.
2013-01-01
Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning…
NASA Astrophysics Data System (ADS)
2018-06-01
Welcome to the special issue of Journal of Magnetism and Magnetic Materials on magnetic skyrmions. We are proud to present, with great pleasure, a timely collection of 9 original research articles on the recent hot topic "magnetic skyrmions" which studies the static and dynamic properties of skyrmions and the methods to control them in a variety of ways, including magnetic field, electric current and applied strain.
Chirality-induced negative refraction in magnetized plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, B.
2013-09-15
Characteristic equations in magnetized plasma with chirality are derived in simple formulations and the dispersion relations for propagation parallel and perpendicular to the external magnetic field are studied in detail. With the help of the dispersion relations of each eigenwave, the author explores chirality-induced negative refraction in magnetized plasma and investigates the effects of parameters (i.e., chirality degree, external magnetic field, etc.) on the negative refraction. The results show that the chirality is the necessary and only one factor which leads to negative refraction without manipulating electrical permittivity and magnetic permeability. Both increasing the degree of chirality and reducing themore » external magnetic field can result in greater range negative refraction. Parameter dependence of the effects is calculated and discussed.« less
Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field
NASA Astrophysics Data System (ADS)
Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D.
2017-08-01
Topology optimization offers great opportunities to design permanent magnetic systems that have specific external field characteristics. Additive manufacturing of polymer-bonded magnets with an end-user 3D printer can be used to manufacture permanent magnets with structures that had been difficult or impossible to manufacture previously. This work combines these two powerful methods to design and manufacture permanent magnetic systems with specific properties. The topology optimization framework is simple, fast, and accurate. It can also be used for the reverse engineering of permanent magnets in order to find the topology from field measurements. Furthermore, a magnetic system that generates a linear external field above the magnet is presented. With a volume constraint, the amount of magnetic material can be minimized without losing performance. Simulations and measurements of the printed systems show very good agreement.
NASA Astrophysics Data System (ADS)
Ma, X.; Cianciosa, M.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Ennis, D. A.; Herfindal, J. L.
2015-11-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by the driven plasma current. Studies were performed on the Compact Toroidal Hybrid device using the V3FIT reconstruction code incorporating a set of 50 magnetic diagnostics external to the plasma, combined with information from soft X-ray (SXR) arrays. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the outer boundary of these highly non-axisymmetric plasmas. The inversion radius for sawtoothing plasmas is used to identify the location of the q = 1 surface, and thus infer the current profile near the magnetic axis. With external magnetic diagnostics alone, we find the reconstruction to be insufficiently constrained. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Improving Keyhole Stability by External Magnetic Field in Full Penetration Laser Welding
NASA Astrophysics Data System (ADS)
Li, Min; Xu, Jiajun; Huang, Yu; Rong, Youmin
2018-05-01
An external magnetic field was used to improve the keyhole stability in full penetration laser welding 316L steel. The increase of magnetic field strength gave rise to a shorter flying time of the spatter, a weaker size and brightness of the spatter, and a larger spreading area of vapor plume. This suggested that the dynamic behavior of the keyhole was stabilized by the external magnetic field. In addition, a stronger magnetic field could result in a more homogeneous distribution of laser energy, which increased the width of the weld zone, and the height of the bottom weld zone from 381 μm (0 mT) to 605 μm (50 mT). Dendrite and cellular crystal near the weld center disappeared, and grain size was refined. The external magnetic field was beneficial to the keyhole stability and improved the joint quality, because the weld pool was stirred by a Lorentz force resulting from the coupling effect of the magnetic field and inner thermocurrent.
Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field
Hahn, David; Boers, Frank; Shah, N. Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4T were not different from those recorded at 0T. The amplitudes of ERPs were higher at 9.4T when compared to recordings at 0T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses. PMID:23650538
Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.
Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.
Mariappan, Leo; Hu, Gang; He, Bin
2014-01-01
Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction. PMID:24506649
Dual-body magnetic helical robot for drilling and cargo delivery in human blood vessels
NASA Astrophysics Data System (ADS)
Lee, Wonseo; Jeon, Seungmun; Nam, Jaekwang; Jang, Gunhee
2015-05-01
We propose a novel dual-body magnetic helical robot (DMHR) manipulated by a magnetic navigation system. The proposed DMHR can generate helical motions to navigate in human blood vessels and to drill blood clots by an external rotating magnetic field. It can also generate release motions which are relative rotational motions between dual-bodies to release the carrying cargos to a target region by controlling the magnitude of an external magnetic field. Constraint equations were derived to selectively manipulate helical and release motions by controlling external magnetic fields. The DMHR was prototyped and various experiments were conducted to demonstrate its motions and verify its manipulation methods.
Research on the effect of the external magnetic field in the joule balance at NIM
NASA Astrophysics Data System (ADS)
Xu, Jinxin; You, Qiang; Li, Zhengkun; Bai, Yang; Lu, Yunfeng; Zhang, Zhonghua; He, Qing
2018-06-01
The first determination of the Planck constant with the second generation of the joule balance, NIM-2, was completed in 2017 with an uncertainty of 2.4 × 10‑7. Due to the movement of the magnet during the measurement process, the effect of the external field is a critical problem in NIM-2. At present, the electromagnet system is used in NIM-2. By taking the average of the results with positive and negative exciting currents, the uncertainty from the external field is reduced to 1.7 × 10‑7, which is still the largest source in the uncertainty budget as all the other items are less than 1 × 10‑7. In the near future, a permanent magnet system will be applied in NIM-2 and the main field cannot be reversed. Although the coupling of the external magnetic field in the permanent magnet system is about 40 times less than that in the electromagnet system, further reduction of this effect is still required in the permanent magnet system. In this paper, the effect of the external field is analyzed in both an electromagnet system and a permanent magnet system based on simulations and experiments. Then, the methods of magnetic shielding and compensation coils are proposed and simulated in the permanent magnet system. The results show that it may be possible to reduce the uncertainty of the external field to less than 2 × 10‑8 in the permanent magnet system by employing the two methods.
NASA Astrophysics Data System (ADS)
Liu, Ziyao; Zhan, Xiaohui; Yang, Minggang; Yang, Qi; Xu, Xianghui; Lan, Fang; Wu, Yao; Gu, Zhongwei
2016-03-01
In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs.In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08447d
Numerical simulation of a helical shape electric arc in the external axial magnetic field
NASA Astrophysics Data System (ADS)
Urusov, R. M.; Urusova, I. R.
2016-10-01
Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.
Superconducting Sphere in an External Magnetic Field Revisited
ERIC Educational Resources Information Center
Sazonov, Sergey N.
2013-01-01
The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…
NASA Technical Reports Server (NTRS)
Raymond, C.; Hajj, G.
1994-01-01
We review the problem of separating components of the magnetic field arising from sources in the Earth's core and lithosphere, from those contributions arising external to the Earth, namely ionospheric and magnetospheric fields, in spacecraft measurements of the Earth's magnetic field.
Low-Altitude Magnetic Topology with MAVEN SWEA and MAG
NASA Astrophysics Data System (ADS)
Mitchell, David; Xu, Shaosui; Mazelle, Christian; Luhmann, Janet; McFadden, James; Connerney, John; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew
2016-04-01
The Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) onboard the MAVEN spacecraft measure electron pitch angle and energy distributions at 2-second resolution (~8 km along the orbit track) to determine the topology of magnetic fields from both external and crustal sources. Electrons from different regions of the Mars environment can be distinguished by their energy distributions. Thus, pitch angle resolved energy spectra can be used to determine the plasma source regions sampled by a field line at large distances from the spacecraft. From 12/1/2014 to 2/15/2015, when periapsis was at high northern latitudes, SWEA observed ionospheric photoelectrons at low altitudes (140-200 km) and high solar zenith angles (120-145 degrees) on ~35% of the orbits. Since this electron population is unambiguously produced in the dayside ionosphere, these observations demonstrate that the deep Martian nightside is at times magnetically connected to the sunlit hemisphere. The BATS-R-US Mars multi-fluid MHD model suggests the presence of closed crustal magnetic field lines over the northern hemisphere that straddle the terminator and extend to high SZA. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron transport along such field lines can take place without significant attenuation. Precipitation of photoelectrons onto the night-side atmosphere should cause ionization and possibly auroral emissions in localized regions. On one orbit, the O2+ energy flux measured by STATIC correlates well with precipitating photoelectron fluxes.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.
2017-01-01
The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.
Ingleby, S J; Griffin, P F; Arnold, A S; Chouliara, M; Riis, E
2017-04-01
An integrated system of hardware and software allowing precise definition of arbitrarily oriented magnetic fields up to |B| = 1 μT within a five-layer Mumetal shield is described. The system is calibrated with reference to magnetic resonance observed between Zeeman states of the 6S 1/2 F = 4 133 Cs ground state. Magnetic field definition over the full 4π solid angle is demonstrated with one-sigma tolerances in magnitude, orientation, and gradient of δ|B| = 0.94 nT, δθ = 5.9 mrad, and δ|∇B|=13.0 pT/mm, respectively. This field control is used to empirically map M x magnetometer signal amplitude as a function of the static field (B 0 ) orientation.
The use of magnetic fields in vertical Bridgman/Gradient Freeze-type crystal growth
NASA Astrophysics Data System (ADS)
Pätzold, Olf; Niemietz, Kathrin; Lantzsch, Ronny; Galindo, Vladimir; Grants, Ilmars; Bellmann, Martin; Gerbeth, Gunter
2013-03-01
This paper outlines advanced vertical Bridgman/Gradient Freeze techniques with flow control using magnetic fields developed for the growth of semiconductor crystals. Low-temperature flow modelling, as well as laboratory-scaled crystal growth under the influence of rotating, travelling, and static magnetic fields are presented. Experimental and numerical flow modelling demonstrate the potential of the magnetic fields to establish a well-defined flow for tailoring heat and mass transfer in the melt during growth. The results of the growth experiments are discussed with a focus on the influence of a rotating field on the segregation of dopants, the influence of a travelling field on the temperature field and thermal stresses, and the potential of rotating and static fields for a stabilization of the melt flow.
ERIC Educational Resources Information Center
Donoso, Guillermo; Ladera, Celso L.
2012-01-01
We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…
NASA Technical Reports Server (NTRS)
Ramsey, P. E.; Winkler, G. W.
1975-01-01
Static pressure distributions for the external tank (ET) at reentry conditions are presented. Basic configuration of the model was the MCR 0200 ET modified to include a rectangular crossbar at the aft ET/orbiter attach point. Mach numbers were 1.96, 3.48, and 4.96. Reynolds number per foot at these Mach numbers were 6.95 million, 6.42 million, and 4.95 million, respectively. Angle of attack range was -8 to 100 degrees and roll angle was 0 to 315 degrees.
Distributed parameter statics of magnetic catheters.
Tunay, Ilker
2011-01-01
We discuss how to use special Cosserat rod theory for deriving distributed-parameter static equilibrium equations of magnetic catheters. These medical devices are used for minimally-invasive diagnostic and therapeutic procedures and can be operated remotely or controlled by automated algorithms. The magnetic material can be lumped in rigid segments or distributed in flexible segments. The position vector of the cross-section centroid and quaternion representation of an orthonormal triad are selected as DOF. The strain energy for transversely isotropic, hyperelastic rods is augmented with the mechanical potential energy of the magnetic field and a penalty term to enforce the quaternion unity constraint. Numerical solution is found by 1D finite elements. Material properties of polymer tubes in extension, bending and twist are determined by mechanical and magnetic experiments. Software experiments with commercial FEM software indicate that the computational effort with the proposed method is at least one order of magnitude less than standard 3D FEM.
The Swarm Initial Field Model for the 2014 Geomagnetic Field
NASA Technical Reports Server (NTRS)
Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger
2015-01-01
Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.
Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field
NASA Astrophysics Data System (ADS)
Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao
2017-03-01
External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.
Study of static and dynamic magnetic properties of Fe nanoparticles composited with activated carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Satyendra Prakash, E-mail: sppal85@gmail.com; Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge city, Sector81, SAS Nagar, Manauli-140306, Punjab; Kaur, Guratinder
2016-05-23
Nanocomposite of Fe nanoparticles with activated carbon has been synthesized to alter the magnetic spin-spin interaction and hence study the dilution effect on the static and dynamic magnetic properties of the Fe nanoparticle system. Transmission electron microscopic (TEM) image shows the spherical Fe nanoparticles dispersed in carbon matrix with 13.8 nm particle size. Temperature dependent magnetization measurement does not show any blocking temperature at all, right up to the room temperature. Magnetic hysteresis curve, taken at 300 K, shows small value of the coercivity and this small hysteresis indicates the presence of an energy barrier and inherent magnetization dynamics. Langevinmore » function fitting of the hysteresis curve gives almost similar value of particle size as obtained from TEM analysis. Magnetic relaxation data, taken at a temperature of 100 K, were fitted with a combination of two exponentially decaying function. This diluted form of nanoparticle system, which has particles size in the superparamagnetic limit, behaves like a dilute ensemble of superspins with large value of the magnetic anisotropic barrier.« less
Khang, Hyun Soo; Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Yoon, Jeong Rock; Seo, Jin Keun
2002-06-01
Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.
Experimental studies of protozoan response to intense magnetic fields and forces
NASA Astrophysics Data System (ADS)
Guevorkian, Karine
Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.
ERIC Educational Resources Information Center
Bussey, Thomas J.; Orgill, MaryKay
2015-01-01
Biochemistry instructors often use external representations--ranging from static diagrams to dynamic animations and from simplistic, stylized illustrations to more complex, realistic presentations--to help their students visualize abstract cellular and molecular processes, mechanisms, and components. However, relatively little is known about how…
Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems
NASA Astrophysics Data System (ADS)
Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani
2018-05-01
Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.
Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.
Zhu, Zhen-Gang; Berakdar, Jamal
2009-04-08
We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.
Crossed-coil detection of two-photon excited nuclear quadrupole resonance
NASA Astrophysics Data System (ADS)
Eles, Philip T.; Michal, Carl A.
2005-08-01
Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.
Study of magnetic resonance with parametric modulation in a potassium vapor cell
NASA Astrophysics Data System (ADS)
Zhang, Rui; Wang, Zhiguo; Peng, Xiang; Li, Wenhao; Li, Songjian; Guo, Hong; Cream Team
2017-04-01
A typical magnetic-resonance scheme employs a static bias magnetic field and an orthogonal driving magnetic field oscillating at the Larmor frequency, at which the atomic polarization precesses around the static magnetic field. We demonstrate in a potassium vapor cell the variations of the resonance condition and the spin precession dynamics resulting from the parametric modulation of the bias field, which are in well agreement with theoretical predictions from the Bloch equation. We show that, the driving magnetic field with the frequency detuned by different harmonics of the parametric modulation frequency can lead to resonance as well. Also, a series of frequency sidebands centered at the driving frequency and spaced by the parametric modulation frequency can be observed in the precession of the atomic polarization. These effects could be used in different atomic magnetometry applications. This work is supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003) and the National Natural Science Foundation of China (Grant Nos. 61531003 and 61571018).
NASA Astrophysics Data System (ADS)
Barangi, Mahmood; Mazumder, Pinaki
2015-11-01
A theoretical model quantifying the effect of temperature variations on the magnetic properties and static and dynamic behavior of the straintronics magnetic tunneling junction is presented. Four common magnetostrictive materials (Nickel, Cobalt, Terfenol-D, and Galfenol) are analyzed to determine their temperature sensitivity and to provide a comprehensive database for different applications. The variations of magnetic anisotropies are studied in detail for temperature levels up to the Curie temperature. The energy barrier of the free layer and the critical voltage required for flipping the magnetization vector are inspected as important metrics that dominate the energy requirements and noise immunity when the device is incorporated into large systems. To study the dynamic thermal noise, the effect of the Langevin thermal field on the free layer's magnetization vector is incorporated into the Landau-Lifshitz-Gilbert equation. The switching energy, flipping delay, write, and hold error probabilities are studied, which are important metrics for nonvolatile memories, an important application of the straintronics magnetic tunneling junctions.
