Sample records for extinction coefficient contour

  1. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.

    2015-06-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on CBCT, we conclude that contours generated with B-Spline DIR require physician review and editing if they are to be used in the clinic.

  2. The determination of extinction coefficient of CuInS2, and ZnCuInS3 multinary nanocrystals.

    PubMed

    Qin, Lei; Li, Dongze; Zhang, Zhuolei; Wang, Kefei; Ding, Hong; Xie, Renguo; Yang, Wensheng

    2012-10-21

    A pioneering work for determining the extinction coefficient of colloidal semiconductor nanocrystals (NCs) has been cited over 1500 times (W. Yu, W. Guo, X. G. Peng, Chem. Mater., 2003, 15, 2854-2860), indicating the importance of calculating NC concentration for further research and applications. In this study, the size-dependent nature of the molar extinction coefficient of "greener" CuInS(2) and ZnCuInS(3) NCs with emission covering the whole visible to near infrared (NIR) is presented. With the increase of NC size, the resulting quantitative values of the extinction coefficients of ternary CuInS(2) and quaternary ZnCuInS(3) NCs are found to follow a power function with exponents of 2.1 and 2.5, respectively. Obviously, a larger value of extinction coefficient is observed in quaternary NCs for the same size of particles. The difference of the extinction coefficient from both samples is clearly demonstrated due to incorporating ZnS with a much larger extinction coefficient into CuInS(2) NCs.

  3. An Improved Method of Predicting Extinction Coefficients for the Determination of Protein Concentration.

    PubMed

    Hilario, Eric C; Stern, Alan; Wang, Charlie H; Vargas, Yenny W; Morgan, Charles J; Swartz, Trevor E; Patapoff, Thomas W

    2017-01-01

    Concentration determination is an important method of protein characterization required in the development of protein therapeutics. There are many known methods for determining the concentration of a protein solution, but the easiest to implement in a manufacturing setting is absorption spectroscopy in the ultraviolet region. For typical proteins composed of the standard amino acids, absorption at wavelengths near 280 nm is due to the three amino acid chromophores tryptophan, tyrosine, and phenylalanine in addition to a contribution from disulfide bonds. According to the Beer-Lambert law, absorbance is proportional to concentration and path length, with the proportionality constant being the extinction coefficient. Typically the extinction coefficient of proteins is experimentally determined by measuring a solution absorbance then experimentally determining the concentration, a measurement with some inherent variability depending on the method used. In this study, extinction coefficients were calculated based on the measured absorbance of model compounds of the four amino acid chromophores. These calculated values for an unfolded protein were then compared with an experimental concentration determination based on enzymatic digestion of proteins. The experimentally determined extinction coefficient for the native proteins was consistently found to be 1.05 times the calculated value for the unfolded proteins for a wide range of proteins with good accuracy and precision under well-controlled experimental conditions. The value of 1.05 times the calculated value was termed the predicted extinction coefficient. Statistical analysis shows that the differences between predicted and experimentally determined coefficients are scattered randomly, indicating no systematic bias between the values among the proteins measured. The predicted extinction coefficient was found to be accurate and not subject to the inherent variability of experimental methods. We propose the use of a predicted extinction coefficient for determining the protein concentration of therapeutic proteins starting from early development through the lifecycle of the product. LAY ABSTRACT: Knowing the concentration of a protein in a pharmaceutical solution is important to the drug's development and posology. There are many ways to determine the concentration, but the easiest one to use in a testing lab employs absorption spectroscopy. Absorbance of ultraviolet light by a protein solution is proportional to its concentration and path length; the proportionality constant is the extinction coefficient. The extinction coefficient of a protein therapeutic is usually determined experimentally during early product development and has some inherent method variability. In this study, extinction coefficients of several proteins were calculated based on the measured absorbance of model compounds. These calculated values for an unfolded protein were then compared with experimental concentration determinations based on enzymatic digestion of the proteins. The experimentally determined extinction coefficient for the native protein was 1.05 times the calculated value for the unfolded protein with good accuracy and precision under controlled experimental conditions, so the value of 1.05 times the calculated coefficient was called the predicted extinction coefficient. Comparison of predicted and measured extinction coefficients indicated that the predicted value was very close to the experimentally determined values for the proteins. The predicted extinction coefficient was accurate and removed the variability inherent in experimental methods. © PDA, Inc. 2017.

  4. Parameterization of the Extinction Coefficient in Ice and Mixed-Phase Arctic Clouds during the ISDAC Field Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korolev, A; Shashkov, A; Barker, H

    This report documents the history of attempts to directly measure cloud extinction, the current measurement device known as the Cloud Extinction Probe (CEP), specific problems with direct measurement of extinction coefficient, and the attempts made here to address these problems. Extinction coefficient is one of the fundamental microphysical parameters characterizing bulk properties of clouds. Knowledge of extinction coefficient is of crucial importance for radiative transfer calculations in weather prediction and climate models given that Earth's radiation budget (ERB) is modulated much by clouds. In order for a large-scale model to properly account for ERB and perturbations to it, it mustmore » ultimately be able to simulate cloud extinction coefficient well. In turn this requires adequate and simultaneous simulation of profiles of cloud water content and particle habit and size. Similarly, remote inference of cloud properties requires assumptions to be made about cloud phase and associated single-scattering properties, of which extinction coefficient is crucial. Hence, extinction coefficient plays an important role in both application and validation of methods for remote inference of cloud properties from data obtained from both satellite and surface sensors (e.g., Barker et al. 2008). While estimation of extinction coefficient within large-scale models is relatively straightforward for pure water droplets, thanks to Mie theory, mixed-phase and ice clouds still present problems. This is because of the myriad forms and sizes that crystals can achieve, each having their own unique extinction properties. For the foreseeable future, large-scale models will have to be content with diagnostic parametrization of crystal size and type. However, before they are able to provide satisfactory values needed for calculation of radiative transfer, they require the intermediate step of assigning single-scattering properties to particles. The most basic of these is extinction coefficient, yet it is rarely measured directly, and therefore verification of parametrizations is difficult. The obvious solution is to be able to measure microphysical properties and extinction at the same time and for the same volume. This is best done by in situ sampling by instruments mounted on either balloon or aircraft. The latter is the usual route and the one employed here. Yet the problem of actually measuring extinction coefficient directly for arbitrarily complicated particles still remains unsolved.« less

  5. Cloud Tracking from Satellite Pictures.

    DTIC Science & Technology

    1981-07-01

    sufficiently smooth contours, this information can be obtained from very few low-order coefficients. The inverse transform of the two lowest-order...obtained from very few low- order coefficients. The inverse transform of the two lowest-order coefficients is an ellipse approximating the original...coefficients obtained from the contour of Fig. 9. .. . ........ .. .. ... ..... 67 11. Inverse transform of truncated FD series .. .. . .. .... 67 12

  6. Relationship of extinction coefficient, air pollution, and meteorological parameters in an urban area during 2007 to 2009.

    PubMed

    Sabetghadam, Samaneh; Ahmadi-Givi, Farhang

    2014-01-01

    Light extinction, which is the extent of attenuation of light signal for every distance traveled by light in the absence of special weather conditions (e.g., fog and rain), can be expressed as the sum of scattering and absorption effects of aerosols. In this paper, diurnal and seasonal variations of the extinction coefficient are investigated for the urban areas of Tehran from 2007 to 2009. Cases of visibility impairment that were concurrent with reports of fog, mist, precipitation, or relative humidity above 90% are filtered. The mean value and standard deviation of daily extinction are 0.49 and 0.39 km(-1), respectively. The average is much higher than that in many other large cities in the world, indicating the rather poor air quality over Tehran. The extinction coefficient shows obvious diurnal variations in each season, with a peak in the morning that is more pronounced in the wintertime. Also, there is a very slight increasing trend in the annual variations of atmospheric extinction coefficient, which suggests that air quality has regressed since 2007. The horizontal extinction coefficient decreased from January to July in each year and then increased between July and December, with the maximum value in the winter. Diurnal variation of extinction is often associated with small values for low relative humidity (RH), but increases significantly at higher RH. Annual correlation analysis shows that there is a positive correlation between the extinction coefficient and RH, CO, PM10, SO2, and NO2 concentration, while negative correlation exists between the extinction and T, WS, and O3, implying their unfavorable impact on extinction variation. The extinction budget was derived from multiple regression equations using the regression coefficients. On average, 44% of the extinction is from suspended particles, 3% is from air molecules, about 5% is from NO2 absorption, 0.35% is from RH, and approximately 48% is unaccounted for, which may represent errors in the data as well as contribution of other atmospheric constituents omitted from the analysis. Stronger regression equation is achieved in the summer, meaning that the extinction is more predictable in this season using pollutant concentrations.

  7. [Reconstructed ambient light extinction coefficient and its contribution factors in Beijing in January, 2010].

    PubMed

    Zhu, Li-Hua; Tao, Jun; Chen, Zhong-Ming; Zhao, Yue; Zhang, Ren-Jian; Cao, Jun-Ji

    2012-01-01

    Aerosol samples for PM2.5 were collected from 1st January to 31st January 2010, in Beijing. The concentrations of organic carbon, elemental carbon, water-solubile ions and soil elements of all particle samples were determined by thermal/optical carbon analyzer, ion chromatography and X-ray fluorescence spectrometer, respectively. The scattering coefficients (b(sp)), absorbing coefficients (b(ap)) and meteorological parameters for this period were also measured. Ambient light extinction coefficients were reconstructed by IMPROVE formula and were compared with measured light extinction coefficients. The results showed that the average mass concentration of PM2.5 was (144.3 +/- 89.1) microg x m(-3) during campaigning period. The average values of measured b(ap), b(sp) and extinction coefficient (b(ext)) were (67.4 +/- 54.3), (328.5 +/- 353.8) and (395.9 +/- 405.2) Mm(-1), respectively. IMPROVE formula is suitable for source apportionment of light extinction coefficient in campaign period. The average value of calculated b'(ext) was (611 +/- 503) Mm(-1) in January, 2010. The major contributors to ambient light extinction coefficients included (NH4) 2SO4 (24.6%), NH4NO3 (11.6%), OM (45.5%), EC (11.9%) and FS (6.4%), respectively.

  8. Inter-Comparison of ILAS-II Version 1.4 Aerosol Extinction Coefficient at 780 nm with SAGE II, SAGE III, and POAM III Aerosol Data

    NASA Technical Reports Server (NTRS)

    Saitoh, Naoko; Hayashida, S.; Sugita, T.; Nakajima, H.; Yokota, T.; Hayashi, M.; Shiraishi, K.; Kanzawa, H.; Ejiri, M. K.; Irie, H.; hide

    2006-01-01

    The Improved Limb Atmospheric Spectrometer (ILAS) II on board the Advanced Earth Observing Satellite (ADEOS) II observed stratospheric aerosol in visible/near-infrared/infrared spectra over high latitudes in the Northern and Southern Hemispheres. Observations were taken intermittently from January to March, and continuously from April through October, 2003. We assessed the data quality of ILAS-II version 1.4 aerosol extinction coefficients at 780 nm from comparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) II, SAGE III, and the Polar Ozone and Aerosol Measurement (POAM) III aerosol data. At heights below 20 km in the Northern Hemisphere, aerosol extinction coefficients from ILAS-II agreed with those from SAGE II and SAGE III within 10%, and with those from POAM III within 15%. From 20 to 26 km, ILAS-II aerosol extinction coefficients were smaller than extinction coefficients from the other sensors; differences between ILAS-II and SAGE II ranged from 10% at 20 km to 34% at 26 km. ILAS-II aerosol extinction coefficients from 20 to 25 km in February over the Southern Hemisphere had a negative bias (12-66%) relative to SAGE II aerosol data. The bias increased with increasing altitude. Comparisons between ILAS-II and POAM III aerosol extinction coefficients from January to May in the Southern Hemisphere (defined as the non-Polar Stratospheric Cloud (PSC) season ) yielded qualitatively similar results. From June to October (defined as the PSC season ), aerosol extinction coefficients from ILAS-II were smaller than those from POAM III above 17 km, as in the case of the non-PSC season; however, ILAS-II and POAM III aerosol data were within 15% of each other from 12 to 17 km.

  9. Laser measurement of the spectral extinction coefficients of fluorescent, highly absorbing liquids. [crude petroleum oils

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1982-01-01

    A conceptual method is developed to deduce rapidly the spectral extinction coefficient of fluorescent, highly absorbing liquids, such as crude or refined petroleum oils. The technique offers the advantage of only requiring one laser wavelength and a single experimental assembly and execution for any specific fluorescent liquid. The liquid is inserted into an extremely thin wedge-shaped cavity for stimulation by a laser from one side and flurescence measurement on the other side by a monochromator system. For each arbitrarily selected extinction wavelength, the wedge is driven slowly to increasing thicknesses until the fluorescence extinguishes. The fluorescence as a function of wedge thickness permits a determination of the extinction coefficient using an included theoretical model. When the monochromator is set to the laser emission wavelength, the extinction coefficient is determined using the usual on-wavelength signal extinction procedure.

  10. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  11. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  12. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  13. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  14. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  15. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  16. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  17. Evaluation of the pulse-contour method of determining stroke volume in man.

    NASA Technical Reports Server (NTRS)

    Alderman, E. L.; Branzi, A.; Sanders, W.; Brown, B. W.; Harrison, D. C.

    1972-01-01

    The pulse-contour method for determining stroke volume has been employed as a continuous rapid method of monitoring the cardiovascular status of patients. Twenty-one patients with ischemic heart disease and 21 patients with mitral valve disease were subjected to a variety of hemodynamic interventions. The pulse-contour estimations, using three different formulas derived by Warner, Kouchoukos, and Herd, were compared with indicator-dilution outputs. A comparison of the results of the two methods for determining stroke volume yielded correlation coefficients ranging from 0.59 to 0.84. The better performing Warner formula yielded a coefficient of variation of about 20%. The type of hemodynamic interventions employed did not significantly affect the results using the pulse-contour method. Although the correlation of the pulse-contour and indicator-dilution stroke volumes is high, the coefficient of variation is such that small changes in stroke volume cannot be accurately assessed by the pulse-contour method. However, the simplicity and rapidity of this method compared to determination of cardiac output by Fick or indicator-dilution methods makes it a potentially useful adjunct for monitoring critically ill patients.

  18. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means any of the...

  19. First-principles calculations of structural, elastic, electronic, and optical properties of perovskite-type KMgH3 crystals: novel hydrogen storage material.

    PubMed

    Reshak, Ali H; Shalaginov, Mikhail Y; Saeed, Yasir; Kityk, I V; Auluck, S

    2011-03-31

    We report a first-principles study of structural and phase stability in three different structures of perovskite-types KMgH(3) according to H position. While electronic and optical properties were measured only for stable perovskite-type KMgH(3), our calculated structural parameters are found in good agreement with experiment and other theoretical results. We also study the electronic charge density space distribution contours in the (200), (101), and (100) crystallographic planes, which gives better insight picture of chemical bonding between K-H, K-Mg-H, and Mg-H. Moreover, we have calculated the electronic band structure dispersion, total, and partial density of electron states to study the band gap origin and the contribution of s-band of H, s and p-band of Mg in the valence band, and d-band of K in the conduction band. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients, optical conductivities, and loss functions of stable KMgH(3) were calculated for photon energies up to 40 eV.

  20. [Determination of the error of aerosol extinction coefficient measured by DOAS].

    PubMed

    Si, Fu-qi; Liu, Jian-guo; Xie, Pin-hua; Zhang, Yu-jun; Wang, Mian; Liu, Wen-qing; Hiroaki, Kuze; Liu, Cheng; Nobuo, Takeuchi

    2006-10-01

    The method of defining the error of aerosol extinction coefficient measured by differential optical absorption spectroscopy (DOAS) is described. Some factors which could bring errors to result, such as variation of source, integral time, atmospheric turbulence, calibration of system parameter, displacement of system, and back scattering of particles, are analyzed. The error of aerosol extinction coefficient, 0.03 km(-1), is determined by theoretical analysis and practical measurement.

  1. Analysis of the Lankford coefficient evolution at different strain rates for AA6016-T4, DP800 and DC06

    NASA Astrophysics Data System (ADS)

    Lenzen, Matthias; Merklein, Marion

    2017-10-01

    In the automotive sector, a major challenge is the deep-drawing of modern lightweight sheet metals with limited formability. Thus, conventional material models lack in accuracy due to the complex material behavior. A current field of research takes into account the evolution of the Lankford coefficient. Today, changes in anisotropy under increasing degree of deformation are not considered. Only a consolidated average value of the Lankford coefficient is included in conventional material models. This leads to an increasing error in prediction of the flow behavior and therefore to an inaccurate prognosis of the forming behavior. To increase the accuracy of the prediction quality, the strain dependent Lankford coefficient should be respected, because the R-value has a direct effect on the contour of the associated flow rule. Further, the investigated materials show a more or less extinct rate dependency of the yield stress. For this reason, the rate dependency of the Lankford coefficient during uniaxial tension is focused within this contribution. To quantify the influence of strain rate on the Lankford coefficient, tensile tests are performed for three commonly used materials, the aluminum alloy AA6016-T4, the advanced high strength steel DP800 and the deep drawing steel DC06 at three different strain rates. The strain measurement is carried out by an optical strain measurement system. An evolution of the Lankford coefficient was observed for all investigated materials. Also, an influence of the deformation velocity on the anisotropy could be detected.

  2. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  3. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  4. SAGE Aerosol Measurements. Volume 2: 1 January - 31 December 1980

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1986-01-01

    The stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction at wavelengths of 1.00 and 0.45 micron, ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events in the form of zonal averages and seasonal averages of the aerosol extinction at 1.00 and 0.45 micron, ratios of the aerosol extinction to the molecular extinction at 1.00 micron, and ratios of the aerosol extinction at 0.45 micron to the aerosol extinction at 1.00 micron are presented. The averages for l980 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format.

  5. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection.

    PubMed

    Sun, Guodong; Qin, Laian; Hou, Zaihong; Jing, Xu; He, Feng; Tan, Fengfu; Zhang, Silong

    2018-03-19

    In this paper, a new prototypical Scheimpflug lidar capable of detecting the aerosol extinction coefficient and vertical atmospheric transmittance at 1 km above the ground is described. The lidar system operates at 532 nm and can be used to detect aerosol extinction coefficients throughout an entire day. Then, the vertical atmospheric transmittance can be determined from the extinction coefficients with the equation of numerical integration in this area. CCD flat fielding of the image data is used to mitigate the effects of pixel sensitivity variation. An efficient method of two-dimensional wavelet transform according to a local threshold value has been proposed to reduce the Gaussian white noise in the lidar signal. Furthermore, a new iteration method of backscattering ratio based on genetic algorithm is presented to calculate the aerosol extinction coefficient and vertical atmospheric transmittance. Some simulations are performed to reduce the different levels of noise in the simulated signal in order to test the precision of the de-noising method and inversion algorithm. The simulation result shows that the root-mean-square errors of extinction coefficients are all less than 0.02 km -1 , and that the relative errors of the atmospheric transmittance between the model and inversion data are below 0.56% for all cases. The feasibility of the instrument and the inversion algorithm have also been verified by an optical experiment. The average relative errors of aerosol extinction coefficients between the Scheimpflug lidar and the conventional backscattering elastic lidar are 3.54% and 2.79% in the full overlap heights of two time points, respectively. This work opens up new possibilities of using a small-scale Scheimpflug lidar system for the remote sensing of atmospheric aerosols.

  6. Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Liu, H.

    2007-10-01

    Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO2), deoxyhaemoglobin (Hb) and total haemoglobin (Hbtotal) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO2 and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hbtotal]. The error calculation has shown that even a small variation (0.01 cm-1 mM-1) in extinction coefficients can produce appreciable relative errors in quantification of Δ[HbO2], Δ[Hb] and Δ[Hbtotal]. We have also observed that the error of Δ[Hbtotal] is not always larger than those of Δ[HbO2] and Δ[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of Δ[HbO2], Δ[Hb] and Δ[Hbtotal] from in vivo tissue measurements.

  7. Extinction coefficients of CC and CC bands in ethyne and ethene molecules interacting with Cu+ and Ag+ in zeolites--IR studies and quantumchemical DFT calculations.

    PubMed

    Kozyra, Paweł; Góra-Marek, Kinga; Datka, Jerzy

    2015-02-05

    The values of extinction coefficients of CC and CC IR bands of ethyne and ethene interacting with Cu+ and Ag+ in zeolites were determined in quantitative IR experiments and also by quantumchemical DFT calculations with QM/MM method. Both experimental and calculated values were in very good agreement validating the reliability of calculations. The values of extinction coefficients of ethyne and ethene interacting with bare cations and cations embedded in zeolite-like clusters were calculated. The interaction of organic molecules with Cu+ and Ag+ in zeolites ZSM-5 and especially charge transfers between molecule, cation and zeolite framework was also discussed in relation to the values of extinction coefficients. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    2000-01-01

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  9. Retrieval method of aerosol extinction coefficient profile by an integral lidar system and case study

    NASA Astrophysics Data System (ADS)

    Shan, Huihui; Zhang, Hui; Liu, Junjian; Wang, Shenhao; Ma, Xiaomin; Zhang, Lianqing; Liu, Dong; Xie, Chenbo; Tao, Zongming

    2018-02-01

    Aerosol extinction coefficient profile is an essential parameter for atmospheric radiation model. But it is difficult to get the full aerosol extinction profile from the ground to the tropopause especially in near ground precisely using backscattering lidar. A combined measurement of side-scattering, backscattering and Raman-scattering lidar is proposed to retrieve the aerosol extinction coefficient profile from the surface to the tropopause which covered a dynamic range of 5 orders. The side-scattering technique solves the dead zone and the overlap problem caused by the traditional lidar in the near range. Using the Raman-scattering the aerosol lidar ratio (extinction to backscatter ratio) can be obtained. The cases studies in this paper show the proposed method is reasonable and feasible.

  10. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  11. Investigation of conjugate circular arcs in rocket nozzle contour design

    NASA Astrophysics Data System (ADS)

    Schomberg, K.; Olsen, J.; Neely, A.; Doig, G.

    2018-05-01

    The use of conjugate circular arcs in rocket nozzle contour design has been investigated by numerically comparing three existing sub-scale nozzles to a range of equivalent arc-based contour designs. Three performance measures were considered when comparing nozzle designs: thrust coefficient, nozzle exit wall pressure, and a transition between flow separation regimes during the engine start-up phase. In each case, an equivalent arc-based contour produced an increase in the thrust coefficient and exit wall pressure of up to 0.4 and 40% respectively, in addition to suppressing the transition between a free and restricted shock separation regime. A general approach to arc-based nozzle contour design has also been presented to outline a rapid and repeatable process for generating sub-scale arc-based contours with an exit Mach number of 3.8-5.4 and a length between 60 and 100% of a 15° conical nozzle. The findings suggest that conjugate circular arcs may represent a viable approach for producing sub-scale rocket nozzle contours, and that a further investigation is warranted between arc-based and existing full-scale rocket nozzles.

  12. Near-IR extinction and backscatter coefficient measurements in low- and mid-altitude clouds

    NASA Technical Reports Server (NTRS)

    Sztankay, Z. G.

    1986-01-01

    Knowledge of the attenuation and backscattering properties of clouds is required to high resolution for several types of optical sensing systems. Such data was obtained in about 15 hours of flights through clouds in the vicinity of Washington, D.C. The flights were mainly through stratocumulus, altocumulus, stratus, and stratus fractus clouds and covered an altitude and temperature range of 300 to 3200 m and -13 to 17 C. Two instruments were flown, each of which measured the backscatter from close range in two range bins to independently determine both the extinction and backscatter coefficients. The extinction and backscatter coefficients can be obtained from the signals in the two channels of each instrument, provided that the aerosol is uniform over the measurement region. When this assumptions holds, the extinction coefficient is derived basically from the ratio of the signal in the two channels; the backscatter coefficient can then be obtained from the signal in either channel.

  13. Light extinction by Secondary Organic Aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-07-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  14. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-11-01

    Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  15. Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione-based Photovoltaic Polymer by Grafting Alkylthio Functional Groups.

    PubMed

    Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui

    2016-10-06

    Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (J sc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simultaneous all-optical determination of molecular concentration and extinction coefficient.

    PubMed

    Cho, Byungmoon; Tiwari, Vivek; Jonas, David M

    2013-06-04

    Absolute molecular number concentration and extinction coefficient are simultaneously determined from linear and nonlinear spectroscopic measurements. This method is based on measurements of absolute femtosecond pump-probe signals. Accounting for pulse propagation, we present a closed form expression for molecular number concentration in terms of absorbance, fluorescence, absolute pump-probe signal, and laser pulse parameters (pulse energy, spectrum, and spatial intensity profile); all quantities are measured optically. As in gravimetric and coulometric determinations of concentration, no standard samples are needed for calibration. The extinction coefficient can then be determined from the absorbance spectrum and the concentration. For fluorescein in basic methanol, the optically determined molar concentrations and extinction coefficients match gravimetric determinations to within 10% for concentrations from 0.032 to 0.540 mM, corresponding to absorbance from 0.06 to 1. In principle, this photonumeric method is extensible to transient chemical species for which other methods are not available.

  17. Electromagnetic wave extinction within a forested canopy

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1989-01-01

    A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.

  18. The wavelength dependent model of extinction in fog and haze for free space optical communication.

    PubMed

    Grabner, Martin; Kvicera, Vaclav

    2011-02-14

    The wavelength dependence of the extinction coefficient in fog and haze is investigated using Mie single scattering theory. It is shown that the effective radius of drop size distribution determines the slope of the log-log dependence of the extinction on wavelengths in the interval between 0.2 and 2 microns. The relation between the atmospheric visibility and the effective radius is derived from the empirical relationship of liquid water content and extinction. Based on these results, the model of the relationship between visibility and the extinction coefficient with different effective radii for fog and for haze conditions is proposed.

  19. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumarasiri, Akila, E-mail: akumara1@hfhs.org; Siddiqui, Farzan; Liu, Chang

    2014-12-15

    Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreementmore » of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours.” Conclusions: Use of DIR-based contour propagation in the routine clinical setting is expected to increase the efficiency of H and N replanning, reducing the amount of time needed for manual target and organ delineations.« less

  20. SAGE aerosol measurements. Volume 1: February 21, 1979 to December 31, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1985-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction, ozone concentration, and nitrogen dioxide concentration between about 80 N and 80 S. Zonal averages, separated into sunrise and sunset events, and seasonal averages of the aerosol extinction at 1.00 microns and 0.45 microns ratios of the aerosol extinction to the molecular extinction at 1.00 microns, and ratios of the aerosol extinction at 0.45 microns to the aerosol extinction at 1.00 microns are given. The averages for 1979 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format. Typical values of the peak aerosol extinction were 0.0001 to 0.0002 km at 1.00 microns depth values for the 1.00 microns channel varied between 0.001 and 0.002 over all latitudes.

  1. A subtle calculation method for nanoparticle’s molar extinction coefficient: The gift from discrete protein-nanoparticle system on agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng

    2016-03-01

    Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.

  2. Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China.

    PubMed

    Cheng, Zhen; Ma, Xin; He, Yujie; Jiang, Jingkun; Wang, Xiaoliang; Wang, Yungang; Sheng, Li; Hu, Jiangkai; Yan, Naiqiang

    2017-07-01

    The ambient PM 2.5 pollution problem in China has drawn substantial international attentions. The mass extinction efficiency (MEE) and hygroscopicity factor (f(RH)) of PM 2.5 can be readily applied to study the impacts on atmospheric visibility and climate. The few previous investigations in China only reported results from pilot studies and are lack of spatial representativeness. In this study, hourly average ambient PM 2.5 mass concentration, relative humidity, and atmospheric visibility data from China national air quality and meteorological monitoring networks were retrieved and analyzed. It includes 24 major Chinese cities from nine city-clusters with the period of October 2013 to September 2014. Annual average extinction coefficient in urban China was 759.3±258.3Mm -1 , mainly caused by dry PM 2.5 (305.8.2±131.0Mm -1 ) and its hygroscopicity (414.6±188.1Mm -1 ). High extinction coefficient values were resulted from both high ambient PM 2.5 concentration (68.5±21.7µg/m 3 ) and high relative humidity (69.7±8.6%). The PM 2.5 mass extinction efficiency varied from 2.87 to 6.64m 2 /g with an average of 4.40±0.84m 2 /g. The average extinction hygroscopic factor f(RH=80%) was 2.63±0.45. The levels of PM 2.5 mass extinction efficiency and hygroscopic factor in China were in comparable range with those found in developed countries in spite of the significant diversities among all 24 cities. Our findings help to establish quantitative relationship between ambient extinction coefficient (visual range) and PM 2.5 & relative humidity. It will reduce the uncertainty of extinction coefficient estimation of ambient PM 2.5 in urban China which is essential for the research of haze pollution and climate radiative forcing. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Automated consensus contour building for prostate MRI.

    PubMed

    Khalvati, Farzad

    2014-01-01

    Inter-observer variability is the lack of agreement among clinicians in contouring a given organ or tumour in a medical image. The variability in medical image contouring is a source of uncertainty in radiation treatment planning. Consensus contour of a given case, which was proposed to reduce the variability, is generated by combining the manually generated contours of several clinicians. However, having access to several clinicians (e.g., radiation oncologists) to generate a consensus contour for one patient is costly. This paper presents an algorithm that automatically generates a consensus contour for a given case using the atlases of different clinicians. The algorithm was applied to prostate MR images of 15 patients manually contoured by 5 clinicians. The automatic consensus contours were compared to manual consensus contours where a median Dice similarity coefficient (DSC) of 88% was achieved.

  4. Mass diffusion coefficient measurement for vitreous humor using FEM and MRI

    NASA Astrophysics Data System (ADS)

    Rattanakijsuntorn, Komsan; Penkova, Anita; Sadha, Satwindar S.

    2018-01-01

    In early studies, the ‘contour method’ for determining the diffusion coefficient of the vitreous humor was developed. This technique relied on careful injection of an MRI contrast agent (surrogate drug) into the vitreous humor of fresh bovine eyes, and tracking the contours of the contrast agent in time. In addition, an analytical solution was developed for the theoretical contours built on point source model for the injected surrogate drug. The match between theoretical and experimental contours as a least square fit, while floating the diffusion coefficient, led to the value of the diffusion coefficient. This method had its limitation that the initial injection of the surrogate had to be spherical or ellipsoidal because of the analytical result based on the point-source model. With a new finite element model for the analysis in this study, the technique is much less restrictive and handles irregular shapes of the initial bolus. The fresh bovine eyes were used for drug diffusion study in the vitreous and three contrast agents of different molecular masses: gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA, 938 Da), non-ionic gadoteridol (Prohance, 559 Da), and bovine albumin conjugated with gadolinium (Galbumin, 74 kDa) were used as drug surrogates to visualize the diffusion process by MRI. The 3D finite element model was developed to determine the diffusion coefficients of these surrogates with the images from MRI. This method can be used for other types of bioporous media provided the concentration profile can be visualized (by methods such as MRI or fluorescence).

  5. Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles

    Treesearch

    Vladimir A Kovalev; Wei Min Hao; Cyle Wold

    2007-01-01

    A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter...

  6. An Algorithm for the Vertical Structure of Aerosol Extinction in the Lowest Kilometer of the Atmosphere: Rev. 1

    DTIC Science & Technology

    2017-11-01

    inversion layer, or the well-mixed boundary layer. In such cases a low cloud ceiling is not present. In all instances the atmospheric extinction profiles...height, radiation fog depth, or the inversion layer height. The visibility regions and several representative vertical profiles of extinction are...the coefficient B can be found by B = ln(D/A) . (2) The coefficient B is sometimes a function of the cloud ceiling height, the inversion layer height

  7. Lidars for smoke and dust cloud diagnostics

    NASA Astrophysics Data System (ADS)

    Fujimura, S. F.; Warren, R. E.; Lutomirski, R. F.

    1980-11-01

    An algorithm that integrates a time-resolved lidar signature for use in estimating transmittance, extinction coefficient, mass concentration, and CL values generated under battlefield conditions is applied to lidar signatures measured during the DIRT-I tests. Estimates are given for the dependence of the inferred transmittance and extinction coefficient on uncertainties in parameters such as the obscurant backscatter-to-extinction ratio. The enhanced reliability in estimating transmittance through use of a target behind the obscurant cloud is discussed. It is found that the inversion algorithm can produce reliable estimates of smoke or dust transmittance and extinction from all points within the cloud for which a resolvable signal can be detected, and that a single point calibration measurement can convert the extinction values to mass concentration for each resolvable signal point.

  8. Polarization extinction ratio of the polarization crosstalk caused by point pressure force in the polarization-maintaining fiber

    NASA Astrophysics Data System (ADS)

    Mukhtubayev, Azamat B.; Aksarin, Stanislav M.; Strigalev, Vladimir E.

    2017-11-01

    A study of the orthogonal polarization modes crosstalk changes in the point of different mechanical actions (pressure force) in the polarization-maintaining fiber with straining elliptical cladding is presented. It was found that by increasing of the pressure force the polarization extinction ratio increases nonlinearly. Also revealed the dependence of the extinction coefficient and the angle between vector of the mechanical action and polarization axes of the test fiber, which leads to change the extinction coefficient variable from -57 dB to -25 dB under the pressure force of 0.7 N. Also it was found that the cross angle of the fiber axes doesn't influence on the extinction ratio value of the mechanical induced polarization crosstalk.

  9. Laser measurement of extinction coefficients of highly absorbing liquids. [airborne oil spill monitoring application

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Kincaid, J. S.

    1980-01-01

    A coaxial dual-channel laser system has been developed for the measurement of extinction coefficients of highly absorbing liquids. An empty wedge-shaped sample cell is first translated laterally through a He-Ne laser beam to measure the differential thickness using interference fringes in reflection. The wedge cell is carefully filled with the oil sample and translated through the coaxially positioned dye laser beam for the differential attenuation or extinction measurement. Optional use of the instrumentation as a single-channel extinction measurement system and also as a refractometer is detailed. The system and calibration techniques were applied to the measurement of two crude oils whose extinction values were required to complete the analysis of airborne laser data gathered over four controlled spills.

  10. A Multiphase Validation of Atlas-Based Automatic and Semiautomatic Segmentation Strategies for Prostate MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Spencer; Rodrigues, George, E-mail: george.rodrigues@lhsc.on.ca; Department of Epidemiology/Biostatistics, University of Western Ontario, London

    2013-01-01

    Purpose: To perform a rigorous technological assessment and statistical validation of a software technology for anatomic delineations of the prostate on MRI datasets. Methods and Materials: A 3-phase validation strategy was used. Phase I consisted of anatomic atlas building using 100 prostate cancer MRI data sets to provide training data sets for the segmentation algorithms. In phase II, 2 experts contoured 15 new MRI prostate cancer cases using 3 approaches (manual, N points, and region of interest). In phase III, 5 new physicians with variable MRI prostate contouring experience segmented the same 15 phase II datasets using 3 approaches: manual,more » N points with no editing, and full autosegmentation with user editing allowed. Statistical analyses for time and accuracy (using Dice similarity coefficient) endpoints used traditional descriptive statistics, analysis of variance, analysis of covariance, and pooled Student t test. Results: In phase I, average (SD) total and per slice contouring time for the 2 physicians was 228 (75), 17 (3.5), 209 (65), and 15 seconds (3.9), respectively. In phase II, statistically significant differences in physician contouring time were observed based on physician, type of contouring, and case sequence. The N points strategy resulted in superior segmentation accuracy when initial autosegmented contours were compared with final contours. In phase III, statistically significant differences in contouring time were observed based on physician, type of contouring, and case sequence again. The average relative timesaving for N points and autosegmentation were 49% and 27%, respectively, compared with manual contouring. The N points and autosegmentation strategies resulted in average Dice values of 0.89 and 0.88, respectively. Pre- and postedited autosegmented contours demonstrated a higher average Dice similarity coefficient of 0.94. Conclusion: The software provided robust contours with minimal editing required. Observed time savings were seen for all physicians irrespective of experience level and baseline manual contouring speed.« less

  11. Does spatial arrangement of 3D plants affect light transmission and extinction coefficient within maize crops?

    USDA-ARS?s Scientific Manuscript database

    Row spacing effects on light interception and extinction coefficient have been inconsistent for maize (Zea mays L.) when calculated with field measurements. To avoid inconsistencies due to variable light conditions and variable leaf canopies, we used a model to describe three-dimensional (3D) shoot ...

  12. The empirical Gaia G-band extinction coefficient

    NASA Astrophysics Data System (ADS)

    Danielski, C.; Babusiaux, C.; Ruiz-Dern, L.; Sartoretti, P.; Arenou, F.

    2018-06-01

    Context. The first Gaia data release unlocked the access to photometric information for 1.1 billion sources in the G-band. Yet, given the high level of degeneracy between extinction and spectral energy distribution for large passbands such as the Gaia G-band, a correction for the interstellar reddening is needed in order to exploit Gaia data. Aims: The purpose of this manuscript is to provide the empirical estimation of the Gaia G-band extinction coefficient kG for both the red giants and main sequence stars in order to be able to exploit the first data release DR1. Methods: We selected two samples of single stars: one for the red giants and one for the main sequence. Both samples are the result of a cross-match between Gaia DR1 and 2MASS catalogues; they consist of high-quality photometry in the G-, J- and KS-bands. These samples were complemented by temperature and metallicity information retrieved from APOGEE DR13 and LAMOST DR2 surveys, respectively. We implemented a Markov chain Monte Carlo method where we used (G - KS)0 versus Teff and (J - KS)0 versus (G - KS)0, calibration relations to estimate the extinction coefficient kG and we quantify its corresponding confidence interval via bootstrap resampling. We tested our method on samples of red giants and main sequence stars, finding consistent solutions. Results: We present here the determination of the Gaia extinction coefficient through a completely empirical method. Furthermore we provide the scientific community with a formula for measuring the extinction coefficient as a function of stellar effective temperature, the intrinsic colour (G - KS)0, and absorption.

  13. Extinction coefficients from lidar observations in ice clouds compared to in-situ measurements from the Cloud Integrating Nephelometer during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Noel, Vincent; Winker, D. M.; Garrett, T. J.; McGill, M.

    2005-01-01

    This paper presents a comparison of volume extinction coefficients in tropical ice clouds retrieved from two instruments : the 532-nm Cloud Physics Lidar (CPL), and the in-situ probe Cloud Integrating Nephelometer (CIN). Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements in ice clouds up to 17km. Coincident observations from three cloud cases are compared : one synoptically-generated cirrus cloud of low optical depth, and two ice clouds located on top of convective systems. Emphasis is put on the vertical variability of the extinction coefficient. Results show small differences on small spatial scales (approx. 100m) in retrievals from both instruments. Lidar retrievals also show higher extinction coefficients in the synoptic cirrus case, while the opposite tendency is observed in convective cloud systems. These differences are generally variations around the average profile given by the CPL though, and general trends on larger spatial scales are usually well reproduced. A good agreement exists between the two instruments, with an average difference of less than 16% on optical depth retrievals.

  14. Mapping of the extinction in giant molecular clouds using optical star counts

    NASA Astrophysics Data System (ADS)

    Cambrésy, L.

    1999-05-01

    This paper presents large scale extinction maps of most nearby Giant Molecular Clouds of the Galaxy (Lupus, rho Ophiuchus, Scorpius, Coalsack, Taurus, Chamaeleon, Musca, Corona Australis, Serpens, IC 5146, Vela, Orion, Monoceros R1 and R2, Rosette, Carina) derived from a star count method using an adaptive grid and a wavelet decomposition applied to the optical data provided by the USNO-Precision Measuring Machine. The distribution of the extinction in the clouds leads to estimate their total individual masses M and their maximum of extinction. I show that the relation between the mass contained within an iso-extinction contour and the extinction is similar from cloud to cloud and allows the extrapolation of the maximum of extinction in the range 5.7 to 25.5 magnitudes. I found that about half of the mass is contained in regions where the visual extinction is smaller than 1 magnitude. The star count method used on large scale ( ~ 250 square degrees) is a powerful and relatively straightforward method to estimate the mass of molecular complexes. A systematic study of the all sky would lead to discover new clouds as I did in the Lupus complex for which I found a sixth cloud of about 10(4) M_⊙.

  15. [Analysis of visible extinction spectrum of particle system and selection of optimal wavelength].

