Sample records for externally applied toroidal

  1. NMR apparatus for in situ analysis of fuel cells

    DOEpatents

    Gerald, II, Rex E; Rathke, Jerome W

    2012-11-13

    The subject apparatus is a fuel cell toroid cavity detector for in situ analysis of samples through the use of nuclear magnetic resonance. The toroid cavity detector comprises a gas-tight housing forming a toroid cavity where the housing is exposed to an externally applied magnetic field B.sub.0 and contains fuel cell component samples to be analyzed. An NMR spectrometer is electrically coupled and applies a radiofrequency excitation signal pulse to the detector to produce a radiofrequency magnetic field B.sub.1 in the samples and in the toroid cavity. Embedded coils modulate the static external magnetic field to provide a means for spatial selection of the recorded NMR signals.

  2. Plasma Properties of Microwave Produced Plasma in a Toroidal Device

    NASA Astrophysics Data System (ADS)

    Singh, Ajay; Edwards, W. F.; Held, Eric

    2011-10-01

    We have modified a small tokamak, STOR-1M, on loan from University of Saskatchewan, to operate as a low-temperature (~5 eV) toroidal plasma machine with externally induced toroidal magnetic fields ranging from zero to ~50 G. The plasma is produced using microwave discharges at relatively high pressures. Microwaves are produced by a kitchen microwave-oven magnetron operating at 2.45 GHz in continuous operating mode, resulting in pulses ~0.5 s in duration. Initial measurements of plasma formation in this device with and without applied magnetic fields are presented. Plasma density and temperature profiles have been measured using Langmuir probes and the magnetic field profile inside the plasma has been obtained using Hall probes. When the discharge is created with no applied toroidal magnetic field, the plasma does not fill the entire torus due to high background pressure. However, when a toroidal magnetic field is applied, the plasma flows along the applied field, filling the torus. Increasing the applied magnetic field seems to aid plasma formation - the peak density increases and the density gradient becomes steeper. Above a threshold magnetic field, the plasma develops low-frequency density oscillations due to probable excitation of flute modes in the plasma.

  3. Magnetic Effects in a Moderate-Temperature, High-Beta, Toroidal Plasma Device

    NASA Astrophysics Data System (ADS)

    Edwards, W. F.; Singh, A. K.; Held, E. D.

    2011-10-01

    A small toroidal machine (STOR-1M; minor radius 4.5 cm), on loan from the University of Saskatchewan, has been modified to operate at hydrogen ionization levels ~0.1%, beta values between 0.1 and 1, electron number density ~5x1016/m3, temperature ~5 eV, and applied toroidal magnetic field ~20 gauss. Plasma is generated using magnetron-produced microwaves. Langmuir and Hall probes determine radial profiles of electron number density, temperature, and magnetic field. For most values of the externally-applied magnetic field, the internal field is the same with or without plasma, however, in a narrow window of B, diamagnetism and other effects are present. The effect is observed with no externally induced current; plasma currents are self generated through some sort of relaxation process. Beta and radius conditions correlate well with similar magnetic structures in the laboratory (eg., plasma focus, Z pinch) and in space (eg., Venus flux ropes, solar coronal loops).

  4. Error field assessment from driven rotation of stable external kinks at EXTRAP-T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.

    2013-04-01

    A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.

  5. Predictions of toroidal rotation and torque sources arising in non-axisymmetric perturbed magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.

    2017-11-01

    Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.

  6. Modern gyrokinetic formulation of collisional and turbulent transport in toroidally rotating plasmas

    NASA Astrophysics Data System (ADS)

    Sugama, H.

    2017-12-01

    Collisional and turbulent transport processes in toroidal plasmas with large toroidal flows on the order of the ion thermal velocity are formulated based on the modern gyrokinetic theory. Governing equations for background and turbulent electromagnetic fields and gyrocenter distribution functions are derived from the Lagrangian variational principle with effects of collisions and external sources taken into account. Noether's theorem modified for collisional systems and the collision operator given in terms of Poisson brackets are applied to derivation of the particle, energy, and toroidal momentum balance equations in the conservative forms which are desirable properties for long-time global transport simulation. The resultant balance equations are shown to include the classical, neoclassical, and turbulent transport fluxes which agree with those obtained from the conventional recursive formulations.

  7. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo

    1984-01-01

    An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.

  8. Instabilities of Current Carrying Torus

    NASA Astrophysics Data System (ADS)

    Liu, Wenjuan; Qiu, J.

    2010-05-01

    We investigate the initial equilibrium and stability conditions for an uniform current-carrying plasma ring with a non-trivial toroidal magnetic field Bt. Realistic parameters comparable to observations are used to describe the magnetic field inside and outside the torus. The external poloidal magnetic field is assumed to fall off as a power function with decay index n (n = - d log (Bex) /d log(h)). The parameter space is explored to find all initial equilibrium solutions, at which perturbation is introduced. It is shown that with non-trivial toroidal field, the current ring attains equilibrium with a weaker external field. It is also shown that the torus attains equilibrium at higher altitude when the external field decays more rapidly (greater n) or the ratio of the toroidal flux in the torus to the external field increases. We further study stabilities of the torus at equilibrium by defining a critical decay index ncr (Kliem and Török 2006). A sufficiently strong toroidal field can completely suppress the torus instability due to the current hoop force. With a weak toroidal field, similar to the case of Bt=0, the instability occurs when the external magnetic field declines rapidly with height when the field decay index n>ncr. For realistic sets of parameters, the equilibrium height is within 10 solar radii, and the effective ncr is in the range of 1.0-1.6. The critical decay index increases when the ratio of the toroidal flux to the external field decreases. This work is supported by NSF CAREER grant ATM-0748428.

  9. Nonlinear External Kink Computing with NIMROD

    NASA Astrophysics Data System (ADS)

    Bunkers, K. J.; Sovinec, C. R.

    2016-10-01

    Vertical displacement events (VDEs) during disruptions often include non-axisymmetric activity, including external kink modes, which are driven unstable as contact with the wall eats into the q-profile. The NIMROD code is being applied to study external-kink-unstable tokamak profiles in toroidal and cylindrical geometries. Simulations with external kinks show the plasma swallowing a vacuum bubble, similar to. NIMROD reproduces external kinks in both geometries, using an outer vacuum region (modeled as a plasma with a large resistivity), but as the boundary between the vacuum and plasma regions becomes more 3D, the resistivity becomes a 3D function, and it becomes more difficult for algebraic solves to converge. To help allow non-axisymmetric, nonlinear VDE calculations to proceed without restrictively small time-steps, several computational algorithms have been tested. Flexible GMRES, using a Fourier and real space representation for the toroidal angle has shown improvements. Off-diagonal preconditioning and a multigrid approach were tested and showed little improvement. A least squares finite element method (LSQFEM) has also helped improve the algebraic solve. This effort is supported by the U.S. Dept. of Energy, Award Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.

  10. Ring stability of underground toroidal tanks

    NASA Astrophysics Data System (ADS)

    Lubis, Asnawi; Su'udi, Ahmad

    2017-06-01

    The design of pressure vessels subjected to internal pressure is governed by its strength, while the design of pressure vessels subjected to external pressure is governed by its stability, which is for circular cross-section is called the ring stability. This paper presented the results of finite element study of ring stability of circular toroidal tank without stiffener under external pressure. The tank was placed underground and external pressure load from soil was simulated as pressure at the top of the vessel along 30° circumferentially. One might ask the reason for choosing toroidal rather than cylindrical tank. Preliminary finite element studies showed that toroidal shells can withstand higher external pressure than cylindrical shells. In this study, the volume of the tank was fixed for 15,000 litters. The buckling external pressure (pL) was calculated for radius ratio (R/r) of 2, 3, and 4. The corresponding cross-section radiuses were 724.3 mm, 632.7 mm, and 574.9 mm, respectively. The selected element type was SHELL 281 from the ANSYS element library. To obtain the buckling load, the arc-length method was used in the nonlinear analysis. Both material and geometric nonlinearities were activated during the analysis. The conclusion of this study is that short-radius and thin-walled toroidal shell produces higher buckling load.

  11. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  12. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE PAGES

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo; ...

    2017-05-18

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  13. Error field detection in DIII-D by magnetic steering of locked modes

    DOE PAGES

    Shiraki, Daisuke; La Haye, Robert J.; Logan, Nikolas C.; ...

    2014-02-20

    Optimal correction coil currents for the n = 1 intrinsic error field of the DIII-D tokamak are inferred by applying a rotating external magnetic perturbation to steer the phase of a saturated locked mode with poloidal/toroidal mode number m/n = 2/1. The error field is detected non-disruptively in a single discharge, based on the toroidal torque balance of the resonant surface, which is assumed to be dominated by the balance of resonant electromagnetic torques. This is equivalent to the island being locked at all times to the resonant 2/1 component of the total of the applied and intrinsic error fields,more » such that the deviation of the locked mode phase from the applied field phase depends on the existing error field. The optimal set of correction coil currents is determined to be those currents which best cancels the torque from the error field, based on fitting of the torque balance model. The toroidal electromagnetic torques are calculated from experimental data using a simplified approach incorporating realistic DIII-D geometry, and including the effect of the plasma response on island torque balance based on the ideal plasma response to external fields. This method of error field detection is demonstrated in DIII-D discharges, and the results are compared with those based on the onset of low-density locked modes in ohmic plasmas. Furthermore, this magnetic steering technique presents an efficient approach to error field detection and is a promising method for ITER, particularly during initial operation when the lack of auxiliary heating systems makes established techniques based on rotation or plasma amplification unsuitable.« less

  14. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas Christopher

    Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric coils is often proportional to the energy put into the dominant ideal MHD kink mode. This reduces the control of nonresonant torque to a single mode model, enabling efficient feed forward optimization of applied fields. Initial results including the anisotropic kinetic pressure tensor directly in the plasma eigenmode calculations are presented here, and may eventually provide accurate metrics for multimodal coupling similar to the established single mode metrics.

  15. A method for the estimate of the wall diffusion for non-axisymmetric fields using rotating external fields

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Fridström, R.; Setiadi, A. C.; Brunsell, P. R.; Volpe, F. A.; Drake, J.

    2013-08-01

    A new method for the estimate of the wall diffusion time of non-axisymmetric fields is developed. The method based on rotating external fields and on the measurement of the wall frequency response is developed and tested in EXTRAP T2R. The method allows the experimental estimate of the wall diffusion time for each Fourier harmonic and the estimate of the wall diffusion toroidal asymmetries. The method intrinsically considers the effects of three-dimensional structures and of the shell gaps. Far from the gaps, experimental results are in good agreement with the diffusion time estimated with a simple cylindrical model that assumes a homogeneous wall. The method is also applied with non-standard configurations of the coil array, in order to mimic tokamak-relevant settings with a partial wall coverage and active coils of large toroidal extent. The comparison with the full coverage results shows good agreement if the effects of the relevant sidebands are considered.

  16. Interaction of rotating helical magnetic field with the HIST spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yusuke; Sugahara, Masato; Yamada, Satoshi; Yoshikawa, Tatsuya; Fukumoto, Naoyuki; Nagata, Masayoshi

    2006-10-01

    The physical mechanism of current drive by co-axial helicity injection (CHI) has been experimentally investigated on both spheromak and spherical torus (ST) configurations on the HIST device [1]. It has been observed that the n = 1 kink mode rotates toroidally with a frequency of 10-20 kHz in the ExB direction. It seems that the induced toroidal current by CHI strongly relates with the observed rotating kink mode. On the other hand, it is well known that MHD instabilities can be controlled or even suppressed by an externally applied helical magnetic field in tokamak devices. Therefore, we have started to install two sets of external helical coils in order to produce a rotating helical magnetic field on HIST. Mode structures of the generated rotating helical magnetic field and preliminary experimental results of the interaction of the rotating helical magnetic field with the HIST plasmas will be shown in the conference. [1] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003)

  17. Response of plasma rotation to resonant magnetic perturbations in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Yan, W.; Chen, Z. Y.; Huang, D. W.; Hu, Q. M.; Shi, Y. J.; Ding, Y. H.; Cheng, Z. F.; Yang, Z. J.; Pan, X. M.; Lee, S. G.; Tong, R. H.; Wei, Y. N.; Dong, Y. B.; J-TEXT Team

    2018-03-01

    The response of plasma toroidal rotation to the external resonant magnetic perturbations (RMP) has been investigated in Joint Texas Experimental Tokamak (J-TEXT) ohmic heating plasmas. For the J-TEXT’s plasmas without the application of RMP, the core toroidal rotation is in the counter-current direction while the edge rotation is near zero or slightly in the co-current direction. Both static RMP experiments and rotating RMP experiments have been applied to investigate the plasma toroidal rotation. The core toroidal rotation decreases to lower level with static RMP. At the same time, the edge rotation can spin to more than 20 km s-1 in co-current direction. On the other hand, the core plasma rotation can be slowed down or be accelerated with the rotating RMP. When the rotating RMP frequency is higher than mode frequency, the plasma rotation can be accelerated to the rotating RMP frequency. The plasma confinement is improved with high frequency rotating RMP. The plasma rotation is decelerated to the rotating RMP frequency when the rotating RMP frequency is lower than the mode frequency. The plasma confinement also degrades with low frequency rotating RMP.

  18. Non-axisymmetric equilibrium reconstruction on the Compact Toroidal Hybrid Experiment using external magnetic and soft x-ray inversion radius measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Cianciosa, M.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Ennis, D. A.; Herfindal, J. L.

    2015-11-01

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by the driven plasma current. Studies were performed on the Compact Toroidal Hybrid device using the V3FIT reconstruction code incorporating a set of 50 magnetic diagnostics external to the plasma, combined with information from soft X-ray (SXR) arrays. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the outer boundary of these highly non-axisymmetric plasmas. The inversion radius for sawtoothing plasmas is used to identify the location of the q = 1 surface, and thus infer the current profile near the magnetic axis. With external magnetic diagnostics alone, we find the reconstruction to be insufficiently constrained. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  19. Numerical simulation of plasma response to externally applied resonant magnetic perturbation on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Bicheng, LI; Zhonghe, JIANG; Jian, LV; Xiang, LI; Bo, RAO; Yonghua, DING

    2018-05-01

    Nonlinear magnetohydrodynamic (MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations (RMPs) are performed with NIMROD (non-ideal MHD with rotation, open discussion). Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology, plasma density and rotation profile. The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling, and finally change density profile by particle transport. At the same time, plasma rotation plays an important role during the entire evolution process.

  20. Poloidal and toroidal plasmons and fields of multilayer nanorings

    NASA Astrophysics Data System (ADS)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.

    2017-04-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  1. A note on the application of the Prigogine theorem to rotation of tokamak-plasmas in absence of external torques.

    PubMed

    Sonnino, Giorgio; Cardinali, Alessandro; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György; Zonca, Fulvio

    2014-03-01

    Rotation of tokamak-plasmas, not at the mechanical equilibrium, is investigated using the Prigogine thermodynamic theorem. This theorem establishes that, for systems confined in rectangular boxes, the global motion of the system with barycentric velocity does not contribute to dissipation. This result, suitably applied to toroidally confined plasmas, suggests that the global barycentric rotations of the plasma, in the toroidal and poloidal directions, are pure reversible processes. In case of negligible viscosity and by supposing the validity of the balance equation for the internal forces, we show that the plasma, even not in the mechanical equilibrium, may freely rotate in the toroidal direction with an angular frequency, which may be higher than the neoclassical estimation. In addition, its toroidal rotation may cause the plasma to rotate globally in the poloidal direction at a speed faster than the expression found by the neoclassical theory. The eventual configuration is attained when the toroidal and poloidal angular frequencies reaches the values that minimize dissipation. The physical interpretation able to explain the reason why some layers of plasma may freely rotate in one direction while, at the same time, others may freely rotate in the opposite direction, is also provided. Invariance properties, herein studied, suggest that the dynamic phase equation might be of the second order in time. We then conclude that a deep and exhaustive study of the invariance properties of the dynamical and thermodynamic equations is the most correct and appropriate way for understanding the triggering mechanism leading to intrinsic plasma-rotation in toroidal magnetic configurations.

  2. Spherical harmonic representation of the main geomagnetic field for world charting and investigations of some fundamental problems of physics and geophysics

    NASA Technical Reports Server (NTRS)

    Barraclough, D. R.; Hide, R.; Leaton, B. R.; Lowes, F. J.; Malin, S. R. C.; Wilson, R. L. (Principal Investigator)

    1981-01-01

    Quiet-day data from MAGSAT were examined for effects which might test the validity of Maxwell's equations. Both external and toroidal fields which might represent a violation of the equations appear to exist, well within the associated errors. The external field might be associated with the ring current, and varies of a time-scale of one day or less. Its orientation is parallel to the geomagnetic dipole. The toriodal field can be confused with an orientation in error (in yaw). It the toroidal field really exists, its can be related to either ionospheric currents, or to toroidal fields in the Earth's core in accordance with Einstein's unified field theory, or to both.

  3. Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027

    2005-10-01

    The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes that carry net toroidal flux.« less

  4. Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX

    DOE PAGES

    Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; ...

    2016-07-05

    Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less

  5. Locked-mode avoidance and recovery without external momentum input

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L.; Gates, D. A.; Wolfe, S.; Rice, J. E.; Gao, C.; Wukitch, S.; Greenwald, M.; Hughes, J.; Marmar, E.; Scott, S.

    2014-10-01

    Error-field-induced locked-modes (LMs) have been studied in C-Mod at ITER toroidal fields without NBI fueling and momentum input. The use of ICRH heating in synch with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW and a transition into H-mode when PICRH > 2 MW. The recovery experiments consisted in applying ICRH power during the LM non-rotating phase successfully unlocking the core plasma. The ``induced'' toroidal rotation was in the counter-current direction, restoring the direction and magnitude of the toroidal flow before the LM formation, but contrary to the expected Rice-scaling in the co-current direction. However, the LM occurs near the LOC/SOC transition where rotation reversals are commonly observed. Once PICRH is turned off, the core plasma ``locks'' at later times depending on the evolution of ne and Vt. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT and DE-AC02-09CH11466 at PPPL.

  6. Poloidal and toroidal plasmons and fields of multilayer nanorings

    DOE PAGES

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; ...

    2017-04-17

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit andmore » obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.« less

  7. Interaction of external n = 1 magnetic fields with the sawtooth instability in low- q RFX-mod and DIII-D tokamaks

    DOE PAGES

    Piron, C.; Martin, P.; Bonfiglio, D.; ...

    2016-08-11

    External n = 1 magnetic fields are applied in RFX-mod and DIII-D low safety factor Tokamak plasmas to investigate their interaction with the internal MHD dynamics and in particular with the sawtooth instability. In these experiments the applied magnetic fields cause a reduction of both the sawtooth amplitude and period, leading to an overall stabilizing effect on the oscillations. In RFX-mod sawteeth eventually disappear and are replaced by a stationary m = 1, n = 1 helical equilibrium without an increase in disruptivity. However toroidal rotation is significantly reduced in these plasmas, thus it is likely that the sawtooth mitigationmore » in these experiments is due to the combination of the helically deformed core and the reduced rotation. The former effect is qualitatively well reproduced by nonlinear MHD simulations performed with the PIXIE3D code. The results obtained in these RFX-mod experiments motivated similar ones in DIII-D L-mode diverted Tokamak plasmas at low q 95. These experiments succeeded in reproducing the sawtooth mitigation with the approach developed in RFX-mod. In DIII-D this effect is correlated with a clear increase of the n = 1 plasma response, that indicates an enhancement of the coupling to the marginally stable n = 1 external kink, as simulations with the linear MHD code IPEC suggest. A significant rotation braking in the plasma core is also observed in DIII-D. Finally, numerical calculations of the neoclassical toroidal viscosity (NTV) carried out with PENT identify this torque as a possible contributor for this effect.« less

  8. On the dynamic toroidal multipoles from localized electric current distributions.

    PubMed

    Fernandez-Corbaton, Ivan; Nanz, Stefan; Rockstuhl, Carsten

    2017-08-08

    We analyze the dynamic toroidal multipoles and prove that they do not have an independent physical meaning with respect to their interaction with electromagnetic waves. We analytically show how the split into electric and toroidal parts causes the appearance of non-radiative components in each of the two parts. These non-radiative components, which cancel each other when both parts are summed, preclude the separate determination of each part by means of measurements of the radiation from the source or of its coupling to external electromagnetic waves. In other words, there is no toroidal radiation or independent toroidal electromagnetic coupling. The formal meaning of the toroidal multipoles is clear in our derivations. They are the higher order terms of an expansion of the multipolar coefficients of electric parity with respect to the electromagnetic size of the source.

  9. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    DOEpatents

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  10. Magnetic Polarization Measurements of the Multi-modal Plasma Response to 3D fields in the EAST Tokamak

    DOE PAGES

    Logan, Nikolas; Cui, L.; Wang, Hui -Hui; ...

    2018-04-30

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n=2 fields in the same plasma for which the n=1 responses are well synchronized.more » Neither the maximum radial nor the maximum poloidal field response to n=2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n=1 and n=2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.« less

  11. Magnetic Polarization Measurements of the Multi-modal Plasma Response to 3D fields in the EAST Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Nikolas; Cui, L.; Wang, Hui -Hui

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n=2 fields in the same plasma for which the n=1 responses are well synchronized.more » Neither the maximum radial nor the maximum poloidal field response to n=2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n=1 and n=2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.« less

  12. Tokamak with mechanical compression of toroidal magnetic field

    DOEpatents

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A collapsible toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. A toroidal magnetic field is developed within the toroidal space about the major axis thereof. A toroidal plasma is developed within the toroidal space about the major axis thereof. Pressure is applied to the liquid metal to collapse the liner and reduce the volume of the toroidal space, thereby increasing the toroidal magnetic flux density therein.

  13. Gyrokinetic simulations with external resonant magnetic perturbations: Island torque and nonambipolar transport with plasma rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.

  14. Propagation of a Toroidal Magnetic Cloud through the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Romashets, Eugene; Vandas, Marek

    2003-09-01

    An analytical solution for a potential magnetic field with arbitrary intensity around a toroidal magnetic cloud has been found. The background external field may have a gradient. The solution is used for calculation of magnetic cloud propagation. Obtained velocity profiles show a good agreement with in situ observations near the Earth's orbit.

  15. Tridimensional Thermonuclear Instability in Subignited Plasmas and on the Surface of the Pulsars

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Coppi, B.

    2017-10-01

    Tridimensional modes involving an increase of the electron temperature can be excited as a result of alpha-particle heating in subignited D-T fusion burning plasmas when a nearly time- independent external source of heating is applied. The analyzed modes are shown to emerge from an axisymmetric toroidal configurations and are radially localized around rational magnetic surfaces corresponding to q(r =r0) =m0 /n0 where m0 and n0 are the relevant poloidal and toroidal mode numbers. The radial width of the mode is of the order of the thermal scale distance. The mode has a rather severe damping rate, that has to be overcome by the relevant heating rate. Thus the temperature range to be considered is that where the D-T plasma reactivity undergoes a relatively large increase as a function of temperature. This kind of theory has been applied to the plasmas that are envisioned to be associated with surface of pulsar and be subjects to (spatially) inhomogenous thermonuclear burning. Sponsored in part by the U.S. DoE.

  16. Effect of the magnetic field on coexisting stimulated Raman and Brillouin backscattering of an extraordinary mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, Ashish, E-mail: ashishvyas.optics@gmail.com; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P., E-mail: rpsharma@ces.iitd.ernet.in

    2016-01-15

    This paper presents a model to study the interplay between the stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in the presence of background magnetic field. This formalism is applicable to laser produced plasma as well as to heating mechanism in toroidal system by an extraordinary electromagnetic wave. In the former case, the magnetic field is self-generated, while in the latter case (toroidal plasmas) magnetic field is applied externally. The behavior of one scattering process is explicitly dependent on the coexisting scattering process as well as on the magnetic field. Explicit expressions for the back-reflectivity of scattered beams (SRSmore » and SBS) are presented. It has been demonstrated that due to the magnetic field and coexistence of the scattering processes (SRS and SBS) the back-reflectivity gets modified significantly. Results are also compared with the three wave interaction case (isolated SRS or SBS case)« less

  17. Interaction of external n  =  1 magnetic fields with the sawtooth instability in low-q RFX-mod and DIII-D tokamaks

    NASA Astrophysics Data System (ADS)

    Piron, C.; Martin, P.; Bonfiglio, D.; Hanson, J.; Logan, N. C.; Paz-Soldan, C.; Piovesan, P.; Turco, F.; Bialek, J.; Franz, P.; Jackson, G.; Lanctot, M. J.; Navratil, G. A.; Okabayashi, M.; Strait, E.; Terranova, D.; Turnbull, A.

    2016-10-01

    External n  =  1 magnetic fields are applied in RFX-mod and DIII-D low safety factor Tokamak plasmas to investigate their interaction with the internal MHD dynamics and in particular with the sawtooth instability. In these experiments the applied magnetic fields cause a reduction of both the sawtooth amplitude and period, leading to an overall stabilizing effect on the oscillations. In RFX-mod sawteeth eventually disappear and are replaced by a stationary m  =  1, n  =  1 helical equilibrium without an increase in disruptivity. However toroidal rotation is significantly reduced in these plasmas, thus it is likely that the sawtooth mitigation in these experiments is due to the combination of the helically deformed core and the reduced rotation. The former effect is qualitatively well reproduced by nonlinear MHD simulations performed with the PIXIE3D code. The results obtained in these RFX-mod experiments motivated similar ones in DIII-D L-mode diverted Tokamak plasmas at low q 95. These experiments succeeded in reproducing the sawtooth mitigation with the approach developed in RFX-mod. In DIII-D this effect is correlated with a clear increase of the n  =  1 plasma response, that indicates an enhancement of the coupling to the marginally stable n  =  1 external kink, as simulations with the linear MHD code IPEC suggest. A significant rotation braking in the plasma core is also observed in DIII-D. Numerical calculations of the neoclassical toroidal viscosity (NTV) carried out with PENT identify this torque as a possible contributor for this effect.

  18. High-beta spherical tokamak startup in TS-4 merging experiment by use of toroidal field ramp-up

    NASA Astrophysics Data System (ADS)

    Kaminou, Yasuhiro; , Toru, II; Kato, Joji; Inomoto, Michiaki; Ono, Yasushi; TS Group Team; National InstituteFusion Science Collaboration

    2014-10-01

    We demonstrated the formation method of an ultrahigh-beta spherical tokamak by use of a field-reversed configuration and a spheromak in TS-4 device (R ~ 0.5 m, A ~ 1.5, Ip ~ 30-100 kA, B ~ 100 mT). This method is composed of the following steps: 1. Two spheromaks are merged together and a high-beta spheromak or FRC is formed by reconnection heating. 2. External toroidal magnetic field is added (current rising time ~50 μs), and spherical tokamak-like configuration is formed. In this way, the ultrahigh-beta ST is formed. The ultrahigh-beta ST formed by FRC has a diamagnetic toroidal field, and it presumed to be in a second-stable state for ballooning stability, and the one formed by spheromak has a weak paramagnetic toroidal magnetic field, while a spheormak has a strong paramagnetic toroidal magnetic field. This diamagnetic current derives from inductive electric field by ramping up the external toroidal magnetic field, and the diamagnetic current sustains high thermal pressure of the ultrahigh-beta spherical tokamak. And the beta of the ultrahigh-beta ST formed by FRC reaches about 50%. To sustain the high-beta state, 0.6 MW neutral beam injection and center solenoid coils are installed to the TS-4 device. In the poster, we report the experimental results of ultrahigh-beta spherical tokamak startup and sustainment by NBI and CS current driving experiment.

  19. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.

    2015-12-15

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used tomore » infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less

  20. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.

    2015-12-01

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.

  1. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    DOE PAGES

    Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...

    2015-12-22

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less

  2. Separation of the Magnetic Field into Parts Produced by Internal and External Sources

    NASA Astrophysics Data System (ADS)

    Lazanja, David

    2005-10-01

    Given the total magnetic field on a toroidal plasma surface, a method for decomposing the field into a part due to internal currents (often the plasma) and a part due to external currents is presented. The decomposition exploits Laplace theory which is valid in the vacuum region between the plasma surface and the chamber walls. The method does not assume toroidal symmetry, and it is partly based on Merkel's 1986 work on vacuum field computations. A change in the plasma shape is produced by the total normal field perturbation on the plasma surface. This method allows a separation of the total normal field perturbation into a part produced by external currents and a part produced by the plasma response.

  3. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Yamada, Masaaki; Furth, Harold P.; Stix, Thomas H.; Todd, Alan M. M.

    1982-01-01

    A method and apparatus for forming a detached, compact toroidally shaped spheromak plasma by an inductive mechanism. A generally spheroidal vacuum vessel (1) houses a toroidally shaped flux ring or core (2) which contains poloidal and toroidal field generating coils. A plasma discharge occurs with the pulsing of the toroidal field coil, and the plasma is caused to expand away from the core (2) and toward the center of the vacuum vessel (1). When the plasma is in an expanded state, a portion of it is pinched off in order to form a separate, detached spheromak plasma configuration. The detached plasma is supported by a magnetic field generated by externally arranged equilibrium field coils (5).

  4. Shuttleless toroid winder

    DOEpatents

    Lindenmeyer, Carl W.

    1981-01-01

    A lower support receives a toroid at a winding station with the axis of the toroid aligned with a slot in the support. An upper guide member applies an axial force to hold the toroid against the lower support. A pair of movable jaws carried by an indexing mechanism engage the outer surface of the toroid to apply a radial holding force. While the toroid is thus held, a wire is placed axially through the toroid, assisted by a funnel-shaped surface in the upper guide member, and is drawn tight about the toroid by a pair of cooperating draw rollers. When operated in the "full cycle" mode, the operator then actuates a switch which energizes a power drive to release the axial clamp and to drive the indexing mechanism and the jaws to rotate the toroid about its axis. At the same time, the wire is ejected from the draw rollers beneath the toroid so that the operator may grasp it to form another loop. When the toroid is fully indexed, the jaws release it, and the upper guide member is returned to clamp the toroid axially while the indexing mechanism is returned to its starting position. The apparatus may also be operated in a "momentary contact" mode in which the mechanism is driven only for the time a switch is actuated.

  5. Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasilov, Sergei V.; Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov; Kernbichler, Winfried

    2014-09-15

    The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such thatmore » the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.« less

  6. Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity.

    PubMed

    Zhu, W; Sabbagh, S A; Bell, R E; Bialek, J M; Bell, M G; LeBlanc, B P; Kaye, S M; Levinton, F M; Menard, J E; Shaing, K C; Sontag, A C; Yuh, H

    2006-06-09

    Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included.

  7. Bonding and magnetic response properties of several toroid structures. Insights of the role of Ni2S2 as a building block from relativistic density functional theory calculations.

    PubMed

    Muñoz-Castro, Alvaro

    2011-10-06

    Relativistic density functional calculations were carried out on several nickel toroid mercaptides of the general formula [Ni(μ-SR)(2)](n), with the aim to characterize and analyze their stability and magnetic response properties, in order to gain more insights into their stabilization and size-dependent behavior. The Ni-ligand interaction has been studied by means projected density of states and energy decomposition analysis, which denotes its stabilizing character. The graphical representation of the response to an external magnetic field is applied for the very first time taking into account the spin-orbit term. This map allows one to clearly characterize the magnetic behavior inside and in the closeness of the toroid structure showing the prescence of paratropic ring currents inside the Ni(n) ring, and by contrast, diatropic currents confined in each Ni(2)S(2) motif denoting an aromatic behavior (in terms of magnetic criteria). The calculated data suggests that the Ni(2)S(2) moiety can be regarded as a stable constructing block, which can afford several toroid structures of different nuclearities in agreement with that reported in the experimental literature. In addition, the effects of the relativistic treatment over the magnetic response properties on these lighter compounds are denoted by comparing nonrelativistic, scalar relativistic, and scalar plus spin-orbit relativistic treatments, showing their acting, although nonpronunced, role.

  8. Magnetic polarization measurements of the multi-modal plasma response to 3D fields in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Cui, L.; Wang, H.; Sun, Y.; Gu, S.; Li, G.; Nazikian, R.; Paz-Soldan, C.

    2018-07-01

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n  =  2 fields in the same plasma for which the n  =  1 responses are well synchronized. Neither the maximum radial nor the maximum poloidal field response to n  =  2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n  =  1 and n  =  2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.

  9. Thermal and magnetic properties of electron gas in toroidal quantum dot

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. A.; Hayrapetyan, D. B.; Kazaryan, E. M.; Sarkisyan, H. A.

    2018-07-01

    One-electron states in a toroidal quantum dot in the presence of an external magnetic field have been considered. The magnetic field operator and the Schrodinger equation have been written in toroidal coordinates. The dependence of one-electron energy spectrum and wave function on the geometrical parameters of a toroidal quantum dot and magnetic field strength have been studied. The energy levels are employed to calculate the canonical partition function, which in its turn is used to obtain mean energy, heat capacity, entropy, magnetization, and susceptibility of noninteracting electron gas. The possibility to control the thermodynamic and magnetic properties of the noninteracting electron gas via changing the geometric parameters of the QD, magnetic field, and temperature, was demonstrated.

  10. Dielectric tensor elements for the description of waves in rotating inhomogeneous magnetized plasma spheroids

    NASA Astrophysics Data System (ADS)

    Abdoli-Arani, A.; Ramezani-Arani, R.

    2012-11-01

    The dielectric permittivity tensor elements of a rotating cold collisionless plasma spheroid in an external magnetic field with toroidal and axial components are obtained. The effects of inhomogeneity in the densities of charged particles and the initial toroidal velocity on the dielectric permittivity tensor and field equations are investigated. The field components in terms of their toroidal components are calculated and it is shown that the toroidal components of the electric and magnetic fields are coupled by two differential equations. The influence of thermal and collisional effects on the dielectric tensor and field equations in the rotating plasma spheroid are also investigated. In the limiting spherical case, the dielectric tensor of a stationary magnetized collisionless cold plasma sphere is presented.

  11. STELLAR DYNAMO MODELS WITH PROMINENT SURFACE TOROIDAL FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonanno, Alfio

    2016-12-20

    Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy inmore » low-mass fast-rotating stars can be naturally explained with an underlying α Ω mechanism.« less

  12. Overview, Progress, and Plans for the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Allen, N. R.; Ennis, D. A.; Hanson, J. D.; Howell, E. C.; Johnson, C. A.; Knowlton, S. F.; Kring, J. D.; Ma, X.; Maurer, D. A.; Ross, K. G.; Schmitt, J. C.; Traverso, P. J.; Williamson, E. N.

    2017-10-01

    The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | <= 0.7 T) which generates highly configurable confining magnetic fields solely with external coils but typically uses up to 80 kA of plasma current for heating and disruption studies. The main goals of the CTH experiment are to study disruptive behavior as a function of applied 3D magnetic shaping, and to test and advance the V3FIT reconstruction code and NIMROD modeling of CTH. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased with no observed threshold for avoidance. Low-q operations (1.1 < q(a) < 2.0) are routine, with disruptions ceasing if the vacuum transform is raised above 0.07. Sawteeth are observed in CTH and have a similar phenomenology to tokamak sawteeth despite employing a 3D confining field. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges. Internal SXR diagnostics, in conjunction with external magnetics, extend the range of reconstruction accuracy into the plasma core. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  13. Influence of bending stress on flux distribution in toroidal transducers

    NASA Astrophysics Data System (ADS)

    Goktepe, M.; Meydan, T.

    1994-05-01

    Amorphous transducers consisting of toroidally wound amorphous ribbon with a magnetising winding and search coil windings have been investigated. The application of displacement to the toroid gives a linear search coil voltage against the applied force characteristics. The position of the search coils with respect to the applied force has been studied and it is shown that the effect of applied force is localised. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.

  14. Performance analysis of Rogowski coils and the measurement of the total toroidal current in the ITER machine

    NASA Astrophysics Data System (ADS)

    Quercia, A.; Albanese, R.; Fresa, R.; Minucci, S.; Arshad, S.; Vayakis, G.

    2017-12-01

    The paper carries out a comprehensive study of the performances of Rogowski coils. It describes methodologies that were developed in order to assess the capabilities of the Continuous External Rogowski (CER), which measures the total toroidal current in the ITER machine. Even though the paper mainly considers the CER, the contents are general and relevant to any Rogowski sensor. The CER consists of two concentric helical coils which are wound along a complex closed path. Modelling and computational activities were performed to quantify the measurement errors, taking detailed account of the ITER environment. The geometrical complexity of the sensor is accurately accounted for and the standard model which provides the classical expression to compute the flux linkage of Rogowski sensors is quantitatively validated. Then, in order to take into account the non-ideality of the winding, a generalized expression, formally analogue to the classical one, is presented. Models to determine the worst case and the statistical measurement accuracies are hence provided. The following sources of error are considered: effect of the joints, disturbances due to external sources of field (the currents flowing in the poloidal field coils and the ferromagnetic inserts of ITER), deviations from ideal geometry, toroidal field variations, calibration, noise and integration drift. The proposed methods are applied to the measurement error of the CER, in particular in its high and low operating ranges, as prescribed by the ITER system design description documents, and during transients, which highlight the large time constant related to the shielding of the vacuum vessel. The analyses presented in the paper show that the design of the CER diagnostic is capable of achieving the requisite performance as needed for the operation of the ITER machine.

  15. Tridimensional Thermonuclear Instability in Subignited Plasmas and on the Surface of the Pulsars

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Coppi, B.

    2016-10-01

    Tridimensional modes involving an increase of the electron temperature can be excited as a result of α-particle heating in subignited D-T fusion burning plasmas when a nearly time- independent external source of heating is applied. The analyzed modes are shown to emerge from an axisymmetric toroidal configurations and are radially localized around rational magnetic surfaces corresponding to q(r =r0) =m0 /n0 where m0 and n0 are the relevant poloidal and toroidal mode numbers. The radial width of the mode is of the order of the thermal scale distances δT =D⊥e th /D∥e th 1/4 (R0 /n0) 1/2(dlnq/dr)0-1/2. The mode has a rather severe damping rate, that has to be overcome by the relevant heating rate. Thus the temperature range to be considered is that where the D-T plasma reactivity undergoes a relatively large increase as a function of temperature. This kind of theory has been applied to the plasmas that are envisioned to be associated with surface of pulsar and be subjects to (spatially) inhomogenous thermonuclear burning. Sponsored in part by the US DOE.

  16. Investigation of intrinsic toroidal rotation scaling in KSTAR

    NASA Astrophysics Data System (ADS)

    Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.

    2017-07-01

    The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot

    Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. Themore » resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.« less

  18. Gyrokinetic Simulations with External Resonant Magnetic Perturbations: Island Torque and Nonambipolar Transport with Rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic perturbations (RMPs) have been added to the δf gyrokinetic code GYRO. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr and the corresponding plasma torque (density) R[jrBθ/c], induced by islands that break the toroidal symmetry of a tokamak. This extends previous GYRO simulations for the transport of toroidal angular momentum (TAM) [1,2]. The focus is on full torus radial slice electrostatic simulations of induced q=m/n=6/3 islands with widths 5% of the minor radius. The island torque scales with the radial electric field Er the island width w, and the intensity I of the high-n micro-turbulence, as wErI^1/2. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that there is a small co-directed magnetic acceleration to the small diamagnetic co-rotation corresponding to the zero Er which can be called the residual stress [2] from an externally induced island. Finite-beta GYRO simulations of a core radial slice demonstrate island unlocking and the RMP screening. 6pt[1] R.E. Waltz, et al., Phys. Plasmas 14, 122507 (2007). [2] R.E. Waltz, et al., Phys. Plasmas 18, 042504 (2011).

  19. Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.

    2018-01-01

    Aims: Twisted magnetic flux ropes (MFRs) in the solar atmosphere have been researched extensively because of their close connection to many solar eruptive phenomena, such as flares, filaments, and coronal mass ejections (CMEs). In this work, we performed a set of 3D isothermal magnetohydrodynamic (MHD) numerical simulations, which use analytical twisted MFR models and study dynamical processes parametrically inside and around current-carrying twisted loops. We aim to generalize earlier findings by applying finite plasma β conditions. Methods: Inside the MFR, approximate internal equilibrium is obtained by pressure from gas and toroidal magnetic fields to maintain balance with the poloidal magnetic field. We selected parameter values to isolate best either internal or external kink instability before studying complex evolutions with mixed characteristics. We studied kink instabilities and magnetic reconnection in MFRs with low and high twists. Results: The curvature of MFRs is responsible for a tire tube force due to its internal plasma pressure, which tends to expand the MFR. The curvature effect of toroidal field inside the MFR leads to a downward movement toward the photosphere. We obtain an approximate internal equilibrium using the opposing characteristics of these two forces. A typical external kink instability totally dominates the evolution of MFR with infinite twist turns. Because of line-tied conditions and the curvature, the central MFR region loses its external equilibrium and erupts outward. We emphasize the possible role of two different kink instabilities during the MFR evolution: internal and external kink. The external kink is due to the violation of the Kruskal-Shafranov condition, while the internal kink requires a safety factor q = 1 surface inside the MFR. We show that in mixed scenarios, where both instabilities compete, complex evolutions occur owing to reconnections around and within the MFR. The S-shaped structures in current distributions appear naturally without invoking flux emergence. Magnetic reconfigurations common to eruptive MFRs and flare loop systems are found in our simulations.

  20. Sealing intersecting vane machines

    DOEpatents

    Martin, Jedd N.; Chomyszak, Stephen M.

    2005-06-07

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.

  1. Sealing intersecting vane machines

    DOEpatents

    Martin, Jedd N [Providence, RI; Chomyszak, Stephen M [Attleboro, MA

    2007-06-05

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.