Xu, Chun; Chao, Yong-lie; Du, Li; Yang, Ling
2004-05-01
To measure and analyze the flux densities of static magnetic fields generated by two types of commonly used dental magnetic attachments and their retentive forces, and to provide guidance for the clinical application of magnetic attachments. A digital Gaussmeter was used to measure the flux densities of static magnetic fields generated by two types of magnetic attachments, under four circumstances: open-field circuit; closed-field circuit; keeper and magnet slid laterally for a certain distance; and existence of air gap between keeper and magnet. The retentive forces of the magnetic attachments in standard closed-field circuit, with the keeper and magnet sliding laterally for a certain distance or with a certain air gap between keeper and magnet were measured by a tensile testing machine. There were flux leakages under both the open-field circuit and closed-field circuit of the two types of magnetic attachments. The flux densities on the surfaces of MAGNEDISC 800 (MD800) and MAGFIT EX600W (EX600) magnetic attachments under open-field circuit were 275.0 mT and 147.0 mT respectively. The flux leakages under closed-field circuit were smaller than those under open-field circuit. The respective flux densities on the surfaces of MD800 and EX600 magnetic attachments decreased to 11.4 mT and 4.5 mT under closed-field circuit. The flux density around the magnetic attachment decreased as the distance from the surface of the attachment increased. When keeper and magnet slid laterally for a certain distance or when air gap existed between keeper and magnet, the flux leakage increased in comparison with that under closed-field circuit. Under the standard closed-field circuit, the two types of magnetic attachments achieved the largest retentive forces. The retentive forces of MD800 and EX600 magnetic attachments under the standard closed-field circuit were 6.20 N and 4.80 N respectively. The retentive forces decreased with the sliding distance or with the increase of air gap between keeper and magnet. The magnetic attachments have flux leakages. When they are used in patients' oral cavities, if keeper and magnet are not attached accurately, the flux leakage will increase, and at the same time the retentive force will decrease. Therefore the keeper and magnet should be attached accurately in clinical application.
Schaap, Kristel; Christopher-de Vries, Yvette; Mason, Catherine K; de Vocht, Frank; Portengen, Lützen; Kromhout, Hans
2014-01-01
Objectives Limited data is available about incidence of acute transient symptoms associated with occupational exposure to static magnetic stray fields from MRI scanners. We aimed to assess the incidence of these symptoms among healthcare and research staff working with MRI scanners, and their association with static magnetic field exposure. Methods We performed an observational study among 361 employees of 14 clinical and research MRI facilities in The Netherlands. Each participant completed a diary during one or more work shifts inside and/or outside the MRI facility, reporting work activities and symptoms (from a list of potentially MRI-related symptoms, complemented with unrelated symptoms) experienced during a working day. We analysed 633 diaries. Exposure categories were defined by strength and type of MRI scanner, using non-MRI shifts as the reference category for statistical analysis. Non-MRI shifts originated from MRI staff who also participated on MRI days, as well as CT radiographers who never worked with MRI. Results Varying per exposure category, symptoms were reported during 16–39% of the MRI work shifts. We observed a positive association between scanner strength and reported symptoms among healthcare and research staff working with closed-bore MRI scanners of 1.5 Tesla (T) and higher (1.5 T OR=1.88; 3.0 T OR=2.14; 7.0 T OR=4.17). This finding was mainly driven by reporting of vertigo and metallic taste. Conclusions The results suggest an exposure-response association between exposure to strong static magnetic fields (and associated motion-induced time-varying magnetic fields) and reporting of transient symptoms on the same day of exposure. Trial registration number 11-032/C PMID:24714654
The Kondo problem. II. Crossover from asymptotic freedom to infrared slavery
NASA Astrophysics Data System (ADS)
Schlottmann, P.
1982-04-01
In the preceding paper we transformed the s-d Hamiltonian onto a resonance level with a large perturbation and derived the scaling equations for the vertices, the invariant coupling, and the resonance width. The scaling equations are integrated under the assumption that the energy dependence of the resonance width can be neglected. The transcendental equation obtained in this way for the renormalized resonance width is solved in the relevant limits and allows a calculation of the static and dynamical susceptibility. At high temperatures the perturbation expansion for the relaxation rate and the susceptibility is reproduced up to third order in Jρ. At low temperatures the lifetime and χ0 remain finite and vary according to a Fermi-liquid theory. The approximation scheme interpolates in this way between the asymptotic freedom and the infrared slavery, yielding a smooth crossover. The present results are in quantitative agreement with previous ones obtained with the relaxation-kernel method by Götze and Schlottmann. The advantages and drawbacks of the method are discussed. The calculation of the dynamical susceptibility is extended to nonzero external magnetic fields. The quasielastic peak of χ''(ω)ω is suppressed at low temperatures and large magnetic fields and shoulders develop at ω=+/-B.
On the relationship between ontogenetic and static allometry.
Pélabon, Christophe; Bolstad, Geir H; Egset, Camilla K; Cheverud, James M; Pavlicev, Mihaela; Rosenqvist, Gunilla
2013-02-01
Ontogenetic and static allometries describe how a character changes in size when the size of the organism changes during ontogeny and among individuals measured at the same developmental stage, respectively. Understanding the relationship between these two types of allometry is crucial to understanding the evolution of allometry and, more generally, the evolution of shape. However, the effects of ontogenetic allometry on static allometry remain largely unexplored. Here, we first show analytically how individual variation in ontogenetic allometry and body size affect static allometry. Using two longitudinal data sets on ontogenetic and static allometry, we then estimate variances and covariances for the different parameters of the ontogenetic allometry defined in our model and assess their relative contribution to the static allometric slope. The mean ontogenetic allometry is the main parameter that determines the static allometric slope, while the covariance between the ontogenetic allometric slope and body size generates most of the discrepancies between ontogenetic and static allometry. These results suggest that the apparent evolutionary stasis of the static allometric slope is not generated by internal (developmental) constraints but more likely results from external constraints imposed by selection.
Kondo, Takahiro; Guo, Donghui; Shikano, Taishi; Suzuki, Tetsuya; Sakurai, Masataka; Okada, Susumu; Nakamura, Junji
2015-01-01
Under perpendicular external magnetic fields, two-dimensional carriers exhibit Landau levels (LLs). However, it has recently been reported that LLs have been observed on graphene and graphite surfaces without external magnetic fields being applied. These anomalous LLs have been ascribed primarily to a strain of graphene sheets, leading to in-plane hopping modulation of electrons. Here, we report the observation of the LLs of massive Dirac fermions on atomically flat areas of a nitrogen-doped graphite surface in the absence of external magnetic fields. The corresponding magnetic fields were estimated to be as much as approximately 100 T. The generation of the LLs at the area with negligible strain can be explained by inequivalent hopping of π electrons that takes place at the perimeter of high-potential domains surrounded by positively charged substituted graphitic-nitrogen atoms. PMID:26549618
Anomalous transport from holography. Part I
NASA Astrophysics Data System (ADS)
Bu, Yanyan; Lublinsky, Michael; Sharon, Amir
2016-11-01
We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1) V ×U(1) A Maxwell theory in Schwarzschild-AdS5. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport co-efficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Masato; Maeda, Hideaki; Graduate School of Yokohama City University, Yokohama, Kanagawa 230-0045
Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb{sub 3}Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system basedmore » on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a {sup 7}Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.« less
External control of photonic bands in a magnetized cold plasma
NASA Astrophysics Data System (ADS)
Kumar, N.; Singh, P. P.; Suthar, B.; Kumar, A.; Thapa, K. B.
2018-05-01
In this analysis, the effect of external rectangle-wave-like periodic magnetic field, on photonic bandgaps (PBGs) exhibited by bulk cold plasma, has been illustrated. It is found that the forbidden gap for normal incidence decreases with a decrease in the thickness ratio for a constant magnetic field. A new gap appears for TM polarization at oblique incidence that is attributed to the Bragg's interference of plasma layers and this new gap width depends on the incident angle as well as the magnitude of the magnetic field. There is also a shifting in gap locations depending on the magnitude of the magnetic field. It is demonstrated that external parameters like magnetic field strength and the ratio of two parts of spatial period along with incident angle can tune the PBGs in a magnetized cold plasma.
NASA Astrophysics Data System (ADS)
Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd
2015-01-01
The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.
Quantum phase transition in dimerised spin-1/2 chains
NASA Astrophysics Data System (ADS)
Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali
2015-11-01
Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.
Strain engineering of graphene nanoribbons: pseudomagnetic versus external magnetic fields
NASA Astrophysics Data System (ADS)
Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis
2017-05-01
Bandgap opening due to strain engineering is a key architect for making graphene's optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Gui, Keting; Wang, Xiaobo
2016-02-01
The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.
Magnetism and high magnetic-field-induced stability of alloy carbides in Fe-based materials.
Hou, T P; Wu, K M; Liu, W M; Peet, M J; Hulme-Smith, C N; Guo, L; Zhuang, L
2018-02-14
Understanding the nature of the magnetic-field-induced precipitation behaviors represents a major step forward towards unravelling the real nature of interesting phenomena in Fe-based alloys and especially towards solving the key materials problem for the development of fusion energy. Experimental results indicate that the applied high magnetic field effectively promotes the precipitation of M 23 C 6 carbides. We build an integrated method, which breaks through the limitations of zero temperature and zero external field, to concentrate on the dependence of the stability induced by the magnetic effect, excluding the thermal effect. We investigate the intimate relationship between the external field and the origins of various magnetics structural characteristics, which are derived from the interactions among the various Wyckoff sites of iron atoms, antiparallel spin of chromium and Fe-C bond distances. The high-magnetic-field-induced exchange coupling increases with the strength of the external field, which then causes an increase in the parallel magnetic moment. The stability of the alloy carbide M 23 C 6 is more dependent on external field effects than thermal effects, whereas that of M 2 C, M 3 C and M 7 C 3 is mainly determined by thermal effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder-Aronson, S.; Lindskog, S.
1991-01-01
The present investigation was undertaken to measure any bone surface changes after stimulation with orthodontic magnets and, furthermore, to examine the soft tissue in immediate contact with the magnets. Both distal parts of the tibial hind legs in six groups of young rats were fitted with devices holding two orthodontic magnets in the experimental legs and similar devices without magnets in the control legs. The animals were killed after 2, 3, and 4 weeks. Morphometric evaluation showed significant increases in resorbing areas after 3 and 4 weeks. Similarly, a reduction was evident in the number of epithelial cells under themore » areas where the magnets had been applied. These findings indicate that the stimulation of bone resorption in the present study may have been caused by inhibition of the bone-lining osteoblasts. This proposition is supported by the apparent inhibitory effect of the magnetic fields on epithelial recycling that was seen as a reduced thickness of the epithelium under the magnets. Consequently, static magnetic fields should be used with care in orthodontic practice until a more complete understanding of their mechanism of action has been established.« less
Linder-Aronson, S; Lindskog, S
1991-01-01
The present investigation was undertaken to measure any bone surface changes after stimulation with orthodontic magnets and, furthermore, to examine the soft tissue in immediate contact with the magnets. Both distal parts of the tibial hind legs in six groups of young rats were fitted with devices holding two orthodontic magnets in the experimental legs and similar devices without magnets in the control legs. The animals were killed after 2, 3, and 4 weeks. Morphometric evaluation showed significant increases in resorbing areas after 3 and 4 weeks. Similarly, a reduction was evident in the number of epithelial cells under the areas where the magnets had been applied. These findings indicate that the stimulation of bone resorption in the present study may have been caused by inhibition of the bone-lining osteoblasts. This proposition is supported by the apparent inhibitory effect of the magnetic fields on epithelial recycling that was seen as a reduced thickness of the epithelium under the magnets. Consequently, static magnetic fields should be used with care in orthodontic practice until a more complete understanding of their mechanism of action has been established.
Neutron polarization analysis study of the frustrated magnetic ground state of β-Mn1-xAlx
NASA Astrophysics Data System (ADS)
Stewart, J. R.; Andersen, K. H.; Cywinski, R.
2008-07-01
We have performed a neutron polarization analysis study of the short-range nuclear and magnetic correlations present in the dilute alloy, β-Mn1-xAlx with 0.03≤x≤0.16 , in order to study the evolution of the magnetic ground state of this system as it achieves static spin-glass order at concentrations x>0.09 . To this end we have developed a reverse-Monte Carlo algorithm which has enabled us to extract Warren-Cowley nuclear short-range order parameters and magnetic spin correlations. Using conventional neutron powder diffraction, we show that the nonmagnetic Al substituents preferentially occupy the magnetic site II Wyckoff positions in the β-Mn structure—resulting in a reduction of the magnetic topological frustration of the Mn atoms. These Al impurities are found to display strong anticlustering behavior. The magnetic spin correlations are predominantly antiferromagnetic, persisting over a short range which is similar for all the samples studied—above and below the spin-liquid-spin-glass boundary—while the observed static (disordered) moment is shown to increase with increasing Al concentration.
Ma, Qingyu; He, Bin
2007-08-21
A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.
Study of the magnets used for a mobile isocenter carbon ion gantry.
Moreno, Jhonnatan Osorio; Pullia, Marco G; Priano, Cristiana; Lante, Valeria; Necchi, Monica M; Savazzi, Simone
2013-07-01
A conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level. The differences between the stationary field and the corresponding dynamic field after the end of the ramps are in the order of 10(-4); it implies that the magnets can be operated without significant field lag at the nominal ramp rate. However, even in static regime the magnetic length of corrector magnet decreases by 5% when the rotator mechanical structure is considered. The simulations suggest an optimization phase of the correctors in the rotator.
Study of the magnets used for a mobile isocenter carbon ion gantry
Moreno, Jhonnatan Osorio; Pullia, Marco G.; Priano, Cristiana; Lante, Valeria; Necchi, Monica M.; Savazzi, Simone
2013-01-01
A conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level. The differences between the stationary field and the corresponding dynamic field after the end of the ramps are in the order of 10–4; it implies that the magnets can be operated without significant field lag at the nominal ramp rate. However, even in static regime the magnetic length of corrector magnet decreases by 5% when the rotator mechanical structure is considered. The simulations suggest an optimization phase of the correctors in the rotator. PMID:23824120
Magnetic materials selection for static inverter and converter transformers
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1973-01-01
A program to study magnetic materials is described for use in spacecraft transformers used in static inverters, converters, and transformer-rectifier supplies. Different magnetic alloys best suited for high-frequency and high-efficiency applications were comparatively investigated together with an investigation of each alloy's inherent characteristics. The materials evaluated were the magnetic alloys: (1) 50% Ni, 50% Fe; (2) 79% Ni, 17% Fe, 4% Mo; (3) 48% Ni, 52% Fe; (4) 78% Ni, 17% Fe, 5% Mo; and (5) 3% Si, 97% Fe. Investigations led to the design of a transformer with a very low residual flux. Tests were performed to determine the dc and ac magnetic properties at 2400 Hz using square-wave excitation. These tests were performed on uncut cores, which were then cut for comparison of the gapped and ungapped magnetic properties. When the data of many transformers in many configurations were compiled the optimum transformer was found to be that with the lowest residual flux and a small amount of air gap in the magnetic material. The data obtained from these tests are described, and the potential uses for the materials are discussed.
Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys
NASA Astrophysics Data System (ADS)
Degmová, J.; Sitek, J.
2010-07-01
Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.
NASA Technical Reports Server (NTRS)
Vlajinac, M.; Stephens, T.; Gilliam, G.; Pertsas, N.
1972-01-01
Results of subsonic and supersonic wind-tunnel tests with a magnetic balance and suspension system on a family of bulbous based cone configurations are presented. At subsonic speeds the base flow and separation characteristics of these configurations is shown to have a pronounced effect on the static data. Results obtained with the presence of a dummy sting are compared with support interference free data. Support interference is shown to have a substantial effect on the measured aerodynamic coefficient.
Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1983-01-01
A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.
NASA Astrophysics Data System (ADS)
Villani, Maria Elena; Massa, Silvia; Lopresto, Vanni; Pinto, Rosanna; Salzano, Anna Maria; Scaloni, Andrea; Benvenuto, Eugenio; Desiderio, Angiola
2017-11-01
Static magnetic fields created by superconducting magnets have been proposed as an effective solution to protect spacecrafts and planetary stations from cosmic radiations. This shield can deflect high-energy particles exerting injurious effects on living organisms, including plants. In fact, plant systems are becoming increasingly interesting for space adaptation studies, being useful not only as food source but also as sink of bioactive molecules in future bioregenerative life-support systems (BLSS). However, the application of protective magnetic shields would generate inside space habitats residual magnetic fields, of the order of few hundreds milli Tesla, whose effect on plant systems is poorly known. To simulate the exposure conditions of these residual magnetic fields in shielded environment, devices generating high-intensity static magnetic field (SMF) were comparatively evaluated in blind exposure experiments (250 mT, 500 mT and sham -no SMF-). The effects of these SMFs were assayed on tomato cultures (hairy roots) previously engineered to produce anthocyanins, known for their anti-oxidant properties and possibly useful in the setting of BLSS. Hairy roots exposed for periods ranging from 24 h to 11 days were morphometrically analyzed to measure their growth and corresponding molecular changes were assessed by a differential proteomic approach. After disclosing blind exposure protocol, a stringent statistical elaboration revealed the absence of significant differences in the soluble proteome, perfectly matching phenotypic results. These experimental evidences demonstrate that the identified plant system well tolerates the exposure to these magnetic fields. Results hereby described reinforce the notion of using this plant organ culture as a tool in ground-based experiments simulating space and planetary environments, in a perspective of using tomato 'hairy root' cultures as bioreactor of ready-to-use bioactive molecules during future long-term space missions.
Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm.
Cooley, Clarissa Zimmerman; Haskell, Melissa W; Cauley, Stephen F; Sappo, Charlotte; Lapierre, Cristen D; Ha, Christopher G; Stockmann, Jason P; Wald, Lawrence L
2018-01-01
Permanent magnet arrays offer several attributes attractive for the development of a low-cost portable MRI scanner for brain imaging. They offer the potential for a relatively lightweight, low to mid-field system with no cryogenics, a small fringe field, and no electrical power requirements or heat dissipation needs. The cylindrical Halbach array, however, requires external shimming or mechanical adjustments to produce B 0 fields with standard MRI homogeneity levels (e.g., 0.1 ppm over FOV), particularly when constrained or truncated geometries are needed, such as a head-only magnet where the magnet length is constrained by the shoulders. For portable scanners using rotation of the magnet for spatial encoding with generalized projections, the spatial pattern of the field is important since it acts as the encoding field. In either a static or rotating magnet, it will be important to be able to optimize the field pattern of cylindrical Halbach arrays in a way that retains construction simplicity. To achieve this, we present a method for designing an optimized cylindrical Halbach magnet using the genetic algorithm to achieve either homogeneity (for standard MRI applications) or a favorable spatial encoding field pattern (for rotational spatial encoding applications). We compare the chosen designs against a standard, fully populated sparse Halbach design, and evaluate optimized spatial encoding fields using point-spread-function and image simulations. We validate the calculations by comparing to the measured field of a constructed magnet. The experimentally implemented design produced fields in good agreement with the predicted fields, and the genetic algorithm was successful in improving the chosen metrics. For the uniform target field, an order of magnitude homogeneity improvement was achieved compared to the un-optimized, fully populated design. For the rotational encoding design the resolution uniformity is improved by 95% compared to a uniformly populated design.
Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars
NASA Astrophysics Data System (ADS)
Turutin, Andrei V.; Vidal, João V.; Kubasov, Ilya V.; Kislyuk, Alexander M.; Malinkovich, Mikhail D.; Parkhomenko, Yurii N.; Kobeleva, Svetlana P.; Kholkin, Andrei L.; Sobolev, Nikolai A.
2018-05-01
We present an investigation into the magnetic sensing performance of magnetoelectric bilayered metglas/bidomain LiNbO3 long thin bars operating in a cantilever or free vibrating regime and under quasi-static and low-frequency resonant conditions. Bidomain single crystals of Y + 128°-cut LiNbO3 were engineered by an improved diffusion annealing technique with a polarization macrodomain structure of the ‘head-to-head’ and ‘tail-to-tail’ type. Long composite bars with lengths of 30, 40 and 45 mm, as well as with and without attached small tip proof masses, were studied. ME coefficients as large as 550 V (cm · Oe)‑1, corresponding to a conversion ratio of 27.5 V Oe‑1, were obtained under resonance conditions at frequencies of the order of 100 Hz in magnetic bias fields as low as 2 Oe. Equivalent magnetic noise spectral densities down to 120 pT Hz‑1/2 at 10 Hz and to 68 pT Hz‑1/2 at a resonance frequency as low as 81 Hz were obtained for the 45 mm long cantilever bar with a tip proof mass of 1.2 g. In the same composite without any added mass the magnetic noise was shown to be as low as 37 pT Hz‑1/2 at a resonance frequency of 244 Hz and 1.2 pT Hz‑1/2 at 1335 Hz in a fixed cantilever and free vibrating regimes, respectively. A simple unidimensional dynamic model predicted the possibility to drop the low-frequency magnetic noise by more than one order of magnitude in case all the extrinsic noise sources are suppressed, especially those related to external vibrations, and the thickness ratio of the magnetic-to-piezoelectric phases is optimized. Thus, we have shown that such systems might find use in simple and sensitive room-temperature low-frequency magnetic sensors, e.g. for biomedical applications.
Gain and Bandwidth Enhancement of Ferrite-Loaded CBS Antenna Using Material Shaping and Positioning
NASA Astrophysics Data System (ADS)
Askarian Amiri, Mikal
Loading a cavity-backed slot (CBS) antenna with ferrite material and applying a biasing static magnetic field can be used to control its resonant frequency. Such a mechanism results in a frequency reconfigurable antenna. However, placing a lossy ferrite material inside the cavity can reduce the gain or negatively impact the impedance bandwidth. This thesis develops guidelines, based on a non-uniform applied magnetic field and non-uniform magnetic field internal to the ferrite specimen, for the design of ferrite-loaded CBS antennas which enhance their gain and tunable bandwidth by shaping the ferrite specimen and judiciously locating it within the cavity. To achieve these objectives, it is necessary to examine the influence of the shape and relative location of the ferrite material, and also the proximity of the ferrite specimen from the probe on the DC magnetic field and RF electric field distributions inside the cavity. The geometry of the probe and its impacts on figures-of-merit of the antenna is of interest as well. Two common cavity backed-slot antennas (rectangular and circular cross-section) were designed, and corresponding simulations and measurements were performed and compared. The cavities were mounted on 30 cm × 30 cm perfect electric conductor (PEC) ground planes and partially loaded with ferrite material. The ferrites were biased with an external magnetic field produced by either an electromagnet or permanent magnets. Simulations were performed using FEM-based commercial software, Ansys' Maxwell 3D and HFSS. Maxwell 3D is utilized to model the non-uniform DC applied magnetic field and non-uniform magnetic field internal to the ferrite specimen; HFSS however, is used to simulate and obtain the RF characteristics of the antenna. To validate the simulations they were compared with measurements performed in ASU's EM Anechoic Chamber. After many examinations using simulations and measurements, some optimal designs guidelines with respect to the gain, return loss and tunable impedance bandwidth, were obtained and recommended for ferrite-loaded CBS antennas.
Magnetically Orchestrated Formation of Diamond at Lower Temperatures and Pressures
NASA Astrophysics Data System (ADS)
Little, Reginald B.; Lochner, Eric; Goddard, Robert
2005-01-01
Man's curiosity and fascination with diamonds date back to ancient times. The knowledge of the many properties of diamond is recorded during Biblical times. Antoine Lavoisier determined the composition of diamond by burning in O2 to form CO2. With the then existing awareness of graphite as carbon, the race began to convert graphite to diamond. The selective chemical synthesis of diamond has been pursued by Cagniard, Hannay, Moisson and Parson. On the basis of the thermodynamically predicted equilibrium line of diamond and graphite, P W Bridgman attempted extraordinary conditions of high temperature (>2200°C) and pressure (>100,000 atm) for the allotropic conversion of graphite to diamond. H T Hall was the first to successfully form bulk diamond by realizing the kinetic restrictions to Bridgman's (thermodynamic) high pressure high temperature direct allotropic conversion. Moreover, Hall identified catalysts for the faster kinetics of diamond formation. H M Strong determined the import of the liquid catalyst during Hall's catalytic synthesis. W G Eversole discovered the slow metastable low pressure diamond formation by pyrolytic chemical vapor deposition with the molecular hydrogen etching of the rapidly forming stable graphitic carbon. J C Angus determined the import of atomic hydrogen for faster etching for faster diamond growth at low pressure. S Matsumoto has developed plasma and hot filament technology for faster hydrogen and carbon radical generations at low pressure for faster diamond formation. However the metastable low pressure chemical vapor depositions by plasma and hot filament are prone to polycrystalline films. From Bridgman to Hall to Eversole, Angus and Matsumoto, much knowledge has developed of the importance of pressure, temperature, transition metal catalyst, liquid state of metal (metal radicals atoms) and the carbon radical intermediates for diamond synthesis. Here we advance this understanding of diamond formation by demonstrating the external magnetic organization of carbon, metal and hydrogen radicals for lower temperature and pressure synthesis. Here we show that strong static external magnetic field (>15 T) enhances the formation of single crystal diamond at lower pressure and even atmospheric pressure with implications for much better, faster high quality diamond formation by magnetization of current high pressure and temperature technology.
Kim, Seungchan; Im, Woo-Seok; Kang, Lami; Lee, Soon-Tae; Chu, Kon; Kim, Byoung In
2008-09-15
Electric and magnetic fields have been known to influence cellular behavior. In the present study, we hypothesized that the application of static magnetic fields to neurons will cause neurites to grow in a specific direction. In cultured human neuronal SH-SY5Y cells or PC12 cells, neurite outgrowth was induced by forskolin, retinoic acid, or nerve growth factor (NGF). We applied static magnetic fields to the neurons and analyzed the direction and morphology of newly formed neuronal processes. In the presence of the magnetic field, neurites grew in a direction perpendicular to the direction of the magnetic field, as revealed by the higher orientation index of neurites grown under the magnetic field compared to that of the neurites grown in the absence of the magnetic field. The neurites parallel to the magnetic field appeared to be dystrophic, beaded or thickened, suggesting that they would hinder further elongation processes. The co-localized areas of microtubules and actin filaments were arranged into the vertical axis to the magnetic field, while the levels of neurofilament and synaptotagmin were not altered. Our results suggest that the application of magnetic field can be used to modulate the orientation and direction of neurite formation in cultured human neuronal cells.
In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires
NASA Astrophysics Data System (ADS)
Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li
2018-05-01
Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.
Lee, Jung Keun; Park, Edward J.; Robinovitch, Stephen N.
2012-01-01
This paper proposes a Kalman filter-based attitude (i.e., roll and pitch) estimation algorithm using an inertial sensor composed of a triaxial accelerometer and a triaxial gyroscope. In particular, the proposed algorithm has been developed for accurate attitude estimation during dynamic conditions, in which external acceleration is present. Although external acceleration is the main source of the attitude estimation error and despite the need for its accurate estimation in many applications, this problem that can be critical for the attitude estimation has not been addressed explicitly in the literature. Accordingly, this paper addresses the combined estimation problem of the attitude and external acceleration. Experimental tests were conducted to verify the performance of the proposed algorithm in various dynamic condition settings and to provide further insight into the variations in the estimation accuracy. Furthermore, two different approaches for dealing with the estimation problem during dynamic conditions were compared, i.e., threshold-based switching approach versus acceleration model-based approach. Based on an external acceleration model, the proposed algorithm was capable of estimating accurate attitudes and external accelerations for short accelerated periods, showing its high effectiveness during short-term fast dynamic conditions. Contrariwise, when the testing condition involved prolonged high external accelerations, the proposed algorithm exhibited gradually increasing errors. However, as soon as the condition returned to static or quasi-static conditions, the algorithm was able to stabilize the estimation error, regaining its high estimation accuracy. PMID:22977288
Ćirković, Saša; Bačić, Jasmina; Paunović, Novica; Popović, Tamara B; Trbovich, Alexander M; Romčević, Nebojša; Ristić-Djurović, Jasna L
2017-10-01
In a number of studies, a static magnetic field was observed to positively influence the growing process of various plants; however, the effect has not yet been related to possible structural changes. We investigate if the static magnetic field that improves germination of wheat also alters wheat's near-infrared spectrum. Two groups of seeds were exposed to 340 mT for 16 h cumulatively. The first group was exposed 8 days for 2 h per day, while the second group was exposed 4 h per day for 4 consecutive days. One half of each of the exposed seed groups as well as of the unexposed control groups was sown, and the other half was used for mid-infrared spectra measurements. The sown seeds were monitored for 3 weeks after sowing. Germination of the groups exposed to the magnetic field was faster compared to corresponding non-exposed groups that were grown under the same conditions. The magnetic field exposure caused the enhancement of one OH peak at 3,369 cm -1 and two CO peaks at 1,662 cm -1 and 1,740 cm -1 in the mid-infrared spectrum. The effect was more pronounced for the 4 day, 4 h/day exposure. Bioelectromagnetics. 38:533-540, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Ritikos, Richard; Abd Majid, Wan Haliza; Abdul Rahman, Saadah
2012-01-01
This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.
Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Ritikos, Richard; Majid, Wan Haliza Abd; Rahman, Saadah Abdul
2012-01-01
This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I–V) curve. Acquisition of the I–V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors. PMID:22737025
External split field generator
Thundat, Thomas George [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN
2012-02-21
A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 CFR 110.10-1). In particular, no static exciter may be used for excitation of an emergency generator unless it is provided with a permanent magnet or a residual-magnetism-type exciter that has the...
Clustering of Magnetic Swimmers in a Poiseuille Flow
NASA Astrophysics Data System (ADS)
Meng, Fanlong; Matsunaga, Daiki; Golestanian, Ramin
2018-05-01
We investigate the collective behavior of magnetic swimmers, which are suspended in a Poiseuille flow and placed under an external magnetic field, using analytical techniques and Brownian dynamics simulations. We find that the interplay between intrinsic activity, external alignment, and magnetic dipole-dipole interactions leads to longitudinal structure formation. Our work sheds light on a recent experimental observation of a clustering instability in this system.
Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno
2015-07-28
An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.
Active fluid mixing with magnetic microactuators for capture of salmonella
NASA Astrophysics Data System (ADS)
Hanasoge, S.; Owen, D.; Ballard, M.; Mills, Z.; Xu, J.; Erickson, M.; Hesketh, P. J.; Alexeev, A.
2016-05-01
Detection of low concentrations of bacteria in food samples is a challenging process. Key to this process is the separation of the target from the food matrix. We demonstrate magnetic beads and magnetic micro-cilia based microfluidic mixing and capture, which are particularly useful for pre-concentrating the target. The first method we demonstrate makes use of magnetic microbeads held on to NiFe discs on the surface of the substrate. These beads are rotated around the magnetic discs by rotating the external magnetic field. The second method we demonstrate shows the use of cilia which extends into the fluid and is manipulated by a rotating external field. Magnetic micro-features were fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The high magnetic permeability of NiFe allows for maximum magnetic force on the features. The magnetic features were actuated using an external rotating magnet up to frequencies of 50Hz. We demonstrate active mixing produced by the microbeads and the cilia in a microchannel. Also, we demonstrate the capture of target species in a sample using microbeads.