    PubMed

    Sun, Xiao-gang; Tang, Hong; Yuan, Gui-bin

    2008-09-01

    In the total light scattering particle sizing technique, the extinction spectrum of particle system contains some information about the particle size and refractive index. The visible extinction spectra of the common monomodal and biomodal R-R particle size distribution were computed, and the variation in the visible extinction spectrum with the particle size and refractive index was analyzed. The corresponding wavelengths were selected as the measurement wavelengths at which the second order differential extinction spectrum was discontinuous. Furthermore, the minimum and the maximum wavelengths in the visible region were also selected as the measurement wavelengths. The genetic algorithm was used as the inversion method under the dependent model The computer simulation and experiments illustrate that it is feasible to make an analysis of the extinction spectrum and use this selection method of the optimal wavelength in the total light scattering particle sizing. The rough contour of the particle size distribution can be determined after the analysis of visible extinction spectrum, so the search range of the particle size parameter is reduced in the optimal algorithm, and then a more accurate inversion result can be obtained using the selection method. The inversion results of monomodal and biomodal distribution are all still satisfactory when 1% stochastic noise is put in the transmission extinction measurement values.

  16. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  17. Direct comparison of extinction coefficients derived from Mie-scattering lidar and number concentrations of particles, subjective weather report in Japan

    NASA Astrophysics Data System (ADS)

    Shimizu, Atsushi; Sugimoto, Nobuo; Matsui, Ichiro; Nishizawa, Tomoaki

    2015-03-01

    Two components of the lidar extinction coefficient, the dust extinction and the spherical particles extinction, were obtained from observations made by the National Institute for Environmental Studies lidar network in Japan. These two extinctions were compared with the number concentration of particles measured by an optical particle counter, and with subjective weather reports recorded at the nearest meteorological observatories. The dust extinction corresponded well with the number concentration of large particles with diameters as great as 5 μm and during dry conditions with the number concentration of particles larger than 2 μm. The relationship between the spherical particle extinction and the number of small particles was nearly constant under all conditions. Asian dust was sometimes reported by meteorological observatories in the period of lower dust extinction. This indicates contradicting relationship between human-eye based reports and optical characteristics observed by lidars in some cases. The most consistent results between lidar observation and meteorological reports were obtained in dry mist conditions, in which lidars exhibited higher spherical extinction as expected by the definition of the atmospheric phenomenon of dry mist or haze.

  18. Characteristic of Nano-Cu Film Prepared by Energy Filtrating Magnetron Sputtering Technique and Its Optical Property

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyong; Hu, Xing; Yao, Ning

    2015-03-01

    At the optimized deposition parameters, Cu film was deposited by the direct current magnetron sputtering (DMS) technique and the energy filtrating magnetron sputtering (EFMS) technique. The nano-structure was charactered by x-ray diffraction. The surface morphology of the film was observed by atomic force microscopy. The optical properties of the film were measured by spectroscopic ellipsometry. The refractive index, extinction coefficient and the thickness of the film were obtained by the fitted spectroscopic ellipsometry data using the Drude-Lorentz oscillator optical model. Results suggested that a Cu film with different properties was fabricated by the EFMS technique. The film containing smaller particles is denser and the surface is smoother. The average transmission coefficient, the refractive index and the extinction coefficients are higher than those of the Cu film deposited by the DMS technique. The average transmission coefficient (400-800 nm) is more than three times higher. The refractive index and extinction coefficient (at 550 nm) are more than 36% and 14% higher, respectively.

  19. Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Mo, T.; Wang, J. R.; Chang, A. T. C.

    1981-01-01

    Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations.

  20. Variation in crown light utilization characteristics among tropical canopy trees.

    PubMed

    Kitajima, Kaoru; Mulkey, Stephen S; Wright, S Joseph

    2005-02-01

    Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.

  1. Determination of extinction coefficients of human hemoglobin in various redox states

    PubMed Central

    Meng, Fantao; Alayash, Abdu I.

    2017-01-01

    The role of hemoglobin (Hb) redox forms in tissue and organ toxicities remain ambiguous despite the well-documented contribution of Hb redox reactivity to cellular and subcellular oxidative changes. Moreover, several recent studies, in which Hb toxicity were investigated, have shown conflicting outcomes. Uncertainties over the potential role of these species may in part be due to the protein preparation method of choice, the use of published extinction coefficients and the lack of suitable controls for Hb oxidation and heme loss. Highly purified and well characterized redox forms of human Hb were used in this study and the extinction coefficients of each Hb species (ferrous/oxy, ferric/met and ferryl) were determined. A new set of equations were established to improve accuracy in determining the transient ferryl Hb species. Additionally, heme concentrations in solutions and in human plasma were determined using a novel reversed phase HPLC method in conjugation with our photometric measurements. The use of more accurate redox-specific extinction coefficients and method calculations will be an invaluable tool for both in vitro and in vivo experiments aimed at determining the role of Hb-mediated vascular pathology in hemolytic anemias and when Hb is used as oxygen therapeutics. PMID:28069451

  2. Chemical compositions and reconstructed light extinction coefficients of particulate matter in a mega-city in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Xue, Miao; Yuan, Siyu; Zhang, Jie; Zhao, Qiuyue; Li, Bing; Wu, Haisuo; Ding, Aijun

    2014-02-01

    Ambient particulate matter was collected in a megacity, Nanjing in western YRD during the spring and summer periods. Chemical compositions of fine PM including organic carbon, elemental carbon, elements and water soluble ions were analyzed. The light extinction coefficients were reconstructed following the IMPROVE formula. Organic matter was the most abundant composition in PM2.5 (20-25% of total mass), followed by the inorganic ions. During the spring time, geological materials contributed 25% of the total PM2.5. Estimated light extinction coefficient ranged from 133 to 560 Mm-1 with the deciview haze index value of 26-40 dv, indicating strong light extinction by PM and subsequently low visibility in the city. Reconstructed ammonium sulfate, ammonium nitrate, organic matter and light absorption carbon in fine PM contributed significantly (37 ± 10, 16 ± 6, 15 ± 4 and 10 ± 3%, respectively) to the total light extinction of PM, while soil (5-7%) and sea salt fractions (2-4%) in fine PM and coarse PM (6-11%) had relatively minor influences. The results of backward air trajectory showed that the site was strongly influenced by the air from the eastern (39%) and southeastern (29%) areas during the sampling period. Air plumes from the Southeastern had both high PM mass pollution and large light extinction, while the air mass originating from the Northwestern resulted in high PM mass loading but relatively lower light extinction.

  3. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties

    NASA Astrophysics Data System (ADS)

    Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai

    2018-02-01

    Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10 nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment.

  4. An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study

    NASA Technical Reports Server (NTRS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-01-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case study seems to partially fix factor (i) although the aerosol retrieved by CALIOP is still somewhat lower than the profile measured by HSRL; the cloud contamination (ii) appears to be corrected; no particular change is apparent in the observation-based CALIOP Sa value (iii). Our case study also showed very little difference in version 2 and version 3 CALIOP attenuated backscatter coefficient profiles, illustrating a minor change in the calibration scheme (iv).

  5. Lidar extinction measurement in the mid infrared

    NASA Astrophysics Data System (ADS)

    Mitev, Valentin; Babichenko, S.; Borelli, R.; Fiorani, L.; Grigorov, I.; Nuvoli, M.; Palucci, A.; Pistilli, M.; Puiu, Ad.; Rebane, Ott; Santoro, S.

    2014-11-01

    We present a lidar measurement of atmospheric extinction coefficient. The measurement is performed by inversion of the backscatter lidar signal at wavelengths 3'000nm and 3'500nm. The inversion of the backscatter lidar signal was performed with constant extinction-to-backscatter ration values of 104 and exponential factor 0.1.

  6. VizieR Online Data Catalog: Coefficients for passband extinctions (Sale+, 2015)

    NASA Astrophysics Data System (ADS)

    Sale, S. E.; Magorrian, J.

    2017-11-01

    We have considered how one should measure the distance and extinction to individual stars for use in constructing extinction maps of the whole Galaxy. We advocate the use of monochromatic extinctions, since, unlike bandpass measures such as AV and E(B-V), monochromatic extinctions are linear functions of the dust column density and are independent of the source SED. In particular we suggest the use of A4000, the monochromatic extinction at 4000Å because of its insensitivity to the dust grain size distribution. Files for converting from A_4000 to passband extinctions at 35 RV extinction law value and for 11 photometric systems. (2 data files).

  7. Anatomical contouring variability in thoracic organs at risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, Ross, E-mail: rmccall86@gmail.com; MacLennan, Grayden; Taylor, Matthew

    2016-01-01

    The purpose of this study was to determine whether contouring thoracic organs at risk was consistent among medical dosimetrists and to identify how trends in dosimetrist's education and experience affected contouring accuracy. Qualitative and quantitative methods were used to contextualize the raw data that were obtained. A total of 3 different computed tomography (CT) data sets were provided to medical dosimetrists (N = 13) across 5 different institutions. The medical dosimetrists were directed to contour the lungs, heart, spinal cord, and esophagus. The medical dosimetrists were instructed to contour in line with their institutional standards and were allowed to usemore » any contouring tool or technique that they would traditionally use. The contours from each medical dosimetrist were evaluated against “gold standard” contours drawn and validated by 2 radiation oncology physicians. The dosimetrist-derived contours were evaluated against the gold standard using both a Dice coefficient method and a penalty-based metric scoring system. A short survey was also completed by each medical dosimetrist to evaluate their individual contouring experience. There was no significant variation in the contouring consistency of the lungs and spinal cord. Intradosimetrist contouring was consistent for those who contoured the esophagus and heart correctly; however, medical dosimetrists with a poor metric score showed erratic and inconsistent methods of contouring.« less

  8. Atmospheric Extinction Coefficients in the Ic Band for Several Major International Observatories: Results from the BiSON Telescopes, 1984-2016

    NASA Astrophysics Data System (ADS)

    Hale, S. J.; Chaplin, W. J.; Davies, G. R.; Elsworth, Y. P.; Howe, R.; Lund, M. N.; Moxon, E. Z.; Thomas, A.; Pallé, P. L.; Rhodes, E. J., Jr.

    2017-09-01

    Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory, Chile; Observatorio del Teide, Izaña, Tenerife, Canary Islands; the South African Astronomical Observatory, Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the {{{I}}}{{c}} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984-2016.

  9. In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent

    DTIC Science & Technology

    2016-11-01

    has over 15 years of experience investigating signaling in the prostate, and is well versed in both cell culture and animal models for prostate cancer...as Hb generate relatively weak photoacoustic signals (due to a small absorptivity factor or extinction coefficient) and lack cancer specificity...oxyhemoglobin (dHb) and oxyhemoglobin (HbO2) have two limitations: i) their small absorptivity factor ( extinction coefficient) leads to weak PA signals

  10. Use of a Spreadsheet to Help Students Understand the Origin of the Empirical Equation that Allows Estimation of the Extinction Coefficients of Proteins

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2012-01-01

    A brief history of the development of the empirical equation that is used by prominent, Internet-based programs to estimate (or calculate) the extinction coefficients of proteins is presented. In addition, an overview of a series of related assignments designed to help students understand the origin of the empirical equation is provided. The…

  11. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    NASA Astrophysics Data System (ADS)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy <1% at laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  12. Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay.

    PubMed

    Hayes, William A; Mills, Daniel S; Neville, Rachel F; Kiddie, Jenna; Collins, Lisa M

    2011-09-15

    The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19,800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    PubMed

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  14. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    PubMed Central

    2011-01-01

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750

  15. Experimental approach to the fundamental limit of the extinction coefficients of ultra-smooth and highly spherical gold nanoparticles.

    PubMed

    Kim, Dong-Kwan; Hwang, Yoon Jo; Yoon, Cheolho; Yoon, Hye-On; Chang, Ki Soo; Lee, Gaehang; Lee, Seungwoo; Yi, Gi-Ra

    2015-08-28

    The theoretical extinction coefficients of gold nanoparticles (AuNPs) have been mainly verified by the analytical solving of the Maxwell equation for an ideal sphere, which was firstly founded by Mie (generally referred to as Mie theory). However, in principle, it has not been directly feasible with experimental verification especially for relatively large AuNPs (i.e., >40 nm), as conventionally proposed synthetic methods have inevitably resulted in a polygonal shaped, non-ideal Au nanosphere. Here, mono-crystalline, ultra-smooth, and highly spherical AuNPs of 40-100 nm were prepared by the procedure reported in our recent work (ACS Nano, 2013, 7, 11064). The extinction coefficients of the ideally spherical AuNPs of 40-100 nm were empirically extracted using the Beer-Lambert law, and were then compared with the theoretical limits obtained by the analytical and numerical methods. The obtained extinction coefficients of the ideally spherical AuNPs herein agree much more closely with the theoretical limits, compared with those of the faceted or polygonal shaped AuNPs. In addition, in order to further elucidate the importance of being spherical, we systematically compared our ideally spherical AuNPs with the polygonal counterparts; effectively addressing the role of the surface morphology on the spectral responses in both theoretical and experimental manners.

  16. Studies of absorption coefficient cum electro-optic performance of polymer dispersed liquid crystal doped with CNT and dichroic dye

    NASA Astrophysics Data System (ADS)

    Sharma, Vandna; Kumar, Pankaj

    2017-11-01

    Absorption coefficient of doped polymer dispersed liquid crystals (PDLCs) is a critical factor for their device performance and depends on dopants parameters like solubility, order parameter and extinction coefficients, in addition to configuration and orientation of the droplets. In this study, a fixed amount (0.125% wt/wt) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye was doped in PDLC and measured the OFF state absorption coefficient. Considering the theory based on Beer's law and followed by extinction coefficients of CNT and dye, the OFF state transmission for dye doped PDLC was found lower compared to CNT doped PDLC. As a result, absorption coefficient for dye doped PDLC was higher and resulted in the superior contrast ratio. The experimental results were found be consistent with the theoretical results.

  17. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties.

    PubMed

    Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai

    2018-02-15

    Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers

    NASA Astrophysics Data System (ADS)

    Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.

    1993-08-01

    The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).

  19. Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)

    NASA Technical Reports Server (NTRS)

    Severs, R. K.

    1974-01-01

    The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.

  20. Shipboard Visibility Measurement System Definition Study.

    DTIC Science & Technology

    1982-01-01

    Aerosol Extinction (AAE) Coef- ficients Derived from NRL Long - Path Transmission Measurements at CCAFS...determined. Occasionally long - path extinction measurements for many laser lines were collected (as many as 80 CO2 laser lines on some days and repeated...EXPERIMENT DAY FIGURE 22. PLOT OF APPARENT AEROSOL EXTINCTION (AAE) COEFFICIENTS DERIVED FROM NRL LONG - PATH TRANSMISSION MEASUREMENTS AT CCAFS MINUS

  1. Precise determination of protein extinction coefficients under native and denaturing conditions using SV-AUC.

    PubMed

    Hoffmann, Andreas; Grassl, Kerstin; Gommert, Janine; Schlesak, Christian; Bepperling, Alexander

    2018-04-17

    The accurate determination of protein concentration is an important though non-trivial task during the development of a biopharmaceutical. The fundamental prerequisite for this is the availability of an accurate extinction coefficient. Common approaches for the determination of an extinction coefficient for a given protein are either based on the theoretical prediction utilizing the amino acid sequence or the photometric determination combined with a measurement of absolute protein concentration. Here, we report on an improved SV-AUC based method utilizing an analytical ultracentrifuge equipped with absorbance and Rayleigh interference optics. Global fitting of datasets helped to overcome some of the obstacles encountered with the traditional method employing synthetic boundary cells. Careful calculation of dn/dc values taking glycosylation and solvent composition into account allowed the determination of the extinction coefficients of monoclonal antibodies and an Fc-fusion protein under native as well as under denaturing conditions. An intra-assay precision of 0.9% and an accuracy of 1.8% compared to the theoretical value was achieved for monoclonal antibodies. Due to the large number of data points of a single dataset, no meaningful difference between the ProteomeLab XL-I and the new Optima AUC platform could be observed. Thus, the AUC-based approach offers a precise, convenient and versatile alternative to conventional methods like total amino acid analysis (AAA).

  2. Measurement of fog and haze extinction characteristics and availability evaluation of free space optical link under the sea surface environment.

    PubMed

    Wu, Xiaojun; Wang, Hongxing; Song, Bo

    2015-02-10

    Fog and haze can lead to changes in extinction characteristics. Therefore, the performance of the free space optical link is highly influenced by severe weather conditions. Considering the influential behavior of weather conditions, a state-of-the-art solution for the observation of fog and haze over the sea surface is presented in this paper. A Mie scattering laser radar, with a wavelength of 532 nm, is used to observe the weather conditions of the sea surface environment. The horizontal extinction coefficients and visibilities are obtained from the observation data, and the results are presented in the paper. The changes in the characteristics of extinction coefficients and visibilities are analyzed based on both the short-term (6 days) severe weather data and long-term (6 months) data. Finally, the availability performance of the free space optical communication link is evaluated under the sea surface environment.

  3. WE-G-BRD-07: Automated MR Image Standardization and Auto-Contouring Strategy for MRI-Based Adaptive Brachytherapy for Cervix Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, H Al; Erickson, B; Paulson, E

    Purpose: MRI-based adaptive brachytherapy (ABT) is an emerging treatment modality for patients with gynecological tumors. However, MR image intensity non-uniformities (IINU) can vary from fraction to fraction, complicating image interpretation and auto-contouring accuracy. We demonstrate here an automated MR image standardization and auto-contouring strategy for MRI-based ABT of cervix cancer. Methods: MR image standardization consisted of: 1) IINU correction using the MNI N3 algorithm, 2) noise filtering using anisotropic diffusion, and 3) signal intensity normalization using the volumetric median. This post-processing chain was implemented as a series of custom Matlab and Java extensions in MIM (v6.4.5, MIM Software) and wasmore » applied to 3D T2 SPACE images of six patients undergoing MRI-based ABT at 3T. Coefficients of variation (CV=σ/µ) were calculated for both original and standardized images and compared using Mann-Whitney tests. Patient-specific cumulative MR atlases of bladder, rectum, and sigmoid contours were constructed throughout ABT, using original and standardized MR images from all previous ABT fractions. Auto-contouring was performed in MIM two ways: 1) best-match of one atlas image to the daily MR image, 2) multi-match of all previous fraction atlas images to the daily MR image. Dice’s Similarity Coefficients (DSCs) were calculated for auto-generated contours relative to reference contours for both original and standardized MR images and compared using Mann-Whitney tests. Results: Significant improvements in CV were detected following MR image standardization (p=0.0043), demonstrating an improvement in MR image uniformity. DSCs consistently increased for auto-contoured bladder, rectum, and sigmoid following MR image standardization, with the highest DSCs detected when the combination of MR image standardization and multi-match cumulative atlas-based auto-contouring was utilized. Conclusion: MR image standardization significantly improves MR image uniformity. The combination of MR image standardization and multi-match cumulative atlas-based auto-contouring produced the highest DSCs and is a promising strategy for MRI-based ABT for cervix cancer.« less

  4. Fugitive Dust Emission Factors for Puff and Mobile Military Sources Measured by Micro-pulse Lidar - A Summary of Results

    NASA Astrophysics Data System (ADS)

    Yuen, W.; Du, K.; Rood, M. J.; Kemme, M. R.; Kim, B.; Hashmonay, R. A.

    2010-12-01

    A summary of the development of a novel optical remote sensing (ORS) method that determined fugitive dust emission factors for unique military activities is described for puff and mobile sources. Four field campaigns characterized artillery back blasts as puff sources (M549A1 and M107), and movement of military vehicles (M1A1, M113, Bradley Fighting Vehicle (BFV), M88, M270, M577, and HEMTT) and an airborne helicopter (Bell 210) as mobile sources. The ORS method includes a Micro-Pulse Lidar (MPL) and a reflective target that determines one-dimensional (1-D) light extinction coefficient profiles. The MPL was mounted on a positioner that allows the MPL to automatically scan vertically, which allowed 1-D extinction coefficient profiles to be measured at select angles from horizontal. Two-dimensional (2-D) light extinction coefficient profiles were then determined by interpolating the 1-D extinction profiles measured at select angles. Dust property, in the form of the mass extinction efficiency (MEE), was measured using Open Path- Fourier Transform Infrared Spectrometry (OP-FTIR) and Open Path- Laser Transmissometry (OP-LT) in the first three field campaigns and an OP-LT and DustTrak™ in the fourth field campaign. MEE was used to convert the 2-D light extinction coefficient profiles to 2-D dust mass concentration profiles. Emission factors were determined by integrating the 2-D mass concentration profiles with measured wind vectors. Results from these field campaigns show that: 1) artillery with stronger recoiling forces generates more fugitive dust; 2) the dust emission factors for tracked vehicles are correlated with vehicle momentum; 3) emission factor decreases with increasing speed for airborne helicopters; and 4) wheeled vehicles (HEMTT) generate more fugitive dust than tracked vehicles (M88, M270, M577).

  5. Lymph node segmentation by dynamic programming and active contours.

    PubMed

    Tan, Yongqiang; Lu, Lin; Bonde, Apurva; Wang, Deling; Qi, Jing; Schwartz, Lawrence H; Zhao, Binsheng

    2018-03-03

    Enlarged lymph nodes are indicators of cancer staging, and the change in their size is a reflection of treatment response. Automatic lymph node segmentation is challenging, as the boundary can be unclear and the surrounding structures complex. This work communicates a new three-dimensional algorithm for the segmentation of enlarged lymph nodes. The algorithm requires a user to draw a region of interest (ROI) enclosing the lymph node. Rays are cast from the center of the ROI, and the intersections of the rays and the boundary of the lymph node form a triangle mesh. The intersection points are determined by dynamic programming. The triangle mesh initializes an active contour which evolves to low-energy boundary. Three radiologists independently delineated the contours of 54 lesions from 48 patients. Dice coefficient was used to evaluate the algorithm's performance. The mean Dice coefficient between computer and the majority vote results was 83.2%. The mean Dice coefficients between the three radiologists' manual segmentations were 84.6%, 86.2%, and 88.3%. The performance of this segmentation algorithm suggests its potential clinical value for quantifying enlarged lymph nodes. © 2018 American Association of Physicists in Medicine.

  6. Aerodynamic characteristics of a high-wing transport configuration with a over-the-wing nacelle-pylon arrangement

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.; Abeyounis, W. K.

    1985-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on the aerodynamic characteristics of a high-wing transport configuration of installing an over-the-wing nacelle-pylon arrangement. The tests are conducted at Mach numbers from 0.70 to 0.82 and at angles of attack from -2 deg to 4 deg. The configurational variables under study include symmetrical and contoured nacelles and pylons, pylon size, and wing leading-edge extensions. The symmetrical nacelles and pylons reduce the lift coefficient, increase the drag coefficient, and cause a nose-up pitching-moment coefficient. The contoured nacelles significantly reduce the interference drag, though it is still excessive. Increasing the pylon size reduces the drag, whereas adding wing leading-edge extension does not affect the aerodynamic characteristics significantly.

  7. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer.

    PubMed

    La Macchia, Mariangela; Fellin, Francesco; Amichetti, Maurizio; Cianchetti, Marco; Gianolini, Stefano; Paola, Vitali; Lomax, Antony J; Widesott, Lamberto

    2012-09-18

    To validate, in the context of adaptive radiotherapy, three commercial software solutions for atlas-based segmentation. Fifteen patients, five for each group, with cancer of the Head&Neck, pleura, and prostate were enrolled in the study. In addition to the treatment planning CT (pCT) images, one replanning CT (rCT) image set was acquired for each patient during the RT course. Three experienced physicians outlined on the pCT and rCT all the volumes of interest (VOIs). We used three software solutions (VelocityAI 2.6.2 (V), MIM 5.1.1 (M) by MIMVista and ABAS 2.0 (A) by CMS-Elekta) to generate the automatic contouring on the repeated CT. All the VOIs obtained with automatic contouring (AC) were successively corrected manually. We recorded the time needed for: 1) ex novo ROIs definition on rCT; 2) generation of AC by the three software solutions; 3) manual correction of AC.To compare the quality of the volumes obtained automatically by the software and manually corrected with those drawn from scratch on rCT, we used the following indexes: overlap coefficient (DICE), sensitivity, inclusiveness index, difference in volume, and displacement differences on three axes (x, y, z) from the isocenter. The time saved by the three software solutions for all the sites, compared to the manual contouring from scratch, is statistically significant and similar for all the three software solutions. The time saved for each site are as follows: about an hour for Head&Neck, about 40 minutes for prostate, and about 20 minutes for mesothelioma. The best DICE similarity coefficient index was obtained with the manual correction for: A (contours for prostate), A and M (contours for H&N), and M (contours for mesothelioma). From a clinical point of view, the automated contouring workflow was shown to be significantly shorter than the manual contouring process, even though manual correction of the VOIs is always needed.

  8. A Comparison of Aerosol Optical Property Measurements Made During the DOE Aerosol Intensive Operating Period and Their Effects on Regional Climate

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Hallar, A. G.; Arnott, W. P.; Covert, D.; Elleman, R.; Ogren, J.; Schmid, B.; Luu, A.

    2004-01-01

    The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult to measure aerosol properties. One of the main purposes of the DOE Aerosol Intensive Operating Period (IOP) flown in May, 2003 was to assess our ability to measure absorption coefficient in situ. This paper compares measurements of aerosol optical properties made during the IOP. Measurements of aerosol absorption coefficient were made by Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter (U. Washington) and on the DOE Cessna 172 (NOAA-C,MDL). Aerosol absorption coefficient was also measured by a photoacoustic instrument (DRI) that was operated on an aircraft for the first time during the IOP. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-AkC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Measurements of absorption coefficient from all of these instruments during appropriate periods are compared. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model.

  9. Computational analysis of unmanned aerial vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Abudarag, Sakhr; Yagoub, Rashid; Elfatih, Hassan; Filipovic, Zoran

    2017-01-01

    A computational analysis has been performed to verify the aerodynamics properties of Unmanned Aerial Vehicle (UAV). The UAV-SUST has been designed and fabricated at the Department of Aeronautical Engineering at Sudan University of Science and Technology in order to meet the specifications required for surveillance and reconnaissance mission. It is classified as a medium range and medium endurance UAV. A commercial CFD solver is used to simulate steady and unsteady aerodynamics characteristics of the entire UAV. In addition to Lift Coefficient (CL), Drag Coefficient (CD), Pitching Moment Coefficient (CM) and Yawing Moment Coefficient (CN), the pressure and velocity contours are illustrated. The aerodynamics parameters are represented a very good agreement with the design consideration at angle of attack ranging from zero to 26 degrees. Moreover, the visualization of the velocity field and static pressure contours is indicated a satisfactory agreement with the proposed design. The turbulence is predicted by enhancing K-ω SST turbulence model within the computational fluid dynamics code.

  10. Optical properties of size-resolved particles at a Hong Kong urban site during winter

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Lai, Senchao; Lee, Shun-Cheng; Yau, Pui Shan; Huang, Yu; Cheng, Yan; Wang, Tao; Xu, Zheng; Yuan, Chao; Zhang, Yingyi

    2015-03-01

    Visibility degradation in Hong Kong is related to the city's serious air pollution problems. To investigate the aerosols' optical properties and their relationship with the chemical composition and size distribution of the particles, a monitoring campaign was conducted at an urban site in the early winter period (from October to December, 2010). The particle light scattering coefficient (Bsp) and absorption coefficient (Bap) were measured. Two collocated Micro-Orifice Uniform Deposit Impactor samplers (MOUDI110, MSP, USA) with nominal 50% cut-off aerodynamic diameters of 18, 10, 5.6, 3.2, 1.8, 1, 0.56, 0.32, 0.18, 0.1, and 0.056 μm were used to collect size-resolved particle samples. The average Bsp and Bap were 201.96 ± 105.82 Mm- 1 and 39.91 ± 19.16 Mm- 1, with an average single scattering albedo (ωo) of 0.82 ± 0.07. The theoretical method of light extinction calculation was used to determine the extinction of the size-resolved particulate matters (PM). The reconstructed light scattering coefficient correlated well with the measured scattering value in the Hong Kong urban area. Droplet mode (0.56-1.8 μm) particles contributed most to the particle light extinction (~ 69%). Organic matter, ammonium sulphate and elemental carbon were the key components causing visibility degradation in the droplet (0.56-1.8 μm) and condensation (0.1-0.56 μm) size ranges. Five sources contributing to particle light extinction have been identified using positive matrix factorisation (PMF). Traffic/engine exhausts and secondary aerosols accounted for ~ 36% and ~ 32% of particle light extinction, respectively, followed by sea salt (15%). The remaining sources, soil/fugitive dust and tire dust, contributed by ~ 10% and 7%, respectively, to particle light extinction.

  11. Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.

    2003-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  12. In Situ Measurement of Aerosol Extinction

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.

  13. SAGE III Aerosol Extinction Validation in the Arctic Winter: Comparisons with SAGE II and POAM III

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.; Poole, L. R.; Randall, C. E.

    2007-01-01

    The use of SAGE III multiwavelength aerosol extinction coefficient measurements to infer PSC type is contingent on the robustness of both the extinction magnitude and its spectral variation. Past validation with SAGE II and other similar measurements has shown that the SAGE III extinction coefficient measurements are reliable though the comparisons have been greatly weighted toward measurements made at mid-latitudes. Some aerosol comparisons made in the Arctic winter as a part of SOLVE II suggested that SAGE III values, particularly at longer wavelengths, are too small with the implication that both the magnitude and the wavelength dependence are not reliable. Comparisons with POAM III have also suggested a similar discrepancy. Herein, we use SAGE II data as a common standard for comparison of SAGE III and POAM III measurements in the Arctic winters of 2002/2003 through 2004/2005. During the winter, SAGE II measurements are made infrequently at the same latitudes as these instruments. We have mitigated this problem through the use potential vorticity as a spatial coordinate and thus greatly increased the number of coincident events. We find that SAGE II and III extinction coefficient measurements show a high degree of compatibility at both 1020 nm and 450 nm except a 10-20% bias at both wavelengths. In addition, the 452 to 1020-nm extinction ratio shows a consistent bias of approx. 30% throughout the lower stratosphere. We also find that SAGE II and POAM III are on average consistent though the comparisons show a much higher variability and larger bias than SAGE II/III comparisons. In addition, we find that the two data sets are not well correlated below 18 km. Overall, we find both the extinction values and the spectral dependence from SAGE III are robust and we find no evidence of a significant defect within the Arctic vortex.

  14. An Investigation into the Effect of Hydrodynamic Cavitation on Diesel using Optical Extinction

    NASA Astrophysics Data System (ADS)

    Lockett, R. D.; Fatmi, Z.; Kuti, O.; Price, R.

    2015-12-01

    A conventional diesel and paraffinic-rich model diesel fuel were subjected to sustained cavitation in a custom-built high-pressure recirculation flow rig. Changes to the spectral extinction coefficient at 405 nm were measured using a simple optical arrangement. The spectral extinction coefficient at 405 nm for the conventional diesel sample was observed to increase to a maximum value and then asymptotically decrease to a steady-state value, while that for the paraffinic-rich model diesel was observed to progressively decrease. It is suggested that this is caused by the sonochemical pyrolysis of mono-aromatics to form primary soot-like carbonaceous particles, which then coagulate to form larger particles, which are then trapped by the filter, leading to a steady-state spectral absorbance.

  15. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory.

    PubMed

    Kolgotin, Alexei; Müller, Detlef; Chemyakin, Eduard; Romanov, Anton

    2016-12-01

    Multiwavelength Raman/high spectral resolution lidars that measure backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm can be used for the retrieval of particle microphysical parameters, such as effective and mean radius, number, surface-area and volume concentrations, and complex refractive index, from inversion algorithms. In this study, we carry out a correlation analysis in order to investigate the degree of dependence that may exist between the optical data taken with lidar and the underlying microphysical parameters. We also investigate if the correlation properties identified in our study can be used as a priori or a posteriori constraints for our inversion scheme so that the inversion results can be improved. We made the simplifying assumption of error-free optical data in order to find out what correlations exist in the best case situation. Clearly, for practical applications, erroneous data need to be considered too. On the basis of simulations with synthetic optical data, we find the following results, which hold true for arbitrary particle size distributions, i.e., regardless of the modality or the shape of the size distribution function: surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99. We also find a correlation coefficient above 0.99 for the extinction coefficient versus (1) the ratio of the volume concentration to effective radius and (2) the product of the number concentration times the sum of the squares of the mean radius and standard deviation of the investigated particle size distributions. Besides that, we find that for particles of any mode fraction of the particle size distribution, the complex refractive index is uniquely defined by extinction- and backscatter-related Ångström exponents, lidar ratios at two wavelengths, and an effective radius.

  16. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient measurement from the CAPS PM_{ssa (calculated as the difference from the measured extinction and scattering). The study was carried out in the laboratory with controlled particle generation systems. We used both light absorbing aerosols (Regal 400R pigment black from Cabot Corp. and colloidal graphite - Aquadag - from Agar Scientific) and purely scattering aerosols (ammonium sulphate and polystyrene latex spheres), covering single scattering albedo values from approximately 0.4 to 1.0. A new truncation angle correction for the CAPS PM_{ssa integrated sphere is proposed.

  17. Series cell light extinction monitor

    DOEpatents

    Novick, Vincent J.

    1990-01-01

    A method and apparatus for using the light extinction measurements from two or more light cells positioned along a gasflow chamber in which the gas volumetric rate is known to determine particle number concentration and mass concentration of an aerosol independent of extinction coefficient and to determine estimates for particle size and mass concentrations. The invention is independent of particle size. This invention has application to measurements made during a severe nuclear reactor fuel damage test.

  18. Results of Laser-Calibrated High-Resolution Transmission Measurements and Comparisons with Broadband Transmissometer Data: San Nicolas Island, California, May 1979.

    DTIC Science & Technology

    1982-09-30

    system . Atmospheric aerosol extinction coefficients at DF laser wavelengths obtained from the long - path transmission data show a wide range of variation...described in this report, it is recommended that addi- tional long - path field measurements of laser extinction and high-resolution transmission spectra be...independent long path laser extinction measurement . Column 7 of Table 3 lists the lime of the laser

  19. SINGLE INSTITUTION VARIABILITY IN INTENSITY MODULATED RADIATION TARGET DELINEATION FOR CANINE NASAL NEOPLASIA.

    PubMed

    Christensen, Neil I; Forrest, Lisa J; White, Pamela J; Henzler, Margaret; Turek, Michelle M

    2016-11-01

    Contouring variability is a significant barrier to the accurate delivery and reporting of radiation therapy. The aim of this descriptive study was to determine the variation in contouring radiation targets and organs at risk by participants within our institution. Further, we also aimed to determine if all individuals contoured the same normal tissues. Two canine nasal tumor datasets were selected and contoured by two ACVR-certified radiation oncologists and two radiation oncology residents from the same institution. Eight structures were consistently contoured including the right and left eye, the right and left lens, brain, the gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV). Spinal cord, hard and soft palate, and bulla were contoured on 50% of datasets. Variation in contouring occurred in both targets and normal tissues at risk and was particularly significant for the GTV, CTV, and PTV. The mean metric score and dice similarity coefficient were below the threshold criteria in 37.5-50% and 12.5-50% of structures, respectively, quantitatively indicating contouring variation. This study refutes our hypothesis that minimal variation in target and normal tissue delineation occurs. The variation in contouring may contribute to different tumor response and toxicity for any given patient. Our results also highlight the difficulty associated with replication of published radiation protocols or treatments, as even with replete contouring description the outcome of treatment is still fundamentally influenced by the individual contouring the patient. © 2016 American College of Veterinary Radiology.

  20. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, R; Yang, J; Pan, T

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fusedmore » using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need for auto-segmented contours of indistinguishable small structures.« less

  1. Photometry of occultation candidate stars. I - Uranus 1985 and Saturn 1985-1991

    NASA Technical Reports Server (NTRS)

    French, L. M.; Morales, G.; Dalton, A. S.; Klavetter, J. J.; Conner, S. R.

    1985-01-01

    Photometric observations of five stars to be occulted by the rings around Uranus are presented. The four stars to be occulted by Saturn or its rings during the period 1985-1991 were also observed. The observations were carried out with a CCD detector attached to the Kitt Peak McGraw-Hill 1.30-m telescope. Landolt standards of widely ranging V-I color indices were used to determine the extinction coefficients, transformation coefficients, and zero points of the stars. Mean extinction coefficients are given for each night of observation. K magnitudes for each star were estimated on the basis of the results of Johnson (1967). The complete photometric data set is given in a series of tables.

  2. Interaction between photons and leaf canopies

    NASA Technical Reports Server (NTRS)

    Knyazikhin, Yuri V.; Marshak, Alexander L.; Myneni, Ranga B.

    1991-01-01

    The physics of neutral particle interaction for photons traveling in media consisting of finite-dimensional scattering centers that cross-shade mutually is investigated. A leaf canopy is a typical example of such media. The leaf canopy is idealized as a binary medium consisting of randomly distributed gaps (voids) and regions with phytoelements (turbid phytomedium). In this approach, the leaf canopy is represented by a combination of all possible open oriented spheres. The mathematical approach for characterizing the structure of the host medium is considered. The extinction coefficient at any phase-space location in a leaf canopy is the product of the extinction coefficient in the turbid phytomedium and the probability of absence gaps at that location. Using a similar approach, an expression for the differential scattering coefficient is derived.

  3. Gold and CuS as multifunctional theranostics platform for imaging and therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhu, Junjie

    2017-02-01

    Localized surface plasmon resonances arising from the free carriers in copper-deficient copper chalcogenides nanocrystals (Cu2-xE, E=S,Se) enables them with high extinction coefficient in the near-infrared range, which was superior for photothermal related purpose. Although Cu2-xE nanocrystals with different compositions (0< x≪1) all possess NIR absorption, their extinction coefficients were significantly different due to their distinct valence band free carrier concentration. Herein, by optimizing the synthetic conditions, we were able to obtain pure covellite phase CuS nanoparticles with maximized free carrier concentration (x=1), which provides extremely high mass extinction coefficient (up to 60 Lg-1cm-1 at 980 nm and 32.4 Lg-1cm-1 at 800 nm). To the best of our knowledge, these values was maximal among all inorganic nanomaterials. High quality Cu2-xSe can also be obtained with a similar approach. In order to introduce CuS nanocrystals for biomedical applications, we further transferred these nanocrystals into aqueous solution with an amphiphilic polymer and colvalently linked with beta-cyclodextrin. Using host-guest interaction, adamantine-modified RGD peptide can be further anchored on the nanoparticles for the recognition of integrin-positive cancer cells. Together with the high extinction coefficient and outstand photothermal conversion efficiency (determined to be higher than 40%), these CuS nanocrystals were applied for photothermal therapy of cancer cells and photoacoustic imaging. In addition, anticancer drug doxorubicin can also be loading onto the nanoparticles through either hydrophobic or electrostatic interaction for chemotherapy.

  4. Simulating return signals of a spaceborne high-spectral resolution lidar channel at 532 nm

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Binglong, Chen; Min, Min; Xingying, Zhang; Lilin, Yao; Yiming, Zhao; Lidong, Wang; Fu, Wang; Xiaobo, Deng

    2018-06-01

    High spectral resolution lidar (HSRL) system employs a narrow spectral filter to separate the particulate (cloud/aerosol) and molecular scattering components in lidar return signals, which improves the quality of the retrieved cloud/aerosol optical properties. To better develop a future spaceborne HSRL system, a novel simulation technique was developed to simulate spaceborne HSRL return signals at 532 nm using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud/aerosol extinction coefficients product and numerical weather prediction data. For validating simulated data, a mathematical particulate extinction coefficient retrieval method for spaceborne HSRL return signals is described here. We compare particulate extinction coefficient profiles from the CALIPSO operational product with simulated spaceborne HSRL data. Further uncertainty analysis shows that relative uncertainties are acceptable for retrieving the optical properties of cloud and aerosol. The final results demonstrate that they agree well with each other. It indicates that the return signals of the spaceborne HSRL molecular channel at 532 nm will be suitable for developing operational algorithms supporting a future spaceborne HSRL system.

  5. Prediction of apparent extinction for optical transmission through rain

    NASA Astrophysics Data System (ADS)

    Vasseur, H.; Gibbins, C. J.

    1996-12-01

    At optical wavelengths, geometrical optics holds that the extinction efficiency of raindrops is equal to two. This approximation yields a wavelength-independent extinction coefficient that, however, can hardly be used to predict accurately rain extinction measured in optical transmissions. Actually, in addition to the extinct direct incoming light, a significant part of the power scattered by the rain particles reaches the receiver. This leads to a reduced apparent extinction that depends on both rain characteristics and link parameters. A simple method is proposed to evaluate this apparent extinction. It accounts for the additional scattered power that enters the receiver when one considers the forward-scattering pattern of the raindrops as well as the multiple-scattering effects using, respectively, the Fraunhofer diffraction and Twersky theory. It results in a direct analytical formula that enables a quick and accurate estimation of the rain apparent extinction and highlights the influence of the link parameters. Predictions of apparent extinction through rain are found in excellent agreement with measurements in the visible and IR regions.