  2. Ion flow measurements during the rotating kink behavior of the central column in the HIST device

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Yoshikawa, T.; Hashimoto, S.; Nishioka, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2007-11-01

    Plasma flow is essentially driven in self-organization and magnetic reconnection process of compact spherical torus (ST) and spheromak in the helicity-driven systems. For example, when reversing the external toroidal field of ST, the direction not only of the plasma current but also of the toroidal ion flow is self-reversed during the formation of the flipped ST relaxed states. Mach probe measurement shows that the velocity of the ion flow reversed after the flip increases to about 20 km/s. We have been newly developing an ion Doppler spectrometer (IDS) system using a compact 16 or 64 channel photomultiplier tube (PMT) in order to measure the spatial profile of ion temperature and rotation velocity in the HIST device. The IDS system consists of a light collection system including optical fibers, 1 m-spectrometer and the PMT detector. The optical fibers covered with glass tubes are inserted into the plasma. The glass tubes can be rotated in the poloidal and the toroidal directions. The new IDS system will be applied to observations of ion temperature and plasma rotation in the flipped ST formation and in the MHD control of kinking behaviors of the central column by using the rotating magnetic field (RMF). Preliminary IDS results will be compared to those from Mach probe measurements in space.

  3. Operation in low edge safety factor regime and passive disruption avoidance due to stellarator rotational transform in the Compact Toroidal Hybrid

    NASA Astrophysics Data System (ADS)

    Pandya, M. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.

    2015-11-01

    Low edge safety factor operation at a value less than two (q (a) = 1 /ttot (a) < 2) is routine on the Compact Toroidal Hybrid device. Presently, the operational space of this current carrying stellarator extends down to q (a) = 1 . 2 without significant n = 1 kink mode activity after the initial plasma current rise of the discharge. The disruption dynamics of these low q (a) plasmas depend upon the fraction of rotational transform produced by external stellarator coils to that generated by the plasma current. We observe that when about 10% of the total rotational transform is supplied by the stellarator coils, low q (a) disruptions are passively suppressed and avoided even though q (a) < 2 . When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, mode numbers of m / n = 3 / 2 and 4 / 3 observed by external magnetic sensors, and m / n = 1 / 1 activity observed by core soft x-ray emissivity measurements. Even though q (a) passes through and becomes much less than two, external n = 1 kink mode activity does not appear to play a significant role in the observed disruption phenomenology. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  4. Overview of RWM Stabilization and Other Experiments With New Internal Coils in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Jackson, G. L.; Evans, T. E.; La Haye, R. J.; Kellman, A. G.; Schaffer, M. J.; Scoville, J. T.; Strait, E. J.; Szymanski, D. D.; Bialek, J.; Garofalo, A. M.; Navratil, G. A.; Reimerdes, H.; Edgell, D. H.; Okabayashi, M.; Hatcher, R.

    2003-10-01

    A set of 12 single-turn internal coils (I-coils) has been installed and operated in the DIII-D tokamak. The primary purpose of these coils (A_coil = 1.1 m^2, I ≤,7 kA, d_wall = 1.47 cm) is to improve stabilization of the n=1 resistive wall mode (RWM), compared to the existing external C-coil set, especially for high βN advanced tokamak discharges in low toroidal rotation plasmas. The versatility of the I-coil set and its associated power systems allow for a variety of experiments: fast feedback stabilization of RWMs, dc error field correction, edge stochastic fields, n=1,2, or 3 toroidal magnetic braking, and MHD spectroscopy (0-60 Hz). The resonant field amplification from an applied n=1 field was found to be completely suppressed, demonstrating successfully the controllability with the new system. With the I-coils, the high βN regime (above the no wall limit) has been explored both with RWM feedback and with dynamic error field correction. Experiments on edge ergodization will also be discussed.

  5. Toroidal constant-tension superconducting magnetic energy storage units

    DOEpatents

    Herring, J. Stephen

    1992-01-01

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet.

  6. Toroidal constant-tension superconducting magnetic energy storage units

    DOEpatents

    Herring, J.S.

    1992-11-03

    A superconducting magnetic energy storage unit is provided in which the magnet is wound in a toroidal fashion such that the magnetic field produced is contained only within the bore of the magnet, and thus producing a very low external field. The superconducting magnet includes a coolant channel disposed through the wire. The bore of the magnet comprises a storage volume in which cryogenic coolant is stored, and this volume supplies the coolant to be delivered to the coolant channel in the magnet. 6 figs.

  7. Decomposition of Magnetic Field Boundary Conditions into Parts Produced by Internal and External Sources

    NASA Astrophysics Data System (ADS)

    Lazanja, David; Boozer, Allen

    2006-10-01

    Given the total magnetic field on a toroidal plasma surface, a method for decomposing the field into a part due to internal currents (often the plasma) and a part due to external currents is presented. The method exploits Laplace theory which is valid in the vacuum region between the plasma surface and the chamber walls. The method is developed for the full three dimensional case which is necessary for studying stellarator plasma configurations. A change in the plasma shape is produced by the total normal field perturbation on the plasma surface. This method allows a separation of the total normal field perturbation into a part produced by external currents and a part produced by the plasma response. There are immediate applications to coil design. The computational procedure is based on Merkel's 1986 work on vacuum field computations. Several test cases are presented for toroidal surfaces which verify the method and computational robustness of the code.

  8. Demountable externally anchored low-stress magnet system and related method

    DOEpatents

    Powell, James; Hsieh, Shih-Yung; Lehner, John R.

    1981-01-01

    Toroidal field coils are interlaced with other toroidal structures and are operated under supercooled conditions. To facilitate demounting the toroidal field coils, which are supercooled, they are made in the form of connected segments constituting coils of polygonal form. The segments may be rectilinear in form, but some may also be U-shaped or L-shaped. The segments are detachable from one another and are supported in load relieving manner. Power devices are used to displace the segments to facilitate removal of the coils from the aforesaid toroidal structures and to provide for the accommodation of dimensional changes and stresses due to thermal and magnetic conditions. The segments are formed of spaced parallel conductive slabs with the slabs of one segment being interdigitated with the slabs of the adjacent segment. The interdigitated slabs may be soldered together or slidingly engaged. The slabs are shaped to accommodate superconductors and to provide passages for a cooling medium. The slabs are moreover separated by insulator slabs with which they form a coil structure which is jacketed.

  9. Measurements of the toroidal torque balance of error field penetration locked modes

    DOE PAGES

    Shiraki, Daisuke; Paz-Soldan, Carlos; Hanson, Jeremy M.; ...

    2015-01-05

    Here, detailed measurements from the DIII-D tokamak of the toroidal dynamics of error field penetration locked modes under the influence of slowly evolving external fields, enable study of the toroidal torques on the mode, including interaction with the intrinsic error field. The error field in these low density Ohmic discharges is well known based on the mode penetration threshold, allowing resonant and non-resonant torque effects to be distinguished. These m/n = 2/1 locked modes are found to be well described by a toroidal torque balance between the resonant interaction with n = 1 error fields, and a viscous torque inmore » the electron diamagnetic drift direction which is observed to scale as the square of the perturbed field due to the island. Fitting to this empirical torque balance allows a time-resolved measurement of the intrinsic error field of the device, providing evidence for a time-dependent error field in DIII-D due to ramping of the Ohmic coil current.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, H.; Nunami, M.; Department of Fusion Science, SOKENDAI

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novelmore » gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.« less

  11. Developing a compact toroid injector in the ThermoElectric driven Liquid metal plasma facing Structures device

    NASA Astrophysics Data System (ADS)

    Christenson, Michael; Szott, Matthew; Kalathiparambil, Kishor; Sovinec, Carl; Ruzic, David

    2016-10-01

    The ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) device at the University of Illinois is a theta-pinched, plasma-material interaction test stand used to simulate extreme events in the edge and divertor regions of a tokamak plasma. Previous measurements of the electron and ion temperatures have shown that the isotropic heat load on target ranges between 0.1 and 0.2 MJ m-2 over a pulse lasting 0.2 ms. While this compares well to the heat loads from Type 1 ELMs in larger toroidal devices, it is still much less than the energy deposition from Type 1 ELMs expected in ITER, which are in excess of 1 MJ m-2. To this end, a compact toroid (CT) injector has been proposed as a modification to the existing TELS device. By using an externally applied bias field to force reconnection at the muzzle of the coaxial plasma accelerator source that drives ionization, NIMROD MHD simulations have shown a peak magnetic flux of 3.5 mWb is reached 0.025 ms into the pulse - more than sufficient to form a CT. Early calorimetry and magnetic field measurements indicate that a new plasma structure has been formed in the magnetized coaxial plasma source. This work presents the current results of CT generation with respect to the bias field strength as well as the coaxial source geometry. DOE OFES DE-SC0008587, DE-SC0008658, DE-FG02-99ER54515.

  12. Characterization of peeling modes in a low aspect ratio tokamak

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Thome, K. E.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Redd, A. J.; Schlossberg, D. J.

    2014-11-01

    Peeling modes are observed at the plasma edge in the Pegasus Toroidal Experiment under conditions of high edge current density (Jedge ˜ 0.1 MA m-2) and low magnetic field (B ˜ 0.1 T) present at near-unity aspect ratio. Their macroscopic properties are measured using external Mirnov coil arrays, Langmuir probes and high-speed visible imaging. The modest edge parameters and short pulse lengths of Pegasus discharges permit direct measurement of the internal magnetic field structure with an insertable array of Hall-effect sensors, providing the current profile and its temporal evolution. Peeling modes generate coherent, edge-localized electromagnetic activity with low toroidal mode numbers n ⩽ 3 and high poloidal mode numbers, in agreement with theoretical expectations of a low-n external kink structure. Coherent MHD fluctuation amplitudes are found to be strongly dependent on the experimentally measured Jedge/B peeling instability drive, consistent with theory. Peeling modes nonlinearly generate ELM-like, field-aligned filamentary structures that detach from the edge and propagate radially outward. The KFIT equilibrium code is extended with an Akima spline profile parameterization and an improved model for induced toroidal wall current estimation to obtain a reconstruction during peeling activity with its current profile constrained by internal Hall measurements. It is used to test the analytic peeling stability criterion and numerically evaluate ideal MHD stability. Both approaches predict instability, in agreement with experiment, with the latter identifying an unstable external kink.

  13. Spheroidal and Toroidal Modes for Tidal Kinetic Energy in Spherical Elastic Bodies

    NASA Astrophysics Data System (ADS)

    Getino, Juan; Escapa, Alberto; Garcia, Amelia

    In this work, the total expression of the perturbation of the kinetic energy of rotation, when an elastic spherical solid is deformed due to the gravitational attraction of external bodies, is studied. We do not limit this study to any order in the expansion of the perturbing potential in spherical harmonics, and we consider in the expression of the displacement vector the complete solution, composed by spheroidal and toroidal modes. We show in a very simple way, by using the properties of the Legendre polynomials, that the toroidal modes have no contribution at all under the hypothesis of spherical body, and, among the spheroidal modes, only the term n=2 acts, therefore the perturbation produced by the spheroidal component for n=2 gathers the total perturbation.

  14. Inflatable nested toroid structure

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)

    2011-01-01

    An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.

  15. Intersecting vane machines

    DOEpatents

    Bailey, H. Sterling; Chomyszak, Stephen M.

    2007-01-16

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through meshing surfaces without the need for external gearing by modifying the function of one or the other of the rotors from that of "fluid moving" to that of "valving" thereby reducing the pressure loads and associated inefficiencies at the interface of the meshing surfaces. The inventions described herein relate to these improvements.

  16. Study of toroidal flow generation by ion cyclotron range of frequency minority heating in the Alcator C-Mod plasma

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Itoh, K.; Zheng, L. J.; Van Dam, J. W.; Bonoli, P.; Rice, J. E.; Fiore, C. L.; Gao, C.; Fukuyama, A.

    2016-01-01

    The averaged toroidal flow of energetic minority ions during ICRF (ion cyclotron range of frequencies) heating is investigated in the Alcator C-Mod plasma by applying the GNET code, which can solve the drift kinetic equation with complicated orbits of accelerated energetic particles. It is found that a co-directional toroidal flow of the minority ions is generated in the region outside of the resonance location, and that the toroidal velocity reaches more than 40% of the central ion thermal velocity (Vtor ˜ 300 km/s with PICRF ˜ 2 MW). When we shift the resonance location to the outside of |r /a |˜0.5 , the toroidal flow immediately inside of the resonance location is reduced to 0 or changes to the opposite direction, and the toroidal velocity shear is enhanced at r/a ˜ 0.5. A radial diffusion equation for toroidal flow is solved by assuming a torque profile for the minority ion mean flow, and good agreements with experimental radial toroidal flow profiles are obtained. This suggests that the ICRF driven minority ion flow is related to the experimentally observed toroidal rotation during ICRF heating in the Alcator C-Mod plasma.

  17. Modeling of Feedback Stabilization of External MHD Modes in Toroidal Geometry

    NASA Astrophysics Data System (ADS)

    Chu, M. S.; Chance, M. S.; Okabayashi, M.

    2000-10-01

    The intelligent shell feedback scheme(C.M. Bishop, Plasma Phys. Contr. Nucl. Fusion 31), 1179 (1989). seeks to utilize external coils to suppress the unstable MHD modes slowed down by the resistive shell. We present a new formulation and numerical results of the interaction between the plasma and its outside vacuum region, with complete plasma response and the inclusion of a resistive vessel in general toroidal geometry. This is achieved by using the Green's function technique, which is a generalization of that previously used for the VACUUM(M.S. Chance, Phys. Plasmas 4), 2161 (1997). code and coupled with the ideal MHD code GATO. The effectiveness of different realizations of the intelligent shell concept is gauged by their ability to minimize the available free energy to drive the MHD mode. Computations indicate poloidal coverage of 30% of the total resistive wall surface area and 6 or 7 segments of ``intelligent coil'' arrays superimposed on the resistive wall will allow recovery of up to 90% the effectiveness of the ideal shell in stabilizing the ideal external kink.

  18. NIMROD simulations and physics assessment of possible designs for a next generation Steady Inductive Helicity Injection HIT device

    NASA Astrophysics Data System (ADS)

    Penna, James; Morgan, Kyle; Grubb, Isaac; Jarboe, Thomas

    2017-10-01

    The Helicity Injected Torus - Steady Inductive 3 (HIT-SI3) experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI) using discrete injectors that inject magnetic helicity via a non-axisymmetric perturbation and drive toroidally symmetric current. Newer designs for larger SIHI-driven spheromaks incorporate a set of injectors connected to a single external manifold to allow more freedom for the toroidal structure of the applied perturbation. Simulations have been carried out using the NIMROD code to assess the effectiveness of various imposed mode structures and injector schema in driving current via Imposed Dynamo Current Drive (IDCD). The results are presented here for varying flux conserver shapes on a device approximately 1.5 times larger than the current HIT-SI3 experiment. The imposed mode structures and spectra of simulated spheromaks are analyzed in order to examine magnetic structure and stability and determine an optimal regime for IDCD sustainment in a large device. The development of scaling laws for manifold operation is also presented, and simulation results are analyzed and assessed as part of the development path for the large scale device.

  19. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  20. Rotation profile flattening and toroidal flow shear reversal due to the coupling of magnetic islands in tokamaks

    DOE PAGES

    Tobias, B.; Chen, M.; Classen, I. G. J.; ...

    2016-04-15

    The electromagnetic coupling of helical modes, including those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. Furthermore, with increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lockmore » to each other without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q95, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. Additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor-a key issue for ITER. Published by AIP Publishing.« less

  1. Rotation profile flattening and toroidal flow shear reversal due to the coupling of magnetic islands in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobias, B.; Grierson, B. A.; Okabayashi, M.

    2016-05-15

    The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each othermore » without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q{sub 95}, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor—a key issue for ITER.« less

  2. Three-dimensional drift kinetic response of high- β plasmas in the DIII-D tokamak

    DOE PAGES

    Wang, Zhirui R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-04-07

    A quantitative interpretation of the experimentally measured high pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon limit, is achieved. The key to success is the self-consistent inclusion of the drift kinetic resonance effects in numerical modeling using the MARS-K code. This resolves an outstanding issue of ideal magneto-hydrodynamic model, which signi cantly over-predicts the plasma induced field ampli fication near the no-wall limit, as compared to experiments. The self-consistent drift kinetic model leads to quantitative agreement not only for the measured 3D field amplitude and toroidal phase, but also for the measured internalmore » 3D displacement of the plasma.« less

  3. Role of external torque in the formation of ion thermal internal transport barriers

    NASA Astrophysics Data System (ADS)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2012-04-01

    We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.

  4. Reduction of toroidal rotation by fast wave power in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassie, J.S. de; Baker, D.R.; Burrell, K.H.

    1997-04-01

    The application of fast wave power in DIII-D has proven effective for both electron heating and current drive. Since the last RIF Conference FW power has been applied to advanced confinement regimes in DIII-D; negative central shear (NCS), VH- and H-modes, high {beta}{sub p}, and high-{ell}i. Typically these regimes show enhanced confinement of toroidal momentum exhibited by increased toroidal rotation velocity. Indeed, layers of large shear in toroidal velocity are associated with transport barriers. A rather common occurrence in these experiments is that the toroidal rotation velocity is decreased when the FW power is turned on, to lowest order independentmore » of whether the antennas are phased for co or counter current drive. At present all the data is for co-injected beams. The central toroidal rotation can be reduced to 1/2 of the non-FW level. Here the authors describe the effect in NCS discharges with co-beam injection.« less

  5. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2014-09-01

    This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  6. Low edge safety factor operation and passive disruption avoidance in current carrying plasmas by the addition of stellarator rotational transform

    NASA Astrophysics Data System (ADS)

    Pandya, M. D.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Maurer, D. A.; Roberds, N. A.; Traverso, P. J.

    2015-11-01

    Low edge safety factor operation at a value less than two ( q (a )=1 /ι̷tot(a )<2 ) is routine on the Compact Toroidal Hybrid device with the addition of sufficient external rotational transform. Presently, the operational space of this current carrying stellarator extends down to q (a )=1.2 without significant n = 1 kink mode activity after the initial plasma current rise phase of the discharge. The disruption dynamics of these low edge safety factor plasmas depend upon the fraction of helical field rotational transform from external stellarator coils to that generated by the plasma current. We observe that with approximately 10% of the total rotational transform supplied by the stellarator coils, low edge q disruptions are passively suppressed and avoided even though q(a) < 2. When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, helical mode numbers of m /n =3 /2 and 4/3 observed on external magnetic sensors and m /n =1 /1 activity observed on core soft x-ray emissivity measurements. Even though the edge safety factor passes through and becomes much less than q(a) < 2, external n = 1 kink mode activity does not appear to play a significant role in the disruption phenomenology observed.

  7. Validation of conducting wall models using magnetic measurements

    DOE PAGES

    Hanson, Jeremy M.; Bialek, James M.; Turco, Francesca; ...

    2016-08-16

    The impact of conducting wall eddy currents on perturbed magnetic field measurements is a key issue for understanding the measurement and control of long-wavelength MHD stability in tokamak devices. As plasma response models have growth in sophistication, the need to understand and resolve small changes in these measurements has become more important, motivating increased fidelity in simulations of externally applied fields and the wall eddy current response. In this manuscript, we describe thorough validation studies of the wall models in the MARS-F and VALEN stability codes, using coil–sensor vacuum coupling measurements from the DIII-D tokamak. The valen formulation treats conductingmore » structures with arbitrary threedimensional geometries, while mars-f uses an axisymmetric wall model and a spectral decomposition of the problem geometry with a fixed toroidal harmonic n. The vacuum coupling measurements have a strong sensitivity to wall eddy currents induced by timechanging coil currents, owing to the close proximities of both the sensors and coils to the wall. Measurements from individual coil and sensor channels are directly compared with valen predictions. It is found that straightforward improvements to the valen model, such as refining the wall mesh and simulating the vertical extent of the DIII-D poloidal field sensors, lead to good agreement with the experimental measurements. In addition, couplings to multi-coil, n = 1 toroidal mode perturbations are calculated from the measurements and compared with predictions from both codes. Lastly, the toroidal mode comparisons favor the fully three-dimensional simulation approach, likely because this approach naturally treats n > 1 sidebands generated by the coils and wall eddy currents, as well as the n = 1 fundamental.« less

  8. Validation of conducting wall models using magnetic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeremy M.; Bialek, James M.; Turco, Francesca

    The impact of conducting wall eddy currents on perturbed magnetic field measurements is a key issue for understanding the measurement and control of long-wavelength MHD stability in tokamak devices. As plasma response models have growth in sophistication, the need to understand and resolve small changes in these measurements has become more important, motivating increased fidelity in simulations of externally applied fields and the wall eddy current response. In this manuscript, we describe thorough validation studies of the wall models in the MARS-F and VALEN stability codes, using coil–sensor vacuum coupling measurements from the DIII-D tokamak. The valen formulation treats conductingmore » structures with arbitrary threedimensional geometries, while mars-f uses an axisymmetric wall model and a spectral decomposition of the problem geometry with a fixed toroidal harmonic n. The vacuum coupling measurements have a strong sensitivity to wall eddy currents induced by timechanging coil currents, owing to the close proximities of both the sensors and coils to the wall. Measurements from individual coil and sensor channels are directly compared with valen predictions. It is found that straightforward improvements to the valen model, such as refining the wall mesh and simulating the vertical extent of the DIII-D poloidal field sensors, lead to good agreement with the experimental measurements. In addition, couplings to multi-coil, n = 1 toroidal mode perturbations are calculated from the measurements and compared with predictions from both codes. Lastly, the toroidal mode comparisons favor the fully three-dimensional simulation approach, likely because this approach naturally treats n > 1 sidebands generated by the coils and wall eddy currents, as well as the n = 1 fundamental.« less

  9. A two-dimensional statistical framework connecting thermodynamic profiles with filaments in the scrape off layer and application to experiments

    NASA Astrophysics Data System (ADS)

    Militello, F.; Farley, T.; Mukhi, K.; Walkden, N.; Omotani, J. T.

    2018-05-01

    A statistical framework was introduced in Militello and Omotani [Nucl. Fusion 56, 104004 (2016)] to correlate the dynamics and statistics of L-mode and inter-ELM plasma filaments with the radial profiles of thermodynamic quantities they generate in the Scrape Off Layer. This paper extends the framework to cases in which the filaments are emitted from the separatrix at different toroidal positions and with a finite toroidal velocity. It is found that the toroidal velocity does not affect the profiles, while the toroidal distribution of filament emission renormalises the waiting time between two events. Experimental data collected by visual camera imaging are used to evaluate the statistics of the fluctuations, to inform the choice of the probability distribution functions used in the application of the framework. It is found that the toroidal separation of the filaments is exponentially distributed, thus suggesting the lack of a toroidal modal structure. Finally, using these measurements, the framework is applied to an experimental case and good agreement is found.

  10. Three dimensional boundary displacement due to stable ideal kink modes excited by external n = 2 magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Willensdorfer, M.; Strumberger, E.; Suttrop, W.; Dunne, M.; Fischer, R.; Birkenmeier, G.; Brida, D.; Cavedon, M.; Denk, S. S.; Igochine, V.; Giannone, L.; Kirk, A.; Kirschner, J.; Medvedeva, A.; Odstrčil, T.; Ryan, D. A.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    In low-collisionality (ν\\star) scenarios exhibiting mitigation of edge localized mode (ELMs), stable ideal kink modes at the edge are excited by externally applied magnetic perturbation (MP)-fields. In ASDEX Upgrade these modes can cause three-dimensional (3D) boundary displacements up to the centimeter range. These displacements have been measured using toroidally localized high resolution diagnostics and rigidly rotating n=2 MP-fields with various applied poloidal mode spectra. These measurements are compared to non-linear 3D ideal magnetohydrodynamics (MHD) equilibria calculated by VMEC. Comprehensive comparisons have been conducted, which consider for instance plasma movements due to the position control system, attenuation due to internal conductors and changes in the edge pressure profiles. VMEC accurately reproduces the amplitude of the displacement and its dependencies on the applied poloidal mode spectra. Quantitative agreement is found around the low field side (LFS) midplane. The response at the plasma top is qualitatively compared. The measured and predicted displacements at the plasma top maximize when the applied spectra is optimized for ELM-mitigation. The predictions from the vacuum modeling generally fails to describe the displacement at the LFS midplane as well as at the plasma top. When the applied mode spectra is set to maximize the displacement, VMEC and the measurements clearly surpass the predictions from the vacuum modeling by a factor of four. Minor disagreements between VMEC and the measurements are discussed. This study underlines the importance of the stable ideal kink modes at the edge for the 3D boundary displacement in scenarios relevant for ELM-mitigation.

  11. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  12. Eigenvalue problems for Beltrami fields arising in a three-dimensional toroidal magnetohydrodynamic equilibrium problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, S. R.; Hole, M. J.; Dewar, R. L.

    2007-05-15

    A generalized energy principle for finite-pressure, toroidal magnetohydrodynamic (MHD) equilibria in general three-dimensional configurations is proposed. The full set of ideal-MHD constraints is applied only on a discrete set of toroidal magnetic surfaces (invariant tori), which act as barriers against leakage of magnetic flux, helicity, and pressure through chaotic field-line transport. It is argued that a necessary condition for such invariant tori to exist is that they have fixed, irrational rotational transforms. In the toroidal domains bounded by these surfaces, full Taylor relaxation is assumed, thus leading to Beltrami fields {nabla}xB={lambda}B, where {lambda} is constant within each domain. Two distinctmore » eigenvalue problems for {lambda} arise in this formulation, depending on whether fluxes and helicity are fixed, or boundary rotational transforms. These are studied in cylindrical geometry and in a three-dimensional toroidal region of annular cross section. In the latter case, an application of a residue criterion is used to determine the threshold for connected chaos.« less

  13. Measurement of eddy-current distribution in the vacuum vessel of the Sino-UNIted Spherical Tokamak.

    PubMed

    Li, G; Tan, Y; Liu, Y Q

    2015-08-01

    Eddy currents have an important effect on tokamak plasma equilibrium and control of magneto hydrodynamic activity. The vacuum vessel of the Sino-UNIted Spherical Tokamak is separated into two hemispherical sections by a toroidal insulating barrier. Consequently, the characteristics of eddy currents are more complex than those found in a standard tokamak. Thus, it is necessary to measure and analyze the eddy-current distribution. In this study, we propose an experimental method for measuring the eddy-current distribution in a vacuum vessel. By placing a flexible printed circuit board with magnetic probes onto the external surface of the vacuum vessel to measure the magnetic field parallel to the surface and then subtracting the magnetic field generated by the vertical-field coils, the magnetic field due to the eddy current can be obtained, and its distribution can be determined. We successfully applied this method to the Sino-UNIted Spherical Tokamak, and thus, we obtained the eddy-current distribution despite the presence of the magnetic field generated by the external coils.

  14. Role of poloidal flows on the particle confinement time in a simple toroidal device : an experimental study

    NASA Astrophysics Data System (ADS)

    Kumar, Umesh; Ganesh, R.; Saxena, Y. C.; Thatipamula, Shekar G.; Sathyanarayana, K.; Raju, Daniel

    2017-10-01

    In magnetized toroidal devices without rotational transform also known as Simple Magnetized Torus (SMT). The device BETA at the IPR is one such SMT with a major radius of 45 cm, minor radius of 15 cm and a maximum toroidal field of 0.1 Tesla. Understanding confinement in such helical configurations is an important problem both for fundamental plasma physics and for Tokamak edge physics. In a recent series of experiments it was demonstrated experimentally that the mean plasma profiles, fluctuation, flow and turbulence depend crucially on the parallel connection length, which was controlled by external vertical field. In the present work, we report our experimental findings, wherein we measure the particle confinement time for hot cathode discharge and ECRH discharge, with variation in parallel connection length. As ECRH plasma don't have mean electric field and hence the poloidal rotation of plasma is absent. However, in hot cathode discharge, there exist strong poloidal flows due to mean electric field. An experimental comparison of these along with theoretical model with variation in connection length will be presented. We also present experimental measurements of variation of plasma confinement time with mass as well as the ratio of vertical field to toroidal magnetic field.

  15. Effects of Equilibrium Toroidal Flow on Locked Mode and Plasma Response in a Tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Huang, Wenlong; Yan, Xingting

    2016-10-01

    It is widely believed that plasma flow plays significant roles in regulating the processes of mode locking and plasma response in a tokamak in presence of external resonant magnetic perturbations (RMPs). Recently a common analytic relation for both locked mode and plasma response has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance. The analytic relation predicts the size of the magnetic island of a locked mode or a static nonlinear plasma response for a given RMP amplitude, and rigorously proves a screening effect of the equilibrium toroidal flow. To test the theory, we solve for the locked mode and the nonlinear plasma response in presence of RMP for a circular-shaped limiter tokamak equilibrium with constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. The comparison between the simulation results and the theory prediction, in terms of the quantitative screening effects of equilibrium toroidal flow, will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  16. Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D

    DOE PAGES

    King, Josh D.; Strait, Edward J.; Lazerson, Samuel A.; ...

    2015-07-01

    DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. Moreover, these tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. We determine scans of the applied poloidal spectrum and edge safety factors which confirm thatmore » low-pressure, n = 1 non-axisymmetric tokamak equilibria are a single, dominant, stable eigenmode. But, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.« less

  17. Development of toroid-type HTS DC reactor series for HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, D.D.; Lottati, I.; Mikic, Z.

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  19. Toroidal gyro-Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Kerbel, G. D.; Milovich, J.

    1994-07-01

    The method of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] to model Landau damping has been recently applied to the moments of the gyrokinetic equation with curvature drift by Waltz, Dominguez, and Hammett [Phys. Fluids B 4, 3138 (1992)]. The higher moments are truncated in terms of the lower moments (density, parallel velocity, and parallel and perpendicular pressure) by modeling the deviation from a perturbed Maxwellian to fit the kinetic response function at all values of the kinetic parameters: k∥vth/ω, b=(k⊥ρ)2/2, and ωD/ω. Here the resulting gyro-Landau fluid equations are applied to the simulation of ion temperature gradient (ITG) mode turbulence in toroidal geometry using a novel three-dimensional (3-D) nonlinear ballooning mode representation. The representation is a Fourier transform of a field line following basis (ky',kx',z') with periodicity in toroidal and poloidal angles. Particular emphasis is given to the role of nonlinearly generated n=0 (ky' = 0, kx' ≠ 0) ``radial modes'' in stabilizing the transport from the finite-n ITG ballooning modes. Detailing the parametric dependence of toroidal ITG turbulence is a key result.

  20. Modeling and control of plasma rotation and βn for NSTX-U using Neoclassical Toroidal Viscosity and Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan; Boyer, Mark

    2015-11-01

    A model-based system is presented allowing control of the plasma rotation profile in a magnetically confined toroidal fusion device to maintain plasma stability for long pulse operation. The analysis, using NSTX data and NSTX-U TRANSP simulations, is aimed at controlling plasma rotation using momentum from six injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the momentum diffusion and torque balance model obtained, a feedback controller is designed and predictive simulations using TRANSP will be presented. Robustness of the model and the rotation controller will be discussed.

  1. Plasma response to m/n  =  3/1 resonant magnetic perturbation at J-TEXT Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, Qiming; Li, Jianchao; Wang, Nengchao; Yu, Q.; Chen, Jie; Cheng, Zhifeng; Chen, Zhipeng; Ding, Yonghua; Jin, Hai; Li, Da; Li, Mao; Liu, Yang; Rao, Bo; Zhu, Lizhi; Zhuang, Ge; the J-TEXT Team

    2016-09-01

    The influence of resonant magnetic perturbations (RMPs) with a large m/n  =  3/1 component on electron density has been studied at J-TEXT tokamak by using externally applied static and rotating RMPs, where m and n are the poloidal and toroidal mode number, respectively. The detailed time evolution of electron density profile, measured by the polarimeter-interferometer, shows that the electron density n e first increases (decreases) inside (around/outside) of the 3/1 rational surface (RS), and it is increased globally later together with enhanced edge recycling. Associated with field penetration, the toroidal rotation around the 3/1 RS is accelerated in the co-I p direction and the poloidal rotation is changed from the electron to ion diamagnetic drift direction. Spontaneous unlocking-penetration circles occur after field penetration if the RMPs amplitude is not strong enough. For sufficiently strong RMPs, the 2/1 locked mode is also triggered due to mode coupling, and the global density is increased. The field penetration threshold is found to be linearly proportional to n eL (line-integrated density) at the 3/1 RS but to (n eL)0.73 for n e at the plasma core. In addition, for rotating RMPs with a large 3/1 component, field penetration causes a global increase in electron density.

  2. Effect of large magnetic islands on screening of external magnetic perturbation fields at slow plasma flow

    NASA Astrophysics Data System (ADS)

    Li, L.; Liu, Y. Q.; Huang, X.; Luan, Q.; Zhong, F. C.

    2017-02-01

    A toroidal resistive magneto-hydrodynamic plasma response model, involving large magnetic islands, is proposed and numerically investigated, based on local flattening of the equilibrium pressure profile near a rational surface. It is assumed that such islands can be generated near the edge of the tokamak plasma, due to the penetration of the resonant magnetic perturbations, used for the purpose of controlling the edge localized mode. Within this model, it is found that the local flattening of the equilibrium pressure helps to mitigate the toroidal curvature induced screening effect [Glasser et al., Phys. Fluids 7, 875 (1975)]—the so called Glasser-Greene-Johnson screening, when the local toroidal flow near the mode rational surface is very slow (for example, as a result of mode locking associated with the field penetration). The saturation level of the plasma response amplitude is computed, as the plasma rotation frequency approaches zero. The local modification of the plasma resistivity inside the magnetic island is found to also affect the saturation level of the plasma response at vanishing flow.

  3. Laboratory Evidence That Line-Tied Toroidal Magnetic Fields Can Suppress Loss-of-Equilibrium Flux Rope Eruptions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W. R., II; Jara-Almonte, J.

    2014-12-01

    Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (potential) and internal (plasma-generated) magnetic fields. We find that forces due to the line-tied toroidal magnetic field, which are not included in the basic torus instability theory, can play a major role in preventing eruptions. The dependence of these toroidal magnetic forces on various potential field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  4. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less

  5. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    DOE PAGES

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    2017-09-21

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less

  6. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    2017-10-01

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) in a slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. This physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, which resulted from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement, and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. Modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.

  7. Investigating Trapped Particle Asymmetry Modes and Temperature Effects in the Lawrence Non-neutral Torus II

    NASA Astrophysics Data System (ADS)

    Nirwan, R.; Swanson, P.; Stoneking, M. R.

    2017-10-01

    Electron plasma is confined in the Lawrence Non-Neutral Torus II using a purely toroidal magnetic field (R0 = 18 cm, B < 1 kG) for confinement times exceeding 1 second. The LNT II can be configured for fully toroidal traps or variable-length partial toroidal traps. The behavior of the plasma is observed by monitoring the image charge on isolated wall sectors. The plasma is excited by application of a sinusoidal tone burst to selected wall sectors. Phase-space separatrices are introduced by applying squeeze potentials to toroidally localized, but poloidally continuous sectors and the resulting interaction between trapped and passing particles populations results in asymmetry modes and transport. These experiments provide a comparison with similar experiments in cylindrical traps. We also report on the development of temperature measurement techniques and assess temperature affects on diocotron and asymmetry modes. This work is supported by National Science Foundation Grant No. PHY-1202540.

  8. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  9. Fast Erase Method and Apparatus For Digital Media

    NASA Technical Reports Server (NTRS)

    Oakely, Ernest C. (Inventor)

    2006-01-01

    A non-contact fast erase method for erasing information stored on a magnetic or optical media. The magnetic media element includes a magnetic surface affixed to a toroidal conductor and stores information in a magnetic polarization pattern. The fast erase method includes applying an alternating current to a planar inductive element positioned near the toroidal conductor, inducing an alternating current in the toroidal conductor, and heating the magnetic surface to a temperature that exceeds the Curie-point so that information stored on the magnetic media element is permanently erased. The optical disc element stores information in a plurality of locations being defined by pits and lands in a toroidal conductive layer. The fast erase method includes similarly inducing a plurality of currents in the optical media element conductive layer and melting a predetermined portion of the conductive layer so that the information stored on the optical medium is destroyed.

  10. Toroidal Ampere-Faraday Equations Solved Consistently with the CQL3D Fokker-Planck Time-Evolution

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Petrov, Yu. V.

    2013-10-01

    A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). In the present CQL3D finite-difference model, the electric field E(rho,t) is either prescribed, or iteratively adjusted to obtain prescribed toroidal or parallel currents. We discuss first results of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to the runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we will examine modifications due to the more complete Ampere-Faraday solution. Work supported by US DOE under DE-FG02-ER54744.

  11. Video Toroid Cavity Imager

    DOEpatents

    Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  12. Modeling the excitation of global Alfven modes by an external antenna in the Joint European Torus (JET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huysmans, G.T.A.; Kerner, W.; Borba, D.

    1995-05-01

    The active excitation of global Alfven modes using the saddle coils in the Joint European Torus (JET) [{ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1984, Proceedings of the 10th International Conference, London (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 11] as the external antenna, will provide information on the damping of global modes without the need to drive the modes unstable. For the modeling of the Alfven mode excitation, the toroidal resistive magnetohydrodynamics (MHD) code CASTOR (Complex Alfven Spectrum in TORoidal geometry) [18{ital th} {ital EPS} {ital Conference} {ital On} {italmore » Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Physics}, Berlin, 1991, edited by P. Bachmann and D. C. Robinson (The European Physical Society, Petit-Lancy, 1991), Vol. 15, Part IV, p. 89] has been extended to calculate the response to an external antenna. The excitation of a high-performance, high beta JET discharge is studied numerically. In particular, the influence of a finite pressure is investigated. Weakly damped low-{ital n} global modes do exist in the gaps in the continuous spectrum at high beta. A pressure-driven global mode is found due to the interaction of Alfven and slow modes. Its frequency scales solely with the plasma temperature, not like a pure Alfven mode with a density and magnetic field.« less

  13. Ion flow measurements during the MHD relaxation processes in the HIST spherical torus device

    NASA Astrophysics Data System (ADS)

    Nishioka, T.; Hashimoto, S.; Ando, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2008-11-01

    Plasma flow is one of the key roles in self-organization and magnetic reconnection processes of helicity-driven spherical torus (ST) and spheromak. The HIST spherical torus can form the standard ST and the flipped ST plasmas by utilizing the variation of the external toroidal field coil current. The flipped ST plasma can be generated by changing the polarity of the toroidal magnetic field during the standard ST discharge [1]. We have developed an ion Doppler spectrometer (IDS) system using a compact 16 channel photomultiplier tube (PMT) in order to measure the spatial profile of ion temperature and rotation velocity in the HIST device. The IDS system consists of a light collection system including optical fibers, 1 m-spectrometer and the PMT detector. As the results, it was observed that ion velocity was about 10 km/s in the same direction as the toroidal current and ExB direction in the standard ST discharge. The observed ion velocity agrees with Mach probe measurements. During the transition from the standard ST to the flipped ST state, the ion temperature was fluctuated and increased. The result implies an ion heating during magnetic reconnections. In addition, the toroidal direction of the ion flow was reversed. The detail physics of the observed phenomenon will be shown. [1] M. Nagata et al., Phys Rev. Lett. 90, pp. 225001-225004 (2003).

  14. Local measurement of error field using naturally rotating tearing mode dynamics in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Sweeney, R. M.; Frassinetti, L.; Brunsell, P.; Fridström, R.; Volpe, F. A.

    2016-12-01

    An error field (EF) detection technique using the amplitude modulation of a naturally rotating tearing mode (TM) is developed and validated in the EXTRAP T2R reversed field pinch. The technique was used to identify intrinsic EFs of m/n  =  1/-12, where m and n are the poloidal and toroidal mode numbers. The effect of the EF and of a resonant magnetic perturbation (RMP) on the TM, in particular on amplitude modulation, is modeled with a first-order solution of the modified Rutherford equation. In the experiment, the TM amplitude is measured as a function of the toroidal angle as the TM rotates rapidly in the presence of an unknown EF and a known, deliberately applied RMP. The RMP amplitude is fixed while the toroidal phase is varied from one discharge to the other, completing a full toroidal scan. Using three such scans with different RMP amplitudes, the EF amplitude and phase are inferred from the phases at which the TM amplitude maximizes. The estimated EF amplitude is consistent with other estimates (e.g. based on the best EF-cancelling RMP, resulting in the fastest TM rotation). A passive variant of this technique is also presented, where no RMPs are applied, and the EF phase is deduced.

  15. Sawtooth mitigation in 3D MHD tokamak modelling with applied magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Veranda, M.; Cappello, S.; Chacón, L.; Escande, D. F.

    2017-01-01

    The effect of magnetic perturbations (MPs) on the sawtoothing dynamics of the internal kink mode in the tokamak is discussed in the framework of nonlinear 3D MHD modelling. Numerical simulations are performed with the pixie3d code (Chacón 2008 Phys. Plasmas 15 056103) based on a D-shaped configuration in toroidal geometry. MPs are applied as produced by two sets of coils distributed along the toroidal direction, one set located above and the other set below the outboard midplane, like in experimental devices such as DIII-D and ASDEX Upgrade. The capability of n  =  1 MPs to affect quasi-periodic sawteeth is shown to depend on the toroidal phase difference Δ φ between the perturbations produced by the two sets of coils. In particular, sawtooth mitigation is obtained for the Δ φ =π phasing, whereas no significant effect is observed for Δ φ =0 . Numerical findings are explained by the interplay between different poloidal harmonics in the spectrum of applied MPs, and appear to be consistent with experiments performed in the DIII-D device. Sawtooth mitigation and stimulation of self-organized helical states by applied MPs have been previously demonstrated in both circular tokamak and reversed-field pinch (RFP) experiments in the RFX-mod device, and in related 3D MHD modelling.

  16. Simultaneous feedback control of plasma rotation and stored energy on NSTX-U using neoclassical toroidal viscosity and neutral beam injection

    NASA Astrophysics Data System (ADS)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Boyer, M. D.; Gerhardt, S. P.; Kolemen, E.; Menard, J. E.