Magnetoelectric effects in the spin-1/2 XXZ model with Dzyaloshinskii-Moriya interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Pradeep; Durganandini, P., E-mail: pdn@physics.unipune.ac.in
2015-06-24
We study the 1D spin-1/2 XXZ chain in the presence of the Dzyaloshinskii-Moriya (D-M) interaction and with longitudinal and transverse magnetic fields. We assume the spin-current mechanism of Katsura-Nagaosa-Balatsky at play and interpret the D-M interaction as a coupling between the local electric polarization and an external electric field. We study the interplay of electric and magnetic order in the ground state using the numerical density matrix renormalization group(DMRG) method. Specifically, we investigate the dependences of the magnetization and electric polarization on the external electric and magnetic fields. We find that for transverse magnetic fields, there are two different regimesmore » of polarization while for longitudinal magnetic fields, there are three different regimes of polarization. The different regimes can be tuned by the external magnetic fields.« less
Nano scale devices: Fabrication, actuation, and related fluidic dynamics
NASA Astrophysics Data System (ADS)
Jing, Hao
Using external actuating magnetic fields to manipulate magnetic parts is an efficient method to manipulate mesoscopic actable devices. Extensive researches have explored the potentials of self-assembly techniques based on capillary force, static charge force, drying, surface tension, and even dynamic fields as a low cost method for ordered 2D or 3D super-lattice structures for new materials and devices. But the ability of tunable patterning nano-particles for designed actable devices is still a requirement yet to be met. Utilizing anodized aluminum oxide (AAO) membranes as templates, soft-magnetic nanowires around 200 nm in diameter, 10 microns long have been fabricated. In this thesis, I describe a method to assemble these magnetic nanowires into a two dimension Wigner structure, of which the wire-wire distance is conveniently adjustable during the fabrication procedure. Using geometric tailored magnetic fields, we can plant these self-assembled magnetic nanowires with desired patterns into a thin soft polymer support layer. The final devices may be readily actuated by an external actuating magnetic field (a self-designed magnetic system, 3-dimensional force microscope (3DFM)) with precise patterns and frequencies in a micro-fluidic system. This method offers a general method to fabricate mesoscopic devices from a wide range of materials with magnetic dipoles to desired structures. And the actable devices themselves can find direct usage in low Re number flow mixing and bio-physical fluidic dynamic researches. The beating of cilia and flagella, slender cylinders 250 nanometers in diameter with lengths from 7 to 50 microns, is responsible for many important biological functions such as organism feeding, propulsion, for bacterial clearance in the lungs and for the right-left asymmetry in vertebrates. The hydrodynamics produced by these beating structures, including mixing, shear and extensional flows, is not understood. We developed an experimental model system for cilia beating through the use of magnetic nanowires. We apply our custom magnetic system, 3DFM, to drive these magnetic nanowires rotating with desired patterns and frequencies in a liquid chamber. High speed movies of passive tracers in the oscillating 3-D flow fields reveal the spatio-temporal structure of the induced fluid motion. Complementing these experimental studies, we have developed a family of exact solutions of the Stoke's equations for a spheroid sweeping a double cone in free space, and an asymptotic solution for a spinning slender rod sweeping an upright cone above a flat, infinite no-slip plane. We are using these solutions to develop a mathematical package to quantitatively model, and predict the tracer motion induced by the spinning nano-rods with and without Brownian noise. To understand the effect of these epicyclical flows on molecular conformations, we have studied the conformation of fluorescently labeled, single DNA molecules (lambda-DNA) in the flow produced by a precessing nanowire. The flow patterns in a viscoelastic medium about a precessing nanowire are also presented to reveal the epicyclical flows in a more bio-related environment.
Multimodal chemo-magnetic control of self-propelling microbots
NASA Astrophysics Data System (ADS)
Singh, Amit Kumar; Dey, Krishna Kanti; Chattopadhyay, Arun; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar
2014-01-01
We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment.We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment. Electronic supplementary information (ESI) available: Scanning electron microscopy, transmission electron microscopy, X-ray diffraction pattern, vibrating sample magnetometry (VSM) hysteresis loop of freshly prepared FeNP coated micromotor and movies of micromotor motion. See DOI: 10.1039/c3nr05294j
Magnetic Insulation in Coaxial Transmission Lines with an External Magnetic Field
1980-03-13
A. Mostrom, Michael E. Jones, and Lester E. Thode SUBMITTED TO: Physical Review Letters March 13, 1980 SöKOK_Kä^MJ!L;; ÄgEie?©d tea gas &c...Number Assigned by Contract Monitor: SLL 81- 262 Comments on Document: Archive, RRI, DEW . From Physical Review Letters Descriptors, Keywords: Magnetic...Source of Document: DEW MAGNETIC INSULATION IN COAXIAL TRANSMISSION LINES WITH AN EXTERNAL MAGNETIC FIELD Michael A. Mostrom, Michael E. Jones, and
Confinement of laser plasma expansion with strong external magnetic field
NASA Astrophysics Data System (ADS)
Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian
2018-05-01
The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.
Static and dynamic properties of Co2FeAl thin films: Effect of MgO and Ta as capping layers
NASA Astrophysics Data System (ADS)
Husain, Sajid; Barwal, Vineet; Kumar, Ankit; Behera, Nilamani; Akansel, Serkan; Goyat, Ekta; Svedlindh, Peter; Chaudhary, Sujeet
2017-05-01
The influence of MgO and Ta capping layers on the static and dynamic magnetic properties of Co2FeAl (CFA) Heusler alloy thin films has been investigated. It is observed that the CFA film deposited with MgO capping layer is preeminent compared to the uncapped or Ta capped CFA film. In particular, the magnetic inhomogeneity contribution to the ferromagnetic resonance line broadening and damping constant are found to be minimal for the MgO capped CFA thin film i.e., 0.12±0.01 Oe and 0.0074±0.00014, respectively. The saturation magnetization was found to be 960±25emu/cc.
A Data-Driven, Integrated Flare Model Based on Self-Organized Criticality
NASA Astrophysics Data System (ADS)
Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.
2013-09-01
We interpret solar flares as events originating in solar active regions having reached the self-organized critical state, by alternatively using two versions of an "integrated flare model" - one static and one dynamic. In both versions the initial conditions are derived from observations aiming to investigate whether well-known scaling laws observed in the distribution functions of characteristic flare parameters are reproduced after the self-organized critical state has been reached. In the static model, we first apply a nonlinear force-free extrapolation that reconstructs the three-dimensional magnetic fields from two-dimensional vector magnetograms. We then locate magnetic discontinuities exceeding a threshold in the Laplacian of the magnetic field. These discontinuities are relaxed in local diffusion events, implemented in the form of cellular-automaton evolution rules. Subsequent loading and relaxation steps lead the system to self-organized criticality, after which the statistical properties of the simulated events are examined. In the dynamic version we deploy an enhanced driving mechanism, which utilizes the observed evolution of active regions, making use of sequential vector magnetograms. We first apply the static cellular automaton model to consecutive solar vector magnetograms until the self-organized critical state is reached. We then evolve the magnetic field inbetween these processed snapshots through spline interpolation, acting as a natural driver in the dynamic model. The identification of magnetically unstable sites as well as their relaxation follow the same rules as in the static model after each interpolation step. Subsequent interpolation/driving and relaxation steps cover all transitions until the end of the sequence. Physical requirements, such as the divergence-free condition for the magnetic field vector, are approximately satisfied in both versions of the model. We obtain robust power laws in the distribution functions of the modelled flaring events with scaling indices in good agreement with observations. We therefore conclude that well-known statistical properties of flares are reproduced after active regions reach self-organized criticality. The significant enhancement in both the static and the dynamic integrated flare models is that they initiate the simulation from observations, thus facilitating energy calculation in physical units. Especially in the dynamic version of the model, the driving of the system is based on observed, evolving vector magnetograms, allowing for the separation between MHD and kinetic timescales through the assignment of distinct MHD timestamps to each interpolation step.
TU-H-BRA-05: A System Design for Integration of An Interior MRI and a Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, W; Henry Ford Hospital, Detroit, MI; Wang, G
Purpose: MRI is a highly desirable modality to guide radiation therapy but it is difficult to combine a conventional MRI scanner directly with a linear accelerator (linac). An interior MRI (iMRI) concept has been proposed to acquire MRI images within a small field of view only covering targets and immediate surrounding tissues. The objective of this project is to design an interior MRI system to work with a linac using a magnet to provide a field around 0.2T in a cube of 20cm per side, and perform image reconstruction with a slightly inhomogeneous static magnetic fields. Methods: All the resultsmore » are simulated using a commercially available software package, FARADY. In our design, a ring structure holds the iMRI system and also imbeds a linac treatment head. The ring is synchronized to the linac gantry rotation. Half of the ring is made of steel and becomes a magnetic flux return path (yoke) so that a strong magnetic field will be limited inside the iron circuit and fringe fields will be very weak. In order to increase the static magnetic field homogeneity, special steel magnet boots or tips were simulated. Three curved boots were designed based on two-dimensional curves: arc, parabola and hyperbola. Results: Different boot surfaces modify magnetic field distributions differently. With the same pair of neodymium-iron-boron (NdFeB) magnets, the magnetic induction at the centers are 0.217T, 0.201T, 0.204T, and 0.212T for flat, arc, parabola and hyperbola boots, respectively. The hyperbola boots lead to the most homogeneous results, the static magnetic field deviations are within 0.5% in a cube of 20cm, and can be further improved using shimming techniques. Conclusion: This study supports the concept of an iMRI design. Successful development of iMRI will provide crucial information for tumor delineation in radiation therapy.« less
Linear and quadratic static response functions and structure functions in Yukawa liquids.
Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I
2014-08-01
We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.
A new technique for observationally derived boundary conditions for space weather
NASA Astrophysics Data System (ADS)
Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson
2018-04-01
Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a number of technical and scientific challenges that still need to be addressed. Nevertheless, we illustrate that coupling quasi-static and MHD simulations in this way can significantly reduce the computational time required to produce realistic space weather boundary conditions.
Cooling Stability Test of MgB2 Wire Immersed in Liquid Hydrogen under External Magnetic Field
NASA Astrophysics Data System (ADS)
Shirai, Yasuyuki; Hikawa, Kyosuke; Shiotsu, Masahiro; Tatsumoto, Hideki; Naruo, Yoshihiro; Kobayashi, Hiroaki; Inagaki, Yoshifumi
2014-05-01
Liquid hydrogen (LH2), which has large latent heat, low viscosity coefficient, is expected to be a candidate for a cryogen for superconducting wires, not only MgB2 but also other HTC superconductors. LH2 cooled superconducting wires are expected to have excellent electro-magnetic characteristics, which is necessary to be clear for cooling stability design of LH2 cooled superconducting device, however, due to handling difficulties of LH2, there are only few papers on the properties of LH2 cooled superconductors, especially under external magnetic field. We designed and made an experimental setup which can energize superconducting wires immersed in LH2 with the current of up to 500A under the condition of external magnetic field up to 7 T and pressure up to 1.5 MPa. In order to confirm experimental method and safety operation of the setup, over current tests were carried out using MgB2 superconducting wires under various external magnetic field conditions. Critical current of the test wire at the temperature 21, 24, 27, 29 K under external magnetic fields up to 1.2 T was successfully measured. The resistance of the wire also was measured, while the transport current exceeded the critical current of the wire.
Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration
NASA Astrophysics Data System (ADS)
Sharma, B. S.; Jain, Archana; Jaiman, N. K.; Gupta, D. N.; Jang, D. G.; Suk, H.; Kulagin, V. V.
2014-02-01
Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (≃1019 W/cm2) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.
NASA Astrophysics Data System (ADS)
Lobo, Carlos M. S.; Tosin, Giancarlo; Baader, Johann E.; Colnago, Luiz A.
2017-10-01
In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers.
NASA Astrophysics Data System (ADS)
Barrera, G.; Coisson, M.; Celegato, F.; Raghuvanshi, S.; Mazaleyrat, F.; Kane, S. N.; Tiberto, P.
2018-06-01
Co1-xZnxFe2O4 (0.08 ≤ x ≤ 0.56) powders prepared by a sol-gel auto-combustion method have been investigated through the combined use of structural and dc/ac-magnetization measurements under a wide range of applied magnetic field values. EDS spectra are performed to evaluate the samples chemical composition, whereas the X-ray diffraction measurements indicate the formation of the typical nanocrystalline mixed cubic spinel structure and allow to determine the cationic distribution as well as the lattice parameter and the oxygen position as function of Zn content. Magnetic characterization improves the knowledge about the correlation between the structural properties and magnetic behavior. The magnetization curves show a hysteretic behavior at room temperature and they are analyzed as function of Zn content taking in account the Yafet-Kittel's model. The replacement of non-zero magnetic moment Co2+ ions with zero magnetic moment Zn2+ ions induces a gradual reduction of magnetocrystalline anisotropy and a lowering of the magnetic coercivity. The energy lost in a static and alternating magnetic field (frequency of 69 kHz) at selected vertex field values for the studied samples has been calculated in order to evaluate their prospective usage to operate in different field conditions.
Static current-sheet models of quiescent prominences
NASA Technical Reports Server (NTRS)
Wu, F.; Low, B. C.
1986-01-01
A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.
Static current-sheet models of quiescent prominences
NASA Astrophysics Data System (ADS)
Wu, F.; Low, B. C.
1986-12-01
A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.
Shaping magnetic fields to direct therapy to ears and eyes.
Shapiro, B; Kulkarni, S; Nacev, A; Sarwar, A; Preciado, D; Depireux, D A
2014-07-11
Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs that can be manipulated by magnetic fields. However, we do not yet have the magnet systems that can then direct those constructs to the right places, in vivo, over human patient distances. We do not yet know where to put the external magnets, how to shape them, or when to turn them on and off to direct particles or magnetized cells-in blood, through tissue, and across barriers-to disease locations. In this article, we consider ear and eye disease targets. Ear and eye targets are too deep and complex to be targeted by a single external magnet, but they are shallow enough that a combination of magnets may be able to direct therapy to them. We focus on how magnetic fields should be shaped (in space and time) to direct magnetic constructs to ear and eye targets.
Magnetic force microscopy studies in bulk polycrystalline iron
NASA Astrophysics Data System (ADS)
Abuthahir, J.; Kumar, Anish
2018-02-01
The paper presents magnetic force microscopy (MFM) studies on the effect of crystallographic orientation and external magnetic field on magnetic microstructure in a bulk polycrystalline iron specimen. The magneto crystalline anisotropic effect on the domain structure is characterized with the support of electron backscatter diffraction study. The distinct variations in magnetic domain structure are observed based on the crystallographic orientation of the grain surface normal with respect to the cube axis i.e. the easy axis of magnetization. Further, the local magnetization behavior is studied in-situ by MFM in presence of external magnetic field in the range of -2000 to 2000 Oe. Various micro-magnetization phenomena such as reversible and irreversible domain wall movements, expansion and contraction of domains, Barkhausen jump, bowing of a pinned domain wall and nucleation of a spike domain are visualized. The respective changes in the magnetic microstructure are compared with the bulk magnetization obtained using vibrating sample magnetometer. Bowing of a domain wall, pinned at two points, upon application of magnetic field is used to estimate the domain wall energy density. The MFM studies in presence of external field applied in two perpendicular directions are used to reveal the influence of the crystalline anisotropy on the local micro-magnetization.
Small-size controlled vacuum spark-gap in an external magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asyunin, V. I., E-mail: asvi@mail.ru; Davydov, S. G.; Dolgov, A. N., E-mail: alnikdolgov@mail.ru
2015-02-15
It is demonstrated that the operation of a small-size controlled spark-gap can be controlled by applying a uniform external magnetic field. It is shown that the magnetic field of such a simple configuration efficiently suppresses the effect of localization of the discharge current after multiple actuations of the spark-gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, C.J.
1991-01-01
During magnetic resonance imaging (MRI) procedures, a subject is exposed to three novel environmental stimuli which have drawn attention over the past decade as potential health hazards: (1) a relatively intense static magnetic field; (2) a time-varying magnetic field, and (3) a radiofrequency (RF) field. Thermoregulation is one of many physiological systems that can be affected by MRI, specifically by the RF radiation absorbed by the subject during MRI. While there is some sparse, albeit controversial data on the possible effects of static magnetic fields on thermoregulation, the major concern regarding potential health hazards of the MRI-induced thermal effects centersmore » on the RF radiation absorbed by a subject during a scan. The purpose of the paper is to review the studies that have impacted on understanding the thermoregulatory effects of MRI with special emphasis on the problems of selecting appropriate animal models for assessing the potential risk of RF radiation exposure during MRI.« less
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
A strong static-magnetic field alters operant responding by rats.
Nakagawa, M; Matsuda, Y
1988-01-01
Forty male rats of the Wistar ST strain were trained and observed for Sidman avoidance (SA) for 7 weeks or for discriminative avoidance (DA) for 14 weeks to determine the effects of exposure to a strong static-magnetic field. Before avoidance conditioning was completed, rats in the SA group were exposed to the static field at 0.6 T, 16 h/day for 4 days during the fifth week, and those in the DA group were exposed for 6 h/day for 4 days during the seventh week. In the SA conditioning, frequency of lever-pressing by exposed rats gradually decreased during 1 week of exposure and stayed low for at least 2 weeks after exposure. Frequencies of electric shocks received by the rats increased dramatically during the second day of exposure and consistently stayed higher than those of control rats. In the DA condition, exposed rats responded at lower rates than did control rats throughout the observation period. They received more shocks during the 2 weeks following exposure. The data indicate that performance of avoidance responses was inhibited by a comparatively long exposure to a strong magnetic field.
Three-dimensional magnetic cloak working from d.c. to 250 kHz
Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui
2015-01-01
Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways. PMID:26596641
Methods for magnetic resonance analysis using magic angle technique
Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA
2011-11-22
Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.
Resonance magnetoplasticity in ultralow magnetic fields
NASA Astrophysics Data System (ADS)
Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.