  6. SU-C-BRA-02: Gradient Based Method of Target Delineation On PET/MR Image of Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, M; Chera, B; Falchook, A

    2015-06-15

    Purpose: Validate the consistency of a gradient-based segmentation tool to facilitate accurate delineation of PET/CT-based GTVs in head and neck cancers by comparing against hybrid PET/MR-derived GTV contours. Materials and Methods: A total of 18 head and neck target volumes (10 primary and 8 nodal) were retrospectively contoured using a gradient-based segmentation tool by two observers. Each observer independently contoured each target five times. Inter-observer variability was evaluated via absolute percent differences. Intra-observer variability was examined by percentage uncertainty. All target volumes were also contoured using the SUV percent threshold method. The thresholds were explored case by case so itsmore » derived volume matched with the gradient-based volume. Dice similarity coefficients (DSC) were calculated to determine overlap of PET/CT GTVs and PET/MR GTVs. Results: The Levene’s test showed there was no statistically significant difference of the variances between the observer’s gradient-derived contours. However, the absolute difference between the observer’s volumes was 10.83%, with a range from 0.39% up to 42.89%. PET-avid regions with qualitatively non-uniform shapes and intensity levels had a higher absolute percent difference near 25%, while regions with uniform shapes and intensity levels had an absolute percent difference of 2% between observers. The average percentage uncertainty between observers was 4.83% and 7%. As the volume of the gradient-derived contours increased, the SUV threshold percent needed to match the volume decreased. Dice coefficients showed good agreement of the PET/CT and PET/MR GTVs with an average DSC value across all volumes at 0.69. Conclusion: Gradient-based segmentation of PET volume showed good consistency in general but can vary considerably for non-uniform target shapes and intensity levels. PET/CT-derived GTV contours stemming from the gradient-based tool show good agreement with the anatomically and metabolically more accurate PET/MR-derived GTV contours, but tumor delineation accuracy can be further improved with the use PET/MR.« less

  7. Behavior of R-Square for Pooled Data Sets.

    ERIC Educational Resources Information Center

    Adams, Arthur J.; Shiffler, Ronald E.

    1989-01-01

    New methods of analysis--equations and graphs for iso-r(sup 2) contours--were introduced and used to illustrate location effects for pooled data sets. The "r(sup 2)" is the coefficient of determination. Results are used to highlight imprecise statements in the literature about the behavior of the correlation coefficient for pooled data…

  8. Aerosol Optical Properties at the Ground Sites during the 2010 CARES Field Campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Harworth, J. W.

    2010-12-01

    Preliminary results from the ground sites at the 2010 CARES field campaign (T0 near Sacramento, CA and T1 near Cool, CA) will be presented. A number of aerosol optical properties were measured at high time resolution for the four week study period using custom instruments. The aerosol extinction coefficient was measured at T0 using a cavity ring-down transmissometer (CRDT) at two wavelengths (532 and 1064 nm) and the aerosol scattering coefficient was measured at 532 nm using a Radiance Research M903 nephelometer. At T1, a new CRDT instrument was deployed that measured the extinction coefficient at three wavelengths (355, 532, and 1064 nm) for sub-10 μm (nominal) and sub-2.5 μm aerosols at ambient, elevated, and reduced relative humidity. A new type of custom nephelometer that measures the aerosol scattering coefficient at 532 nm using an array detector was also deployed at T1.

  9. Bacterial Luciferase: Determination of the Structure by X-Ray Diffraction

    DTIC Science & Technology

    1994-05-20

    absorbance at 280 nm, using an extinction coefficient mation of the active enzyme should show a concentration- of 0.94 (mg/ml-s *cm-’ (Gunsalus- Miguel et a...absorbance at 280 rm, using an extinction coefficient into the presumed assembly-incompetent form (Ziegler et aL, of 0.94 (mg/ml)- 1.cm-’ (Gunualus- Miguel et...Gunsalus- Miguel et aL (1972): E for a - 1.23 (mg/ml)-’.cm-’ and for 0 = 0.72 (mg/ml)’. cm . Refoldi’i of Luciferase and of Individual Subunits from 5 M

  10. The functional correlation between rainfall rate and extinction coefficient for frequencies from 3 to 10 GHz

    NASA Technical Reports Server (NTRS)

    Jameson, A. R.

    1990-01-01

    The relationship between the rainfall rate (R) obtained from radiometric brightness temperatures and the extinction coefficient (k sub e) is investigated by computing the values of k sub e over a wide range of rainfall rates, for frequencies from 3 to 25 GHz. The results show that the strength of the relation between the R and the k sub e values exhibits considerable variation for frequencies at this range. Practical suggestions are made concerning the selection of particular frequencies for rain measurements to minimize the error in R determinations.

  11. Design and fabrication of far ultraviolet filters based on π-multilayer technology in high-k materials

    PubMed Central

    Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng

    2015-01-01

    Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255

  12. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the geometrical properties of ice crystals before the influence of ice crystal shape on cirrus radiative properties can be adequately understood. This study provides a way of coupling the radiative properties of absorption, extinction, and single scatter albedo to the microphysical properties of cirrus clouds. The dependence of extinction and absorption on ice crystal shape was not just due to geometrical differences between crystal types, but was also due to the effect these differences had on the evolution of ice particle size spectra. The ice particle growth model in Part 1 and the radiative properties treated here are based on analytical formulations, and thus represent a computationally efficient means of modeling the microphysical and radiative properties of cirrus clouds.

  13. Rapid Contour-based Segmentation for 18F-FDG PET Imaging of Lung Tumors by Using ITK-SNAP: Comparison to Expert-based Segmentation.

    PubMed

    Besson, Florent L; Henry, Théophraste; Meyer, Céline; Chevance, Virgile; Roblot, Victoire; Blanchet, Elise; Arnould, Victor; Grimon, Gilles; Chekroun, Malika; Mabille, Laurence; Parent, Florence; Seferian, Andrei; Bulifon, Sophie; Montani, David; Humbert, Marc; Chaumet-Riffaud, Philippe; Lebon, Vincent; Durand, Emmanuel

    2018-04-03

    Purpose To assess the performance of the ITK-SNAP software for fluorodeoxyglucose (FDG) positron emission tomography (PET) segmentation of complex-shaped lung tumors compared with an optimized, expert-based manual reference standard. Materials and Methods Seventy-six FDG PET images of thoracic lesions were retrospectively segmented by using ITK-SNAP software. Each tumor was manually segmented by six raters to generate an optimized reference standard by using the simultaneous truth and performance level estimate algorithm. Four raters segmented 76 FDG PET images of lung tumors twice by using ITK-SNAP active contour algorithm. Accuracy of ITK-SNAP procedure was assessed by using Dice coefficient and Hausdorff metric. Interrater and intrarater reliability were estimated by using intraclass correlation coefficients of output volumes. Finally, the ITK-SNAP procedure was compared with currently recommended PET tumor delineation methods on the basis of thresholding at 41% volume of interest (VOI; VOI 41 ) and 50% VOI (VOI 50 ) of the tumor's maximal metabolism intensity. Results Accuracy estimates for the ITK-SNAP procedure indicated a Dice coefficient of 0.83 (95% confidence interval: 0.77, 0.89) and a Hausdorff distance of 12.6 mm (95% confidence interval: 9.82, 15.32). Interrater reliability was an intraclass correlation coefficient of 0.94 (95% confidence interval: 0.91, 0.96). The intrarater reliabilities were intraclass correlation coefficients above 0.97. Finally, VOI 41 and VOI 50 accuracy metrics were as follows: Dice coefficient, 0.48 (95% confidence interval: 0.44, 0.51) and 0.34 (95% confidence interval: 0.30, 0.38), respectively, and Hausdorff distance, 25.6 mm (95% confidence interval: 21.7, 31.4) and 31.3 mm (95% confidence interval: 26.8, 38.4), respectively. Conclusion ITK-SNAP is accurate and reliable for active-contour-based segmentation of heterogeneous thoracic PET tumors. ITK-SNAP surpassed the recommended PET methods compared with ground truth manual segmentation. © RSNA, 2018.

  14. SU-E-J-101: Improved CT to CBCT Deformable Registration Accuracy by Incorporating Multiple CBCTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godley, A; Stephans, K; Olsen, L Sheplan

    2015-06-15

    Purpose: Combining prior day CBCT contours with STAPLE was previously shown to improve automated prostate contouring. These accurate STAPLE contours are now used to guide the planning CT to pre-treatment CBCT deformable registration. Methods: Six IGRT prostate patients with daily kilovoltage CBCT had their original planning CT and 9 CBCTs contoured by the same physician. These physician contours for the planning CT and each prior CBCT are deformed to match the current CBCT anatomy, producing multiple contour sets. These sets are then combined using STAPLE into one optimal set (e.g. for day 3 CBCT, combine contours produced using the planmore » plus day 1 and 2 CBCTs). STAPLE computes a probabilistic estimate of the true contour from this collection of contours by maximizing sensitivity and specificity. The deformation field from planning CT to CBCT registration is then refined by matching its deformed contours to the STAPLE contours. ADMIRE (Elekta Inc.) was used for this. The refinement does not force perfect agreement of the contours, typically Dice’s Coefficient (DC) of > 0.9 is obtained, and the image difference metric remains in the optimization of the deformable registration. Results: The average DC between physician delineated CBCT contours and deformed planning CT contours for the bladder, rectum and prostate was 0.80, 0.79 and 0.75, respectively. The accuracy significantly improved to 0.89, 0.84 and 0.84 (P<0.001 for all) when using the refined deformation field. The average time to run STAPLE with five scans and refine the planning CT deformation was 66 seconds on a Telsa K20c GPU. Conclusion: Accurate contours generated from multiple CBCTs provided guidance for CT to CBCT deformable registration, significantly improving registration accuracy as measured by contour DC. A more accurate deformation field is now available for transferring dose or electron density to the CBCT for adaptive planning. Research grant from Elekta.« less

  15. SAGE aerosol measurements. Volume 3: January 1, 1981 to November 18, 1981

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick

    1987-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched February 18, 1979, obtained profiles of aerosol extinction at 1.00 micron and 0.45 micron ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events are presented in the form of zonal and seasonal averages of aerosol extinction of 1.00 micron and 0.45 micron, ratios of aerosol extinction to molecular extinction at 1.00 micron and ratios of aerosol extinction at 0.45 micron to aerosol extinction at 1.00 micron. Averages for 1981 are shown in tables, and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by NOAA for the time and location of each SAGE measurement are averaged and shown in a similar format. The stratospheric aerosol distribution for 1981 shows effects of volcanically injected material from eruptions of Ulawun, Alaid, and Pagan. Peak values of aerosol extinction at 0.45 micron and 1.00 micron were 2 to 4 times higher than typical peak values observed during near background conditions. Stratospheric aerosol optical depth values at 1.00 microns increased by a factor of about 2 from near background levels in regions of volcanic activity. During the year, these values ranged from between 0.001 and 0.006. The largest were near the location of a recent eruption. The distribution of the ratio of aerosol to molecular extinction at 1.00 microns also showed that maximum values are found in the vicinity of an eruption. These maximums varied in altitude, but remained below a height of about 25 km. No attempt has been made to give detailed explanations or interpretations of these data. The intent is to provide, in a ready-to-use visual format, representative zonal and seasonal averages of aerosol extinction data for the third calendar year of the SAGE data set to facilitate atmospheric and climatic studies.

  16. Comparison of Automated Atlas-Based Segmentation Software for Postoperative Prostate Cancer Radiotherapy

    PubMed Central

    Delpon, Grégory; Escande, Alexandre; Ruef, Timothée; Darréon, Julien; Fontaine, Jimmy; Noblet, Caroline; Supiot, Stéphane; Lacornerie, Thomas; Pasquier, David

    2016-01-01

    Automated atlas-based segmentation (ABS) algorithms present the potential to reduce the variability in volume delineation. Several vendors offer software that are mainly used for cranial, head and neck, and prostate cases. The present study will compare the contours produced by a radiation oncologist to the contours computed by different automated ABS algorithms for prostate bed cases, including femoral heads, bladder, and rectum. Contour comparison was evaluated by different metrics such as volume ratio, Dice coefficient, and Hausdorff distance. Results depended on the volume of interest showed some discrepancies between the different software. Automatic contours could be a good starting point for the delineation of organs since efficient editing tools are provided by different vendors. It should become an important help in the next few years for organ at risk delineation. PMID:27536556

  17. Water-vapor foreign-continuum absorption in the 8-12 and 3-5 μm atmospheric windows

    NASA Astrophysics Data System (ADS)

    Klimeshina, T. E.; Rodimova, O. B.

    2015-08-01

    The frequency and temperature dependence of the water vapor-nitrogen continuum in the 8-12 and 3-5 μm spectral regions obtained experimentally by CAVIAR and NIST is described with the use of the line contour constructed on the basis of asymptotic line shape theory. The parameters of the theory found from fitting the calculated values of the absorption coefficient to the pertinent experimental data enter into the expression for the classical potential describing the center-of-mass motion of interacting molecules and into the expression for the quantum potential of two interacting molecules. The frequency behavior of the line wing contours appears to depend on the band the lines of which make a major contribution to the absorption in a given spectral interval. The absorption coefficients in the wings of the band in question calculated with the line contours obtained for other bands are outside of experimental errors. The distinction in the line wing behavior may be explained by the difference in the quantum energies of molecules interacting in different vibrational states.

  18. Galvanic Synthesis of Hollow Gold Nanoshells

    DTIC Science & Technology

    2015-02-01

    HAuNS of select diameter and shell thickness were synthesized and tunability of the extinction coefficient was demonstrated through control of the... extinction peak HAuNS ......................................................................................................... 4 Fig. 2 Histogram of...was supported in part by an appointment to the Research Participation Program at the US Army Research Laboratory (ARL) administered by the Oak Ridge

  19. Thermal sensitivity of elastic coefficients of langasite and langatate.

    PubMed

    Bourquin, Roger; Dulmet, Bernard

    2009-10-01

    Thermal coefficients of elastic constants of langasite and langatate crystals have been determined from frequency-temperature curves of contoured resonators operating in thickness modes. The effect of the trapping of the vibration has been taken into account to improve the accuracy. In a first step, the thermal sensitivities of stiffness coefficients in Lagrangian description are obtained. Thermal sensitivities of the usual elastic constants are further deduced. Predictions of thermally compensated cuts are given.

  20. Microwave vector radiative transfer equation of a sea foam layer by the second-order Rayleigh approximation

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo

    2011-10-01

    The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.

  1. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.

  2. On-site ocean horizontal aerosol extinction coefficient inversion under different weather conditions on the Bo-hai and Huang-hai Seas

    NASA Astrophysics Data System (ADS)

    Zeng, Xianjiang; Xia, Min; Ge, Yinghui; Guo, Wenping; Yang, Kecheng

    2018-03-01

    In this paper, we explore the horizontal extinction characteristics under different weather conditions on the ocean surface with on-site experiments on the Bo-hai and Huang-hai Seas in the summer of 2016. An experimental lidar system is designed to collect the on-site experimental data. By aiming at the inhomogeneity and uncertainty of the horizontal aerosol in practice, a joint retrieval method is proposed to retrieve the aerosol extinction coefficients (AEC) from the raw data along the optical path. The retrieval results of both the simulated and the real signals demonstrate that the joint retrieval method is practical. Finally, the sequence observation results of the on-site experiments under different weather conditions are reported and analyzed. These results can provide the attenuation information to analyze the atmospheric aerosol characteristics on the ocean surface.

  3. Seismotectonic, structural, volcanologic, and geomorphic study of New Zealand; indigenous forest assessment in New Zealand; mapping, land use, and environmental studies in New Zealand, volume 1

    NASA Technical Reports Server (NTRS)

    Probine, M. C.; Suggate, R. P.; Mcgreevy, M. G.; Stirling, I. F. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Results of the atmospheric extinction measurements show clearly the greater opacity of the atmosphere in MSS band 4 which is due to Rayleigh scattering. Atmospheric water vapor absorbs strongly in a wide region between 900 nm and 1000 nm, and this results in a consistently higher extinction coefficient than would otherwise be expected in MSS band 7. The short term fluctuations tend to be greater in band 7 than in the other bands, and this effect is probably due to variations of water vapor concentration in the instrument line of sight. These high extinction coefficients and short term fluctuations in band 7 were observed at Menindee which is in a semi-desert region in western New South Wales.

  4. The Extinction Toward the Galactic Bulge from RR Lyrae Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunder, A; Popowski, P; Cook, K

    2007-11-07

    The authors present mean reddenings toward 3525 RR0 Lyrae stars from the Galactic bulge fields of the MACHO Survey. These reddenings are determined using the color at minimum V-band light of the RR0 Lyrae stars themselves and are found to be in general agreement with extinction estimates at the same location obtained from other methods. Using 3256 stars located in the Galactic Bulge, they derive the selective extinction coefficient R{sub V,VR} = A{sub V}/E(V-R) = 4.2 {+-} 0.2. this value is what is expected for a standard extinction law with R{sub V,BV} = 3.1 {+-} 0.3

  5. Persistence of Antarctic polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick; Trepte, C. R.

    1988-01-01

    The persistence of Polar Stratospheric Clouds (PSCs) observed by the Stratospheric Aerosol Measurement (SAM) 2 satellite sensor over a 9-year period is compared and contrasted. Histograms of the SAM 2 1.0 micron extinction ratio data (aerosol extinction normalized by the molecular extinction) at an altitude of 18 km in the Antarctic have been generated for three 10-day periods in the month of September. Statistics for eight different years (1979 to 1982 and 1984 to 1987) are shown in separate panels for each figure. Since the SAM 2 system is a solar occultation experiment, observations are limited to the edge of the polar night and no measurements are made deep within the vortex where temperatures could be colder. For this reason, use is made of the NMC global gridded fields and the known temperature-extinction relationship to infer additional information on the occurrence and areal coverage of PSCs. Calculations of the daily areal coverage of the 195 K isotherm will be presented for this same period of data. This contour level lies in the range of the predicted temperature for onset of the Type 1 particle enhancement mode at 50 mb (Poole and McCormick, 1988b) and should indicate approximately when formation of the binary HNO3-H2O particles begins.

  6. SAM 2 measurements of the polar stratospheric aerosol. Volume 9: October 1982 - April 1983

    NASA Technical Reports Server (NTRS)

    Mcmaster, L. R.; Powell, K. A.

    1991-01-01

    The Stratospheric Aerosol Measurement (SAM) II sensor aboard Nimbus 7 is providing 1.0 micron extinction measurements of Antarctic and Arctic stratospheric aerosols with a vertical resolution of 1 km. Representative examples and weekly averages including corresponding temperature profiles provided by NOAA for the time and place of each SAM II measurement are presented. Contours of aerosol extinction as a function of altitude and longitude or time are plotted, and aerosol optical depths are calculated for each week. Typical values of aerosol extinction and stratospheric optical depth in the Arctic are unusually large due to the presence of material from the El Chichon volcano eruption in the Spring of 1982. For example, the optical depth peaked at 0.068, more than 50 times background values. Typical values of aerosol extinction and stratospheric optical depth in the Antarctic varied considerably during this period due to the transport and arrival of the material from the El Chichon eruption. For example, the stratospheric optical depth varied from 0.002 in October 1982, to 0.021 in January 1983. Polar stratospheric clouds were observed during the Arctic winter, as expected. A representative sample is provided of the ninth 6-month period of data to be used in atmospheric and climatic studies.

  7. Source apportionment of PM2.5 light extinction in an urban atmosphere in China.

    PubMed

    Lan, Zijuan; Zhang, Bin; Huang, Xiaofeng; Zhu, Qiao; Yuan, Jinfeng; Zeng, Liwu; Hu, Min; He, Lingyan

    2018-01-01

    Haze in China is primarily caused by high pollution of atmospheric fine particulates (PM 2.5 ). However, the detailed source structures of PM 2.5 light extinction have not been well established, especially for the roles of various organic aerosols, which makes haze management lack specified targets. This study obtained the mass concentrations of the chemical compositions and the light extinction coefficients of fine particles in the winter in Dongguan, Guangdong Province, using high time resolution aerosol observation instruments. We combined the positive matrix factor (PMF) analysis model of organic aerosols and the multiple linear regression method to establish a quantitative relationship model between the main chemical components, in particular the different sources of organic aerosols and the extinction coefficients of fine particles with a high goodness of fit (R 2 =0.953). The results show that the contribution rates of ammonium sulphate, ammonium nitrate, biomass burning organic aerosol (BBOA), secondary organic aerosol (SOA) and black carbon (BC) were 48.1%, 20.7%, 15.0%, 10.6%, and 5.6%, respectively. It can be seen that the contribution of the secondary aerosols is much higher than that of the primary aerosols (79.4% versus 20.6%) and are a major factor in the visibility decline. BBOA is found to have a high visibility destroying potential, with a high mass extinction coefficient, and was the largest contributor during some high pollution periods. A more detailed analysis indicates that the contribution of the enhanced absorption caused by BC mixing state was approximately 37.7% of the total particle absorption and should not be neglected. Copyright © 2017. Published by Elsevier B.V.

  8. Atlas of wide-field-of-view outgoing longwave radiation derived from Nimbus 6 Earth radiation budget data set, July 1975 to June 1978

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Smith, G. Louis

    1987-01-01

    An atlas of monthly mean outgoing longwave radiation global contour maps and associated spherical harmonic coefficients is presented. The atlas contains 36 months of continuous data from July 1975 to June 1978. The data were derived from the first Earth radiation budget experiment, which was flown on the Nimbus-6 Sun-synchronous satellite in 1975. Only the wide-field-of-view longwave measurements are cataloged in this atlas. The contour maps along with the associated sets of spherical harmonic coefficients form a valuable data set for studying different aspects of our changing climate over monthly, annual, and interannual scales in the time domain, and over regional, zonal, and global scales in the spatial domain.

  9. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was characterized by fresh automobile and diesel exhaust. Measurements from Cadenza and from an aethalometer are presented. The aethalometer is a filter-based photometer and the infrared channel is calibrated to produce a measure of BC mass loading.

  10. The efficiency of photodissociation for molecules in interstellar ices

    NASA Astrophysics Data System (ADS)

    Kalvāns, J.

    2018-05-01

    Processing by interstellar photons affects the composition of the icy mantles on interstellar grains. The rate of photodissociation in solids differs from that of molecules in the gas phase. The aim of this work was to determine an average, general ratio between photodissociation coefficients for molecules in ice and gas. A 1D astrochemical model was utilized to simulate the chemical composition for a line of sight through a collapsing interstellar cloud core, whose interstellar extinction changes with time. At different extinctions, the calculated column densities of icy carbon oxides and ammonia (relative to water ice) were compared to observations. The latter were taken from literature data of background stars sampling ices in molecular clouds. The best-fit value for the solid/gas photodissociation coefficient ratio was found to be ≈0.3. In other words, gas-phase photodissociation rate coefficients have to be reduced by a factor of 0.3 before applying them to icy species. A crucial part of the model is a proper inclusion of cosmic-ray induced desorption. Observations sampling gas with total extinctions in excess of ≈22 mag were found to be uncorrelated to modelling results, possibly because of grains being covered with non-polar molecules.

  11. Investigation of shortcomings in simulated aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Park, S.; Allen, R.

    2017-12-01

    The vertical distribution of aerosols is one important factor for aerosol radiative forcing. Previous studies show that climate models poorly reproduce the aerosol vertical profile, with too much aerosol aloft in the upper troposphere. This bias may be related to several factors, including excessive convective mass flux and wet removal. In this study, we evaluate the aerosol vertical profile from several Coupled Model Intercomparison Project 5 (CMIP5) models, as well as the Community Atmosphere Model 5 (CAM5), relative to the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO). The results show that all models significantly underestimate extinction coefficient in the lower troposphere, while overestimating extinction coefficient in the upper troposphere. In addition, the majority of models indicate a land-ocean dependence in the relationship between aerosol extinction coefficient in the upper troposphere and convective mass flux. Over the continents, more convective mass flux is related to more aerosol aloft; over the ocean, more convective mass flux is associated with less aerosol in upper troposphere. Sensitivity experiments are conducted to investigate the role that convection and wet deposition have in contributing to the deficient simulation of the vertical aerosol profile, including the land-ocean dependence.

  12. Evaluation of atlas-based auto-segmentation software in prostate cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenham, Stuart, E-mail: stuart.greenham@ncahs.health.nsw.gov.au; Dean, Jenna; Fu, Cheuk Kuen Kenneth

    2014-09-15

    The performance and limitations of an atlas-based auto-segmentation software package (ABAS; Elekta Inc.) was evaluated using male pelvic anatomy as the area of interest. Contours from 10 prostate patients were selected to create atlases in ABAS. The contoured regions of interest were created manually to align with published guidelines and included the prostate, bladder, rectum, femoral heads and external patient contour. Twenty-four clinically treated prostate patients were auto-contoured using a randomised selection of two, four, six, eight or ten atlases. The concordance between the manually drawn and computer-generated contours were evaluated statistically using Pearson's product–moment correlation coefficient (r) and clinicallymore » in a validated qualitative evaluation. In the latter evaluation, six radiation therapists classified the degree of agreement for each structure using seven clinically appropriate categories. The ABAS software generated clinically acceptable contours for the bladder, rectum, femoral heads and external patient contour. For these structures, ABAS-generated volumes were highly correlated with ‘as treated’ volumes, manually drawn; for four atlases, for example, bladder r = 0.988 (P < 0.001), rectum r = 0.739 (P < 0.001) and left femoral head r = 0.560 (P < 0.001). Poorest results were seen for the prostate (r = 0.401, P < 0.05) (four atlases); however this was attributed to the comparison prostate volume being contoured on magnetic resonance imaging (MRI) rather than computed tomography (CT) data. For all structures, increasing the number of atlases did not consistently improve accuracy. ABAS-generated contours are clinically useful for a range of structures in the male pelvis. Clinically appropriate volumes were created, but editing of some contours was inevitably required. The ideal number of atlases to improve generated automatic contours is yet to be determined.« less

  13. Interpreting spectral unmixing coefficients: From spectral weights to mass fractions

    NASA Astrophysics Data System (ADS)

    Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian

    2018-01-01

    It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.

  14. Prostate contouring in MRI guided biopsy.

    PubMed

    Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor

    2009-03-27

    With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice.

  15. Prostate contouring in MRI guided biopsy

    PubMed Central

    Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor

    2010-01-01

    With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice. PMID:21132083

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, N; Johnson, P; Chinea, F

    Purpose: To evaluate the correlation between image features and the accuracy of manually drawn target contours on synthetic PET images Methods: A digital PET phantom was used in combination with Monte Carlo simulation to create a set of 26 simulated PET images featuring a variety of tumor shapes and activity heterogeneity. These tumor volumes were used as a gold standard in comparisons with manual contours delineated by 10 radiation oncologist on the simulated PET images. Metrics used to evaluate segmentation accuracy included the dice coefficient, false positive dice, false negative dice, symmetric mean absolute surface distance, and absolute volumetric difference.more » Image features extracted from the simulated tumors consisted of volume, shape complexity, mean curvature, and intensity contrast along with five texture features derived from the gray-level neighborhood difference matrices including contrast, coarseness, busyness, strength, and complexity. Correlation between these features and contouring accuracy were examined. Results: Contour accuracy was reasonably well correlated with a variety of image features. Dice coefficient ranged from 0.7 to 0.90 and was correlated closely with contrast (r=0.43, p=0.02) and complexity (r=0.5, p<0.001). False negative dice ranged from 0.10 to 0.50 and was correlated closely with contrast (r=0.68, p<0.001) and complexity (r=0.66, p<0.001). Absolute volumetric difference ranged from 0.0002 to 0.67 and was correlated closely with coarseness (r=0.46, p=0.02) and complexity (r=0.49, p=0.008). Symmetric mean absolute difference ranged from 0.02 to 1 and was correlated closely with mean curvature (r=0.57, p=0.02) and contrast (r=0.6, p=0.001). Conclusion: The long term goal of this study is to assess whether contouring variability can be reduced by providing feedback to the practitioner based on image feature analysis. The results are encouraging and will be used to develop a statistical model which will enable a prediction of contour accuracy based purely on image feature analysis.« less

  17. The impact of robustness of deformable image registration on contour propagation and dose accumulation for head and neck adaptive radiotherapy.

    PubMed

    Zhang, Lian; Wang, Zhi; Shi, Chengyu; Long, Tengfei; Xu, X George

    2018-05-30

    Deformable image registration (DIR) is the key process for contour propagation and dose accumulation in adaptive radiation therapy (ART). However, currently, ART suffers from a lack of understanding of "robustness" of the process involving the image contour based on DIR and subsequent dose variations caused by algorithm itself and the presetting parameters. The purpose of this research is to evaluate the DIR caused variations for contour propagation and dose accumulation during ART using the RayStation treatment planning system. Ten head and neck cancer patients were selected for retrospective studies. Contours were performed by a single radiation oncologist and new treatment plans were generated on the weekly CT scans for all patients. For each DIR process, four deformation vector fields (DVFs) were generated to propagate contours and accumulate weekly dose by the following algorithms: (a) ANACONDA with simple presetting parameters, (b) ANACONDA with detailed presetting parameters, (c) MORFEUS with simple presetting parameters, and (d) MORFEUS with detailed presetting parameters. The geometric evaluation considered DICE coefficient and Hausdorff distance. The dosimetric evaluation included D 95 , D max , D mean , D min , and Homogeneity Index. For geometric evaluation, the DICE coefficient variations of the GTV were found to be 0.78 ± 0.11, 0.96 ± 0.02, 0.64 ± 0.15, and 0.91 ± 0.03 for simple ANACONDA, detailed ANACONDA, simple MORFEUS, and detailed MORFEUS, respectively. For dosimetric evaluation, the corresponding Homogeneity Index variations were found to be 0.137 ± 0.115, 0.006 ± 0.032, 0.197 ± 0.096, and 0.006 ± 0.033, respectively. The coherent geometric and dosimetric variations also consisted in large organs and small organs. Overall, the results demonstrated that the contour propagation and dose accumulation in clinical ART were influenced by the DIR algorithm, and to a greater extent by the presetting parameters. A quality assurance procedure should be established for the proper use of a commercial DIR for adaptive radiation therapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  18. SU-C-BRA-01: Interactive Auto-Segmentation for Bowel in Online Adaptive MRI-Guided Radiation Therapy by Using a Multi-Region Labeling Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y; Chen, I; Kashani, R

    Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graphmore » cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.« less

  19. Measurement of wavelength-dependent extinction to distinguish between absorbing and nonabsorbing aerosol particulates

    NASA Technical Reports Server (NTRS)

    Portscht, R.

    1977-01-01

    Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.

  20. Mutation load and the extinction of large populations

    NASA Astrophysics Data System (ADS)

    Bernardes, A. T.

    1996-02-01

    In the time evolution of finite populations, the accumulation of harmful mutations in further generations might lead to a temporal decay in the mean fitness of the whole population that, after sufficient time, would reduce population size and so lead to extinction. This joint action of mutation load and population reduction is called Mutational Meltdown and is usually considered only to occur in small asexual or very small sexual populations. However, the problem of extinction cannot be discussed in a proper way if one previously assumes the existence of an equilibrium state, as initially discussed in this paper. By performing simulations in a genetically inspired model for time-changing populations, we show that mutational meltdown also occurs in large asexual populations and that the mean time to extinction is a nonmonotonic function of the selection coefficient. The stochasticity of the extinction process is also discussed. The extinction of small sexual N ∼ 700 populations is shown and our results confirm the assumption that the existence of recombination might be a powerful mechanism to avoid extinction.

  1. Tuning of electronic band gaps and optoelectronic properties of binary strontium chalcogenides by means of doping of magnesium atom(s)- a first principles based theoretical initiative with mBJ, B3LYP and WC-GGA functionals

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.

  2. Backscatter and extinction measurements in cloud and drizzle at CO2 laser wavelengths

    NASA Technical Reports Server (NTRS)

    Jennings, S. G.

    1986-01-01

    The backscatter and extinction of laboratory generated cloud and drizzle sized water drops were measured at carbon dioxide laser wavelengths (predominately at lambda = 10.591 micrometers). Two distinctly different drop size regimes were studied: one which covers the range normally encompassed by natural cloud droplets and the other representative of mist or drizzle sized drops. The derivation and verification of the relation between extinction and backscatter at carbon dioxide laser wavelengths should allow the determination of large cloud drop and drizzle extinction coefficient solely from a lidar return signal without requiring knowledge of the drop size distribution. This result will also apply to precipitation sized drops so long as they are spherical.

  3. The expression and comparison of healthy and ptotic upper eyelid contours using a polynomial mathematical function.

    PubMed

    Mocan, Mehmet C; Ilhan, Hacer; Gurcay, Hasmet; Dikmetas, Ozlem; Karabulut, Erdem; Erdener, Ugur; Irkec, Murat

    2014-06-01

    To derive a mathematical expression for the healthy upper eyelid (UE) contour and to use this expression to differentiate the normal UE curve from its abnormal configuration in the setting of blepharoptosis. The study was designed as a cross-sectional study. Fifty healthy subjects (26M/24F) and 50 patients with blepharoptosis (28M/22F) with a margin-reflex distance (MRD1) of ≤2.5 mm were recruited. A polynomial interpolation was used to approximate UE curve. The polynomial coefficients were calculated from digital eyelid images of all participants using a set of operator defined points along the UE curve. Coefficients up to the fourth-order polynomial, iris area covered by the UE, iris area covered by the lower eyelid and total iris area covered by both the upper and the lower eyelids were defined using the polynomial function and used in statistical comparisons. The t-test, Mann-Whitney U test and the Spearman's correlation test were used for statistical comparisons. The mathematical expression derived from the data of 50 healthy subjects aged 24.1 ± 2.6 years was defined as y = 22.0915 + (-1.3213)x + 0.0318x(2 )+ (-0.0005x)(3). The fifth and the consecutive coefficients were <0.00001 in all cases and were not included in the polynomial function. None of the first fourth-order coefficients of the equation were found to be significantly different in male versus female subjects. In normal subjects, the percentage of the iris area covered by upper and lower lids was 6.46 ± 5.17% and 0.66% ± 1.62%, respectively. All coefficients and mean iris area covered by the UE were significantly different between healthy and ptotic eyelids. The healthy and abnormal eyelid contour can be defined and differentiated using a polynomial mathematical function.

  4. Report on Research

    DTIC Science & Technology

    1989-06-01

    Force systems require a resolved information on the optical thorough understanding of the propaga- extinction coefficient. Measurements of tion path , the...Depolarization as Function of Snow Density. Measurement System ). (It correlated well with the ( Multi -scatter scale length information is usable to extinction ...data on the effect of optically thin cirrus clouds on long - path infrared transmit- tance. Future system designers will have access to this new

  5. Four-wavelength lidar evaluation of particle characteristics and aerosol densities

    NASA Astrophysics Data System (ADS)

    Uthe, E. E.; Livingston, J. M.; Delateur, S. A.; Nielsen, N. B.

    1985-06-01

    The SRI International four-wavelength (0.53, 1.06, 3.8, 10.6 micron) lidar systems was used during the SNOW-ONE-B and Smoke Week XI/SNOW-TWO field experiments to validate its capabilities in assessing obscurant optical and physical properties. The lidar viewed along a horizontal path terminated by a passive reflector. Data examples were analyzed in terms of time-dependent transmission, wavelength dependence of optical depth, and range-resolved extinction coefficients. Three methods were used to derive extinction data from the lidar signatures. These were target method, Klett method and experimental data method. The results of the field and analysis programs are reported in the journal and conference papers that are appended to this report, and include: comparison study of lidar extinction methods, submitted to applied optics, error analysis of lidar solution techniques for range-resolved extinction coefficients based on observational data, smoke/obscurants symposium 9, Four--Wavelength Lidar Measurements from smoke week 6/SNOW-TWO, smoke/obscurants symposium 8, SNOW-ONE-B multiple-wavelength lidar measurements. Snow symposium 3, and lidar applications for obscurant evaluations, smoke/obscurants Symposium 7. The report also provides a summary of background work leading to this project, and of project results.

  6. Electromagnetic Attenuation Characteristics of Microbial Materials in the Infrared Band.

    PubMed

    Wang, Peng; Liu, Hongxia; Zhao, Yizheng; Gu, Youlin; Chen, Wei; Wang, Li; Li, Le; Zhao, Xinying; Lei, Wuhu; Hu, Yihua; Zheng, Zhiming

    2016-09-01

    In this study, seven microbial materials (entomogenous fungi Bb3088 mycelia, entomogenous fungi Bb3088 spores, entomogenous fungi Ma2677 mycelia, entomogenous fungi Ma2677 spores, Bacillus subtilis 8204, Staphylococcus aureus 6725, and Saccharomyces cerevisiae 1025) were used to measure electromagnetic (EM) signal extinction. They were subjected to light absorption and reflection measurements in the range of 4000-400 cm(-1) (2.5-25 µm) using Fourier transform infrared spectroscopy. The specular reflection spectrum method was used to calculate the real (n) and imaginary (k) parts of the complex refractive index. The complex refractive index with real part n and imaginary part k in the infrared band satisfies the following conditions n ≥ 1 and k ≥ 0. The mass extinction coefficient was calculated based on Mie theory. Entomogenous fungi Ma2677 spores and entomogenous fungi Bb3088 spores were selected as EM signal extinction materials in the smoke box test. The transmittances of entomogenous fungi Bb3088 spores and entomogenous fungi Ma2677 spores were 11.63% and 5.42%, and the mass extinction coefficients were 1.8337 m(2)/g and 1.227 m(2)/g. These results showed that entomogenous fungi Bb3088 spores and entomogenous fungi Ma2677 spores have higher extinction characteristics than other microbial materials. © The Author(s) 2016.

  7. A Prostate Fossa Contouring Instructional Module: Implementation and Evaluation.

    PubMed

    Gunther, Jillian R; Liauw, Stanley L; Choi, Seungtaek; Mohamed, Abdallah S R; Thaker, Nikhil G; Fuller, Clifton D; Stepaniak, Christopher J; Das, Prajnan; Golden, Daniel W

    2016-07-01

    Radiation oncology trainees frequently learn to contour through clinical experience and lectures. A hands-on contouring module was developed to teach delineation of the postoperative prostate clinical target volume (CTV) and improve contouring accuracy. Medical students independently contoured a prostate fossa CTV before and after receiving educational materials and live instruction detailing the RTOG approach to contouring this CTV. Metrics for volume overlap and surface distance (Dice similarity coefficient, Hausdorff distance (HD), and mean distance) determined discordance between student and consensus contours. An evaluation assessed perception of session efficacy (1 = "not at all" to 5 = "extremely"; reported as median[interquartile range]). Non-parametric statistical tests were used. Twenty-four students at two institutions completed the module, and 21 completed the evaluation (88% response). The content was rated as "quite" important (4[3.5-5]). The module improved comfort contouring a prostate fossa (pre 1[1-2] vs. post 4[3-4], p<.01), ability to find references (pre 2[1-3] vs. post 4[3.5-4], p<0.01), knowledge of CT prostate/pelvis anatomy (pre 2[1.5-3] vs. post 3[3-4], p<.01), and ability to use contouring software tools (pre 2[2-3.5] vs. post 3[3-4], p=.01). After intervention, mean DSC increased (0.29 to 0.68, p<0.01) and HD and mean distance both decreased, respectively (42.8 to 30.0, p<.01; 11.5 to 1.9, p<.01). A hands-on module to teach CTV delineation to medical students was developed and implemented. Student and expert contours exhibited near "excellent agreement" (as defined in the literature) after intervention. Additional modules to teach target delineation to all educational levels can be developed using this model. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Amy V.; Department of Radiation Oncology, St. Luke's-Roosevelt Hospital, New York, NY; Wortham, Angela

    2011-03-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical targetmore » volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target volume.« less

  9. Derivation of jack movement influence coefficients as a basis for selecting wall contours giving reduced levels of interference in flexible walled test sections

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    This report covers work done in a transonic wind tunnel towards providing data on the influence of the movement of wall-control jacks on the Mach number perturbations along the test section. The data is derived using an existing streamline-curvature program, and in application is reduced to matrices of influence coefficients.

  10. Definition of the Mathematical Model Coefficients on the Weld Size of Butt Joint Without Edge Preparation

    NASA Astrophysics Data System (ADS)

    Sidorov, Vladimir P.; Melzitdinova, Anna V.

    2017-10-01

    This paper represents the definition methods for thermal constants according to the data of the weld width under the normal-circular heat source. The method is based on isoline contouring of “effective power - temperature conductivity coefficient”. The definition of coefficients provides setting requirements to the precision of welding parameters support with the enough accuracy for an engineering practice.

  11. Diffuse interstellar clouds as a chemical laboratory - The chemistry of diatomic carbon species

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Huntress, W. T., Jr.