    2017-05-01

    A model-based feedback system is presented enabling the simultaneous control of the stored energy through βn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.

  17. Simultaneous feedback control of plasma rotation and stored energy on NSTX-U using neoclassical toroidal viscosity and neutral beam injection

    PubMed Central

    Goumiri, I. R.; Sabbagh, S. A.; Boyer, M. D.; Gerhardt, S. P.; Kolemen, E.; Menard, J. E.

    2017-01-01

    A model-based feedback system is presented enabling the simultaneous control of the stored energy through βn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained. PMID:28435207

  18. Simultaneous feedback control of plasma rotation and stored energy on NSTX-U using neoclassical toroidal viscosity and neutral beam injection

    DOE PAGES

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; ...

    2017-02-23

    In this study, a model-based feedback system is presented enabling the simultaneous control of the stored energy through β n and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.

  19. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Lanctot, Matthew J.

    2016-10-01

    In several tokamaks, non-axisymmetric magnetic field studies show applied n=2 fields can lead to disruptive n=1 locked modes, suggesting nonlinear mode coupling. A multimode plasma response to n=2 fields can be observed in H-mode plasmas, in contrast to the single-mode response found in Ohmic plasmas. These effects highlight a role for n >1 error field correction in disruption avoidance, and identify additional degrees of freedom for 3D field optimization at high plasma pressure. In COMPASS, EAST, and DIII-D Ohmic plasmas, n=2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q 3 and low density. Similar to previous studies, the thresholds are correlated with the ``overlap'' field for the dominant linear ideal MHD plasma mode calculated with the IPEC code. The overlap field measures the plasma-mediated coupling of the external field to the resonant field. Remarkably, the critical overlap fields are similar for n=1 and 2 fields with m >nq fields dominating the drive for resonant fields. Complementary experiments in RFX-Mod show fields with m 1 control, including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression). Optimal multi-harmonic (n=1 and n=2) error field control may be achieved using control algorithms that continuously respond to time-varying 3D field sources and plasma parameters. Supported by the US DOE under DE-FC02-04ER54698.

  20. Spherical harmonic representation of the main geomagnetic field for world charting and investigations of some fundamental problems of physics and geophysics

    NASA Technical Reports Server (NTRS)

    Barraclough, D. R.; Hide, R.; Leaton, B. R.; Lowes, F. J.; Malin, S. R. C.; Wilson, R. L. (Principal Investigator)

    1982-01-01

    Progress in the harmonic analysis of MAGSAT data is reported. Single-day data sets were subdivided into information on the sunrise side of the Earth and information on the sunset side of the Earth. Data for the main and external fields each demonstrate a clear and consistent systematic difference between the sets of data which was determined to be, due to ionospheric currents which differ from the sunset to the sunrise terminator. A toroidal field was analyzed for and determined to be an apparent toroidal field resulting from electric currents concentrated in the two terminators. Progressive elimination of auroral zone data demonstrates that the information presented does not arise from complications due to Birkeland currents.

  1. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  2. Modular coils and finite-β operation of a quasi-axially symmetric tokamak

    NASA Astrophysics Data System (ADS)

    Drevlak, M.

    1998-09-01

    Quasi-axially symmetric tokamaks (QA tokamaks) are an extension of the conventional tokamak concept. In these devices the magnetic field strength is independent of the generalized toroidal magnetic co-ordinate even though the cross-sectional shape changes. An optimized plasma equilibrium belonging to the class of QA tokamaks has been proposed by Nührenberg. It features the small aspect ratio of a tokamak while allowing part of the rotational transform to be generated by the external field. In this article, two particular aspects of the viability of QA tokamaks are explored, namely the feasibility of modular coils and the possibility of maintaining quasi-axial symmetry in the free-boundary equilibria obtained with the coils found. A set of easily feasible modular coils for the configuration is presented. It was designed using the extended version of the NESCOIL code (Merkel, P., Nucl. Fusion 27 (1987) 867). Using this coil system, free-boundary calculations of the plasma equilibrium were carried out using the NEMEC code (Hirshman, S.P., Van Rij, W.I., Merkel, P., Comput. Phys. Commun. 43 (1986) 143). It is observed that the effects of finite β and net toroidal plasma current can be compensated for with good precision by applying a vertical magnetic field and by separately adjusting the currents of the modular coils. A set of fully three dimensional (3-D) auxiliary coils is proposed to exert control on the rotational transform in the plasma. Deterioration of the quasi-axial symmetry induced by the auxiliary coils can be avoided by adequate adjustment of the currents in the primary coils. Finally, the neoclassical transport properties of the configuration are examined. It is observed that optimization with respect to confinement of the alpha particles can be maintained at operation with finite toroidal current if the aforementioned corrective measures are used. In this case, the neoclassical behaviour is shown to be very similar to that of a conventional tokamak.

  3. Internal structure of mushroom-shaped salt diapirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    This book focuses on the dynamics and kinematics of salt diapirs with crestal bulbs shaped like a mushroom, one of the most complex types of diapirs, as interpreted by experimental modeling and from naturally occurring examples. Direct, practical applications of this research include use in the evaluation of salt domes as repositories for radioactive waste, in the exploration and production of salt, potash, and sulfur, and in the search for subtle hydrocarbon traps. The authors conducted 8 centrifuge experiments, which produced more than 100 model diapirs. These experiments were dynamically scaled to U.S. Gulf Coast salt domes, but the qualitativemore » results are also relevant to salt diapirs in other provinces and to granitoid diapirs penetrating metamorphic crust. The centrifuged domes grew under overburdens of constant thickness or under aggrading and prograding overburdens, a new experimental approach. Results indicate that external mushroom structure results from toroidal circulation of buoyant source and immediate cover having similar effective viscosities, whereas internal structure is produced by toroidal circulation confined within the diapir. The internal diapir structure elucidates the mechanics of emplacement and indicates whether an external mushroom shape can be expected and sought by further exploration.« less

  4. Optimization of 3D Field Design

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas; Zhu, Caoxiang

    2017-10-01

    Recent progress in 3D tokamak modeling is now leveraged to create a conceptual design of new external 3D field coils for the DIII-D tokamak. Using the IPEC dominant mode as a target spectrum, the Finding Optimized Coils Using Space-curves (FOCUS) code optimizes the currents and 3D geometry of multiple coils to maximize the total set's resonant coupling. The optimized coils are individually distorted in space, creating toroidal ``arrays'' containing a variety of shapes that often wrap around a significant poloidal extent of the machine. The generalized perturbed equilibrium code (GPEC) is used to determine optimally efficient spectra for driving total, core, and edge neoclassical toroidal viscosity (NTV) torque and these too provide targets for the optimization of 3D coil designs. These conceptual designs represent a fundamentally new approach to 3D coil design for tokamaks targeting desired plasma physics phenomena. Optimized coil sets based on plasma response theory will be relevant to designs for future reactors or on any active machine. External coils, in particular, must be optimized for reliable and efficient fusion reactor designs. Work supported by the US Department of Energy under DE-AC02-09CH11466.

  5. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    DOE PAGES

    Suttrop, Wolfgang; Kirk, A.; Nazikian, R.; ...

    2016-11-22

    Here, the interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality,more » $$\

  6. Three-dimensional drift kinetic response of high-β plasmas in the DIII-D tokamak.

    PubMed

    Wang, Z R; Lanctot, M J; Liu, Y Q; Park, J-K; Menard, J E

    2015-04-10

    A quantitative interpretation of the experimentally measured high-pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon β limit, is achieved. The self-consistent inclusion of the drift kinetic effects in magnetohydrodynamic (MHD) modeling [Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)] successfully resolves an outstanding issue of the ideal MHD model, which significantly overpredicts the plasma-induced field amplification near the no-wall limit, as compared to experiments. The model leads to quantitative agreement not only for the measured field amplitude and toroidal phase but also for the measured internal 3D displacement of the plasma. The results can be important to the prediction of the reliable plasma behavior in advanced fusion devices, such as ITER [K. Ikeda, Nucl. Fusion 47, S1 (2007)].

  7. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    DOE PAGES

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-03-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less

  8. Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi

    2007-11-01

    Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.

  9. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    NASA Astrophysics Data System (ADS)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Gerhardt, S. P.; Boyer, M. D.; Andre, R.; Kolemen, E.; Taira, K.

    2016-03-01

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  10. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints onmore » the actuators and the available measurements of rotation.« less

  11. Liquid toroidal drop under uniform electric field

    NASA Astrophysics Data System (ADS)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  12. Theoretical Analysis of the Electron Spiral Toroid Concept

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Micheletti, David A.; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This report describes the analysis of the Electron Spiral Toroid (EST) concept being promoted by Electron Power Systems Inc. (EPS). The EST is described as a toroidal plasma structure composed Of ion and electron shells. It is claimed that the EST requires little or no external confinement, despite the extraordinarily large energy densities resulting from the self-generating magnetic fields. The present analysis is based upon documentation made available by EPS, a previous description of the model by the Massachusetts Institute of Technology (MIT), and direct discussions with EPS and MIT. It is found that claims of absolute stability and large energy storage capacities of the EST concept have not been substantiated. Notably, it can be demonstrated that the ion fluid is fundamentally unstable. Although various scenarios for ion confinement were subsequently suggested by EPS and MIT, none were found to be plausible. Although the experimental data does not prove the existence of EST configurations, there is undeniable experimental evidence that some type of plasma structures whose characteristics remain to be determined are observed. However, more realistic theoretical models must first be developed to explain their existence and properties before applications of interest to NASA can he assessed and developed.

  13. Toroidal high-spin isomers in the nucleus 304120

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from multiparticle-multihole excitations in the toroidal system of 120304184 can lead to high-spin isomeric states, even though the toroidal shape of 120304184 without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, Z ≳122 , as reported previously [7 A. Staszczak and C. Y. Wong, Acta Phys. Pol. B 40, 753 (2008)].

  14. Toroidal high-spin isomers in the nucleus 120 304

    DOE PAGES

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-22

    Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis withmore » $$I=I_{z}$$. The toroidal high-$K$ isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus $$^{304}{120}_{184}$$. This method consists of three steps: first, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations we apply an additional cranking constraint of a large angular momentum $$I=I_{z}$$ about the symmetry $z$-axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with $$I=I_{z}$$ is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Furthemore, we have theoretically located two toroidal high-spin isomeric states of $$^{304}{120}_{184}$$ with an angular momentum $I$=$$I_z$$=81$$\\hbar$$ (proton 2p-2h, neutron 4p-4h excitation) and $I$=$$I_z$$=208$$\\hbar$$ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations $$Q_{20}=-297.7$$~b and $$Q_{20}=-300.8$$~b with energies 79.2 MeV and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers $$^{304}{120}_{184}(I_z$$=81$$\\hbar$$ and 208$$\\hbar$$) have the maximum density close to the nuclear matter density, 0.16 fm$$^{-3}$$, and a torus major to minor radius aspect ratio $R/d=3.25$. Here, we demonstrate that aligned angular momenta of $$I_z$$=81$$\\hbar$$ and 208$$\\hbar$$ arising from multi-particle-multi-hole excitations in the toroidal system of $$^{304}{120}_{184}$$ can lead to high-spin isomeric states, even though the toroidal shape of $$^{304}120_{184}$$ without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, $$Z\\gtrsim$$122, as reported previously [A. Staszczak and C. Y. Wong,Acta Phys. Pol. B 40 , 753 (2008)].« less

  15. Toroidal Ampere-Faraday Equations Solved Simultaneously with CQL3D Fokker-Planck Time-Evolution

    NASA Astrophysics Data System (ADS)

    Harvey, R. W. (Bob); Petrov, Yu. V. (Yuri); Forest, C. B.; La Haye, R. J.

    2017-10-01

    A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). We discuss benchmarking and first applications of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to (1) resistive turn on of applied electron cyclotron current in the DIII-D tokamak giving initial back current adjacent to the direct CD region and having possible NTM stabilization implications, and (2) runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in pellet injection, massive gas injection, or a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we perform full-radius modeling and examine modifications due to the more complete Ampere-Faraday solution. Presently, the implementation relies on a fixed shape eqdsk, and this limitation will be addressed in future work. Research supported by USDOE FES award ER54744.

  16. Reduced critical rotation for resistive-wall mode stabilization in a near-axisymmetric configuration.

    PubMed

    Reimerdes, H; Garofalo, A M; Jackson, G L; Okabayashi, M; Strait, E J; Chu, M S; In, Y; La Haye, R J; Lanctot, M J; Liu, Y Q; Navratil, G A; Solomon, W M; Takahashi, H; Groebner, R J

    2007-02-02

    Recent DIII-D experiments with reduced neutral beam torque and minimum nonaxisymmetric perturbations of the magnetic field show a significant reduction of the toroidal plasma rotation required for the stabilization of the resistive-wall mode (RWM) below the threshold values observed in experiments that apply nonaxisymmetric magnetic fields to slow the plasma rotation. A toroidal rotation frequency of less than 10 krad/s at the q=2 surface (measured with charge exchange recombination spectroscopy using C VI) corresponding to 0.3% of the inverse of the toroidal Alfvén time is sufficient to sustain the plasma pressure above the ideal MHD no-wall stability limit. The low-rotation threshold is found to be consistent with predictions by a kinetic model of RWM damping.

  17. Drift Wave Simulation in Toroidal Geometry.

    NASA Astrophysics Data System (ADS)

    Lebrun, Maurice Joseph, III

    1988-12-01

    The drift wave, a general category of plasma behavior arising from a plasma inhomogeneity, is studied using the particle simulation method. In slab geometry, the drift wave (or universal mode) is stabilized by any finite amount of magnetic shear. In toroidal geometry, however, the coupling of the poloidal harmonics gives rise to a new branch of drift wave eigenmodes called the toroidicity -induced mode, which is predicted to be unstable in some regimes. The drift wave in a toroidal system is intrinsically three-dimensional, and is sensitive to the handling of the parallel electron dynamics, the (nearly) perpendicular wave dynamics, and the radial variation of magnetic field vector (shear). A simulation study must therefore be kinetic in nature, motivating the extension of particle simulation techniques to complex geometries. From this effort a three dimensional particle code in a toroidal coordinate system has been developed and applied to the toroidal drift wave problem. The code uses an (r,theta,phi) -type coordinate system, and a nonuniform radial grid that increases resolution near the mode-rational surfaces. Full ion dynamics and electron guiding center dynamics are employed. Further, the algorithm incorporates a straightforward limiting process to cylindrical geometry and slab geometry, enabling comparison to the theoretical results in these regimes. Simulations of the density-driven modes in toroidal geometry retain a single toroidal mode number (n = 9). In this regime, the poloidal harmonics are expected to be strongly coupled, giving rise to the marginally unstable toroidicity-induced drift mode. Analysis of the simulation data reveals a strong, low-frequency response that peaks near each mode rational surface. Further, the characteristic oscillation frequencies persist from one mode rational surface to the next, which identifies them as multiple harmonics of the toroidicity-induced mode. The lowest harmonic occurs at a frequency of omega/ omega^{*} ~ 0.26, which is reasonably close to the prediction of linear theory. Interferogram analysis of these modes indicates a "ballooning" structure toward the outside of the torus. The amplitude of the potential is observed to grow exponentially for the m = 8 through m = 10 poloidal mode numbers, with a growth rate of approximately gamma/omega ^{*} ~ 0.075. Saturation occurs at time t ~ 1000 Omega_sp{i}{-1}, and may be caused by quasilinear flattening of the density profile.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jong-Kyu; Logan, Nikolas C.

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less

  19. KTX circuit model and discharge waveform prediction

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Lan, T.; Mao, W. Z.; You, W.; Li, H.; Liu, A. D.; Xie, J. L.; Wan, S. D.; Liu, W. D.; Yang, L.; Fu, P.; Xiao, C. J.; Ding, W. X.

    2013-10-01

    The Keda Torus eXperiment (KTX) is a constructing reversed field pinch (RFP) device in University of Science and Technology of China. The KTX power supply system includes the Ohmic heating, field shaping and toroidal power supply systems, which produce the Ohmic field, equilibrium field and toroidal field, respectively. The detailed circuit model will be introduced in this poster. Another purpose is to predict its discharge waveforms using the modified Bessel function mode (MBFM), which describes the evolution of plasma current and magnetic flux in RFP base on Taylor theory. Furthermore, the power supply requirements of external field shaping winding are also predicted in the model, which will be very helpful for the design of plasma equilibrium controlling system. Supported by ITER-China program (No. 2011GB106000), NNSFC (Nos. 10990210, 10990211, 10335060 and 10905057), CPSF (No. 20080440104), YIF (No. WK2030040019) and KIPCAS (No. kjcx-yw-n28).

  20. Toroidal plasmoid generation via extreme hydrodynamic shear

    PubMed Central

    Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud

    2017-01-01

    Saint Elmo’s fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. PMID:29146825

  1. Fatigue life analysis for traction drives with application to a toroidal type geometry

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Loewenthal, S. H.; Zaretsky, E. V.

    1976-01-01

    A contact fatigue life analysis for traction drives was developed which was based on a modified Lundberg-Palmgren theory. The analysis was used to predict life for a cone-roller toroidal traction drive. A 90-percent probability of survival was assumed for the calculated life. Parametric results were presented for life and Hertz contact stress as a function of load, drive ratio, and size. A design study was also performed. The results were compared to previously published work for the dual cavity toroidal drive as applied to a typical compact passenger vehicle drive train. For a representative duty cycle condition wherein the engine delivers 29 horsepower at 2000 rpm with the vehicle moving at 48.3 km/hr (30 mph) the drive life was calculated to be 19,200 km (11 900 miles).

  2. Dependence of neoclassical toroidal viscosity on the poloidal spectrum of applied nonaxisymmetric fields

    DOE PAGES

    Logan, Nikolas C.; Park, Jong -Kyu; Paz-Soldan, Carloa; ...

    2016-02-05

    This paper presents a single mode model that accurately predicts the coupling of applied nonaxisymmetric fields to the plasma response that induces neoclassical toroidal viscosity (NTV) torque in DIII-D H-mode plasmas. The torque is measured and modeled to have a sinusoidal dependence on the relative phase of multiple nonaxisymmetric field sources, including a minimum in which large amounts of nonaxisymmetric drive is decoupled from the NTV torque. This corresponds to the coupling and decoupling of the applied field to a NTV-driving mode spectrum. Modeling using the perturbed equilibrium nonambipolar transport (PENT) code confirms an effective single mode coupling between themore » applied field and the resultant torque, despite its inherent nonlinearity. Lastly, the coupling to the NTV mode is shown to have a similar dependence on the relative phasing as that of the IPEC dominant mode, providing a physical basis for the efficacy of this linear metric in predicting error field correction optima in NTV dominated regimes.« less

  3. Dependence of neoclassical toroidal viscosity on the poloidal spectrum of applied nonaxisymmetric fields

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Paz-Soldan, C.; Lanctot, M. J.; Smith, S. P.; Burrell, K. H.

    2016-03-01

    This paper presents a single mode model that accurately predicts the coupling of applied nonaxisymmetric fields to the plasma response that induces neoclassical toroidal viscosity (NTV) torque in DIII-D H-mode plasmas. The torque is measured and modeled to have a sinusoidal dependence on the relative phase of multiple nonaxisymmetric field sources, including a minimum in which large amounts of nonaxisymmetric drive is decoupled from the NTV torque. This corresponds to the coupling and decoupling of the applied field to a NTV-driving mode spectrum. Modeling using the perturbed equilibrium nonambipolar transport (PENT) code confirms an effective single mode coupling between the applied field and the resultant torque, despite its inherent nonlinearity. The coupling to the NTV mode is shown to have a similar dependence on the relative phasing as that of the IPEC dominant mode, providing a physical basis for the efficacy of this linear metric in predicting error field correction optima in NTV dominated regimes.

  4. Overview of Compact Toroidal Hybrid research program progress and plans

    NASA Astrophysics Data System (ADS)

    Maurer, David; Ennis, David; Hanson, James; Hartwell, Gregory; Herfindal, Jeffrey; Knowlton, Stephen; Ma, Xingxing; Pandya, Mihir; Roberds, Nicholas; Ross, Kevin; Traverso, Peter

    2016-10-01

    disruptive behavior on the level of applied 3D magnetic shaping; (2) test and advance the V3FIT reconstruction code and NIMROD modeling of CTH; and (3) study the implementation of an island divertor. Progress towards these goals and other developments are summarized. The disruptive density limit exceeds the Greenwald limit as the vacuum transform is increased, but a threshold for avoidance is not observed. Low- q disruptions, with 1.1 < q (a) <2.0, cease to occur if the vacuum transform is raised above 0.07. Application of vacuum transform can reduce and eliminate the vertical drift of elongated discharges that would otherwise be vertically unstable. Reconstructions using external magnetics give accurate estimates for quantities near the plasma boundary, and internal diagnostics have been implemented to extend the range of accuracy into the plasma core. Sawtooth behavior has been reproducibly modified with external transform and NIMROD is used to model these observations and reproduces experimental trends. An island divertor design has begun with connection length studies to model energy deposition on divertor plates located in an edge 1/3 island as well as the study of a non-resonant divertor configuration. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  5. Spheromak plasma flow injection into a torus chamber and the HIST plasmas

    NASA Astrophysics Data System (ADS)

    Hatuzaki, Akinori

    2005-10-01

    The importance of plasma flow or two-fluid effect is recognized in understanding the relaxed states of high-beta torus plasmas, start-up and current drive by non-coaxial helicity injection, magnetic reconnection and plasma dynamo in fusion, laboratory and space plasmas. As a new approach to create a flowing two-fluid plasma equilibrium, we have tried to inject tangentially the plasma flow with spheromak-type magnetic configurations into a torus vacuum chamber with an external toroidal magnetic field (TF) coil. In the initial experiments, the RFP-like configuration with helical magnetic structures was realized in the torus vessel. The ion flow measurement with Mach probes showed that the ion flow keeps the same direction despite the reversal of the toroidal current and the axial electric field. The ion fluid comes to flow in the opposite direction to the electron fluid by the reversal of TF. This result suggests that not only electron but also ion flow contributes significantly on the reversed toroidal current. In this case, the ratio of ui to the electron flow velocity ue is estimated as ui/ue ˜ 1/2. We also will inject the spheromak flow into the HIST spherical torus plasmas to examine the possibilities to embedding the two-fluid effect in the ST plasmas.

  6. Observation of odd toroidal Alfvén eigenmodes.

    PubMed

    Kramer, G J; Sharapov, S E; Nazikian, R; Gorelenkov, N N; Budny, R V

    2004-01-09

    Experimental evidence is presented for the existence of the theoretically predicted odd toroidicity induced Alfvén eigenmode (TAE) from the simultaneous appearance of odd and even TAEs in a normal shear discharge of the joint European torus. The modes are observed in low central magnetic shear plasmas created by injecting lower hybrid current drive. A fast ion population was created by applying ion cyclotron heating at the high-field side to excite the TAEs. The odd TAEs were identified from their frequency, mode number, and timing relative to the even TAEs.

  7. Toroidal turbulence simulations with gyro-Landau fluid models in a nonlinear ballooning mode representation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Kerbel, G. D.

    1994-05-01

    The method of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] to model Landau damping has been recently applied to the moments of the gyro-kinetic equation with curvature drift by Waltz, Dominguez, and Hammett [Phys. Fluids B 4, 3138 (1992)]. The higher moments are truncated in terms of the lower moments (density, parallel velocity, and parallel and perpendicular pressure) by modeling the deviation from a perturbed Maxwellian to fit the kinetic response function at all values of the kinetic parameters: k∥vth/ω, b=(k⊥ρ)2/2, and ωD/ω. Here the resulting gyro-Landau fluid equations are applied to the simulation of ion temperature gradient (ITG) mode turbulence in toroidal geometry using a novel 3D nonlinear ballooning mode representation. The representation is a Fourier transform of the Cowley et al. [Phys. Fluids B 3, 2767 (1991)] field line following twisted eddy basis (kx',ky',z') with periodicity in toroidal and poloidal angles. Particular emphasis is given to the role of nonlinearly generated n=0 (ky'=0, kx'≠0) ``radial modes'' in stabilizing the transport from the finite-n ITG ballooning modes.

  8. Effect of resonant magnetic perturbations on microturbulence in DIII-D pedestal

    DOE PAGES

    Holod, I.; Lin, Z.; Taimourzadeh, S.; ...

    2016-10-03

    Vacuum resonant magnetic perturbations (RMP) applied to otherwise axisymmetric tokamak plasmas produce in general a combination of non-resonant effects that preserve closed flux surfaces (kink response) and resonant effects that introduce magnetic islands and/or stochasticity (tearing response). The effect of the plasma kink response on the linear stability and nonlinear transport of edge turbulence is studied using the gyrokinetic toroidal code GTC for a DIII-D plasma with applied n = 2 vacuum RMP. GTC simulations use the 3D equilibrium of DIII-D discharge 158103 (Nazikian et al 2015 Phys. Rev. Lett. 114 105002), which is provided by nonlinear ideal MHD VMECmore » equilibrium solver in order to include the effect of the plasma kink response to the external field but to exclude island formation at rational surfaces. Analysis using the GTC simulation results reveal no increase of growth rates for the electrostatic drift wave instability and for the electromagnetic kinetic-ballooning mode in the presence of the plasma kink response to the RMP. Moreover, nonlinear electrostatic simulations show that the effect of the 3D equilibrium on zonal flow damping is very weak and found to be insufficient to modify turbulent transport in the electrostatic turbulence.« less

  9. Magnetic Control of Locked Modes in Present Devices and ITER

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Sabbagh, S.; Sweeney, R.; Hender, T.; Kirk, A.; La Haye, R. J.; Strait, E. J.; Ding, Y. H.; Rao, B.; Fietz, S.; Maraschek, M.; Frassinetti, L.; in, Y.; Jeon, Y.; Sakakihara, S.

    2014-10-01

    The toroidal phase of non-rotating (``locked'') neoclassical tearing modes was controlled in several devices by means of applied magnetic perturbations. Evidence is presented from various tokamaks (ASDEX Upgrade, DIII-D, JET, J-TEXT, KSTAR), spherical tori (MAST, NSTX) and a reversed field pinch (EXTRAP-T2R). Furthermore, the phase of interchange modes was controlled in the LHD helical device. These results share a common interpretation in terms of torques acting on the mode. Based on this interpretation, it is predicted that control-coil currents will be sufficient to control the phase of locking in ITER. This will be possible both with the internal coils and with the external error-field-correction coils, and might have promising consequences for disruption avoidance (by aiding the electron cyclotron current drive stabilization of locked modes), as well as for spatially distributing heat loads during disruptions. This work was supported in part by the US Department of Energy under DE-SC0008520, DE-FC-02-04ER54698 and DE-AC02-09CH11466.

  10. Solenoid-free plasma startup in NSTX using transient CHI

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Mueller, D.; Nelson, B. A.; Bell, M. G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Maingi, R.; Maqueda, R.; Menard, J.; Nagata, M.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.; Taylor, G.

    2009-06-01

    Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.

  11. Tracking formulas and strategies for a receiver oriented dual-axis tracking toroidal heliostat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Minghuan; Wang, Zhifeng; Liang, Wenfeng

    2010-06-15

    A 4 m x 4 m toroidal heliostat with receiver oriented dual-axis tracking, also called spinning-elevation tracking, was developed as an auxiliary heat source for a hydrogen production system. A series of spinning-elevation tracking formulas have been derived for this heliostat. This included basic tracking formulas, a formula for the elevation angle for heliostat with a mirror-pivot offset, and a more general formula for the biased elevation angle. This paper presents the new tracking formulas in detail and analyzes the accuracy of applying a simplifying approximation. The numerical results show these receiver oriented dual-axis tracking formula approximations are accurate tomore » within 2.5 x 10{sup -6} m in image plane. Some practical tracking strategies are discussed briefly. Solar images from the toroidal heliostat at selected times are also presented. (author)« less

  12. Physics of the current injection process during localized helicity injection

    NASA Astrophysics Data System (ADS)

    Hinson, Edward Thomas

    An impedance model has been developed for the arc-plasma cathode electron current source used in localized helicity injection tokamak startup. According to this model, a potential double layer (DL) is established between the high-density arc plasma (narc ˜ 1021 m-3) in the electron source, and the less-dense external tokamak edge plasma (nedge ˜ 10 18 m-3) into which current is injected. The DL launches an electron beam at the applied voltage with cross-sectional area close to that of the source aperture: Ainj ≈ 2 cm 2. The injected current, Iinj, increases with applied voltage, Vinj, according to the standard DL scaling, Iinj ˜ V(3/2/ inj), until the more restrictive of two limits to beam density nb arises, producing Iinj ˜ V(1/2/inj), a scaling with beam drift velocity. For low external tokamak edge density nedge, space-charge neutralization of the intense electron beam restricts the injected beam density to nb ˜ nedge. At high Jinj and sufficient edge density, the injected current is limited by expansion of the DL sheath, which leads to nb ˜ narc. Measurements of narc, Iinj , nedge, Vinj, support these predicted scalings, and suggest narc as a viable control actuator for the source impedance. Magnetic probe signals ≈ 300 degrees toroidally from the injection location are consistent with expectations for a gyrating, coherent electron beam with a compact areal cross-section. Technological development of the source has allowed an extension of the favorable Iinj ˜ V(1/2/inj) to higher power without electrical breakdown.

  13. Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions.

    PubMed

    Peng, Ying; Hansen, Brett J; Quist, Hannah; Zhang, Zhiping; Wang, Miao; Hawkins, Aaron R; Austin, Daniel E

    2011-07-15

    We present the design and results for a new radio-frequency ion trap mass analyzer, the coaxial ion trap, in which both toroidal and quadrupolar trapping regions are created simultaneously. The device is composed of two parallel ceramic plates, the facing surfaces of which are lithographically patterned with concentric metal rings and covered with a thin film of germanium. Experiments demonstrate that ions can be trapped in either region, transferred from the toroidal to the quadrupolar region, and mass-selectively ejected from the quadrupolar region to a detector. Ions trapped in the toroidal region can be transferred to the quadrupole region using an applied ac signal in the radial direction, although it appears that the mechanism of this transfer does not involve resonance with the ion secular frequency, and the process is not mass selective. Ions in the quadrupole trapping region are mass analyzed using dipole resonant ejection. Multiple transfer steps and mass analysis scans are possible on a single population of ions, as from a single ionization/trapping event. The device demonstrates better mass resolving power than the radially ejecting halo ion trap and better sensitivity than the planar quadrupole ion trap.

  14. Magnetic Microhelix Coil Structures

    NASA Astrophysics Data System (ADS)

    Smith, Elliot J.; Makarov, Denys; Sanchez, Samuel; Fomin, Vladimir M.; Schmidt, Oliver G.

    2011-08-01

    Together with the well-known ferro- and antiferromagnetic ordering, nature has created a variety of complex helical magnetic configurations. Here, we design and investigate three-dimensional microhelix coil structures that are radial-, corkscrew-, and hollow-bar-magnetized. The magnetization configurations of the differently magnetized coils are experimentally revealed by probing their specific dynamic response to an external magnetic field. Helix coils offer an opportunity to realize microscale geometries of the magnetic toroidal moment, observed so far only in bulk multiferroic materials.

  15. Method of measuring the dc electric field and other tokamak parameters

    DOEpatents

    Fisch, Nathaniel J.; Kirtz, Arnold H.

    1992-01-01

    A method including externally imposing an impulsive momentum-space flux to perturb hot tokamak electrons thereby producing a transient synchrotron radiation signal, in frequency-time space, and the inference, using very fast algorithms, of plasma parameters including the effective ion charge state Z.sub.eff, the direction of the magnetic field, and the position and width in velocity space of the impulsive momentum-space flux, and, in particular, the dc toroidal electric field.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.

    In this study, a model-based feedback system is presented enabling the simultaneous control of the stored energy through β n and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.

  17. Magnetic control of magnetohydrodynamic instabilities in tokamaks

    DOE PAGES

    Strait, Edward J.

    2014-11-24

    Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB/B ~ 10 -3 to 10 -4) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic responsemore » of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode — a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields at low beta and resistive wall modes at high beta. Furthermore, these and other scientific advances, and their application to control of MHD instabilities, will be reviewed with emphasis on the most recent results and their applicability to ITER.« less

  18. Nonlinear MHD simulation of magnetic relaxation during DC helicity injection in spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2009-11-01

    Recently, the intermittent plasma flow has been observed to be correlated with the fluctuations of the toroidal current It and n=1 mode in the HIST spherical torus device. During the partially driven phase mixed with a resistive decay, the toroidal ion flow velocity (˜ 40 km/s) in the opposite direction of It is driven in the central open flux region, and the oscillations in n=1 mode occur there, while during the resistive decay phase, this flow velocity reverses and results in the same as that of It, and the oscillations in n=1 mode disappear there. The purpose of the present study is to investigate the plasma flow reversal process and the relevant MHD relaxation by using the 3-D nonlinear MHD simulations. The numerical results exhibit that during the driven phase, the toroidal flow velocity (˜ 37 km/s) is in the opposite direction to It, but in the same direction as the ExB rotation induced by an applied voltage. This flow is driven by the magnetic reconnection occurring at the X-point during the repetitive process of the non-axisymmetric magnetized plasmoid ejection from the helicity injector. The oscillations of poloidal flux ψp are out of phase with those of toroidal flux ψt and magnetic energy for the dominant n=1 mode, indicating the flux conversion from ψt to ψp. The effect of the vacuum toroidal field strength on the plasma dynamics is discussed.

  19. Flow profile measurement with multi-Mach probes on the HIST spherical torus device

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Nishioka, T.; Ando, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2008-11-01

    Role of plasma flow during MHD relaxation and magnetic reconnection processes is still underlying physics. The HIST spherical torus can generate various spherical torus (ST) configurations by changing the external toroidal magnetic field. Especially, the flipped ST (F-ST) configuration has been for the first time found in the HIST device [1]. In the present study, plasma flow measurements were performed by multi-Mach probes in the ST and the F-ST configurations. In addition, the measured plasma flow was compared with that evaluated by an ion Doppler spectrometer (IDS) system and plasma images measured by a high-speed camera. As the result, it was shown that the toroidal plasma flow (˜ 20 km/s) at the location far from the plasma gun was clearly reversed after the transition from the ST to the F-ST. However, the direction of the toroidal flow was not changed near the plasma gun. Therefore, it can be considered that there are flipped and non-reversal regions in the plasma. The result agrees well with a magnetic configuration predicted by magnetic field measurements. The plasma images measured by the high-speed camera also indicated that a helically twisted structure appeared from the gun region, and it localized at the edge region. [1] M. Nagata et al., Phys. Rev. Lett. 90, pp. 225001-225004 (2003).

  20. Control of Compact-Toroid Characteristics by External Copper Shell

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.

  1. Sustainment Study of Flipped Spherical Torus Plasmas on HIST

    NASA Astrophysics Data System (ADS)

    Takamiya, T.; Nagata, M.; Kawami, K.; Hasegawa, H.; Fukumoto, N.; Uyama, T.; Masamune, S.; Iida, M.; Katsurai, M.

    2003-10-01

    We have discovered that helicity-driven ST plasmas relax toward the flipped state by decreasing the external toroidal field and reversing its sign in time [1]. From the viewpoint of coaxial helicity injection (CHI) current drive, it is conceivable that the flipped ST (F-ST), which consists of only closed flux surfaces, compares favorably with the normal ST. We have investigated the sustainment mechanism of the F-ST plasma. The helicity-driven relaxed theory shows that there exist the mixed states of ST and F-ST in the flux conserver. Helicity is transferred to F-ST through the ST with coupling with gun electrodes. It has been found that magnetic reconnection between the toroidal magnetic field plays important role in the sustainment of the F-ST. The magnetic field in the outer edge region shows regular oscillations which have a large amplitude of the n=1 mode. The core region of the F-ST seems to be relatively stable. [1] M. Nagata, et al., Phys. Rev. Lett. 90, 225001 (2003)

  2. Formation and Sustainment of Flipped Spherical Torus Plasmas on HIST

    NASA Astrophysics Data System (ADS)

    Oguro, T.; Jinno, T.; Hasegawa, H.; Nagata, M.; Fukumoto, N.; Uyama, T.; Masamune, S.; Iida, M.; Katsurai, M.

    2002-11-01

    In order to understand comprehensively the relaxation and self-organization in the coaxial helicity injection system, we have investigated dynamics of ST plasmas produced in the HIST device by decreasing the external toroidal field (TF) and reversing its sign in time. In results, we have discovered that the ST relaxes towards flipped/reversed ST configurations. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. This self-reversal of the poloidal field is thought to be evidence for global helicity conservation. Taylor helicity-driven relaxed theory predicts that there exists the relaxed state of the flipped ST plasma when the TF current is reversed. We found that when q_axis passes through the q_axis =1 rational barrier in the initial phase, the ST plasma becomes unstable and relaxes to flipped states through RFP states. The n=1 mode activities are essential in the formation and sustainment of the flipped ST.

  3. Experimental Verification of the Kruskal-Shafranov Stability Limit in Line-Tied Partial Toroidal Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, E.; Myers, C. E.; Yamada, M.

    2011-07-19

    The stability properties of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys. Plasmas, 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kinkmore » instability. Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., qa = 1).« less

  4. Experimental verification of the Kruskal-Shafranov stability limit in line-tied partial-toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, E.; Myers, C. E.; Yamada, M.

    2011-10-15

    The stability properties of partial-toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys. Plasmas 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kink instability.more » Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., q{sub a} = 1).« less

  5. Resistive magnetohydrodynamics with toroidal rotation in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Cao, Jintao; Cai, Huishan

    2018-01-01

    Toroidal rotation has always existed in tokamak plasmas, and its Mach number can reach unity during neutral beam injection. Toroidal rotation can affect plasma equilibrium and magnetohydrodynamic instabilities significantly. Based on linearized equations including the toroidal rotation effect, the toroidal model derived by Glasser et al. [Phys. Fluids 18, 875 (1975)] is extended to include this effect, and a set of resistive equations including the toroidal rotation effect in the axi-symmetry toroidal geometry is derived. Based on these derived equations, the effect of toroidal rotation on tearing modes is considered, and the growth rate of tearing modes is obtained analytically. It is shown that the effect of toroidal rotation on tearing modes depends on both the direction of toroidal rotation flow and the sign of toroidal rotation flow shear. When they have the same sign, they play a role in stabilizing tearing modes, while when they have opposite signs, they have a destabilizing effect on tearing modes.

  6. APPARATUS FOR PRODUCING AND MANIPULATING PLASMAS

    DOEpatents

    Colgate, S.A.; Ferguson, J.P.; Furth, H.P.; Wright, R.E.

    1960-07-26

    An electrical pinch discharge apparatus is described for producing and manipulating high-temperature plasmas. The apparatus may be of either the linear or toroidal pinch discharge type. Arrangements are provided whereby stabilizing fields may be trapped in the plasma external to the main pinch discharge path and the boundary condition of the stabilizing field programed so as to stabilize the discharge or to promote instabilities in the discharge as desired. The produced plasmas may be employed for various purposes, and fusion neutrons have been produced with the apparatus.

  7. Avoidance of tearing mode locking with electro-magnetic torque introduced by feedback-based mode rotation control in DIII-D and RFX-mod

    DOE PAGES

    Okabayashi, M.; Zanca, P.; Strait, E. J.; ...

    2016-11-25

    Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. We have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance ismore » provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. We define β N as β N = β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. Finally, the internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.« less

  8. Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, T. E.

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okabayashi, M.; Zanca, P.; Strait, E. J.

    Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. We have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance ismore » provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. We define β N as β N = β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. Finally, the internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.« less

  10. Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices

    DOE PAGES

    Evans, T. E.

    2015-11-13

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  11. Avoidance of tearing mode locking with electro-magnetic torque introduced by feedback-based mode rotation control in DIII-D and RFX-mod

    NASA Astrophysics Data System (ADS)

    Okabayashi, M.; Zanca, P.; Strait, E. J.; Garofalo, A. M.; Hanson, J. M.; In, Y.; La Haye, R. J.; Marrelli, L.; Martin, P.; Paccagnella, R.; Paz-Soldan, C.; Piovesan, P.; Piron, C.; Piron, L.; Shiraki, D.; Volpe, F. A.; DIII-D, The; RFX-mod Teams

    2017-01-01

    Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. Here we have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance is provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. Here β N is defined as β N  =  β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. The internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.

  12. Tokamak with liquid metal toroidal field coil

    DOEpatents

    Ohkawa, Tihiro; Schaffer, Michael J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  13. Effect of stress on amorphous bent cores

    NASA Astrophysics Data System (ADS)

    Saito, Akihiko; Yamamoto, Ken-ichi; Kunimori, Osamu

    1992-07-01

    The effect of stress on bent amorphous cores with positive magnetostriction has been investigated. Tension has been applied to the ribbon while winding into the toroid to improve the magnetic properties of the core. The properties of the coercive force of the tension winding core due to applied tension have been made clear from the observation of the domain structure.

  14. One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners

    NASA Astrophysics Data System (ADS)

    Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel

    2017-10-01

    One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.

  15. Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras

    NASA Astrophysics Data System (ADS)

    Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin

    2018-03-01

    We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.