2016-09-01
Resonance relaxation displacements of dislocations in NaCl crystals placed in crossed static and alternating ultralow magnetic fields in the electron paramagnetic resonance scheme are discussed. The Earth's magnetic field B Earth ≈ 50μT and other fields in the range of 26-261 μT are used as the static field. New strongly anisotropic properties of the effect have been revealed. Frequency spectra including numerous peaks of paths at low pump frequencies beginning with 10 kHz, as well as the quartet of equidistant peaks at high frequencies ( 1.4 MHz at B= B Earth), have been measured. The effect is also observed in the pulsed pump field with a resonance duration of 0.5 μs. Resonance changes have been detected in the microhardness of ZnO, triglycine sulfate, and potassium hydrogen phthalate crystals after their exposure in the Earth's magnetic field in the same electron paramagnetic resonance scheme.
Three-dimensional magnetic cloak working from d.c. to 250 kHz
NASA Astrophysics Data System (ADS)
Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui
2015-11-01
Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways.
Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating
NASA Astrophysics Data System (ADS)
Józefczak, A.; Hornowski, T.; Závišová, V.; Skumiel, A.; Kubovčíková, M.; Timko, M.
2014-03-01
The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).
Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating.
Józefczak, A; Hornowski, T; Závišová, V; Skumiel, A; Kubovčíková, M; Timko, M
2014-01-01
The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).
Magnetically guiding and orienting integrated chemical sensors
NASA Astrophysics Data System (ADS)
Anker, Jeffrey N.; Lee, Yong-Eun Koo; Kopelman, Raoul
2014-08-01
Fluorescent microsensors for detecting pH and oxygen were positioned and oriented using magnetic tweezers. These multifunctional integrated microsensors were fabricated by physically linking together nano-components including magnetic nanoparticles, fluorescent nanoparticles, and metal hemisphere-shells. Two such microsensors are magnetic roll-shaped polystyrene particles with 120 nm fluorescent oxygen-sensing ormosil nanospheres that are physically pressed ("breaded") into the roll surface, and 4-5 µm fluorescent microspheres that are capped with a 50 nm thick metal hemispherical shell. The magnetic tweezers consisted of an iron wire that was magnetized in an external magnetic field. Rotating this external field oriented and rotated the microsensors.
Designing a Poly (N-isopropylacrylamide) Nanocapsule for Magnetic Field-assisted Drug Delivery
NASA Astrophysics Data System (ADS)
Denmark, Daniel; Mukherjee, Pritish; Witanachchi, Sarath
2014-03-01
The method of synthesis and the characteristics of polymer based nanocapsules as biomedical drug delivery systems are presented. Magnetic iron oxide nanoparticles have been incorporated into these capsules for effective guidance with external magnetic fields to transport therapeutic compounds to various parts of the human body. Once they have reached their destination they can be stimulated to release the drug to the target tissue through externally applied fields. The polymeric material that constitutes the capsules is specifically designed to melt away with the external stimuli to deliver the therapeutic bio agents near the target tissue. In this work we use nebulization to create aqueous poly (N-isopropylacrylamide) nanoparticles that decompose after being heated beyond their transition temperature. Transmission Electron Microscopic imaging (TEM) and dynamic light scattering (DLS) experiments have been conducted to study the decomposition of the capsules under external stimuli. Distribution of the magnetic nanoparticles within the capsules and their role in delivering the bio agents have been investigated by the Magnetic Force Microscopy (MFM).
Kahrizi, Sedighe; Parnianpour, Mohammad; Firoozabadi, Seyyed Mohammad; Kasemnejad, Anoshirvan; Karimi, Elham
2007-04-01
A study was performed to investigate how different trunk and knee positions while holding static loads affect the lumbar curvature and internal loads on the lumbar spine at L4-L5. Ten healthy male subjects participated in this study. Two inclinometers were used to evaluate the curvature of lumbar spine, lordosis, while a 3D static biomechanical model was used to predict the spinal compression and shear forces at L4-L5. Eighteen static tasks while holding three level of load (0, 10 and 20 kg), two levels of knee position (45 and 180 degrees of flexion) and three levels of trunk position (neutral, 15 and 30 degree of flexion) were simulated for 10 healthy male subjects. The results of this study revealed that the lordosis of lumbar spine changed to kyphosis with increasing weight of load from 0 to 20 kg in trunk flexion position (p<0.05), but in squatting position (45 degrees knee full flexion) the higher load did not affect the curvature. The results of this study suggested, at a more flexed trunk and standing position with higher loads both external moment and internal loads increased significantly at L4-L5 level but with 45 knee flexion external moment and compression force increased and shear force decreased significantly (p < 0.05). Subjects made more effort to maintain stability of the body in squat position. The highest external moment and compression force were computed at flexed knee and trunk position with highest loads. Hence holding weight in this position must be avoided by implementing ergonomic change to the workplace.
Anomalous negative magnetoresistance of two-dimensional electrons
NASA Astrophysics Data System (ADS)
Kanter, Jesse; Vitkalov, Sergey; Bykov, A. A.
2018-05-01
Effects of temperature T (6-18 K) and variable in situ static disorder on dissipative resistance of two-dimensional electrons are investigated in GaAs quantum wells placed in a perpendicular magnetic-field B⊥. Quantum contributions to the magnetoresistance, leading to quantum positive magnetoresistance (QPMR), are separated by application of an in-plane magnetic field. QPMR decreases considerably with both the temperature and the static disorder and is in good quantitative agreement with theory. The remaining resistance R decreases with the magnetic field exhibiting an anomalous polynomial dependence on B⊥:[R (B⊥) -R (0 ) ] =A (T ,τq) B⊥η where the power is η ≈1.5 ±0.1 in a broad range of temperatures and disorder. The disorder is characterized by electron quantum lifetime τq. The scaling factor A (T ,τq) ˜[κ(τq) +β (τq) T2] -1 depends significantly on both τq and T where the first term κ ˜τq-1/2 decreases with τq. The second term is proportional to the square of the temperature and diverges with increasing static disorder. Above a critical disorder the anomalous magnetoresistance is absent, and only a positive magnetoresistance, exhibiting no distinct polynomial behavior with the magnetic field, is observed. The presented model accounts memory effects and yields η = 3/2.
NASA Astrophysics Data System (ADS)
Jalaei, M. H.; Arani, A. Ghorbanpour
2018-02-01
By considering the small scale effect based on the nonlocal Eringen's theory, the static and dynamic analysis of viscoelastic orthotropic double-layered graphene sheets subjected to longitudinal magnetic field and mechanical load is investigated analytically. For this objective, first order shear deformation theory (FSDT) is proposed. The surrounding medium is simulated by visco-Pasternak foundation model in which damping, normal and transverse shear loads are taken into account. The governing equations of motion are obtained via energy method and Hamilton's principle which are then solved analytically by means of Navier's approach and Laplace inversion technique in the space and time domains, respectively. Through various parametric studies, the influences of the nonlocal parameter, structural damping, van der Waals (vdW) interaction, stiffness and damping coefficient of the foundation, magnetic parameter, aspect ratio and length to thickness ratio on the static and dynamic response of the nanoplates are examined. The results depict that when the vdW interaction is considered to be zero, the upper layer deflection reaches a maximum point whereas the lower layer deflection becomes zero. In addition, it is observed that with growing the vdW interaction, the effect of magnetic field on the deflection of the lower layer increases while this effect reduces for the upper layer deflection.
Two independent laboratories have demonstrated that specific frequencies of electromagnetic radiation can cause a change in the efflux of calcium ions from brain tissue in vitro. Under a static magnetic field intensity of 38 microTesla (microT) due to the earth's magnetic field, ...
NASA Astrophysics Data System (ADS)
Demikhovskii, V. Ya.; Turkevich, R. V.
2015-04-01
The semiclassical dynamics of charge carriers moving over the surface of a Bi2Te3-type 3D topological insulator in a static magnetic field is studied. The effects related to the changes in the symmetry of constant energy surfaces (contours), as well as to the nonzero Berry curvature, are taken into account. It is shown that effects related both to the anomalous velocity proportional to the Berry curvature and to the distortions of the trajectories stemming from the additional contribution to the energy proportional the orbital magnetic moment of a wave packet appear in contrast to the conventional dynamics of electrons moving in a uniform static magnetic field along trajectories determined by the conditions E( k) = const and p z = const. This should lead to changes in the cyclotron resonance conditions for surface electrons. Although the magnetic field breaks the time-reversal symmetry and the topological order, the studies of the cyclotron resonance allow finding out whether a given insulator is a trivial one or not in zero magnetic field.
Non-cooperative Brownian donkeys: A solvable 1D model
NASA Astrophysics Data System (ADS)
Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.
2003-12-01
A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.
Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt
NASA Astrophysics Data System (ADS)
Sax, C. R.; Schönfeld, B.; Ruban, A. V.
2015-08-01
Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shufa; Gao, Ruixin; Cheng, Chuyuan
2013-12-09
Ultrafast magnetization dynamics in GdFeCo films triggered by femtosecond laser pulses with and without an external field applied is studied experimentally for different excitation fluence. It is found that subpicosecond magnetization reversal occurs simultaneously in the ultrafast dynamics of both saturation and remnant magnetization states and almost identical within 13 ps, whereas relatively slow magnetization reversal across compensation point appears only in the dynamics of saturation magnetization state. It shows the subpicosecond magnetization reversal is external field independent, and originates from intrinsic magnetic evolution in ferrimagnetic system. The intrinsic subpicosecond reversal is qualitatively explained by linear reversal.
NASA Astrophysics Data System (ADS)
Cho, Il-Joo; Yoon, Euisik
2009-08-01
In this paper, a new three-axis electromagnetically actuated micromirror structure has been proposed and fabricated. It is electromagnetically actuated at low voltage using an external magnetic field. The main purpose of this work was to obtain a three-axis actuated micromirror in a mechanically robust structure with large static angular and vertical displacement at low actuation voltage for fine alignment among optical components in an active alignment module as well as conventional optical systems. The mirror plate and torsion bars are made of bulk silicon using a SOI wafer, and the actuation coils are made of electroplated Au. The maximum static deflection angles were measured as ±4.2° for x-axis actuation and ±9.2° for y-axis actuation, respectively. The maximum static vertical displacement was measured as ±42 µm for z-axis actuation. The actuation voltages were below 3 V for all actuation. The simulated resonant frequencies are several kHz, and these imply that the fabricated micromirror can be operated in sub-millisecond order. The measured radius of curvature (ROC) of the fabricated micromirror is 7.72 cm, and the surface roughness of the reflector is below 1.29 nm which ensure high optical performance such as high directionality and reflectivity. The fabricated micromirror has demonstrated large actuated displacement at low actuation voltage, and it enables us to compensate a larger misalignment value when it is used in an active alignment module. The robust torsion bar and lifting bar structure formed by bulk silicon allowed the proposed micromirror to have greater operating stability. The additional degree of freedom with z-axis actuation can decrease the difficulty in the assembly of optical components and increase the coupling efficiency between optical components.
Externally fed star formation: a numerical study
NASA Astrophysics Data System (ADS)
Mohammadpour, Motahareh; Stahler, Steven W.
2013-08-01
We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.
NASA Astrophysics Data System (ADS)
Song, Hao; Fang, Rui Yang; Li, Ling
2018-02-01
In this work, we experimentally synthesized the Fe3O4@Au nanocomposites and used them as surface-enhanced Raman scattering (SERS) substrates. The Fe3O4@Au nanocomposites retained the metallic plasmon resonant effect and possessed the magnetic field controllable characteristics. The Raman spectra of Rhodamine B (RhB) probe molecules were studied under different external magnetic field. The magnitude of external magnetic field varied from 0 Gs to 700 Gs (1 Gs = 10-4 T) with intervals of 100 Gs. When the magnetic field magnitude increased, the Raman intensity of RhB probe molecules at 1356 cm-1 increased linearly. The slope of the linear fitting curves for the Raman intensity and area were 0.118/Gs and 3.700/Gs. The Raman enhancement could raise up to 7 times for RhB probe molecules when the magnetic field magnitude increased to 700 Gs. After removing the external magnetic field, the Raman peaks returned to its original intensity in several minutes. Under the external magnetic field, the Fe3O4@Au nanocomposites were concentrated, leading to the increase number of SERS "hot spots" and the surface Au density. The results show that the magnetic field controlled Fe3O4@Au nanocomposites can realize the enhanced and controllable SERS effect, which can be used in the reversible optical sensing and bio-medical applications.
NASA Astrophysics Data System (ADS)
Chow, J. C. K.
2017-09-01
In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems) Simultaneous Localization and Mapping (SLAM) has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue for indoor environments); however, no assumptions are required for the general motion of the sensor (e.g. static periods).
Electron cyclotron wave acceleration outside a flaring loop
NASA Technical Reports Server (NTRS)
Sprangle, P.; Vlahos, L.
1983-01-01
A model for the secondary acceleration of electrons outside a flaring loop is proposed. The results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. It is shown that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations.
Numerical field evaluation of healthcare workers when bending towards high-field MRI magnets.
Wang, H; Trakic, A; Liu, F; Crozier, S
2008-02-01
In MRI, healthcare workers may be exposed to strong static and dynamic magnetic fields outside of the imager. Body motion through the strong, non-uniform static magnetic field generated by the main superconducting magnet and exposure to gradient-pulsed magnetic fields can result in the induction of electric fields and current densities in the tissue. The interaction of these fields and occupational workers has attracted an increasing awareness. To protect occupational workers from overexposure, the member states of the European Union are required to incorporate the Physical Agents Directive (PAD) 2004/40/EC into their legislation. This study presents numerical evaluations of electric fields and current densities in anatomically equivalent male and female human models (healthcare workers) as they lean towards the bores of three superconducting magnet models (1.5, 4, and 7 T) and x-, y-, and z- gradient coils. The combined effect of the 1.5 T superconducting magnet and the three gradient coils on the body models is compared with the contributions of the magnet and gradient coils in separation. The simulation results indicate that it is possible to induce field quantities of physiological significance, especially when the MRI operator is bending close towards the main magnet and all three gradient coils are switched simultaneously. (c) 2008 Wiley-Liss, Inc.
Feasibility study of a MgB 2 superconducting magnetic cloak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunchi, Giovanni; Turrioni, Daniele; Kashikhin, Vladimir
The magnetic shielding capability of bulk MgB 2 hollow cylinders can be fruitfully combined with an external paramagnetic sheath, to tailor the shape of the external magnetic flux lines. By appropriate selection of the external sheath permeability and thickness, it is possible to leave the magnetic flux lines unaltered by the shield (cloaking effect). Preliminary measurements have been performed at 4.2 K on shielding capability of bulk cylinders, which are subjected to axial and transversal magnetic fields up to 5 T. Furthermore, the cloaking conditions have been modeled to find the optimized thickness to realize the cloaking effect. The MgBmore » 2 material of the superconducting shield is also optimized to avoid low-temperature flux jumps, without losing its shielding capability.« less
Feasibility study of a MgB 2 superconducting magnetic cloak
Giunchi, Giovanni; Turrioni, Daniele; Kashikhin, Vladimir; ...
2016-04-01
The magnetic shielding capability of bulk MgB 2 hollow cylinders can be fruitfully combined with an external paramagnetic sheath, to tailor the shape of the external magnetic flux lines. By appropriate selection of the external sheath permeability and thickness, it is possible to leave the magnetic flux lines unaltered by the shield (cloaking effect). Preliminary measurements have been performed at 4.2 K on shielding capability of bulk cylinders, which are subjected to axial and transversal magnetic fields up to 5 T. Furthermore, the cloaking conditions have been modeled to find the optimized thickness to realize the cloaking effect. The MgBmore » 2 material of the superconducting shield is also optimized to avoid low-temperature flux jumps, without losing its shielding capability.« less
Antiferromagnetic nano-oscillator in external magnetic fields
NASA Astrophysics Data System (ADS)
Checiński, Jakub; Frankowski, Marek; Stobiecki, Tomasz
2017-11-01
We describe the dynamics of an antiferromagnetic nano-oscillator in an external magnetic field of any given time distribution. The oscillator is powered by a spin current originating from spin-orbit effects in a neighboring heavy metal layer and is capable of emitting a THz signal in the presence of an additional easy-plane anisotropy. We derive an analytical formula describing the interaction between such a system and an external field, which can affect the output signal character. Interactions with magnetic pulses of different shapes, with a sinusoidal magnetic field and with a sequence of rapidly changing magnetic fields are discussed. We also perform numerical simulations based on the Landau-Lifshitz-Gilbert equation with spin-transfer torque effects to verify the obtained results and find a very good quantitative agreement between analytical and numerical predictions.