    1989-01-01

    The chemistry of C2, CH, and CO in diffuse interstellar clouds is analyzed and compared to absorption line measurements toward background stars. Analytical expressions in terms of column densities are derived for the rate equations. The results indicate that in clouds with 4 mag of visual extinction, the abundance of C+ has to decrease by a factor of about 15 from the value traditionally used for clouds with 1 mag of extinction. The rate coefficients for the reactions C+ + CH - C2+ + H and C+ + H2 - CH2+ + h-nu need to be reduced from previous estimates. Chemical arguments are presented for the revised rate coefficients.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay; Harris, Tequila

    A novel bidirectional thickness profilometer based on transmission densitometry was designed to measure the localized thickness of semitransparent films on a dynamic manufacturing line. The densitometer model shows that, for materials with extinction coefficients between 0.3 and 2.9 D/mm, 100-500 {mu}m measurements can be recorded with less than {+-}5% error at more than 10,000 locations in real time. As a demonstration application, the thickness profiles of 75 mmx100 mm regions of polymer electrolyte membrane (PEM) were determined by converting the optical density of the sample to thickness with the Beer-Lambert law. The PEM extinction coefficient was determined to be 1.4more » D/mm, with an average thickness error of 4.7%.« less

  13. Measurement and analysis on optical characteristics of Aspergillus oryzae spores in infrared band

    NASA Astrophysics Data System (ADS)

    Li, Le; Hu, Yihua; Gu, Youlin; Chen, Wei; Xu, Shilong; Zhao, Xinying

    2015-10-01

    Spore is an important part of bioaerosols. The optical characteristics of spore is a crucial parameter for study on bioaerosols. The reflection within the waveband of 2.5 to15μm were measured by squash method. Based on the measured data, Complex refractive index of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14 μm were calculated by using Krames-Kronig (K-K) relationship. Then,the mass extinction coefficient of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14μm were obtained by utilizing Mie scattering theory, and the results were analyzed and discussed. The average mass extinction coefficient of Aspergillus oryzae spores is 0.51 m2/g in the range of 3 to 5μm and 0.48m2/g in the range of 8 to 14μm. Compared with common inorganic compounds, Aspergillus oryzae spores possesses a good extinction performance in infrared band.

  14. Evaluation of tomotherapy MVCT image enhancement program for tumor volume delineation

    PubMed Central

    Martin, Spencer; Rodrigues, George; Chen, Quan; Pavamani, Simon; Read, Nancy; Ahmad, Belal; Hammond, J. Alex; Venkatesan, Varagur; Renaud, James

    2011-01-01

    The aims of this study were to investigate the variability between physicians in delineation of head and neck tumors on original tomotherapy megavoltage CT (MVCT) studies and corresponding software enhanced MVCT images, and to establish an optimal approach for evaluation of image improvement. Five physicians contoured the gross tumor volume (GTV) for three head and neck cancer patients on 34 original and enhanced MVCT studies. Variation between original and enhanced MVCT studies was quantified by DICE coefficient and the coefficient of variance. Based on volume of agreement between physicians, higher correlation in terms of average DICE coefficients was observed in GTV delineation for enhanced MVCT for patients 1, 2, and 3 by 15%, 3%, and 7%, respectively, while delineation variance among physicians was reduced using enhanced MVCT for 12 of 17 weekly image studies. Enhanced MVCT provides advantages in reduction of variance among physicians in delineation of the GTV. Agreement on contouring by the same physician on both original and enhanced MVCT was equally high. PACS numbers: 87.57.N‐, 87.57.np, 87.57.nt

  15. Aerosol optical properties measurements by a CAPS single scattering albedo monitor: Comparisons between summer and winter in Beijing, China

    NASA Astrophysics Data System (ADS)

    Han, Tingting; Xu, Weiqi; Li, Jie; Freedman, Andrew; Zhao, Jian; Wang, Qingqing; Chen, Chen; Zhang, Yingjie; Wang, Zifa; Fu, Pingqing; Liu, Xingang; Sun, Yele

    2017-02-01

    Aerosol optical properties were measured in Beijing in summer and winter using a state-of-the-art cavity attenuated phase shift single scattering albedo monitor (CAPS PMssa) along with aerosol composition measurements by aerosol mass spectrometers and aethalometers. The SSA directly measured by the CAPS PMssa showed overall agreements with those derived from colocated measurements. However, substantial differences were observed during periods with low SSA values in both summer and winter, suggesting that interpretation of low SSA values needs to be cautious. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 336 (±343) Mm-1 and 44 (±41) Mm-1, respectively, during wintertime, which were approximately twice those observed in summer, while the average SSA was relatively similar, 0.86 (±0.06) and 0.85 (±0.04) in summer and winter, respectively. Further analysis showed that the variations in SSA can be approximately parameterized as a function of mass fraction of secondary particulate matter (fSPM), which is SSA = 0.74 + 0.19 × fSPM (fSPM > 0.3, r2 = 0.85). The contributions of aerosol species to extinction coefficients during the two seasons were also estimated. Our results showed that the light extinction was dominantly contributed by ammonium sulfate (30%) and secondary organic aerosol (22%) in summer, while organic aerosol was the largest contributor (51%) in winter. Consistently, SPM played the major role in visibility degradation in both seasons by contributing 70% of the total extinction.

  16. A New GaAs Laser Radar for Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Brown, R. T.; Stoliar, A. P.

    1973-01-01

    A special GaAs lidar using fiber coupled diode lasers was constructed for the purpose of measuring the extinction coefficient distribution within a large atmospheric volume at a rate compatible with atmospheric kinematics. The technique is based on taking backscatter signature ratios over spatial increments after the returns are normalized by pulse integration. Essential aspects of the lidar design are beam pulse power, repetition rate, detection system dynamic range and decay linearity. It was necessary to preclude the possibility of eye hazard under any operating conditions, including directly viewing the emitting aperture at close distance with a night-adapted eye. The electronic signal processing and control circuits were built to allow versatile operations. Extinction coefficient measurements were made in fog and clouds using a low-power laboratory version of the lidar, demonstrating feasibility. Data are presented showing range squared corrected backscatter profiles converted to extinction coefficient profiles, temporal signal fluctuations, and solar induced background noise. These results aided in the design of the lidar which is described. Functional tests of this lidar and the implications relevant to the design of a prototype model are discussed. This work was jointly sponsored by Sperry Rand Corporation under its Independent Research and Development program; the Air Force Avionics Laboratory, Wright Field, Dayton, Ohio; and the Naval Ammunition Depot, Crane, Indiana.

  17. Cavity Ring-Down Measurement of Aerosol Optical Properties During the Asian Dust Above Monterey Experiment and DOE Aerosol Intensive Operating Period

    NASA Technical Reports Server (NTRS)

    Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.

    2004-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300/Mm with an estimated precision of 0.1/Mm for 1550 nm light and 0.2/Mm for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  18. Cavity Ring-Down Measurement of Aerosol Optical Properties During the Asian Dust Above Monterey Experiment and DOE Aerosol Intensive Operating Period

    NASA Astrophysics Data System (ADS)

    Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.

    2003-12-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Mm-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  19. An analytical prediction of the oscillation and extinction thresholds of a clarinet

    NASA Astrophysics Data System (ADS)

    Dalmont, Jean-Pierre; Gilbert, Joël; Kergomard, Jean; Ollivier, Sébastien

    2005-11-01

    This paper investigates the dynamic range of the clarinet from the oscillation threshold to the extinction at high pressure level. The use of an elementary model for the reed-mouthpiece valve effect combined with a simplified model of the pipe assuming frequency independent losses (Raman's model) allows an analytical calculation of the oscillations and their stability analysis. The different thresholds are shown to depend on parameters related to embouchure parameters and to the absorption coefficient in the pipe. Their values determine the dynamic range of the fundamental oscillations and the bifurcation scheme at the extinction.

  20. SAM 2 Measurements of the Polar Stratospheric Aerosol, volume 2. April 1979 to October 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Steele, H. M.; Hamill, P.

    1982-01-01

    The Stratospheric Aerosol Measurement (SAM) II sensor is abroad the Earth orbiting Nimbus 7 spacecraft proving extinction measurements of the Antarctic and Arctic stratospheric aerosol with a vertical resolution of 1 km. Representative examples and weekly averages of aerosol data and corresponding temperature profiles for the time and place of each SAM II measurement (April 29, 1979, to October 27, 1979) is presented. Contours of aerosol extinction as a function of altitude and longitude or time were plotted and weekly aerosol optical depths were calculated. Seasonal variations and variations in space (altitude and longitude) for both polar regions are easily seen. Typical values of aerosol extinction at the SAM II wavelength of 1.0 micron for the time priod were 1 to 3 x 10 to the -4th power km -1 in the main stratospheric aerosol layer. Optical depths for the stratosphere were about 0.002. Polar stratospheric clouds at altitudes between the tropopause and 20 km were observed during the Antarctic winter at various times and locations. A ready-to-use format containing a representative sample of the second 6 months of data to be used in atmospheric and climatic studies is presented.

  1. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas

    2018-01-01

    This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for different altitudes were determined using the airborne in situ measurements and were compared with the lidar measurements. The investigation of the optical properties shows that on average the airborne-based particle light backscatter coefficient is 50.1 % smaller for 1064 nm, 27.4 % smaller for 532 nm, and 29.5 % smaller for 355 nm than the measurements of the lidar system. These results are quite promising, since in situ measurement-based Mie calculations of the particle light backscattering are scarce and the modeling is quite challenging. In contrast, for the particle light extinction coefficient we found a good agreement. The airborne-based particle light extinction coefficient was just 8.2 % larger for 532 nm and 3 % smaller for 355 nm, for an assumed LR of 55 sr. The particle light extinction coefficient for 1064 nm was derived with a LR of 30 sr. For this wavelength, the airborne-based particle light extinction coefficient is 5.2 % smaller than the lidar measurements. For the first time, the lidar ratio of 30 sr for 1064 nm was determined on the basis of in situ measurements and the LR of 55 sr for 355 and 532 nm wavelength was reproduced for European continental aerosol on the basis of this comparison. Lidar observations and the in situ based aerosol optical properties agree within the uncertainties. However, our observations indicate that a determination of the PNSD for a large size range is important for a reliable modeling of aerosol particle backscattering.

  2. Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique

    NASA Astrophysics Data System (ADS)

    Lv, Lihui; Liu, Wenqing; Zhang, Tianshu; Chen, Zhenyi; Dong, Yunsheng; Fan, Guangqiang; Xiang, Yan; Yao, Yawei; Yang, Nan; Chu, Baolin; Teng, Man; Shu, Xiaowen

    2017-09-01

    Fine particle with diameter <2.5 μm (PM2.5) have important direct and indirect effects on human life and activities. However, the studies of fine particle were limited by the lack of monitoring data obtained with multiple fixed site sampling strategies. Mobile monitoring has provided a means for broad measurement of fine particles. In this research, the potential use of mobile lidar to map the distribution and transport of fine particles was discussed. The spatial and temporal distributions of particle extinction, PM2.5 mass concentration and regional transport flux of fine particle in the planetary boundary layer were investigated with the use of vehicle-based mobile lidar and wind field data from north China. Case studies under different pollution levels in Beijing were presented to evaluate the contribution of regional transport. A vehicle-based mobile lidar system was used to obtain the spatial and temporal distributions of particle extinction in the measurement route. Fixed point lidar and a particulate matter sampler were operated next to each other at the University of Chinese Academy of Science (UCAS) in Beijing to determine the relationship between the particle extinction coefficient and PM2.5 mass concentration. The correlation coefficient (R2) between the particle extinction coefficient and PM2.5 mass concentration was found to be over 0.8 when relative humidity (RH) was less than 90%. A mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, was used to obtain profiles of the horizontal wind speed, wind direction and relative humidity. A vehicle-based mobile lidar technique was applied to estimate transport flux based on the PM2.5 profile and vertical profile of wind data. This method was applicable when hygroscopic growth can be neglected (relatively humidity<90%). Southwest was found to be the main pathway of Beijing during the experiments.

  3. Comparison of [{sup 11}C]choline Positron Emission Tomography With T2- and Diffusion-Weighted Magnetic Resonance Imaging for Delineating Malignant Intraprostatic Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Joe H.; University of Melbourne, Victoria; Lim Joon, Daryl

    2015-06-01

    Purpose: The purpose of this study was to compare the accuracy of [{sup 11}C]choline positron emission tomography (CHOL-PET) with that of the combination of T2-weighted and diffusion-weighted (T2W/DW) magnetic resonance imaging (MRI) for delineating malignant intraprostatic lesions (IPLs) for guiding focal therapies and to investigate factors predicting the accuracy of CHOL-PET. Methods and Materials: This study included 21 patients who underwent CHOL-PET and T2W/DW MRI prior to radical prostatectomy. Two observers manually delineated IPL contours for each scan, and automatic IPL contours were generated on CHOL-PET based on varying proportions of the maximum standardized uptake value (SUV). IPLs identified onmore » prostatectomy specimens defined reference standard contours. The imaging-based contours were compared with the reference standard contours using Dice similarity coefficient (DSC), and sensitivity and specificity values. Factors that could potentially predict the DSC of the best contouring method were analyzed using linear models. Results: The best automatic contouring method, 60% of the maximum SUV (SUV{sub 60}) , had similar correlations (DSC: 0.59) with the manual PET contours (DSC: 0.52, P=.127) and significantly better correlations than the manual MRI contours (DSC: 0.37, P<.001). The sensitivity and specificity values were 72% and 71% for SUV{sub 60}; 53% and 86% for PET manual contouring; and 28% and 92% for MRI manual contouring. The tumor volume and transition zone pattern could independently predict the accuracy of CHOL-PET. Conclusions: CHOL-PET is superior to the combination of T2W/DW MRI for delineating IPLs. The accuracy of CHOL-PET is insufficient for gland-sparing focal therapies but may be accurate enough for focal boost therapies. The transition zone pattern is a new classification that may predict how well CHOL-PET delineates IPLs.« less

  4. Correlations between contouring similarity metrics and simulated treatment outcome for prostate radiotherapy

    NASA Astrophysics Data System (ADS)

    Roach, D.; Jameson, M. G.; Dowling, J. A.; Ebert, M. A.; Greer, P. B.; Kennedy, A. M.; Watt, S.; Holloway, L. C.

    2018-02-01

    Many similarity metrics exist for inter-observer contouring variation studies, however no correlation between metric choice and prostate cancer radiotherapy dosimetry has been explored. These correlations were investigated in this study. Two separate trials were undertaken, the first a thirty-five patient cohort with three observers, the second a five patient dataset with ten observers. Clinical and planning target volumes (CTV and PTV), rectum, and bladder were independently contoured by all observers in each trial. Structures were contoured on T2-weighted MRI and transferred onto CT following rigid registration for treatment planning in the first trial. Structures were contoured directly on CT in the second trial. STAPLE and majority voting volumes were generated as reference gold standard volumes for each structure for the two trials respectively. VMAT treatment plans (78 Gy to PTV) were simulated for observer and gold standard volumes, and dosimetry assessed using multiple radiobiological metrics. Correlations between contouring similarity metrics and dosimetry were calculated using Spearman’s rank correlation coefficient. No correlations were observed between contouring similarity metrics and dosimetry for CTV within either trial. Volume similarity correlated most strongly with radiobiological metrics for PTV in both trials, including TCPPoisson (ρ  =  0.57, 0.65), TCPLogit (ρ  =  0.39, 0.62), and EUD (ρ  =  0.43, 0.61) for each respective trial. Rectum and bladder metric correlations displayed no consistency for the two trials. PTV volume similarity was found to significantly correlate with rectum normal tissue complication probability (ρ  =  0.33, 0.48). Minimal to no correlations with dosimetry were observed for overlap or boundary contouring metrics. Future inter-observer contouring variation studies for prostate cancer should incorporate volume similarity to provide additional insights into dosimetry during analysis.

  5. Internal performance characteristics of short convergent-divergent exhaust nozzles designed by the method of characteristics

    NASA Technical Reports Server (NTRS)

    Krull, H George; Beale, William T

    1956-01-01

    Internal performance data on a short exhaust nozzle designed by the method of characteristics were obtained over a range of pressure ratios from 1.5 to 22. The peak thrust coefficient was not affected by a shortened divergent section, but it occurred at lower pressure ratios due to reduction in expansion ratio. This nozzle contour based on characteristics solution gave higher thrust coefficients than a conical convergent-divergent nozzle of equivalent length. Abrupt-inlet sections permitted a reduction in nozzle length without a thrust-coefficient reduction.

  6. Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk.

    PubMed

    Thomson, David; Boylan, Chris; Liptrot, Tom; Aitkenhead, Adam; Lee, Lip; Yap, Beng; Sykes, Andrew; Rowbottom, Carl; Slevin, Nicholas

    2014-08-03

    The accurate definition of organs at risk (OARs) is required to fully exploit the benefits of intensity-modulated radiotherapy (IMRT) for head and neck cancer. However, manual delineation is time-consuming and there is considerable inter-observer variability. This is pertinent as function-sparing and adaptive IMRT have increased the number and frequency of delineation of OARs. We evaluated accuracy and potential time-saving of Smart Probabilistic Image Contouring Engine (SPICE) automatic segmentation to define OARs for salivary-, swallowing- and cochlea-sparing IMRT. Five clinicians recorded the time to delineate five organs at risk (parotid glands, submandibular glands, larynx, pharyngeal constrictor muscles and cochleae) for each of 10 CT scans. SPICE was then used to define these structures. The acceptability of SPICE contours was initially determined by visual inspection and the total time to modify them recorded per scan. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm created a reference standard from all clinician contours. Clinician, SPICE and modified contours were compared against STAPLE by the Dice similarity coefficient (DSC) and mean/maximum distance to agreement (DTA). For all investigated structures, SPICE contours were less accurate than manual contours. However, for parotid/submandibular glands they were acceptable (median DSC: 0.79/0.80; mean, maximum DTA: 1.5 mm, 14.8 mm/0.6 mm, 5.7 mm). Modified SPICE contours were also less accurate than manual contours. The utilisation of SPICE did not result in time-saving/improve efficiency. Improvements in accuracy of automatic segmentation for head and neck OARs would be worthwhile and are required before its routine clinical implementation.

  7. Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media

    NASA Astrophysics Data System (ADS)

    Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Tan, He-Ping

    2016-11-01

    A rapid computational method called generalized sourced multi-flux method (GSMFM) was developed to simulate outgoing radiative intensities in arbitrary directions at the boundary surfaces of absorbing, emitting, and scattering media which were served as input for the inverse analysis. A hybrid least-square QR decomposition-stochastic particle swarm optimization (LSQR-SPSO) algorithm based on the forward GSMFM solution was developed to simultaneously reconstruct multi-dimensional temperature distribution and absorption and scattering coefficients of the cylindrical participating media. The retrieval results for axisymmetric temperature distribution and non-axisymmetric temperature distribution indicated that the temperature distribution and scattering and absorption coefficients could be retrieved accurately using the LSQR-SPSO algorithm even with noisy data. Moreover, the influences of extinction coefficient and scattering albedo on the accuracy of the estimation were investigated, and the results suggested that the reconstruction accuracy decreased with the increase of extinction coefficient and the scattering albedo. Finally, a non-contact measurement platform of flame temperature field based on the light field imaging was set up to validate the reconstruction model experimentally.

  8. SU-C-BRB-05: Determining the Adequacy of Auto-Contouring Via Probabilistic Assessment of Ensuing Treatment Plan Metrics in Comparison with Manual Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nourzadeh, H; Watkins, W; Siebers, J

    Purpose: To determine if auto-contour and manual-contour—based plans differ when evaluated with respect to probabilistic coverage metrics and biological model endpoints for prostate IMRT. Methods: Manual and auto-contours were created for 149 CT image sets acquired from 16 unique prostate patients. A single physician manually contoured all images. Auto-contouring was completed utilizing Pinnacle’s Smart Probabilistic Image Contouring Engine (SPICE). For each CT, three different 78 Gy/39 fraction 7-beam IMRT plans are created; PD with drawn ROIs, PAS with auto-contoured ROIs, and PM with auto-contoured OARs with the manually drawn target. For each plan, 1000 virtual treatment simulations with different sampledmore » systematic errors for each simulation and a different sampled random error for each fraction were performed using our in-house GPU-accelerated robustness analyzer tool which reports the statistical probability of achieving dose-volume metrics, NTCP, TCP, and the probability of achieving the optimization criteria for both auto-contoured (AS) and manually drawn (D) ROIs. Metrics are reported for all possible cross-evaluation pairs of ROI types (AS,D) and planning scenarios (PD,PAS,PM). Bhattacharyya coefficient (BC) is calculated to measure the PDF similarities for the dose-volume metric, NTCP, TCP, and objectives with respect to the manually drawn contour evaluated on base plan (D-PD). Results: We observe high BC values (BC≥0.94) for all OAR objectives. BC values of max dose objective on CTV also signify high resemblance (BC≥0.93) between the distributions. On the other hand, BC values for CTV’s D95 and Dmin objectives are small for AS-PM, AS-PD. NTCP distributions are similar across all evaluation pairs, while TCP distributions of AS-PM, AS-PD sustain variations up to %6 compared to other evaluated pairs. Conclusion: No significant probabilistic differences are observed in the metrics when auto-contoured OARs are used. The prostate auto-contour needs improvement to achieve clinically equivalent plans.« less

  9. Indices of refraction for the HITRAN compilation

    NASA Technical Reports Server (NTRS)

    Massie, S. T.

    1994-01-01

    Indices of refraction of sulfuric acid solutions, water, and ice, which will become part of the HITRAN database, are discussed. Representative calculations are presented for the sulfate aerosol, to illustrate the broadband spectral features of i.r. aerosol extinction spectra. Values of the sulfuric acid mass density are used in an application of the Lorentz-Lorenz equation, which is used to estimate the sensitivity of extinction coefficients to temperature dependent refractive indices.

  10. Physical and Optical Properties of Falling Snow

    DTIC Science & Technology

    1989-07-01

    ments with those measured with a transmissometer .................................. 19 24. HSS forward-scatter meter used for measuring extinction in...snowfall conditions, the different ge- ometries of the transmission systems and discrep- | 2• a 2 n(a) da ancies in the snow precipitation rate measure ...J0 ments. Bet = Ms. (27) Table 3. Relationships between measured fn(a) mn(a) da extinction coefficient and snow precipita- ion rate . 091 This

  11. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  12. A closer look at the physical and optical properties of gold nanostars: an experimental and computational study

    DOE PAGES

    Tsoulos, T. V.; Han, L.; Weir, J.; ...

    2017-02-22

    A combined experimental and computational study was carried out to design a semi-empirical method to determine the volume, surface area, and extinction coefficients of gold nanostars. The values obtained were confirmed by reconstructing the nanostar 3D topography through high-tilt TEM tomography and introducing the finite elements in COMSOL Multiphysics through which we have also calculated the morphology-dependent extinction coefficient. We have, for the first time, modeled the heat losses of a real, experimentally synthesized nanostar, and found the plasmon resonances to be in excellent agreement with those obtained experimentally. Furthermore, we believe that our approach could substantially improve the applicabilitymore » of this remarkable nanomaterial.« less

  13. A closer look at the physical and optical properties of gold nanostars: an experimental and computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoulos, T. V.; Han, L.; Weir, J.

    A combined experimental and computational study was carried out to design a semi-empirical method to determine the volume, surface area, and extinction coefficients of gold nanostars. The values obtained were confirmed by reconstructing the nanostar 3D topography through high-tilt TEM tomography and introducing the finite elements in COMSOL Multiphysics through which we have also calculated the morphology-dependent extinction coefficient. We have, for the first time, modeled the heat losses of a real, experimentally synthesized nanostar, and found the plasmon resonances to be in excellent agreement with those obtained experimentally. Furthermore, we believe that our approach could substantially improve the applicabilitymore » of this remarkable nanomaterial.« less

  14. Research on the peculiarity of optical parameters of atmospheric aerosol in Guangzhou coastal areas

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Li, Xuebin; Zhang, Wenzhong; Bai, Shiwei; Liu, Qing; Zhu, Wenyue; Weng, Ningquan

    2018-02-01

    The long-term measurement of atmospheric aerosol is constructed via such equipment as visibility meter, optical particle counter, solar radiometer, automatic weather station, aerosol laser radar and aerosol scattering absorption coefficient measurer and so on during the year of 2010 and 2017 in the coastal areas of Guangzhou, China to study the optical parameter characteristics of atmospheric aerosol and establish the aerosol optical parameter mode in such areas. The effects of temperature and humidity on aerosol concentration, extinction and absorption coefficient are analyzed and the statistical characteristics of atmospheric temperature and humidity, visibility, extinction profiles and other parameters in different months are tallied, preliminarily establishing the atmospheric aerosol optical parameter pattern in Guangzhou coastal areas.

  15. Towards molecular design using 2D-molecular contour maps obtained from PLS regression coefficients

    NASA Astrophysics Data System (ADS)

    Borges, Cleber N.; Barigye, Stephen J.; Freitas, Matheus P.

    2017-12-01

    The multivariate image analysis descriptors used in quantitative structure-activity relationships are direct representations of chemical structures as they are simply numerical decodifications of pixels forming the 2D chemical images. These MDs have found great utility in the modeling of diverse properties of organic molecules. Given the multicollinearity and high dimensionality of the data matrices generated with the MIA-QSAR approach, modeling techniques that involve the projection of the data space onto orthogonal components e.g. Partial Least Squares (PLS) have been generally used. However, the chemical interpretation of the PLS-based MIA-QSAR models, in terms of the structural moieties affecting the modeled bioactivity has not been straightforward. This work describes the 2D-contour maps based on the PLS regression coefficients, as a means of assessing the relevance of single MIA predictors to the response variable, and thus allowing for the structural, electronic and physicochemical interpretation of the MIA-QSAR models. A sample study to demonstrate the utility of the 2D-contour maps to design novel drug-like molecules is performed using a dataset of some anti-HIV-1 2-amino-6-arylsulfonylbenzonitriles and derivatives, and the inferences obtained are consistent with other reports in the literature. In addition, the different schemes for encoding atomic properties in molecules are discussed and evaluated.

  16. SU-E-J-109: Accurate Contour Transfer Between Different Image Modalities Using a Hybrid Deformable Image Registration and Fuzzy Connected Image Segmentation Method.

    PubMed

    Yang, C; Paulson, E; Li, X

    2012-06-01

    To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.

  17. An adaptive multi-feature segmentation model for infrared image

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  18. Contour propagation for lung tumor delineation in 4D-CT using tensor-product surface of uniform and non-uniform closed cubic B-splines

    NASA Astrophysics Data System (ADS)

    Jin, Renchao; Liu, Yongchuan; Chen, Mi; Zhang, Sheng; Song, Enmin

    2018-01-01

    A robust contour propagation method is proposed to help physicians delineate lung tumors on all phase images of four-dimensional computed tomography (4D-CT) by only manually delineating the contours on a reference phase. The proposed method models the trajectory surface swept by a contour in a respiratory cycle as a tensor-product surface of two closed cubic B-spline curves: a non-uniform B-spline curve which models the contour and a uniform B-spline curve which models the trajectory of a point on the contour. The surface is treated as a deformable entity, and is optimized from an initial surface by moving its control vertices such that the sum of the intensity similarities between the sampling points on the manually delineated contour and their corresponding ones on different phases is maximized. The initial surface is constructed by fitting the manually delineated contour on the reference phase with a closed B-spline curve. In this way, the proposed method can focus the registration on the contour instead of the entire image to prevent the deformation of the contour from being smoothed by its surrounding tissues, and greatly reduce the time consumption while keeping the accuracy of the contour propagation as well as the temporal consistency of the estimated respiratory motions across all phases in 4D-CT. Eighteen 4D-CT cases with 235 gross tumor volume (GTV) contours on the maximal inhale phase and 209 GTV contours on the maximal exhale phase are manually delineated slice by slice. The maximal inhale phase is used as the reference phase, which provides the initial contours. On the maximal exhale phase, the Jaccard similarity coefficient between the propagated GTV and the manually delineated GTV is 0.881 +/- 0.026, and the Hausdorff distance is 3.07 +/- 1.08 mm. The time for propagating the GTV to all phases is 5.55 +/- 6.21 min. The results are better than those of the fast adaptive stochastic gradient descent B-spline method, the 3D  +  t B-spline method and the diffeomorphic demons method. The proposed method is useful for helping physicians delineate target volumes efficiently and accurately.

  19. Retrieval of atmospheric backscatter and extinction profiles with the aladin airborne demonstrator (A2D)

    NASA Astrophysics Data System (ADS)

    Geiss, Alexander; Marksteiner, Uwe; Lux, Oliver; Lemmerz, Christian; Reitebuch, Oliver; Kanitz, Thomas; Straume-Lindner, Anne Grete

    2018-04-01

    By the end of 2017, the European Space Agency (ESA) will launch the Atmospheric laser Doppler instrument (ALADIN), a direct detection Doppler wind lidar operating at 355 nm. An important tool for the validation and optimization of ALADIN's hardware and data processors for wind retrievals with real atmospheric signals is the ALADIN airborne demonstrator A2D. In order to be able to validate and test aerosol retrieval algorithms from ALADIN, an algorithm for the retrieval of atmospheric backscatter and extinction profiles from A2D is necessary. The A2D is utilizing a direct detection scheme by using a dual Fabry-Pérot interferometer to measure molecular Rayleigh signals and a Fizeau interferometer to measure aerosol Mie returns. Signals are captured by accumulation charge coupled devices (ACCD). These specifications make different steps in the signal preprocessing necessary. In this paper, the required steps to retrieve aerosol optical products, i. e. particle backscatter coefficient βp, particle extinction coefficient αp and lidar ratio Sp from A2D raw signals are described.

  20. [Research on the measurement range of particle size with total light scattering method in vis-IR region].

    PubMed

    Sun, Xiao-gang; Tang, Hong; Dai, Jing-min

    2008-12-01

    The problem of determining the particle size range in the visible-infrared region was studied using the independent model algorithm in the total scattering technique. By the analysis and comparison of the accuracy of the inversion results for different R-R distributions, the measurement range of particle size was determined. Meanwhile, the corrected extinction coefficient was used instead of the original extinction coefficient, which could determine the measurement range of particle size with higher accuracy. Simulation experiments illustrate that the particle size distribution can be retrieved very well in the range from 0. 05 to 18 microm at relative refractive index m=1.235 in the visible-infrared spectral region, and the measurement range of particle size will vary with the varied wavelength range and relative refractive index. It is feasible to use the constrained least squares inversion method in the independent model to overcome the influence of the measurement error, and the inverse results are all still satisfactory when 1% stochastic noise is added to the value of the light extinction.

  1. [1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells.

    PubMed

    Capodilupo, Agostina L; Fabiano, Eduardo; De Marco, Luisa; Ciccarella, Giuseppe; Gigli, Giuseppe; Martinelli, Carmela; Cardone, Antonio

    2016-04-15

    Three new metal-free organic dyes with the [1]benzothieno[3,2-b]benzothiophene (BTBT) π-bridge, having the structure donor-π-acceptor (D-π-A) and labeled as 19, 20 and 21, have been designed and synthesized for application in dye-sensitized solar cells (DSSC). Once the design of the π-acceptor block was fixed, containing the BTBT as the π-bridge and the cyanoacrylic group as the electron acceptor and anchoring unit, we selected three donor units with different electron-donor capacity, in order to assemble new chromophores with high molar extinction coefficients (ε), whose absorption features well reflect the good performance of the final DSSC devices. Starting with the 19 dye, which shows a molar extinction coefficient ε of over 14,000 M(-1) cm(-1) and takes into account the absorption maximun at the longer wavelength, the substitution of the BFT donor unit with the BFA yields a great enhancement of absorptivity (molar extinction coefficient ε > 42,000 M(-1) cm(-1)), until reaching the higher value (ε > 69,000 M(-1) cm(-1)) with the BFPhz donor unit. The good general photovoltaic performances obtained with the three dyes highlight the suitable properties of electron-transport of the BTBT as the π-bridge in organic chromophore for DSSC, making this very cheap and easy to synthesize molecule particularly attractive for efficient and low-cost photovoltaic devices.

  2. Extrinsic extinction cross-section in the multiple acoustic scattering by fluid particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-04-01

    Cross-sections (and their related energy efficiency factors) are physical parameters used in the quantitative analysis of different phenomena arising from the interaction of waves with a particle (or multiple particles). Earlier works with the acoustic scattering theory considered such quadratic (i.e., nonlinear) quantities for a single scatterer, although a few extended the formalism for a pair of scatterers but were limited to the scattering cross-section only. Therefore, the standard formalism applied to viscous particles is not suitable for the complete description of the cross-sections and energy balance of the multiple-particle system because both absorption and extinction phenomena arise during the multiple scattering process. Based upon the law of the conservation of energy, this work provides a complete comprehensive analysis for the extrinsic scattering, absorption, and extinction cross-sections (i.e., in the far-field) of a pair of viscous scatterers of arbitrary shape, immersed in a nonviscous isotropic fluid. A law of acoustic extinction taking into consideration interparticle effects in wave propagation is established, which constitutes a generalized form of the optical theorem in multiple scattering. Analytical expressions for the scattering, absorption, and extinction cross-sections are derived for plane progressive waves with arbitrary incidence. The mathematical expressions are formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. The analysis shows that the multiple scattering cross-section depends upon the expansion coefficients of both scatterers in addition to an interference factor that depends on the interparticle distance. However, the extinction cross-section depends on the expansion coefficients of the scatterer located in a particular system of coordinates, in addition to the interference term. Numerical examples illustrate the analysis for two viscous fluid circular cylindrical cross-sections immersed in a non-viscous fluid. Computations for the (non-dimensional) scattering, absorption, and extinction cross-section factors are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes, and the physical properties of the particles. A symmetric behavior is observed for the dimensionless multiple scattering cross-section, while asymmetries arise for both the dimensionless absorption and extinction cross-sections with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of cross-section and energy efficiency factors in multiple acoustic scattering of plane waves of arbitrary incidence by a pair of scatterers. The results can be used as a priori information in the direct or inverse characterization of multiple scattering systems such as acoustically engineered fluid metamaterials with reconfigurable periodicities, cloaking devices, liquid crystals, and other applications.

  3. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study

    PubMed Central

    2014-01-01

    Background Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Methods Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Results Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants’ pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. Conclusions MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies. PMID:24969509

  4. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study.

    PubMed

    D'Souza, Leah; Jaswal, Jasbir; Chan, Francis; Johnson, Marjorie; Tay, Keng Yeow; Fung, Kevin; Palma, David

    2014-06-26

    Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants' pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies.

  5. Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

    NASA Technical Reports Server (NTRS)

    Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.

    2012-01-01

    The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

  6. Goodness of fit of probability distributions for sightings as species approach extinction.

    PubMed

    Vogel, Richard M; Hosking, Jonathan R M; Elphick, Chris S; Roberts, David L; Reed, J Michael

    2009-04-01

    Estimating the probability that a species is extinct and the timing of extinctions is useful in biological fields ranging from paleoecology to conservation biology. Various statistical methods have been introduced to infer the time of extinction and extinction probability from a series of individual sightings. There is little evidence, however, as to which of these models provide adequate fit to actual sighting records. We use L-moment diagrams and probability plot correlation coefficient (PPCC) hypothesis tests to evaluate the goodness of fit of various probabilistic models to sighting data collected for a set of North American and Hawaiian bird populations that have either gone extinct, or are suspected of having gone extinct, during the past 150 years. For our data, the uniform, truncated exponential, and generalized Pareto models performed moderately well, but the Weibull model performed poorly. Of the acceptable models, the uniform distribution performed best based on PPCC goodness of fit comparisons and sequential Bonferroni-type tests. Further analyses using field significance tests suggest that although the uniform distribution is the best of those considered, additional work remains to evaluate the truncated exponential model more fully. The methods we present here provide a framework for evaluating subsequent models.

  7. [Light scattering extinction properties of atmospheric particle and pollution characteristics in hazy weather in Hangzhou].

    PubMed

    Xu, Chang; Ye, Hui; Shen, Jian-Dong; Sun, Hong-Liang; Hong, Sheng-Mao; Jiao, Li; Huang, Kan

    2014-12-01

    In order to evaluate the influence of particle scattering on visibility, light scattering coefficient, particle concentrations and meteorological factor were simultaneously monitored from July 2011 to June 2012 in Hangzhou. Daily scattering coefficients ranged from 108.4 to 1 098.1 Mm(-1), with an annual average concentration of 428.6 Mm(-1) ± 200.2 Mm(-1). Seasonal variation of scattering coefficients was significant, with the highest concentrations observed in autumn and winter and the lowest in summer. It was found there were two peaks for the average diurnal variations of the scattering coefficient, which could be observed at 08:00 and 21:00. The scattering efficiencies of PM2.5 and PM10 were 7.6 m2 x g(-1) and 4.4 m2 x g(-1), respectively. The particle scattering was about 90.2 percent of the total light extinction. The scattering coefficients were 684.4 Mm(-1) ± 218.1 Mm(-1) and 1 095.4 Mm(-1) ± 397.7 Mm(-1) in hazy and heavy hazy days, respectively, which were 2.6 and 4.2 times as high as in non-hazy weather, indicating that particle scattering is the main factor for visibility degradation and the occurrence of hazy weather in Hangzhou.

  8. Analytic integration of real-virtual counterterms in NNLO jet cross sections II

    NASA Astrophysics Data System (ADS)

    Bolzoni, Paolo; Moch, Sven-Olaf; Somogyi, Gábor; Trócsányi, Zoltán

    2009-08-01

    We present analytic expressions of all integrals required to complete the explicit evaluation of the real-virtual integrated counterterms needed to define a recently proposed subtraction scheme for jet cross sections at next-to-next-to-leading order in QCD. We use the Mellin-Barnes representation of these integrals in 4 - 2epsilon dimensions to obtain the coefficients of their Laurent expansions around epsilon = 0. These coefficients are given by linear combinations of multidimensional Mellin-Barnes integrals. We compute the coefficients of such expansions in epsilon both numerically and analytically by complex integration over the Mellin-Barnes contours.

  9. An interdisciplinary study of the estaurine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E.; Hollman, R.; Alexander, J.; Nuzzi, R.

    1974-01-01

    ERTS-1 photographic data products have been analyzed using additive color viewing and electronic image analysis techniques. Satellite data were compared to water sample data collected simultaneously with the data of ERTS-1 coverage in New York Bight. Prediction of the absolute value of total suspended particles can be made using composites of positives of MSS bands 5 and 6 which have been precisely made using the step wedge supplied on the imagery. Predictions of the relative value of the extinction coefficient can be made using bands 4 and 5. Thematic charts of total suspended particles (particles per litre) and extinction coefficient provide scientists conducting state and federal water sampling programs in New York Bight with data which improves the performance of these programs.

  10. Theory of invasion extinction dynamics in minimal food webs

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Mitarai, Namiko; Sneppen, Kim

    2018-02-01

    When food webs are exposed to species invasion, secondary extinction cascades may be set off. Although much work has gone into characterizing the structure of food webs, systematic predictions on their evolutionary dynamics are still scarce. Here we present a theoretical framework that predicts extinctions in terms of an alternating sequence of two basic processes: resource depletion by or competitive exclusion between consumers. We first propose a conceptual invasion extinction model (IEM) involving random fitness coefficients. We bolster this IEM by an analytical, recursive procedure for calculating idealized extinction cascades after any species addition and simulate the long-time evolution. Our procedure describes minimal food webs where each species interacts with only a single resource through the generalized Lotka-Volterra equations. For such food webs ex- tinction cascades are determined uniquely and the system always relaxes to a stable steady state. The dynamics and scale invariant species life time resemble the behavior of the IEM, and correctly predict an upper limit for trophic levels as observed in the field.

  11. Theory of invasion extinction dynamics in minimal food webs.

    PubMed

    Haerter, Jan O; Mitarai, Namiko; Sneppen, Kim

    2018-02-01

    When food webs are exposed to species invasion, secondary extinction cascades may be set off. Although much work has gone into characterizing the structure of food webs, systematic predictions on their evolutionary dynamics are still scarce. Here we present a theoretical framework that predicts extinctions in terms of an alternating sequence of two basic processes: resource depletion by or competitive exclusion between consumers. We first propose a conceptual invasion extinction model (IEM) involving random fitness coefficients. We bolster this IEM by an analytical, recursive procedure for calculating idealized extinction cascades after any species addition and simulate the long-time evolution. Our procedure describes minimal food webs where each species interacts with only a single resource through the generalized Lotka-Volterra equations. For such food webs ex- tinction cascades are determined uniquely and the system always relaxes to a stable steady state. The dynamics and scale invariant species life time resemble the behavior of the IEM, and correctly predict an upper limit for trophic levels as observed in the field.