  16. Effect of electrode biasing on m/n  =  2/1 tearing modes in J-TEXT experiments

    NASA Astrophysics Data System (ADS)

    Liu, Hai; Hu, Qiming; Chen, Zhipeng; Yu, Q.; Zhu, Lizhi; Cheng, Zhifeng; Zhuang, Ge; Chen, Zhongyong

    2017-01-01

    The effects of electrode biasing (EB) on the m/n  =  2/1 tearing mode have been experimentally studied in J-TEXT tokamak discharges, where m and n are the poloidal and toroidal mode numbers. It is found that for a negative bias voltage, the mode amplitude is reduced, and the mode frequency is increased accompanied by the increased toroidal plasma rotation speed in the counter-I p direction. For a positive bias voltage, the mode frequency is decreased together with the change of the rotation velocity towards the co-I p direction, and the mode amplitude is increased. Statistic results show that the variations in the toroidal rotation speed, the 2/1 mode frequency and its amplitude linearly depend on the bias voltage. The threshold voltages for complete suppression and locking of the mode are found. The experimental results suggest that applied electrode biasing is a possible method for the avoidance of mode locking and disruption.

  17. Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field

    DOEpatents

    Schaffer, Michael J.

    1986-01-01

    A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  18. Identification of multi-modal plasma responses to applied magnetic perturbations using the plasma reluctance

    DOE PAGES

    Logan, Nikolas C.; Paz-Soldan, Carlos; Park, Jong-Kyu; ...

    2016-05-03

    Using the plasma reluctance, the Ideal Perturbed Equilibrium Code is able to efficiently identify the structure of multi-modal magnetic plasma response measurements and the corresponding impact on plasma performance in the DIII-D tokamak. Recent experiments demonstrated that multiple kink modes of comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n = 2. This multi-modal response is in good agreement with ideal magnetohydrodynamic models, but detailed decompositions presented here show that the mode structures are not fully described by either the least stable modes or the resonant plasma response. This paper identifies the measured response fieldsmore » as the first eigenmodes of the plasma reluctance, enabling clear diagnosis of the plasma modes and their impact on performance from external sensors. The reluctance shows, for example, how very stable modes compose a significant portion of the multi-modal plasma response field and that these stable modes drive significant resonant current. Finally, this work is an overview of the first experimental applications using the reluctance to interpret the measured response and relate it to multifaceted physics, aimed towards providing the foundation of understanding needed to optimize nonaxisymmetric fields for independent control of stability and transport.« less

  19. Continuous-annealing method for producing a flexible, curved, soft magnetic amorphous alloy ribbon

    NASA Astrophysics Data System (ADS)

    Francoeur, Bruno; Couture, Pierre

    2012-04-01

    A method has been developed for continuous annealing of an amorphous alloy ribbon moving forward at several meters per second, giving a curved shape to the ribbon that remains flexible afterward and can be easily wound into a toroidal core with excellent soft magnetic properties. A heat pulse was applied by a compact system on a Metglas 2605HB1 ribbon moving forward at 5 m/s to initiate a thermal treatment at 460 °C, near crystallization onset. The treatment duration was less than 0.1 s, and the heating and cooling rates were above 10 000 °C/s, which helped preserve most of the alloy as-cast ductility state. Such high temperature rates were achieved by forcing a static contact between the moving ribbon and a temperature-controlled roller. A tensile stress and a series of bending configurations were applied on the moving ribbon during the treatment to induce the development of magnetic anisotropy and to obtain the desired natural curvature radius. The core losses at 60 Hz of a toroidal test core wound with the resulting ribbon are lower than the specific values reported by the alloy manufacturer. This method can be implemented at the casting plant for supplying a low-cost, ready-to-use ribbon, easy to handle and cut, for mass production of toroidal cores for distribution transformer kernels (core and coil only), pulse power cores, etc.

  20. Evidence of toroidally localized turbulence with applied 3D fields in the DIII-D tokamak

    DOE PAGES

    Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; ...

    2016-09-21

    New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agreesmore » qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. In conclusion, these processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.« less

  1. On fully three-dimensional resistive wall mode and feedback stabilization computationsa)

    NASA Astrophysics Data System (ADS)

    Strumberger, E.; Merkel, P.; Sempf, M.; Günter, S.

    2008-05-01

    Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes. In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Köppendörfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208].

  2. On fully three-dimensional resistive wall mode and feedback stabilization computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strumberger, E.; Merkel, P.; Sempf, M.

    2008-05-15

    Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes.more » In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Koeppendoerfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208].« less

  3. Nonlinear Fluid Model Of 3-D Field Effects In Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Beidler, M. T.

    2017-10-01

    Extended MHD codes (e.g., NIMROD, M3D-C1) are beginning to explore nonlinear effects of small 3-D magnetic fields on tokamak plasmas. To facilitate development of analogous physically understandable reduced models, a fluid-based dynamic nonlinear model of these added 3-D field effects in the base axisymmetric tokamak magnetic field geometry is being developed. The model incorporates kinetic-based closures within an extended MHD framework. Key 3-D field effects models that have been developed include: 1) a comprehensive modified Rutherford equation for the growth of a magnetic island that includes the classical tearing and NTM perturbed bootstrap current drives, externally applied magnetic field and current drives, and classical and neoclassical polarization current effects, and 2) dynamic nonlinear evolution of the plasma toroidal flow (radial electric field) in response to the 3-D fields. An application of this model to RMP ELM suppression precipitated by an ELM crash will be discussed. Supported by Office of Fusion Energy Sciences, Office of Science, Dept. of Energy Grants DE-FG02-86ER53218 and DE-FG02-92ER54139.

  4. Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF

    NASA Astrophysics Data System (ADS)

    Ellington, S. M.; Moldwin, M. B.; Liemohn, M. W.

    2016-03-01

    We present evidence of resonant wave-wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large-scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time-dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin-Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes.

  5. Prolateness of the Solar Tachocline Inferred from Latitudinal Force Balance in a Magnetohydrodynamic Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-05-01

    Motivated by recent helioseismic observations concerning solar tachocline shape and thickness and by the theoretical development of MHD shallow-water equations for the tachocline, we compute the prolateness of the tachocline using an MHD shallow-water model, in which the shape and thickness are determined from the latitudinal force balance equation. We show that a strong toroidal magnetic field stored at or below the overshoot part of the tachocline leads to a pileup of fluid at high latitude, owing to the poleward magnetic curvature stress which has to be balanced by an equatorward latitudinal hydrostatic pressure gradient. For toroidal fields of solar amplitude (~100 kG), results for differentially rotating and uniformly rotating tachoclines are almost the same. In contrast, the unmagnetized differentially rotating tachocline would always be weakly oblate. We propose that a strong toroidal field in the overshoot part of the tachocline should tend to suppress the overshooting, thereby increasing the magnetic storage capacity of the layer since the stratification there should become more subadiabatic. We illustrate the effect of this process on the shape and thickness of the layer by assuming its effective gravity is a function of field strength. If toroidal fields are concentrated in relatively narrow bands which migrate toward the equator with the advance of the sunspot cycle, then they should be accompanied by a ``thickness front'' advancing at the same rate. Applying our model to the prolateness estimate of Charbonneau et al. yields toroidal fields of 60-150 kG in the overshoot layer, consistent with other considerations. Their prolateness in the radiative part of the tachocline would require ~600 kG fields to be present.

  6. Reconnection of a Kinking Flux Rope Triggering the Ejection of a Microwave and Hard X-Ray Source. 2. Numerical Modeling

    DTIC Science & Technology

    2010-07-14

    apex. The external field is thus mainly poloidal, with the ratio between toroidal and poloidal components at the flux rope apex being Bet/ Bep = 0.075...eruption involved a kink-unstable flux rope that had a high twist of Φ & 6π. This yields a coherent framework to understand the inverse gamma shape...leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreement n 218816

  7. Understanding disruptions in tokamaksa)

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.; Galkin, Sergei A.; Gerasimov, Sergei N.; contributors, JET-EFDA

    2012-05-01

    This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation hasmore » been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.« less

  9. An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian

    2014-10-01

    An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.

  10. Error field optimization in DIII-D using extremum seeking control

    NASA Astrophysics Data System (ADS)

    Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; Humphreys, D. A.; Eidietis, N.; Hanson, J. M.; Paz-Soldan, C.; Strait, E. J.; Walker, M. L.

    2016-07-01

    DIII-D experiments have demonstrated a new real-time approach to tokamak error field control based on maximizing the toroidal angular momentum. This approach uses extremum seeking control theory to optimize the error field in real time without inducing instabilities. Slowly-rotating n  =  1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coil currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.

  11. Initial results from the NSTX Real-Time Velocity diagnostic

    NASA Astrophysics Data System (ADS)

    Podesta, M.; Bell, R. E.

    2011-10-01

    A new diagnostic for fast measurements of plasma rotation through active charge-exchange recombination spectroscopy (CHERS) was installed on NSTX. The diagnostic infers toroidal rotation from carbon ions undergoing charge-exchange with neutrals from a heating Neutral Beam (NB). Each of the 4 channels, distributed along the outer major radius, includes active views intercepting the NB and background views missing the beam. Estimated uncertainties in the measured velocity are <5% at the maximum sampling rate of 5000 Hz (or <1% at 1000 Hz), to be compared with <0.5% and 100 Hz of the main NSTX CHERS system. Signals are acquired on 2 CCD detectors, each controlled by a dedicated PC. Spectra are fitted in real-time through a C++ processing code and velocities are made available to the Plasma Control System for future implementation of feedback on velocity. Results from the initial operation during the 2011 run are discussed, emphasizing the fast dynamics of toroidal rotation, e . g . during L-H mode transition and breaking caused by instabilities and by externally-imposed magnetic perturbations. Work supported by USDOE Contract No. DE-AC02-09CH11466.

  12. LETTER: Biased limiter experiments on the Advanced Toroidal Facility (ATF) torsatron

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Aceto, S. C.; Zielinski, J. J.

    1994-02-01

    The Advanced Toroidal Facility (ATF) torsatron incorporates two rail limiters that can be positioned by external controls. The influence on the plasma parameters of biasing these limiters both positively and negatively with respect to the walls has been investigated. Experiments have been carried out in the electron cyclotron heated plasmas at 200 kW with a typical density of 5 × 1012 cm-3 and a central electron temperature of ~900 eV. Negative biasing produces only small changes in the plasma parameters, but positive biasing increases the particle confinement by about a factor of 5, although the plasma stored energy does fall at the higher voltages. In addition, positive biasing produces the following effects compared with floating limiter discharges: the core density profiles become peaked rather than hollow, the electric field at the edge becomes more negative (pointing radially inward), the magnitudes of the edge fluctuations and the fluctuation induced transport are reduced, the fluctuation wavelengths become longer and their propagation direction reverses from the electron to the ion diamagnetic direction. Neither polarity of biasing appears to affect the impurity content or transport

  13. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator

    NASA Astrophysics Data System (ADS)

    Hasegawa, Koji; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Aoki, Kazuyoshi

    2009-08-01

    The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161-163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.

  14. Tokamak with liquid metal for inducing toroidal electrical field

    DOEpatents

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.

  15. Electromagnetic toroidal excitations in matter and free space.

    PubMed

    Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I

    2016-03-01

    The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.

  16. Roles of effective helical ripple rates in nonlinear stability of externally induced magnetic islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp

    Magnetic islands are externally produced by resonant magnetic perturbations (RMPs) in toroidal plasmas. Spontaneous annihilation of RMP-induced magnetic islands called self-healing has been observed in helical systems. A possible mechanism of the self-healing is shielding of RMP penetration by helical ripple-induced neoclassical flows, which give rise to neoclassical viscous torques. In this study, effective helical ripple rates in multi-helicity helical systems are revisited, and a multi-helicity effect on the self-healing is investigated, based on a theoretical model of rotating magnetic islands. It is confirmed that effective helical ripple rates are sensitive to magnetic axis positions. It is newly found thatmore » self-healing thresholds also strongly depend on magnetic axis positions, which is due to dependence of neoclassical viscous torques on effective helical ripple rates.« less

  17. Toroidal current asymmetry in tokamak disruptions

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.

  18. Distribution of ULF energy (f is less than 80 mHz) in the inner magnetosphere - A statistical analysis of AMPTE CCE magnetic field data

    NASA Technical Reports Server (NTRS)

    Takahashi, Kazue; Anderson, Brian J.

    1992-01-01

    Magnetic field measurements made with the AMPTE CCE spacecraft are used to investigate the distribution of ULF energy in the inner magnetosphere. The data base is employed to examine the spatial distribution of ULF energy. The spatial distribution of wave power and spectral structures are used to identify several pulsation types, including multiharmonic toroidal oscillations; equatorial compressional Pc 3 oscillations; second harmonic poloidal oscillations; and nightside compressional oscillations. The frequencies of the toroidal oscillations are applied to determine the statistical radial profile of the plasma mass density and Alfven velocity. A clear signature of the plasma pause in the profiles of these average parameters is found.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K. C.; Peng, Yueng Kay Martin

    Transport theory for potato orbits in the region near the magnetic axis in an axisymmetric torus such as tokamaks and spherical tori is extended to the situation where the toroidal flow speed is of the order of the sonic speed as observed in National Spherical Torus Experiment [E. J. Synakowski, M. G. Bell, R. E. Bell et al., Nucl. Fusion 43, 1653 (2003)]. It is found that transport fluxes such as ion radial heat flux, and bootstrap current density are modified by a factor of the order of the square of the toroidal Mach number. The consequences of the orbitmore » squeezing are also presented. The theory is developed for parabolic (in radius r) plasma profiles. A method to apply the results of the theory for the transport modeling is discussed.« less

  20. Preliminary Experiment of Non-Inductive Plasma Current Startup in SUNIST Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    He, Yexi; Zhang, Liang; Xie, Lifeng; Tang, Yi; Yang, Xuanzong; Feng, Chunhua; Fu, Hongjun

    2006-01-01

    The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.

  1. Error Field Assessment from Driven Mode Rotation: Results from Extrap-T2R Reversed-Field-Pinch and Perspectives for ITER

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.

    2012-10-01

    A new ITER-relevant non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the Extrap-T2R reversed field pinch. Resistive Wall Modes (RWMs) were generated and their rotation sustained by rotating magnetic perturbations. In particular, stable modes of toroidal mode number n=8 and 10 and unstable modes of n=1 were used in this experiment. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the RWMs were observed to rotate non-uniformly and be modulated in amplitude (in the case of unstable modes, the observed oscillation was superimposed to the mode growth). This behavior was used to infer the amplitude and toroidal phase of n=1, 8 and 10 EFs. The method was first tested against known, deliberately applied EFs, and then against actual intrinsic EFs. Applying equal and opposite corrections resulted in longer discharges and more uniform mode rotation, indicating good EF compensation. The results agree with a simple theoretical model. Extensions to tearing modes, to the non-uniform plasma response to rotating perturbations, and to tokamaks, including ITER, will be discussed.

  2. Generalization of Solovev’s approach to finding equilibrium solutions for axisymmetric plasmas with flow

    NASA Astrophysics Data System (ADS)

    M, S. CHU; Yemin, HU; Wenfeng, GUO

    2018-03-01

    Solovev’s approach of finding equilibrium solutions was found to be extremely useful for generating a library of linear-superposable equilibria for the purpose of shaping studies. This set of solutions was subsequently expanded to include the vacuum solutions of Zheng, Wootton and Solano, resulting in a set of functions {SOLOVEV_ZWS} that were usually used for all toroidally symmetric plasmas, commonly recognized as being able to accommodate any desired plasma shapes (complete-shaping capability). The possibility of extending the Solovev approach to toroidal equilibria with a general plasma flow is examined theoretically. We found that the only meaningful extension is to plasmas with a pure toroidal rotation and with a constant Mach number. We also show that the simplification ansatz made to the current profiles, which was the basis of the Solovev approach, should be applied more systematically to include an internal boundary condition at the magnetic axis; resulting in a modified and more useful set {SOLOVEV_ZWSm}. Explicit expressions of functions in this set are given for equilibria with a quasi-constant current density profile, with a toroidal flow at a constant Mach number and with specific heat capacity 1. The properties of {SOLOVEV_ZWSm} are studied analytically. Numerical examples of achievable equilibria are demonstrated. Although the shaping capability of the set {SOLOVE_ZWSm} is quite extensive, it nevertheless still does not have complete shaping capability, particularly for plasmas with negative curvature points on the plasma boundary such as the doublets or indented bean shaped tokamaks.

  3. Toroid cavity/coil NMR multi-detector

    DOEpatents

    Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  4. Gaseous toroid around Saturn. [Saturnian ring system for atomic hydrogen trapping in Titan atmospheric model

    NASA Technical Reports Server (NTRS)

    Mcdonough, T. R.

    1974-01-01

    The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles.

  5. Capillary toroid cavity detector for high pressure NMR

    DOEpatents

    Gerald, II, Rex E.; Chen, Michael J.; Klingler, Robert J.; Rathke, Jerome W.; ter Horst, Marc

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  6. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  7. A constant radius of curvature model for the organization of DNA in toroidal condensates.

    PubMed Central

    Hud, N V; Downing, K H; Balhorn, R

    1995-01-01

    Toroidal DNA condensates have received considerable attention for their possible relationship to the packaging of DNA in viruses and in general as a model of ordered DNA condensation. A spool-like model has primarily been supported for DNA organization within toroids. However, our observations suggest that the actual organization may be considerably different. We present an alternate model in which DNA for a given toroid is organized within a series of equally sized contiguous loops that precess about the toroid axis. A related model for the toroid formation process is also presented. This kinetic model predicts a distribution of toroid sizes for DNA condensed from solution that is in good agreement with experimental data. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:7724602

  8. Toroidal Tank Development for Upper-stages

    NASA Technical Reports Server (NTRS)

    DeLay, Tom; Roberts, Keith

    2003-01-01

    The advantages, development, and fabrication of toroidal propellant tanks are profiled in this viewgraph presentation. Several images are included of independent research and development (IR&D) of toroidal propellant tanks at Marshall Space Flight Center (MSFC). Other images in the presentation give a brief overview of Thiokol conformal tank technology development. The presentation describes Thiokol's approach to continuous composite toroidal tank fabrication in detail. Images are shown of continuous and segmented toroidal tanks fabricated by Thiokol.

  9. Nuclear resonance tomography with a toroid cavity detector

    DOEpatents

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1996-11-12

    A toroid cavity detection system is described for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is input to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties. 4 figs.

  10. Nuclear resonance tomography with a toroid cavity detector

    DOEpatents

    Woelk, Klaus; Rathke, Jerome W.; Klingler, Robert J.

    1996-01-01

    A toroid cavity detection system for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is inputted to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties.

  11. EMC3-EIRENE modelling of toroidally-localized divertor gas injection experiments on Alcator C-Mod

    DOE PAGES

    Lore, Jeremy D.; Reinke, M. L.; LaBombard, Brian; ...

    2014-09-30

    Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ~50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modelling, with the simulation yielding a toroidal asymmetry in the heat flow to the outermore » strike point. Finally, toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.« less

  12. Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak

    NASA Astrophysics Data System (ADS)

    Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.

    2018-02-01

    The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.

  13. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas [Modeling of fast neutral-beam-generated ion effects on MHD spectroscopic observations of RWM stability in DIII-D plasmas

    DOE PAGES

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...

    2015-02-03

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β N limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β N, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma tomore » an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β N levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β N.« less

  14. Erratum: Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices (2015 Plasma Phys. Control. Fusion 57 123001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, T. E.

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  15. Magnetic-flutter-induced pedestal plasma transport

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron transport root. Magnetic-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize peeling-ballooning modes and thereby suppress edge localized modes in low collisionality tokamak H-mode plasmas.

  16. Erratum: Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices (2015 Plasma Phys. Control. Fusion 57 123001)

    DOE PAGES

    Evans, T. E.

    2016-03-01

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  17. Non-invasive diagnostics of ion beams in strong toroidal magnetic fields with standard CMOS cameras

    NASA Astrophysics Data System (ADS)

    Ates, Adem; Ates, Yakup; Niebuhr, Heiko; Ratzinger, Ulrich

    2018-01-01

    A superconducting Figure-8 stellarator type magnetostatic Storage Ring (F8SR) is under investigation at the Institute for Applied Physics (IAP) at Goethe University Frankfurt. Besides numerical simulations on an optimized design for beam transport and injection a scaled down (0.6T) experiment with two 30°toroidal magnets is set up for further investigations. A great challenge is the development of a non-destructive, magnetically insensitive and flexible detector for local investigations of an ion beam propagating through the toroidal magnetostatic field. This paper introduces a new way of beam path measurement by residual gas monitoring. It uses a single board camera connected to a standard single board computer by a camera serial interface all placed inside the vacuum chamber. First experiments with one camera were done and in a next step two under 90 degree arranged cameras were installed. With the help of the two cameras which are moveable along the beam pipe the theoretical predictions are experimentally verified successfully. Previous experimental results have been confirmed. The transport of H+ and H2+ ion beams with energies of 7 keV and at beam currents of about 1 mA is investigated successfully.

  18. Global Motions of the Nuclear Pore Complex: Insights from Elastic Network Models

    PubMed Central

    Lezon, Timothy R.; Sali, Andrej; Bahar, Ivet

    2009-01-01

    The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at ∼5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations. PMID:19730674

  19. Global motions of the nuclear pore complex: insights from elastic network models.

    PubMed

    Lezon, Timothy R; Sali, Andrej; Bahar, Ivet

    2009-09-01

    The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at approximately 5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations.

  20. Experiments on Turbulent Modifications to Ohm's Law in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Goldwin, J.; O'Connell, R.; Kendrick, R.; Bastian, N.; Forest, C. B.

    1998-11-01

    Theories of MHD turbulence predict the existence of an anomalous resistivity and field-aligned current generation: j = β nabla × B + α B. The dynamo experiment being built at the University of Wisconsin-Madison is well suited for quantifying the turbulent transport coefficients α and β. The experiment is a spherical volume of liquid sodium with helical flows driven by propellers and high Reynolds number (Re ≈ 10^7), making it well suited for these studies. Two experiments are proposed: (1) A Helmholtz coil will produce a magnetic field in the z-direction, and the resulting toroidal field will be measured for the anomalous resistivity-the β-effect and (2) A toroidal magnetic field will be applied to the sphere through currents in a center column, and the induced toroidal current will be measured with a Rogowski coil-the α-effect. Complete measurements of turbulent velocity fields (including the turbulent helicity density) are being made in a dimensionally similar water experiment (water and sodium have the same viscosity and mass density) such that the magnitude of the α and β values can be estimated for the sodium experiment.

  1. Amorphous ribbon transducers

    NASA Astrophysics Data System (ADS)

    Meydan, T.; Overshott, K. J.

    1984-02-01

    Amorphous ribbon transducers have been investigated which consist of toroidally wound amorphous ribbon with a primary (magnetizing) winding and secondary (search coil) windings. The application of a force to the ribbon gives a linear search coil voltage against applied force characteristic. The positioning of the windings with respect to the applied force has been studied, and it is shown that the effect of the applied force is localized. Domain studies have shown that the applied force produces domain wall motion which can be correlated to the performance. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.

  2. Gyrokinetic Particle Simulations of Neoclassical Transport

    NASA Astrophysics Data System (ADS)

    Lin, Zhihong

    A time varying weighting (delta f) scheme based on the small gyro-radius ordering is developed and applied to a steady state, multi-species gyrokinetic particle simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Benchmark simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion -electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. In agreement with the existing analytical neoclassical theory, ion energy flux is enhanced by the toroidal mass flow and the neoclassical viscosity is a Pfirsch-Schluter factor times the classical viscosity in the banana regime. In addition, the poloidal electric field associated with toroidal mass flow is found to enhance density gradient driven electron particle flux and the bootstrap current while reducing temperature gradient driven flux and current. Modifications of the neoclassical transport by the orbit squeezing effects due to the radial electric field associated with sheared toroidal flow are studied. Simulation results indicate a reduction of both ion thermal flux and neoclassical toroidal rotation. Neoclassical theory in the steep gradient profile regime, where conventional neoclassical theory fails, is examined by taking into account finite banana width effects. The relevance of these studies to interesting experimental conditions in tokamaks is discussed. Finally, the present numerical scheme is extended to general geometry equilibrium. This new formulation will be valuable for the development of new capabilities to address complex equilibria such as advanced stellarator configurations and possibly other alternate concepts for the magnetic confinement of plasmas. In general, the present work demonstrates a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes.

  3. Effects of density gradient caused by multi-pulsing CHI on two-fluid flowing equilibria of spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2014-10-01

    Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the E × B drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The purpose of this study is to investigate the effects of the steep change in the density gradient on the ST equilibria by using the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region while it remains a diamagnetic profile in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region. Here, the negative ion flow velocity is the opposite direction to the toroidal current. The poloidal ion flow velocity between the OFC and closed flux regions is increased, because the ion diamagnetic drift velocity is changed in the same direction as the E × B drift velocity through the steeper ion pressure gradient. As a result, the strong shear flow and the paramagnetic toroidal field are generated in the closed flux region. Here, the ion flow velocity is the same direction as the poloidal current. The radial electric field shear between the OFC and closed flux regions is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The two-fluid effect is significant there due to the ion diamagnetic effect.

  4. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  5. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; MST Team

    2011-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with minimal external magnetization, (2) toroidal confinement physics, and (3) basic plasma physics is summarized. New tools and diagnostics are accessing physics barely studied in the RFP. Several diagnostic advances are important for ITER/burning plasma. A 1 MW neutral beam injector operates routinely for fast ion, heating, and transport investigations. Energetic ions are also created spontaneously by tearing mode reconnection, reminiscent of astrophysical plasmas. Classical confinement of impurity ions is measured in reduced-tearing plasmas. Fast ion slowing-down is also classical. Alfven-eigenmode-like activity occurs with NBI, but apparently not TAE. Stellarator-like helical structure appears in the core of high current plasmas, with improved confinement characteristics. FIR interferometry, Thomson scattering, and HIBP diagnostics are beginning to explore microturbulence scales, an opportunity to exploit the RFP's high beta and strong magnetic shear parameter space. A programmable power supply for the toroidal field flexibly explores scenarios from advanced inductive profile control to low current tokamak operation. A 1 MW 5.5 GHz source for electron Bernstein wave injection is nearly complete to investigate heating and current drive in over-dense plasmas. Supported by DOE and NSF.

  6. Error field optimization in DIII-D using extremum seeking control

    DOE PAGES

    Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; ...

    2016-06-03

    A closed-loop error field control algorithm is implemented in the Plasma Control System of the DIII-D tokamak and used to identify optimal control currents during a single plasma discharge. The algorithm, based on established extremum seeking control theory, exploits the link in tokamaks between maximizing the toroidal angular momentum and minimizing deleterious non-axisymmetric magnetic fields. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coilmore » currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.« less

  7. Destruction of the Last Good Magnetic Surface in Diii-D Usn with Elms and C-Coils Shot 115467 due to C-Coils Using Maps

    NASA Astrophysics Data System (ADS)

    McCray, A.; Punjabi, A.; Ali, H.

    2004-11-01

    Unperturbed magnetic topology of DIII-D shot 115467 is described by the symmetric simple map (SSM) with map parameter k=0.2623 [1], then last good surface passes through x=0 and y=0.9995, q_edge=6.48 (same as in shot 115467) if six iterations of SSM are taken to be equivalent to single toroidal circuit of DIII-D. The dipole map (DM) calculates the effects of localized, external high mode numbers magnetic perturbations on motion of field lines. We use dipole map to describe effects of C-coils on field line trajectories in DIII-D. We apply DM after each iteration of SSM, with s=1.0021, x_dipole=1.5617, y_dipole= 0 [1] for shot 115467. We study the changes in the last good surface and its destruction as a function of I_C-coil. This work is supported by NASA SHARP program and DE-FG02-02ER54673. [1] H. Ali, A. Punjabi, A. Boozer, and T. Evans, presented at the 31st European Physical Society Plasma Physics Meeting, London, UK, June 29, 2004, paper P2-172.

  8. Single-beam, dark toroidal optical traps for cold atoms

    NASA Astrophysics Data System (ADS)

    Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew

    2007-02-01

    We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.

  9. Rotation and neoclassical ripple transport in ITER

    DOE PAGES

    Paul, Elizabeth Joy; Landreman, Matt; Poli, Francesca M.; ...

    2017-07-13

    Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Furthermore, neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planckmore » Iterative Neoclassical Conservative Solver (SFINCS).« less

  10. Rotation and neoclassical ripple transport in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Elizabeth Joy; Landreman, Matt; Poli, Francesca M.

    Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Furthermore, neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planckmore » Iterative Neoclassical Conservative Solver (SFINCS).« less

  11. Toroidal cell and battery. [storage battery for high amp-hour load applications

    NASA Technical Reports Server (NTRS)

    Nagle, W. J. (Inventor)

    1981-01-01

    A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.

  12. Steady state toroidal magnetic field at earth's core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Levy, Eugene H.; Pearce, Steven J.

    1991-01-01

    Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.

  13. Effects of multi-pulsed coaxial helicity injection on dynamics of spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.; Kagei, Y.

    2012-10-01

    The mechanism to rebuild the magnetic fields and to amplify the currents in the high-q spherical torus (ST) by the multi-pulsed coaxial helicity injection is investigated using the resistive nonlinear 3D-MHD simulations. During the driven phase, the dynamics is almost axisymmetric because the magnetic fluctuation level of n=0 mode compared with other higher modes is much larger. The toroidal current It is effectively amplified due to the merging of plasmoid ejected from the gun region with the pre-existing ST in the confinement region. The poloidal flux is not significantly amplified because the current sheet generated by the merging process does not rapidly decay. The negative toroidal flow vt is then induced in the direction of It around the central open flux column (OFC) region by inductive toroidal electric field Et (=-vzBr) because of the plasmoid ejection. The strong poloidal flow vz (=ErBt) is also driven from the gun to confinement region due to the Lorentz force. As the result of vz, the flow vortices associated with the dynamo effect are caused around the upper confinement region. During the decay phase, the closed field lines are regenerated due to the dissipation of magnetic fluctuations. The helical distortion of the OFC becomes small, and then ordered magnetic field structures without flows are built. Just after turning off the external electric field, the poloidal flow from the confinement to gun region is caused by the pressure gradients. The parallel current density λ concentrated in the OFC diffuses to the core region, but does not relax in the direction of the Taylor state due to the pressure gradients.

  14. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  15. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  16. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Kusunose, Hiroaki

    2018-03-01

    We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.

  17. Mode control using two electrodes on HBT-EP

    NASA Astrophysics Data System (ADS)

    Stewart, I. G.; Brooks, J. W.; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.

    2017-10-01

    Understanding the effects of plasma rotation on magnetohydrodynamic (MHD) modes and tokamak plasma stability is important for performance enhancement of current magnetic confinement experiments and to future fusion devices such as ITER. In order to control plasma rotation, two molybdenum electrodes have been installed on HBT-EP toroidally separated by 144 degrees. This allows independent biasing of the two probes both spatially and temporally. When the bias probes are inserted into the edge of the plasma and a voltage is applied, the probes drive radial currents and produce plasma flow from the torque induced by the currents. If the bias probe voltage is sufficiently positive, the MHD mode rotation transitions into a state with a rapid mode rotation frequency (in excess of 25 kHz) in the direction opposite to mode rotation without bias. The transition into this reversed rotation state occurs when the torque exceeds a threshold, which can depend upon the phase of an applied n = 1 error field. We present recent studies of the two-electrode system on mode rotation, mode stability, and the toroidal symmetry of the radial current through the scrape-off-layer (SOL) during MHD activity and applied magnetic perturbations. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  18. Braking due to non-resonant magnetic perturbations and comparison with neoclassical toroidal viscosity torque in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Sun, Y.; Fridström, R.; Menmuir, S.; Olofsson, K. E. J.; Brunsell, P. R.; Khan, M. W. M.; Liang, Y.; Drake, J. R.

    2015-09-01

    The non-resonant magnetic perturbation (MP) braking is studied in the EXTRAP T2R reversed-field pinch (RFP) and the experimental braking torque is compared with the torque expected by the neoclassical toroidal viscosity (NTV) theory. The EXTRAP T2R active coils can apply magnetic perturbations with a single harmonic, either resonant or non-resonant. The non-resonant MP produces velocity braking with an experimental torque that affects a large part of the core region. The experimental torque is clearly related to the plasma displacement, consistent with a quadratic dependence as expected by the NTV theory. The work show a good qualitative agreement between the experimental torque in a RFP machine and NTV torque concerning both the torque density radial profile and the dependence on the non-resonant MP harmonic.

  19. Localization of toroidal motion and shear heating in 3-D high Rayleigh number convection with temperature-dependent viscosity

    NASA Technical Reports Server (NTRS)

    Balachandar, S.; Yuen, D. A.; Reuteler, D. M.

    1995-01-01

    We have applied spectral-transform methods to study three-dimensional thermal convection with temperature-dependent viscosity. The viscosity varies exponentially with the form exp(-BT), where B controls the viscosity contrast and T is temperature. Solutions for high Rayleigh numbers, up to an effective Ra of 6.25 x 10(exp 6), have been obtained for an aspect-ratio of 5x5x1 and a viscosity contrast of 25. Solutions show the localization of toroidal velocity fields with increasing vigor of convection to a coherent network of shear-zones. Viscous dissipation increases with Rayleigh number and is particularly strong in regions of convergent flows and shear deformation. A time-varying depth-dependent mean-flow is generated because of the correlation between laterally varying viscosity and velocity gradients.

  20. All-dielectric perforated metamaterials with toroidal dipolar response (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stenishchev, Ivan; Basharin, Alexey A.

    2017-05-01

    We present metamaterials based on dielectric slab with perforated identical cylindrical clusters with perforated holes, which allow to support the toroidal dipolar response due to Mie-resonances in each hole. Note that proposed metamaterial is technologically simple for fabrication in optical frequency range. Metamaterial can be fabricated by several methods. For instance, we may apply the molecular beam epitaxy method for deposition of Si or GaAs layers, which have permittivity close to 16. Next step, nanometer/micrometer holes are perforated by focused ion beam method or laser cutting method. Fundamental difference of proposed metamaterial is technological fabrication process. Classically all- dielectric optical metamaterials consist of nano-spheres or nano-discs, which are complicated for fabrication, while our idea and suggested metamaterials are promising prototype of various optical/THz all-dielectic devices as sensor, nano-antennas elements for nanophotonics.

  1. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegna, C. C.

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  2. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  3. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  4. Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Xueyu; Xie, Baoyi; Chen, You

    2016-03-15

    With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.

  5. Modular low-aspect-ratio high-beta torsatron

    DOEpatents

    Sheffield, G.V.

    1982-04-01

    A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

  6. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, James A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.

  7. Convection in three dimensions with surface plates - Generation of toroidal flow

    NASA Technical Reports Server (NTRS)

    Gable, Carl W.; O'Connell, Richard J.; Travis, Bryan J.

    1991-01-01

    This work presents numerical calculations of mantle convection that incorporate some of the basic observational constraints imposed by plate tectonics. The model is three-dimensional and includes surface plates; it allows plate velocity to change dynamically according to the forces which result from convection. It is shown that plates are an effective means of introducing a toroidal component into the flow field. After initial transients the plate motion is nearly parallel to transform faults and in the direction that tends to minimize the toroidal flow field. The toroidal field decays with depth from its value at the surface; the poloidal field is relatively constant throughout the layer but falls off slightly at the top and bottom boundaries. Layered viscosity increasing with depth causes the toroidal field to decay more rapidly, effectively confining it to the upper, low-viscosity layer. The effect of viscosity layering on the poloidal field is relatively small, which is attributed to its generation by temperature variations distributed throughout the system. The generation of toroidal flow by surface plates would seem to account for the observed nearly equal energy of toroidal and poloidal fields of plate motions on the earth. A low-viscosity region in the upper mantle will cause the toroidal flow to decay significantly before reaching the lower mantle. The resulting concentration of toroidal flow in the upper mantle may result in more thorough mixing there and account for some of the geochemical and isotopic differences proposed to exist between the upper and lower mantles.

  8. Perturbative studies of toroidal momentum transport in KSTAR H-mode and the effect of ion temperature perturbation

    NASA Astrophysics Data System (ADS)

    Yang, S. M.; Na, Yong-Su; Na, D. H.; Park, J.-K.; Shi, Y. J.; Ko, W. H.; Lee, S. G.; Hahm, T. S.

    2018-06-01

    Perturbative experiments have been carried out using tangential neutral beam injection (NBI) and non-resonant magnetic perturbation (NRMP) to analyze the momentum transport properties in KSTAR H-modes. Diffusive and non-diffusive terms of momentum transport are evaluated from the transient analysis. Although the operating conditions and methodologies applied in the two cases are similar, the momentum transport properties obtained show clear differences. The estimated momentum diffusivity and pinch obtained in the NBI modulation experiments is larger than that in the NRMP modulation experiments. We found that this discrepancy could be a result of uncertainties in the assumption for the analysis. By introducing time varying momentum transport coefficients depending on the temperature gradient, the linearized equation shows that if the temperature perturbation exists, the evolution of toroidal rotation perturbation could be faster than the transport rate of mean quantity, since the evolution of toroidal rotation perturbation is related to , a momentum diffusivity from perturbative analysis. This could explain the estimated higher momentum diffusivity using time independent transport coefficients in NBI experiments with higher ion temperature perturbation compared to that in NRMP modulation experiments. The differences in the momentum transport coefficient with NRMP and NBI are much reduced by considering time varying momentum transport coefficients in the time dependent transport simulation.

  9. Tunable plasmonic toroidal terahertz metamodulator

    NASA Astrophysics Data System (ADS)

    Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih

    2018-04-01

    Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.

  10. Observation, Identification, and Impact of Multi-Modal Plasma Responses to Applied Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas

    2015-11-01

    Experiments on DIII-D have demonstrated that multiple kink modes with comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n=2, in good agreement with ideal MHD models. In contrast to a single-mode model, the structure of the response measured using poloidally distributed magnetic sensors changes when varying the applied poloidal spectrum. This is most readily evident in that different spectra of applied fields can independently excite inboard and outboard magnetic responses, which are identified as distinct plasma modes by IPEC modeling. The outboard magnetic response is correlated with the plasma pressure and consistent with the long wavelength perturbations of the least stable, pressure driven kinks calculated by DCON and used in IPEC. The models show the structure of the pressure driven modes extends throughout the bad curvature region and into the plasma core. The inboard plasma response is correlated with the edge current profile and requires the inclusion of multiple kink modes with greater stability, including opposite helicity modes, to replicate the experimental observations in the models. IPEC reveals the resulting mode structure to be highly localized in the plasma edge. Scans of the applied spectrum show this response induces the transport that influences the density pump-out, as well as the toroidal rotation drag observed in experiment and modeled using PENT. The classification of these two mode types establishes a new multi-modal paradigm for n=2 plasma response and guides the understanding needed to optimize 3D fields for independent control of stability and transport. Supported by US DOE contract DE-AC02-09CH11466.

  11. Electrostatic shielding of transformers

    DOEpatents

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  12. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, J.A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.

  13. Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma.

    PubMed

    Peeters, A G; Angioni, C; Strintzi, D

    2007-06-29

    In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.

  14. Toroidal Momentum Pinch Velocity due to the Coriolis Drift Effect on Small Scale Instabilities in a Toroidal Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, A. G.; Angioni, C.; Strintzi, D.

    In this Letter, the influence of the ''Coriolis drift'' on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torquemore » on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiment000.« less

  15. Modular low aspect ratio-high beta torsatron

    DOEpatents

    Sheffield, George V.; Furth, Harold P.

    1984-02-07

    A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

  16. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less

  17. The Experiment of Modulated Toroidal Current on HT-7 and HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Mao, Jian-shan; P, Phillips; Luo, Jia-rong; Xu, Yu-hong; Zhao, Jun-yu; Zhang, Xian-mei; Wan, Bao-nian; Zhang, Shou-yin; Jie, Yin-xian; Wu, Zhen-wei; Hu, Li-qun; Liu, Sheng-xia; Shi, Yue-jiang; Li, Jian-gang; HT-6M; HT-7 Group

    2003-02-01

    The Experiments of Modulated Toroidal Current were done on the HT-6M tokamak and HT-7 superconducting tokamak. The toroidal current was modulated by programming the Ohmic heating field. Modulation of the plasma current has been used successfully to suppress MHD activity in discharges near the density limit where large MHD m = 2 tearing modes were suppressed by sufficiently large plasma current oscillations. The improved Ohmic confinement phase was observed during modulating toroidal current (MTC) on the Hefei Tokamak-6M (HT-6M) and Hefei superconducting Tokamak-7 (HT-7). A toroidal frequency-modulated current, induced by a modulated loop voltage, was added on the plasma equilibrium current. The ratio of A.C. amplitude of plasma current to the main plasma current ΔIp/Ip is about 12%-30%. The different formats of the frequency-modulated toroidal current were compared.

  18. Toroidal gyrofluid equations for simulations of tokamak turbulence

    NASA Astrophysics Data System (ADS)

    Beer, M. A.; Hammett, G. W.

    1996-11-01

    A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances, and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett [Phys. Fluids B 5, 812 (1993)] to toroidal geometry by including essential toroidal effects. The closures for phase mixing from toroidal ∇B and curvature drifts take the basic form presented in Waltz et al. [Phys. Fluids B 4, 3138 (1992)], but here a more rigorous procedure is used, including an extension to higher moments, which provides significantly improved accuracy. In addition, trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations accurately models most of the physics considered important for ion dynamics in core tokamak turbulence, and is simple enough to be used in high resolution direct numerical simulations.

  19. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.

    In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less

  20. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    NASA Astrophysics Data System (ADS)

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Herfindal, J. L.; Howell, E. C.; Knowlton, S. F.; Maurer, D. A.; Traverso, P. J.

    2018-01-01

    Collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of q = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. This improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.

  1. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    DOE PAGES

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.; ...

    2018-01-31

    In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less

  2. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the spectral inversion makes it possible to estimate the odd-order lateral structure, which cannot be determined by the conventional spectral inversion, which takes no account of the mixed coupling. Higher order structure is biased by the mixed coupling when the conventional spectral inversion is applied to the amplitude spectra incorporating the mixed coupling.

  3. Plasmon dispersion in a multilayer solid torus in terms of three-term vector recurrence relations and matrix continued fractions

    DOE PAGES

    Garapati, K. V.; Bagherian, M.; Passian, A.; ...