A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orris, D.; Carcagno, R.; Nogiec, J.
2013-09-01
Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less
Lobo, Carlos M S; Tosin, Giancarlo; Baader, Johann E; Colnago, Luiz A
2017-10-01
In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers. Copyright © 2017 Elsevier Inc. All rights reserved.
Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A.
The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained andmore » agreement between theory and experiment are good.« less
Oscillating dynamo in the presence of a fossil magnetic field - The solar cycle
NASA Technical Reports Server (NTRS)
Levy, E. H.; Boyer, D.
1982-01-01
Hydromagnetic dynamo generation of oscillating magnetic fields in the presence of an external, ambient magnetic field introduces a marked polarity asymmetry between the two halves of the magnetic cycle. The principle of oscillating dynamo interaction with external fields is developed, and a tentative application to the sun is described. In the sun a dipole moment associated with the stable fluid beneath the convection zone would produce an asymmetrical solar cycle.
47 CFR 14.21 - Performance Objectives.
Code of Federal Regulations, 2013 CFR
2013-10-01
... operate and use the product, including but not limited to, text, static or dynamic images, icons, labels.... (2) Connection point for external audio processing devices. Products providing auditory output shall...
47 CFR 14.21 - Performance Objectives.
Code of Federal Regulations, 2014 CFR
2014-10-01
... operate and use the product, including but not limited to, text, static or dynamic images, icons, labels.... (2) Connection point for external audio processing devices. Products providing auditory output shall...
Multiple critical endpoints in magnetized three flavor quark matter
NASA Astrophysics Data System (ADS)
Ferreira, Márcio; Costa, Pedro; Providência, Constança
2018-01-01
The magnetized phase diagram for three-flavor quark matter is studied within the Polyakov extended Nambu-Jona-Lasinio model. The order parameters are analyzed with special emphasis on the strange quark condensate. We show that the presence of an external magnetic field induces several critical endpoints (CEPs) in the strange sector, which arise due to the multiple phase transitions that the strange quark undergoes. The spinodal and binodal regions of the phase transitions are shown to increase with external magnetic field strength. The influence of strong magnetic fields on the isentropic trajectories around the several CEPs is analyzed. A focusing effect is observed on the region towards the CEPs that are related with the strange quark phase transitions. Compared to the chiral transitions, the deconfinement transition turns out to be less sensitive to the external magnetic field and the crossover nature is preserved over the whole phase diagram.
NASA Astrophysics Data System (ADS)
Lee, Jong-Chul; Kim, Woo-Young
In this study, we have measured the dielectric breakdown voltage of transformer oil-based nanofluids in accordance with IEC 156 standard and have investigated the dielectric breakdown performance with the application of an external magnetic field and different volume concentrations of magnetic nanoparticles. It is confirmed that the dielectric breakdown voltage of pure transformer oil is about 10 kV with a gap distance of 1 mm between electrodes. In the case of our transformer oil-based nanofluids with 0.08% < Φ < 0.39% (Φ means the volume concentration of magnetic nanoparticles in the fluid), the dielectric breakdown voltage is three times higher than that of pure transformer oil. Furthermore, when the external magnetic field is applied under the experimental vessel, the dielectric breakdown voltage of the nanofluids is above 40 kV, which is 30% higher than that without the external magnetic field.
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum
NASA Astrophysics Data System (ADS)
Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi
2006-05-01
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.
2007-01-01
In this paper we studied the effects of external fields' polarization on the coupling of pure magnetic fields into human body. Finite Difference Time Domain (FDTD) method is used to calculate the current densities induced in a 1 cm resolution anatomically based model with proper tissue conductivities. Twenty different tissues have been considered in this investigation and scaled FDTD technique is used to convert the results of computer code run in 15 MHz to low frequencies which are encountered in the vicinity of industrial induction heating and melting devices. It has been found that external magnetic field's orientation due to human body has a pronounced impact on the level of induced currents in different body tissues. This may potentially help developing protecting strategies to mitigate the situations in which workers are exposed to high levels of external magnetic radiation. PMID:17504520
NASA Astrophysics Data System (ADS)
Filatov, Alexei Vladimirovich
2002-09-01
Using electromagnetic forces to suspend rotating objects (rotors) without mechanical contact is often an appealing technical solution. Magnetic suspensions are typically required to have adequate load capacity and stiffness, and low rotational loss. Other desired features include low price, high reliability and manufacturability. With recent advances in permanent-magnet materials, the required forces can often be obtained by simply using the interaction between permanent magnets. While a magnetic bearing based entirely on permanent magnets could be expected to be inexpensive, reliable and easy to manufacture, a fundamental physical principle known as Earnshaw's theorem maintains that this type of suspension cannot be statically stable. Therefore, some other physical mechanisms must be included. One such mechanism employs the interaction between a conductor and a nonuniform magnetic field in relative motion. Its advantages include simplicity, reliability, wide range of operating temperature and system autonomy (no external wiring and power supplies are required). The disadvantages of the earlier embodiments were high rotational loss, low stiffness and load capacity. This dissertation proposes a novel type of magnetic bearing stabilized by the field-conductor interaction. One of the advantages of this bearing is that no electric field, E, develops in the conductor during the rotor rotation when the system is in no-load equilibrium. Because of this we refer to it as the Null-E Bearing. Null-E Bearings have potential for lower rotational loss and higher load capacity and stiffness than other bearings utilizing the field-conductor interaction. Their performance is highly insensitive to manufacturing inaccuracies. The Null-E Bearing in its basic form can be augmented with supplementary electronics to improve its performance. Depending on the degree of the electronics involvement, a variety of magnetic bearings can be developed ranging from a completely passive to an active magnetic bearing of a novel type. This dissertation contains theoretical analysis of the Null-E Bearing operation, including derivation of the stability conditions and estimation of some of the rotational losses. The validity of the theoretical conclusions has been demonstrated by building and testing a prototype in which non-contact suspension of a 3.2-kg rotor is achieved at spin speeds above 18 Hz.
Łebkowska, Maria; Rutkowska-Narożniak, Anna; Pajor, Elżbieta; Tabernacka, Agnieszka; Załęska-Radziwiłł, Monika
2018-05-29
The current study presents results concerning the effect of a static magnetic field (SMF) on synthetic wastewater biodegradation by activated sludge and on dehydrogenase activity of microorganisms of activated sludge. The highest process efficiency was obtained for a SMF of 0.0075 T among the tested magnetic flux density values of 0.005-0.14 T. Decrease in COD was 25% higher for the bioreactor exposed to SMF compared with control experiments. The positive effect of SMF 0.0075-0.0080 T was confirmed in experiments on the dehydrogenase activity of activated sludge. It was also shown that a SMF of 0.007 T increased p-nitroaniline removal from wastewater and influenced the recombination frequency in a streptomycin-resistant bacteria strain of Eschercihia coli.
Electromagnon in the Y-type hexaferrite BaSrCoZnFe11AlO22
NASA Astrophysics Data System (ADS)
Vít, Jakub; Kadlec, Filip; Kadlec, Christelle; Borodavka, Fedir; Chai, Yi Sheng; Zhai, Kun; Sun, Young; Kamba, Stanislav
2018-04-01
We investigated static and dynamic magnetoelectric properties of single crystalline BaSrCoZnFe11AlO22 , which is a room-temperature multiferroic with Y-type hexaferrite crystal structure. Below 300 K, a purely electric-dipole-active electromagnon at ≈1.2 THz with the electric polarization oscillating along the hexagonal axis was observed by THz and Raman spectroscopies. We investigated the behavior of the electromagnon with applied dc magnetic field and linked its properties to static measurements of the magnetic structure. Our analytical calculations determined selection rules for electromagnons activated by the magnetostriction mechanism in various magnetic structures of Y-type hexaferrite. Comparison with our experiment supports that the electromagnon is indeed activated by the magnetostriction mechanism involving spin vibrations along the hexagonal axis.
Positive and negative effective mass of classical particles in oscillatory and static fields.
Dodin, I Y; Fisch, N J
2008-03-01
A classical particle oscillating in an arbitrary high-frequency or static field effectively exhibits a modified rest mass m(eff) derived from the particle averaged Lagrangian. Relativistic ponderomotive and diamagnetic forces, as well as magnetic drifts, are obtained from the m(eff) dependence on the guiding center location and velocity. The effective mass is not necessarily positive and can result in backward acceleration when an additional perturbation force is applied. As an example, adiabatic dynamics with m||>0 and m||<0 is demonstrated for a wave-driven particle along a dc magnetic field, m|| being the effective longitudinal mass derived from m(eff). Multiple energy states are realized in this case, yielding up to three branches of m|| for a given magnetic moment and parallel velocity.
Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles
NASA Astrophysics Data System (ADS)
Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.
2017-03-01
Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.
Control of Meridional Flow in Circular Cylinders by a Travelling Axial Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Ramachandran, N.; Volz, M. P.
1999-01-01
Convective flow in a Bridgman or float zone configuration significantly affects the interface shape and segregation phenomena. While the primary causative factor for this flow is buoyancy induced convection in an enclosed Bridgman melt, the presence of a free surface gives rise to surface tension driven flows in the floating zone processing of melts. It is of interest to curtail these flows in order to realize near quiescent growth conditions that have shown to result in crystals with good longitudinal and radial homogeneity and thereby of better overall quality. While buoyancy effects can be reduced by careful processing in a low gravity (space) environment, the reduction of Marangoni flows due to surface tension variations is not that straight forward. Attempts have been made with some limited success with the use of external fields to affect the melt thermo-fluid behavior. The use of a static magnetic field that reduces convective contamination through the effects of a non-intrusively induced, dissipative Lorentz force in an electrically conducting melt is one such approach. Experiments have shown that axial fields of the order of 5 Tesla can significantly eliminate convection and yield close to diffusion limited crystal growth conditions. The generation and use of such high magnetic fields require substantial hardware and incur significant costs for its operation. Lately, the use of rotating magnetic fields has been tested in semiconductor crystal growth. The method is fairly well known and commonly used in metal processing but its adaptation to crystal growth of semiconductors is fairly recent. The elegance of the technique rests in its low power requirement (typically 10-20 milli-Tesla at 50-400 Hz) and its efficacy in curtailing deleterious temperature fluctuations in the melt. A rotating magnetic field imposes a rotational force and thereby induces a circulation within the melt that tends to dominate other sporadic convective effects. Thus a known low level of convective flow is introduced into the system. A new novel variation of the Lorentz force mechanism is proposed and investigated in this study. Since one of the desired process conditions in melt crystal growth is the minimization of convective effects, this investigation examines the use of an external field of magnetic origin to counteract existing convective flow within the melt. This is accomplished by utilizing a running or traveling axial magnetic wave in the system. The concept is similar to the use of vibrational means in order to induce streaming flows that oppose buoyant or surface tension driven convection in the system. The rotation direction as well as the magnitude (strength) of this circulation can be easily controlled by external inputs thus affording a direct means of controlling the developing shape of the crystallizing front (interface). The theoretical model of this technique is fully developed and presented in this paper. Results from the solution of the developed governing equations and boundary conditions are also presented. An experimental demonstration of the concept is presented through the suppression of natural convective flow in a mercury column. Implications to crystal growth systems will be fully explored in the final manuscript.
NASA Technical Reports Server (NTRS)
Eskins, Jonathan
1988-01-01
The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.
Poltis, Robert; Stojkovic, Dejan
2010-10-15
The decay of nontopological electroweak strings may leave an observable imprint in the Universe today in the form of primordial magnetic fields. Protogalaxies preferentially tend to form with their axis of rotation parallel to an external magnetic field, and, moreover, an external magnetic field produces torque which tends to align the galaxy axis with the magnetic field. We demonstrate that the shape of a magnetic field left over from two looped electroweak strings can explain the observed nontrivial alignment of quasar polarization vectors and make predictions for future observations.
The effect of external magnetic field changing on the correlated quantum dot dynamics
NASA Astrophysics Data System (ADS)
Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.
2018-06-01
The non-stationary response of local magnetic moment to abrupt switching "on" and "off" of external magnetic field was studied for a single-level quantum dot (QD) coupled to a reservoir. We found that transient processes look different for the shallow and deep localized energy level. It was demonstrated that for deep energy level the relaxation rates of the local magnetic moment strongly differ in the case of magnetic field switching "on" or "off". Obtained results can be applied in the area of dynamic memory devices stabilization in the presence of magnetic field.
Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope.
Gao, Mingyuan; Hu, Chengzhi; Chen, Zhenzhi; Zhang, Honghai; Liu, Sheng
2010-12-01
This paper investigates design, modeling, simulation, and control issues related to self-propelled endoscopic capsule navigated inside the human body through external magnetic fields. A novel magnetic propulsion system is proposed and fabricated, which has great potential of being used in the field of noninvasive gastrointestinal endoscopy. Magnetic-analysis model is established and finite-element simulations as well as orthogonal design are performed for obtaining optimized mechanical and control parameters for generating appropriate external magnetic field. Simulated intestinal tract experiments are conducted, demonstrating controllable movement of the capsule under the developed magnetic propulsion system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, N. V.; Kakurin, A. M.
2014-10-15
Simulation of the magnetic island evolution under Resonant Magnetic Perturbation (RMP) in rotating T-10 tokamak plasma is presented with intent of TEAR code experimental validation. In the T-10 experiment chosen for simulation, the RMP consists of a stationary error field, a magnetic field of the eddy current in the resistive vacuum vessel and magnetic field of the externally applied controlled halo current in the plasma scrape-off layer (SOL). The halo-current loop consists of a rail limiter, plasma SOL, vacuum vessel, and external part of the circuit. Effects of plasma resistivity, viscosity, and RMP are taken into account in the TEARmore » code based on the two-fluid MHD approximation. Radial distribution of the magnetic flux perturbation is calculated with account of the externally applied RMP. A good agreement is obtained between the simulation results and experimental data for the cases of preprogrammed and feedback-controlled halo current in the plasma SOL.« less
Tian, Wei; Han, Xu; Zuo, Wangda; ...
2018-01-31
This paper presents a comprehensive review of the open literature on motivations, methods and applications of linking stratified airflow simulation to building energy simulation (BES). First, we reviewed the motivations for coupling prediction models for building energy and indoor environment. This review classified various exchanged data in different applications as interface data and state data, and found that choosing different data sets may lead to varying performance of stability, convergence, and speed for the co-simulation. Second, our review shows that an external coupling scheme is substantially more popular in implementations of co-simulation than an internal coupling scheme. The external couplingmore » is shown to be generally faster in computational speed, as well as easier to implement, maintain and expand than the internal coupling. Third, the external coupling can be carried out in different data synchronization schemes, including static coupling and dynamic coupling. In comparison, the static coupling that performs data exchange only once is computationally faster and more stable than the dynamic coupling. However, concerning accuracy, the dynamic coupling that requires multiple times of data exchange is more accurate than the static coupling. Furthermore, the review identified that the implementation of the external coupling can be achieved through customized interfaces, middleware, and standard interfaces. The customized interface is straightforward but may be limited to a specific coupling application. The middleware is versatile and user-friendly but usually limited in data synchronization schemes. The standard interface is versatile and promising, but may be difficult to implement. Current applications of the co-simulation are mainly energy performance evaluation and control studies. Finally, we discussed the limitations of the current research and provided an overview for future research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Wei; Han, Xu; Zuo, Wangda
This paper presents a comprehensive review of the open literature on motivations, methods and applications of linking stratified airflow simulation to building energy simulation (BES). First, we reviewed the motivations for coupling prediction models for building energy and indoor environment. This review classified various exchanged data in different applications as interface data and state data, and found that choosing different data sets may lead to varying performance of stability, convergence, and speed for the co-simulation. Second, our review shows that an external coupling scheme is substantially more popular in implementations of co-simulation than an internal coupling scheme. The external couplingmore » is shown to be generally faster in computational speed, as well as easier to implement, maintain and expand than the internal coupling. Third, the external coupling can be carried out in different data synchronization schemes, including static coupling and dynamic coupling. In comparison, the static coupling that performs data exchange only once is computationally faster and more stable than the dynamic coupling. However, concerning accuracy, the dynamic coupling that requires multiple times of data exchange is more accurate than the static coupling. Furthermore, the review identified that the implementation of the external coupling can be achieved through customized interfaces, middleware, and standard interfaces. The customized interface is straightforward but may be limited to a specific coupling application. The middleware is versatile and user-friendly but usually limited in data synchronization schemes. The standard interface is versatile and promising, but may be difficult to implement. Current applications of the co-simulation are mainly energy performance evaluation and control studies. Finally, we discussed the limitations of the current research and provided an overview for future research.« less
Magnetic pinch compression of silica glass
NASA Technical Reports Server (NTRS)
Bless, S. J.