  12. Seasonal variability of dust in the eastern Mediterranean (Athens, Greece), through lidar measurements in the frame of EARLINET (2002-2012)

    NASA Astrophysics Data System (ADS)

    Kokkalis, Panos; Papayannis, Alex; Tsaknakis, George; Mamouri, RodElise; Argyrouli, Athina

    2013-04-01

    Aerosols play an important role in earth's atmospheric radiation balance, which is enhanced in areas where dust is mostly present (e.g. the Mediterranean region), as in the case of the city of Athens. The focus of this paper is to provide a comprehensive analysis of the seasonal variability of optical and geometrical properties, as well as the mass concentration of Saharan dust over the city of Athens, Greece, for a 10-years time period: 2002-2012 based on the laser remote sensing (lidar) technique. More specifically, the aerosol optical properties concern the extinction and the backscatter coefficient, as well as the lidar ratio, while the geometrical properties concern the dust layer thickness and center of mass. The calculations of the aerosol extinction coefficient and of the so-called lidar ratio (defined as the ratio of the aerosol extinction coefficient over the aerosol backscatter coefficient) are made by using the Raman lidar technique, only under cloud-free conditions. The calculation of the dust mass concentration was retrieved by a applying a conversion factor (the so-called dust extinction cross section; mean value of the order of 0.64 m2g-1) and by combining sun photometric measurements and modeled dust loading values. Our data analysis was based on monthly-mean values, and only in time periods under cloud-free conditions and for lidar signals with signal to noise ratios (SNR) greater than 1.5 under dusty conditions. The mean value of the lidar ratio at 355 nm was found to be 62±20sr, while the mean dust mass concentration was of the order of 240 μgm-3. The data analyzed were obtained by systematic aerosol lidar measurements performed by the EOLE Raman lidar system of the National Technical University of Athens (NTUA), in the frame of the European Aerosol Research Lidar network (EARLINET). EOLE is able to provide the vertical profiles of the aerosol backscatter (at 355, 532, 1064 nm) and extinction coefficients (at 355 and 532 nm), as well as the water vapor mixing ratio, from about 700 m up to 10000 m, with high temporal (< 5 min.) and spatial (7.5 m) resolution. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II - Investing in knowledge society through the European Social Fund. This research was also financially supported by ITARS (www.itars.net), European Union Seventh Framework Programme (FP7/2007-2013): People, ITN Marie Curie Actions Programme (2012-2016) under grant agreement no 289923.

  13. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning.

    PubMed

    Doshi, T; Wilson, C; Paterson, C; Lamb, C; James, A; MacKenzie, K; Soraghan, J; Petropoulakis, L; Di Caterina, G; Grose, D

    2017-01-01

    To carry out statistical validation of a newly developed magnetic resonance imaging (MRI) auto-contouring software tool for gross tumour volume (GTV) delineation in head and neck tumours to assist in radiotherapy planning. Axial MRI baseline scans were obtained for 10 oropharyngeal and laryngeal cancer patients. GTV was present on 102 axial slices and auto-contoured using the modified fuzzy c-means clustering integrated with the level set method (FCLSM). Peer-reviewed (C-gold) manual contours were used as the reference standard to validate auto-contoured GTVs (C-auto) and mean manual contours (C-manual) from two expert clinicians (C1 and C2). Multiple geometric metrics, including the Dice similarity coefficient (DSC), were used for quantitative validation. A DSC≥0.7 was deemed acceptable. Inter- and intra-variabilities among the manual contours were also validated. The two-dimensional contours were then reconstructed in three dimensions for GTV volume calculation, comparison and three-dimensional visualisation. The mean DSC between C-gold and C-auto was 0.79. The mean DSC between C-gold and C-manual was 0.79 and that between C1 and C2 was 0.80. The average time for GTV auto-contouring per patient was 8 min (range 6-13 min; mean 45 s per axial slice) compared with 15 min (range 6-23 min; mean 88 s per axial slice) for C1. The average volume concordance between C-gold and C-auto volumes was 86.51% compared with 74.16% between C-gold and C-manual. The average volume concordance between C1 and C2 volumes was 86.82%. This newly designed MRI-based auto-contouring software tool shows initial acceptable results in GTV delineation of oropharyngeal and laryngeal tumours using FCLSM. This auto-contouring software tool may help reduce inter- and intra-variability and can assist clinical oncologists with time-consuming, complex radiotherapy planning. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. Gray matter segmentation of the spinal cord with active contours in MR images.

    PubMed

    Datta, Esha; Papinutto, Nico; Schlaeger, Regina; Zhu, Alyssa; Carballido-Gamio, Julio; Henry, Roland G

    2017-02-15

    Fully or partially automated spinal cord gray matter segmentation techniques for spinal cord gray matter segmentation will allow for pivotal spinal cord gray matter measurements in the study of various neurological disorders. The objective of this work was multi-fold: (1) to develop a gray matter segmentation technique that uses registration methods with an existing delineation of the cord edge along with Morphological Geodesic Active Contour (MGAC) models; (2) to assess the accuracy and reproducibility of the newly developed technique on 2D PSIR T1 weighted images; (3) to test how the algorithm performs on different resolutions and other contrasts; (4) to demonstrate how the algorithm can be extended to 3D scans; and (5) to show the clinical potential for multiple sclerosis patients. The MGAC algorithm was developed using a publicly available implementation of a morphological geodesic active contour model and the spinal cord segmentation tool of the software Jim (Xinapse Systems) for initial estimate of the cord boundary. The MGAC algorithm was demonstrated on 2D PSIR images of the C2/C3 level with two different resolutions, 2D T2* weighted images of the C2/C3 level, and a 3D PSIR image. These images were acquired from 45 healthy controls and 58 multiple sclerosis patients selected for the absence of evident lesions at the C2/C3 level. Accuracy was assessed though visual assessment, Hausdorff distances, and Dice similarity coefficients. Reproducibility was assessed through interclass correlation coefficients. Validity was assessed through comparison of segmented gray matter areas in images with different resolution for both manual and MGAC segmentations. Between MGAC and manual segmentations in healthy controls, the mean Dice similarity coefficient was 0.88 (0.82-0.93) and the mean Hausdorff distance was 0.61 (0.46-0.76) mm. The interclass correlation coefficient from test and retest scans of healthy controls was 0.88. The percent change between the manual segmentations from high and low-resolution images was 25%, while the percent change between the MGAC segmentations from high and low resolution images was 13%. Between MGAC and manual segmentations in MS patients, the average Dice similarity coefficient was 0.86 (0.8-0.92) and the average Hausdorff distance was 0.83 (0.29-1.37) mm. We demonstrate that an automatic segmentation technique, based on a morphometric geodesic active contours algorithm, can provide accurate and precise spinal cord gray matter segmentations on 2D PSIR images. We have also shown how this automated technique can potentially be extended to other imaging protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  16. International Laser Radar Conference (16th) held at the Massachusetts Institute of Technology, Cambridge, Massachusetts on 20-24 July 1992. Part 1

    DTIC Science & Technology

    1993-07-24

    orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman...to a common aerosol parameter (e.g., backscatter coefficients at selected CO2 wavelengths), have all led to similar estimated values of that...increase only as -r 2 . During this phase, therefore, the backscatter coefficient of a coagulating aerosol population decreases as -r- The maximum

  17. Measurement of tropospheric aerosol in São Paulo area using a new upgraded Raman LIDAR system

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Rodrigues, Patrícia F.; da Silva Lopes, Fábio Juliano; Bourayou, Riad

    2012-11-01

    Elastic backscatter LIDAR systems have been used to determine aerosol profile concentration in several areas such as weather, pollution and air quality monitoring. In order to determine the aerosol extinction and backscattering profiles, the Klett inversion method is largely used, but this method suffers from lack of information since there are two unknown variables to be determined using only one measured LIDAR signal, and assumption of the LIDAR ratio (the relation between the extinction and backscattering coefficients) is needed. When a Raman LIDAR system is used, the inelastic backscattering signal is affected by aerosol extinction but not by aerosol backscatter, which allows this LIDAR to uniquely determine extinction and backscattering coefficients without any assumptions or any collocated instruments. The MSP-LIDAR system, set-up in a highly dense suburban area in the city of São Paulo, has been upgraded to a Raman LIDAR, and in its actual 6-channel configuration allows it to monitor elastic backscatter at 355 and 532 nm together with nitrogen and water vapor Raman backscatters at 387nm and 608 nm and 408nm and 660 nm, respectively. Thus, the measurements of aerosol backscattering, extinction coefficients and water vapor mixing ratio in the Planetary Boundary Layer (PBL) are becoming available. The system will provide the important meteorological parameters such as Aerosol Optical Depth (AOD) and will be used for the study of aerosol variations in lower troposphere over the city of São Paulo, air quality monitoring and for estimation of humidity impact on the aerosol optical properties, without any a priori assumption. This study will present the first results obtained with this upgraded LIDAR system, demonstrating the high quality of obtained aerosol and water vapor data. For that purpose, we compared the data obtained with the new MSP-Raman LIDAR with a mobile Raman LIDAR collocated at the Center for Lasers and Applications, Nuclear and Energy Research Institute in São Paulo and radiosonde data from Campo de Marte Airport, in São Paulo.

  18. Multi-Focus Image Fusion Based on NSCT and NSST

    NASA Astrophysics Data System (ADS)

    Moonon, Altan-Ulzii; Hu, Jianwen

    2015-12-01

    In this paper, a multi-focus image fusion algorithm based on the nonsubsampled contourlet transform (NSCT) and the nonsubsampled shearlet transform (NSST) is proposed. The source images are first decomposed by the NSCT and NSST into low frequency coefficients and high frequency coefficients. Then, the average method is used to fuse low frequency coefficient of the NSCT. To obtain more accurate salience measurement, the high frequency coefficients of the NSST and NSCT are combined to measure salience. The high frequency coefficients of the NSCT with larger salience are selected as fused high frequency coefficients. Finally, the fused image is reconstructed by the inverse NSCT. We adopt three metrics (Q AB/F , Q e and Q w ) to evaluate the quality of fused images. The experimental results demonstrate that the proposed method outperforms other methods. It retains highly detailed edges and contours.

  19. Automatic liver contouring for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Kapp, Daniel S.; Xing, Lei

    2015-09-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems. The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours. The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group are on an average 2.15-2.57%, 2.96-3.23%, and 91.01-97.21% for the CT images with normal appearing livers, 2.28-3.62%, 3.15-4.33%, and 86.14-93.53% for the CT images with hepatocellular carcinoma or liver metastases, and 2.37-3.96%, 3.25-4.57%, and 82.23-89.44% for the 4D-CT images also with hepatocellular carcinoma or liver metastases, respectively. The proposed three-step method can achieve efficient automatic liver contouring for planning CT and 4D-CT images with follow-up treatment planning and should find widespread applications in future treatment planning systems.

  20. The Development of a Tactical Dual-Wavelength Nephelometer.

    DTIC Science & Technology

    1982-11-24

    Instrument Layout 50 4.5 Optical Systems 53 4.6 Electronic Systems 56 4.6.1 Transmitter System 56 4.6.2 Receiver Systems 58 5. R&D TEST AND ACCEPTANCE PLAN 61... PLAN , 136 HSS-B-086, 10 DEC1981. APPENDIX B ARVIN CALSPAN DOCUMENTATION OF 155 EXTINCTION AND PARTICLE SIZE MEASUREMENTS FOR CHAMBER TESTS OF MAY 1982. 6...121 FP’enn Aerosol Models. 8.9 Aerosol Extinction Coefficients at Two Wavelenghts 129 and their Ratio for Four Deirmendjian Aerosol Models. 10

  1. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-Vis.

    PubMed

    Sikder, Mithun; Lead, Jamie R; Chandler, G Thomas; Baalousha, Mohammed

    2018-03-15

    Detection and quantification of engineered nanoparticles (NPs) in environmental systems is challenging and requires sophisticated analytical equipment. Furthermore, dissolution is an important environmental transformation process for silver nanoparticles (AgNPs) which affects the size, speciation and concentration of AgNPs in natural water systems. Herein, we present a simple approach for the detection, quantification and measurement of dissolution of PVP-coated AgNPs (PVP-AgNPs) based on monitoring their optical properties (extinction spectra) using UV-vis spectroscopy. The dependence of PVP-AgNPs extinction coefficient (ɛ) and maximum absorbance wavelength (λ max ) on NP size was experimentally determined. The concentration, size, and extinction spectra of PVP-AgNPs were characterized during dissolution in 30ppt synthetic seawater. AgNPs concentration was determined as the difference between the total and dissolved Ag concentrations measured by inductively coupled plasma-mass spectroscopy (ICP-MS); extinction spectra of PVP-AgNPs were monitored by UV-vis; and size evolution was monitored by atomic force microscopy (AFM) over a period of 96h. Empirical equations for the dependence of maximum absorbance wavelength (λ max ) and extinction coefficient (ɛ) on NP size were derived. These empirical formulas were then used to calculate the size and concentration of PVP-AgNPs, and dissolved Ag concentration released from PVP-AgNPs in synthetic seawater at variable particle concentrations (i.e. 25-1500μgL -1 ) and in natural seawater at particle concentration of 100μgL -1 . These results suggest that UV-vis can be used as an easy and quick approach for detection and quantification (size and concentration) of sterically stabilized PVP-AgNPs from their extinction spectra. This approach can also be used to monitor the release of Ag from PVP-AgNPs and the concurrent NP size change. Finally, in seawater, AgNPs dissolve faster and to a higher extent with the decrease in NP concentration toward environmentally relevant concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Estimation of desert-dust-related ice nuclei profiles from polarization lidar

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Nisantzi, Argyro; Hadjimitsis, Diofantos; Ansmann, Albert

    2015-04-01

    This paper presents a methodology based on the use of active remote sensing techniques for the estimation of ice nuclei concentrations (INC) for desert dust plumes. Although this method can be applied to other aerosol components, in this study we focus on desert dust. The method makes use of the polarization lidar technique for the separation of dust and non-dust contributions to the particle backscatter and extinction coefficients. The profile of the dust extinction coefficient is converted to APC280 (dust particles with radius larger than 280 nm) and, in a second step, APC280 is converted to INC by means of an APC-INC relationship from the literature. The observed close relationship between dust extinction at 500 nm and APC280 is the key to a successful INC retrieval. The correlation between dust extinction coefficient and APC280 is studied by means of AERONET sun/sky photometer at Morocco, Cape Verde, Barbados, and Cyprus, during situations dominated by desert dust outbreaks. In the present study, polarization lidar observations of the EARLINET (European Aerosol Research Lidar Network) lidar at the Cyprus University of Technology (CUT), Limassol (34.7o N, 33o E), Cyprus were used together with spaceborne lidar observations during CALIPSO satellite overpasses to demonstrate the potential of the new INC retrieval method. A good agreement between the CALIOP (Cloud Aerosol Lidar with Orthogonal Polarization) and our CUT lidar observations regarding the retrieval of dust extinction coefficient, APC280, and INC profiles were found and corroborate the potential of CALIOP to provide 3-D global desert-dust-related INC data sets. In the next step, efforts should be undertaken towards the establishment of a global, height-resolved INC climatology for desert dust plumes. Realistic global INC distributions are required for an improved estimation of aerosol effects on cloud formation and the better quantification of the indirect aerosol effect on climate. Acknowledgements. The authors thank the CUT Remote Sensing Laboratory for their support. The research leading to these results has also received scientific support from the European Union Seventh Framework Programme (FP7/2011-2015) under grant agreement no. 262254 (ACTRIS project). We acknowledge funding from the EU FP7-ENV-2013 programme "impact of Biogenic vs. Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding" (BACCHUS), project no. 603445. We are grateful to AERONET for high-quality sun/sky photometer measurements in Cyprus, Morocco, Cape Verde, and Barbados. We thank the NASA Langley Research Center and the CALIPSO science team for the constant effort and improvement of then CALIPSO data.

  3. Modeling systematic errors: polychromatic sources of Beer-Lambert deviations in HPLC/UV and nonchromatographic spectrophotometric assays.

    PubMed

    Galli, C

    2001-07-01

    It is well established that the use of polychromatic radiation in spectrophotometric assays leads to excursions from the Beer-Lambert limit. This Note models the resulting systematic error as a function of assay spectral width, slope of molecular extinction coefficient, and analyte concentration. The theoretical calculations are compared with recent experimental results; a parameter is introduced which can be used to estimate the magnitude of the systematic error in both chromatographic and nonchromatographic spectrophotometric assays. It is important to realize that the polychromatic radiation employed in common laboratory equipment can yield assay errors up to approximately 4%, even at absorption levels generally considered 'safe' (i.e. absorption <1). Thus careful consideration of instrumental spectral width, analyte concentration, and slope of molecular extinction coefficient is required to ensure robust analytical methods.

  4. Effects of annealing on the optical, structural, and chemical properties of TiO2 and MgF2 thin films prepared by plasma ion-assisted deposition.

    PubMed

    Woo, Seouk-Hoon; Hwangbo, Chang Kwon

    2006-03-01

    Effects of thermal annealing at 400 degrees C on the optical, structural, and chemical properties of TiO2 single-layer, MgF2 single-layer, and TiO2/MgF2 narrow-bandpass filters deposited by conventional electron-beam evaporation (CE) and plasma ion-assisted deposition (PIAD) were investigated. In the case of TiO2 films, the results show that the annealing of both CE and PIAD TiO2 films increases the refractive index slightly and the extinction coefficient and surface roughness greatly. Annealing decreases the thickness of CE TiO2 films drastically, whereas it does not vary that of PIAD TiO2 films. For PIAD MgF2 films, annealing increases the refractive index and decreases the extinction coefficient drastically. An x-ray photoelectron spectroscopy analysis suggests that an increase in the refractive index and a decrease in the extinction coefficient for PIAD MgF2 films after annealing may be related to the enhanced concentration of MgO in the annealed PIAD MgF2 films and the changes in the chemical bonding states of Mg 2p, F 1s, and O is. It is found that (TiO2/MgF2) multilayer filters, consisting of PIAD TiO2 and CE MgF2 films, are as deposited without microcracks and are also thermally stable after annealing.

  5. Polarization lidar for atmospheric monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Qiaojun; Wu, Chengxuan; Yuk Sun Cheng, Andrew; Wang, Zhangjun; Meng, Xiangqian; Chen, Chao; Li, Xianxin; Liu, Xingtao; Zhang, Hao; Zong, Fangyi

    2018-04-01

    Aerosol plays an important role in global climate and weather changes. Polarization lidar captures parallel and perpendicular signals from atmosphere to research aerosols. The lidar system we used has three emission wavelengths and could obtain the atmospheric aerosol extinction coefficient, backscattering coefficient and depolarization ratio. In this paper, the design of the lidar is described. The methods of data acquisition and inversion are given. Some recent results are presented.

  6. Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals

    NASA Astrophysics Data System (ADS)

    Chen, Youhua; Peng, Shushi

    2017-03-01

    Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.

  7. Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals.

    PubMed

    Chen, Youhua; Peng, Shushi

    2017-03-16

    Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.

  8. SU-E-J-124: FDG PET Metrics Analysis in the Context of An Adaptive PET Protocol for Node Positive Gynecologic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Light, K

    2014-06-01

    Purpose: To compare PET extracted metrics and investigate the role of a gradient-based PET segmentation tool, PET Edge (MIM Software Inc., Cleveland, OH), in the context of an adaptive PET protocol for node positive gynecologic cancer patients. Methods: An IRB approved protocol enrolled women with gynecological, PET visible malignancies. A PET-CT was obtained for treatment planning prescribed to 45–50.4Gy with a 55– 70Gy boost to the PET positive nodes. An intra-treatment PET-CT was obtained between 30–36Gy, and all volumes re-contoured. Standard uptake values (SUVmax, SUVmean, SUVmedian) and GTV volumes were extracted from the clinician contoured GTVs on the pre- andmore » intra-treament PET-CT for primaries and nodes and compared with a two tailed Wilcoxon signed-rank test. The differences between primary and node GTV volumes contoured in the treatment planning system and those volumes generated using PET Edge were also investigated. Bland-Altman plots were used to describe significant differences between the two contouring methods. Results: Thirteen women were enrolled in this study. The median baseline/intra-treatment primary (SUVmax, mean, median) were (30.5, 9.09, 7.83)/( 16.6, 4.35, 3.74), and nodes were (20.1, 4.64, 3.93)/( 6.78, 3.13, 3.26). The p values were all < 0.001. The clinical contours were all larger than the PET Edge generated ones, with mean difference of +20.6 ml for primary, and +23.5 ml for nodes. The Bland-Altman revealed changes between clinician/PET Edge contours to be mostly within the margins of the coefficient of variability. However, there was a proportional trend, i.e. the larger the GTV, the larger the clinical contours as compared to PET Edge contours. Conclusion: Primary and node SUV values taken from the intratreament PET-CT can be used to assess the disease response and to design an adaptive plan. The PET Edge tool can streamline the contouring process and lead to smaller, less user-dependent contours.« less

  9. Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions.

    PubMed

    Reichardt, J; Hess, M; Macke, A

    2000-04-20

    Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.

  10. Airborne Multiwavelength High Spectral Resolution Lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US

    DOE PAGES

    Muller, Detlef; Hostetler, Chris A.; Ferrare, R. A.; ...

    2014-10-10

    Here, we present measurements acquired by the world's first airborne 3 backscatter (β) + 2 extinction (α) High Spectral Resolution Lidar (HSRL-2). HSRL-2 measures particle backscatter coefficients at 355, 532, and 1064 nm, and particle extinction coefficients at 355 and 532 nm. The instrument has been developed by the NASA Langley Research Center. The instrument was operated during Phase 1 of the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed pollution outflow from the northeastern coast of the US out over the western Atlantic Ocean. Lidar ratios were 50–60 sr at 355 nm and 60–70more » sr at 532 nm. Extinction-related Ångström exponents were on average 1.2–1.7, indicating comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieved particle effective radii of approximately 0.2 μm, which is in agreement with the large Angstrom exponents. We find good agreement with particle size parameters obtained from coincident in situ measurements carried out with the DOE Gulfstream-1 aircraft.« less

  11. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. I. Analysis of aerosol extinction spectra from the AMON and SALOMON balloonborne spectrometers

    NASA Astrophysics Data System (ADS)

    Berthet, Gwenaël; Renard, Jean-Baptiste; Brogniez, Colette; Robert, Claude; Chartier, Michel; Pirre, Michel

    2002-12-01

    Aerosol extinction coefficients have been derived in the 375-700-nm spectral domain from measurements in the stratosphere since 1992, at night, at mid- and high latitudes from 15 to 40 km, by two balloonborne spectrometers, Absorption par les Minoritaires Ozone et NOx (AMON) and Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON). Log-normal size distributions associated with the Mie-computed extinction spectra that best fit the measurements permit calculation of integrated properties of the distributions. Although measured extinction spectra that correspond to background aerosols can be reproduced by the Mie scattering model by use of monomodal log-normal size distributions, each flight reveals some large discrepancies between measurement and theory at several altitudes. The agreement between measured and Mie-calculated extinction spectra is significantly improved by use of bimodal log-normal distributions. Nevertheless, neither monomodal nor bimodal distributions permit correct reproduction of some of the measured extinction shapes, especially for the 26 February 1997 AMON flight, which exhibited spectral behavior attributed to particles from a polar stratospheric cloud event.

  12. Broadband computation of the scattering coefficients of infinite arbitrary cylinders.

    PubMed

    Blanchard, Cédric; Guizal, Brahim; Felbacq, Didier

    2012-07-01

    We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward. The prescription for constructing such a numerical tool is provided in great detail. The method is validated by computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by employing the proposed technique.

  13. SU-E-J-208: Fast and Accurate Auto-Segmentation of Abdominal Organs at Risk for Online Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, V; Wang, Y; Romero, A

    2014-06-01

    Purpose: Various studies have demonstrated that online adaptive radiotherapy by real-time re-optimization of the treatment plan can improve organs-at-risk (OARs) sparing in the abdominal region. Its clinical implementation, however, requires fast and accurate auto-segmentation of OARs in CT scans acquired just before each treatment fraction. Autosegmentation is particularly challenging in the abdominal region due to the frequently observed large deformations. We present a clinical validation of a new auto-segmentation method that uses fully automated non-rigid registration for propagating abdominal OAR contours from planning to daily treatment CT scans. Methods: OARs were manually contoured by an expert panel to obtain groundmore » truth contours for repeat CT scans (3 per patient) of 10 patients. For the non-rigid alignment, we used a new non-rigid registration method that estimates the deformation field by optimizing local normalized correlation coefficient with smoothness regularization. This field was used to propagate planning contours to repeat CTs. To quantify the performance of the auto-segmentation, we compared the propagated and ground truth contours using two widely used metrics- Dice coefficient (Dc) and Hausdorff distance (Hd). The proposed method was benchmarked against translation and rigid alignment based auto-segmentation. Results: For all organs, the auto-segmentation performed better than the baseline (translation) with an average processing time of 15 s per fraction CT. The overall improvements ranged from 2% (heart) to 32% (pancreas) in Dc, and 27% (heart) to 62% (spinal cord) in Hd. For liver, kidneys, gall bladder, stomach, spinal cord and heart, Dc above 0.85 was achieved. Duodenum and pancreas were the most challenging organs with both showing relatively larger spreads and medians of 0.79 and 2.1 mm for Dc and Hd, respectively. Conclusion: Based on the achieved accuracy and computational time we conclude that the investigated auto-segmentation method overcomes an important hurdle to the clinical implementation of online adaptive radiotherapy. Partial funding for this work was provided by Accuray Incorporated as part of a research collaboration with Erasmus MC Cancer Institute.« less

  14. Theoretical Study of near Neutrality. II. Effect of Subdivided Population Structure with Local Extinction and Recolonization

    PubMed Central

    Ohta, T.

    1992-01-01

    There are several unsolved problems concerning the model of nearly neutral mutations. One is the interaction of subdivided population structure and weak selection that spatially fluctuates. The model of nearly neutral mutations whose selection coefficient spatially fluctuates has been studied by adopting the island model with periodic extinction-recolonization. Both the number of colonies and the migration rate play significant roles in determining mutants' behavior, and selection is ineffective when the extinction-recolonization is frequent with low migration rate. In summary, the number of mutant substitutions decreases and the polymorphism increases by increasing the total population size, and/or decreasing the extinction-recolonization rate. However, by increasing the total size of the population, the mutant substitution rate does not become as low when compared with that in panmictic populations, because of the extinction-recolonization, especially when the migration rate is limited. It is also found that the model satisfactorily explains the contrasting patterns of molecular polymorphisms observed in sibling species of Drosophila, including heterozygosity, proportion of polymorphism and fixation index. PMID:1582566

  15. Brain tumor segmentation with Vander Lugt correlator based active contour.

    PubMed

    Essadike, Abdelaziz; Ouabida, Elhoussaine; Bouzid, Abdenbi

    2018-07-01

    The manual segmentation of brain tumors from medical images is an error-prone, sensitive, and time-absorbing process. This paper presents an automatic and fast method of brain tumor segmentation. In the proposed method, a numerical simulation of the optical Vander Lugt correlator is used for automatically detecting the abnormal tissue region. The tumor filter, used in the simulated optical correlation, is tailored to all the brain tumor types and especially to the Glioblastoma, which considered to be the most aggressive cancer. The simulated optical correlation, computed between Magnetic Resonance Images (MRI) and this filter, estimates precisely and automatically the initial contour inside the tumorous tissue. Further, in the segmentation part, the detected initial contour is used to define an active contour model and presenting the problematic as an energy minimization problem. As a result, this initial contour assists the algorithm to evolve an active contour model towards the exact tumor boundaries. Equally important, for a comparison purposes, we considered different active contour models and investigated their impact on the performance of the segmentation task. Several images from BRATS database with tumors anywhere in images and having different sizes, contrast, and shape, are used to test the proposed system. Furthermore, several performance metrics are computed to present an aggregate overview of the proposed method advantages. The proposed method achieves a high accuracy in detecting the tumorous tissue by a parameter returned by the simulated optical correlation. In addition, the proposed method yields better performance compared to the active contour based methods with the averages of Sensitivity=0.9733, Dice coefficient = 0.9663, Hausdroff distance = 2.6540, Specificity = 0.9994, and faster with a computational time average of 0.4119 s per image. Results reported on BRATS database reveal that our proposed system improves over the recently published state-of-the-art methods in brain tumor detection and segmentation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. SU-F-J-171: Robust Atlas Based Segmentation of the Prostate and Peripheral Zone Regions On MRI Utilizing Multiple MRI System Vendors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K; Pollack, A; Stoyanova, R

    Purpose: Automatically generated prostate MRI contours can be used to aid in image registration with CT or ultrasound and to reduce the burden of contouring for radiation treatment planning. In addition, prostate and zonal contours can assist to automate quantitative imaging features extraction and the analyses of longitudinal MRI studies. These potential gains are limited if the solutions are not compatible across different MRI vendors. The goal of this study is to characterize an atlas based automatic segmentation procedure of the prostate collected on MRI systems from multiple vendors. Methods: The prostate and peripheral zone (PZ) were manually contoured bymore » an expert radiation oncologist on T2-weighted scans acquired on both GE (n=31) and Siemens (n=33) 3T MRI systems. A leave-one-out approach was utilized where the target subject is removed from the atlas before the segmentation algorithm is initiated. The atlas-segmentation method finds the best nine matched atlas subjects and then performs a normalized intensity-based free-form deformable registration of these subjects to the target subject. These nine contours are then merged into a single contour using Simultaneous Truth and Performance Level Estimation (STAPLE). Contour comparisons were made using Dice similarity coefficients (DSC) and Hausdorff distances. Results: Using the T2 FatSat (FS) GE datasets the atlas generated contours resulted in an average DSC of 0.83±0.06 for prostate, 0.57±0.12 for PZ and 0.75±0.09 for CG. Similar results were found when using the Siemens data with a DSC of 0.79±0.14 for prostate, 0.54±0.16 and 0.70±0.9. Contrast between prostate and surrounding anatomy and between the PZ and CG contours for both vendors demonstrated superior contrast separation; significance was found for all comparisons p-value < 0.0001. Conclusion: Atlas-based segmentation yielded promising results for all contours compared to expertly defined contours in both Siemens and GE 3T systems providing fast and automatic segmentation of the prostate. Funding Support, Disclosures, and Conflict of Interest: AS Nelson is a partial owner of MIM Software, Inc. AS Nelson, and A Swallen are current employees at MIM Software, Inc.« less

  17. Evaluation and optimization of the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy.

    PubMed

    Wong, Wicger K H; Leung, Lucullus H T; Kwong, Dora L W

    2016-01-01

    To evaluate and optimize the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy. A retrospective study was conducted, and the accuracy of the multiple-atlas-based segmentation was tested on 30 patients. The effect of library size (LS), number of atlases used for contour averaging and the contour averaging strategy were also studied. The autogenerated contours were compared with the manually drawn contours. Dice similarity coefficient (DSC) and Hausdorff distance were used to evaluate the segmentation agreement. Mixed results were found between simultaneous truth and performance level estimation (STAPLE) and majority vote (MV) strategies. Multiple-atlas approaches were relatively insensitive to LS. A LS of ten was adequate, and further increase in the LS only showed insignificant gain. Multiple atlas performed better than single atlas for most of the time. Using more atlases did not guarantee better performance, with five atlases performing better than ten atlases. With our recommended setting, the median DSC for the bladder, rectum, prostate, seminal vesicle and femurs was 0.90, 0.77, 0.84, 0.56 and 0.95, respectively. Our study shows that multiple-atlas-based strategies have better accuracy than single-atlas approach. STAPLE is preferred, and a LS of ten is adequate for prostate cases. Using five atlases for contour averaging is recommended. The contouring accuracy of seminal vesicle still needs improvement, and manual editing is still required for the other structures. This article provides a better understanding of the influence of the parameters used in multiple-atlas-based segmentation of prostate cancers.

  18. SU-F-J-88: Comparison of Two Deformable Image Registration Algorithms for CT-To-CT Contour Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, A; Xu, H; Chen, S

    Purpose: To compare the contour propagation accuracy of two deformable image registration (DIR) algorithms in the Raystation treatment planning system – the “Hybrid” algorithm based on image intensities and anatomical information; and the “Biomechanical” algorithm based on linear anatomical elasticity and finite element modeling. Methods: Both DIR algorithms were used for CT-to-CT deformation for 20 lung radiation therapy patients that underwent treatment plan revisions. Deformation accuracy was evaluated using landmark tracking to measure the target registration error (TRE) and inverse consistency error (ICE). The deformed contours were also evaluated against physician drawn contours using Dice similarity coefficients (DSC). Contour propagationmore » was qualitatively assessed using a visual quality score assigned by physicians, and a refinement quality score (0 0.9 for lungs, > 0.85 for heart, > 0.8 for liver) and similar qualitative assessments (VQS < 0.35, RQS > 0.75 for lungs). When anatomical structures were used to control the deformation, the DSC improved more significantly for the biomechanical DIR compared to the hybrid DIR, while the VQS and RQS improved only for the controlling structures. However, while the inclusion of controlling structures improved the TRE for the hybrid DIR, it increased the TRE for the biomechanical DIR. Conclusion: The hybrid DIR was found to perform slightly better than the biomechanical DIR based on lower TRE while the DSC, VQS, and RQS studies yielded comparable results for both. The use of controlling structures showed considerable improvement in the hybrid DIR results and is recommended for clinical use in contour propagation.« less

  19. PARAMETER MONITORING FOR REAL-TIME ELECTROSTATIC PRECIPITATOR TROUBLESHOOTING

    EPA Science Inventory

    The paper discusses detailed numerical calculations of particle charge and extinction coefficient performed using current models. The results suggest that information about rapping reentrainment, back corona, and, possibly, sulfuric acid condensation can be gained from simultaneo...

  20. What are the associated parameters and temporal coverage?

    Atmospheric Science Data Center

    2014-12-08

    ... Extinction Coefficient, Cloud Vertical Profile, Radar-only Liquid Water Content, Radar-only Liquid Ice Content, Vertical Flux Profile, ... ISCCP-D2like Cloud fraction, Effective Pressure, Temperature, optical depth, IWP/LWP, particle size, IR Emissivity in ...

  1. Laser Transmission Measurements of Soot Extinction Coefficients in the Exhaust Plume of the X-34 60K-lb Thrust Fastrac Rocket Engine

    NASA Technical Reports Server (NTRS)

    Dobson, C. C.; Eskridge, R. H.; Lee, M. H.

    2000-01-01

    A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location approximately equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal 0.7 microgram/cc, and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal 2,200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.

  2. Laser Transmission Measurements of Soot Extinction Coefficients in the Exhaust Plume of the X-34 60k-lb Thrust Fastrac Rocket Engine

    NASA Technical Reports Server (NTRS)

    Dobson, C. C.; Eskridge, R. H.; Lee, M. H.

    2000-01-01

    A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location about equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal to 0.7 micrograms/cubic cm and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal to 2.200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.

  3. Measurement of phase function of aerosol at different altitudes by CCD Lidar

    NASA Astrophysics Data System (ADS)

    Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing

    2018-02-01

    The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.

  4. New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.

  5. Quantifying the effect of finite spectral bandwidth on extinction coefficient of species in laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.

    2016-11-01

    The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.

  6. Analyzing x-ray hotspot images with Ince-Gaussian modes

    NASA Astrophysics Data System (ADS)

    Kruse, Michael; Field, John; Nora, Ryan; Benedetti, Robin; Khan, Shahab; Ma, Tammy; Peterson, Luc; Spears, Brian

    2017-10-01

    X-ray images at the National Ignition Facility (NIF) provide important metrics regarding the shape of the hotspot along a given line-of-sight. The 17% contour from peak brightness is usually used to infer the size of the hotspot as well as determine shape perturbations quantified through the Legendre coefficients P2 and P4. Unfortunately features that lie inside the contour such as those that could arise from tent or fill-tube perturbations are not easily captured. An analysis that takes into account the two-dimensional nature of the x-ray image is desirable. Ince-Gaussian modes (for short: Ince) offer such an analysis and could provide a new way to encode and understand the images recorded at NIF. The Ince modes are the solutions to the paraxial wave equation expressed in elliptical coordinates and thus form an orthonormal basis. Due to their elliptical nature they are suitable for decomposing images that have a non-zero P2 or P4 coefficient. We show that the Ince modes can be used to uncover structure that is missed by the contour analysis and how the modes aid in compressing images produced in large ensemble calculations. Finally a comparison is made to the Zernike modes which form an orthonormal basis on a circular disk. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734741.

  7. Metrics for comparison of crystallographic maps

    DOE PAGES

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; ...

    2014-10-01

    Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less

  8. SU-F-19A-09: Propagation of Organ at Risk Contours for High Dose Rate Brachytherapy Planning for Cervical Cancer: A Deformable Image Registration Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellon, M; Kumarasiri, A; Kim, J

    Purpose: To compare the performance of two deformable image registration (DIR) algorithms for contour propagation and to evaluate the accuracy of DIR for use with high dose rate (HDR) brachytherapy planning for cervical cancer. Methods: Five patients undergoing HDR ring and tandem brachytherapy were included in this retrospective study. All patients underwent CT simulation and replanning prior to each fraction (3–5 fractions total). CT-to-CT DIR was performed using two commercially available software platforms: SmartAdapt, Varian Medical Systems (Demons) and Velocity AI, Velocity Medical Solutions (B-spline). Fraction 1 contours were deformed and propagated to each subsequent image set and compared tomore » contours manually drawn by an expert clinician. Dice similarity coefficients (DSC), defined as, DSC(A,B)=2(AandB)/(A+B) were calculated to quantify spatial overlap between manual (A) and deformed (B) contours. Additionally, clinician-assigned visual scores were used to describe and compare the performance of each DIR method and ultimately evaluate which was more clinically acceptable. Scoring was based on a 1–5 scale—with 1 meaning, “clinically acceptable with no contour changes” and 5 meaning, “clinically unacceptable”. Results: Statistically significant differences were not observed between the two DIR algorithms. The average DSC for the bladder, rectum and rectosigmoid were 0.82±0.08, 0.67±0.13 and 0.48±0.18, respectively. The poorest contour agreement was observed for the rectosigmoid due to limited soft tissue contrast and drastic anatomical changes, i.e., organ shape/filling. Two clinicians gave nearly equivalent average scores of 2.75±0.91 for SmartAdapt and 2.75±0.94 for Velocity AI—indicating that for a majority of the cases, more than one of the three contours evaluated required major modifications. Conclusion: Limitations of both DIR algorithms resulted in inaccuracies in contour propagation in the pelvic region, thus hampering the clinical utility of this technology. Further work is required to optimize these algorithms and take advantage of the potential of DIR for HDR brachytherapy planning.« less

  9. TU-H-CAMPUS-JeP2-05: Can Automatic Delineation of Cardiac Substructures On Noncontrast CT Be Used for Cardiac Toxicity Analysis?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y; Liao, Z; Jiang, W

    Purpose: To evaluate the feasibility of using an automatic segmentation tool to delineate cardiac substructures from computed tomography (CT) images for cardiac toxicity analysis for non-small cell lung cancer (NSCLC) patients after radiotherapy. Methods: A multi-atlas segmentation tool developed in-house was used to delineate eleven cardiac substructures including the whole heart, four heart chambers, and six greater vessels automatically from the averaged 4DCT planning images for 49 NSCLC patients. The automatic segmented contours were edited appropriately by two experienced radiation oncologists. The modified contours were compared with the auto-segmented contours using Dice similarity coefficient (DSC) and mean surface distance (MSD)more » to evaluate how much modification was needed. In addition, the dose volume histogram (DVH) of the modified contours were compared with that of the auto-segmented contours to evaluate the dosimetric difference between modified and auto-segmented contours. Results: Of the eleven structures, the averaged DSC values ranged from 0.73 ± 0.08 to 0.95 ± 0.04 and the averaged MSD values ranged from 1.3 ± 0.6 mm to 2.9 ± 5.1mm for the 49 patients. Overall, the modification is small. The pulmonary vein (PV) and the inferior vena cava required the most modifications. The V30 (volume receiving 30 Gy or above) for the whole heart and the mean dose to the whole heart and four heart chambers did not show statistically significant difference between modified and auto-segmented contours. The maximum dose to the greater vessels did not show statistically significant difference except for the PV. Conclusion: The automatic segmentation of the cardiac substructures did not require substantial modification. The dosimetric evaluation showed no statistically significant difference between auto-segmented and modified contours except for the PV, which suggests that auto-segmented contours for the cardiac dose response study are feasible in the clinical practice with a minor modification to the PV vessel.« less

  10. SU-E-J-103: Propagation of Rectum and Bladder Contours for Tandem and Ring (T&R) HDR Treatment Using Deformable Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Y; Chao, M; Sheu, R

    2015-06-15

    Purpose: To investigate the feasibility of using DIR to propagate the manually contoured rectum and bladder from the 1st insertion to the new CT images on subsequent insertions and evaluate the segmentation performance. Methods: Ten cervical cancer patients, who were treated by T&R brachytherapy in 3–4 insertions, were retrospectively collected. In each insertion, rectum and bladder were manually delineated on the planning CT by a physicist and verified by a radiation oncologist. Using VelocityAI (Velocity Medical Solutions, Atlanta, GA), a rigid registration was firstly employed to match the bony structures between the first insertion and each of the following insertions,more » then a multi-pass B-spine DIR was carried out to further map the sub volume that encompasses rectum and bladder. The resultant deformation fields propagated contours, and dice similarity coefficient (DSC) was used to quantitatively evaluate the agreement between the propagated contours and the manually-delineated organs. For the 3rd insertion, we also evaluated if the segmentation performance could be improved by propagating the contours from the most recent insertion, i.e., the 2nd insertion. Results: On average, the contour propagation took about 1 minute. The average and standard deviation of DSC over all insertions and patients was 0.67±0.10 (range: 0.44–0.81) for rectum, and 0.78±0.07 (range: 0.63–0.87) for bladder. For the 3rd insertion, propagating contours from the 2nd insertion could improve the segmentation performance in terms of DSC from 0.63±0.10 to 0.72±0.08 for rectum, and from 0.77±0.07 to 0.79±0.06 for bladder. A Wilcoxon signed rank test indicated that the improvement was statistically significant for rectum (p = 0.004). Conclusion: The preliminary results demonstrate that deformable image registration could efficiently and accurately propagate rectum and bladder contours between CT images in different T&R brachytherapy fractions. We are incorporating the propagated contours into our learning-based method to further segment these organs.« less

  11. SU-F-J-81: Evaluation of Automated Deformable Registration Between Planning Computed Tomography (CT) and Daily Cone Beam CT Images Over the Course of Prostate Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matney, J; Hammers, J; Kaidar-Person, O

    2016-06-15

    Purpose: To compute daily dose delivered during radiotherapy, deformable registration needs to be relatively fast, automated, and accurate. The aim of this study was to evaluate the performance of commercial deformable registration software for deforming between two modalities: planning computed tomography (pCT) images acquired for treatment planning and cone beam (CB) CT images acquired prior to each fraction of prostate cancer radiotherapy. Methods: A workflow was designed using MIM Software™ that aligned and deformed pCT into daily CBCT images in two steps: (1) rigid shifts applied after daily CBCT imaging to align patient anatomy to the pCT and (2) normalizedmore » intensity-based deformable registration to account for interfractional anatomical variations. The physician-approved CTV and organ and risk (OAR) contours were deformed from the pCT to daily CBCT over the course of treatment. The same structures were delineated on each daily CBCT by a radiation oncologist. Dice similarity coefficient (DSC) mean and standard deviations were calculated to quantify the deformable registration quality for prostate, bladder, rectum and femoral heads. Results: To date, contour comparisons have been analyzed for 31 daily fractions of 2 of 10 of the cohort. Interim analysis shows that right and left femoral head contours demonstrate the highest agreement (DSC: 0.96±0.02) with physician contours. Additionally, deformed bladder (DSC: 0.81±0.09) and prostate (DSC: 0.80±0.07) have good agreement with physician-defined daily contours. Rectum contours have the highest variations (DSC: 0.66±0.10) between the deformed and physician-defined contours on daily CBCT imaging. Conclusion: For structures with relatively high contrast boundaries on CBCT, the MIM automated deformable registration provided accurate representations of the daily contours during treatment delivery. These findings will permit subsequent investigations to automate daily dose computation from CBCT. However, improved methods need to be investigated to improve deformable results for rectum contours.« less

  12. Optical and structural properties of amorphous Se x Te100- x aligned nanorods

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.