    2018-01-03

    Toroidal confinement, which has played a crucial role in magnetized plasmas and Tokamak physics, is emerging as an effective means to obtain useful electronic and optical response in solids. In particular, excitation of surface plasmons in metal nanorings by photons or electrons finds important applications due to the engendered field distribution and electromagnetic energy confinement. However, in contrast to the case of a plasma, often the solid nanorings are multilayered and/or embedded in a medium. The non-simply connected geometry of the torus results in surface modes that are not linearly independent. A three-term difference equation was recently shown to arisemore » when seeking the nonretarded plasmon dispersion relations for a stratified solid torus (Garapati et al 2017 Phys. Rev. B 95 165422). The reported generalized plasmon dispersion relations are here investigated in terms of the involved matrix continued fractions and their convergence properties including the determinant forms of the dispersion relations obtained for computing the plasmon eigenmodes. We also present the intricacies of the derivation and properties of the Green's function employed to solve the three term amplitude equation that determines the response of the toroidal structure to arbitrary external excitations.« less

  4. Plasmon dispersion in a multilayer solid torus in terms of three-term vector recurrence relations and matrix continued fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garapati, K. V.; Bagherian, M.; Passian, A.

    Toroidal confinement, which has played a crucial role in magnetized plasmas and Tokamak physics, is emerging as an effective means to obtain useful electronic and optical response in solids. In particular, excitation of surface plasmons in metal nanorings by photons or electrons finds important applications due to the engendered field distribution and electromagnetic energy confinement. However, in contrast to the case of a plasma, often the solid nanorings are multilayered and/or embedded in a medium. The non-simply connected geometry of the torus results in surface modes that are not linearly independent. A three-term difference equation was recently shown to arisemore » when seeking the nonretarded plasmon dispersion relations for a stratified solid torus (Garapati et al 2017 Phys. Rev. B 95 165422). The reported generalized plasmon dispersion relations are here investigated in terms of the involved matrix continued fractions and their convergence properties including the determinant forms of the dispersion relations obtained for computing the plasmon eigenmodes. We also present the intricacies of the derivation and properties of the Green's function employed to solve the three term amplitude equation that determines the response of the toroidal structure to arbitrary external excitations.« less

  5. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    PubMed

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  6. Equilibrium evolution in oscillating-field current-drive experiments

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; Anderson, J. K.; Blair, A. P.; Craig, D.; Den Hartog, D. J.; Ebrahimi, F.; O'Connell, R.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Stone, D. R.; Brower, D. L.; Deng, B. H.; Ding, W. X.

    2010-08-01

    Oscillating-field current drive (OFCD) is a proposed method of steady-state toroidal plasma sustainment in which ac poloidal and toroidal loop voltages are applied to produce a dc plasma current. OFCD is added to standard, inductively sustained reversed-field pinch plasmas in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. Equilibrium profiles and fluctuations during a single cycle are measured and analyzed for different relative phases between the two OFCD voltages and for OFCD off. For OFCD phases leading to the most added plasma current, the measured energy confinement is slightly better than that for OFCD off. By contrast, the phase of the maximum OFCD helicity-injection rate also has the maximum decay rate, which is ascribed to transport losses during discrete magnetic-fluctuation events induced by OFCD. Resistive-magnetohydrodynamic simulations of the experiments reproduce the observed phase dependence of the added current.

  7. Buckling analysis of Big Dee Vacuum Vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lightner, S.; Gallix, R.

    1983-12-01

    A simplified three-dimensional shell buckling analysis of the GA Technologies Inc., Big Dee Vacuum Vessel (V/V) was performed using the finite element program TRICO. A coarse-mesh linear elastic model, which accommodated the support boundary conditions, was used to determine the buckling mode shape under a uniform external pressure. Using this buckling mode shape, refined models were used to calculate the linear buckling load (P/sub crit/) more accurately. Several different designs of the Big Dee V/V were considered in this analysis. The supports for the V/V were equally-spaced radial pins at the outer diameter of the mid-plane. For all the casesmore » considered, the buckling mode was axisymmetric in the toroidal direction. Therefore, it was possible to use only a small angular sector of a toric shell for the refined analysis. P/sub crit/ for the Big Dee is about 60 atm for a uniform external pressure. Also investigated in this analysis were the effects of geometrical imperfections and non-uniform pressure distributions.« less

  8. Development of a new virtual diagnostic for V3FIT

    NASA Astrophysics Data System (ADS)

    Trevisan, G. L.; Cianciosa, M. R.; Terranova, D.; Hanson, J. D.

    2014-12-01

    The determination of plasma equilibria from diagnostic information is a fundamental issue. V3FIT is a fully three-dimensional reconstruction code capable of solving the inverse problem using both magnetic and kinetic measurements. It uses VMEC as core equilibrium solver and supports both free- and fixed-boundary reconstruction approaches. In fixed-boundary mode VMEC does not use explicit information about currents in external coils, even though it has important effects on the shape of the safety factor profile. Indeed, the edge safety factor influences the reversal position in RFP plasmas, which then determines the position of the m = 0 island chain and the edge transport properties. In order to exploit such information a new virtual diagnostic has been developed, that thanks to Ampère's law relates the external current through the center of the torus to the circulation of the toroidal magnetic field on the outermost flux surface. The reconstructions that exploit the new diagnostic are indeed found to better interpret the experimental data with respect to edge physics.

  9. Magnetless magnetic fusion

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.; Tajima, T.

    1994-02-01

    The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.

  10. Dielectric metamaterials with toroidal dipolar response

    DOE PAGES

    Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.; ...

    2015-03-27

    Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. In addition, we show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials’ macroscopic response. Due to the unique field configuration of the toroidal mode, the proposed metamaterialsmore » could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.« less

  11. Electrostatic turbulence intermittence driven by biasing in Texas Helimak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toufen, D. L.; Institute of Physics, University of São Paulo, 05315-970 São Paulo, São Paulo; Pereira, F. A. C.

    We investigate changes in the intermittent sequence of bursts in the electrostatic turbulence due to imposed positive bias voltage applied to control the plasma radial electric field in Texas Helimak [K. W. Gentle and H. He, Plasma Sci. Technol. 10, 284 (2008)]—a toroidal plasma device with a one-dimensional equilibrium, magnetic curvature, and shear. We identify the burst characteristics by analyzing ion saturation current fluctuations collected in a large set of Langmuir probes. The number of bursts increase with positive biasing, giving rise to a long tailed skewed turbulence probability distribution function. The burst shape does not change much with themore » applied bias voltage, while their vertical velocity increases monotonically. For high values of bias voltage, the bursts propagate mainly in the vertical direction which is perpendicular to the radial density gradient and the toroidal magnetic field. Moreover, in contrast with the bursts in tokamaks, the burst velocity agrees with the phase velocity of the overall turbulence in both vertical and radial directions. For a fixed bias voltage, the time interval between bursts and their amplitudes follows exponential distributions. Altogether, these burst characteristics indicate that their production can be modelled by a stochastic process.« less

  12. Development of a Novel Method for Determination of Momentum Transport Parameters

    NASA Astrophysics Data System (ADS)

    Peters, Michael J.; Guttenfelder, Walter; Scotti, Filippo; Kaye, Stanley M.; Solomon, Wayne M.

    2015-11-01

    The toroidal momentum pinch velocity Vφ and diffusivity χφ in NSTX were previously determined from the transient response of the toroidal rotation Ω following applied n =3 magnetic perturbations that brake the plasma. Assuming Π = nmR2(-χϕ ∇Ω + Vϕ Ω), where the momentum flux Π is determined using TRANSP, these local analyses used fits to Ω and ∇Ω to obtain χϕ and Vϕ one flux surface at a time. This work attempts to improve the accuracy of the inferred χϕ(r) and Vϕ(r) profiles by utilizing many flux surfaces simultaneously. We employ nonlinear least-squares minimization that compares the entire perturbed rotation profile evolution Ω(r,t) against the profile evolution generated by solving the momentum transport equation. We compare the local and integrated approaches and discuss their limitations. We also apply the integrated approach to determine whether an additional residual stress contribution (independent of Ω or ∇Ω) can be inferred given experimental uncertainties. This work supported by the U.S. Department of Energy SULI program and contract DE-AC02-09/CH11466, as well as the LLNL contract DE-AC52-07NA27344.

  13. MHD Studies of Advanced Tokamak Equilibria

    NASA Astrophysics Data System (ADS)

    Strumberger, E.

    2005-10-01

    Advanced tokamak scenarios are often characterized by an extremely reversed profile of the safety factor, q, and a fast toroidal rotation. ASDEX Upgrade type equilibria with toroidal flow are computed up to a toroidal Mach number of Mta= 0.5, and compared with the static solution. Using these equilibria, the stabilizing effect of differential toroidal rotation on double tearing modes (DTMs) is investigated. These studies show that the computation of equilibria with flow is necessary for toroidally rotating plasma with Mta>=0.2. The use of ρtor instead of ρpol as radial coordinate enables us also to investigate the stability of equilibria with current holes. For numerical reasons, the rotational transform, = 1/q, has to be unequal zero in the CASTOR$FLOW code, but values of a>=0.001 (qa<=1000) can be easily handled. Stability studies of DTMs in the presence of a current hole are presented. Tokamak equilibria are only approximately axisymmetric. The finite number of toroidal field coils destroys the perfect axisymmetry of the device, and the coils produce a short wavelength ripple in the magnetic field strength. This toroidal field ripple plays a crucial role for the loss of high energy particles. Therefore, three-dimensional tokamak equilibria with and without current holes are computed for various plasma beta values. In addition the influence of the plasma beta on the toroidal field ripple is investigated.

  14. Baroclinic Instability in the Solar Tachocline for Continuous Vertical Profiles of Rotation, Effective Gravity, and Toroidal Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, Peter A., E-mail: gilman@ucar.edu

    We present results from an MHD model for baroclinic instability in the solar tachocline that includes rotation, effective gravity, and toroidal field that vary continuously with height. We solve the perturbation equations using a shooting method. Without toroidal fields but with an effective gravity declining linearly from a maximum at the bottom to much smaller values at the top, we find instability at all latitudes except at the poles, at the equator, and where the vertical rotation gradient vanishes (32.°3) for longitude wavenumbers m from 1 to >10. High latitudes are much more unstable than low latitudes, but both havemore » e -folding times that are much shorter than a sunspot cycle. The higher the m and the steeper the decline in effective gravity, the closer the unstable mode peak to the top boundary, where the energy available to drive instability is greatest. The effect of the toroidal field is always stabilizing, shrinking the latitude ranges of instability as the toroidal field is increased. The larger the toroidal field, the smaller the longitudinal wavenumber of the most unstable disturbance. All latitudes become stable for a toroidal field exceeding about 4 kG. The results imply that baroclinic instability should occur in the tachocline at latitudes where the toroidal field is weak or is changing sign, but not where the field is strong.« less

  15. Characteristics of the NASA Lewis bumpy torus plasma generated with high positive or negative applied potentials

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Gerdin, G. A.

    1976-01-01

    The toroidal ring of plasma contained in the NASA Lewis bumpy-torus superconducting magnet facility may be biased to positive or negative potentials approaching 50 kilovolts by applying direct-current voltages of the respective polarity to 12 or fewer of the midplane electrode rings. The electric fields which are responsible for heating the ions by E/B drift then point radially outward or inward. The low-frequency fluctuations below the ion cyclotron frequency appeared to be dominated by rotating spokes.

  16. System and method for generating current by selective electron heating

    DOEpatents

    Fisch, Nathaniel J.; Boozer, Allen H.

    1984-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  17. Influence of toroidal rotation on resistive tearing modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Wang, S.; Ma, Z. W.

    2015-12-01

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, H.; Isono, T.; Uno, Y.

    JAEA successfully completed the manufacture of the toroidal field (TF) insert coil (TFIC) for a performance test of the ITER TF conductor in the final design in cooperation with Hitachi, Ltd. The TFIC is a single-layer 8.875-turn solenoid coil with 1.44-m diameter. This will be tested for 68-kA current application in a 13-T external magnetic field. TFIC was manufactured in the following order: winding of the TF conductor, lead bending, fabrication of the electrical termination, heat treatment, turn insulation, installation of the coil into the support mandrel structure, vacuum pressure impregnation (VPI), structure assembly, and instrumentation. Here in this presentation,more » manufacture process and quality control status for the TFIC manufacturing are reported.« less

  19. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  20. Poloidal structure of the plasma response to n = 1 Resonant Magnetic Perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Marrelli, L.; Bettini, P.; Piovesan, P.; Terranova, D.; Giannone, L.; Igochine, V.; Maraschek, M.; Suttrop, W.; Teschke, M.; Liu, Y. Q.; Ryan, D.; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2017-10-01

    The hybrid scenario, a candidate for high-beta steady-state tokamak operations, becomes highly sensitive to 3D magnetic field near the no-wall limit. A predictive understanding of the plasma response to 3D fields near ideal MHD limits in terms of validated MHD stability codes is therefore important in order to safely operate future devices. Slowly rotating (5 - 10 Hz) n = 1 external magnetic fields have been applied in hybrid discharges in ASDEX Upgrade for an experimental characterization: the global n = 1 kink response has been measured by means of SXR and complete poloidal arrays of bθ probes located at different toroidal angles and compared to predictions of MHD codes such as MARS-F and V3FIT-VMEC. A Least-Squares Spectral Analysis approach has been developed together with a Monte Carlo technique to extract the small plasma response and its confidence interval from the noisy magnetic signals. MARS-F correctly reproduces the poloidal structure of the n = 1 measurements: for example, the dependence of the dominant poloidal mode number at the plasma edge from q95 is the same as in the experiment. Similar comparisons with V3FIT-VMEC and will be presented. See author list of ``H. Meyer et al. 2017 Nucl. Fusion 57 102014''.

  1. Modeling MHD Equilibrium and Dynamics with Non-Axisymmetric Resistive Walls in LTX and HBT-EP

    NASA Astrophysics Data System (ADS)

    Hansen, C.; Levesque, J.; Boyle, D. P.; Hughes, P.

    2017-10-01

    In experimental magnetized plasmas, currents in the first wall, vacuum vessel, and other conducting structures can have a strong influence on plasma shape and dynamics. These effects are complicated by the 3D nature of these structures, which dictate available current paths. Results from simulations to study the effect of external currents on plasmas in two different experiments will be presented: 1) The arbitrary geometry, 3D extended MHD code PSI-Tet is applied to study linear and non-linear plasma dynamics in the High Beta Tokamak (HBT-EP) focusing on toroidal asymmetries in the adjustable conducting wall. 2) Equilibrium reconstructions of the Lithium Tokamak eXperiment (LTX) in the presence of non-axisymmetric eddy currents. An axisymmetric model is used to reconstruct the plasma equilibrium, using the PSI-Tri code, along with a set of fixed 3D eddy current distributions in the first wall and vacuum vessel [C. Hansen et al., PoP Apr. 2017]. Simulations of detailed experimental geometries are enabled by use of the PSI-Tet code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-Tet and PSI-Tri will also be presented. This work supported by US DOE contract DE-SC0016256.

  2. Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors.

    PubMed

    Ahmadivand, Arash; Gerislioglu, Burak; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih

    2017-09-22

    Unconventional characteristics of magnetic toroidal multipoles have triggered researchers to study these unique resonant phenomena by using both 3D and planar resonators under intense radiation. Here, going beyond conventional planar unit cells, we report on the observation of magnetic toroidal modes using artificially engineered multimetallic planar plasmonic resonators. The proposed microstructures consist of iron (Fe) and titanium (Ti) components acting as magnetic resonators and torus, respectively. Our numerical studies and following experimental verifications show that the proposed structures allow for excitation of toroidal dipoles in the terahertz (THz) domain with the experimental Q-factor of ∼18. Taking the advantage of high-Q toroidal line shape and its dependence on the environmental perturbations, we demonstrate that room-temperature toroidal metasurface is a reliable platform for immunosensing applications. As a proof of concept, we utilized our plasmonic metasurface to detect Zika-virus (ZIKV) envelope protein (with diameter of 40 nm) using a specific ZIKV antibody. The sharp toroidal resonant modes of the surface functionalized structures shift as a function of the ZIKV envelope protein for small concentrations (∼pM). The results of sensing experiments reveal rapid, accurate, and quantitative detection of envelope proteins with the limit of detection of ∼24.2 pg/mL and sensitivity of 6.47 GHz/log(pg/mL). We envision that the proposed toroidal metasurface opens new avenues for developing low-cost, and efficient THz plasmonic sensors for infection and targeted bioagent detection.

  3. Advances in the simulation of toroidal gyro-Landau fluid model turbulence

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Kerbel, G. D.; Milovich, J.; Hammett, G. W.

    1995-06-01

    The gyro-Landau fluid (GLF) model equations for toroidal geometry [R. E. Waltz, R. R. Dominguez, and G. W. Hammett, Phys. Fluids B 4, 3138 (1992)] have been recently applied to study ion temperature gradient (ITG) mode turbulence using the three-dimensional (3-D) nonlinear ballooning mode representation (BMR) outlined earlier [R. E. Waltz, G. D. Kerbel, and J. Milovich, Phys. Plasmas 1, 2229 (1994)]. The present paper extends this work by treating some unresolved issues concerning ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the radial direction, long time radial correlation lengths are short and comparable to poloidal lengths. Although transport at vanishing shear is not particularly large, transport at reverse global shear, is significantly less. Electrostatic transport at moderate shear is not much affected by inclusion of local shear and average favorable curvature. Transport is suppressed when critical E×B rotational shear is comparable to the maximum linear growth rate with only a weak dependence on magnetic shear. Self-consistent turbulent transport of toroidal momentum can result in a transport bifurcation at sufficiently large r/(Rq). However, the main thrust of the new formulation in the paper deals with advances in the development of finite beta GLF models with trapped electrons and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons.

  4. The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: Method Development and Benchmark Studies

    NASA Astrophysics Data System (ADS)

    Hu, Qiang

    2017-09-01

    We develop an approach of the Grad-Shafranov (GS) reconstruction for toroidal structures in space plasmas, based on in situ spacecraft measurements. The underlying theory is the GS equation that describes two-dimensional magnetohydrostatic equilibrium, as widely applied in fusion plasmas. The geometry is such that the arbitrary cross-section of the torus has rotational symmetry about the rotation axis, Z, with a major radius, r0. The magnetic field configuration is thus determined by a scalar flux function, Ψ, and a functional F that is a single-variable function of Ψ. The algorithm is implemented through a two-step approach: i) a trial-and-error process by minimizing the residue of the functional F(Ψ) to determine an optimal Z-axis orientation, and ii) for the chosen Z, a χ2 minimization process resulting in a range of r0. Benchmark studies of known analytic solutions to the toroidal GS equation with noise additions are presented to illustrate the two-step procedure and to demonstrate the performance of the numerical GS solver, separately. For the cases presented, the errors in Z and r0 are 9° and 22%, respectively, and the relative percent error in the numerical GS solutions is smaller than 10%. We also make public the computer codes for these implementations and benchmark studies.

  5. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    DOE PAGES

    Staszczak, A.; Wong, Cheuk-Yin

    2016-05-11

    We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ℏ and 140ℏ, which follow the same (multi-particle) (multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC) experiments.

  6. Axisymmetric magnetic modes of neutron stars having mixed poloidal and toroidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Lee, Umin

    2018-05-01

    We calculate axisymmetric magnetic modes of a neutron star possessing a mixed poloidal and toroidal magnetic field, where the toroidal field is assumed to be proportional to a dimensionless parameter ζ0. Here, we assume an isentropic structure for the neutron star and consider no effects of rotation. Ignoring the equilibrium deformation due to the magnetic field, we employ a polytrope of the index n = 1 as the background model for our modal analyses. For the mixed poloidal and toroidal magnetic field with ζ _0\

  7. Confinement time exceeding one second for a toroidal electron plasma.

    PubMed

    Marler, J P; Stoneking, M R

    2008-04-18

    Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.

  8. Toroidal band limiter for a plasma containment device

    DOEpatents

    Kelley, George G.

    1978-01-01

    This invention relates to a toroidal plasma confinement device having poloidal and toroidal magnetic fields for confining a toroidal plasma column with a plasma current induced therein along an endless, circular equilibrium axis in a torus vacuum cavity wherein the improvement comprises the use of a toroidal plasma band limiter mounted within the vacuum cavity in such a manner as to ensure that the plasma energy is distributed more uniformly over the limiter surface thereby avoiding intense local heating of the limiter while at the same time substantially preventing damage to the plasma containment wall of the cavity by the energetic particles diffusing out from the confined plasma. A plurality of poloidal plasma ring limiters are also utilized for containment wall protection during any disruptive instability that might occur during operation of the device.

  9. High power heating of magnetic reconnection in merging tokamak experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Y.; Tanabe, H.; Gi, K.

    2015-05-15

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magneticmore » reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2}  ∼  B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating facility.« less

  10. Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures.

    PubMed

    Sun, Tao; Shi, Qing; Huang, Qiang; Wang, Huaping; Xiong, Xiaolu; Hu, Chengzhi; Fukuda, Toshio

    2018-01-15

    Traditional cell-encapsulating scaffolds may elicit adverse host responses and inhomogeneity in cellular distribution. Thus, fabrication techniques for cellular self-assembly with micro-scaffold incorporation have been used recently to generate toroidal cellular modules for the bottom-up construction of vascular-like structures. The micro-scaffolds show advantage in promoting tissue formation. However, owing to the lack of annular cell micro-scaffolds, it remains a challenge to engineer micro-scale toroidal cellular modules (micro-TCMs) to fabricate microvascular-like structures. Here, magnetic alginate microfibers (MAMs) are used as scaffolding elements, where a winding strategy enables them to be formed into micro-rings as annular cell micro-scaffolds. These micro-rings were investigated for NIH/3T3 fibroblast growth as a function of surface chemistry and MAM size. Afterwards, micro-TCMs were successfully fabricated with the formation of NIH/3T3 fibroblasts and extracellular matrix layers on the three-dimensional micro-ring surfaces. Simple non-contact magnetic assembly was used to stack the micro-TCMs along a micro-pillar, after which cell fusion rapidly connected the assembled micro-TCMs into a microvascular-like structure. Endothelial cells or drugs encapsulated in the MAMs could be included in the microvascular-like structures as in vitro cellular models for vascular tissue engineering, or as miniaturization platforms for pharmaceutical drug testing in the future. Magnetic alginate microfibers functioned as scaffolding elements for guiding cell growth in micro-scale toroidal cellular modules (micro-TCMs) and provided a magnetic functionality to the micro-TCMs for non-contact 3D assembly in external magnetic fields. By using the liquid/air interface, the non-contact spatial manipulation of the micro-TCMs in the liquid environment was performed with a cost-effective motorized electromagnetic needle. A new biofabrication paradigm of construct of microvascular-like structure. The micro-tubal-shaped structures allowed direct cell-to-cell contact that solved problems of cell-encapsulating scaffolds. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Change of Paradigm for the Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Escande, D. F.

    2010-11-01

    The reversed field pinch (RFP) is a magnetic configuration germane to the tokamak, but it produces most of its magnetic field by the currents flowing inside the plasma; external coils provide only a small edge toroidal field whose sign is reversed with respect to the central one, whence the name of the configuration. Because of the presence of magnetic turbulence and chaos, the RFP had been considered for a long period as a terrible confinement configuration. However, recently a change of paradigm occurred for this device. Indeed, when the toroidal current is increased in the RFX-mod RFP in Padua (Italy), a self-organized helical state with an internal transport barrier (ITB) develops, and a broad zone of the plasma becomes hot (above 1 keV for a magnetic field above 0.8 T). The present theoretical picture of the RFP mainly comes from three-dimensional nonlinear visco-resistive MHD simulations whose dynamics has strong similarities with the experimental one, and triggered the experimental search for RFP states with improved confinement. The RFP ohmic state involves a helical electrostatic potential generating, as an electric drift, the so-called dynamo velocity field. The magnetic topology can bifurcate from a magnetic island to kink-like magnetic surfaces with higher resilience to magnetic chaos. This theoretical scenario was found to be relevant when ITB's enclosing a broad hot domain were discovered. The ITBs occur in the vicinity of the maximum of the safety factor. The new paradigm for the RFP supports its reappraisal as a low-external field, non-disruptive, ohmically heated approach to magnetic fusion, exploiting both self-organization and technological simplicity. Furthermore the RFP has the same Greenwald density limit as the tokamak, and it is an excellent test bed for the efficient control of multiple resistive wall modes. Its helical magnetic structure makes it germane to the stellarator too. As a result the RFP is also useful to bring support to the present two main lines of magnetic confinement.

  12. Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction

    NASA Astrophysics Data System (ADS)

    Solov'ev, A. A.

    2013-09-01

    We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.

  13. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment.

    PubMed

    Gerhardt, S P; Fredrickson, E; Guttadora, L; Kaita, R; Kugel, H; Menard, J; Takahashi, H

    2011-10-01

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.

  14. Air core poloidal magnetic field system for a toroidal plasma producing device

    DOEpatents

    Marcus, Frederick B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.

  15. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment

    DOE PAGES

    Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; ...

    2011-10-06

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less

  16. Influence of toroidal rotation on resistive tearing modes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shearmore » shows a destabilizing effect when the rotation is large.« less

  17. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  18. System and method for generating current by selective minority species heating

    DOEpatents

    Fisch, Nathaniel J.

    1983-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of low-frequency waves into the plasma by means of phased antenna arrays or phased waveguide arrays. The plasma is prepared with a minority ion species of different charge state and different gyrofrequency from the majority ion species. The wave frequency and wave phasing are chosen such that the wave energy is absorbed preferentially by minority species ions traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  19. Edge equilibrium code for tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xujing; Zakharov, Leonid E.; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  20. Electrostatics of a Family of Conducting Toroids

    ERIC Educational Resources Information Center

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  1. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells

    PubMed Central

    Ahmadivand, Arash; Gerislioglu, Burak; Tomitaka, Asahi; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih

    2018-01-01

    Engineered terahertz (THz) plasmonic metamaterials have emerged as promising platforms for quick infection diagnosis, cost-effective and real-time pharmacology applications owing to their non-destructive and harmless interaction with biological tissues in both in vivo and in vitro assays. As a recent member of THz metamaterials family, toroidal metamaterials have been demonstrated to be supporting high-quality sharp resonance modes. Here we introduce a THz metasensor based on a plasmonic surface consisting of metamolecules that support ultra-narrow toroidal resonances excited by the incident radiation and demonstrate detection of an ultralow concertation targeted biomarker. The toroidal plasmonic metasurface was designed and optimized through extensive numerical studies and fabricated by standard microfabrication techniques. The surface then functionalized by immobilizing the antibody for virus-envelope proteins (ZIKV-EPs) for selective sensing. We sensed and quantified the ZIKV-EP in the assays by measuring the spectral shifts of the toroidal resonances while varying the concentration. In an improved protocol, we introduced gold nanoparticles (GNPs) decorated with the same antibodies onto the metamolecules and monitored the resonance shifts for the same concentrations. Our studies verified that the presence of GNPs enhances capturing of biomarker molecules in the surrounding medium of the metamaterial. By measuring the shift of the toroidal dipolar momentum (up to Δω~0.35 cm−1) for different concentrations of the biomarker proteins, we analyzed the sensitivity, repeatability, and limit of detection (LoD) of the proposed toroidal THz metasensor. The results show that up to 100-fold sensitivity enhancement can be obtained by utilizing plasmonic nanoparticles-integrated toroidal metamolecules in comparison to analogous devices. This approach allows for detection of low molecular-weight biomolecules (≈13 kDa) in diluted solutions using toroidal THz plasmonic unit cells. PMID:29552379

  2. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells.

    PubMed

    Ahmadivand, Arash; Gerislioglu, Burak; Tomitaka, Asahi; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih

    2018-02-01

    Engineered terahertz (THz) plasmonic metamaterials have emerged as promising platforms for quick infection diagnosis, cost-effective and real-time pharmacology applications owing to their non-destructive and harmless interaction with biological tissues in both in vivo and in vitro assays. As a recent member of THz metamaterials family, toroidal metamaterials have been demonstrated to be supporting high-quality sharp resonance modes. Here we introduce a THz metasensor based on a plasmonic surface consisting of metamolecules that support ultra-narrow toroidal resonances excited by the incident radiation and demonstrate detection of an ultralow concertation targeted biomarker. The toroidal plasmonic metasurface was designed and optimized through extensive numerical studies and fabricated by standard microfabrication techniques. The surface then functionalized by immobilizing the antibody for virus-envelope proteins (ZIKV-EPs) for selective sensing. We sensed and quantified the ZIKV-EP in the assays by measuring the spectral shifts of the toroidal resonances while varying the concentration. In an improved protocol, we introduced gold nanoparticles (GNPs) decorated with the same antibodies onto the metamolecules and monitored the resonance shifts for the same concentrations. Our studies verified that the presence of GNPs enhances capturing of biomarker molecules in the surrounding medium of the metamaterial. By measuring the shift of the toroidal dipolar momentum (up to Δ ω ~0.35 cm -1 ) for different concentrations of the biomarker proteins, we analyzed the sensitivity, repeatability, and limit of detection (LoD) of the proposed toroidal THz metasensor. The results show that up to 100-fold sensitivity enhancement can be obtained by utilizing plasmonic nanoparticles-integrated toroidal metamolecules in comparison to analogous devices. This approach allows for detection of low molecular-weight biomolecules (≈13 kDa) in diluted solutions using toroidal THz plasmonic unit cells.

  3. Oscillating field current drive experiments in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Blair, Arthur P., Jr.

    Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches. To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic field circuits of the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP.) Partial sustainment experiments were conducted where the two voltage oscillations were superimposed on the standard MST power supplies. Supplementary current drive of about 10% has been demonstrated, comparable to theoretical predictions. However, maximum current drive does not coincide with maximum helicity injection rate - possibly due to an observed dependence of core and edge tearing modes on the relative phase of the oscillators. A dependence of wall interactions on phase was also observed, the largest interaction coinciding with negative current drive. Experiments were conducted at 280 and 530 Hz. 530 Hz proved to be too high and yielded little or no net current drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict the effects of voltage amplitudes, frequencies, and waveforms on performance and to optimize the design of OFCD hardware. Predicted current drive was comparable to experimental values, though the aforementioned phase dependence was not. Comparisons were also made with a more comprehensive 3D model which proved to be a more accurate predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An entrainment of the natural sawtooth frequency to our applied oscillation was observed as well as a slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the ion temperature was also observed that can be partially accounted for by collisional heating via magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.

  4. Design and Implementation of a 200kW, 28GHz gyrotron system for the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Knowlton, S. F.; Ennis, D. A.; Maurer, D. A.; Bigelow, T.

    2016-10-01

    The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | <= 0.7 T). It can generate its highly configurable confining magnetic fields solely with external coils, but typically operates with up to 80 kA of ohmically-generated plasma current for heating. New studies of edge plasma transport in stellarator geometries will benefit from CTH operating as a pure torsatron with a high temperature edge plasma. Accordingly, a 28 GHz, 200 kW gyrotron operating at 2nd harmonic for ECRH is being installed to supplement the existing 15 kW klystron system operating at the fundamental frequency; the latter will be used to initially generate the plasma. Ray-tracing calculations that guide the selection of launching position, antenna focal length, and beam-steering characteristics of the ECRH have been performed with the TRAVIS code [ 1 ] . The calculated absorption is up to 95.7% for vertically propagating rays, however, the absorption is more sensitive to magnetic field variations than for a side launch where the field gradient is tokamak-like. The design of the waveguide path and components for the top-launch scenario will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  5. Magnetohydrodynamic Models of Molecular Tornadoes

    NASA Astrophysics Data System (ADS)

    Au, Kelvin; Fiege, Jason D.

    2017-07-01

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.

  6. Ideal relaxation of the Hopf fibration

    NASA Astrophysics Data System (ADS)

    Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk

    2017-07-01

    Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.

  7. Modeling of toroidal torques exerted by internal kink instability in a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Liu, Y. Q.; Yu, D. L.; Wang, S.; Xia, G. L.; Dong, G. Q.; Bai, X.

    2017-08-01

    Toroidal modeling efforts are initiated to systematically compute and compare various toroidal torques, exerted by an unstable internal kink in a tokamak plasma, using the MARS-F/K/Q suite of codes. The torques considered here include the resonant electromagnetic torque due to the Maxwell stress (the EM or JXB torque), the neoclassical toroidal viscous (NTV) torque, and the torque associated with the Reynolds stress. Numerical results show that the relative magnitude of the net resonant electromagnetic and the Reynolds stress torques increases with the equilibrium flow speed of the plasma, whilst the net NTV torque follows the opposite trend. The global flow shear sensitively affects the Reynolds stress torque, but not the electromagnetic and the NTV torques. Detailed examinations reveal dominant contributions to the Maxwell and Reynolds stress torques, in terms of the poloidal harmonic numbers of various perturbation fields, as well as their relative toroidal phasing.

  8. Tokamak reactor for treating fertile material or waste nuclear by-products

    DOEpatents

    Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.

    2012-10-02

    Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.

  9. Toroidal Localized Spoof Plasmons on Compact Metadisks.

    PubMed

    Qin, Pengfei; Yang, Yihao; Musa, Muhyiddeen Yahya; Zheng, Bin; Wang, Zuojia; Hao, Ran; Yin, Wenyan; Chen, Hongsheng; Li, Erping

    2018-03-01

    Localized spoof surface plasmons (LSSPs) have recently emerged as a new research frontier due to their unique properties and increasing applications. Despite the importance, most of the current researches only focus on electric/magnetic LSSPs. Very recent research has revealed that toroidal LSSPs, LSSPs modes with multipole toroidal moments, can be achieved at a point defect in a 2D groove metal array. However, this metamaterial shows the limitations of large volume and poor compatibility to photonic integrated circuits. To overcome the above challenges, here it is proposed and experimentally demonstrated compact planar metadisks based on split ring resonators to support the toroidal LSSPs at microwave frequencies. Additionally, it is experimentally demonstrated that the toroidal LSSPs resonance is very sensitive to the structure changes and the background medium. These might facilitate its utilization in the design and application of plasmonic deformation sensors and the refractive index sensors.

  10. Japanese MAGSAT Team

    NASA Technical Reports Server (NTRS)

    Fukushima, N. (Principal Investigator)

    1982-01-01

    CHRONINT and investigator B tapes as well as CHRONFIN data are being analyzed using a graphical display to illustrate X.Y,Z components as well as their residuals from the MGST (4/81) model. In addition to surveys of the vicinity of Japan, an aerial magnetic survey was conducted around Syowa Station in the Antarctic. Relative data collected by polar orbiting satellites are also being studied. Techniques used to separate external and internal fields from the vector data along the orbital paths; analysis of the frequency of the toroidal current in the equatorial ionosphere; investigation of the sudden storm commencement observed by MAGSAT; determination of the structure of field aligned currents associated with substorms; and calculation of the total electric current passing through the plane encircled by the MAGSAT orbit are discussed.

  11. Experimental results of 40-kA Nb[sub 3]Al cable-in-conduit conductor for fusion machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y.; Sugimoto, M.; Isono, T.

    1994-07-01

    A 40-kA Nb[sub 3]Al cable-in-conduit conductor has been developed for the toroidal field coils of fusion reactors, because Nb[sub 3]Al has excellent mechanical performance. This conductor consists of 405 copper-stabilized multifilamentary strands inserted into a CuNi case circular conduit. The Nb[sub 3]Al strands are fabricated by the Jelly-roll process with a diameter of 1.22 mm. This conductor could be operated up to a current of 46 kA at an external field of 11.2 T. Accordingly, Nb[sub 3]Al promises to soon become a useful superconductor for large-scale high-field applications, such as fusion machines.

  12. The importance of matched poloidal spectra to error field correction in DIII-D

    DOE PAGES

    Paz-Soldan, Carlos; Lanctot, Matthew J.; Logan, Nikolas C.; ...

    2014-07-09

    Optimal error field correction (EFC) is thought to be achieved when coupling to the least-stable "dominant" mode of the plasma is nulled at each toroidal mode number ( n). The limit of this picture is tested in the DIII-D tokamak by applying superpositions of in- and ex-vessel coil set n = 1 fields calculated to be fully orthogonal to the n = 1 dominant mode. In co-rotating H-mode and low-density Ohmic scenarios the plasma is found to be respectively 7x and 20x less sensitive to the orthogonal field as compared to the in-vessel coil set field. For the scenarios investigated,more » any geometry of EFC coil can thus recover a strong majority of the detrimental effect introduced by the n = 1 error field. Furthermore, despite low sensitivity to the orthogonal field, its optimization in H-mode is shown to be consistent with minimizing the neoclassical toroidal viscosity torque and not the higher-order n = 1 mode coupling.« less

  13. Manipulation of positron orbits in a dipole magnetic field with fluctuating electric fields

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Horn-Stanja, J.; Nißl, S.; Stenson, E. V.; Hergenhahn, U.; Pedersen, T. Sunn; Singer, M.; Dickmann, M.; Hugenschmidt, C.; Stoneking, M. R.; Danielson, J. R.; Surko, C. M.

    2018-01-01

    We report the manipulation of positron orbits in a toroidal dipole magnetic field configuration realized with electric fields generated by segmented electrodes. When the toroidal circulation motion of positrons in the dipole field is coupled with time-varying electric fields generated by azimuthally segmented outer electrodes, positrons undergo oscillations of their radial positions. This enables quick manipulation of the spatial profiles of positrons in a dipole field trap by choosing appropriate frequency, amplitude, phase, and gating time of the electric fields. According to numerical orbit analysis, we applied these electric fields to positrons injected from the NEPOMUC slow positron facility into a prototype dipole field trap experiment with a permanent magnet. Measurements with annihilation γ-rays clearly demonstrated the efficient compression effects of positrons into the strong magnetic field region of the dipole field configuration. This positron manipulation technique can be used as one of essential tools for future experiments on the formation of electron-positron plasmas.

  14. Effects of magnetic islands on drift wave instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, P., E-mail: jiangp@pku.edu.cn; Department of Physics and Astronomy, University of California, Irvine, California 92697; Lin, Z., E-mail: zhihongl@uci.edu

    2014-12-15

    Magnetic islands have been implemented in the gyrokinetic toroidal code to study the effects of the islands on microturbulence. The pressure profile flattening is verified in the simulation with the islands. Simulations of ion temperature gradient instability find that different toroidal modes are linearly coupled together and that toroidal spectra become broader when the island width increases. The real frequencies and growth rates of different toroidal modes approach each other with the averaged value independent of the island width. The linear mode structures are enhanced at the island separatrices and weakened at the island centers, consistent with the flattening ofmore » the pressure profile inside the islands.« less

  15. Single-molecule toroics in Ising-type lanthanide molecular clusters.

    PubMed

    Ungur, Liviu; Lin, Shuang-Yan; Tang, Jinkui; Chibotaru, Liviu F

    2014-01-01

    Single-molecule toroics (SMTs) are defined, by analogy with single-molecule magnets, as bistable molecules with a toroidal magnetic state, and seem to be most promising for future applications in quantum computing and information storage and use as multiferroic materials with magnetoelectric effect. As an interdisciplinary research area that spans chemistry, physics and material sciences, synthetic chemists have produced systems suitable for detailed study by physicists and materials scientists, while ab initio calculations have been playing a major role in the detection of toroidal magnetization and the advancement of this field. In this tutorial review, we demonstrate the research developed in the fascinating and challenging field of molecular-based SMTs with particular focus on how recent studies tend to address the issue of toroidal arrangement of the magnetic moment in these systems. Herein, nine typical SMTs are summarized, showing that the assembly of wheel-shaped complexes with the high symmetry of the molecule unit and strong intra-molecular dipolar interactions using strong anisotropy metal ions represents the most promising route toward the design of a toroidal moment. Furthermore, the linkage of such robust toroidal moment units with ferromagnetic type through appropriate bridging ligands enhances the toroidal magnetic moment per unit cell.

  16. Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes

    NASA Astrophysics Data System (ADS)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2016-10-01

    Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.

  17. Microlayered flow structure around an acoustically levitated droplet under a phase-change process.

    PubMed

    Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi

    2016-01-01

    The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction.

  18. NIMROD Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Device (CTH)

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Pandya, M. D.; Hanson, J. D.; Mauer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    Nonlinear MHD simulations of low-q disruptions in the CTH are presented. CTH is a current carrying stellarator that is used to study the effects of 3D shaping. The application of 3D shaping stabilizes low-q disruptions in CTH. The amount of 3D shaping is controlled by adjusting the external rotational transform, and it is characterized by the ratio of the external rotational transform to the total transform: f =ιvac / ι . Disruptions are routinely observed during operation with weak shaping (f < 0.05). The frequency of disruptions decreases with increasing amounts of 3D shaping, and the disruptions are completely suppressed for f > 0.1 . Nonlinear simulations are performed using the NIMROD code to better understand how the shaping suppresses the disruptions. Comparisons of runs with weak (f = 0.04) and strong (f = 0.10) shaping are shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Numbers DE-FG02-03ER54692 and DE-FG02-00ER54610.