1974-01-01
SiO2 glass has been irreversibly densified by pressures up to 250 kbar produced in a magnetic pinch apparatus. The threshold for significant densification was about 60 kbar. The recovered densities agree better with published shock wave results than with static results.
Wallis, Marianne C.; Davies, Elizabeth A.; Thalib, Lukman; Griffiths, Susan
2012-01-01
Objectives To determine the efficacy of non-invasive static magnetic stimulation (SMS) of the pelvic floor compared to placebo in the treatment of women aged 60 years and over with urinary incontinence for 6 months or more. Subjects and Methods A single-blinded randomized, placebo-controlled, parallel-group trial. Subjects were excluded if they had an implanted electronic device, had experienced a symptomatic urinary tract infection, or had commenced pharmacotherapy for the same in the previous 4 weeks, or if they were booked for pelvic floor or gynecological surgery within the next 3 months. Once written consent was obtained, subjects were randomly assigned to the active SMS group (n=50) or the placebo group (n=51). Treatment was an undergarment incorporating 15 static magnets of 800–1200 Gauss anterior, posterior, and inferior to the pelvis for at least 12 hours a day for 3 months. Placebo was the same protocol with inert metal disks replacing the magnets. Primary outcome measure was cessation of incontinence as measured by a 24-hour pad test. Secondary outcomes were frequency and severity of symptoms as measured by the Bristol Female Lower Urinary Tract Symptoms questionnaire (BFLUTS-SF), the Incontinence Severity Index, a Bothersomeness Visual Analog scale, and a 24-hour bladder diary. Data were collected at baseline and 12 weeks later. Results There were no statistically significant differences between groups in any of the outcome measures from baseline to 12 weeks. Initial evidence of subjective improvement in the treatment group compared to the placebo group was not sustained with sensitivity analysis. Conclusion This study found no evidence that static magnets cure or decrease the symptoms of urinary incontinence. Additional work into the basic physics of the product and garment design is recommended prior to further clinical trials research. PMID:21817123
NASA Astrophysics Data System (ADS)
Kikuchi, Yusuke; Yoshikawa, Tatsuya; Nishioka, Tsutomu; Hashimoto, Shotaro; Fukumoto, Naoyuki; Nagata, Masayoshi
Application of an externally applied rotating magnetic field (RMF) for control of MHD relaxation phenomena driven by a coaxial helicity injection has been proposed in the HIST spherical torus device. In this letter, the plasma responses to the RMF evaluated by magnetic fields inside the plasma in HIST are shown.
Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point
ERIC Educational Resources Information Center
Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf
2011-01-01
An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…
NASA Astrophysics Data System (ADS)
Arenas, Mónica P.; Silveira, Rosa M.; Pacheco, Clara J.; Bruno, Antonio C.; Araujo, Jefferson F. D. F.; Eckstein, Carlos B.; Nogueira, Laudemiro; de Almeida, Luiz H.; Rebello, João M. A.; Pereira, Gabriela R.
2018-06-01
Heat-resistant austenitic stainless steels have become the principal alloys for use in steam reformer tubes in the petrochemical industry due to its mechanical properties. These tubes are typically exposed to severe operational conditions leading to microstructural transformations such as the aging phenomenon. The combination of high temperatures and moderate stresses causes creep damages, being necessary to monitor its structural condition by non-destructive techniques. The tube external wall is also subjected to oxidizing atmospheres, favoring the formation of an external surface, composed by an oxide scale and a chromium depleted zone. This external surface is usually not taken into account in the tube evaluation, which can lead to erroneous estimations of the service life of these components. In order to observe the magnetic influence of this layer, two samples, exposed to different operational temperatures, were characterized by non-destructive eddy current testing (ECT), scanning DC-susceptometer and magnetic force microscopy (MFM). It was found that the external surface thickness influences directly in the magnetic response of the samples.
Strong Magnetic Field Characterisation
2012-04-01
an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699
NASA Astrophysics Data System (ADS)
Shestakov, E. A.; Savrukhin, P. V.
2017-10-01
Experiments in the T-10 tokamak demonstrated possibility of controlling the plasma current during disruption instability using the electron cyclotron resonance heating (ECRH) and the controlled operation of the ohmic current-holding system. Quasistable plasma discharge with repeating sawtooth oscillations can be restored after energy quench using auxiliary ECRH power when PEC / POH > 2-5. The external magnetic field generation system consisted of eight saddle coils that were arranged symmetrically relative to the equatorial plane of the torus outside of the vacuum vessel of the T-10 tokamak to study the possible resonant magnetic field effects on the rotation frequency of magnetic islands. The saddle coils power supply system is based on four thyristor converters with a total power of 300 kW. The power supply control system is based on Siemens S7 controllers. As shown by preliminary experiments, the interaction efficiency of external magnetic fields with plasma depends on the plasma magnetic configuration. Optimal conditions for slowing the rotation of magnetic islands were determined. Additionally, the direction of the error magnetic field in the T-10 tokamak was determined, and the threshold value of the external magnetic field was determined.
Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.
Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai
2015-09-01
Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.
Calculation of the magnetic field in the active zone of a hysteresis clutch
NASA Technical Reports Server (NTRS)
Ermilov, M. A.; Glukhov, O. M.
1977-01-01
The initial distribution of magnetic induction in the armature stationary was calculated relative to the polar system of a hysteresis clutch. Using several assumptions, the problem is reduced to calculating the static magnetic field in the ferromagnetic plate with finite and continuous magnetic permeability placed in the air gap between two identical, parallel semiconductors with rack fixed relative to the tooth or slot position.
Photonic band structures of two-dimensional magnetized plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, L.
By using modified plane wave method, photonic band structures of the transverse electric polarization for two types of two-dimensional magnetized plasma photonic crystals are obtained, and influences of the external magnetic field, plasma density, and dielectric materials on the dispersion curves are studied, respectively. Results show that two areas of flat bands appear in the dispersion curves due to the role of external magnetic field, and the higher frequencies of the up and down flat bands are corresponding to the right-circled and left-circled cutoff frequencies, respectively. Adjusting external magnetic field and plasma density can not only control positions of themore » flat bands, but also can control the location and width of the local gap; increasing relative dielectric constant of the dielectric materials makes omni-direction gaps appear.« less
Chiral magnetic effect in the presence of electroweak interactions as a quasiclassical phenomenon
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim; Semikoz, Victor B.
2018-03-01
We elaborate the quasiclassical approach to obtain the modified chiral magnetic effect (CME) in the case when the massless charged fermions interact with electromagnetic fields and the background matter by the electroweak forces. The derivation of the anomalous current along the external magnetic field involves the study of the energy density evolution of chiral particles in parallel electric and magnetic fields. We consider both the particle acceleration by the external electric field and the contribution of the Adler anomaly. The condition of the validity of this method for the derivation of the CME is formulated. We obtain the expression for the electric current along the external magnetic field, which appears to coincide with our previous results based on the purely quantum approach. Our results are compared with the findings of other authors.
Strain-Induced Extrinsic High-Temperature Ferromagnetism in the Fe-Doped Hexagonal Barium Titanate
Zorko, A.; Pregelj, M.; Gomilšek, M.; Jagličić, Z.; Pajić, D.; Telling, M.; Arčon, I.; Mikulska, I.; Valant, M.
2015-01-01
Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO3-δ, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO3-δ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases. PMID:25572803
NASA Astrophysics Data System (ADS)
Guiffard, B.; Seveno, R.
2015-01-01
In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tropp, James
We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields,more » oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are swapped between the two antenna ports--giving in one instance a signal intensity pattern whose form resembles an umbrella (i.e., with a central column of moderate intensity surmounted by a bright canopy), and in the other, a distorted oval with slight concavities at its horizontal extremes, whose outline suggests that of a cat's eye. The relation between image patterns and drive scheme can be shown to reverse if the static polarizing field is reversed. Electromagnetic and circuit calculations, together with the modified reciprocity principle, allow us to reproduce these pattern changes in numerical simulations, closely and convincingly. Although the imaging experiments are performed at a static field of 3.0 T, and consequently a Larmor frequency of 128 MHz, the nonreciprocal effects are not related to the shortness of the wavelength in aqueous medium, but appear equally in simulations based in either the quasistatic or full electromagnetic regimes. Finally, we show that although antenna patterns for transmission and reception are swapped with reversal of the polarizing field, meaning that the receive pattern equals the transmit pattern with the field reversed, this in no way invalidates the familiar rotating wave model of spin dynamics in magnetic resonance.« less
Superelastic stress-strain behavior in ferrogels with different types of magneto-elastic coupling
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.
Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be exploited for various applications like dampers, vibration absorbers, or actuators. Under appropriate conditions, the stress-strain behavior of a ferrogel can display a fascinating feature: superelasticity, the capability to reversibly deform by a huge amount while barely altering the applied load. In a previous work, using numerical simulations, we investigated this behavior assuming that the magnetic moments carried by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations towards a magnetically favored configuration. For example, the particles can be chemically cross-linked into the polymer matrix and the magnetic moments can be fixed to the particle axes. We demonstrate that these systems still feature a superelastic regime. As before, the nonlinear stress-strain behavior can be reversibly tailored during operation by external magnetic fields. Yet, the different coupling of the magnetic moments causes different types of response to external stimuli. For instance, an external magnetic field applied parallel to the stretching axis hardly affects the superelastic regime but stiffens the system beyond it. Other smart materials featuring superelasticity, e.g. metallic shape-memory alloys, have already found widespread applications. Our soft polymer systems offer many additional advantages like a typically higher deformability and enhanced biocompatibility combined with high tunability.
Myers, Christopher; Yellen, Benjamin; Evans, John; DeMaria, Eric; Pryor, Aurora
2010-05-01
To facilitate endolumenal and natural orifice procedures, this study evaluated a novel technique using external and endoscopically placed magnets to create suture-free gastroenteral anastomoses. Seven anesthetized adult swine underwent endoscopic placement of magnets into the small bowel and stomach. Using external magnets, the endoscopically placed internal magnets were brought into opposition under endoscopic view. After 1-2 weeks, the pigs were killed and analyzed. At laparotomy and under sterile conditions, peritoneal cultures were obtained. The anastomoses were evaluated endoscopically and tested using an air insufflation test. Finally, the anastomoses were resected and evaluated microscopically. The average operative time for endoscopic placement of the magnets was 34.3 +/- 14.8 min. Successful placement and creation of anastomoses occurred in six of the pigs. One pig did not form an anastomosis because the magnets were too large to pass through the pylorus at the time of attempted magnet placement. Six swine experienced uncomplicated postoperative courses. One pig's postoperative course involved constipation for several days, requiring additional fluids and fiber supplementation. The findings at endoscopy showed that the magnets were adhered to the anastomosis, which were easily freed, or within the stomach. The air insufflation test results were negative for all the pigs. At laparotomy, there was no evidence of infection, abscess, or leak, but two peritoneal culture results were positive with scant growth of Staphylococcus aureus and coagulase-negative staphylococcus, presumably contaminants. Microscopically, the anastomoses illustrated granulation and fibrous connective tissue without evidence of infection or leak. Endoscopically placed magnets with external magnet guidance is a feasible and novel approach to creating patent gastroenteral anastomoses without abdominal incisions or sutures.
Villani, Maria Elena; Massa, Silvia; Lopresto, Vanni; Pinto, Rosanna; Salzano, Anna Maria; Scaloni, Andrea; Benvenuto, Eugenio; Desiderio, Angiola
2017-11-01
Static magnetic fields created by superconducting magnets have been proposed as an effective solution to protect spacecrafts and planetary stations from cosmic radiations. This shield can deflect high-energy particles exerting injurious effects on living organisms, including plants. In fact, plant systems are becoming increasingly interesting for space adaptation studies, being useful not only as food source but also as sink of bioactive molecules in future bioregenerative life-support systems (BLSS). However, the application of protective magnetic shields would generate inside space habitats residual magnetic fields, of the order of few hundreds milli Tesla, whose effect on plant systems is poorly known. To simulate the exposure conditions of these residual magnetic fields in shielded environment, devices generating high-intensity static magnetic field (SMF) were comparatively evaluated in blind exposure experiments (250 mT, 500 mT and sham -no SMF-). The effects of these SMFs were assayed on tomato cultures (hairy roots) previously engineered to produce anthocyanins, known for their anti-oxidant properties and possibly useful in the setting of BLSS. Hairy roots exposed for periods ranging from 24 h to 11 days were morphometrically analyzed to measure their growth and corresponding molecular changes were assessed by a differential proteomic approach. After disclosing blind exposure protocol, a stringent statistical elaboration revealed the absence of significant differences in the soluble proteome, perfectly matching phenotypic results. These experimental evidences demonstrate that the identified plant system well tolerates the exposure to these magnetic fields. Results hereby described reinforce the notion of using this plant organ culture as a tool in ground-based experiments simulating space and planetary environments, in a perspective of using tomato 'hairy root' cultures as bioreactor of ready-to-use bioactive molecules during future long-term space missions. Copyright © 2017. Published by Elsevier Ltd.
Matter-induced magnetic moment and neutrino helicity rotation in external fields
NASA Astrophysics Data System (ADS)
Ternov, Alexei I.
2016-11-01
The induced magnetic moment that arises due to the propagation of neutrinos in a dispersive medium can affect the dynamics of the neutrino spin in an external electromagnetic field. In particular, it can cause a helicity flip of a massive neutrino in a magnetic field. In some astrophysical media, this helicity transition mechanism could be more effective than a similar process caused by the anomalous magnetic moment of the neutrino. If the neutrino energy is sufficiently high, the two helicity transition mechanisms mentioned above can compensate each other. Then a helicity flip in an external field will not occur. Calculations are carried out using both the methods of relativistic quantum mechanics and the quasiclassical Bargmann-Michel-Telegdi equation.
Dynamic diagnostics of the error fields in tokamaks
NASA Astrophysics Data System (ADS)
Pustovitov, V. D.
2007-07-01
The error field diagnostics based on magnetic measurements outside the plasma is discussed. The analysed methods rely on measuring the plasma dynamic response to the finite-amplitude external magnetic perturbations, which are the error fields and the pre-programmed probing pulses. Such pulses can be created by the coils designed for static error field correction and for stabilization of the resistive wall modes, the technique developed and applied in several tokamaks, including DIII-D and JET. Here analysis is based on the theory predictions for the resonant field amplification (RFA). To achieve the desired level of the error field correction in tokamaks, the diagnostics must be sensitive to signals of several Gauss. Therefore, part of the measurements should be performed near the plasma stability boundary, where the RFA effect is stronger. While the proximity to the marginal stability is important, the absolute values of plasma parameters are not. This means that the necessary measurements can be done in the diagnostic discharges with parameters below the nominal operating regimes, with the stability boundary intentionally lowered. The estimates for ITER are presented. The discussed diagnostics can be tested in dedicated experiments in existing tokamaks. The diagnostics can be considered as an extension of the 'active MHD spectroscopy' used recently in the DIII-D tokamak and the EXTRAP T2R reversed field pinch.
A magnetic phase-transition graphene transistor with tunable spin polarization
NASA Astrophysics Data System (ADS)
Vancsó, Péter; Hagymási, Imre; Tapasztó, Levente
2017-06-01
Graphene nanoribbons (GNRs) have been proposed as potential building blocks for field effect transistor (FET) devices due to their quantum confinement bandgap. Here, we propose a novel GNR device concept, enabling the control of both charge and spin signals, integrated within the simplest three-terminal device configuration. In a conventional FET device, a gate electrode is employed to tune the Fermi level of the system in and out of a static bandgap. By contrast, in the switching mechanism proposed here, the applied gate voltage can dynamically open and close an interaction gap, with only a minor shift of the Fermi level. Furthermore, the strong interplay of the band structure and edge spin configuration in zigzag ribbons enables such transistors to carry spin polarized current without employing an external magnetic field or ferromagnetic contacts. Using an experimentally validated theoretical model, we show that such transistors can switch at low voltages and high speed, and the spin polarization of the current can be tuned from 0% to 50% by using the same back gate electrode. Furthermore, such devices are expected to be robust against edge irregularities and can operate at room temperature. Controlling both charge and spin signal within the simplest FET device configuration could open up new routes in data processing with graphene based devices.