    2013-12-01

    In the present work, we report studies on optical and structural phenomenon in as-deposited thin films composed of aligned nanorods of amorphous Se x Te100- x ( x = 3, 6, 9, and 12). In structural studies, field emission scanning electron microscopic (FESEM) images suggest that these thin films contain high yield of aligned nanorods. These nanorods show a completely amorphous nature, which is verified by X-ray diffraction patterns of these thin films. Optical studies include the measurement of spectral dependence of absorption, reflection, and transmission of these thin films, respectively. On the basis of optical absorption data, a direct optical band gap is observed. This observation of a direct optical band gap in these nanorods is interesting as chalcogenides normally show an indirect band gap, and due to this reason, these materials could not become very popular for semiconducting devices. Therefore, this is an important report and will open up new directions for the application of these materials in semiconducting devices. The value of this optical band gap is found to decrease with the increase in selenium (Se) concentration. The reflection and absorption data are employed to estimate the values of optical constants (extinction coefficient ( k) and refractive index ( n)). From the spectral dependence of these optical constants, it is found that the values of refractive index ( n) increase, whereas the values of extinction coefficient ( k) decrease with the increase in photon energy. The real and imaginary parts of dielectric constants calculated with the values of extinction coefficient ( k) and refractive index ( n), are found to vary with photon energy and dopant concentration.

  13. Optical properties of sea ice doped with black carbon - an experimental and radiative-transfer modelling comparison

    NASA Astrophysics Data System (ADS)

    Marks, Amelia A.; Lamare, Maxim L.; King, Martin D.

    2017-12-01

    Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices, ˜ 30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ˜ 2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg-1 for four ices. Sea ices were generated with and without ˜ 5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm-1 (e-folding depths of 10-30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of ˜ 75, ˜ 150 and ˜ 300 ng g-1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean sea ice (at a wavelength of 500 nm).

  14. Extinction coefficients and purity of single-walled carbon nanotubes.

    PubMed

    Zhao, B; Itkis, M E; Niyogi, S; Hu, H; Perea, D E; Haddon, R C

    2004-11-01

    Single-walled carbon nanotubes (SWNTs) hold great promise for advanced applications in aerospace, electronics and medicine, yet these industries require materials with rigorous quality control. There are currently no accepted standards for quality assurance or quality control among the commercial suppliers of SWNTs. We briefly discuss the applicability of various techniques to measure SWNT purity and review, in detail, the advantages of near infrared (NIR) spectroscopy for the quantitative assessment of the bulk carbonaceous purity of SWNTs. We review the use of solution phase NIR spectroscopy for the analysis and characterization of a variety of carbon materials, emphasizing SWNTs produced by the electric arc (EA), laser oven (LO) and HiPco (HC) methods. We consider the applicability of Beer's law to carbon materials dispersed in dimethylformamide (DMF) and the effective extinction coefficients that are obtained from such dispersions. Analysis of the areal absorptivities of the second interband transition of semiconducting EA-produced SWNTs for a number of samples of differing purities has lead to an absolute molar extinction coefficient for the carbonaceous impurities in EA-produced SWNT samples. We conclude that NIR spectroscopy is the clear method of choice for the assessment of the bulk carbonaceous purity of EA-produced SWNTs, and we suggest that an absolute determination of the purity of SWNTs is within reach. Continued work in this area is expected to lead to a universal method for the assessment of the absolute bulk purity of SWNTs from all sources--such a development will be of great importance for nanotube science and for future customers for this product.

  15. Comparison of predicted and measured drag for a single-engine airplane

    NASA Technical Reports Server (NTRS)

    Ward, D. T.; Taylor, F. C.; Doo, J. T. P.

    1985-01-01

    Renewed interest in natural laminar flow (NLF) has rekindled designers' concerns that manufacturing deviations, (loss of surface contours or other surface imperfections) may destroy the effectiveness of NLF for an operational airplane. This paper reports on experimental research that compares predicted and measured boundary layer transition, total drag, and two-dimensional drag coefficients for three different wing surface conditions on an airplane typical of general aviation manufacturing technology. The three flight test phases included: (1) assessment of an unpainted airframe, (2) flight tests of the same airplane after painstakingly filling and sanding the wings to design contours, and (3) similar measurements after this airplane was painted. In each flight phase, transition locations were monitored using either sublimating chemicals or pigmented oil. As expected, total drag changes were difficult to measure. Two-dimensional drag coefficients were estimated using the Eppler-Somers code and measured with a wake rake in a method very similar to Jones' pitot traverse method. The net change in two-dimensional drag was approximately 20 counts between the unpainted airplane and the 'hand-smoothed' airplane for typical cruise flight conditions.

  16. Open-path, closed-path and reconstructed aerosol extinction at a rural site.

    PubMed

    Gordon, Timothy D; Prenni, Anthony J; Renfro, James R; McClure, Ethan; Hicks, Bill; Onasch, Timothy B; Freedman, Andrew; McMeeking, Gavin R; Chen, Ping

    2018-04-09

    The Handix Scientific Open-Path Cavity Ringdown Spectrometer (OPCRDS) was deployed during summer 2016 in Great Smoky Mountains National Park (GRSM). Extinction coefficients from the relatively new OPCRDS and from a more well-established extinction instrument agreed to within 7%. Aerosol hygroscopic growth (f(RH)) was calculated from the ratio of ambient extinction measured by the OPCRDS to dry extinction measured by a closed-path extinction monitor (Aerodyne's Cavity Attenuated Phase Shift Particulate Matter Extinction Monitor, CAPS PMex). Derived hygroscopicity (RH < 95%) from this campaign agreed with data from 1995 at the same site and time of year, which is noteworthy given the decreasing trend for organics and sulfate in the eastern U.S. However, maximum f(RH) values in 1995 were less than half as large as those recorded in 2016-possibly due to nephelometer truncation losses in 1995. Two hygroscopicity parameterizations were investigated using high time resolution OPCRDS+CAPS PMex data, and the K ext model was more accurate than the γ model. Data from the two ambient optical instruments, the OPCRDS and the open-path nephelometer, generally agreed; however, significant discrepancies between ambient scattering and extinction were observed, apparently driven by a combination of hygroscopic growth effects, which tend to increase nephelometer truncation losses and decrease sensitivity to the wavelength difference between the two instruments as a function of particle size. There was not a statistically significant difference in the mean reconstructed extinction values obtained from the original and the revised IMPROVE (Interagency Monitoring of Protected Visual Environments) equations. On average IMPROVE reconstructed extinction was ~25% lower than extinction measured by the OPCRDS, which suggests that the IMPROVE equations and 24-hr aerosol data are moderately successful in estimating current haze levels at GRSM. However, this conclusion is limited by the coarse temporal resolution and the low dynamic range of the IMPROVE reconstructed extinction.

  17. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; hide

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal, aerosol particle scattering is largely capped below 1.5 km MSL, though ground-based lidar measurements at Singapore differ slightly from this finding. Significant aerosol particle presence over land is similarly capped near 3.0 km MSL over most regions. Particle presence at low levels regionally, except over India, is dominated by relatively non-depolarizing particles. Industrial haze, sea salt droplets and fresh smoke are thus most likely present.

  18. Distortion of Magnetic Fields in a Starless Core. III. Polarization–Extinction Relationship in FeSt 1-457

    NASA Astrophysics Data System (ADS)

    Kandori, Ryo; Tamura, Motohide; Nagata, Tetsuya; Tomisaka, Kohji; Kusakabe, Nobuhiko; Nakajima, Yasushi; Kwon, Jungmi; Nagayama, Takahiro; Tatematsu, Ken’ichi

    2018-04-01

    The relationship between dust polarization and extinction was determined for the cold dense starless molecular cloud core FeSt 1-457 based on the background star polarimetry of dichroic extinction at near-infrared wavelengths. Owing to the known (three-dimensional) magnetic field structure, the observed polarizations from the core were corrected by considering (a) the subtraction of the ambient polarization component, (b) the depolarization effect of inclined distorted magnetic fields, and (c) the magnetic inclination angle of the core. After these corrections, a linear relationship between polarization and extinction was obtained for the core in the range up to A V ≈ 20 mag. The initial polarization versus extinction diagram changed dramatically after the corrections of (a) to (c), with the correlation coefficient being refined from 0.71 to 0.79. These corrections should affect the theoretical interpretation of the observational data. The slope of the finally obtained polarization–extinction relationship is {P}H/{E}H-{Ks}=11.00+/- 0.72 % {mag}}-1, which is close to the statistically estimated upper limit of the interstellar polarization efficiency. This consistency suggests that the upper limit of interstellar polarization efficiency might be determined by the observational viewing angle toward polarized astronomical objects.

  19. Risk of population extinction from fixation of deleterious and reverse mutations.

    PubMed

    Lande, R

    1998-01-01

    A model is developed for alternate fixations of mildly deleterious and wild-type alleles arising by forward and reverse mutation in a finite population. For almost all parameter values, this gives an equilibrium load that agrees closely with the general expression derived from diffusion theory. Nearly neutral mutations with selection coefficient a few times larger than 1/(2N(e)) do the most damage by increasing the equilibrium load. The model of alternate fixations facilitates dynamical analysis of the expected load and the mean time to extinction in a population that has been suddenly reduced from a very large size to a small size. Reverse mutation can substantially improve population viability, increasing the mean time to extinction by an order of magnitude or more, but because many mutations are irreversible the effects may not be large. Populations with initially high mean fitness and small effective size, N(e) below a few hundred individuals, may be at serious risk of extinction from fixation of deleterious mutations within 10(3) to 10(4) generations.

  20. Selection in a subdivided population with local extinction and recolonization.

    PubMed Central

    Cherry, Joshua L

    2003-01-01

    In a subdivided population, local extinction and subsequent recolonization affect the fate of alleles. Of particular interest is the interaction of this force with natural selection. The effect of selection can be weakened by this additional source of stochastic change in allele frequency. The behavior of a selected allele in such a population is shown to be equivalent to that of an allele with a different selection coefficient in an unstructured population with a different size. This equivalence allows use of established results for panmictic populations to predict such quantities as fixation probabilities and mean times to fixation. The magnitude of the quantity N(e)s(e), which determines fixation probability, is decreased by extinction and recolonization. Thus deleterious alleles are more likely to fix, and advantageous alleles less likely to do so, in the presence of extinction and recolonization. Computer simulations confirm that the theoretical predictions of both fixation probabilities and mean times to fixation are good approximations. PMID:12807797

  1. Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yading, E-mail: yading.yuan@mssm.edu; Chao, Ming; Sheu, Ren-Dih

    Purpose: This work aims to develop a robust and efficient method to track the fuzzy borders between liver and the abutted organs where automatic liver segmentation usually suffers, and to investigate its applications in automatic liver segmentation on noncontrast-enhanced planning computed tomography (CT) images. Methods: In order to track the fuzzy liver–chestwall and liver–heart borders where oversegmentation is often found, a starting point and an ending point were first identified on the coronal view images; the fuzzy border was then determined as a geodesic curve constructed by minimizing the gradient-weighted path length between these two points near the fuzzy border.more » The minimization of path length was numerically solved by fast-marching method. The resultant fuzzy borders were incorporated into the authors’ automatic segmentation scheme, in which the liver was initially estimated by a patient-specific adaptive thresholding and then refined by a geodesic active contour model. By using planning CT images of 15 liver patients treated with stereotactic body radiation therapy, the liver contours extracted by the proposed computerized scheme were compared with those manually delineated by a radiation oncologist. Results: The proposed automatic liver segmentation method yielded an average Dice similarity coefficient of 0.930 ± 0.015, whereas it was 0.912 ± 0.020 if the fuzzy border tracking was not used. The application of fuzzy border tracking was found to significantly improve the segmentation performance. The mean liver volume obtained by the proposed method was 1727 cm{sup 3}, whereas it was 1719 cm{sup 3} for manual-outlined volumes. The computer-generated liver volumes achieved excellent agreement with manual-outlined volumes with correlation coefficient of 0.98. Conclusions: The proposed method was shown to provide accurate segmentation for liver in the planning CT images where contrast agent is not applied. The authors’ results also clearly demonstrated that the application of tracking the fuzzy borders could significantly reduce contour leakage during active contour evolution.« less

  2. Sensitivity of the Lidar ratio to changes in size distribution and index of refraction

    NASA Technical Reports Server (NTRS)

    Evans, B. T. N.

    1986-01-01

    In order to invert lidar signals to obtain reliable extinction coefficients, sigma, a relationship between sigma and the backscatter coefficient, beta, must be given. These two coefficients are linearly related if the complex index of refraction, m, particle shape size distribution, N, does not change along the path illuminated by the laser beam. This, however, is generally not the case. An extensive Mie computation of the lidar ratio R = beta/sigma and the sensitivity of R to the changes in a parametric space defined by N and m were examined.

  3. Chemical apportionment of aerosol optical properties during the Asia-Pacific Economic Cooperation summit in Beijing, China

    NASA Astrophysics Data System (ADS)

    Han, Tingting; Xu, Weiqi; Chen, Chen; Liu, Xingang; Wang, Qingqing; Li, Jie; Zhao, Xiujuan; Du, Wei; Wang, Zifa; Sun, Yele

    2015-12-01

    We have investigated the chemical and optical properties of aerosol particles during the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China, using the highly time-resolved measurements by a high-resolution aerosol mass spectrometer and a cavity attenuated phase shift extinction monitor. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 186.5 (±184.5) M m-1 and 23.3 (±21.9) M m-1 during APEC, which were decreased by 63% and 56%, respectively, compared to those before APEC primarily due to strict emission controls. The aerosol composition and size distributions showed substantial changes during APEC; as a response, the mass scattering efficiency (MSE) of PM1 was decreased from 4.7 m2 g-1 to 3.5 m2 g-1. Comparatively, the average single-scattering albedo (SSA) remained relatively unchanged, illustrating the synchronous reductions of bext and bap during APEC. MSE and SSA were found to increase as function of the oxidation degree of organic aerosol (OA), indicating a change of aerosol optical properties during the aging processes. The empirical relationships between chemical composition and particle extinction were established using a multiple linear regression model. Our results showed the largest contribution of ammonium nitrate to particle extinction, accounting for 35.1% and 29.3% before and during APEC, respectively. This result highlights the important role of ammonium nitrate in the formation of severe haze pollution during this study period. We also observed very different optical properties of primary and secondary aerosol. Owing to emission controls in Beijing and surrounding regions and also partly the influences of meteorological changes, the average bext of secondary aerosol during APEC was decreased by 71% from 372.3 M m-1 to 108.5 M m-1, whereas that of primary aerosol mainly from cooking, traffic, and biomass burning emissions showed a smaller reduction from 136.7 M m-1 to 71.3 M m-1. As a result, the contribution of primary aerosol to particle extinction increased from 26.8% to 39.6%, elucidating an enhanced role of local primary sources in visibility deterioration during APEC. Further analysis of chemically resolved particle extinction showed that the extinction contributions of aerosol species varied greatly between different air masses but generally with ammonium nitrate, ammonium sulfate, and secondary OA being the three major contributors.

  4. Impact of organic coating on growth of ammonium sulfate particles: light extinction measurements relevant for the direct effect

    NASA Astrophysics Data System (ADS)

    Robinson, C. B.; Zarzana, K. J.; Hasenkopf, C. A.; Tolbert, M. A.

    2012-12-01

    Light extinction by particles is strongly dependent on chemical composition, particle size, and water uptake. Relative humidity affects extinction by causing changes in refractive index and particle size due to hygroscopic growth. The ability of particles to take up water depends on their composition and structure. In both laboratory and field studies, inorganic salts completely covered by an organic coating have been observed. The impact of this coating on water uptake is uncertain, and a systematic study that examines water uptake as a function of relative humidity is highly desirable. These data are critical to evaluate the aerosol direct effect on climate, which is one of the most uncertain aspects of future climate change. In this study, we probe the connection between aerosol composition, size and light extinction directly by measuring fRHext, the ratio of the extinction coefficient for humidified particles to the extinction coefficient for dry particles. Particles were composed of 1,2,6-hexanetriol and ammonium sulfate, a system that forms organic coatings around the inorganic core. A cavity ring-down aerosol extinction spectrometer at 532 nm is used to measure the optical growth factor as a function of relative humidity. The fRHext values for a range of %RH for pure ammonium sulfate, pure 1,2,6-hexanetriol, and ammonium sulfate particles with 1,2,6-hexanetriol coatings were measured. The coated particles are created using a method of liquid-liquid separation, where the particles are exposed to water vapor creating a RH% above their deliquescence RH%. The particles are then dried with a Nafion dryer to a RH% that is below the point where liquid-liquid phase separation is observed, but above the efflorescence RH%. Pure 1,2,6-hexanetriol takes up little water over the observed RH range of 45-65%, and therefore fRHext ~ 1. With pure ammonium sulfate for the same RH% range, the fRHext varied from 1.5 - 2, depending on the RH% and the particle size. For the coated particles, at each RH%, the fRHext values fall between those for pure ammonium sulfate and pure 1,2,6-hexanetriol values. This suggests that the organic coating does not prevent water uptake by the ammonium sulfate cores.

  5. Fully automated contour detection of the ascending aorta in cardiac 2D phase-contrast MRI.

    PubMed

    Codari, Marina; Scarabello, Marco; Secchi, Francesco; Sforza, Chiarella; Baselli, Giuseppe; Sardanelli, Francesco

    2018-04-01

    In this study we proposed a fully automated method for localizing and segmenting the ascending aortic lumen with phase-contrast magnetic resonance imaging (PC-MRI). Twenty-five phase-contrast series were randomly selected out of a large population dataset of patients whose cardiac MRI examination, performed from September 2008 to October 2013, was unremarkable. The local Ethical Committee approved this retrospective study. The ascending aorta was automatically identified on each phase of the cardiac cycle using a priori knowledge of aortic geometry. The frame that maximized the area, eccentricity, and solidity parameters was chosen for unsupervised initialization. Aortic segmentation was performed on each frame using active contouring without edges techniques. The entire algorithm was developed using Matlab R2016b. To validate the proposed method, the manual segmentation performed by a highly experienced operator was used. Dice similarity coefficient, Bland-Altman analysis, and Pearson's correlation coefficient were used as performance metrics. Comparing automated and manual segmentation of the aortic lumen on 714 images, Bland-Altman analysis showed a bias of -6.68mm 2 , a coefficient of repeatability of 91.22mm 2 , a mean area measurement of 581.40mm 2 , and a reproducibility of 85%. Automated and manual segmentation were highly correlated (R=0.98). The Dice similarity coefficient versus the manual reference standard was 94.6±2.1% (mean±standard deviation). A fully automated and robust method for identification and segmentation of ascending aorta on PC-MRI was developed. Its application on patients with a variety of pathologic conditions is advisable. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Combined 3D-QSAR and molecular docking study on 7,8-dialkyl-1,3-diaminopyrrolo-[3,2-f] Quinazoline series compounds to understand the binding mechanism of DHFR inhibitors

    NASA Astrophysics Data System (ADS)

    Aouidate, Adnane; Ghaleb, Adib; Ghamali, Mounir; Chtita, Samir; Choukrad, M'barek; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar

    2017-07-01

    A series of nineteen DHFR inhibitors was studied based on the combination of two computational techniques namely, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular docking. The comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were developed using 19 molecules having pIC50 ranging from 9.244 to 5.839. The best CoMFA and CoMSIA models show conventional determination coefficients R2 of 0.96 and 0.93 as well as the Leave One Out cross-validation determination coefficients Q2 of 0.64 and 0.72, respectively. The predictive ability of those models was evaluated by the external validation using a test set of five compounds with predicted determination coefficients R2test of 0.92 and 0.94, respectively. The binding mode between this kind of compounds and the DHFR enzyme in addition to the key amino acid residues were explored by molecular docking simulation. Contour maps and molecular docking identified that the R1 and R2 natures at the pyrazole moiety are the important features for the optimization of the binding affinity to the DHFR receptor. According to the good concordance between the CoMFA/CoMSIA contour maps and docking results, the obtained information was explored to design novel molecules.

  7. Bayesian assessment of uncertainty in aerosol size distributions and index of refraction retrieved from multiwavelength lidar measurements.

    PubMed

    Herman, Benjamin R; Gross, Barry; Moshary, Fred; Ahmed, Samir

    2008-04-01

    We investigate the assessment of uncertainty in the inference of aerosol size distributions from backscatter and extinction measurements that can be obtained from a modern elastic/Raman lidar system with a Nd:YAG laser transmitter. To calculate the uncertainty, an analytic formula for the correlated probability density function (PDF) describing the error for an optical coefficient ratio is derived based on a normally distributed fractional error in the optical coefficients. Assuming a monomodal lognormal particle size distribution of spherical, homogeneous particles with a known index of refraction, we compare the assessment of uncertainty using a more conventional forward Monte Carlo method with that obtained from a Bayesian posterior PDF assuming a uniform prior PDF and show that substantial differences between the two methods exist. In addition, we use the posterior PDF formalism, which was extended to include an unknown refractive index, to find credible sets for a variety of optical measurement scenarios. We find the uncertainty is greatly reduced with the addition of suitable extinction measurements in contrast to the inclusion of extra backscatter coefficients, which we show to have a minimal effect and strengthens similar observations based on numerical regularization methods.

  8. The spectral irradiance of the moon

    USGS Publications Warehouse

    Kieffer, H.H.; Stone, T.C.

    2005-01-01

    Images of the Moon at 32 wavelengths from 350 to 2450 nm have been obtained from a dedicated observatory during the bright half of each month over a period of several years. The ultimate goal is to develop a spectral radiance model of the Moon with an angular resolution and radiometric accuracy appropriate for calibration of Earth-orbiting spacecraft. An empirical model of irradiance has been developed that treats phase and libration explicitly, with absolute scale founded on the spectra of the star Vega and returned Apollo samples. A selected set of 190 standard stars are observed regularly to provide nightly extinction correction and long-term calibration of the observations. The extinction model is wavelength-coupled and based on the absorption coefficients of a number of gases and aerosols. The empirical irradiance model has the same form at each wavelength, with 18 coefficients, eight of which are constant across wavelength, for a total of 328 coefficients. Over 1000 lunar observations are fitted at each wavelength; the average residual is less than 1%. The irradiance model is actively being used in lunar calibration of several spacecraft instruments and can track sensor response changes at the 0.1% level. ?? 2005. The American Astronomical Society. All rights reserved.

  9. Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique.

    PubMed

    Liao, Bo-Huei; Hsiao, Chien-Nan

    2014-02-01

    Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.

  10. High-risk CTV delineation for cervix brachytherapy: Application of GEC-ESTRO guidelines in Australia and New Zealand.

    PubMed

    Vinod, Shalini K; Lim, Karen; Bell, Lauren; Veera, Jacqueline; Ohanessian, Lucy; Juresic, Ewa; Borok, Nira; Chan, Phillip; Chee, Raphael; Do, Viet; Govindarajulu, Geetha; Sridharan, Swetha; Johnson, Carol; Moses, Daniel; Van Dyk, Sylvia; Holloway, Lois

    2017-02-01

    Image-based brachytherapy for cervical cancer using MRI has been implemented in Australia and New Zealand. The aims of this study were to measure variability in High-risk CTV (HR-CTV) delineation and evaluate dosimetric consequences of this. Nine radiation oncologists, one radiation therapist and two radiologists contoured HR-CTV on 3T MRI datasets from ten consecutive patients undergoing cervical brachytherapy at a single institution. Contour comparisons were performed using the Dice Similarity Coefficient (DSC) and Mean Absolute Surface Distance (MASD). Two reference contours were created for brachytherapy planning: a Simultaneous Truth and Performance Level Estimation (STAPLE) and a consensus contour (CONSENSUS). Optimized plans (8 Gy) for both these contours were applied to individual participant's contours to assess D90 and D100 coverage of HR CTV. To compare variability in dosimetry, relative standard deviation (rSD) was calculated. Good concordance (mean DSC≥0.7, MASD≤5 mm) was achieved in 8/10 cases when compared to the STAPLE reference and 6/10 cases when compared to the CONSENSUS reference. Greatest variation was visually seen in the cranio-caudal direction. The average mean rSD across all patients was 27% and 34% for the STAPLE HR-CTV D90 and D100, respectively, and 28% and 35% for the CONSENSUS HR-CTV D90 and D100. Delineation uncertainty resulted in an average dosimetric uncertainty of ±1.5-1.6 Gy per fraction based on an 8 Gy prescribed fraction. Delineation of HR-CTV for cervical cancer brachytherapy was consistent amongst observers, suggesting similar interpretation of GEC-ESTRO guidelines. Despite the good concordance, there was dosimetric variation noted, which could be clinically significant. © 2016 The Royal Australian and New Zealand College of Radiologists.

  11. Intra-retinal segmentation of optical coherence tomography images using active contours with a dynamic programming initialization and an adaptive weighting strategy

    NASA Astrophysics Data System (ADS)

    Gholami, Peyman; Roy, Priyanka; Kuppuswamy Parthasarathy, Mohana; Ommani, Abbas; Zelek, John; Lakshminarayanan, Vasudevan

    2018-02-01

    Retinal layer shape and thickness are one of the main indicators in the diagnosis of ocular diseases. We present an active contour approach to localize intra-retinal boundaries of eight retinal layers from OCT images. The initial locations of the active contour curves are determined using a Viterbi dynamic programming method. The main energy function is a Chan-Vese active contour model without edges. A boundary term is added to the energy function using an adaptive weighting method to help curves converge to the retinal layer edges more precisely, after evolving of curves towards boundaries, in final iterations. A wavelet-based denoising method is used to remove speckle from OCT images while preserving important details and edges. The performance of the proposed method was tested on a set of healthy and diseased eye SD-OCT images. The experimental results, compared between the proposed method and the manual segmentation, which was determined by an optometrist, indicate that our method has obtained an average of 95.29%, 92.78%, 95.86%, 87.93%, 82.67%, and 90.25% respectively, for accuracy, sensitivity, specificity, precision, Jaccard Index, and Dice Similarity Coefficient over all segmented layers. These results justify the robustness of the proposed method in determining the location of different retinal layers.

  12. Evaluating performance of a user-trained MR lung tumor autocontouring algorithm in the context of intra- and interobserver variations.

    PubMed

    Yip, Eugene; Yun, Jihyun; Gabos, Zsolt; Baker, Sarah; Yee, Don; Wachowicz, Keith; Rathee, Satyapal; Fallone, B Gino

    2018-01-01

    Real-time tracking of lung tumors using magnetic resonance imaging (MRI) has been proposed as a potential strategy to mitigate the ill-effects of breathing motion in radiation therapy. Several autocontouring methods have been evaluated against a "gold standard" of a single human expert user. However, contours drawn by experts have inherent intra- and interobserver variations. In this study, we aim to evaluate our user-trained autocontouring algorithm with manually drawn contours from multiple expert users, and to contextualize the accuracy of these autocontours within intra- and interobserver variations. Six nonsmall cell lung cancer patients were recruited, with institutional ethics approval. Patients were imaged with a clinical 3 T Philips MR scanner using a dynamic 2D balanced SSFP sequence under free breathing. Three radiation oncology experts, each in two separate sessions, contoured 130 dynamic images for each patient. For autocontouring, the first 30 images were used for algorithm training, and the remaining 100 images were autocontoured and evaluated. Autocontours were compared against manual contours in terms of Dice's coefficient (DC) and Hausdorff distances (d H ). Intra- and interobserver variations of the manual contours were also evaluated. When compared with the manual contours of the expert user who trained it, the algorithm generates autocontours whose evaluation metrics (same session: DC = 0.90(0.03), d H  = 3.8(1.6) mm; different session DC = 0.88(0.04), d H  = 4.3(1.5) mm) are similar to or better than intraobserver variations (DC = 0.88(0.04), and d H  = 4.3(1.7) mm) between two sessions. The algorithm's autocontours are also compared to the manual contours from different expert users with evaluation metrics (DC = 0.87(0.04), d H  = 4.8(1.7) mm) similar to interobserver variations (DC = 0.87(0.04), d H  = 4.7(1.6) mm). Our autocontouring algorithm delineates tumor contours (<20 ms per contour), in dynamic MRI of lung, that are comparable to multiple human experts (several seconds per contour), but at a much faster speed. At the same time, the agreement between autocontours and manual contours is comparable to the intra- and interobserver variations. This algorithm may be a key component of the real time tumor tracking workflow for our hybrid Linac-MR device in the future. © 2017 American Association of Physicists in Medicine.

  13. SU-F-T-42: MRI and TRUS Image Fusion as a Mode of Generating More Accurate Prostate Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petronek, M; Purysko, A; Balik, S

    Purpose: Transrectal Ultrasound (TRUS) imaging is utilized intra-operatively for LDR permanent prostate seed implant treatment planning. Prostate contouring with TRUS can be challenging at the apex and base. This study attempts to improve accuracy of prostate contouring with MRI-TRUS fusion to prevent over- or under-estimation of the prostate volume. Methods: 14 patients with previous MRI guided prostate biopsy and undergone an LDR permanent prostate seed implant have been selected. The prostate was contoured on the MRI images (1 mm slice thickness) by a radiologist. The prostate was also contoured on TRUS images (5 mm slice thickness) during LDR procedure bymore » a urologist. MRI and TRUS images were rigidly fused manually and the prostate contours from MRI and TRUS were compared using Dice similarity coefficient, percentage volume difference and length, height and width differences. Results: The prostate volume was overestimated by 8 ± 18% (range: 34% to −25%) in TRUS images compared to MRI. The mean Dice was 0.77 ± 0.09 (range: 0.53 to 0.88). The mean difference (TRUS-MRI) in the prostate width was 0 ± 4 mm (range: −11 to 5 mm), height was −3 ± 6 mm (range: −13 to 6 mm) and length was 6 ± 6 (range: −10 to 16 mm). Prostate was overestimated with TRUS imaging at the base for 6 cases (mean: 8 ± 4 mm and range: 5 to 14 mm), at the apex for 6 cases (mean: 11 ± 3 mm and range: 5 to 15 mm) and 1 case was underestimated at both base and apex by 4 mm. Conclusion: Use of intra-operative TRUS and MRI image fusion can help to improve the accuracy of prostate contouring by accurately accounting for prostate over- or under-estimations, especially at the base and apex. The mean amount of discrepancy is within a range that is significant for LDR sources.« less

  14. Switchgrass leaf area index and light extinction coefficients

    USDA-ARS?s Scientific Manuscript database

    Biomass production simulation modeling for plant species is often dependent upon accurate simulation or measurement of canopy light interception and radiation use efficiency. With the recent interest in converting large tracts of land to biofuel species cropping, modeling vegetative yield with grea...

  15. DEVELOPMENT AND APPLICAIONS OF A STANDARD VISUAL INDEX

    EPA Science Inventory

    A standard visual index appropriate for characterizing visibility through uniform hazes, is defined in terms of either of the traditional metrics: visual range or extinction coefficient. This index was designed to be linear with respect to perceived visual changes over its entire...

  16. CALIPSO V1.00 L3 IceCloud Formal Release Announcement

    Atmospheric Science Data Center

    2018-06-13

    ... The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the CALIPSO mission team announces the ... distributions of ice cloud extinction coefficients and ice water content histograms on a uniform spatial grid.  All parameters are ...

  17. Optical modulation in silicon waveguides via charge state control of deep levels.

    PubMed

    Logan, D F; Jessop, P E; Knights, A P; Wojcik, G; Goebel, A

    2009-10-12

    The control of defect mediated optical absorption at a wavelength of 1550 nm via charge state manipulation is demonstrated using optical absorption measurements of indium doped Silicon-On-Insulator (SOI) rib waveguides. These measurements introduce the potential for modulation of waveguide transmission by using the local depletion and injection of free-carriers to change deep-level occupancy. The extinction ratio and modulating speed are simulated for a proposed device structure. A 'normally-off' depletion modulator is described with an extinction coefficient limited to 5 dB/cm and switching speeds in excess of 1 GHz. For a carrier injection modulator a fourfold enhancement in extinction ratio is provided relative to free carrier absorption alone. This significant improvement in performance is achieved with negligible increase in driving power but slightly degraded switching speed.

  18. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  19. Vertically-resolved profiles of mass concentrations and particle backscatter coefficients of Asian dust plumes derived from lidar observations of silicon dioxide.

    PubMed

    Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J

    2016-01-01

    This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. SU-E-J-134: Optimizing Technical Parameters for Using Atlas Based Automatic Segmentation for Evaluation of Contour Accuracy Experience with Cardiac Structures From NRG Oncology/RTOG 0617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J; Gong, Y; Bar-Ad, V

    Purpose: Accurate contour delineation is crucial for radiotherapy. Atlas based automatic segmentation tools can be used to increase the efficiency of contour accuracy evaluation. This study aims to optimize technical parameters utilized in the tool by exploring the impact of library size and atlas number on the accuracy of cardiac contour evaluation. Methods: Patient CT DICOMs from RTOG 0617 were used for this study. Five experienced physicians delineated the cardiac structures including pericardium, atria and ventricles following an atlas guideline. The consistency of cardiac structured delineation using the atlas guideline was verified by a study with four observers and seventeenmore » patients. The CT and cardiac structure DICOM files were then used for the ABAS technique.To study the impact of library size (LS) and atlas number (AN) on automatic contour accuracy, automatic contours were generated with varied technique parameters for five randomly selected patients. Three LS (20, 60, and 100) were studied using commercially available software. The AN was four, recommended by the manufacturer. Using the manual contour as the gold standard, Dice Similarity Coefficient (DSC) was calculated between the manual and automatic contours. Five-patient averaged DSCs were calculated for comparison for each cardiac structure.In order to study the impact of AN, the LS was set 100, and AN was tested from one to five. The five-patient averaged DSCs were also calculated for each cardiac structure. Results: DSC values are highest when LS is 100 and AN is four. The DSC is 0.90±0.02 for pericardium, 0.75±0.06 for atria, and 0.86±0.02 for ventricles. Conclusion: By comparing DSC values, the combination AN=4 and LS=100 gives the best performance. This project was supported by NCI grants U24CA12014, U24CA180803, U10CA180868, U10CA180822, PA CURE grant and Bristol-Myers Squibb and Eli Lilly.« less

  1. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: Implications for emission modeling

    NASA Astrophysics Data System (ADS)

    Rutter, Nick; Sandells, Mel; Derksen, Chris; Toose, Peter; Royer, Alain; Montpetit, Benoit; Langlois, Alex; Lemmetyinen, Juha; Pulliainen, Jouni

    2014-03-01

    Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size, and temperature) were used as inputs to the multilayer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations, and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical specific surface area to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested that the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed that a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%.

  2. Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie-Raman lidar observations

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Tanre, Didier; da Silva, Arlindo; Colarco, Peter; Castellanos, Patricia; Korenskiy, Mikhail; Hu, Qiaoyun; Whiteman, David N.; Pérez-Ramírez, Daniel; Augustin, Patrick; Fourmentin, Marc; Kolgotin, Alexei

    2018-02-01

    Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke-dust episode over West Africa on 24-27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500-4000 m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The values of modeled and observed aerosol extinction coefficients at both 355 and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km-1 with SD of 0.042 km-1. The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15 % observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70 ± 10) sr. At 532 nm, however, the simulated lidar ratio (about 40 sr) is lower than measurements (55 ± 8 sr). The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization.

  3. Characterization of soot properties in two-meter JP-8 pool fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail

    2005-02-01

    The thermal hazard posed by large hydrocarbon fires is dominated by the radiative emission from high temperature soot. Since the optical properties of soot, especially in the infrared region of the electromagnetic spectrum, as well as its morphological properties, are not well known, efforts are underway to characterize these properties. Measurements of these soot properties in large fires are important for heat transfer calculations, for interpretation of laser-based diagnostics, and for developing soot property models for fire field models. This research uses extractive measurement diagnostics to characterize soot optical properties, morphology, and composition in 2 m pool fires. For measurementmore » of the extinction coefficient, soot extracted from the flame zone is transported to a transmission cell where measurements are made using both visible and infrared lasers. Soot morphological properties are obtained by analysis via transmission electron microscopy of soot samples obtained thermophoretically within the flame zone, in the overfire region, and in the transmission cell. Soot composition, including carbon-to-hydrogen ratio and polycyclic aromatic hydrocarbon concentration, is obtained by analysis of soot collected on filters. Average dimensionless extinction coefficients of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm agree well with recent measurements in the overfire region of JP-8 and other fuels in lab-scale burners and fires. Average soot primary particle diameters, radius of gyration, and fractal dimensions agree with these recent studies. Rayleigh-Debye-Gans theory of scattering applied to the measured fractal parameters shows qualitative agreement with the trends in measured dimensionless extinction coefficients. Results of the density and chemistry are detailed in the report.« less

  4. Experimental performance of a high-area-ratio rocket nozzle at high combustion chamber pressure

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Kazaroff, John M.; Pavli, Albert J.