  19. Kinetic description of rotating Tokamak plasmas with anisotropic temperatures in the collisionless regime

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Tessarotto, Massimo

    2011-11-01

    A largely unsolved theoretical issue in controlled fusion research is the consistent kinetic treatment of slowly-time varying plasma states occurring in collisionless and magnetized axisymmetric plasmas. The phenomenology may include finite pressure anisotropies as well as strong toroidal and poloidal differential rotation, characteristic of Tokamak plasmas. Despite the fact that physical phenomena occurring in fusion plasmas depend fundamentally on the microscopic particle phase-space dynamics, their consistent kinetic treatment remains still essentially unchallenged to date. The goal of this paper is to address the problem within the framework of Vlasov-Maxwell description. The gyrokinetic treatment of charged particles dynamics is adopted for the construction of asymptotic solutions for the quasi-stationary species kinetic distribution functions. These are expressed in terms of the particle exact and adiabatic invariants. The theory relies on a perturbative approach, which permits to construct asymptotic analytical solutions of the Vlasov-Maxwell system. In this way, both diamagnetic and energy corrections are included consistently into the theory. In particular, by imposing suitable kinetic constraints, the existence of generalized bi-Maxwellian asymptotic kinetic equilibria is pointed out. The theory applies for toroidal rotation velocity of the order of the ion thermal speed. These solutions satisfy identically also the constraints imposed by the Maxwell equations, i.e., quasi-neutrality and Ampere's law. As a result, it is shown that, in the presence of nonuniform fluid and EM fields, these kinetic equilibria can sustain simultaneously toroidal differential rotation, quasi-stationary finite poloidal flows and temperature anisotropy.

  20. Grinding Inside A Toroidal Cavity

    NASA Technical Reports Server (NTRS)

    Mayer, Walter; Adams, James F.; Burley, Richard K.

    1987-01-01

    Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.

  1. TOROID II

    DTIC Science & Technology

    2009-01-01

    three axis fluxgate magnetometer , CMOS sun and star sensors, and a Kalman filter. The work and tasks that have been accomplished on the TOROID... magnetometer . The problem was found to be a missing ferrite bead which connects the 12V power supply to the op-amps which are used to appropriately...establish an overall operational timeline for TOROID. Testing and calibration was performed on the three-axis magnetometer which is primary attitude

  2. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  3. Edge Equilibrium Code (EEC) For Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xujling

    2014-02-24

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids

  4. Electron Temperature and Density in Local Helicity Injection and High betat Plasmas

    NASA Astrophysics Data System (ADS)

    Schlossberg, David J.

    Tokamak startup in a spherical torus (ST) and an ST-based fusion nuclear science facility can greatly benefit from using non-inductive methods. The Pegasus Toroidal Experiment has developed a non-inductive startup technique using local helicity injection (LHI). Electron temperature, T e(r), and density, ne( r), profiles during LHI are unknown. These profiles are critical for understanding both the physics of the injection and relaxation mechanisms, as well as for extrapolating this technique to larger devices. A new Thomson scattering system has been designed, installed, and used to characterize Te(r, t) and ne(r, t) during LHI. The diagnostic leverages new technology in image intensified CCD cameras, high-efficiency diffraction gratings, and reliable Nd:YAG lasers. Custom systems for stray light mitigation, fast shuttering, and precision timing have been developed and implemented. The overall system provides a low-maintenance, economic, and effective means to explore novel physics regimes in Pegasus. Electron temperature and density profiles during LHI have been measured for the first time. Results indicate Te(r) peaked in the core of plasmas, and sustained while plasmas are coupled to injection drive. Electron densities also peak near the core of the tokamak, up to local values of n e ˜ 1.5 x 1019 m -3. A comparison of Te( r, t) has been made between discharges with dominant drive voltage from induction versus helicity injection. In both cases Te ( r, t) profiles remain peaked, with values for Te ,max > 150 eV in dominantly helicity-driven plasmas using high-field side LHI. Sustained values of betat ˜ 100% have been demonstrated in a tokamak for the first time. Plasmas are created and driven entirely non-solenoidally, and exhibit MHD stability. Measured temperature and density profiles are used to constrain magnetic equilibrium reconstructions, which calculate 80% < betat < 100% throughout a toroidal field ramp-down. For a continued decrease in the toroidal field these plasmas disrupt near the ideal MHD no-wall stability limit predicted by the DCON code. Mode analyses of predicted and measured MHD agree, and suggest discharges terminate by an intermediate-m, n=1 external mode. A localized region of minimum |B| has been identified in these discharges, and modeling shows access to it depends on both plasma pressure and magnetic geometry. This magnetic well is shown to persist over several milliseconds, in both constant toroidal field and ramp-down cases.

  5. Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface.

    PubMed

    Liu, Gui-Dong; Zhai, Xiang; Xia, Sheng-Xuan; Lin, Qi; Zhao, Chu-Jun; Wang, Ling-Ling

    2017-10-16

    In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consists of two mirrored asymmetric silicon split-ring resonators (ASSRRs) that can support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702) and contrast ratio (~100%). Numerical simulation results show that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer is integrated with the dielectric metasurface, and a max transmission coefficient difference up to 78% is achieved indicating that the proposed hybrid graphene/dielectric metasurface shows good performance as an optical modulator. The effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance are studied and the efficiency of the transmission amplitude modulation of graphene is also investigated. Our results may also provide potential applications in optical filter and bio-chemical sensing.

  6. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, N.; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Yan, N., E-mail: yanning@ipp.ac.cn

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentummore » transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.« less

  7. Ferrotoroidic ground state in a heterometallic {CrIIIDyIII6} complex displaying slow magnetic relaxation.

    PubMed

    Vignesh, Kuduva R; Soncini, Alessandro; Langley, Stuart K; Wernsdorfer, Wolfgang; Murray, Keith S; Rajaraman, Gopalan

    2017-10-18

    Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr III Dy III 6 } complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr III Dy III 6 } reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.

  8. Influence of toroidal rotation on tearing modes

    NASA Astrophysics Data System (ADS)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  9. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, N.J.; Rax, J.M.

    1994-12-20

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.

  10. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  11. Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model.

    PubMed Central

    Hud, N V

    1995-01-01

    Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent will all available data. Recently we proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here we propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8534805

  12. Fluctuations and differential contraction during regeneration of Hydra vulgaris tissue toroids

    NASA Astrophysics Data System (ADS)

    Krahe, Michael; Wenzel, Iris; Lin, Kao-Nung; Fischer, Julia; Goldmann, Joseph; Kästner, Markus; Fütterer, Claus

    2013-03-01

    We studied regenerating bilayered tissue toroids dissected from Hydra vulgaris polyps and relate our macroscopic observations to the dynamics of force-generating mesoscopic cytoskeletal structures. Tissue fragments undergo a specific toroid-spheroid folding process leading to complete regeneration towards a new organism. The time scale of folding is too fast for biochemical signalling or morphogenetic gradients, which forced us to assume purely mechanical self-organization. The initial pattern selection dynamics was studied by embedding toroids into hydro-gels, allowing us to observe the deformation modes over longer periods of time. We found increasing mechanical fluctuations which break the toroidal symmetry, and discuss the evolution of their power spectra for various gel stiffnesses. Our observations are related to single-cell studies which explain the mechanical feasibility of the folding process. In addition, we observed switching of cells from a tissue bound to a migrating state after folding failure as well as in tissue injury. We found a supra-cellular actin ring assembled along the toroid's inner edge. Its contraction can lead to the observed folding dynamics as we could confirm by finite element simulations. This actin ring in the inner cell layer is assembled by myosin-driven length fluctuations of supra-cellular F-actin bundles (myonemes) in the outer cell layer. This paper is dedicated to Malcolm Steinberg.

  13. Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE

    DOE PAGES

    Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...

    2017-01-27

    Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less

  14. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team

    2017-01-01

    The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m  =  qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.

  15. Improved high power/high frequency inductor

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1990-01-01

    A toroidal core is mounted on an alignment disc having uniformly distributed circumferential notches or holes therein. Wire is then wound about the toroidal core in a uniform pattern defined by the notches or holes. Prior to winding, the wire may be placed within shrink tubing. The shrink tubing is then wound about the alignment disc and core and then heat-shrunk to positively retain the wire in the uniform position on the toroidal core.

  16. Toroidal core winder

    DOEpatents

    Potthoff, Clifford M.

    1978-01-01

    The disclosure is directed to an apparatus for placing wire windings on a toroidal body, such as a transformer core, having an orifice in its center. The apparatus comprises a wire storage spool, a wire loop holding continuous belt maintained in a C-shaped loop by a belt supporting structure and provision for turning the belt to place and tighten loops of wire on a toroidal body, which is disposed within the gap of the C-shaped belt loop.

  17. The Mu2e Solenoid Cold Mass Position Monitor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.

    The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less

  18. The Mu2e Solenoid Cold Mass Position Monitor System

    DOE PAGES

    Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.; ...

    2018-01-23

    The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less

  19. Manufacture and Quality Control of Insert Coil with Real ITER TF Conductor

    DOE PAGES

    Ozeki, H.; Isono, T.; Uno, Y.; ...

    2016-03-02

    JAEA successfully completed the manufacture of the toroidal field (TF) insert coil (TFIC) for a performance test of the ITER TF conductor in the final design in cooperation with Hitachi, Ltd. The TFIC is a single-layer 8.875-turn solenoid coil with 1.44-m diameter. This will be tested for 68-kA current application in a 13-T external magnetic field. TFIC was manufactured in the following order: winding of the TF conductor, lead bending, fabrication of the electrical termination, heat treatment, turn insulation, installation of the coil into the support mandrel structure, vacuum pressure impregnation (VPI), structure assembly, and instrumentation. Here in this presentation,more » manufacture process and quality control status for the TFIC manufacturing are reported.« less

  20. Magnetism of toroidal field in two-fluid equilibrium of CHI driven spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2016-10-01

    Double-pulsing CHI (D-CHI) experiment has been conducted in the HIST device to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas. The feature of CHI driven ST such as diamagnetic toroidal field in the central open flux column (OFC) region and strong poloidal flow shear around the separatrix in the high field side suggests the two-fluid effect. The relationship between the magnetism of the toroidal field and the poloidal flow velocity is investigated by modelling the D-CHI (mainly driving the poloidal electron flow along the open flux) in the two-fluid equilibrium calculations. The poloidal component of Ampere's law leads that the toroidal field is related to the difference between the stream functions of ion ψi and electron ψe for the poloidal flow, indicating that the toroidal field with ψe >ψi results in a diamagnetic profile, while that with ψe <ψi results in a paramagnetic one. The gradient of the stream function determines the polarity and the strength of the poloidal flow velocity. It is found that the two-fluid equilibrium of CHI driven ST satisfies ψe > 0 and ψi < 0 in the OFC region, and ψe < 0 and ψi < 0 in the closed flux region. The toroidal field is a diamagnetic profile in the OFC region due to ψe >ψi and |uez | > |uiz | , where uez and uiz denote the poloidal electron and ion flow velocities, respectively. It becomes from a diamagnetic to a paramagnetic profile in the closed flux region, because ψe (uez) approaches ψi (uiz) around the magnetic axis. The poloidal ion flow shear is enhanced in the OFC region due to the ion inertial effect through the toroidal ion flow velocity.

  1. Destructive interference between electric and toroidal dipole moments in TiO2 cylinders and frustums with coaxial voids

    NASA Astrophysics Data System (ADS)

    Terekhov, P. D.; Baryshnikova, K. V.; Evlyukhin, A. B.; Shalin, A. S.

    2017-11-01

    We demonstrate numerically the possibility of multipole interference in the TiO2 (titanium dioxide) microcylinders and microfrustums in the wavelength range 210-300 μm. Resonantly strong destructive interference between toroidal and electric dipole contributions to the scattered field is achieved by a geometry tuning. The toroidal and electric dipole mode overlapping at the resonant wavelength with almost total suppression of the total electric dipole moment is achieved.

  2. The triangular kagomé lattices revisited

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyun; Yan, Weigen

    2013-11-01

    The dimer problem, Ising spins and bond percolation on the triangular kagomé lattice have been studied extensively by physicists. In this paper, based on the fact the triangular kagomé lattice with toroidal boundary condition can be regarded as the line graph of 3.12.12 lattice with toroidal boundary condition, we derive the formulae of the number of spanning trees, the energy, and the Kirchhoff index of the triangular kagomé lattice with toroidal boundary condition.

  3. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE PAGES

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon; ...

    2017-01-24

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  4. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  5. Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Kota; Hoshino, Masahiro

    2016-05-01

    We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.

  6. INSTABILITY OF NON-UNIFORM TOROIDAL MAGNETIC FIELDS IN ACCRETION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp

    We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of thismore » growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.« less

  7. Understanding rotation profile structures in ECH-heated plasmas using nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.

    2015-11-01

    A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  8. Magnetohydrodynamic Models of Molecular Tornadoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Au, Kelvin; Fiege, Jason D., E-mail: fiege@physics.umanitoba.ca

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecularmore » tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.« less

  9. A general MHD formulation for plasmas with flow and resistive walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guazzotto, L.; Freidberg, J. P.; Betti, R.

    2006-11-30

    Toroidal rotation, either induced by means of neutral beams (e.g. in NSTX and DIII-D) or appearing spontaneously (e.g. in Alcator C-Mod, JET and Tore Supra) is routinely observed in modem tokamak experiments. Poloidal rotation is also commonly observed, in particular in the edge region of the plasma. Plasma rotation has a major effect on plasma stability. Flow and flow shear stabilize external modes such as the resistive wall mode (as observed e.g. in DIII-D), suppress turbulence when the flow shear is large enough, and also have a significant influence on the stability and nonlinear evolution of the internal kink andmore » ballooning modes. Flow shear can in particular have both a stabilizing (by breaking up unstable structures) and destabilizing (through the Kelvin-Helmoltz mechanism) effect. A self-consistent analysis of the effect of rotation requires the use of numerical tools. In this work, we present a general eigenvalue formulation based on a variational principle stability analysis, including arbitrary (both toroidal and poloidal) plasma rotation and a thin resistive wall of arbitrary shape and resistivity. It is shown that the problem can always be reduced to a classic eigenvalue formulation of the kind i{omega}A double underbar {center_dot} {zeta}-vector = B double underbar {center_dot} {zeta}-vector, where {zeta}-vector is the unknown eigenvector related to the plasma displacement, and {omega} the (complex) evolution frequency of the perturbation. The formulation is well suited for a finite element analysis.« less

  10. Living Toroids - Cells on Toroidal Surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Angelini, Thomas; Marquez, Samantha; Kim, Harold; Fernandez-Nieves, Alberto

    2014-03-01

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. Substrate mechanics has been recognized as one of the important physical cues that governs cell behavior at single cell level as well as in collective cell motion. Past research has suggested several contact-guided behaviors to be the result of surface curvature. However, studies on the effect of curvature are relatively scarce likely due to the difficulty in generating substrates with well-defined curvature. Here we describe the generation of toroidal droplets, which unlike spherical droplets, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus. Cells are either encapsulated inside toroidal droplets or located on toroidal hydrogel surfaces. Preliminary studies use B. Subtilis to study the organization of bacteria biofilms. When confined in droplets surrounded by yield-stress fluid, bacteria self-organize into heterogeneous biofilm at fluid- substrate interface. It is found that the surface curvature in the sub-millimeter scale has little effect on biofilm architecture.

  11. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  12. The evaluation of a deformable diffraction grating for a stigmatic EUV spectroheliometer

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1987-01-01

    A high-efficiency, extreme ultraviolet (EUV) imaging spectrometer is constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically-deformable sub-master grating replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a two-dimensional, pulse-counting detector system verify the image quality of the toroidal grating at wavelengths near 600 A. The results of these tests and the basic designs of two instruments which could employ the imaging spectrometer for astrophysical investigations in space are described; i.e., a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona; and an EUV spectroscopic telescope for studies of non-solar objects.

  13. Dynamic divertor control using resonant mixed toroidal harmonic magnetic fields during ELM suppression in DIII-D

    NASA Astrophysics Data System (ADS)

    Jia, M.; Sun, Y.; Paz-Soldan, C.; Nazikian, R.; Gu, S.; Liu, Y. Q.; Abrams, T.; Bykov, I.; Cui, L.; Evans, T.; Garofalo, A.; Guo, W.; Gong, X.; Lasnier, C.; Logan, N. C.; Makowski, M.; Orlov, D.; Wang, H. H.

    2018-05-01

    Experiments using Resonant Magnetic Perturbations (RMPs), with a rotating n = 2 toroidal harmonic combined with a stationary n = 3 toroidal harmonic, have validated predictions that divertor heat and particle flux can be dynamically controlled while maintaining Edge Localized Mode (ELM) suppression in the DIII-D tokamak. Here, n is the toroidal mode number. ELM suppression over one full cycle of a rotating n = 2 RMP that was mixed with a static n = 3 RMP field has been achieved. Prominent heat flux splitting on the outer divertor has been observed during ELM suppression by RMPs in low collisionality regime in DIII-D. Strong changes in the three dimensional heat and particle flux footprint in the divertor were observed during the application of the mixed toroidal harmonic magnetic perturbations. These results agree well with modeling of the edge magnetic field structure using the TOP2D code, which takes into account the plasma response from the MARS-F code. These results expand the potential effectiveness of the RMP ELM suppression technique for the simultaneous control of divertor heat and particle load required in ITER.

  14. Exploring potential Pluto-generated neutral tori

    NASA Astrophysics Data System (ADS)

    Smith, Howard T.; Hill, Matthew; KollMann, Peter; McHutt, Ralph

    2015-11-01

    The NASA New Horizons mission to Pluto is providing unprecedented insight into this mysterious outer solar system body. Escaping molecular nitrogen is of particular interest and possibly analogous to similar features observed at moons of Saturn and Jupiter. Such escaping N2 has the potential of creating molecular nitrogen and N (as a result of molecular dissociation) tori or partial toroidal extended particle distributions. The presence of these features would present the first confirmation of an extended toroidal neutral feature on a planetary scale in our solar system. While escape velocities are anticipated to be lower than those at Enceladus, Io or even Europa, particle lifetimes are much longer in Pluto’s orbit because as a result of much weaker solar interaction processes along Pluto’s orbit (on the order of tens of years). Thus, with a ~248 year orbit, Pluto may in fact be generating an extended toroidal feature along it orbit.For this work, we modify and apply our 3-D Monte Carlo neutral torus model (previously used at Saturn, Jupiter and Mercury) to study/analyze the theoretical possibility and scope of potential Pluto-generated neutral tori. Our model injects weighted particles and tracks their trajectories under the influence of all gravitational fields with interactions with other particles, solar photons and Pluto collisions. We present anticipated N2 and N tori based on current estimates of source characterization and environmental conditions. We also present an analysis of sensitivity to assumed initial conditions. Such results can provide insight into the Pluto system as well as valuable interpretation of New Horizon’s observational data.

  15. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard

    2017-06-01

    Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  16. Comparison of JET AVDE disruption data with M3D simulations and implications for ITER

    DOE PAGES

    Strauss, H.; Joffrin, E.; Riccardo, V.; ...

    2017-10-02

    Nonlinear 3D MHD asymmetric vertical displacement disruption simulations have been performed using JET equilibrium reconstruction initial data. There were several experimentally measured quantities compared with the simulation. These include vertical displacement, halo current, toroidal current asymmetry, and toroidal rotation. The experimental data and the simulations are in reasonable agreement. Also compared was the correlation of the toroidal current asymmetry and the vertical displacement asymmetry. The Noll relation between asymmetric wall force and vertical current moment is verified in the simulations. Also verified is the toroidal flux asymmetry. Though, JET is a good predictor of ITER disruption behavior, JET and ITERmore » can be in different parameter regimes, and extrapolating from JET data can overestimate the ITER wall force.« less

  17. Comparison of JET AVDE disruption data with M3D simulations and implications for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, H.; Joffrin, E.; Riccardo, V.

    Nonlinear 3D MHD asymmetric vertical displacement disruption simulations have been performed using JET equilibrium reconstruction initial data. There were several experimentally measured quantities compared with the simulation. These include vertical displacement, halo current, toroidal current asymmetry, and toroidal rotation. The experimental data and the simulations are in reasonable agreement. Also compared was the correlation of the toroidal current asymmetry and the vertical displacement asymmetry. The Noll relation between asymmetric wall force and vertical current moment is verified in the simulations. Also verified is the toroidal flux asymmetry. Though, JET is a good predictor of ITER disruption behavior, JET and ITERmore » can be in different parameter regimes, and extrapolating from JET data can overestimate the ITER wall force.« less

  18. Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.

    Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line trackings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented.

  19. Efficiency of wave-driven rigid body rotation toroidal confinement

    NASA Astrophysics Data System (ADS)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  20. [Optimum design of imaging spectrometer based on toroidal uniform-line-spaced (TULS) spectrometer].

    PubMed

    Xue, Qing-Sheng; Wang, Shu-Rong

    2013-05-01

    Based on the geometrical aberration theory, a optimum-design method for designing an imaging spectrometer based on toroidal uniform grating spectrometer is proposed. To obtain the best optical parameters, twice optimization is carried out using genetic algorithm(GA) and optical design software ZEMAX A far-ultraviolet(FUV) imaging spectrometer is designed using this method. The working waveband is 110-180 nm, the slit size is 50 microm x 5 mm, and the numerical aperture is 0.1. Using ZEMAX software, the design result is analyzed and evaluated. The results indicate that the MTF for different wavelengths is higher than 0.7 at Nyquist frequency 10 lp x mm(-1), and the RMS spot radius is less than 14 microm. The good imaging quality is achieved over the whole working waveband, the design requirements of spatial resolution 0.5 mrad and spectral resolution 0.6 nm are satisfied. It is certificated that the optimum-design method proposed in this paper is feasible. This method can be applied in other waveband, and is an instruction method for designing grating-dispersion imaging spectrometers.

  1. Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball

    NASA Astrophysics Data System (ADS)

    Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.

  2. Toroidal marginally outer trapped surfaces in closed Friedmann-Lemaître-Robertson-Walker spacetimes: Stability and isoperimetric inequalities

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Xie, Naqing

    2017-10-01

    We investigate toroidal marginally outer trapped surfaces (MOTS) and marginally outer trapped tubes (MOTT) in closed Friedmann-Lemaître-Robertson-Walker (FLRW) geometries. They are constructed by embedding constant mean curvature (CMC) Clifford tori in a FLRW spacetime. This construction is used to assess the quality of certain isoperimetric inequalities, recently proved in axial symmetry. Similarly to spherically symmetric MOTS existing in FLRW spacetimes, the toroidal ones are also unstable.

  3. Improved pressure-velocity coupling algorithm based on minimization of global residual norm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatwani, A.U.; Turan, A.

    1991-01-01

    In this paper an improved pressure velocity coupling algorithm is proposed based on the minimization of the global residual norm. The procedure is applied to SIMPLE and SIMPLEC algorithms to automatically select the pressure underrelaxation factor to minimize the global residual norm at each iteration level. Test computations for three-dimensional turbulent, isothermal flow is a toroidal vortex combustor indicate that velocity underrelaxation factors as high as 0.7 can be used to obtain a converged solution in 300 iterations.

  4. Toroidal reactor

    DOEpatents

    Dawson, John M.; Furth, Harold P.; Tenney, Fred H.

    1988-12-06

    Method for producing fusion power wherein a neutral beam is injected into a toroidal bulk plasma to produce fusion reactions during the time permitted by the slowing down of the particles from the injected beam in the bulk plasma.

  5. Functional form for plasma velocity in a rapidly rotating tokamak discharge

    DOE PAGES

    Burrell, Keith H.; Chrystal, C. olin

    2014-07-25

    A recently developed technique using charge exchange spectroscopy determines the ion poloidal rotation in tokamak plasmas from the poloidal variation in the toroidal angular rotation speed. The basis for this technique is the functional form for the plasma velocity calculated from the equilibrium equations. The initial development of this technique utilized the functional form determined for conditions where the ion toroidal rotation speed is much smaller than the ion thermal speed. There are cases, however, where the toroidal rotation can be comparable to the ion thermal speed, especially for high atomic number impurities. Furthermore, the present paper extends the previousmore » analysis to this high rotation speed case and demonstrates how to extract the poloidal rotation speed from measurements of the toroidal angular rotation speed at two points on a flux surface.« less

  6. Toroidal magnet system

    DOEpatents

    Ohkawa, Tihiro; Baker, Charles C.

    1981-01-01

    In a plasma device having a toroidal plasma containment vessel, a toroidal field-generating coil system includes fixed linking coils each formed of first and second sections with the first section passing through a central opening through the containment vessel and the second section completing the linking coil to link the containment vessel. A plurality of removable unlinked coils are each formed of first and second C-shaped sections joined to each other at their open ends with their bights spaced apart. The second C-shaped section of each movable coil is removably mounted adjacent the second section of a linking coil, with the containment vessel disposed between the open ends of the first and second C-shaped sections. Electric current is passed through the linking and removable coils in opposite sense in the respective adjacent second sections to produce a net toroidal field.

  7. Long-wavelength microinstabilities in toroidal plasmas*

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Rewoldt, G.

    1993-07-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities.

  8. Magnetic Compression Experiment at General Fusion with Simulation Results

    NASA Astrophysics Data System (ADS)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  9. Microlayered flow structure around an acoustically levitated droplet under a phase-change process

    PubMed Central

    Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi

    2016-01-01

    The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction. PMID:28725723

  10. Scrape-off-layer currents during MHD activity and disruptions in HBT-EP

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Desanto, S.; Battey, A.; Bialek, J.; Brooks, J. W.; Mauel, M. E.; Navratil, G. A.

    2017-10-01

    We report scrape-off layer (SOL) current measurements during MHD mode activity and disruptions in the HBT-EP tokamak. Currents are measured via Rogowski coils mounted on tiles in the low-field-side SOL, toroidal jumpers between otherwise-isolated vessel sections, and segmented plasma current Rogowski coils. These currents strongly depend on the plasma's major radius, mode amplitude, and mode phase. Plasma current asymmetries and SOL currents during disruptions reach 4% of the plasma current. Asymmetric toroidal currents between vessel sections rotate at tens of kHz through most of the current quench, then symmetrize once Ip reaches 30% of its pre-disruptive value. Toroidal jumper currents oscillate between co- and counter-Ip, with co-Ip being dominant on average during disruptions. Increases in local plasma current correlate with counter-Ip current in the nearest toroidal jumper. Measurements are interpreted in the context of two models that produce contrary predictions for the toroidal vessel current polarity during disruptions. Plasma current asymmetries are consistent with both models, and scale with plasma displacement toward the wall. Progress of ongoing SOL current diagnostic upgrades is also presented. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  11. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.

    1985-05-31

    This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.

  12. Collisionality Scaling of Main-ion Toroidal and Poloidal Rotation in Low Torque DIII-D Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B A Grierson, et al

    In tokamak plasmas with low levels of toroidal rotation, the radial electric fi eld Er is a combination of pressure gradient and toroidal and poloidal rotation components, all having similar magnitudes. In order to assess the validity of neoclassical poloidal rotation theory for determining the poloidal rotation contribution to Er , Dα emission from neutral beam heated tokamak discharges in DIII-D [J.L. Luxon, Nucl. Fusion 42 , 614 (2002)] has been evaluated in a sequence of low torque (electron cyclotron resonance heating and balanced diagnostic neutral beam pulse) discharges to determine the local deuterium toroidal rotation velocity. By invoking themore » radial force balance relation the deuterium poloidal rotation can be inferred. It is found that the deuterium poloidal low exceeds the neoclassical value in plasmas with collisionality νi < 0: 1, being more ion diamagnetic, and with a stronger dependence on collisionality than neoclassical theory predicts. At low toroidal rotation, the poloidal rotation contribution to the radial electric fi eld and its shear is signi cant. The eff ect of anomalous levels of poloidal rotation on the radial electric fi eld and cross fi eld heat transport is investigated for ITER parameters.« less

  13. Escape of magnetic toroids from the Sun

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Rust, David M.

    1995-01-01

    Analysis of heliospheric magnetic fields at 1 AU shows that 10(exp 24) Mx of net azimuthal flux escapes from the Sun per solar cycle. This rate is consistent with rates derived from other indicators of flux escape, including coronal mass ejections and filament eruptions. The toroidal flux escape rate is compared with the apparent rate of flux emergence at the solar surface, and it is concluded that escaping toroids will remove at least 20% of the emerging flux, and may remove as much as 100% of emerging flux if multiple eruptions occur on the toroids. The data imply that flux escapes the Sun with an efficiency far exceeding Parker's upper limit estimate of 3%. Toroidal flux escape is almost certainly the source of the observed overwinding of the interplanetary magnetic field spiral. Two mechanisms to facilitate net flux escape are discussed: helicity charging to push open the fields and flux transport with reconnection to close them off. We estimate the Sun will shed approximately 2 x 10(exp 45) of magnetic helicity per solar cycle, leading to a mean helicity density of 100 Mx(exp 2)cm(exp -3) at 1 AU, which agrees well with observations.

  14. Toroids as NMR detectors in metal pressure probes and in flow systems

    DOEpatents

    Rathke, Jerome W.

    1991-01-01

    A nuclear magnetic resonance probe to measure the properties of a sample under high pressure conditions. The apparatus employs a free standing, elongated toroidal coil as the RF transmitter and receiver.

  15. Ideal magnetohydrodynamic theory for localized interchange modes in toroidal anisotropic plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tonghui, E-mail: thshi@ipp.ac.cn; Wan, B. N.; Sun, Y.

    2016-08-15

    Ideal magnetohydrodynamic theory for localized interchange modes is developed for toroidal plasmas with anisotropic pressure. The work extends the existing theories of Johnson and Hastie [Phys. Fluids 31, 1609 (1988)], etc., to the low n mode case, where n is the toroidal mode number. Also, the plasma compressibility is included, so that the coupling of the parallel motion to perpendicular one, i.e., the so-called apparent mass effect, is investigated in the anisotropic pressure case. The singular layer equation is obtained, and the generalized Mercier's criterion is derived.

  16. Full toroidal imaging of non-axisymmetric plasma material interaction in the National Spherical Torus Experiment divertor.

    PubMed

    Scotti, Filippo; Roquemore, A L; Soukhanovskii, V A

    2012-10-01

    A pair of two dimensional fast cameras with a wide angle view (allowing a full radial and toroidal coverage of the lower divertor) was installed in the National Spherical Torus Experiment in order to monitor non-axisymmetric effects. A custom polar remapping procedure and an absolute photometric calibration enabled the easier visualization and quantitative analysis of non-axisymmetric plasma material interaction (e.g., strike point splitting due to application of 3D fields and effects of toroidally asymmetric plasma facing components).

  17. Pulsed plasmoid electric propulsion

    NASA Technical Reports Server (NTRS)

    Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo

    1990-01-01

    A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.

  18. Fixture for winding transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, M. T.

    1980-01-01

    Bench-mounted fixture assists operator in winding toroid-shaped transformer cores. Toroid is rigidly held in place as wires are looped around. Arrangement frees both hands for rapid winding and untangling of wires that occurs when core is hand held.

  19. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  20. Observations of toroidicity-induced Alfvén eigenmodes in a reversed field pinch plasma

    NASA Astrophysics Data System (ADS)

    Regnoli, G.; Bergsâker, H.; Tennfors, E.; Zonca, F.; Martines, E.; Serianni, G.; Spolaore, M.; Vianello, N.; Cecconello, M.; Antoni, V.; Cavazzana, R.; Malmberg, J.-A.

    2005-04-01

    High frequency peaks in the spectra of magnetic field signals have been detected at the edge of Extrap-T2R [P. R. Brunsell, H. Bergsåker, M. Cecconello, J. R. Drake, R. M. Gravestijn, A. Hedqvist, and J.-A. Malmberg, Plasma Phys. Controlled Fusion, 43, 1457 (2001)]. The measured fluctuation is found to be mainly polarized along the toroidal direction, with high toroidal periodicity n and Alfvénic scaling (f∝B/√mini ). Calculations for a reversed field pinch plasma predict the existence of an edge resonant, high frequency, high-n number toroidicity-induced Alfvén eigenmode with the observed frequency scaling. In addition, gas puffing experiments show that edge density fluctuations are responsible for the rapid changes of mode frequency. Finally a coupling with the electron drift turbulence is proposed as drive mechanism for the eigenmode.

  1. GTC simulations of ion temperature gradient driven instabilities in W7-X and LHD stellarators

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu

    2017-10-01

    We report GTC linear simulations of ion temperature gradient (ITG) instabilities in Wendelstein 7-X (W7-X) and Large Helical Device (LHD) stellarators. GTC has recently been updated to treat 3D equilibria by interfacing with MHD equilibrium code VMEC. GTC simulations of ITG have been carried out in both full torus and partial torus taking into account the toroidal periodicity of the stellarators. The effects of toroidal mode coupling on linear dispersions and mode structures in W7-X and LHD are studied. The mode structure in W7-X is more localized in the toroidal direction, and LHD is more extended in the toroidal direction and tokamak-like. Linear growth rates, real frequencies, and mode structures agree reasonably with results of EUTERPE simulations. In collaboration with I. Holod, J. Riemann, Z. Lin, J. Bao, L. Shi, S. Taimourzadeh, R. Kleiber, and M. Borchardt.

  2. Effect of toroidal field ripple on the formation of internal transport barriers

    NASA Astrophysics Data System (ADS)

    de Vries, P. C.; Joffrin, E.; Hawkes, N. C.; Litaudon, X.; Challis, C. D.; Andrew, Y.; Beurskens, M.; Brix, M.; Brzozowski, J.; Crombé, K.; Giroud, C.; Hobirk, J.; Johnson, T.; Lönnroth, J.; Salmi, A.; Tala, T.; Yavorskij, V.; Zastrow, K.-D.; EFDA Contributors, JET

    2008-06-01

    The effect of a toroidal field (TF) ripple on the formation and performance of internal transport barriers (ITBs) has been studied in JET. It was found that the TF ripple had a profound effect on the toroidal plasma rotation. An increased TF ripple up to δ = 1% led to a lower rotation and reduced the rotational shear in the region where the ITBs were formed. ITB triggering events were observed in all cases and it is thought that the rotational shear may be less important for this process than, for example, the q-profile. However, the increase in the pressure gradient following the ITB trigger was reduced in discharges with a larger TF ripple and consequently a lower rotational shear. This suggests that toroidal rotation and its shear play a role in the growth of the ITB once it has been triggered.

  3. A feasibility study of developing toroidal tanks for a spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Anderson, J. E.; Fester, D. A.

    1973-01-01

    A study was made to determine the feasibility of developing toroidal propellant tanks for a bipropellant (N204/MMH) propulsion system to be used in a proposed advanced Pioneer spin-stabilized vehicle intended for a Jupiter-orbiter and possibly a Saturn-orbiter mission. The rationale for considering the use of two toroidal tanks rather than the proposed use of four spherical tanks includes the belief that a more symmetrical distribution of propellant mass and a smaller variation in the position of the vehicle center-of-mass during propellant consumption would result, reducing requirements for attitude-control propellants, for balance weight, and for other weights associated with the dynamics of the spinning spacecraft. Results lead to the conclusion that a toroidal tank containing an effective, passive surface tension propellant acquisition device could be fabricated with available manufacturing methods and could be used interchangeably for either fuel or oxidizer.

  4. A feasibility study of developing toroidal tanks for a spinning spacecraft. Part 2: Evaluation of fluid behavior in spinning toroidal tanks

    NASA Technical Reports Server (NTRS)

    Anderson, J. E.

    1974-01-01

    An experimental program was conducted for the purpose of evaluating propellant behavior characteristics in spinning toroidal tanks. The effects of typical mission requirements, and related phenomena upon propellant slosh and settling, and orientation and stability of the ullage were investigated in a subscale model tank under both one-g and low-g acceleration environments. Specific conditions included were axial acceleration, spin rate, spinrate change, and spacecraft wobble, both singly and in combination. Methanol and water in combination with appropriate spin-rates and accelerations of the scale model system were used to simulate the behavior of fluorine, nitrogen tetroxide, monomethylhydrazine, and hydrazine. The experimental results indicate that no major fluid behavior problems would be encountered with the use of toroidal tanks containing any of the four propellants in a proposed spin-stabilized orbiter spacecraft.

  5. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  6. Use of reconstructed 3D VMEC equilibria to match effects of toroidally rotating discharges in DIII-D

    DOE PAGES

    Wingen, Andreas; Wilcox, Robert S.; Cianciosa, Mark R.; ...

    2016-10-13

    Here, a technique for tokamak equilibrium reconstructions is used for multiple DIII-D discharges, including L-mode and H-mode cases when weakly 3D fieldsmore » $$\\left(\\delta B/B\\sim {{10}^{-3}}\\right)$$ are applied. The technique couples diagnostics to the non-linear, ideal MHD equilibrium solver VMEC, using the V3FIT code, to find the most likely 3D equilibrium based on a suite of measurements. It is demonstrated that V3FIT can be used to find non-linear 3D equilibria that are consistent with experimental measurements of the plasma response to very weak 3D perturbations, as well as with 2D profile measurements. Observations at DIII-D show that plasma rotation larger than 20 krad s –1 changes the relative phase between the applied 3D fields and the measured plasma response. Discharges with low averaged rotation (10 krad s –1) and peaked rotation profiles (40 krad s –1) are reconstructed. Similarities and differences to forward modeled VMEC equilibria, which do not include rotational effects, are shown. Toroidal phase shifts of up to $${{30}^{\\circ}}$$ are found between the measured and forward modeled plasma responses at the highest values of rotation. The plasma response phases of reconstructed equilibra on the other hand match the measured ones. This is the first time V3FIT has been used to reconstruct weakly 3D tokamak equilibria.« less

  7. Effects of resistivity and rotation on the linear plasma response to non-axisymmetric magnetic perturbations on DIII-D

    DOE PAGES

    Haskey, Shaun R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-01-05

    Parameter scans show the strong dependence of the plasma response on the poloidal structure of the applied field highlighting the importance of being able to control this parameter using non-axisymmetric coil sets. An extensive examination of the linear single fluid plasma response to n = 3 magnetic perturbations in L-mode DIII-D lower single null plasmas is presented. The effects of plasma resistivity, toroidal rotation and applied field structure are calculated using the linear single fluid MHD code, MARS-F. Measures which separate the response into a pitch-resonant and resonant field amplification (RFA) component are used to demonstrate the extent to whichmore » resonant screening and RFA occurs. The ability to control the ratio of pitch-resonant fields to RFA by varying the phasing between upper and lower resonant magnetic perturbations coils sets is shown. The predicted magnetic probe outputs and displacement at the x-point are also calculated for comparison with experiments. Additionally, modelling of the linear plasma response using experimental toroidal rotation profiles and Spitzer like resistivity profiles are compared with results which provide experimental evidence of a direct link between the decay of the resonant screening response and the formation of a 3D boundary. As a result, good agreement is found during the initial application of the MP, however, later in the shot a sudden drop in the poloidal magnetic probe output occurs which is not captured in the linear single fluid modelling.« less

  8. Dynamical model for the toroidal sporadic meteors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokorný, Petr; Vokrouhlický, David; Nesvorný, David

    More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper modeling of the toroidal sources has not to date been accomplished. Here, wemore » develop a steady-state model for the toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period) comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including the most troublesome low-eccentricity component, which is due to a combination of two effects: particles' ability to decouple from Jupiter and circularize by the Poynting-Robertson effect, and large collision probability for orbits similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust in space and check the flux necessary to maintain the cloud in a steady state.« less

  9. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Novikov, M. S.; Ivanov, D. P.; Novikov, S. I.; Shuvaev, S. A.

    2015-12-01

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20-30 kA, an operating temperature of 10-20 K, and a magnetic field on the winding of 12-15 T (prospectively ~20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet's casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  10. Two-fluid equilibrium transition during multi-pulsing CHI in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2015-11-01

    Two-fluid dynamo current drive has been studied to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The density gradient, poloidal flow shear, and radial electric shear enhanced by applying the second CHI pulse is observed around the separatrix in the high field side to cause not only the ExB drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The two-fluid equilibrium transition during the M-CHI in the ST is investigated by modelling the M-CHI in the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region due to the increase of the poloidal electron flow velocity in the central open flux column (OFC) region, while the diamagnetic profile is kept in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region due to the increase in the drift velocity and the Hall effect. As the ion diamagnetic drift velocity is changed in the same direction as the ExB drift velocity around the separatrix in the high field side through the negative ion pressure gradient there, the poloidal ion flow velocity is increased in the OFC region, enhancing the flow shear. The radial electric field shear around the separatrix is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The density is decreased in the closed flux region according to the generalized Bernoulli law and its negative gradient around the separatrix steepens.

  11. Compact Torus Injection Experiments on the H.I.T. teststand and the JFT-2M tokamak

    NASA Astrophysics Data System (ADS)

    Fukumoto, Naoyuki; Fujiwara, Makoto; Kuramoto, Keiji; Ageishi, Masaya; Nagata, Masayoshi; Uyama, Tadao; Ogawa, Hiroaki; Kasai, Satoshi; Hasegawa, Kouichi; Shibata, Takatoshi

    1997-11-01

    A spheromak-type compact torus (CT) acceleration and injection experiment has been carried out using the Himeji Institute of Technology Compact Torus Injector (HIT-CTI). We investigate the possibility of refueling, density control, current drive, and edge electric field control of tokamak plasmas by means of CT injection. The HIT-CTI produces a CT with a speed of 200 km/s and a density of 1× 10^21m-3. We have constructed new electrodes and power supplies, and will install the HIT-CTI on the JFT-2M tokamak at JAERI in Autumn 1997. The outer electrode serves as a common ground for both the formation bank (144μF, 20kV) and the acceleration bank (92.4μF, 40kV). If the external toroidal field of the tokamak is applied across the CT acceleration region, the CT kinetic energy might decrease during penetration into the field lines joining the inner and outer electrode. This could result in the CT not being able to reach the core of the tokamak plasma. Determining the optimum position of the inner electrode is one of the near term goals of this research. We will present magnetic probe, He-Ne interferometer and fast framing camera data from experiments at H.I.T., where a CT was accelerated into a transverse field. We will also present initial results from the operation of the HIT-CTI on the JFT-2M tokamak.

  12. Development of rotating magnetic field coil system in the HIST spherical torus device

    NASA Astrophysics Data System (ADS)

    Yoshikawa, T.; Kikuchi, Y.; Yamada, S.; Hashimoto, S.; Nishioka, T.; Fukumoto, N.; Nagata, M.