On Ex Situ NMR: Developing portable low-cost and/or single sided NMR/MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demas, V; Herberg, J; Maxwell, R
2006-06-09
Nuclear magnetic resonance spectroscopy (NMR) is of unsurpassed versatility in its ability to non-destructively probe for chemical identity. Portable, low-cost NMR sensors would enable on site identification of potentially hazardous substances, such as signatures from production of nuclear, chemical, and biological weapon agents, narcotics, explosives, toxins, and poisons. There exist however problems that need to be considered in the case of such sensors: (a) small-scale magnets produce inhomogeneous magnetic fields and therefore undesired Larmor frequency distributions that conceal much of the useful spectral information, and (b) sensitivity in most experiments decreases due to the inherently low and strongly inhomogeneous fieldsmore » associated with portable instruments. Our approach is to: (a) try to improve the field of low cost magnets either with hardware (e.g. magnet design and construction of ''shim coils'') or via special pulse sequences, where the field is ''effectively shimmed'' to appear homogeneous to the sample, and (b) to use microcoils to improve sensitivity and to allow focusing in smaller regions and therefore smaller static field variations. We have been working in setting up a table top, 2-Tesla permanent Halbach magnet system for tabletop NMR. The Spectrometer console is a Tecmag Apollo, controlled by a dell notebook. Currently an external linear chemagnetics rf amplifier is being used, though the power requirements for our system are quite low (a few Watts). The Magnetic Resonance lab in LLNL, has developed several types and sizes of microcoils, which have been proven to perform well for NMR experiments. We have evaluated an rf, 360 {micro}m O.D., microcoil probe that was built previously. We have finished mapping the magnetic field of the magnet. In the optimal position (in terms of field quality), the field inhomogeneity was at 17ppm. Preliminary fluorine spectra with a resolved two peak separation have now been obtained. For the field, as mapped, we have initial designs of first degree shimming, or gradient coils (linear correction to the field). We have calculated ''shim pulses'' to effectively shim the mapped field, for ideal gradient coils. These calculations will be repeated after the coils will be built and evaluated.« less
Electric Field Feature of Moving Magnetic Field
NASA Astrophysics Data System (ADS)
Chen, You Jun
2001-05-01
A new fundamental relationship of electric field with magnetic field has been inferred from the fundamental experimental laws and theories of classical electromagnetics. It can be described as moving magnetic field has or gives electric feature. When a field with magnetic induction of B moves in the velocity of V, it will show electric field character, the electric field intensity E is E = B x V and the direction of E is in the direction of the vector B x V. It is improper to use the time-varying electromagnetics theories as the fundamental theory of the electromagnetics and group the electromagnetic field into static kind and time-varying kind for the static is relative to motional not only time-varying. The relationship of time variation of magnetic field induction or magnetic flux with electric field caused by magnetic field is fellowship not causality. Thus time-varying magnetic field can cause electric field is not a nature principle. Sometime the time variation of magnetic flux is equal to the negative electromotive force or the time variation of magnetic field induction is equal to the negative curl of electric field caused by magnetic field motion, but not always. And not all motion of magnetic field can cause time variation of magnetic field. Therefore Faraday-Lenz`s law can only be used as mathematics tool to calculate the quantity relation of the electricity with the magnetism in some case like the magnetic field moving in uniform medium. Faraday-Lenz`s law is unsuitable to be used in moving uniform magnetic field or there is magnetic shield. Key word: Motional magnetic field, Magnetic induction, Electric field intensity, Velocity, Faraday-Lenz’s law
Study of Co0.5Zn0.5Fe2O4 nanoparticles for magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Kamzin, A. S.; Nikam, D. S.; Pawar, S. H.
2017-01-01
The structural characteristics, magnetic properties, and processes of magnetic heating in an alternating magnetic field of magnetic nanoparticles (MNPs) Co0.5Zn0.5Fe2O4 (cobalt-zinc ferrite, CZF) are studied to explore the possibilities of their application in medicine, namely, for magnetic hyperthermia treatment (the heating of particles with external alternating magnetic field). CZF magnetic nanoparticles were obtained by coprecipitation using sodium hydroxide (NaOH) as a precipitating agent. Based on the data obtained by transmission electron microscopy in the transmission geometry, it is found that CZF magnetic nanoparticles have an almost spherical shape with an average particle size of 13 nm. X-ray diffraction and Mössbauer studies showed that CZF magnetic nanoparticles are single-phase, and their structure corresponds to a cubic spinel structure. The saturation magnetization M s of CZF nanoparticles is measured at room temperature using a vibrating sample magnetometer. The possibility of heating CZF magnetic nanoparticles with an external alternating magnetic field was studied using an induction heating system. The specific absorption rate is determined by applying an external alternating magnetic field in the range of 167.5 to 335.2 Oe at a fixed frequency of 265 kHz. It is found that the maximum amount of heat (114.98 W/g) is produced at a concentration of 5 mg/L under a field of 335.2 Oe.
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
NASA Astrophysics Data System (ADS)
Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.
2018-04-01
In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.
Maxwell-Higgs equation on higher dimensional static curved spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulyanto, E-mail: mulyanto37@gmail.com; Akbar, Fiki Taufik, E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby Eka, E-mail: bobby@fi.itb.ac.id
In this paper we consider a class of solutions of Maxwell-Higgs equation in higher dimensional static curved spacetimes called Schwarzchild de-Sitter spacetimes. We obtain the general form of the electric fields and magnetic fields in background Schwarzchild de-Sitter spacetimes. However, determining the interaction between photons with the Higgs scalar fields is needed further studies.
MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix
NASA Astrophysics Data System (ADS)
Park, Won-Kwang; Lesselier, Dominique
2009-07-01
The imaging of a thin inclusion, with dielectric and/or magnetic contrasts with respect to the embedding homogeneous medium, is investigated. A MUSIC-type algorithm operating at a single time-harmonic frequency is developed in order to map the inclusion (that is, to retrieve its supporting curve) from scattered field data collected within the multi-static response matrix. Numerical experiments carried out for several types of inclusions (dielectric and/or magnetic ones, straight or curved ones), mostly single inclusions and also two of them close by as a straightforward extension, illustrate the pros and cons of the proposed imaging method.
Dynamical properties of magnetized two-dimensional one-component plasma
NASA Astrophysics Data System (ADS)
Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios
2018-05-01
Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.
Fradin, Cécile
2013-01-01
Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185
The free energies of partially open coronal magnetic fields
NASA Technical Reports Server (NTRS)
Low, B. C.; Smith, D. F.
1993-01-01
A simple model of the low corona is examined in terms of a static polytropic atmosphere in equilibrium with a global magnetic field. The question posed is whether magnetostatic states with partially open magnetic fields may contain magnetic energies in excess of those in fully open magnetic fields. Based on the analysis presented here, it is concluded that the cross-field electric currents in the pre-eruption corona are a viable source of the bulk of the energies in a mass ejection and its associated flare.
Compression asphyxia in upright suspended position.
Tumram, Nilesh Keshav; Ambade, Vipul Namdeorao; Dixit, Pradeep Gangadhar
2014-06-01
In compression asphyxia, the respiration is prevented by external pressure on the body. It is usually due to external force compressing the trunk due to heavy weight over chest/abdomen and is associated with internal injuries. In the present case, the victim was suspended in an upright position owing to wedging of the chest and the abdomen in the gap between 2 parallel bridges undergoing construction. There was neither any heavy weight over the body, nor was any external force applied over the trunk. Moreover, there was neither any severe blunt force injury nor any significant pathological natural disease contributing to the cause of death. The body was wedged in the gap between 2 static hard surfaces. The victim was unable to extricate himself from the position owing to impairment of cognitive responses and coordination due to influence of alcohol. The victim died as a result of "static" asphyxia due to compression of the chest and the abdomen. Compression asphyxia in upright suspended position under this circumstance is very rare and not reported previously to the best of our knowledge.
NASA Astrophysics Data System (ADS)
Deng, Dongge; Wu, Xinjun
2018-03-01
An electromagnetic method for determining axial stress in ferromagnetic bars is proposed. In this method, the tested bar is under the static magnetization provided by permanent magnets. The tested bar do not have to be magnetized up to the technical saturation because reciprocal amplitude of initial differential susceptibility (RAIDS) is adopted as the feature parameter. RAIDS is calculated from the radial magnetic flux density Br Lo = 0.5 at the Lift-off Lo = 0.5 mm, radial magnetic flux density Br Lo = 1 at the Lift-off Lo = 1 mm and axial magnetic flux density Bz Lo = 1 at the Lift-off Lo = 1 mm from the surface of the tested bar. Firstly, the theoretical derivation of RAIDS is carried out according to Gauss' law for magnetism, Ampere's Law and the Rayleigh relation in Rayleigh region. Secondly, the experimental system is set up for a 2-meter length and 20 mm diameter steel bar. Thirdly, an experiment is carried out on the steel bar to analyze the relationship between the obtained RAIDS and the axial stress. Experimental results show that the obtained RAIDS decreases almost linearly with the increment of the axial stress inside the steel bar in the initial elastic region. The proposed method has the potential to determine tensile axial stress in the slender cylindrical ferromagnetic bar.
Probing the nature of superfluid helium-3 very near its critical temperature
NASA Astrophysics Data System (ADS)
Nishimori, Arito
We have measured with high resolution the static magnetization and NMR frequency shift of bulk superfluid 3He near its critical point. The static magnetization measurements at 31.4 bars and 33.7 bars in the magnetic field of 36.1 mT show that the size of the magnetization change through the A1 region is smaller than 0.1% of the total magnetization in the normal phase. NMR frequency shifts which have the similar |Delta|2 dependency(Delta:order parameter) to that of the magnetization are measured at the melting pressure in magnetic fields from 29.6 mT to 425 mT using a new feedback technique. We find that the frequency shifts agree very well with the mean field calculations based on the spin fluctuation feedback model proposed by Brinkman, Serene and Anderson(BSA) and there is no high temperature tail above T A1 nor smearing of kinks at TA 1 and TA2 originating from critical fluctuations. From the fitting parameters, the Brinkman-Anderson parameter delta averaged over the data in 92.6 mT, 154 mT and 213 mT at the melting pressure is found to be 0.57+/-0.02. We also obtained the widths of the A1 phase at low magnetic fields. Its linear dependence on magnetic field strength is consistent with the mean field calculation.
System and method for manipulating domain pinning and reversal in ferromagnetic materials
Silevitch, Daniel M.; Rosenbaum, Thomas F.; Aeppli, Gabriel
2013-10-15
A method for manipulating domain pinning and reversal in a ferromagnetic material comprises applying an external magnetic field to a uniaxial ferromagnetic material comprising a plurality of magnetic domains, where each domain has an easy axis oriented along a predetermined direction. The external magnetic field is applied transverse to the predetermined direction and at a predetermined temperature. The strength of the magnetic field is varied at the predetermined temperature, thereby isothermally regulating pinning of the domains. A magnetic storage device for controlling domain dynamics includes a magnetic hard disk comprising a uniaxial ferromagnetic material, a magnetic recording head including a first magnet, and a second magnet. The ferromagnetic material includes a plurality of magnetic domains each having an easy axis oriented along a predetermined direction. The second magnet is positioned adjacent to the magnetic hard disk and is configured to apply a magnetic field transverse to the predetermined direction.
Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A
2015-03-01
Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species. Copyright © 2015 Elsevier GmbH. All rights reserved.
Al Hares, Ghaith; Eschweiler, Jörg; Radermacher, Klaus
2015-06-01
The development of detailed and specific knowledge on the biomechanical behavior of loaded knee structures has received increased attention in recent years. Stress magnetic resonance imaging techniques have been introduced in previous work to study knee kinematics under load conditions. Previous studies captured the knee movement either in atypical loading supine positions, or in upright positions with help of inclined supporting backrests being insufficient for movement capture under full-body weight-bearing conditions. In this work, we used a combined magnetic resonance imaging approach for measurement and assessment in knee kinematics under full-body weight-bearing in single legged stance. The proposed method is based on registration of high-resolution static magnetic resonance imaging data acquired in supine position with low-resolution data, quasi-static upright-magnetic resonance imaging data acquired in loaded positions for different degrees of knee flexion. The proposed method was applied for the measurement of tibiofemoral kinematics in 10 healthy volunteers. The combined magnetic resonance imaging approach allows the non-invasive measurement of knee kinematics in single legged stance and under physiological loading conditions. We believe that this method can provide enhanced understanding of the loaded knee kinematics. © IMechE 2015.
In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**
Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.
2015-01-01
By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziat, D.; Aczel, Adam A.; Sinclair, R.
We have performed magnetic susceptibility, heat capacity, muon spin relaxation, and neutron-scattering measurements on three members of the family Ba 3MRu 2O 9, where M=In, Y, and Lu. These systems consist of mixed-valence Ru dimers on a triangular lattice with antiferromagnetic interdimer exchange. Although previous work has argued that charge order within the dimers or intradimer double exchange plays an important role in determining the magnetic properties, our results suggest that the dimers are better described as molecular units due to significant orbital hybridization, resulting in one spin-1/2 moment distributed equally over the two Ru sites. These molecular building blocksmore » form a frustrated, quasi-two-dimensional triangular lattice. Our zero- and longitudinal-field μSR results indicate that the molecular moments develop a collective, static magnetic ground state, with oscillations of the zero-field muon spin polarization indicative of long-range magnetic order in the Lu sample. In conclusion, the static magnetism is much more disordered in the Y and In samples, but they do not appear to be conventional spin glasses.« less
Ziat, D.; Aczel, Adam A.; Sinclair, R.; ...
2017-05-22
We have performed magnetic susceptibility, heat capacity, muon spin relaxation, and neutron-scattering measurements on three members of the family Ba 3MRu 2O 9, where M=In, Y, and Lu. These systems consist of mixed-valence Ru dimers on a triangular lattice with antiferromagnetic interdimer exchange. Although previous work has argued that charge order within the dimers or intradimer double exchange plays an important role in determining the magnetic properties, our results suggest that the dimers are better described as molecular units due to significant orbital hybridization, resulting in one spin-1/2 moment distributed equally over the two Ru sites. These molecular building blocksmore » form a frustrated, quasi-two-dimensional triangular lattice. Our zero- and longitudinal-field μSR results indicate that the molecular moments develop a collective, static magnetic ground state, with oscillations of the zero-field muon spin polarization indicative of long-range magnetic order in the Lu sample. In conclusion, the static magnetism is much more disordered in the Y and In samples, but they do not appear to be conventional spin glasses.« less
2013-01-01
Background In orthopaedic surgery, accumulation of agents such as anti-infectives in the bone as target tissue is difficult. The use of magnetic nanoparticles (MNPs) as carriers principally enables their accumulation via an externally applied magnetic field. Magnetizable implants are principally able to increase the strength of an externally applied magnetic field to reach also deep-seated parts in the body. Therefore, the integration of bone-addressed therapeutics in MNPs and their accumulation at a magnetic orthopaedic implant could improve the treatment of implant related infections. In this study a martensitic steel platelet as implant placeholder was used to examine its accumulation and retention capacity of MNPs in an in vitro experimental set up considering different experimental frame conditions as magnet quantity and distance to each other, implant thickness and flow velocity. Results The magnetic field strength increased to approximately 112% when a martensitic stainless steel platelet was located between the magnet poles. Therewith a significantly higher amount of magnetic nanoparticles could be accumulated in the area of the platelet compared to the sole magnetic field. During flushing of the tube system mimicking the in vivo blood flow, the magnetized platelet was able to retain a higher amount of MNPs without an external magnetic field compared to the set up with no mounted platelet during flushing of the system. Generally, a higher flow velocity led to lower amounts of accumulated MNPs. A higher quantity of magnets and a lower distance between magnets led to a higher magnetic field strength. Albeit not significantly the magnetic field strength tended to increase with thicker platelets. Conclusion A martensitic steel platelet significantly improved the attachment of magnetic nanoparticles in an in vitro flow system and therewith indicates the potential of magnetic implant materials in orthopaedic surgery. The use of a remanent magnetic implant material could improve the efficiency of capturing MNPs especially when the external magnetic field is turned off thus facilitating and prolonging the effect. In this way higher drug levels in the target area might be attained resulting in lower inconveniences for the patient. PMID:24112871