    1996-01-01

    An experimental investigation was conducted to determine the thrust coefficient of a high-area-ratio rocket nozzle at combustion chamber pressures of 12.4 to 16.5 MPa (1800 to 2400 psia). A nozzle with a modified Rao contour and an expansion area ratio of 1025:1 was tested with hydrogen and oxygen at altitude conditions. The same nozzle, truncated to an area ratio of 440:1, was also tested. Values of thrust coefficient are presented along with characteristic exhaust velocity efficiencies, nozzle wall temperatures, and overall thruster specific impulse.

  5. The measurement of atmospheric visibility with Lidar: TSC field test results

    DOT National Transportation Integrated Search

    1974-03-01

    The report represents a technical feasibility study of the use of lidar for determining the atmospheric extinction coefficient in low visibility. Measurements were made with three laser sources: a Q-switched ruby laser, a GaAlAs diode laser array, an...

  6. An improved cyan fluorescent protein variant useful for FRET.

    PubMed

    Rizzo, Mark A; Springer, Gerald H; Granada, Butch; Piston, David W

    2004-04-01

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) between fluorescent proteins to report biochemical phenomena in living cells. Most commonly, the enhanced cyan fluorescent protein (ECFP) is used as the donor fluorophore, coupled with one of several yellow fluorescent protein (YFP) variants as the acceptor. ECFP is used despite several spectroscopic disadvantages, namely a low quantum yield, a low extinction coefficient and a fluorescence lifetime that is best fit by a double exponential. To improve the characteristics of ECFP for FRET measurements, we used a site-directed mutagenesis approach to overcome these disadvantages. The resulting variant, which we named Cerulean (ECFP/S72A/Y145A/H148D), has a greatly improved quantum yield, a higher extinction coefficient and a fluorescence lifetime that is best fit by a single exponential. Cerulean is 2.5-fold brighter than ECFP and replacement of ECFP with Cerulean substantially improves the signal-to-noise ratio of a FRET-based sensor for glucokinase activation.

  7. Through-transmission laser welding of glass fibre composite: Experimental light scattering identification

    NASA Astrophysics Data System (ADS)

    Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam

    2018-05-01

    The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.

  8. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  9. Pluto's Solar Occultation from New Horizons

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Kammer, Joshua; Steffl, Andrew J.; Gladstone, Randy; Summers, Michael; Strobel, Darrell F.; Hinson, David P.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; McComas, Dave; New Horizons Atmospheres Science Theme Team

    2017-10-01

    The Alice instrument on NASA’s New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14. We derived line-of-sight abundances and local number densities for the major species (N2 and CH4) and minor hydrocarbons (C2H2, C2H4, C2H6), and line-of-sight optical depth and extinction coefficients for the haze. Our major conclusions are that (1) we confirmed temperatures in Pluto’s upper atmosphere that were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K, and subsequently lower escape rates, (2) the lower atmosphere was very stable, placing the homopause within 12 km of the surface, (3) the abundance profiles of the “C2Hx hydrocarbons” had non-exponential density profiles that compare favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, and (4) haze had an extinction coefficient approximately proportional to N2 density.This work was supported by NASA’s New Horizons project.

  10. Effect of heat treatment on properties of HfO2 film deposited by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Liu, Huasong; Jiang, Yugang; Wang, Lishuan; Li, Shida; Yang, Xiao; Jiang, Chenghui; Liu, Dandan; Ji, Yiqin; Zhang, Feng; Chen, Deying

    2017-11-01

    The effects of atmosphere heat treatment on optical, stress, and microstructure properties of an HfO2 film deposited by ion-beam sputtering were systematically researched. The relationships among annealing temperature and refractive index, extinction coefficient, physical thickness, forbidden-band width, tape trailer width, Urbach energy, crystal phase structure, and stress were assessed. The results showed that 400 °C is the transformation point, and the microstructure of the HfO2 film changed from an amorphous into mixed-phase structure. Multistage phonons appeared on the HfO2 film, and the trends of the refractive index, extinction coefficient, forbidden-band width change, and Urbach energy shifted from decrease to increase. With the elevation of the annealing temperature, the film thickness increased monotonously, the compressive stress gradually turned to tensile stress, and the transformation temperature point for the stress was between 200 °C and 300 °C. Therefore, the change in the stress is the primary cause for the shifts in thin-film thickness.

  11. Monte Carlo Study on Carbon-Gradient-Doped Silica Aerogel Insulation.

    PubMed

    Zhao, Y; Tang, G H

    2015-04-01

    Silica aerogel is almost transparent for wavelengths below 8 µm where significant energy is transferred by thermal radiation. The radiative heat transfer can be restricted at high temperature if doped with carbon powder in silica aerogel. However, different particle sizes of carbon powder doping have different spectral extinction coefficients and the doped carbon powder will increase the solid conduction of silica aerogel. This paper presents a theoretical method for determining the optimal carbon doping in silica aerogel to minimize the energy transfer. Firstly we determine the optimal particle size by combining the spectral extinction coefficient with blackbody radiation and then evaluate the optimal doping amount between heat conduction and radiation. Secondly we develop the Monte Carlo numerical method to study radiative properties of carbon-gradient-doped silica aerogel to decrease the radiative heat transfer further. The results indicate that the carbon powder is able to block infrared radiation and thus improve the thermal insulating performance of silica aerogel effectively.

  12. Theory of scattering of electromagnetic waves of the microwave range in a turbid medium

    NASA Astrophysics Data System (ADS)

    Konstantinov, O. V.; Matveentsev, A. V.

    2013-02-01

    The coefficient of extinction of electromagnetic waves of the microwave range due to their scattering from clusters suspended in an amorphous medium and responsible for turbidity is calculated. Turbidity resembles the case when butter clusters transform water into milk. In the case under investigation, the clusters are conductors (metallic or semiconducting). The extinction coefficient is connected in a familiar way with the cross section of light scattering from an individual cluster. A new formula is derived for the light scattering cross section in the case when damping of oscillations of an electron is due only to spontaneous emission of light quanta. In this case, the resonant scattering cross section for light can be very large. It is shown that this can be observed only in a whisker nanocluster. In addition, the phonon energy on a whisker segment must be higher than the photon energy, which is close to the spacing between the electron energy levels in the cluster.

  13. Aerosol optical properties retrieved from the future space lidar mission ADM-aeolus

    NASA Astrophysics Data System (ADS)

    Martinet, Pauline; Flament, Thomas; Dabas, Alain

    2018-04-01

    The ADM-Aeolus mission, to be launched by end of 2017, will enable the retrieval of aerosol optical properties (extinction and backscatter coefficients essentially) for different atmospheric conditions. A newly developed feature finder (FF) algorithm enabling the detection of aerosol and cloud targets in the atmospheric scene has been implemented. Retrievals of aerosol properties at a better horizontal resolution based on the feature finder groups have shown an improvement mainly on the backscatter coefficient compared to the common 90 km product.

  14. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, C; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Wong, A

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results inmore » non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to delineate high-dose CTV for H&N patients. Both methods showed promising results that hint to a solution to the standardization of the contouring process of clinical target volumes. Varian Medical Systems grant.« less

  15. THE MID-INFRARED EXTINCTION LAW IN THE LARGE MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jian; Jiang, B. W.; Xue, M. Y.

    Based on photometric data from the Spitzer/SAGE survey, using red giants as extinction tracers, the mid-infrared (MIR) extinction laws in the Large Magellanic Cloud (LMC) are derived for the first time in the form of A{sub λ}/A{sub K{sub S}}. This quantity refers to the extinction in the four Infrared Array Camera (IRAC) bands (i.e., [3.6], [4.5], [5.8], and [8.0] μm) relative to the Two Micron All Sky Survey K{sub S} band at 2.16 μm. We obtain the near-infrared extinction coefficient to be E(J – H)/E(H – K{sub S} ) ≈ 1.29 ± 0.04 and E(J – K{sub S} )/E(H –more » K{sub S} ) ≈ 1.94 ± 0.04. The wavelength dependence of the MIR extinction A{sub λ}/A{sub K{sub S}} in the LMC varies from one sightline to another. The overall mean MIR extinction is A{sub [3.6]}/A{sub K{sub S}}∼0.72±0.03, A{sub [4.5]}/A{sub K{sub S}}∼0.94±0.03, A{sub [5.8]}/A{sub K{sub S}}∼0.58±0.04, and A{sub [8.0]}/A{sub K{sub S}}∼0.62±0.05. Except for the extinction in the IRAC [4.5] μm band, which may be contaminated by the 4.6 μm CO gas absorption of red giants used to trace LMC extinction, the extinction in the other three IRAC bands show a flat curve, close to the Milky Way R{sub V} = 5.5 model extinction curve, where R{sub V} is the optical total-to-selective extinction ratio. The possible systematic bias caused by the correlated uncertainties of K{sub S} – λ and J – K{sub S} is explored in terms of Monte Carlo simulations. We find that this bias could lead to an overestimation of A{sub λ}/A{sub K{sub S}} in the MIR.« less

  16. Evaluation of Uncertainties in Measuring Particulate Matter Emission Factors from Atmospheric Fugitive Sources Using Optical Remote Sensing

    NASA Astrophysics Data System (ADS)

    Yuen, W.; Ma, Q.; Du, K.; Koloutsou-Vakakis, S.; Rood, M. J.

    2015-12-01

    Measurements of particulate matter (PM) emissions generated from fugitive sources are of interest in air pollution studies, since such emissions vary widely both spatially and temporally. This research focuses on determining the uncertainties in quantifying fugitive PM emission factors (EFs) generated from mobile vehicles using a vertical scanning micro-pulse lidar (MPL). The goal of this research is to identify the greatest sources of uncertainty of the applied lidar technique in determining fugitive PM EFs, and to recommend methods to reduce the uncertainties in this measurement. The MPL detects the PM plume generated by mobile fugitive sources that are carried downwind to the MPL's vertical scanning plane. Range-resolved MPL signals are measured, corrected, and converted to light extinction coefficients, through inversion of the lidar equation and calculation of the lidar ratio. In this research, both the near-end and far-end lidar equation inversion methods are considered. Range-resolved PM mass concentrations are then determined from the extinction coefficient measurements using the measured mass extinction efficiency (MEE) value, which is an intensive PM property. MEE is determined by collocated PM mass concentration and light extinction measurements, provided respectively by a DustTrak and an open-path laser transmissometer. These PM mass concentrations are then integrated with wind information, duration of plume event, and vehicle distance travelled to obtain fugitive PM EFs. To obtain the uncertainty of PM EFs, uncertainties in MPL signals, lidar ratio, MEE, and wind variation are considered. Error propagation method is applied to each of the above intermediate steps to aggregate uncertainty sources. Results include determination of uncertainties in each intermediate step, and comparison of uncertainties between the use of near-end and far-end lidar equation inversion methods.

  17. [Pollution Characteristics and Light Extinction Effects of Water-soluble Ions in PM2.5 During Winter Hazy Days at North Suburban Nanjing].

    PubMed

    Zhou, Yao-yao; Ma, Yan; Zheng, Jun; Cui, Fen-ping; Wang, Li

    2015-06-01

    To investigate the characteristics of water-soluble ions in PM2.5 and their contribution to light extinction in haze days, on-line monitoring of PM2.5. was conducted at North Suburban Nanjing from 25 January through 3 February, 2013. Water-soluble components were collected with a particle-into-liquid sampler (PILS), and analyzed by ion chromatography (IC) for the contents of SO4(2-), NO3-, NH4+, Cl-, Na+, K+, Mg2+ and Ca2+ Simultaneously particle size distributions were measured using scanning mobility particle sizer (SMPS) and Aerodynamic Particle Sizer (APS). The absorption and scattering coefficients were measured by three-wavelength photoacoustic soot spectrometer (PASS-3). Trace gases (SO2, NO2 etc.) were also monitored. The results showed that the average concentrations of total water-soluble ions were 70.3 and 22.9 microg x m(-3) in haze and normal days, respectively. Secondary hygroscopic components including SO4(2-), NO3- and NH4+ were the major ionic pollutants. Hazy days favored the conversion of SO2 and NOx, to SO4(2-) and NO3-, respectively, and in particular the oxidation of NOx. Using multiple linear regression statistical method, the empirical relationship between the dry aerosol extinction coefficient and the chemical composition was established. NH4NO3 was found to be the largest contributor to aerosol extinction in winter in Nanjing, followed by (NH4)2SO4, OC and EC. In two heavy pollution events, the increase of ion concentrations was influenced by the increase of primary emissions and secondary transformation.

  18. Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy.

    PubMed

    Fotina, I; Lütgendorf-Caucig, C; Stock, M; Pötter, R; Georg, D

    2012-02-01

    Inter-observer studies represent a valid method for the evaluation of target definition uncertainties and contouring guidelines. However, data from the literature do not yet give clear guidelines for reporting contouring variability. Thus, the purpose of this work was to compare and discuss various methods to determine variability on the basis of clinical cases and a literature review. In this study, 7 prostate and 8 lung cases were contoured on CT images by 8 experienced observers. Analysis of variability included descriptive statistics, calculation of overlap measures, and statistical measures of agreement. Cross tables with ratios and correlations were established for overlap parameters. It was shown that the minimal set of parameters to be reported should include at least one of three volume overlap measures (i.e., generalized conformity index, Jaccard coefficient, or conformation number). High correlation between these parameters and scatter of the results was observed. A combination of descriptive statistics, overlap measure, and statistical measure of agreement or reliability analysis is required to fully report the interrater variability in delineation.

  19. MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Cuevas, Carlos A.; Frieß, Udo; Saiz-Lopez, Alfonso

    2017-04-01

    We present Multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements performed in the urban environment of Madrid, Spain, from March to September 2015. The O4 absorption in the ultraviolet (UV) spectral region was used to retrieve the aerosol extinction profile using an inversion algorithm. The results show a good agreement between the hourly retrieved aerosol optical depth (AOD) and the correlative Aerosol Robotic Network (AERONET) product. Higher AODs are found in the summer season due to the more frequent occurrence of Saharan dust intrusions. The surface aerosol extinction coefficient as retrieved by the MAX-DOAS measurements was also compared to in situ PM2:5 concentrations. The level of agreement between both measurements indicates that the MAX-DOAS retrieval has the ability to characterize the extinction of aerosol particles near the surface. The retrieval algorithm was also used to study a case of severe dust intrusion on 12 May 2015. The capability of the MAX-DOAS retrieval to recognize the dust event including an elevated particle layer is investigated along with air mass back-trajectory analysis.

  20. Automatic bone outer contour extraction from B-modes ultrasound images based on local phase symmetry and quadratic polynomial fitting

    NASA Astrophysics Data System (ADS)

    Karlita, Tita; Yuniarno, Eko Mulyanto; Purnama, I. Ketut Eddy; Purnomo, Mauridhi Hery

    2017-06-01

    Analyzing ultrasound (US) images to get the shapes and structures of particular anatomical regions is an interesting field of study since US imaging is a non-invasive method to capture internal structures of a human body. However, bone segmentation of US images is still challenging because it is strongly influenced by speckle noises and it has poor image quality. This paper proposes a combination of local phase symmetry and quadratic polynomial fitting methods to extract bone outer contour (BOC) from two dimensional (2D) B-modes US image as initial steps of three-dimensional (3D) bone surface reconstruction. By using local phase symmetry, the bone is initially extracted from US images. BOC is then extracted by scanning one pixel on the bone boundary in each column of the US images using first phase features searching method. Quadratic polynomial fitting is utilized to refine and estimate the pixel location that fails to be detected during the extraction process. Hole filling method is then applied by utilize the polynomial coefficients to fill the gaps with new pixel. The proposed method is able to estimate the new pixel position and ensures smoothness and continuity of the contour path. Evaluations are done using cow and goat bones by comparing the resulted BOCs with the contours produced by manual segmentation and contours produced by canny edge detection. The evaluation shows that our proposed methods produces an excellent result with average MSE before and after hole filling at the value of 0.65.

  1. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used tomore » guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation results significantly (p < 0.01) based on DSC (6.72%) and SD of contour-to-contour distances (0.08 cm) and decreased the 95% confidence intervals of the bladder volume differences. Moreover, expanding the shape model improved the segmentation results significantly (p < 0.01) based on DSC and SD of contour-to-contour distances. Conclusions: This patient-specific shape model based automatic bladder segmentation method on CBCT is accurate and generic. Our segmentation method only needs two pretreatment imaging data sets as prior knowledge, is independent of patient gender and patient treatment position and has the possibility to manually adapt the segmentation locally.« less

  2. Coiled to diffuse: Brownian motion of a helical bacterium.

    PubMed

    Butenko, Alexander V; Mogilko, Emma; Amitai, Lee; Pokroy, Boaz; Sloutskin, Eli

    2012-09-11

    We employ real-time three-dimensional confocal microscopy to follow the Brownian motion of a fixed helically shaped Leptospira interrogans (LI) bacterium. We extract from our measurements the translational and the rotational diffusion coefficients of this bacterium. A simple theoretical model is suggested, perfectly reproducing the experimental diffusion coefficients, with no tunable parameters. An older theoretical model, where edge effects are neglected, dramatically underestimates the observed rates of translation. Interestingly, the coiling of LI increases its rotational diffusion coefficient by a factor of 5, compared to a (hypothetical) rectified bacterium of the same contour length. Moreover, the translational diffusion coefficients would have decreased by a factor of ~1.5, if LI were rectified. This suggests that the spiral shape of the spirochaete bacteria, in addition to being employed for their active twisting motion, may also increase the ability of these bacteria to explore the surrounding fluid by passive Brownian diffusion.

  3. Study on laser and infrared attenuation performance of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Liu, Qing-hai; Dai, Meng-yan; Cheng, Xiang; Fang, Guo-feng; Zhang, Tong; Liu, Haifeng

    2014-11-01

    In recent years, the weapon systems of laser and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. However, military smoke, a rapid and effective passive jamming method, can effectively counteract the attack of precision-guided weapons by their scattering and absorbing effects. The traditional smoke has good visible light (0.4-0.76μm) obscurant performance, but hardly any effects to other electromagnetic wave bands while the weapon systems of laser and IR imaging guidance usually work in broad band, including the near-infrared (1-3μm), middle-infrared (3-5μm), far-infrared (8-14μm), and so on. Accordingly, exploiting new effective obscurant materials has attracted tremendous interest worldwide nowadays. As is known, the nano-structured materials have lots of unique properties comparing with the traditional materials suggesting that they might be the perfect alternatives to solve the problems above. Carbon nanotubes (CNTs) are well-ordered, all-carbon hollow graphitic nano-structured materials with a high aspect ratio, lengths from several hundred nanometers to several millimeters. CNTs possess many unique intrinsic physical-chemical properties and are investigated in many areas reported by the previous studies. However, no application research about CNTs in smoke technology field is reported yet. In this paper, the attenuation performances of CNTs smoke to laser and IR were assessed in 20m3 smoke chamber. The testing wavebands employed in experiments are 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. The main parameters were obtained included the attenuation rate, transmission rate, mass extinction coefficient, etc. The experimental results suggest that CNTs smoke exhibits excellent attenuation ability to the broadband IR radiation. Their mass extinction coefficients are all above 1m2·g-1. Nevertheless, the mass extinction coefficients vary with the sampling time and smoke particles concentrations, even in the same testing waveband. With the time going the mass extinction coefficients will increase gradually. Based on the above results, theoretical calculations are also carried out for further exploitations. In general, CNTs smoke behaves excellent attenuation ability toward laser and IR under the experimental conditions. Therefore, they have great potentials to develop new smoke obscurant materials which could effectively interfere with broadband IR radiation including 1.06μm, 10.6μm, 3-5μm and 8-12μm IR waveband.

  4. Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar.

    PubMed

    Weinman, J A

    1988-10-01

    A simulated analysis is presented that shows that returns from a single-frequency space-borne lidar can be combined with data from conventional visible satellite imagery to yield profiles of aerosol extinction coefficients and the wind speed at the ocean surface. The optical thickness of the aerosols in the atmosphere can be derived from visible imagery. That measurement of the total optical thickness can constrain the solution to the lidar equation to yield a robust estimate of the extinction profile. The specular reflection of the lidar beam from the ocean can be used to determine the wind speed at the sea surface once the transmission of the atmosphere is known. The impact on the retrieved aerosol profiles and surface wind speed produced by errors in the input parameters and noise in the lidar measurements is also considered.

  5. Infrared extinction and microwave absorption properties of hybrid Fe3O4@SiO2@Ag nanospheres synthesized via a facile seed-mediated growth route.

    PubMed

    Chen, Yongpeng; Li, Shichuan; Wei, Xuebin; Tang, Runze; Zhou, Zunning

    2018-06-21

    Fe3O4@SiO2@Ag ternary hybrid nanoparticles were synthesized via a facile seed-mediated growth route. X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) measurements were used to characterize the as-prepared product. The results indicated that the nanoparticles exhibited excellent magnetic properties and an extremely dense structure with Ag layer thicknesses of 30 nm, 40 nm, and 50 nm. Furthermore, the microwave shielding effectiveness exceeded 20 dB over almost the entire frequency range (2-18 GHz), and the effectiveness obviously improved as the thickness of the Ag layer increased. In addition, the IR extinction coefficient of the nanoparticles was calculated by a finite-difference time-domain (FDTD) method, which showed that the nanoparticles can inherit the extinction performance of pure silver when the Ag shell thickness was 30 nm. Specifically, after assembling into chains, the peak position of the IR extinction curves displayed a significant redshift and an intensity increase as the number of nanoparticles increased in the chain, which dramatically promoted the IR extinction capability. As a result, the Fe3O4@SiO2@Ag nanoparticles are expected to be used as a new multispectral interference material. © 2018 IOP Publishing Ltd.

  6. Simulation of the flow past a model in the closed test section of a low-speed wind tunnel and in the free stream

    NASA Astrophysics Data System (ADS)

    Bui, V. T.; Lapygin, V. I.

    2015-05-01

    The flow around a model in the closed test section of a low-speed wind tunnel has been analyzed in 2D approximation. As the contour of the nozzle, test section, and diffuser, the contour of the T-324 wind tunnel, of the Khristianovich Institute of Theoretical and Applied Mechanics (ITAM SB RAS, Novosibirsk), in its symmetry plane was adopted. A comparison of experimental with calculated data on the distribution of velocities and dynamic pressures in the test section is given. The effect due to the sizes of a model installed in the test section on the values of the aerodynamic coefficients of the model is analyzed. As the aerodynamic model, the NASA0012 airfoil and the circular cylinder were considered. For the airfoil chord length b = 20 % of nozzle height, the values of the aerodynamic coefficients of the airfoil in the free stream and in the test section proved to be close to each other up to the angle of attack a = 7°, which configuration corresponds to blockage-factor value ξ ≈ 7 %. The obtained data are indicative of the expedience of taking into account, in choosing the model scale, not only the degree of flow passage area blockage by the model but, also, the length of the well-streamlined model. In the case of a strongly blunted body with a high drag-coefficient value, the admissible blockage factor ξ may reach a value of 10 %.

  7. Insight into the structural requirements of proton pump inhibitors based on CoMFA and CoMSIA studies.

    PubMed

    Nayana, M Ravi Shashi; Sekhar, Y Nataraja; Nandyala, Haritha; Muttineni, Ravikumar; Bairy, Santosh Kumar; Singh, Kriti; Mahmood, S K

    2008-10-01

    In the present study, a series of 179 quinoline and quinazoline heterocyclic analogues exhibiting inhibitory activity against Gastric (H+/K+)-ATPase were investigated using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA) methods. Both the models exhibited good correlation between the calculated 3D-QSAR fields and the observed biological activity for the respective training set compounds. The most optimal CoMFA and CoMSIA models yielded significant leave-one-out cross-validation coefficient, q(2) of 0.777, 0.744 and conventional cross-validation coefficient, r(2) of 0.927, 0.914 respectively. The predictive ability of generated models was tested on a set of 52 compounds having broad range of activity. CoMFA and CoMSIA yielded predicted activities for test set compounds with r(pred)(2) of 0.893 and 0.917 respectively. These validation tests not only revealed the robustness of the models but also demonstrated that for our models r(pred)(2) based on the mean activity of test set compounds can accurately estimate external predictivity. The factors affecting activity were analyzed carefully according to standard coefficient contour maps of steric, electrostatic, hydrophobic, acceptor and donor fields derived from the CoMFA and CoMSIA. These contour plots identified several key features which explain the wide range of activities. The results obtained from models offer important structural insight into designing novel peptic-ulcer inhibitors prior to their synthesis.

  8. Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs

    NASA Astrophysics Data System (ADS)

    Kurata, Tomohiro; Oda, Shigeto; Kawahira, Hiroshi; Haneishi, Hideaki

    2016-12-01

    We have previously proposed an estimation method of intravascular oxygen saturation (SO_2) from the images obtained by sidestream dark-field (SDF) imaging (we call it SDF oximetry) and we investigated its fundamental characteristics by Monte Carlo simulation. In this paper, we propose a correction method for scattering by the tissue and performed experiments with turbid phantoms as well as Monte Carlo simulation experiments to investigate the influence of the tissue scattering in the SDF imaging. In the estimation method, we used modified extinction coefficients of hemoglobin called average extinction coefficients (AECs) to correct the influence from the bandwidth of the illumination sources, the imaging camera characteristics, and the tissue scattering. We estimate the scattering coefficient of the tissue from the maximum slope of pixel value profile along a line perpendicular to the blood vessel running direction in an SDF image and correct AECs using the scattering coefficient. To evaluate the proposed method, we developed a trial SDF probe to obtain three-band images by switching multicolor light-emitting diodes and obtained the image of turbid phantoms comprised of agar powder, fat emulsion, and bovine blood-filled glass tubes. As a result, we found that the increase of scattering by the phantom body brought about the decrease of the AECs. The experimental results showed that the use of suitable values for AECs led to more accurate SO_2 estimation. We also confirmed the validity of the proposed correction method to improve the accuracy of the SO_2 estimation.

  9. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  10. Population dynamical behavior of Lotka-Volterra system under regime switching

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyue; Jiang, Daqing; Mao, Xuerong

    2009-10-01

    In this paper, we investigate a Lotka-Volterra system under regime switching where B(t) is a standard Brownian motion. The aim here is to find out what happens under regime switching. We first obtain the sufficient conditions for the existence of global positive solutions, stochastic permanence and extinction. We find out that both stochastic permanence and extinction have close relationships with the stationary probability distribution of the Markov chain. The limit of the average in time of the sample path of the solution is then estimated by two constants related to the stationary distribution and the coefficients. Finally, the main results are illustrated by several examples.

  11. Crop parameters for modeling sugarcane under rainfed conditions in Mexico

    USDA-ARS?s Scientific Manuscript database

    Crop models with well-tested parameters can improve sugarcane productivity for food and biofuel generation. This study aimed to (i) calibrate the light extinction coefficient (k) and other crop parameters for the sugarcane cultivar CP 72-2086, an early-maturing cultivar grown in Mexico and many oth...

  12. Efficient iodine-free dye-sensitized solar cells employing truxene-based organic dyes.

    PubMed

    Zong, Xueping; Liang, Mao; Chen, Tao; Jia, Jiangnan; Wang, Lina; Sun, Zhe; Xue, Song

    2012-07-07

    Two new truxene-based organic sensitizers (M15 and M16) featuring high extinction coefficients were synthesized for dye-sensitized solar cells employing cobalt electrolyte. The M16-sensitized device displays a 7.6% efficiency at an irradiation of AM1.5 full sunlight.

  13. Radical Recombination Kinetics: An Experiment in Physical Organic Chemistry.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1980-01-01

    Describes a student kinetic experiment involving second order kinetics as well as displaying photochromism using a wide variety of techniques from both physical and organic chemistry. Describes measurement of (1) the rate of the recombination reaction; (2) the extinction coefficient; and (3) the ESR spectrometer signal. (Author/JN)

  14. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profilesmore » averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48% more heating in the atmosphere and 21% more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II, underlining the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. Additionally, the model results suggest that both the direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less

  15. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II underlying the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less

  16. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; ...

    2016-01-18

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profilesmore » averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48% more heating in the atmosphere and 21% more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II, underlining the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. Additionally, the model results suggest that both the direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less

  17. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profilesmore » averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II, underlining the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both the direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less

  18. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; ...

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II underlying the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less

  19. Development of a rapid, simple assay of plasma total carotenoids

    PubMed Central

    2012-01-01

    Background Plasma total carotenoids can be used as an indicator of risk of chronic disease. Laboratory analysis of individual carotenoids by high performance liquid chromatography (HPLC) is time consuming, expensive, and not amenable to use beyond a research laboratory. The aim of this research is to establish a rapid, simple, and inexpensive spectrophotometric assay of plasma total carotenoids that has a very strong correlation with HPLC carotenoid profile analysis. Results Plasma total carotenoids from 29 volunteers ranged in concentration from 1.2 to 7.4 μM, as analyzed by HPLC. A linear correlation was found between the absorbance at 448 nm of an alcohol / heptane extract of the plasma and plasma total carotenoids analyzed by HPLC, with a Pearson correlation coefficient of 0.989. The average coefficient of variation for the spectrophotometric assay was 6.5% for the plasma samples. The limit of detection was about 0.3 μM and was linear up to about 34 μM without dilution. Correlations between the integrals of the absorption spectra in the range of carotenoid absorption and total plasma carotenoid concentration gave similar results to the absorbance correlation. Spectrophotometric assay results also agreed with the calculated expected absorbance based on published extinction coefficients for the individual carotenoids, with a Pearson correlation coefficient of 0.988. Conclusion The spectrophotometric assay of total carotenoids strongly correlated with HPLC analysis of carotenoids of the same plasma samples and expected absorbance values based on extinction coefficients. This rapid, simple, inexpensive assay, when coupled with the carotenoid health index, may be useful for nutrition intervention studies, population cohort studies, and public health interventions. PMID:23006902

  20. SU-F-J-97: A Joint Registration and Segmentation Approach for Large Bladder Deformations in Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derksen, A; Koenig, L; Heldmann, S

    Purpose: To improve results of deformable image registration (DIR) in adaptive radiotherapy for large bladder deformations in CT/CBCT pelvis imaging. Methods: A variational multi-modal DIR algorithm is incorporated in a joint iterative scheme, alternating between segmentation based bladder matching and registration. Using an initial DIR to propagate the bladder contour to the CBCT, in a segmentation step the contour is improved by discrete image gradient sampling along all surface normals and adapting the delineation to match the location of each maximum (with a search range of +−5/2mm at the superior/inferior bladder side and step size of 0.5mm). An additional graph-cutmore » based constraint limits the maximum difference between neighboring points. This improved contour is utilized in a subsequent DIR with a surface matching constraint. By calculating an euclidean distance map of the improved contour surface, the new constraint enforces the DIR to map each point of the original contour onto the improved contour. The resulting deformation is then used as a starting guess to compute a deformation update, which can again be used for the next segmentation step. The result is a dense deformation, able to capture much larger bladder deformations. The new method is evaluated on ten CT/CBCT male pelvis datasets, calculating Dice similarity coefficients (DSC) between the final propagated bladder contour and a manually delineated gold standard on the CBCT image. Results: Over all ten cases, an average DSC of 0.93±0.03 is achieved on the bladder. Compared with the initial DIR (0.88±0.05), the DSC is equal (2 cases) or improved (8 cases). Additionally, DSC accuracy of femoral bones (0.94±0.02) was not affected. Conclusion: The new approach shows that using the presented alternating segmentation/registration approach, the results of bladder DIR in the pelvis region can be greatly improved, especially for cases with large variations in bladder volume. Fraunhofer MEVIS received funding from a research grant by Varian Medical Systems.« less

  1. Multicenter study for optimal categorization of extramural tumor deposits for colorectal cancer staging.

    PubMed

    Ueno, Hideki; Mochizuki, Hidetaka; Shirouzu, Kazuo; Kusumi, Takaya; Yamada, Kazutaka; Ikegami, Masahiro; Kawachi, Hiroshi; Kameoka, Shingo; Ohkura, Yasuo; Masaki, Tadahiko; Kushima, Ryoji; Takahashi, Keiichi; Ajioka, Yoichi; Hase, Kazuo; Ochiai, Atsushi; Wada, Ryo; Iwaya, Keiichi; Nakamura, Takahiro; Sugihara, Kenichi

    2012-04-01

    This study aimed to determine the optimal categorization of extramural tumor deposits lacking residual lymph node (LN) structure (EX) in colorectal cancer staging. The TNM classification system categorizes EX on the basis of their contour characteristics (the contour rule). We conducted a multicenter, retrospective, pathological review of 1716 patients with stage I to III curatively resected colorectal cancer who were treated at 11 institutions (1994-1998). In addition, 2242 patients from 9 institutions (1999-2003) were enrolled as a second cohort for validating results. EX were classified as isolated foci confined to vascular or perineural spaces (ie, lymphatic, venous, or perineural invasion) or as tumor nodules (ND). N- and T-staging systems employing different categories for staging were compared in terms of their prognostic power. In addition, the diagnoses of extramural, discontinuously spreading lesions made by 11 observers from different institutions were assessed for interobserver agreement. EX were observed in 18.2% of patients in the first cohort. The method of categorization of EX in tumor staging has a stronger impact on N than T staging. The N-staging system in which all ND types were classified as N factor (the ND rule) could more effectively stratify the survival outcome than the contour rule (Akaike information criterion, 3040.8 vs 3059.5; the Harrell C-index, 0.7255 vs 0.7103). EX were observed in 16.9% of patients in the second cohort. Statistically, the ND rule was more informative than the contour rule for N staging. The Fleiss kappa coefficient for distinguishing LN metastases from EX (0.74) was lower than expected for complete agreement, and it decreased further to 0.51 when calculated for the judgment of ND with smooth contours. Classifying all ND types as N factors irrespective of contours can simplify the tumor staging system by enhancing diagnostic objectivity, resulting in improved prognostic accuracy.

  2. Effects of FeCl3 additives on optical parameters of PVA

    NASA Astrophysics Data System (ADS)

    Latif, Duha M. A.; Chiad, Sami S.; Erhayief, Muhssen S.; Abass, Khalid H.; Habubi, Nadir F.; Hussin, Hadi A.

    2018-05-01

    PVA doped FeCl3 have been deposited utilizing casting technique. Absorption spectrum was registered in the wavelengths (300-900 nm) utilizing UV-Visible spectrophotometer. Optical constants behavior such as, absorbance, absorption coefficient, and skin depth were studied. It was found these parameters were increased as Fe content increase. While the extinction coefficient and optical conductivity was decreased. The energy gap of PVA-Fe films were decreased from 4 eV for the PVA film to 3.5 eV for the PVA: 4 % Fe film.

  3. Measurements of Nascent Soot Using a Cavity Attenauted Phase Shift (CAPS)-based Single Scattering Albedo Monitor

    NASA Astrophysics Data System (ADS)

    Freedman, A.; Onasch, T. B.; Renbaum-Wollf, L.; Lambe, A. T.; Davidovits, P.; Kebabian, P. L.

    2015-12-01

    Accurate, as compared to precise, measurement of aerosol absorption has always posed a significant problem for the particle radiative properties community. Filter-based instruments do not actually measure absorption but rather light transmission through the filter; absorption must be derived from this data using multiple corrections. The potential for matrix-induced effects is also great for organic-laden aerosols. The introduction of true in situ measurement instruments using photoacoustic or photothermal interferometric techniques represents a significant advance in the state-of-the-art. However, measurement artifacts caused by changes in humidity still represent a significant hurdle as does the lack of a good calibration standard at most measurement wavelengths. And, in the absence of any particle-based absorption standard, there is no way to demonstrate any real level of accuracy. We, along with others, have proposed that under the circumstance of low single scattering albedo (SSA), absorption is best determined by difference using measurement of total extinction and scattering. We discuss a robust, compact, field deployable instrument (the CAPS PMssa) that simultaneously measures airborne particle light extinction and scattering coefficients and thus the single scattering albedo (SSA) on the same sample volume. The extinction measurement is based on cavity attenuated phase shift (CAPS) techniques as employed in the CAPS PMex particle extinction monitor; scattering is measured using integrating nephelometry by incorporating a Lambertian integrating sphere within the sample cell. The scattering measurement is calibrated using the extinction measurement of non-absorbing particles. For small particles and low SSA, absorption can be measured with an accuracy of 6-8% at absorption levels as low as a few Mm-1. We present new results of the measurement of the mass absorption coefficient (MAC) of soot generated by an inverted methane diffusion flame at 630 nm. A value of 6.60 ±0.2 m2 g-1 was determined where the uncertainty refers to the precision of the measurement. The overall accuracy of the measurement, traceable to the properties of polystyrene latex particles, is estimated to be better than ±10%.

  4. An improved active contour model for glacial lake extraction

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  5. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction

    NASA Astrophysics Data System (ADS)

    Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.

    2018-01-01

    The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.

  6. Infrared Extinction Coefficients of Aerosolized Conductive Flake Powders and Flake Suspensions having a Zero-Truncated Poisson Size Distribution

    DTIC Science & Technology

    2012-11-01

    report may not be cited for purposes of advertisement . This report has been approved for public release. Acknowledgments The authors would...visible wavelengths, the eye perceives an image as a result of color contrasts that consist of differences in luminance and chromaticity (hue and

  7. A Comparison of the AFGL Flash, Draper Dart and AWS Haze Models with the Rand Wetta Model for Calculating Atmospheric Contrast Reduction.

    DTIC Science & Technology

    1982-03-01

    52 ILLUSTRATIONS Figure I Horizontal Visibility Profiles for Stair-Step and Exponential Extinction Coefficient...background reflectances. These values were then numerically intergrated (via a combination of Simpson’s and Newton’s 3/8th rules) and compared with the

  8. Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet

    DTIC Science & Technology

    1987-11-01

    refractive index N, and extinction coefficient K for pottasium choie................................................ 31Schloride... pottasium chloride. 31 POTASSIUM CHLORIDE S6C _ _ u5 ’U .. 4 31 0 1000 2000 WAVELENGTH (NM) 1.80 1.70 -- _ N 1.60 1.50 - -"- 1.40- 0 1000 2000 WAVELENGTH

  9. Impacts of PM concentrations on visibility impairment

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Wang, Mei-mei; Han, Ye-Xing; Yu, Zhi-Wei; Tang, Huai-Wu

    2016-11-01

    In the paper, an accurate and sensitive cavity attenuated phase shift spectroscopy (CAPS) sensor was used to monitor the atmospheric visibility. The CAPS system mainly includes a LED light source, a band-pass filter, an optical resonant cavity (composed of two high mirror, reflectivity is greater than 99.99%), a photoelectric detector and a lock-in amplifier. The 2L/min flow rate, the optical sensor rise and fall response time is about 15 s, so as to realize the fast measurement of visibility. An Allan variance analysis was carried out evaluating the optical system stability (and hence the maximum averaging time for the minimum detection limit) of the CAPS system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. During this period, the extinction coefficient was correlated with PM2.5 mass (0.88), the extinction coefficient was correlated with PM10 mass (0.85). The atmospheric visibility was correlated with PM2.5 mass (0.74). The atmospheric visibility was correlated with PM10 mass (0.66).

  10. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research

    NASA Technical Reports Server (NTRS)

    Platt, C. M.; Young, S. A.; Carswell, A. I.; Pal, S. R.; Mccormick, M. P.; Winker, D. M.; Delguasta, M.; Stefanutti, L.; Eberhard, W. L.; Hardesty, M.

    1994-01-01

    The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and April-July 1991, with intensive 30-day periods being selected within the two time intervals. Data are being archived at NASA Langley Research Center and, once there, are readily available to the international scientific community. This article describes the scale of the study in terms of its international involvement and in the range of data being recorded. Lidar observations of cloud height and backscatter coefficient have been taken from a number of ground-based stations spread around the globe. Solar shortwave and infrared longwave fluxes and infrared beam radiance have been measured at the surface wherever possible. The observations have been tailored to occur around the overpass times of the NOAA weather satellites. This article describes in some detail the various retrieval methods used to obtain results on cloud-base height, extinction coefficient, and infrared emittance, paying particular attention to the uncertainties involved.

  11. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison During the 2012 7-SEAS Field Campaign at Singapore

    NASA Technical Reports Server (NTRS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.

    2014-01-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  12. [The evoked activity of the lateral hypothalamus during extinction and differential inhibition].