    2007-11-01

    Coaxial Helicity Injection (CHI) is one of most attractive methods to achieve non-inductive current drive in spherical torus devices. The current drive mechanism of CHI relies on MHD relaxation process of rotating kink behavior [1], so that there is a possibility to control the CHI by using an externally applied rotating magnetic field (RMF). We have recently started to develop a RMF coil system in the HIST spherical torus device. Eight coils are located above and below the midplane at four toroidal locations so that the RMF is resonant with n = 1 rotating kink mode driven by the CHI. In addition, the RMF coil set is installed inside a flux conserver of 5 mm thickness (cut-off frequency ˜ 170 Hz) so that the RMF penetrates into the plasma. The coil winding is made of 20 turns of enameled copper circular wires (1.5 mm^2 conductor cross section), covered with a thin stainless steal case of 0.5 mm thickness (cut-off frequency ˜ 710 kHz). The RMF system is driven by an IGBT inverter power supply (nominal current: 1 kA, nominal voltage: 1 kV) with an operating frequency band from 10 kHz to 30 kHz. The estimated amplitude of RMF neglecting effects of image current at the flux conserver is a few tens Gauss at around the magnetic axis. A preliminary experimental result will be shown in the conference. [1] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003).

  13. An initial physical mechanism in the treatment of neurologic disorders with externally applied pico Tesla magnetic fields.

    PubMed

    Jacobson, J I; Yamanashi, W S

    1995-04-01

    The recent clinical studies describing the treatment of some neurological disorders with an externally applied pico Tesla (10(-12) Tesla, or 10(-8) gauss) magnetic field are considered from a physical view point. An equation relating the intrinsic (or rest) energy of a charged particle of mass m with its energy of interaction in an externally applied magnetic field B is presented. The equation represents an initial basic physical interaction as a part of a more complex biological mechanism to explain the therapeutic effects of externally applied magnetic fields in these and other neurologic disorders.

  14. A physical mechanism in the treatment of neurologic disorders with externally applied pico Tesla magnetic fields.

    PubMed

    Jacobson, J I; Yamanashi, W S

    1995-06-01

    The clinical studies describing the treatment of some neurological disorders with an externally applied pico Tesla (10R Tesla, or 10(-8) gauss) magnetic field are considered from a physical view point. An equation relating the intrinsic or "rest" energy of a charged particle of mass with its energy of interaction in an externally applied magnetic field B is presented. The equation is proposed to represent an initial basic physical interaction as a part of a more complex biological mechanism to explain the therapeutic effects of externally applied magnetic fields in these and other neurologic disorders.

  15. Nonlinear wave interactions in shallow water magnetohydrodynamics of astrophysical plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimachkov, D. A., E-mail: klimachkovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru

    2016-05-15

    The rotating magnetohydrodynamic flows of a thin layer of astrophysical and space plasmas with a free surface in a vertical external magnetic field are considered in the shallow water approximation. The presence of a vertical external magnetic field changes significantly the dynamics of wave processes in an astrophysical plasma, in contrast to a neutral fluid and a plasma layer in an external toroidal magnetic field. There are three-wave nonlinear interactions in the case under consideration. Using the asymptotic method of multiscale expansions, we have derived nonlinear equations for the interaction of wave packets: three magneto- Poincare waves, three magnetostrophic waves,more » two magneto-Poincare and one magnetostrophic waves, and two magnetostrophic and one magneto-Poincare waves. The existence of decay instabilities and parametric amplification is predicted. We show that a magneto-Poincare wave decays into two magneto-Poincare waves, a magnetostrophic wave decays into two magnetostrophic waves, a magneto-Poincare wave decays into one magneto-Poincare and one magnetostrophic waves, and a magnetostrophic wave decays into one magnetostrophic and one magneto-Poincare waves. There are the following parametric amplification mechanisms: the parametric amplification of magneto-Poincare waves, the parametric amplification of magnetostrophic waves, the amplification of a magneto-Poincare wave in the field of a magnetostrophic wave, and the amplification of a magnetostrophic wave in the field of a magneto-Poincare wave. The instability growth rates and parametric amplification factors have been found for the corresponding processes.« less

  16. Production of internal transport barriers via self-generated mean flows in Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Ernst, D. R.; Podpaly, Y. A.; Mikkelsen, D.; Howard, N. T.; Lee, Jungpyo; Reinke, M. L.; Rice, J. E.; Hughes, J. W.; Ma, Y.; Rowan, W. L.; Bespamyatnov, I.

    2012-05-01

    New results suggest that changes observed in the intrinsic toroidal rotation influence the internal transport barrier (ITB) formation in the Alcator C-Mod tokamak [E. S. Marmar and Alcator C-Mod group, Fusion Sci. Technol. 51, 261 (2007)]. These arise when the resonance for ion cyclotron range of frequencies (ICRF) minority heating is positioned off-axis at or outside of the plasma half-radius. These ITBs form in a reactor relevant regime, without particle or momentum injection, with Ti ≈ Te, and with monotonic q profiles (qmin < 1). C-Mod H-mode plasmas exhibit strong intrinsic co-current rotation that increases with increasing stored energy without external drive. When the resonance position is moved off-axis, the rotation decreases in the center of the plasma resulting in a radial toroidal rotation profile with a central well which deepens and moves farther off-axis when the ICRF resonance location reaches the plasma half-radius. This profile results in strong E × B shear (>1.5 × 105 rad/s) in the region where the ITB foot is observed. Gyrokinetic analyses indicate that this spontaneous shearing rate is comparable to the linear ion temperature gradient (ITG) growth rate at the ITB location and is sufficient to reduce the turbulent particle and energy transport. New and detailed measurement of the ion temperature demonstrates that the radial profile flattens as the ICRF resonance position moves off axis, decreasing the drive for the ITG the instability as well. These results are the first evidence that intrinsic rotation can affect confinement in ITB plasmas.

  17. Fabrication of artificial toroid nanostructures by modified β-sheet peptides.

    PubMed

    Li, Wen; Li, Jingfang; Lee, Myongsoo

    2013-09-25

    Facial peptide P1 carrying repeating hydrophobic and hydrophilic residues as well as lysine terminals self-assemble into uniform toroid structures. The sensitive balance between the hydrophobic interactions and electrostatic repulsion dominates the formation of highly curved assemblies.

  18. Determination of broken KAM surfaces for particle orbits in toroidal confinement systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. B.

    2015-10-05

    Here, the destruction of Kolmogorov–Arnold–Moser surfaces in a Hamiltonian system is an important topic in nonlinear dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement systems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to give the effect of these resonances on transport. In this paper we compare three different methods for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal magnetic confinement device in the presence of time dependent magnetic perturbations.

  19. Grazing incidence toroidal mirror pairs in imaging and spectroscopic applications.

    PubMed

    Malvezzi, A M; Tondello, G

    1983-08-15

    The optical performance of pairs of toroidal mirrors in grazing incidence has been studied analytically and numerically. Two types of toroidal surface are possible: football and bicycle tire. In grazing incidence and for configurations that compensate up to second-order aberrations, there are significant differences in performance between the two types. For football-type tori the best configuration appears to be Z-shaped with tangential and sagittal foci at the middle point between the mirrors. For bicycle tire-type tori the best configuration is U-shaped with the tangential focus at the middle point and the sagittal at infinity.

  20. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  1. VORTEX CREEP AGAINST TOROIDAL FLUX LINES, CRUSTAL ENTRAINMENT, AND PULSAR GLITCHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gügercinoğlu, Erbil; Alpar, M. Ali, E-mail: egugercinoglu@gmail.com, E-mail: alpar@sabanciuniv.edu

    2014-06-10

    A region of toroidally oriented quantized flux lines must exist in the proton superconductor in the core of the neutron star. This region will be a site of vortex pinning and creep. Entrainment of the neutron superfluid with the crustal lattice leads to a requirement of superfluid moment of inertia associated with vortex creep in excess of the available crustal moment of inertia. This will bring about constraints on the equation of state. The toroidal flux region provides the moment of inertia necessary to complement the crust superfluid with postglitch relaxation behavior fitting the observations.

  2. Nearly axisymmetric hot plasmas in a highly rippled tokamak

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2002-11-01

    Tokamak ohmic heating current flowing along toroidally rippled flux surfaces results in a poloidal torque. Since pressure gradients cannot offset torques, the torque drives plasma flows which convect plasma toroidally from ripple necks (high B_pol^2) to ripple bulges (low B_pol^2). Stagnation of the oppositely directed toroidal flows at the ripple bulges thermalizes the directed flow velocity ˜ B_pol/μ_0ρ , giving β _pol ˜1. These flows also convect frozen-in poloidal field lines which accumulate at the bulges enhancing the pinch force there and so reducing the bulge. Thus, a nearly axisymmetric β_pol ˜1 equilibrium is achieved using only a few TF coils. Particles bouncing in step between approaching flows will be Fermi accelerated to form a high energy tail. The ST tokamak magnetic mountain experiment [1] showed that, compared to a 1.8% ripple configuration, a 28% ripple configuration had four times the neutron production, and only a modest degradation of overall confinement; the former is consistent with the notion of Fermi acceleration of particles bouncing between colliding toroidal flows and the latter is consistent with ripple reduction due to toroidal convection of poloidal field lines. [1] W. Stodiek et al, Proc. 4th Intl. Conf. Plasma Phys. and Contr. Nuc. Fusion Res., (Madison, 1971), Vol. 1, p. 465

  3. Statistical description of turbulent transport for flux driven toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Imadera, K.; Kishimoto, Y.; Li, J. Q.; Nordman, H.

    2017-06-01

    A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the auto-regressive integrated moving average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.

  4. Analysis of the unbalanced NBI rotation experiments in the ISX-B, PLT and PDX tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, W.M. Jr.; Ryu, C.M.; Malik, M.A.

    1985-07-01

    The recently developed Stacey-Sigmar theory for toroidal momentum confinement, which is based upon neoclassical gyroviscosity, has been applied to the analysis of the unbalanced NBI rotation experiments in ISX-B, PLT and PDX. Measured steady-state rotation velocities, momentum confinement times inferred therefrom and momentum confinement times inferred from rotation decay after termination of NBI were compared with theoretical predictions. Good agreement between theory and experiment was obtained over a wide range of the parameters which enter the theory (R,Z,T,B).

  5. Gyrokinetic-Vlasov simulations of the ion temperature gradient turbulence in tokamak and helical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T.-H.; Sugama, H.; Graduate University for Advanced Studies

    2006-11-30

    Recent progress of the gyrokinetic-Vlasov simulations on the ion temperature gradient (ITG) turbulence in tokamak and helical systems is reported, where the entropy balance is checked as a reference for the numerical accuracy. The tokamak ITG turbulence simulation carried out on the Earth Simulator clearly captures a nonlinear generation process of zonal flows. The tera-flops and tera-bytes scale simulation is also applied to a helical system with the same poloidal and toroidal periodicities of L = 2 and M = 10 as in the Large Helical Device.

  6. Application of NASTRAN to TFTR toroidal field coil structures

    NASA Technical Reports Server (NTRS)

    Chen, S. J.; Lee, E.

    1978-01-01

    The primary applied loads on the TF coils were electromagnetic and thermal. The complex structure and the tremendous applied loads necessitated computer type of solutions for the design problems. In the early stage of the TF coil design, many simplified finite element models were developed for the purpose of investigating the effects of material properties, supporting schemes, and coil case material on the stress levels in the case and in the copper coil. In the more sophisticated models that followed the parametric and scoping studies, the isoparametric elements, such as QUAD4, HEX8, and HEXA, were used. The analysis results from using these finite element models and the NASTRAN system were considered accurate enough to provide timely design information.

  7. Monte-Carlo simulation of a stochastic differential equation

    NASA Astrophysics Data System (ADS)

    Arif, ULLAH; Majid, KHAN; M, KAMRAN; R, KHAN; Zhengmao, SHENG

    2017-12-01

    For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient, Monte Carlo (MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem. Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.

  8. Phase coexistence and electric-field control of toroidal order in oxide superlattices.

    PubMed

    Damodaran, A R; Clarkson, J D; Hong, Z; Liu, H; Yadav, A K; Nelson, C T; Hsu, S-L; McCarter, M R; Park, K-D; Kravtsov, V; Farhan, A; Dong, Y; Cai, Z; Zhou, H; Aguado-Puente, P; García-Fernández, P; Íñiguez, J; Junquera, J; Scholl, A; Raschke, M B; Chen, L-Q; Fong, D D; Ramesh, R; Martin, L W

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3 /SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1 /a 2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  9. Huygens’ clocks revisited

    PubMed Central

    Kitanov, Petko M.; Langford, William F.

    2017-01-01

    In 1665, Huygens observed that two identical pendulum clocks, weakly coupled through a heavy beam, soon synchronized with the same period and amplitude but with the two pendula swinging in opposite directions. This behaviour is now called anti-phase synchronization. This paper presents an analysis of the behaviour of a large class of coupled identical oscillators, including Huygens' clocks, using methods of equivariant bifurcation theory. The equivariant normal form for such systems is developed and the possible solutions are characterized. The transformation of the physical system parameters to the normal form parameters is given explicitly and applied to the physical values appropriate for Huygens' clocks, and to those of more recent studies. It is shown that Huygens' physical system could only exhibit anti-phase motion, explaining why Huygens observed exclusively this. By contrast, some more recent researchers have observed in-phase or other more complicated motion in their own experimental systems. Here, it is explained which physical characteristics of these systems allow for the existence of these other types of stable solutions. The present analysis not only accounts for these previously observed solutions in a unified framework, but also introduces behaviour not classified by other authors, such as a synchronized toroidal breather and a chaotic toroidal breather. PMID:28989780

  10. Decoupled recovery of energy and momentum with correction of n = 2 error fields

    DOE PAGES

    Paz-Soldan, Carlos A.; Logan, Nikolas C.; Lanctot, Matthew J.; ...

    2015-07-06

    Experiments applying known n = 2 “proxy” error fields (EFs) find that the rotation braking introduced by the proxy EF cannot be completely alleviated through optimal n = 2 correction with poorly matched poloidal spectra. This imperfect performance recovery demonstrates the importance of correcting multiple components of the n = 2 field spectrum and is in contrast to previous results with n = 1 EFs despite similar execution. Measured optimal n = 2 proxy EF correction currents are consistent with those required to null dominant mode coupling to the resonant surfaces and minimize the neoclassical toroidal viscosity (NTV) torque, calculatedmore » using ideal MHD plasma response computation. Unlike rotation braking, density pumpout can be fully corrected despite poorly matched spectra, indicating density pumpout is driven only by a single component proportional to the resonant coupling. Through precise n = 2 spectral control density pumpout and rotation braking can thus be decoupled. Rotation braking with n = 2 fields is also found to be proportional to the level of concurrent toroidal rotation, consistent with NTV theory. Lastly, plasmas with modest countercurrent rotation are insensitive to the n = 2 field with neither rotation braking nor density pumpout observed.« less

  11. Numerical optimization of perturbative coils for tokamaks

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel; Park, Jong-Kyu; Logan, Nikolas; Boozer, Allen; NSTX-U Research Team

    2014-10-01

    Numerical optimization of coils which apply three dimensional (3D) perturbative fields to tokamaks is presented. The application of perturbative 3D magnetic fields in tokamaks is now commonplace for control of error fields, resistive wall modes, resonant field drive, and neoclassical toroidal viscosity (NTV) torques. The design of such systems has focused on control of toroidal mode number, with coil shapes based on simple window-pane designs. In this work, a numerical optimization suite based on the STELLOPT 3D equilibrium optimization code is presented. The new code, IPECOPT, replaces the VMEC equilibrium code with the IPEC perturbed equilibrium code, and targets NTV torque by coupling to the PENT code. Fixed boundary optimizations of the 3D fields for the NSTX-U experiment are underway. Initial results suggest NTV torques can be driven by normal field spectrums which are not pitch-resonant with the magnetic field lines. Work has focused on driving core torque with n = 1 and edge torques with n = 3 fields. Optimizations of the coil currents for the planned NSTX-U NCC coils highlight the code's free boundary capability. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.

  12. Extending the collisional fluid equations into the long mean-free-path regime in toroidal plasmas. IV. Banana regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K. C.

    In Part I [Phys. Fluids B 2, 1190 (1990)] and Part II [Phys. Plasmas 12, 082508 (2005)], it was emphasized that the equilibrium plasma viscous forces when applied for the magnetohydrodynamic (MHD) modes are only rigorously valid at the mode rational surface where m-nq=0. Here, m is the poloidal mode number, n is the toroidal mode number, and q is the safety factor. This important fact has been demonstrated explicitly by calculating the viscous forces in the plateau regime in Parts I and II. Here, the effective viscous forces in the banana regime are calculated for MHD modes by solvingmore » the linear drift kinetic equation that is driven by the plasma flows first derived in Part I. At the mode rational surface, the equilibrium plasma viscous forces are reproduced. However, it is found that away from the mode rational surface, the viscous forces for MHD modes decrease, a behavior similar to that observed in the viscous forces for the plateau regime. The proper form of the momentum equation that is appropriate for the modeling of the MHD modes is also discussed.« less

  13. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    NASA Astrophysics Data System (ADS)

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; Liu, H.; Yadav, A. K.; Nelson, C. T.; Hsu, S.-L.; McCarter, M. R.; Park, K.-D.; Kravtsov, V.; Farhan, A.; Dong, Y.; Cai, Z.; Zhou, H.; Aguado-Puente, P.; García-Fernández, P.; Íñiguez, J.; Junquera, J.; Scholl, A.; Raschke, M. B.; Chen, L.-Q.; Fong, D. D.; Ramesh, R.; Martin, L. W.

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  14. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    DOE PAGES

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; ...

    2017-08-07

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3/SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1/a 2 phase. At room temperature, the coexisting vortexmore » and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Here, our findings suggest new cross-coupled functionalities.« less

  15. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiangyi; Amine, Rachid; Lau, Kah Chun

    2017-05-26

    The discharge and charge mechanisms of rechargeable Li-O-2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge-charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied currentmore » exceeds the exchange current for the oxygen reduction reaction in a Li-O-2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O-2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the porous carbon electrode of a Li-O-2 cell.« less

  16. MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries

    NASA Astrophysics Data System (ADS)

    Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas

    2015-11-01

    The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.

  17. Design Considerations for High Temperature Power Inductors

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2005-01-01

    A uniform B-field approximation model is used to develop design formulas for single-layer wound, toroidal core, ac power inductors that must handle a specified current. Such a geometry is well suited for high temperature, high frequency inductors, where removal of heat from the core becomes critical. Explicit expressions are derived for core radii, core and winding volumes, winding turns and core permeability as functions of a dimensional scaling ratio (S). A limit on the maximum allowed core B-field leads to the result that the minimum core volume is proportional to the permeability, which has a lower bound. Plots versus S are provided for a specific case, to show that good designs can be picked in the overlap regions around the minima in mass and overall size, where the mass and size are relatively flat. Data to 250 C are presented for an MPP core based inductor to show that a quasi-linear, high temperature inductor can be constructed with available materials. A similar development is applied to a toroidal air-core geometry, showing that for the same ratings, such an inductor is considerably bigger and more massive, at least in the single-layer version.

  18. A theory of the helical ripple-induced stochastic behavior of fast toroidal bananas in torsatrons and heliotrons

    NASA Astrophysics Data System (ADS)

    Smirnova, M. S.

    2001-05-01

    A theory of the helical ripple-induced stochastic behavior of fast toroidal bananas in torsatrons and heliotrons [K. Uo, J. Phys. Soc. Jpn. 16, 1380 (1961)] is developed. It is supplemented by an analysis of the structure of the secondary magnetic wells along field lines. Conditions, under which these wells are suppressed in torsatrons-heliotrons by poloidally modulated helical field ripple, are found. It is shown that inside the secondary magnetic well-free region, favorable conditions exist for a transition of fast toroidal bananas to stochastic trajectories. The analytical estimation for the value of an additional radial jump of a banana particle near its turning point, induced by the helical field ripple effect, is derived. It is found to be similar to the corresponding banana radial jump in a tokamak with the toroidal field ripple. Critical values of the helical field ripple dangerous from the viewpoint of a banana transition to stochastic behavior are estimated.

  19. Minimum magnetic curvature for resilient divertors using Compact Toroidal Hybrid geometry

    NASA Astrophysics Data System (ADS)

    Bader, A.; Hegna, C. C.; Cianciosa, M.; Hartwell, G. J.

    2018-05-01

    The properties of resilient divertors are explored using equilibria derived from Compact Toroidal Hybrid (CTH) geometries. Resilience is defined here as the robustness of the strike point patterns as the plasma geometry and/or plasma profiles are changed. The addition of plasma current in the CTH configurations significantly alters the shape of the last closed flux surface and the rotational transform profile, however, it does not alter the strike point pattern on the target plates, and hence has resilient divertor features. The limits of when a configuration transforms to a resilient configuration is then explored. New CTH-like configurations are generated that vary from a perfectly circular cross section to configurations with increasing amounts of toroidal shaping. It is found that even small amounts of toroidal shaping lead to strike point localization that is similar to the standard CTH configuration. These results show that only a small degree of three-dimensional shaping is necessary to produce a resilient divertor, implying that any highly shaped optimized stellarator will possess the resilient divertor property.

  20. Thermal magnetic noise in a strip wound crystalline ferromagnetic core at 4.2 K

    NASA Astrophysics Data System (ADS)

    Snigirev, O. V.; Maslennikov, Yu. V.; Vitale, S.; Cerdonio, M.; Prodi, G. A.

    1996-01-01

    A dc SQUID magnetometer-based system has been developed and used to measure, in the frequency range 50-2300 Hz, the complex magnetic permeability μr(ν) and the magnetization noise at 4.2 K in a strip wound toroid. This toroidal core has been made of the 3-μm-thick ribbon fabricated from a crystalline magnetically soft alloy, Ultraperm. Below 1 kHz a constant value of -arg[μr(ν)]≊2×10-3 and 1/ν shaped noise spectral density have been measured. For frequencies higher than 1 kHz a linear growth of the imaginary part μr and a white noise have been found. The noise due to the sample is found in quantitative agreement with the standard fluctuation-dissipation formula for the thermal noise, while a comparison of the permeability imaginary part magnitude with the theoretical value has indicated a partially shorted windings in the toroid, which have decreased the toroid roll-off frequency down to 1 MHz.

  1. 76 FR 33752 - Notice of Availability of the External Review Draft of the Guidance for Applying Quantitative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... External Review Draft of the Guidance for Applying Quantitative Data To Develop Data-Derived Extrapolation... Applying Quantitative Data to Develop Data-Derived Extrapolation Factors for Interspecies and Intraspecies... Applying Quantitative Data to Develop Data-Derived Extrapolation Factors for Interspecies and Intraspecies...

  2. Toroidal sensor arrays for real-time photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bychkov, Anton S.; Cherepetskaya, Elena B.; Karabutov, Alexander A.; Makarov, Vladimir A.

    2017-07-01

    This article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays. It is shown that the use of arrays with toroidal geometry significantly improves the diagnostic capabilities of PA and LU imaging to investigate biological objects, rocks, and composite materials.

  3. Nonlinear Decay and Plasma Heating by a Toroidal Alfvén Eigenmode

    NASA Astrophysics Data System (ADS)

    Qiu, Z.; Chen, L.; Zonca, F.; Chen, W.

    2018-03-01

    We demonstrate theoretically that a toroidal Alfvén eigenmode (TAE) can parametrically decay into a geodesic acoustic mode and kinetic TAE in a toroidal plasma. The corresponding threshold condition for the TAE amplitude is estimated to be |δ B⊥/B0|˜O (10-4). Here, δ B⊥ and B0 are, respectively, the perturbed magnetic field of the pump TAE and the equilibrium magnetic field. This novel decay process, in addition to contributing to the nonlinear saturation of energetic-particle or α -particle driven TAE instability, could also contribute to the heating as well as regulating the transports of thermal plasmas.

  4. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClenaghan, J.; Lin, Z.; Holod, I.

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  5. The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.

    1981-01-01

    Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.

  6. Characterisation of the Interaction between Toroidal Vortex Structures and Flame Front Propagation

    NASA Astrophysics Data System (ADS)

    Long, E. J.; Hargrave, G. K.; Jarvis, S.; Justham, T.; Halliwell, N.

    2006-07-01

    Experimental laser diagnostic data is presented for flame characterisation during interactions with toroidal vortices generated in the wake of an annular obstacle. A novel twin section combustion chamber has been utilised to allow the controlled formation of stable eddy structures into which a flame front can propagate. High speed laser sheet visualisation was employed to record the flow field and flame front temporal development and high-speed digital particle image velocimetry was used to quantify the velocity field of the unburnt mixture ahead of the flame front. Results provide characterisation of the toroidal vortex/flame front interaction for a range of vortex scales of and recirculation strengths.

  7. Drag Characteristics of Several Towed Decelerator Models at Mach 3

    NASA Technical Reports Server (NTRS)

    Miserentino, Robert; Bohon, Herman L.

    1970-01-01

    An investigation has been made to determine the possibility of using toroid-membrane and wide-angle conical shapes as towed decelerators. Parameter variations were investigated which might render toroid-membrane models and wide-angle- cone models stable without loss of the high drag coefficients obtainable with sting-mounted models. The parameters varied included location of center of gravity, location of the pivot between the towline and the model, and configuration modifications of the aft end as the addition of a corner radius and the addition of a skirt. The toroid membrane can be made into a stable towed decelerator with a suitable configuration modification of the aft end.

  8. Integrals of motion from quantum toroidal algebras

    NASA Astrophysics Data System (ADS)

    Feigin, B.; Jimbo, M.; Mukhin, E.

    2017-11-01

    We identify the Taylor coefficients of the transfer matrices corresponding to quantum toroidal algebras with the elliptic local and non-local integrals of motion introduced by Kojima, Shiraishi, Watanabe, and one of the authors. That allows us to prove the Litvinov conjectures on the Intermediate Long Wave model. We also discuss the ({gl_m, {gl_n) duality of XXZ models in quantum toroidal setting and the implications for the quantum KdV model. In particular, we conjecture that the spectrum of non-local integrals of motion of Bazhanov, Lukyanov, and Zamolodchikov is described by Gaudin Bethe ansatz equations associated to affine {sl}2 . Dedicated to the memory of Petr Petrovich Kulish.

  9. A phase contrast imaging–interferometer system for detection of multiscale electron density fluctuations on DIII-D

    DOE PAGES

    Davis, E. M.; Rost, J. C.; Porkolab, M.; ...

    2016-08-15

    Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. Here, we describe the first-ever implementation of a combined PCI-interferometer. The combined system uses a single 10:6 μm probe beam, two interference schemes, and two detectors to measure electron density uctuations at large spatiotemporal bandwidth (10 kHz < f < 5MHz and 0 cm -1 ≤ k ≤ 20 cm -1), allowing simultaneous measurement of ion- and electron-scale instabilities. Further, correlating our interferometer's measurements with those from DIII-D's pre-existing, toroidally separated interferometer allows core-localized, low-n MHD studies that may otherwisemore » be inaccessible via external magnetic measurements. In the combined diagnostic's small port requirements and minimal access restrictions make it well-suited to the harsh neutron environments and limited port space expected in next-step devices.« less

  10. A phase contrast imaging-interferometer system for detection of multiscale electron density fluctuations on DIII-D

    NASA Astrophysics Data System (ADS)

    Davis, E. M.; Rost, J. C.; Porkolab, M.; Marinoni, A.; Van Zeeland, M. A.

    2016-11-01

    Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. This work describes the first-ever implementation of a combined PCI-interferometer. The combined system uses a single 10.6 μm probe beam, two interference schemes, and two detectors to measure electron density fluctuations at large spatiotemporal bandwidth (10 kHz

  11. Broadband and Resonant Approaches to Axion Dark Matter Detection.

    PubMed

    Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse

    2016-09-30

    When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6}  eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

  12. 5D Tempest simulations of kinetic edge turbulence

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.; Umansky, M. V.; Qin, H.

    2006-10-01

    Results are presented from the development and application of TEMPEST, a nonlinear five dimensional (3d2v) gyrokinetic continuum code. The simulation results and theoretical analysis include studies of H-mode edge plasma neoclassical transport and turbulence in real divertor geometry and its relationship to plasma flow generation with zero external momentum input, including the important orbit-squeezing effect due to the large electric field flow-shear in the edge. In order to extend the code to 5D, we have formulated a set of fully nonlinear electrostatic gyrokinetic equations and a fully nonlinear gyrokinetic Poisson's equation which is valid for both neoclassical and turbulence simulations. Our 5D gyrokinetic code is built on 4D version of Tempest neoclassical code with extension to a fifth dimension in binormal direction. The code is able to simulate either a full torus or a toroidal segment. Progress on performing 5D turbulence simulations will be reported.

  13. Current drive at plasma densities required for thermonuclear reactors.

    PubMed

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  14. Deterministic Walks with Choice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.

    2014-01-10

    This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.

  15. Public Data Set: H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Thome, Kathreen E. [University of Wisconsin-Madison; Oak Ridge Associated Universities] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-09-30

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment,' Nucl. Fusion 57, 022018 (2017).

  16. NIMROD simulations of HIT-SI plasmas

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Jarboe, Thomas; Nelson, Brian; Kim, Charlson

    2011-10-01

    HIT-SI (Steady Inductive Helicity Injected Torus) is a current drive experiment that uses two semi-toroidal helicity injectors driven at 5-15 kHz to generate steady inductive helicity injection (SIHI). All the plasma-facing walls of the experiment are coated with an insulating material to guarantee an inductive discharge. NIMROD is a 3-D extended MHD code that can only model toroidally-uniform geometries. The helicity injectors of the experiment are simulated as flux and voltage boundary conditions with odd toroidal symmetry. A highly resistive, thin edge-layer approximates the insulating walls. The simulations are initial-value calculations that use a zero β resistive MHD (rMHD) model with uniform density. The Prandtl number (Pr = 10), and Lundquist number (S = 5 - 50) closely match the experimental values. rMHD calculations at S ~ 10 show no growth of an n = 0 mode and only a few kA of toroidal current whereas HIT-SI has demonstrated toroidal currents greater than 50 kA with a current amplification of 3. At higher S (>= 20) the simulations exhibit significant n = 0 magnetic energy growth and a current amplification exceeding unity: Itor/Iinj >= 1 . While HIT-SI has shown evidence for separatrix formation, rMHD calculations indicate an entirely stochastic magnetic structure during sustainment. Results will also presented for Hall MHD, anticipated to play a crucial role in the physics of SIHI.

  17. Neoclassical poloidal and toroidal rotation in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-08-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite tomore » that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.« less

  18. The Study of Spherical Cores with a Toroidal Magnetic Field Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholipour, Mahmoud

    Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modifiedmore » form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.« less

  19. Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.

    2012-10-01

    Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.

  20. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y. H.

    1977-01-01

    Digitally implemented spectral analysis techniques were used to investigate the frequency-dependent fluctuation-induced particle transport across a toroidal magnetic field. When the electric field pointed radially inward, the transport was inward and a significant enhancement of the plasma density and confinement time resulted.

  1. Anomalous-viscosity current drive

    DOEpatents

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  2. Flow shear stabilization of rotating plasmas due to the Coriolis effect.

    PubMed

    Haverkort, J W; de Blank, H J

    2012-07-01

    A radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a rotating cylindrical plasma, this Coriolis-pressure effect is canceled by the centrifugal effect responsible for the magnetorotational instability. In a magnetically confined toroidal plasma, a large aspect ratio expansion shows that only half of the effect is canceled. This analytical result is confirmed by numerical computations. When the plasma rotates faster toroidally in the core than near the edge, the effect can contribute to the formation of transport barriers by stabilizing MHD instabilities.

  3. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Groebner, R J; Kaplan, D H

    2012-10-01

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  4. Toroidal magnetized plasma device with sheared magnetic field lines using an internal ring conductor.

    PubMed

    Pierre, Th

    2013-01-01

    In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.

  5. On the possibility of controlling the hydrophilic/hydrophobic characteristics of toroid Mo138 nanocluster polyoxometalates

    NASA Astrophysics Data System (ADS)

    Grzhegorzhevskii, K. V.; Adamova, L. V.; Eremina, E. V.; Ostroushko, A. A.

    2017-03-01

    The possibility of changing the hydrophilic (polar) surfaces of toroid nanocluster polyoxomolibdates to hydrophobic (nonpolar) surfaces via the modification of Mo138 nanoclusters by surfactant molecules (dodecylpyridinium chloride) as a result of the interaction between these compounds in solutions is demonstrated. Benzene and methanol are used as molecular probes (indicators of the condition of nanocluster surfaces). Comparative characteristics of the equilibrium sorption of benzene and methanol vapors on the initial and modified surfaces of the solid polyoxometalate, and data on the sorption of organic molecules on the surfaces of Rhodamine B-modified nanoclusters of the toroid (Mo138) and keplerate (Mo132) types are obtained.

  6. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  7. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  8. Reynolds stress of localized toroidal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-02-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at {pi}/2 (or -{pi}/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stressmore » (a possible source of poloidal flow) can be significant.« less

  9. Public Data Set: A Novel, Cost-Effective, Multi-Point Thomson Scattering System on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586)

    2016-09-16

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in D.J. Schlossberg et. al., 'A Novel, Cost-Effective, Multi-Point Thomson Scattering System on the Pegasus Toroidal Experiment,' Rev. Sci. Instrum. 87, 11E403 (2016).

  10. Public Data Set: Non-inductively Driven Tokamak Plasmas at Near-Unity βt in the Pegasus Toroidal Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in J.A. Reusch et al., 'Non-inductively Driven Tokamak Plasmas at Near-Unity βt in the Pegasus Toroidal Experiment,' Phys. Plasmas 25, 056101 (2018).

  11. Temperature Effects on the Magnetic Properties of Silicon-Steel Sheets Using Standardized Toroidal Frame

    PubMed Central

    Wu, Cheng-Ju; Lin, Shih-Yu; Chou, Shang-Chin; Tsai, Chia-Yun; Yen, Jia-Yush

    2014-01-01

    This study designed a detachable and standardized toroidal test frame to measure the electromagnetic characteristic of toroidal laminated silicon steel specimens. The purpose of the design was to provide the measurements with standardized and controlled environment. The device also can withstand high temperatures (25–300°C) for short time period to allow high temperature tests. The accompanying driving circuit facilitates testing for high frequency (50–5,000 Hz) and high magnetic flux (0.2–1.8 T) conditions and produces both sinusoidal and nonsinusoidal test waveforms. The thickness of the stacked laminated silicon-steel sheets must be 30~31 mm, with an internal diameter of 72 mm and an outer diameter of 90 mm. With the standardized setup, it is possible to carry out tests for toroidal specimen in high temperature and high flux operation. The test results show that there is a tendency of increased iron loss under high temperature operation. The test results with various driving waveforms also provide references to the required consideration in engineering designs. PMID:25525629

  12. Individual Low-Energy Toroidal Dipole State in Mg 24

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. O.; Repko, A.; Kvasil, J.; Reinhard, P.-G.

    2018-05-01

    The low-energy dipole excitations in Mg 24 are investigated within the Skyrme quasiparticle random phase approximation for axial nuclei. The calculations with the force SLy6 reveal a remarkable feature: the lowest IπK =1-1 excitation (E =7.92 MeV ) in Mg 24 is a vortical toroidal state (TS) representing a specific vortex-antivortex realization of the well-known spherical Hill's vortex in a strongly deformed axial confinement. This is a striking example of an individual TS which can be much more easily discriminated in experiment than the toroidal dipole resonance embracing many states. The TS acquires the lowest energy due to the huge prolate axial deformation in Mg 24 . The result persists for different Skyrme parametrizations (SLy6, SVbas, SkM*). We analyze spectroscopic properties of the TS and its relation with the cluster structure of Mg 24 . Similar TSs could exist in other highly prolate light nuclei. They could serve as promising tests for various reactions to probe a vortical (toroidal) nuclear flow.

  13. Feedback stabilization of resistive wall modes in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Cecconello, M.; Drake, J. R.; Manduchi, G.; Marchiori, G.

    2005-09-01

    An array of saddle coils having Nc=16 equally spaced positions along the toroidal direction has been installed for feedback control of resistive wall modes (RWMs) on the EXTRAP T2R reversed-field pinch [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]. Using feedback, multiple nonresonant RWMs are simultaneously suppressed for three to four wall times. Feedback stabilization of RWMs results in a significant prolongation of the discharge duration. This is linked to a better sustainment of the plasma and tearing mode toroidal rotation with feedback. Due to the limited number of coils in the toroidal direction, pairs of modes with toroidal mode numbers n ,n' that fulfill the condition ∣n-n'∣=Nc are coupled by the feedback action from the discrete coil array. With only one unstable mode in a pair of coupled modes, the suppression of the unstable mode is successful. If two modes are unstable in a coupled pair, two possibilities exist: partial suppression of both modes or, alternatively, complete stabilization of one target mode while the other is left unstable.

  14. Chapter 9: The FTU Machine - Design Construction and Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzuto, A.; Annino, C.; Baldarelli, M.

    2004-05-15

    The main design features and guidelines for the construction of the 8-T cryogenically cooled Frascati Tokamak Upgrade (FTU) are presented. The main features include the very compact toroidal magnets based on the concept of the 'Bitter' type of coil with wedge-shaped turns, utilized for the first time for the Alcator A and C magnets, and the original configuration of the vacuum vessel (VV) structure, which is fully welded in order to achieve the required high strength and electric resistivity. The present toroidal limiter has been installed following several years of operation, and this installation has required the development of specificmore » remote-handling tools. The toroidal limiter consists of 12 independent sectors made of stainless steel carriers and molybdenum alloy (TZM) tiles. The main fabrication processes developed for the toroidal and poloidal coils as well as for the VV are described. It is to be noted that the assembly procedure has required very accurate machining of all the structures requiring several trials and steps. The machine has shown no problem in operating routinely at its maximum design values (8 T, 1.6 MA)« less

  15. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.; Krupp, Leslie E.; Viswanathan, Venkatasubramanian; Luntz, Alan C.

    2015-01-01

    Given their high theoretical specific energy, lithium-oxygen batteries have received enormous attention as possible alternatives to current state-of-the-art rechargeable Li-ion batteries. However, the maximum discharge capacity in non-aqueous lithium-oxygen batteries is limited to a small fraction of its theoretical value due to the build-up of insulating lithium peroxide (Li2O2), the battery’s primary discharge product. The discharge capacity can be increased if Li2O2 forms as large toroidal particles rather than as a thin conformal layer. Here, we show that trace amounts of electrolyte additives, such as H2O, enhance the formation of Li2O2 toroids and result in significant improvements in capacity. Our experimental observations and a growth model show that the solvating properties of the additives prompt a solution-based mechanism that is responsible for the growth of Li2O2 toroids. We present a general formalism describing an additive’s tendency to trigger the solution process, providing a rational design route for electrolytes that afford larger lithium-oxygen battery capacities.

  16. Temperature effects on the magnetic properties of silicon-steel sheets using standardized toroidal frame.

    PubMed

    Wu, Cheng-Ju; Lin, Shih-Yu; Chou, Shang-Chin; Tsai, Chia-Yun; Yen, Jia-Yush

    2014-01-01

    This study designed a detachable and standardized toroidal test frame to measure the electromagnetic characteristic of toroidal laminated silicon steel specimens. The purpose of the design was to provide the measurements with standardized and controlled environment. The device also can withstand high temperatures (25-300°C) for short time period to allow high temperature tests. The accompanying driving circuit facilitates testing for high frequency (50-5,000 Hz) and high magnetic flux (0.2-1.8 T) conditions and produces both sinusoidal and nonsinusoidal test waveforms. The thickness of the stacked laminated silicon-steel sheets must be 30~31 mm, with an internal diameter of 72 mm and an outer diameter of 90 mm. With the standardized setup, it is possible to carry out tests for toroidal specimen in high temperature and high flux operation. The test results show that there is a tendency of increased iron loss under high temperature operation. The test results with various driving waveforms also provide references to the required consideration in engineering designs.

  17. Toroidal configurations of perfect fluid in the Reissner-Nordström-(anti-)de Sitter spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucáková, Hana; Slaný, Petr; Stuchlík, Zdenĕk, E-mail: hana.kucakova@centrum.cz, E-mail: petr.slany@fpf.slu.cz, E-mail: zdenek.stuchlik@fpf.slu.cz

    Influence of cosmological constant on toroidal fluid configurations around charged spherically symmetric black holes and naked singularities is demostrated by study of perfect-fluid tori with uniform distribution of specific angular momentum orbiting in the Reissner-Nordström-(anti-)de Sitter spacetimes. Toroidal configurations are allowed only in the spacetimes admitting existence of stable circular geodesics. Configurations with marginally closed equipotential (equipressure) surfaces crossing itself in a cusp allow accretion (through the inner cusp) and/or excretion (through the outer cusp) of matter from the toroidal configuration. Detailed classification of the Reissner-Nordström-(anti-)de Sitter spacetimes according to properties of the marginally stable tori is given. It ismore » demonstrated that in the Reissner-Nordström-de Sitter naked-singularity spacetimes an interesting phenomenon of doubled tori can exist enabling exchange of matter between two tori in both inward and outward directions. In naked-singularity spacetimes the accretion onto the central singularity is impossible due to existence of a potential barrier.« less

  18. Minimum magnetic curvature for resilient divertors using Compact Toroidal Hybrid geometry

    DOE PAGES

    Bader, Aaron; Hegna, C. C.; Cianciosa, Mark R.; ...

    2018-03-16

    The properties of resilient divertors are explored using equilibria derived from Compact Toroidal Hybrid (CTH) geometries. Resilience is defined here as the robustness of the strike point patterns as the plasma geometry and/or plasma profiles are changed. The addition of plasma current in the CTH configurations significantly alters the shape of the last closed flux surface and the rotational transform profile, however, it does not alter the strike point pattern on the target plates, and hence has resilient divertor features. The limits of when a configuration transforms to a resilient configuration is then explored. New CTH-like configurations are generated thatmore » vary from a perfectly circular cross section to configurations with increasing amounts of toroidal shaping. It is found that even small amounts of toroidal shaping lead to strike point localization that is similar to the standard CTH configuration. Lastly, these results show that only a small degree of three-dimensional shaping is necessary to produce a resilient divertor, implying that any highly shaped optimized stellarator will possess the resilient divertor property.« less

  19. Characterization with microturbulence simulations of the zero particle flux condition in case of a TCV discharge showing toroidal rotation reversal

    NASA Astrophysics Data System (ADS)

    Mariani, A.; Merlo, G.; Brunner, S.; Merle, A.; Sauter, O.; Görler, T.; Jenko, F.; Told, D.

    2016-11-01

    In view of the stabilization effect of sheared plasma rotation on microturbulence, it is important to study the intrinsic rotation that develops in tokamaks that present negligible external toroidal torque, like ITER. Remarkable observations have been made on TCV, analysing discharges without NBI injection, as reported in [A. Bortolon et al. 2006 Phys. Rev. Lett. 97] and exhibiting a rotation inversion occurring in conjunction with a relatively small change in the plasma density. We focus in particular on a limited L-mode TCV shot published in [B. P. Duval et al. 2008 Phys. Plasmas 15], that shows a rotation reversal during a density ramp up. In view of performing a momentum transport analysis on this TCV shot, some constraints have to be considered to reduce the uncertainty on the experimental parameters. One useful constraint is the zero particle flux condition, resulting from the absence of direct particle fuelling to the plasma core. In this work, a preliminary study of the reconstruction of the zero particle flux hyper-surface in the physical parameters space is presented, taking into account the effect of the main impurity (carbon) and beginning to explore the effect of collisions, in order to find a subset of this hyper-surface within the experimental error bars. The analysis is done performing gyrokinetic simulations with the local (flux-tube) version of the Eulerian code GENE [Jenko et al 2000 Phys. Plasmas 7 1904], computing the fluxes with a Quasi-Linear model, according to [E. Fable et al. 2010 PPCF 52], and validating the QL results with Non-Linear simulations in a subset of cases.

  20. A Novel Approach to Apply Gait Synchronized External Forces on the Pelvis using A-TPAD to Reduce Walking Effort

    PubMed Central

    Vashista, Vineet; Khan, Moiz; Agrawal, Sunil K.

    2017-01-01

    In this paper, we develop an intervention to apply external gait synchronized forces on the pelvis to reduce the user’s effort during walking. A cable-driven robot was used to apply the external forces and an adaptive frequency oscillator scheme was developed to adapt the timing of force actuation to the gait frequency during walking. The external forces were directed in the sagittal plane to assist the trailing leg during the forward propulsion and vertical deceleration of the pelvis during the gait cycle. A pilot experiment with five healthy subjects was conducted. The results showed that the subjects applied lower ground reaction forces in the vertical and anterior-posterior directions during the late stance phase. In summary, the current work provides a novel approach to study the role of external pelvic forces in altering the walking effort. These studies can provide better understanding for designing exoskeletons and prosthetic devices to reduce the overall walking effort. PMID:29623294

  1. Developments on the Toroid Ion Trap Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, S.A.; Thompson, C.V.; Wise, M.B.

    1999-06-13

    Investigations into several areas of research have been undertaken to address the performance limitations of the toroid analyzer. The Simion 3D6 (2) ion optics simulation program was used to determine whether the potential well minimum of the toroid trapping field is in the physical center of the trap electrode structure. The results (Figures 1) indicate that the minimum of the potential well is shifted towards the inner ring electrode by an amount approximately equal to 10% of the r0 dimension. A simulation of the standard 3D ion trap under similar conditions was performed as a control. In this case, themore » ions settle to the minimum of the potential well at a point that is coincident with the physical center (both radial and axial) of the trapping electrodes. It is proposed that by using simulation programs, a set of new analyzer electrodes can be fashioned that will correct for the non- linear fields introduced by curving the substantially quadrupolar field about the toroid axis in order to provide a trapping field similar to the 3D ion trap cross- section. A new toroid electrode geometry has been devised to allow the use of channel- tron style detectors in place of the more expensive multichannel plate detector. Two different versions have been designed and constructed - one using the current ion trap cross- section (Figure 2) and another using the linear quedrupole cross- section design first reported by Bier and Syka (3).« less

  2. Flow and dynamo measurements during the coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Ando, K.; Higashi, T.; Nakatsuka, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    The current drive by Coaxial Helicity Injection (CHI-CD) was performed on HIST in a wide range of configurations from high-q ST to low-q ST and spheromak generated by the utilization of the toroidal field. It is a key issue to investigate the dynamo mechanism required to maintain each configuration. To identify the detail mechanisms, it is needed to manifest a role of plasma flows in the CHI-CD. For this purpose, we have measured the ion flow and the dynamo electric field using an ion Doppler spectrometer (IDS) system, a Mach probe and a dynamo probe. The new dynamo probe consists of 3-axis Mach probes and magnetic pick-up coils. The flow measurements have shown that the intermittent generation of the flow is correlated to the fluctuation seen on the electron density and current signals during the driven phase. At this time, the toroidal direction of the ion flow in the central open flux column is opposite to that of the toroidal current there, i.e. the same direction as electrons. After the plasma enters to the resistive decay phase, the toroidal flow tends to reverse to the same direction as the toroidal current. The results are consistent with the model of the repetitive plasmoid ejection and coalescence proposed for CHI-CD. The plasma jet emanating from the gun source and magnetic field generations through reconnection during the driven phase is well reflected in the 3D MHD simulation.

  3. Brownian dynamics study of ion transport in the vestibule of membrane channels.

    PubMed

    Li, S C; Hoyles, M; Kuyucak, S; Chung, S H

    1998-01-01

    Brownian dynamics simulations have been carried out to study the transport of ions in a vestibular geometry, which offers a more realistic shape for membrane channels than cylindrical tubes. Specifically, we consider a torus-shaped channel, for which the analytical solution of Poisson's equation is possible. The system is composed of the toroidal channel, with length and radius of the constricted region of 80 A and 4 A, respectively, and two reservoirs containing 50 sodium ions and 50 chloride ions. The positions of each of these ions executing Brownian motion under the influence of a stochastic force and a systematic electric force are determined at discrete time steps of 50 fs for up to 2.5 ns. All of the systematic forces acting on an ion due to the other ions, an external electric field, fixed charges in the channel protein, and the image charges induced at the water-protein boundary are explicitly included in the calculations. We find that the repulsive dielectric force arising from the induced surface charges plays a dominant role in channel dynamics. It expels an ion from the vestibule when it is deliberately put in it. Even in the presence of an applied electric potential of 100 mV, an ion cannot overcome this repulsive force and permeate the channel. Only when dipoles of a favorable orientation are placed along the sides of the transmembrane segment can an ion traverse the channel under the influence of a membrane potential. When the strength of the dipoles is further increased, an ion becomes detained in a potential well, and the driving force provided by the applied field is not sufficient to drive the ion out of the well. The trajectory of an ion navigating across the channel mostly remains close to the central axis of the pore lumen. Finally, we discuss the implications of these findings for the transport of ions across the membrane.

  4. Continuous Cooling from 10 K to 4 K Using a Toroidal ADR

    NASA Technical Reports Server (NTRS)

    DiPirro, Michael J.; Canavan, Edgar R.; Shirron, Peter J.; Tuttle, James G.

    2003-01-01

    Future large infrared space telescopes will require cooling to 4K to achieve background limited performance for submillimeter wavelengths. These observatories will require lifetimes of many years and will have relatively large cooling requirements making stored helium dewars impractical. We have designed and are building an adiabatic demagnetization refrigerator (ADR) for use in cooling relatively large loads (10- 100 mW) at 4K and rejecting that heat to a cryocooler operating at 1 OK. Cryocoolers below 1 OK have poor thermodynamic efficiency and ADRs can operate in this temperature range with an efficiency of 75% of Carnot or better. Overall, this can save as much as 2/3 of the input power required to operate a 4K cryocooler. The ADR magnet consists of 8 short coils wired in series and arranged in a toroid to provide self shielding of its magnetic field. This will save mass (about 30% of the mass or about 1.5 kg in our small version, higher percentages in higher cooling power, larger versions) that would have been used for passive or active shields in an ordinary solenoid. The toroid has a 100 mm outer diameter and will produce an approximately 3T average field. In the initial demonstration model the toroid coils will be wound with ordinary NbTi wire and operated at 4K. A second version will then use Nb3Sn wire to provide complete 10K operation. As a refrigerant for this temperature range we will use either GdLiF4 or GdF3 crystals, pending tests of these crystals' cooling capacity per field and thermal conductance. Preliminary indications are that these materials are superior to GGG. We will use gas gap heat switches to alternately connect the toroid to the cold load and the warm heat sink. A small continuous stage will maintain the cold end at 4K while the main toroid is recycled.

  5. High pressure induced crossover between metal and insulator conductivity type in low dimensionality electron systems

    NASA Astrophysics Data System (ADS)

    Dizhur, E.; Voronovskii, A.; Kostyleva, I.; Kotel'nikov, I.; Zaitsev-Zotov, S.

    2011-12-01

    We report the results of our recent experimental studies concerned with electron systems of lower dimensionality the conductivity of which may be toggled between metallic and insulating regime appliing high pressure. The objects under present study include: a) tunneling through Shottky barrier into two-dimension (2D) electron system formed in the δ-doped layer in GaAs under hydrostatic pressure up to 3 GPa in a cylinder-piston cell; b) quasi-one-dimension (1D) `insulator' crystals NbS3 which obtain metallic conductivity type at pressures above 5.5 GPa in `toroid' anvils.

  6. Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary.

    PubMed

    Evans, T E; Moyer, R A; Thomas, P R; Watkins, J G; Osborne, T H; Boedo, J A; Doyle, E J; Fenstermacher, M E; Finken, K H; Groebner, R J; Groth, M; Harris, J H; La Haye, R J; Lasnier, C J; Masuzaki, S; Ohyabu, N; Pretty, D G; Rhodes, T L; Reimerdes, H; Rudakov, D L; Schaffer, M J; Wang, G; Zeng, L

    2004-06-11

    A stochastic magnetic boundary, produced by an applied edge resonant magnetic perturbation, is used to suppress most large edge-localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H mode transport barrier and core confinement are unaffected by the stochastic boundary, despite a threefold drop in the toroidal rotation. These results demonstrate that stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks.

  7. Formation of supermassive black holes through fragmentation of torodial supermassive stars.

    PubMed

    Zink, Burkhard; Stergioulas, Nikolaos; Hawke, Ian; Ott, Christian D; Schnetter, Erik; Müller, Ewald

    2006-04-28

    We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.

  8. Changes in divertor conditions in response to changing core density with RMPs

    DOE PAGES

    Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.; ...

    2017-06-07

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less

  9. Changes in divertor conditions in response to changing core density with RMPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less

  10. Estimating turbulent electrovortex flow parameters hear the dynamo cycle bifurcation point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimin, V.D.; Kolpakov, N.Yu.; Khripchenko, S.Yu.

    1988-07-01

    Models for estimating turbulent electrovortex flow parameters, derived in earlier studies, were delineated and extended in this paper to express those parameters near the dynamo cycle bifurcation point in a spherical cavity. Toroidal and poloidal fields rising from the induction currents within the liquid metal and their electrovortex interactions were calculated. Toroidal field strengthening by the poloidal electrovortex flow, the first part of the dynamo loop, was determined by the viscous dissipation in the liquid metal. The second part of the loop, in which the toroidal field localized in the liquid metal is converted to a poloidal field and emergesmore » from the sphere, was also established. The dissipative effects near the critical magnetic Reynolds number were estimated.« less

  11. Hollow nanotubular toroidal polymer microrings.

    PubMed

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  12. Non-axisymmetric ideal equilibrium and stability of ITER plasmas with rotating RMPs

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Cramp, R. G. J.; Gibson, S.; Lazerson, S. A.; Chapman, I. T.; Kirk, A.

    2016-08-01

    The magnetic perturbations produced by the resonant magnetic perturbation (RMP) coils will be rotated in ITER so that the spiral patterns due to strike point splitting which are locked to the RMP also rotate. This is to ensure even power deposition on the divertor plates. VMEC equilibria are calculated for different phases of the RMP rotation. It is demonstrated that the off harmonics rotate in the opposite direction to the main harmonic. This is an important topic for future research to control and optimize ITER appropriately. High confinement mode (H-mode) is favourable for the economics of a potential fusion power plant and its use is planned in ITER. However, the high pressure gradient at the edge of the plasma can trigger periodic eruptions called edge localized modes (ELMs). ELMs have the potential to shorten the life of the divertor in ITER (Loarte et al 2003 Plasma Phys. Control. Fusion 45 1549) and so methods for mitigating or suppressing ELMs in ITER will be important. Non-axisymmetric RMP coils will be installed in ITER for ELM control. Sampling theory is used to show that there will be significant a {{n}\\text{coils}}-{{n}\\text{rmp}} harmonic sideband. There are nine coils toroidally in ITER so {{n}\\text{coils}}=9 . This results in a significant n  =  6 component to the {{n}\\text{rmp}}=3 applied field and a significant n  =  5 component to the {{n}\\text{rmp}}=4 applied field. Although the vacuum field has similar amplitudes of these harmonics the plasma response to the various harmonics dictates the final equilibrium. Magnetic perturbations with toroidal mode number n  =  3 and n  =  4 are applied to a 15 MA, {{q}95}≈ 3 burning ITER plasma. We use a three-dimensional ideal magnetohydrodynamic model (VMEC) to calculate ITER equilibria with applied RMPs and to determine growth rates of infinite n ballooning modes (COBRA). The {{n}\\text{rmp}}=4 case shows little change in ballooning mode growth rate as the RMP is rotated, however there is a change with rotation for the {{n}\\text{rmp}}=3 case.

  13. Surface Tension Driven Instability in the Regime of Stokes Flow

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei; Bowick, Mark; Xing, Xiangjun

    2010-03-01

    A cylinder of liquid inside another liquid is unstable towards droplet formation. This instability is driven by minimization of surface tension energy and was analyzed first by [1,2] and then by [3]. We revisit this problem in the limit of small Laplace number, where the inertial of liquids can be completely ignored. The stream function is found to obey biharmonic equation, and its analytic solutions are found. We rederive Tomotika's main results, and also obtain many new analytic results about the velocity fields. We also apply our formalism to study the recent experiment on toroidal liquid droplet[4]. Our framework shall have many applications in micro-fluidics. [1] L.Rayleigh, On The Instability of A Cylinder of Viscous Liquid Under Capillary Force, Scientific Papers, Cambridge, Vol.III, 1902. [2] L.Rayleigh, On The Instability of Cylindrical Fluid Surfaces, Scientific Papers, Cambridge, Vol.III, 1902. [3] S.Tomotika, On the Instability of a Cylindrical Thread of a Viscous Liquid surround by Another Viscous Fluid, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 150, Issue 870, pp. 322-337. [4] E.Pairam and A.Fern'andez-Nieves, Generation and Stability of Toroidal Droplets in a Viscous Liquid, Physical Review Letters 102, 234501 (2009).

  14. Overview of recent results and future plans on the Compact Toroidal Hybrid experiment

    NASA Astrophysics Data System (ADS)

    Maurer, D. A.; Archmiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.

    2015-11-01

    Goals of the Compact Toroidal Hybrid (CTH) experiment are to: (1) investigate the dependence of plasma disruptive behavior on the level of applied 3D magnetic shaping, (2) test and advance 3D computational modeling tools in strongly shaped plasmas, and (3) study the implementation of a new island divertor. Progress towards these goals and other developments are summarized. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased, but a threshold for disruption avoidance is not observed. Low q operation is routine, with low q disruptions avoided when the vacuum transform is raised to the value of 0.07 or above. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges that would otherwise be vertically unstable. Current efforts at improved equilibrium reconstruction and diagnostic development will beoverviewed. NIMROD is used to model the current ramp phase of CTH and 3D shaped sawtooth behavior. An island divertor design has begun with connection length studies and initial EMC3-Eirene results to model energy deposition on divertor plates located in an edge 1/3 island. This work is supported by U.S. Department of Energy Grant No. DE- FG02-00ER54610.

  15. Model for a transformer-coupled toroidal plasma source

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid; Balakrishna, Ajit; Chen, Zhigang; Collins, Ken

    2012-01-01

    A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH3 plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH3, NHx+ ions are more prevalent near the gas inlet and Ar+ ions are the dominant ions farther downstream. NH3 and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH3 dissociates more readily and NHx+ ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH3 dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH4+ ions are produced and dissociation by-products have higher concentrations near the outlet.

  16. Improvement of Current Drive Efficiency in Projected FNSF Discharges

    NASA Astrophysics Data System (ADS)

    Prater, R.; Chan, V.; Garofalo, A.

    2012-10-01

    The Fusion Nuclear Science Facility - Advanced Tokamak (FNSF-AT) is envisioned as a facility that uses the tokamak approach to address the development of the AT path to fusion and fusion's energy objectives. It uses copper coils for a compact device with high βN and moderate power gain. The major radius is 2.7 m and central toroidal field is 5.44 T. Achieving the required confinement and stability at βN˜3.7 requires a current profile with negative central shear and qmin>1. Off-axis Electron Cyclotron Current Drive (ECCD), in addition to high bootstrap current fraction, can help support this current profile. Using the applied EC frequency and launch location as free parameters, a systematic study has been carried out to optimize the ECCD in the range ρ= 0.5-0.7. Using a top launch, making use of a large toroidal component to the launch direction, adjusting the vertical launch angle so that the rays propagate nearly parallel to the resonance, and adjusting the frequency for optimum total current give a high dimensionless efficiency of 0.44 for a broad ECCD profile peaked at ρ=0.7, and the driven current is 17 kA/MW for n20= 2.1 and Te= 10.3 keV locally.

  17. Perpendicular momentum input of lower hybrid waves and its influence on driving plasma rotation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xiaoyin

    The mechanism of perpendicular momentum input of lower hybrid waves and its influence on plasma rotation are studied. Discussion for parallel momentum input of lower hybrid waves is presented for comparison. It is found out that both toroidal and poloidal projections of perpendicular momentum input of lower hybrid waves are stronger than those of parallel momentum input. The perpendicular momentum input of lower hybrid waves therefore plays a dominant role in forcing the changes of rotation velocity observed during lower hybrid current drive. Lower hybrid waves convert perpendicular momentum carried by the waves into the momentum of dc electromagnetic fieldmore » by inducing a resonant-electron flow across flux surfaces therefore charge separation and a radial dc electric field. The dc field releases its momentum into plasma through the Lorentz force acting on the radial return current driven by the radial electric field. Plasma is spun up by the Lorentz force. An improved quasilinear theory with gyro-phase dependent distribution function is developed to calculate the radial flux of resonant electrons. Rotations are determined by a set of fluid equations for bulk electrons and ions, which are solved numerically by applying a finite-difference method. Analytical expressions for toroidal and poloidal rotations are derived using the same hydrodynamic model.« less

  18. Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Hanson, J. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.

    2017-10-01

    Resistive MHD simulations of low-q disruptions in the Compact Toroidal Hybrid Device (CTH) are performed using the NIMROD code. CTH is a current-carrying stellarator used to study the effects of 3D shaping on MHD stability. Experimentally, it is observed that the application of 3D vacuum fields allows CTH to operate with edge safety factor less than 2.0. However, these low-q discharges often disrupt after peak current if the applied 3D fields are too weak. Nonlinear simulations are initialized using model VMEC equilibria representative of low-q discharges with weak vacuum transform. Initially a series of symmetry preserving island chains are excited at the q=6/5, 7/5, 8/5, and 9/5 rational surfaces. These island chains act as transport barriers preventing stochastic magnetic fields in the edge from penetrating into the core. As the simulation progresses, predominately m/n=3/2 and 4/3 instabilities are destabilized. As these instabilities grow to large amplitude they destroy the symmetry preserving islands leading to large regions of stochastic fields. A current spike and loss of core thermal confinement occurs when the innermost island chain (6/5) is destroyed. Work Supported by US-DOE Grant #DE-FG02-03ER54692.

  19. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...

  20. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...

  1. Understanding and Predicting Profile Structure and Parametric Scaling of Intrinsic Rotation

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2016-10-01

    It is shown for the first time that turbulence-driven residual Reynolds stress can account for both the shape and magnitude of the observed intrinsic toroidal rotation profile. Nonlinear, global gyrokinetic simulations using GTS of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced non-diffusive momentum flux generated around a mid-radius-peaked intrinsic toroidal rotation profile. The non-diffusive momentum flux is dominated by the residual stress with a negligible contribution from the momentum pinch. The residual stress profile shows a robust anti-gradient, dipole structure in a set of ECH discharges with varying ECH power. Such interesting features of non-diffusive momentum fluxes, in connection with edge momentum sources and sinks, are found to be critical to drive the non-monotonic core rotation profiles in the experiments. Both turbulence intensity gradient and zonal flow ExB shear are identified as major contributors to the generation of the k∥-asymmetry needed for the residual stress generation. By balancing the residual stress and the momentum diffusion, a self-organized, steady-state rotation profile is calculated. The predicted core rotation profiles agree well with the experimentally measured main-ion toroidal rotation. The validated model is further used to investigate the characteristic dependence of global rotation profile structure in the multi-dimensional parametric space covering turbulence type, q-profile structure and collisionality with the goal of developing physics understanding needed for rotation profile control and optimization. Interesting results obtained include intrinsic rotation reversal induced by ITG-TEM transition in flat-q profile regime and by change in q-profile from weak to normal shear.. Fluctuation-generated poloidal Reynolds stress is also shown to significantly modify the neoclassical poloidal rotation in a way consistent with experimental observations. Finally, the first-principles-based model is applied to studying the ρ * -scaling and predicting rotations in ITER regime. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  2. Measurement of scrape-off-layer current dynamics during MHD activity and disruptions in HBT-EP

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Brooks, J. W.; Abler, M. C.; Bialek, J.; Byrne, P. J.; Hansen, C. J.; Hughes, P. E.; Mauel, M. E.; Navratil, G. A.; Rhodes, D. J.

    2017-08-01

    We report scrape-off layer (SOL) current measurements during magnetohydrodynamic (MHD) mode activity, resonant magnetic perturbations (RMPs), and disruptions in the High Beta Tokamak—Extended Pulse (HBT-EP) device. Currents are measured via segmented plasma current Rogowski coils, jumpers running toroidally between otherwise-isolated vessel sections, and a grounded electrode in the scrape-off layer. These currents strongly depend on the plasma’s major radius, and amplitude and phase of non-axisymmetric field components. SOL currents connecting through the vessel are seen to reach  ∼0.2{--}0.5 % of the plasma current during typical kink activity and RMPs. Plasma current asymmetries and scrape-off-layer currents generated during disruptions, which are commonly called halo currents, reach  ∼4 % of I p. Asymmetric toroidal currents between vessel sections rotate at tens of kHz through most of the current quench, then symmetrize once I p reaches  ∼30 % of its pre-disruptive value. Toroidal jumper currents oscillate between co- and counter-I p, with co-I p being dominant on average during disruptions. A relative increase in local plasma current measured by a segmented I p Rogowski coil correlates with counter-I p current in the nearest toroidal jumper. Measurements are interpreted in the context of two models that produce contrary predictions for the toroidal vessel current polarity during disruptions. Plasma current asymmetry measurements are consistent with both models, and SOL currents scale with plasma displacement toward the vessel wall. The design of an upcoming SOL current diagnostic and control upgrade is also briefly presented.

  3. Feedforward and feedback control of locked mode phase and rotation in DIII-D with application to modulated ECCD experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W.; La Haye, R. J.; Lanctot, M. J.

    The toroidal phase and rotation of otherwise locked magnetic islands of toroidal mode number n=1 are controlled in the DIII-D tokamak by means of applied magnetic perturbations of n=1. Pre-emptive perturbations were applied in feedforward to "catch" the mode as it slowed down and entrain it to the rotating field before complete locking, thus avoiding the associated major confinement degradation. Additionally, for the first time, the phase of the perturbation was optimized in real-time, in feedback with magnetic measurements, in order for the mode’s phase to closely match a prescribed phase, as a function of time. Experimental results confirm themore » capability to hold the mode in a given fixed-phase or to rotate it at up to 20 Hz with good uniformity. The controlcoil currents utilized in the experiments agree with the requirements estimated by an electromechanical model. Moreover, controlled rotation at 20 Hz was combined with Electron Cyclotron Current Drive (ECCD) modulated at the same frequency. This is simpler than regulating the ECCD modulation in feedback with spontaneous mode rotation, and enables repetitive, reproducible ECCD deposition at or near the island O-point, X-point and locations in between, for careful studies of how this affects the island stability. Current drive was found to be radially misaligned relative to the island, and resulting growth and shrinkage of islands matched expectations of the Modified Rutherford Equation for some discharges presented here. Finally, simulations predict the as designed ITER 3D coils can entrain a small island at sub-10 Hz frequencies.« less

  4. Symplectic approach to calculation of magnetic field line trajectories in physical space with realistic magnetic geometry in divertor tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punjabi, Alkesh; Ali, Halima

    A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates ({psi},{theta}) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. {psi} is the toroidal magnetic flux and {theta} is the poloidal angle. Natural canonical coordinates ({psi},{theta},{phi}) can be transformed to physical position (R,Z,{phi}) using a canonical transformation. (R,Z,{phi}) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonicalmore » coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.« less

  5. Symplectic approach to calculation of magnetic field line trajectories in physical space with realistic magnetic geometry in divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Ali, Halima

    2008-12-01

    A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.

  6. Feedforward and feedback control of locked mode phase and rotation in DIII-D with application to modulated ECCD experiments

    NASA Astrophysics Data System (ADS)

    Choi, W.; La Haye, R. J.; Lanctot, M. J.; Olofsson, K. E. J.; Strait, E. J.; Sweeney, R.; Volpe, F. A.; The DIII-D Team

    2018-03-01

    The toroidal phase and rotation of otherwise locked magnetic islands of toroidal mode number n  =  1 are controlled in the DIII-D tokamak by means of applied magnetic perturbations of n  =  1. Pre-emptive perturbations were applied in feedforward to ‘catch’ the mode as it slowed down and entrain it to the rotating field before complete locking, thus avoiding the associated major confinement degradation. Additionally, for the first time, the phase of the perturbation was optimized in real-time, in feedback with magnetic measurements, in order for the mode’s phase to closely match a prescribed phase, as a function of time. Experimental results confirm the capability to hold the mode in a given fixed-phase or to rotate it at up to 20 Hz with good uniformity. The control-coil currents utilized in the experiments agree with the requirements estimated by an electromechanical model. Moreover, controlled rotation at 20 Hz was combined with electron cyclotron current drive (ECCD) modulated at the same frequency. This is simpler than regulating the ECCD modulation in feedback with spontaneous mode rotation, and enables repetitive, reproducible ECCD deposition at or near the island O-point, X-point and locations in between, for careful studies of how this affects the island stability. Current drive was found to be radially misaligned relative to the island, and resulting growth and shrinkage of islands matched expectations of the modified Rutherford equation for some discharges presented here. Finally, simulations predict the as designed ITER 3D coils can entrain a small island at sub-10 Hz frequencies.

  7. Feedforward and feedback control of locked mode phase and rotation in DIII-D with application to modulated ECCD experiments

    DOE PAGES

    Choi, W.; La Haye, R. J.; Lanctot, M. J.; ...

    2018-02-05

    The toroidal phase and rotation of otherwise locked magnetic islands of toroidal mode number n=1 are controlled in the DIII-D tokamak by means of applied magnetic perturbations of n=1. Pre-emptive perturbations were applied in feedforward to "catch" the mode as it slowed down and entrain it to the rotating field before complete locking, thus avoiding the associated major confinement degradation. Additionally, for the first time, the phase of the perturbation was optimized in real-time, in feedback with magnetic measurements, in order for the mode’s phase to closely match a prescribed phase, as a function of time. Experimental results confirm themore » capability to hold the mode in a given fixed-phase or to rotate it at up to 20 Hz with good uniformity. The controlcoil currents utilized in the experiments agree with the requirements estimated by an electromechanical model. Moreover, controlled rotation at 20 Hz was combined with Electron Cyclotron Current Drive (ECCD) modulated at the same frequency. This is simpler than regulating the ECCD modulation in feedback with spontaneous mode rotation, and enables repetitive, reproducible ECCD deposition at or near the island O-point, X-point and locations in between, for careful studies of how this affects the island stability. Current drive was found to be radially misaligned relative to the island, and resulting growth and shrinkage of islands matched expectations of the Modified Rutherford Equation for some discharges presented here. Finally, simulations predict the as designed ITER 3D coils can entrain a small island at sub-10 Hz frequencies.« less

  8. Thermal and mechanical stress analysis for a Bitter-type toroidal field magnet for Zephyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brossmann, U.B.; Mukherjee, S.; Soell, M.

    1981-09-01

    ZEPHYR, a high-density, high-magnetic-field tokamak concept, has been worked out. The aim of this experiment is to achieved ignition of a D-T plasma. A maximum magnetic induction value of about 17 T is proposed. As an alternative to a tape-wound magnet a Bitter-type toroidal field magnet is investigated. 9 refs.

  9. Development of a high capacity toroidal Ni/Cd cell

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Foos, J. S.; Avery, J. W.; Feiman, V.

    1981-01-01

    A nickel cadmium battery design which can offer better thermal management, higher energy density and much lower cost than the state-of-the-art is emphasized. A toroidal Ni/Cd cell concept is described. It was critically reviewed and used to develop two cell designs for practical implementation. One is a double swaged and the other a swaged welded configuration.

  10. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    NASA Astrophysics Data System (ADS)

    Frerichs, Heinke; Schmitz, Oliver; Covele, Brent; Guo, Houyang; Hill, David; Feng, Yuhe

    2017-10-01

    In the Small Angle Slot (SAS) divertor in DIII-D, the combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field causes the strike point to vary radially along the divertor slot and even leave it at some toroidal locations. This effect essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade performance of the slot divertor. This effect has been approximated by a finite gap in the divertor baffle. Simulations with EMC3-EIRENE show that a toroidally localized loss of divertor closure can result in non-axisymmetric divertor densities and temperatures. This introduces a density window of 10-15% on top of the nominal threshold separatrix density during which a non-axisymmetric onset of local detachment occurs, initially leaving the gap and up to 60 deg beyond that still attached. Conversely, the impact of such toroidally localized divertor perturbations on the toroidal symmetry of midplane separatrix conditions is small. This work has been funded by the U.S. Department of Energy under Early Career Award Grant DE-SC0013911, and Grant DE-FC02-04ER54698.

  11. Impact of perturbative, non-axisymmetric impurity fueling on Alcator C-Mod H-modes

    NASA Astrophysics Data System (ADS)

    Reinke, M. L.; Lore, J. D.; Terry, J.; Brunner, D.; LaBombard, B.; Lipschultz, B.; Hubbard, A.; Hughes, J. W.; Mumgaard, R.; Pitts, R. A.

    2017-12-01

    Experiments on Alcator C-Mod have been performed to investigate the impact of toroidally localized impurity injection on H-mode exhaust scenarios. Results help to inform sub-divertor gas injector designs, in particular that of the ITER machine, for which this work was primarily undertaken. In repeated EDA H-modes, the amount of N2 injected into the private flux region was scanned up to levels which strongly impacted normalized energy confinement, H98, and led to an H/L back-transition. Repeated scans increased the toroidal peaking of the gas injection, reducing from five equally spaced locations to a single toroidal and poloidal injector. Results show the impact on the pedestal and core plasma is similar between all cases as long as the total gas injection rate is held constant. An influence on toroidally localized impurity spectroscopy is shown, demonstrating a complication in using such data in interpreting experiments and supporting boundary modeling in cases where there are localized extrinsic or intrinsic impurity sources. These results, along with prior work in this area on Alcator C-Mod, form a comprehensive set of L-mode and H-mode data to be used for validation of 3D boundary physics codes.

  12. A new solar cycle model including meridional circulation

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.

    1991-01-01

    A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.

  13. Current Drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulconer, D.W

    2004-03-15

    Certain devices aimed at magnetic confinement of thermonuclear plasma rely on the steady flow of an electric current in the plasma. In view of the dominant place it occupies in both the world magnetic-confinement fusion effort and the author's own activity, the tokamak toroidal configuration is selected as prototype for discussing the question of how such a current can be maintained. Tokamaks require a stationary toroidal plasma current, this being traditionally provided by a pulsed magnetic induction which drives the plasma ring as the secondary of a transformer. Since this mechanism is essentially transient, and steady-state fusion reactor operation hasmore » manifold advantages, significant effort is now devoted to developing alternate steady-state means of generating toroidal current. These methods are classed under the global heading of 'noninductive current drive' or simply 'current drive', generally, though not exclusively, employing the injection of waves and/or toroidally directed particle beams. In what follows we highlight the physical mechanisms underlying surprisingly various approaches to driving current in a tokamak, downplaying a number of practical and technical issues. When a significant data base exists for a given method, its experimental current drive efficiency and future prospects are detailed.« less

  14. The role of MHD in 3D aspects of massive gas injection

    DOE PAGES

    Izzo, Valerie A.; Parks, P. B.; Eidietis, Nicholas W.; ...

    2015-06-26

    Simulations of massive gas injection (MGI) for disruption mitigation in DIII-D are carried out to compare the toroidal peaking of radiated power for the cases of one and two gas jets. The radiation toroidal peaking factor (TPF) results from a combination of the distribution of impurities and the distribution of heat flux associated with then =1 mode. The injected impurities are found to spread helically along field lines preferentially toward the high-field-side, which is explained in terms of a nozzle equation. In light of this mechanism, reversing the current direction also reverses the toroidal direction of impurity spreading. During themore » pre-thermal quench phase of the disruption, the toroidal peaking of radiated power is reduced in the straightforward manner by increasing from one to two gas jets. However, during the thermal quench phase, reduction in the TPF is achieved only for a particular arrangement of the two gas valves with respect to the field line pitch. In particular, the relationship between the two valve locations and the 1/1 mode phase is critical, where gas valve spacing that is coherent with 1/1 symmetry effectively reduces TPF.« less

  15. Induced synthesis of toroid-like lead sulfide nanocomposites in ethanol solution through a protein templating route

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Qin, Dezhi; Yang, Guangrui; Du, Xian; Zhang, Qiuxia; Li, Feng

    2015-09-01

    The toroid-like PbS nanocrystals have been prepared in zein ethanol solution based on self-assembly template of protein molecules. From transmission electron microscopy observation, the obtained samples were monodispersed with an average size of about 47 nm. The chemical composition and crystal structure of nanocomposites were determined by X-ray diffraction and energy-dispersive X-ray spectrum measurements. The interaction between PbS and zein was investigated through Fourier transform infrared, photoluminescence, circular dichroism (CD) spectra, and thermogravimetric analysis. The PbS nanocrystals could react with nitrogen and oxygen atoms of zein molecules through coordination and electrostatic force. The CD spectra results suggested that PbS nanocrystals induced the conformational transition of protein from α-helix to β-sheet and then self-assembled into ring or toroid nanostructure. The quenching of zein fluorescence induced by PbS nanocrystals also showed the change in the chemical microenvironments of the fluorescent amino acid residues in the protein structure. The key step of this facile, biomimetic route was the formation of self-assembly nanostructure of zein, which could regulate the nucleation and growth of toroid-like PbS nanocrystals.

  16. Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation

    NASA Astrophysics Data System (ADS)

    Loarte, A.; Huijsmans, G.; Futatani, S.; Baylor, L. R.; Evans, T. E.; Orlov, D. M.; Schmitz, O.; Becoulet, M.; Cahyna, P.; Gribov, Y.; Kavin, A.; Sashala Naik, A.; Campbell, D. J.; Casper, T.; Daly, E.; Frerichs, H.; Kischner, A.; Laengner, R.; Lisgo, S.; Pitts, R. A.; Saibene, G.; Wingen, A.

    2014-03-01

    Progress in the definition of the requirements for edge localized mode (ELM) control and the application of ELM control methods both for high fusion performance DT operation and non-active low-current operation in ITER is described. Evaluation of the power fluxes for low plasma current H-modes in ITER shows that uncontrolled ELMs will not lead to damage to the tungsten (W) divertor target, unlike for high-current H-modes in which divertor damage by uncontrolled ELMs is expected. Despite the lack of divertor damage at lower currents, ELM control is found to be required in ITER under these conditions to prevent an excessive contamination of the plasma by W, which could eventually lead to an increased disruptivity. Modelling with the non-linear MHD code JOREK of the physics processes determining the flow of energy from the confined plasma onto the plasma-facing components during ELMs at the ITER scale shows that the relative contribution of conductive and convective losses is intrinsically linked to the magnitude of the ELM energy loss. Modelling of the triggering of ELMs by pellet injection for DIII-D and ITER has identified the minimum pellet size required to trigger ELMs and, from this, the required fuel throughput for the application of this technique to ITER is evaluated and shown to be compatible with the installed fuelling and tritium re-processing capabilities in ITER. The evaluation of the capabilities of the ELM control coil system in ITER for ELM suppression is carried out (in the vacuum approximation) and found to have a factor of ˜2 margin in terms of coil current to achieve its design criterion, although such a margin could be substantially reduced when plasma shielding effects are taken into account. The consequences for the spatial distribution of the power fluxes at the divertor of ELM control by three-dimensional (3D) fields are evaluated and found to lead to substantial toroidal asymmetries in zones of the divertor target away from the separatrix. Therefore, specifications for the rotation of the 3D perturbation applied for ELM control in order to avoid excessive localized erosion of the ITER divertor target are derived. It is shown that a rotation frequency in excess of 1 Hz for the whole toroidally asymmetric divertor power flux pattern is required (corresponding to n Hz frequency in the variation of currents in the coils, where n is the toroidal symmetry of the perturbation applied) in order to avoid unacceptable thermal cycling of the divertor target for the highest power fluxes and worst toroidal power flux asymmetries expected. The possible use of the in-vessel vertical stability coils for ELM control as a back-up to the main ELM control systems in ITER is described and the feasibility of its application to control ELMs in low plasma current H-modes, foreseen for initial ITER operation, is evaluated and found to be viable for plasma currents up to 5-10 MA depending on modelling assumptions.

  17. Matter in the form of toroidal electromagnetic vortices

    NASA Astrophysics Data System (ADS)

    Hagen, Wilhelm F.

    2015-09-01

    The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact symmetric cuboid that provides a unique building block to assemble the isotopic chart. Exotic neutron- 4 appears viable which may explain dark matter. The recognition that all heavy particles, including the protons, are related to electrons via muons and pions explains the identity of all charges to within 10-36. Greater deviations would overpower gravitation. Gravitation can be traced to EM vacuum fluctuations generated by standing EM waves between interacting particles. On that basis, gravity can be correlated via microscopic quantities to the age of the universe of 13.5 billion years. All forces and particles and potentially dark matter and dark energy are different manifestations of EM energy.

  18. Dimensionless size scaling of intrinsic rotation in DIII-D

    DOE PAGES

    deGrassie, John S.; Solomon, Wayne M.; Rice, J. E.; ...

    2016-08-01

    A dimensionless empirical scaling for intrinsic toroidal rotation is given; M A ~β Nρ*, where M A is the toroidal velocity divided by the Alfvén velocity, β N the usual normalized β value, and ρ* is the ion gyroradius divided by the minor radius. This scaling describes well experimental data from DIII-D, and also some published data from C-Mod and JET. The velocity used in this scaling is in an outer location in minor radius, outside of the interior core and inside of the large gradient edge region in H-mode conditions. Furthermore, this scaling establishes the basic magnitude of themore » intrinsic toroidal rotation and its relation to the rich variety of rotation profiles that can be realized for intrinsic conditions is discussed.« less

  19. Charge-Induced Saffman-Taylor Instabilities in Toroidal Droplets

    NASA Astrophysics Data System (ADS)

    Fragkopoulos, A. A.; Aizenman, A.; Fernández-Nieves, A.

    2017-06-01

    We show that charged toroidal droplets can develop fingerlike structures as they expand due to Saffman-Taylor instabilities. While these are commonly observed in quasi-two-dimensional geometries when a fluid displaces another fluid of higher viscosity, we show that the toroidal confinement breaks the symmetry of the problem, effectively making it quasi-two-dimensional and enabling the instability to develop in this three-dimensional situation. We control the expansion speed of the torus with the imposed electric stress and show that fingers are observed provided the characteristic time scale associated with this instability is smaller than the characteristic time scale associated with Rayleigh-Plateau break-up. We confirm our interpretation of the results by showing that the number of fingers is consistent with expectations from linear stability analysis in radial Hele-Shaw cells.

  20. Toroidal Interaction and Propeller Chirality of Hexaarylbenzenes. Dynamic Domino Inversion Revealed by Combined Experimental and Theoretical Circular Dichroism Studies.

    PubMed

    Kosaka, Tomoyo; Inoue, Yoshihisa; Mori, Tadashi

    2016-03-03

    Hexaarylbenzenes (HABs) have greatly attracted much attention due to their unique propeller-shaped structure and potential application in materials science, such as liquid crystals, molecular capsules/rotors, redox materials, nonlinear optical materials, as well as molecular wires. Less attention has however been paid to their propeller chirality. By introducing small point-chiral group(s) at the periphery of HABs, propeller chirality was effectively induced, provoking strong Cotton effects in the circular dichroism (CD) spectrum. Temperature and solvent polarity manipulate the dynamics of propeller inversion in solution. As such, whizzing toroids become more substantial in polar solvents and at an elevated temperature, where radial aromatic rings (propeller blades) prefer orthogonal alignment against the central benzene ring (C6 core), maximizing toroidal interactions.

Top