    PubMed

    Vanetsian, G L

    1995-01-01

    Character of interaction between symmetric points of the cat's auditory cortex (A1) and the lateral hypothalamus (HL) was determined by calculating Spearman correlation coefficients between averaged summed sound-evoked activity (AEP) of the structures before, during elaboration, extinction and restoration, as well as differentiation of food-procuring conditioned reflex and in the eating full. Close mutual co-tuning between the cortex and hypothalamus characteristic for stable conditioned reflex was found to disrupted during its extinction, elaboration of differentiation and fullness eat inhibition due to entire reduction of hypothalamic AEP and disappearance of correlated with negativity of HL AEP "doubling" of the first positive wave of A1 AEP. Hyperactivity stage, expressed at the beginning of extinction and at the end of differentiation, preceded inactivation of hypothalamic afferents during elaboration of conditioned inhibition. The stage of hyperactivity, initiated by the elevated emotional state of the animal, testifies to an important role of emotional brain structures in the process of internal inhibition. The stage of HL and A1 hyperactivity initiated by emotional stress of the animal and following HL inactivation during inhibition of the conditioned response point to an important role of emotional subcortical brain structures in the mechanisms of inhibitory conditioning.

  13. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients calculated by both models agreed with the measurements within the data errors. The NRLMSISE-00 model was not able to predict the enhancement of extinction above 300 km observed after 14 h from the beginning of a geomagnetic storm whereas the DTM-2013 model described this variation with good accuracy.

  14. Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.

    2016-11-01

    A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m-2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m-3 and the observed meteorological optical range (visibility) was reduced to 300-750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm-1 and thus TSP mass concentrations of 10 000 µg m-3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm-1 and the mass concentrations reached 2000 µg m-3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze.

  15. Longwave radiative effects of Saharan dust during the ICE-D campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie

    2017-04-01

    The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from Ice in Clouds Experiment - Dust (ICE-D) campaign. The ICE-D campaign occurred during August 2015 and was based from Cape Verde. The ICE-D campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. ICE-D encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean ICE-D size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2/g) at 355 nm. In general the comparison between the lidar retrieval of aerosol extinction coefficients and in-situ measurements show a good agreement. The root mean square of the brightness temperature residuals in the window region for observations (ARIES) minus model simulations for i) clear-sky, ii) HT-FRTC 'line-by-line' scattering and, iii) HT-FRTC fast scattering are calculated. For the ICE-D case studies mineral dust impacts on the brightness temperature of the background on the order of 1 - 1.5 K.

  16. Design of a terahertz photonic crystal transmission filter containing ferroelectric material.

    PubMed

    King, Tzu-Chyang; Chen, Jian-Jie; Chang, Kai-Chun; Wu, Chien-Jang

    2016-10-10

    The ferroelectric material KTaO3 (KTO) has a very high refractive index, which is advantageous to the photonic crystal (PC) design. KTO polycrystalline crystal has a high extinction coefficient. In this work, we perform a theoretical study of the transmission properties of a PC bandpass filter made of polycrystalline KTO at terahertz (THz) frequencies. Our results show that the defect modes of usual PC narrowband filters no longer exist because of the existence of the high loss. We provide a new PC structure for the high-extinction materials and show that it has defect modes in its transmittance spectra, providing a possible bandpass filter design in the THz region.

  17. [The Autocad system for planimetric study of the optic disc in glaucoma: technique and reproducibility study].

    PubMed

    Sánchez Pérez, A; Honrubia López, F M; Larrosa Poves, J M; Polo Llorens, V; Melcon Sánchez-Frieras, B

    2001-09-01

    To develop a lens planimetry technique for the optic disc using AutoCAD. To determine variability magnitude of the optic disc morphological measurements. We employed AutoCAD R.14.0 Autodesk: image acquisition, contour delimitation by multiple lines fitting or ellipse adjustment, image sectorialization and measurements quantification (optic disc and excavation, vertical diameters, optic disc area, excavation area, neuroretinal sector area and Beta atrophy area). Intraimage or operator and interimage o total reproducibility was studied by coefficient of variability (CV) (n=10) in normal and myopic optic discs. This technique allows to obtain optic disc measurement in 5 to 10 minutes time. Total or interimage variability of measurements introduced by one observer presents CV range from 1.18-4.42. Operator or intraimage measurement presents CV range from 0.30-4.21. Optic disc contour delimitation by ellipse adjustment achieved better reproducibility results than multiple lines adjustment in all measurements. Computer assisted AutoCAD planimetry is an interactive method to analyse the optic disc, feasible to incorporate to clinical practice. Reproducibility results are comparable to other analyzers in quantification optic disc morphology. Ellipse adjustment improves results in optic disc contours delimitation.

  18. WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1994-01-01

    WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.

  19. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  20. The relationship between species detection probability and local extinction probability

    USGS Publications Warehouse

    Alpizar-Jara, R.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Pollock, K.H.; Rosenberry, C.S.

    2004-01-01

    In community-level ecological studies, generally not all species present in sampled areas are detected. Many authors have proposed the use of estimation methods that allow detection probabilities that are < 1 and that are heterogeneous among species. These methods can also be used to estimate community-dynamic parameters such as species local extinction probability and turnover rates (Nichols et al. Ecol Appl 8:1213-1225; Conserv Biol 12:1390-1398). Here, we present an ad hoc approach to estimating community-level vital rates in the presence of joint heterogeneity of detection probabilities and vital rates. The method consists of partitioning the number of species into two groups using the detection frequencies and then estimating vital rates (e.g., local extinction probabilities) for each group. Estimators from each group are combined in a weighted estimator of vital rates that accounts for the effect of heterogeneity. Using data from the North American Breeding Bird Survey, we computed such estimates and tested the hypothesis that detection probabilities and local extinction probabilities were negatively related. Our analyses support the hypothesis that species detection probability covaries negatively with local probability of extinction and turnover rates. A simulation study was conducted to assess the performance of vital parameter estimators as well as other estimators relevant to questions about heterogeneity, such as coefficient of variation of detection probabilities and proportion of species in each group. Both the weighted estimator suggested in this paper and the original unweighted estimator for local extinction probability performed fairly well and provided no basis for preferring one to the other.

  1. Optical properties of non-spherical desert dust particles in the terrestrial infrared - An asymptotic approximation approach

    NASA Astrophysics Data System (ADS)

    Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.

    2016-07-01

    Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz-Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz-Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz-Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz-Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex.

  2. Experimental thrust performance of a high-area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kacynski, Kenneth J.; Smith, Tamara A.

    1987-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  3. Experimental thrust performance of a high area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.; Kacynski, K. J.; Smith, T. A.

    1986-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  4. Wind-tunnel test results of airfoil modifications for the EA-6B

    NASA Technical Reports Server (NTRS)

    Sewall, W. G.; Mcghee, R. J.; Ferris, J. C.

    1987-01-01

    Wind-tunnel tests have been conducted (to determine the effects on airfoil performance for several airfoil modifications) for the EA-6B Wing Improvement Program. The modifications consist of contour changes to the leading-edge slat and trailing-edge flap to provide a higher low-speed maximum lift with no high-speed cruise-drag penalty. Airfoil sections from the 28- and 76-percent span stations were selected as baseline shapes with the major testing devoted to the inboard airfoil section (28-percent span station). The airfoil modifications increased the low-speed maximum lift coefficient between 20 and 35 percent over test conditions of 3 to 14 million chord Reynolds number and 0.14 to 0.34 Mach number. At the high-speed test conditions of 0.4 to 0.80 Mach number and 10 million chord Reynolds number, the modified airfoils had either matched or had lower drag coefficients for all normal-force coefficients above 0.2 as compared to the baseline airfoil. At normal-force coefficients less than 0.2, the baseline (original) airfoil had lower drag coefficients than any of the modified airfoils.

  5. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    PubMed Central

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-01

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium. PMID:28817039

  6. A near-infrared imaging survey of interacting galaxies - The small angular-size Arp systems

    NASA Technical Reports Server (NTRS)

    Bushouse, Howard A.; Stanford, S. A.

    1992-01-01

    Near-IR images of a large sample of interacting galaxies selected from the Atlas of Peculiar Galaxies by Arp (1966) have been obtained. Approximately 180 systems have been imaged in at least two, and usually three of the standard JHK bands. The survey and the observing and data reduction procedures, are described, and contour plots and aperture photometry are presented. Future papers will analyze the imaging data by groupings based on interaction type, stage, and progenitors. The goals of the analysis are to explore the relationships between galaxy interactions, activity, and morphology by studying the structure of the near-IR luminosity distribution, where extinction effects are much reduced relative to the optical and the major stellar mass component of galaxies dominates the observed light.

  7. Aerodynamic analysis of formula student car

    NASA Astrophysics Data System (ADS)

    Dharmawan, Mohammad Arief; Ubaidillah, Nugraha, Arga Ahmadi; Wijayanta, Agung Tri; Naufal, Brian Aqif

    2018-02-01

    Formula Society of Automotive Engineering (FSAE) is a contest between ungraduated students to create a high-performance formula student car that completes the regulation. Body and the other aerodynamic devices are significant because it affects the drag coefficient and the down force of the car. The drag coefficient is a measurement of the resistance of an object in a fluid environment, a lower the drag coefficient means it will have a less drag force. Down force is a force that pushes an object to the ground, in the car more down force means more grip. The objective of the research was to study the aerodynamic comparison between the race vehicle when attached to the wings and without it. These studies were done in three dimensional (3D) computational fluid dynamic (CFD) simulation method using the Autodesk Flow Design software. These simulations were done by conducted in 5 different velocities. The results of those simulations are by attaching wings on race vehicle has drag coefficient 0.728 and without wings has drag coefficient 0.56. Wings attachment will decrease the drag coefficient about 23 % and also the contour pressure and velocity were known at these simulations.

  8. Terahertz time-domain spectroscopy of chondroitin sulfate

    PubMed Central

    Shi, Changcheng; Ma, Yuting; Zhang, Jin; Wei, Dongshan; Wang, Huabin; Peng, Xiaoyu; Tang, Mingjie; Yan, Shihan; Zuo, Guokun; Du, Chunlei; Cui, Hongliang

    2018-01-01

    Chondroitin sulfate (CS), derived from cartilage tissues, is an important type of biomacromolecule. In this paper, the terahertz time-domain spectroscopy (THz-TDS) was investigated as a potential method for content detection of CS. With the increase of the CS content, the THz absorption coefficients of the CS/polyethylene mixed samples linearly increase. The refractive indices of the mixed samples also increase when the CS content increases. The extinction coefficient of CS demonstrates the THz frequency dependence to be approximately the power of 1.4, which can be explained by the effects of CS granular solids on THz scattering. PMID:29541526

  9. The current status of airborne laser fluorosensing. [of aquatic environments

    NASA Technical Reports Server (NTRS)

    Oneil, R. A.; Hoge, F. E.; Bristow, M. P. F.

    1981-01-01

    Airborne laser fluorosensors have been used to identify and quantify specific substances in the aquatic environment. It has been shown that the sensor can identify and classify oil films. If the extinction coefficient is known then the thickness of thinner films (less than 20 micrometers) may be calculated. The intensity of the water Raman signal is proportional to the water volume sampled by the sensor and hence an effective attenuation coefficient for the water can be calculated. The same Raman measurement provides the normalization necessary to map chlorophyll and dye concentrations using the intensity of their respective fluorescence signatures.

  10. Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres

    Treesearch

    Vladimir Kovalev; Cyle Wold; Alexander Petkov; Wei Min Hao

    2011-01-01

    We present a modified technique for processing multiangle lidar data that is applicable for relatively clear atmospheres, where the utilization of the conventional Kano-Hamilton method meets significant issues. Our retrieval algorithm allows computing the two-way transmission and the corresponding extinction-coefficient profile in any slope direction searched during...

  11. Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Sang Hee; Sun, Wenting; Ju, Yiguang

    The impact of toluene addition in n-decane on OH concentrations, maximum heat release rates, and extinction limits were studied experimentally and computationally by using counterflow diffusion flames with laser induced fluorescence imaging. Sensitivity analyses of kinetic path ways and species transport on flame extinction were also conducted. The results showed that the extinction strain rate of n-decane/toluene/nitrogen flames decreased significantly with an increase of toluene addition and depended linearly on the maximum OH concentration. It was revealed that the maximum OH concentration, which depends on the fuel H/C ratio, can be used as an index of the radical pool andmore » chemical heat release rate, since it plays a significant role on the heat production via the reaction with other species, such as CO, H{sub 2}, and HCO. Experimental results further demonstrated that toluene addition in n-decane dramatically reduced the peak OH concentration via H abstraction reactions and accelerated flame extinction via kinetic coupling between toluene and n-decane mechanisms. Comparisons between experiments and simulations revealed that the current toluene mechanism significantly over-predicts the radical destruction rate, leading to under-prediction of extinction limits and OH concentrations, especially caused by the uncertainty of the H abstraction reaction from toluene, which rate coefficient has a difference by a factor of 5 in the tested toluene models. In addition, sensitivity analysis of diffusive transport showed that in addition to n-decane and toluene, the transport of OH and H also considerably affects the extinction limit. A reduced linear correlation between the extinction limits of n-decane/toluene blended fuels and the H/C ratio as well as the mean fuel molecular weight was obtained. The results suggest that an explicit prediction of the extinction limits of aromatic and alkane blended fuels can be established by using H/C ratio (or radical index) and the mean fuel molecular weight which represent the rates of radical production and the fuel transport, respectively. (author)« less

  12. Computer simulation of supersonic rarefied gas flow in the transition region, about a spherical probe; a Monte Carlo approach with application to rocket-borne ion probe experiments

    NASA Technical Reports Server (NTRS)

    Horton, B. E.; Bowhill, S. A.

    1971-01-01

    This report describes a Monte Carlo simulation of transition flow around a sphere. Conditions for the simulation correspond to neutral monatomic molecules at two altitudes (70 and 75 km) in the D region of the ionosphere. Results are presented in the form of density contours, velocity vector plots and density, velocity and temperature profiles for the two altitudes. Contours and density profiles are related to independent Monte Carlo and experimental studies, and drag coefficients are calculated and compared with available experimental data. The small computer used is a PDP-15 with 16 K of core, and a typical run for 75 km requires five iterations, each taking five hours. The results are recorded on DECTAPE to be printed when required, and the program provides error estimates for any flow field parameter.

  13. Edge Extraction by an Exponential Function Considering X-ray Transmission Characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Youp Synn, Sang; Cho, Sung Man; Jong Joo, Won

    2011-04-01

    3-D radiographic methodology has been into the spotlight for quality inspection of mass product or in-service inspection of aging product. To locate a target object in 3-D space, its characteristic contours such as edge length, edge angle, and vertices are very important. In spite of a simple geometry product, it is very difficult to get clear shape contours from a single radiographic image. The image contains scattering noise at the edges and ambiguity coming from X-Ray absorption within the body. This article suggests a concise method to extract whole edges from a single X-ray image. At the edge point of the object, the intensity of the X-ray decays exponentially as the X-ray penetrates the object. Considering this X-Ray decaying property, edges are extracted by using the least square fitting with the control of Coefficient of Determination.

  14. Test results at transonic speeds on a contoured over-the-wing propfan model

    NASA Technical Reports Server (NTRS)

    Levin, Alan D.; Smeltzer, Donald B.; Smith, Ronald C.

    1986-01-01

    A semispan wing/body model with a powered highly loaded propeller has been tested to provide data on the propulsion installation drag of advanced propfan-powered aircraft. The model had a supercritical wing with a contoured over-the-wing nacelle. It was tested in the Ames Research Center's (ARC) 14-foot Transonic Wind Tunnel at a total pressure of 1 atm. The test was conducted at angles of attack from -0.5 to 4 deg at Mach numbers ranging from 0.6 to 0.8. The test objectives were to determine propeller performance, exhaust jet effects, propeller slipstream interference drag, and total powerplant installation drag. Test results indicated a total powerplant installation drag of 82 counts (0.0082) at a Mach number of 0.8 and a lift coefficient of 0.5, which is approximately 29 percent of a typical airplane cruise drag.

  15. Role of endocortical contouring methods on precision of HR-pQCT-derived cortical micro-architecture in postmenopausal women and young adults.

    PubMed

    Kawalilak, C E; Johnston, J D; Cooper, D M L; Olszynski, W P; Kontulainen, S A

    2016-02-01

    Precision errors of cortical bone micro-architecture from high-resolution peripheral quantitative computed tomography (pQCT) ranged from 1 to 16 % and did not differ between automatic or manually modified endocortical contour methods in postmenopausal women or young adults. In postmenopausal women, manually modified contours led to generally higher cortical bone properties when compared to the automated method. First, the objective of the study was to define in vivo precision errors (coefficient of variation root mean square (CV%RMS)) and least significant change (LSC) for cortical bone micro-architecture using two endocortical contouring methods: automatic (AUTO) and manually modified (MOD) in two groups (postmenopausal women and young adults) from high-resolution pQCT (HR-pQCT) scans. Second, it was to compare precision errors and bone outcomes obtained with both methods within and between groups. Using HR-pQCT, we scanned twice the distal radius and tibia of 34 postmenopausal women (mean age ± SD 74 ± 7 years) and 30 young adults (27 ± 9 years). Cortical micro-architecture was determined using AUTO and MOD contour methods. CV%RMS and LSC were calculated. Repeated measures and multivariate ANOVA were used to compare mean CV% and bone outcomes between the methods within and between the groups. Significance was accepted at P < 0.05. CV%RMS ranged from 0.9 to 16.3 %. Within-group precision did not differ between evaluation methods. Compared to young adults, postmenopausal women had better precision for radial cortical porosity (precision difference 9.3 %) and pore volume (7.5 %) with MOD. Young adults had better precision for cortical thickness (0.8 %, MOD) and tibial cortical density (0.2 %, AUTO). In postmenopausal women, MOD resulted in 0.2-54 % higher values for most cortical outcomes, as well as 6-8 % lower radial and tibial cortical BMD and 2 % lower tibial cortical thickness. Results suggest that AUTO and MOD endocortical contour methods provide comparable repeatability. In postmenopausal women, manual modification of endocortical contours led to generally higher cortical bone properties when compared to the automated method, while no between-method differences were observed in young adults.

  16. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    NASA Astrophysics Data System (ADS)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  17. Application of the CALIOP Layer Product to Evaluate the Vertical Distribution of Aerosols Estimated by Global Models: AeroCom Phase I Results

    NASA Technical Reports Server (NTRS)

    Koffi, Brigitte; Schulz, Michael; Breon, Francois-Marie; Griesfeller, Jan; Winker, David; Balkanski, Yves; Bauer, Susanne; Berntsen, Terje; Chin, Mian; Collins, William D.; hide

    2012-01-01

    The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) layer product is used for a multimodel evaluation of the vertical distribution of aerosols. Annual and seasonal aerosol extinction profiles are analyzed over 13 sub-continental regions representative of industrial, dust, and biomass burning pollution, from CALIOP 2007-2009 observations and from AeroCom (Aerosol Comparisons between Observations and Models) 2000 simulations. An extinction mean height diagnostic (Z-alpha) is defined to quantitatively assess the models' performance. It is calculated over the 0-6 km and 0-10 km altitude ranges by weighting the altitude of each 100 m altitude layer by its aerosol extinction coefficient. The mean extinction profiles derived from CALIOP layer products provide consistent regional and seasonal specificities and a low inter-annual variability. While the outputs from most models are significantly correlated with the observed Z-alpha climatologies, some do better than others, and 2 of the 12 models perform particularly well in all seasons. Over industrial and maritime regions, most models show higher Z-alpha than observed by CALIOP, whereas over the African and Chinese dust source regions, Z-alpha is underestimated during Northern Hemisphere Spring and Summer. The positive model bias in Z-alpha is mainly due to an overestimate of the extinction above 6 km. Potential CALIOP and model limitations, and methodological factors that might contribute to the differences are discussed.

  18. Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.

    2000-12-01

    A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorptionmore » of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively.« less

  19. A novel geometry-dosimetry label fusion method in multi-atlas segmentation for radiotherapy: a proof-of-concept study

    NASA Astrophysics Data System (ADS)

    Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B.

    2017-05-01

    Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.

  20. A novel geometry-dosimetry label fusion method in multi-atlas segmentation for radiotherapy: a proof-of-concept study.

    PubMed

    Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B

    2017-05-07

    Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.

  1. SU-E-J-220: Evaluation of Atlas-Based Auto-Segmentation (ABAS) in Head-And-Neck Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Q; Yan, D

    2014-06-01

    Purpose: Evaluate the accuracy of atlas-based auto segmentation of organs at risk (OARs) on both helical CT (HCT) and cone beam CT (CBCT) images in head and neck (HN) cancer adaptive radiotherapy (ART). Methods: Six HN patients treated in the ART process were included in this study. For each patient, three images were selected: pretreatment planning CT (PreTx-HCT), in treatment CT for replanning (InTx-HCT) and a CBCT acquired in the same day of the InTx-HCT. Three clinical procedures of auto segmentation and deformable registration performed in the ART process were evaluated: a) auto segmentation on PreTx-HCT using multi-subject atlases, b)more » intra-patient propagation of OARs from PreTx-HCT to InTx-HCT using deformable HCT-to-HCT image registration, and c) intra-patient propagation of OARs from PreTx-HCT to CBCT using deformable CBCT-to-HCT image registration. Seven OARs (brainstem, cord, L/R parotid, L/R submandibular gland and mandible) were manually contoured on PreTx-HCT and InTx-HCT for comparison. In addition, manual contours on InTx-CT were copied on the same day CBCT, and a local region rigid body registration was performed accordingly for each individual OAR. For procedures a) and b), auto contours were compared to manual contours, and for c) auto contours were compared to those rigidly transferred contours on CBCT. Dice similarity coefficients (DSC) and mean surface distances of agreement (MSDA) were calculated for evaluation. Results: For procedure a), the mean DSC/MSDA of most OARs are >80%/±2mm. For intra-patient HCT-to-HCT propagation, the Resultimproved to >85%/±1.5mm. Compared to HCT-to-HCT, the mean DSC for HCT-to-CBCT propagation drops ∼2–3% and MSDA increases ∼0.2mm. This Resultindicates that the inferior imaging quality of CBCT seems only degrade auto propagation performance slightly. Conclusion: Auto segmentation and deformable propagation can generate OAR structures on HCT and CBCT images with clinically acceptable accuracy. Therefore, they can be reliably implemented in the clinical HN ART process.« less

  2. Interobserver delineation uncertainty in involved-node radiation therapy (INRT) for early-stage Hodgkin lymphoma: on behalf of the Radiotherapy Committee of the EORTC lymphoma group.

    PubMed

    Aznar, Marianne C; Girinsky, Theodore; Berthelsen, Anne Kiil; Aleman, Berthe; Beijert, Max; Hutchings, Martin; Lievens, Yolande; Meijnders, Paul; Meidahl Petersen, Peter; Schut, Deborah; Maraldo, Maja V; van der Maazen, Richard; Specht, Lena

    2017-04-01

    In early-stage classical Hodgkin lymphoma (HL) the target volume nowadays consists of the volume of the originally involved nodes. Delineation of this volume on a post-chemotherapy CT-scan is challenging. We report on the interobserver variability in target volume definition and its impact on resulting treatment plans. Two representative cases were selected (1: male, stage IB, localization: left axilla; 2: female, stage IIB, localizations: mediastinum and bilateral neck). Eight experienced observers individually defined the clinical target volume (CTV) using involved-node radiotherapy (INRT) as defined by the EORTC-GELA guidelines for the H10 trial. A consensus contour was generated and the standard deviation computed. We investigated the overlap between observer and consensus contour [Sørensen-Dice coefficient (DSC)] and the magnitude of gross deviations between the surfaces of the observer and consensus contour (Hausdorff distance). 3D-conformal (3D-CRT) and intensity-modulated radiotherapy (IMRT) plans were calculated for each contour in order to investigate the impact of interobserver variability on each treatment modality. Similar target coverage was enforced for all plans. The median CTV was 120 cm 3 (IQR: 95-173 cm 3 ) for Case 1, and 255 cm 3 (IQR: 183-293 cm 3 ) for Case 2. DSC values were generally high (>0.7), and Hausdorff distances were about 30 mm. The SDs between all observer contours, providing an estimate of the systematic error associated with delineation uncertainty, ranged from 1.9 to 3.8 mm (median: 3.2 mm). Variations in mean dose resulting from different observer contours were small and were not higher in IMRT plans than in 3D-CRT plans. We observed considerable differences in target volume delineation, but the systematic delineation uncertainty of around 3 mm is comparable to that reported in other tumour sites. This report is a first step towards calculating an evidence-based planning target volume margin for INRT in HL.

  3. Aerosol profiling using the ceilometer network of the German Meteorological Service

    NASA Astrophysics Data System (ADS)

    Flentje, H.; Heese, B.; Reichardt, J.; Thomas, W.

    2010-08-01

    The German Meteorological Service (DWD) operates about 52 lidar ceilometers within its synoptic observations network, covering Germany. These affordable low-power lidar systems provide spatially and temporally high resolved aerosol backscatter profiles which can operationally provide quasi 3-D distributions of particle backscatter intensity. Intentionally designed for cloud height detection, recent significant improvements allow following the development of the boundary layer and to detect denser particle plumes in the free tropospere like volcanic ash, Saharan dust or fire smoke. Thus the network builds a powerful aerosol plume alerting and tracking system. If auxiliary aerosol information is available, the particle backscatter coefficient, the extinction coefficient and even particle mass concentrations may be estimated, with however large uncertainties. Therefore, large synergistic benefit is achieved if the ceilometers are linked to existing lidar networks like EARLINET or integrated into WMO's envisioined Global Aerosol Lidar Observation Network GALION. To this end, we demonstrate the potential and limitations of ceilometer networks by means of three representative aerosol episodes over Europe, namely Sahara dust, Mediterranean fire smoke and, more detailed, the Icelandic Eyjafjoll volcano eruption from mid April 2010 onwards. The DWD (Jenoptik CHM15k) lidar ceilometer network tracked the Eyjafjoll ash layers over Germany and roughly estimated peak extinction coefficients and mass concentrations on 17 April of 4-6(± 2) 10-4 m-1 and 500-750(± 300) μg/m-3, respectively, based on co-located aerosol optical depth, nephelometer (scattering coefficient) and particle mass concentration measurements. Though large, the uncertainties are small enough to let the network suit for example as aviation advisory tool, indicating whether the legal flight ban threshold of presently 2 mg/m3 is imminent to be exceeded.

  4. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  5. Seasonal Variations in Dust Loading within Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Moore, Casey; Moores, John; Smith, Christina L.; MSL Science Team

    2016-10-01

    The Mars Science Laboratory rover Curiosity has been exploring Gale Crater for more than two martian years. Such tenure allows seasonal variability of the weather record for the current era to be studied with aid from Mast Cameras (Mastcam), Navigation Cameras (Navcam) and Rover Environmental Monitoring Station (REMS). Dust is a key component in the Martian atmosphere which helps drive atmospheric circulation. As such, these three instruments are integral in the characterization of the dust-loading environment both within and above the crater. This study uses Navcam imagery and a digital terrain model provided from HRSC on Mars Express to derive geographical line-of-sight extinction (LOS-Ext) coefficients, a quantity that assesses dust loading local to the air within the crater and which reveals differences in dust loading along different lines of sight.We report two martian years worth of LOS-Ext at Gale Crater, covering Ls 210° in Mars year (MY) 31 to Ls 210° in MY33. All seasons have been observed twice with the only significant exception being a gap in data between Ls 270° - 315° in MY31 (early southern summer). Visibility conditions within the crater range from a few tens of km in spring and summer to over 100 km peaking around the winter solstice. The LOS-Ext record is also compared to the column extinction record derived from the Mastcam Tau observations. The first year shows a convergence of the two values around Ls 270° in MY31 and similar values around Ls 350° in MY31 and Ls 135° in MY32. Otherwise, during the first year of observation, the LOS-Ext has lower values than the Mastcam column extinction indicating two non-interacting atmospheric layers. In the second year, not only are similar values observed more frequently, the LOS-Ext coefficients have a global peak and overtake Mastcam column extinction during Ls 270° - 315° in MY32, which correspond to the missing timeframe from the previous year. As this season is prone to high wind speeds, this may be an indication of enhanced suspension of fine grain regolith occurring, coincidentally, at the tail end of a regional dust storm, causing LOS-Ext to be larger than column extinction.

  6. Ice Cloud Optical Thickness and Extinction Estimates from Radar Measurements.

    NASA Astrophysics Data System (ADS)

    Matrosov, Sergey Y.; Shupe, Matthew D.; Heymsfield, Andrew J.; Zuidema, Paquita

    2003-11-01

    A remote sensing method is proposed to derive vertical profiles of the visible extinction coefficients in ice clouds from measurements of the radar reflectivity and Doppler velocity taken by a vertically pointing 35-GHz cloud radar. The extinction coefficient and its vertical integral, optical thickness τ, are among the fundamental cloud optical parameters that, to a large extent, determine the radiative impact of clouds. The results obtained with this method could be used as input for different climate and radiation models and for comparisons with parameterizations that relate cloud microphysical parameters and optical properties. An important advantage of the proposed method is its potential applicability to multicloud situations and mixed-phase conditions. In the latter case, it might be able to provide the information on the ice component of mixed-phase clouds if the radar moments are dominated by this component. The uncertainties of radar-based retrievals of cloud visible optical thickness are estimated by comparing retrieval results with optical thicknesses obtained independently from radiometric measurements during the yearlong Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. The radiometric measurements provide a robust way to estimate τ but are applicable only to optically thin ice clouds without intervening liquid layers. The comparisons of cloud optical thicknesses retrieved from radar and from radiometer measurements indicate an uncertainty of about 77% and a bias of about -14% in the radar estimates of τ relative to radiometric retrievals. One possible explanation of the negative bias is an inherently low sensitivity of radar measurements to smaller cloud particles that still contribute noticeably to the cloud extinction. This estimate of the uncertainty is in line with simple theoretical considerations, and the associated retrieval accuracy should be considered good for a nonoptical instrument, such as radar. This paper also presents relations between radar-derived characteristic cloud particle sizes and effective sizes used in models. An average relation among τ, cloud ice water path, and the layer mean value of cloud particle characteristic size is also given. This relation is found to be in good agreement with in situ measurements. Despite a high uncertainty of radar estimates of extinction, this method is useful for many clouds where optical measurements are not available because of cloud multilayering or opaqueness.

  7. High Transparent Conductive Aluminum-Doped Zinc Oxide Thin Films by Reactive Co-Sputtering (Postprint)

    DTIC Science & Technology

    2016-03-30

    wavelength where n = k) is 1605 nm from the film (f). Figure 1 XRD patterns of the AZO films on quartz substrate Figure 2 UV-Vis-NIR...71.6 1605 9.87 x10 -4 Figure 3 Refractive index n (left) and extinction coefficient k of (right) the AZO films. 4. Conclusions AZO films were

  8. Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene.

    PubMed

    Ochoa-Martínez, Efraín; Gabás, Mercedes; Barrutia, Laura; Pesquera, Amaia; Centeno, Alba; Palanco, Santiago; Zurutuza, Amaia; Algora, Carlos

    2015-01-28

    The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.

  9. Preparation and Characterization of Ion-Irradiated Nanodiamonds as Photoacoustic Contrast Agents.

    PubMed

    Fang, Chia-Yi; Chang, Cheng-Chun; Mou, Chung-Yuan; Chang, Huan-Cheng

    2015-02-01

    Highly radiation-damaged or irradiated nanodiamonds (INDs) are a new type of nanomaterial developed recently as a potential photoacoustic (PA) contrast agent for deep-tissue imaging. This work characterized in detail the photophysical properties of these materials prepared by ion irradiation of natural diamond powders using various spectroscopic methods. For 40-nm NDs irradiated with 40-keV He+ at a dose of 3 x 10(15) ions/cm2, an average molar extinction coefficient of 4.2 M-1 cm-1 per carbon atom was measured at 1064 nm. Compared with gold nanorods of similar dimensions (10 nm x 67 nm), the INDs have a substantially smaller (by > 4 orders of magnitude) molar extinction coefficient per particle. However, the deficit is readily compensated by the much higher thermal stability, stronger hydrophilic interaction with water, and a lower nanobubble formation threshold (~30 mJ/cm2) of the sp3-carbon-based nanomaterial. No sign of photodamage was detected after high-energy (>100 mJ/cm2) illumination of the INDs for hours. Cell viability assays at the IND concentration of up to 100 µg/mL showed that the nanomaterial is non-cytotoxic and potentially useful for long-term PA bioimaging applications.

  10. The New Horizons Ultraviolet Solar Occultation by Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Young, L. A.; Kammer, J.; Steffl, A.; Gladstone, R.; Summers, M. E.; Strobel, D. F.; Hinson, D. P.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; McComas, D. J.

    2017-12-01

    The Alice instrument on NASA's New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14, as the spacecraft flew nearly diametrically though the solar shadow. The resulting dataset was a time-series of spectra from 52 to 187 nm with a spectral resolution of 0.3 nm. From these, we derived line-of-sight abundances and local number densities for the major species (N2 and CH4) and minor hydrocarbons (C2H2, C2H4, C2H6), and line-of-sight optical depth and extinction coefficients for the haze. Analysis of these data imply that (1) temperatures in Pluto's upper atmosphere were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K, and subsequently lower escape rates, dominated by CH4 escape over N2; (2) the lower atmosphere was very stable, placing the homopause within 12 km of the surface, (3) the abundance profiles of the "C2Hx hydrocarbons" had non-exponential density profiles that compared favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, and (4) haze had an extinction coefficient approximately proportional to N2 density.

  11. Synthesis, Characterization and Optical Constants of Silicon Oxycarbide

    NASA Astrophysics Data System (ADS)

    Memon, Faisal Ahmed; Morichetti, Francesco; Abro, Muhammad Ishaque; Iseni, Giosue; Somaschini, Claudio; Aftab, Umair; Melloni, Andrea

    2017-03-01

    High refractive index glasses are preferred in integrated photonics applications to realize higher integration scale of passive devices. With a refractive index that can be tuned between SiO2 (1.45) and a-SiC (3.2), silicon oxycarbide SiOC offers this flexibility. In the present work, silicon oxycarbide thin films from 0.1 - 2.0 μm thickness are synthesized by reactive radio frequency magnetron sputtering a silicon carbide SiC target in a controlled argon and oxygen environment. The refractive index n and material extinction coefficient k of the silicon oxycarbide films are acquired with variable angle spectroscopic ellipsometry over the UV-Vis-NIR wavelength range. Keeping argon and oxygen gases in the constant ratio, the refractive index n is found in the range from 1.41 to 1.93 at 600 nm which is almost linearly dependent on RF power of sputtering. The material extinction coefficient k has been estimated to be less than 10-4 for the deposited silicon oxycarbide films in the visible and near-infrared wavelength regions. Morphological and structural characterizations with SEM and XRD confirms the amorphous phase of the SiOC films.

  12. Characterization of light scattering in nematic droplet-polymer films

    NASA Astrophysics Data System (ADS)

    Kinugasa, Naoki; Yano, Yuichi; Takigawa, Akio; Kawahara, Hideo

    1992-06-01

    The optical properties of nematic droplet-polymer films were studied both in the on and off state using Lambert-Beer''s law to characterize their scattering phenomena. For the preparation of the devices, NCAP process was employed with the different diameter, distribution, shape, and density of nematic droplets. Their cell thickness and refractive indices concerning the birefringence of liquid crystals were also controlled. The results showed that the scattering phenomena of nematic droplet-polymer films were likely caused by two types of features. One, related to the surface area of nematic droplets, was the difference of the refractive indices in the interface between liquid crystals and polymer matrix. The other, related to the liquid crystal volume inside the nematic droplets, was the birefringence of liquid crystals. Considering such relations, the extinction coefficient of Lambert-Beer''s law could be described by the sum of the area in the interface multiplied by the difference of the refractive indices between two materials and the liquid crystal volume multiplied by their birefringence. Furthermore, it was found their parallel transmittance in the off state and haze ratio in the on state were well characterized by such extinction coefficient of Lambert-Beer''s law.

  13. An Algorithm to Compress Line-transition Data for Radiative-transfer Calculations

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio E.

    2017-11-01

    Molecular line-transition lists are an essential ingredient for radiative-transfer calculations. With recent databases now surpassing the billion-line mark, handling them has become computationally prohibitive, due to both the required processing power and memory. Here I present a temperature-dependent algorithm to separate strong from weak line transitions, reformatting the large majority of the weaker lines into a cross-section data file, and retaining the detailed line-by-line information of the fewer strong lines. For any given molecule over the 0.3-30 μm range, this algorithm reduces the number of lines to a few million, enabling faster radiative-transfer computations without a significant loss of information. The final compression rate depends on how densely populated the spectrum is. I validate this algorithm by comparing Exomol’s HCN extinction-coefficient spectra between the complete (65 million line transitions) and compressed (7.7 million) line lists. Over the 0.6-33 μm range, the average difference between extinction-coefficient values is less than 1%. A Python/C implementation of this algorithm is open-source and available at https://github.com/pcubillos/repack. So far, this code handles the Exomol and HITRAN line-transition format.

  14. An automated skin segmentation of Breasts in Dynamic Contrast-Enhanced Magnetic Resonance Imaging.

    PubMed

    Lee, Chia-Yen; Chang, Tzu-Fang; Chang, Nai-Yun; Chang, Yeun-Chung

    2018-04-18

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to diagnose breast disease. Obtaining anatomical information from DCE-MRI requires the skin be manually removed so that blood vessels and tumors can be clearly observed by physicians and radiologists; this requires considerable manpower and time. We develop an automated skin segmentation algorithm where the surface skin is removed rapidly and correctly. The rough skin area is segmented by the active contour model, and analyzed in segments according to the continuity of the skin thickness for accuracy. Blood vessels and mammary glands are retained, which remedies the defect of removing some blood vessels in active contours. After three-dimensional imaging, the DCE-MRIs without the skin can be used to see internal anatomical information for clinical applications. The research showed the Dice's coefficients of the 3D reconstructed images using the proposed algorithm and the active contour model for removing skins are 93.2% and 61.4%, respectively. The time performance of segmenting skins automatically is about 165 times faster than manually. The texture information of the tumors position with/without the skin is compared by the paired t-test yielded all p < 0.05, which suggested the proposed algorithm may enhance observability of tumors at the significance level of 0.05.

  15. Investigation of non-axisymmetric endwall contouring in a compressor cascade

    NASA Astrophysics Data System (ADS)

    Liu, Xiwu; Jin, Donghai; Gui, Xingmin

    2017-12-01

    The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwall was designed by an endwall design optimization platform at 0o incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller corner stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7o incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS).

  16. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.

    PubMed

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.

  17. High-Throughput Field Phenotyping of Leaves, Leaf Sheaths, Culms and Ears of Spring Barley Cultivars at Anthesis and Dough Ripeness.

    PubMed

    Barmeier, Gero; Schmidhalter, Urs

    2017-01-01

    To optimize plant architecture (e.g., photosynthetic active leaf area, leaf-stem ratio), plant physiologists and plant breeders rely on destructively and tediously harvested biomass samples. A fast and non-destructive method for obtaining information about different plant organs could be vehicle-based spectral proximal sensing. In this 3-year study, the mobile phenotyping platform PhenoTrac 4 was used to compare the measurements from active and passive spectral proximal sensors of leaves, leaf sheaths, culms and ears of 34 spring barley cultivars at anthesis and dough ripeness. Published vegetation indices (VI), partial least square regression (PLSR) models and contour map analysis were compared to assess these traits. Contour maps are matrices consisting of coefficients of determination for all of the binary combinations of wavelengths and the biomass parameters. The PLSR models of leaves, leaf sheaths and culms showed strong correlations ( R 2 = 0.61-0.76). Published vegetation indices depicted similar coefficients of determination; however, their RMSEs were higher. No wavelength combination could be found by the contour map analysis to improve the results of the PLSR or published VIs. The best results were obtained for the dry weight and N uptake of leaves and culms. The PLSR models yielded satisfactory relationships for leaf sheaths at anthesis ( R 2 = 0.69), whereas only a low performance for all of sensors and methods was observed at dough ripeness. No relationships with ears were observed. Active and passive sensors performed comparably, with slight advantages observed for the passive spectrometer. The results indicate that tractor-based proximal sensing in combination with optimized spectral indices or PLSR models may represent a suitable tool for plant breeders to assess relevant morphological traits, allowing for a better understanding of plant architecture, which is closely linked to the physiological performance. Further validation of PLSR models is required in independent studies. Organ specific phenotyping represents a first step toward breeding by design.

  18. High-Throughput Field Phenotyping of Leaves, Leaf Sheaths, Culms and Ears of Spring Barley Cultivars at Anthesis and Dough Ripeness

    PubMed Central

    Barmeier, Gero; Schmidhalter, Urs

    2017-01-01

    To optimize plant architecture (e.g., photosynthetic active leaf area, leaf-stem ratio), plant physiologists and plant breeders rely on destructively and tediously harvested biomass samples. A fast and non-destructive method for obtaining information about different plant organs could be vehicle-based spectral proximal sensing. In this 3-year study, the mobile phenotyping platform PhenoTrac 4 was used to compare the measurements from active and passive spectral proximal sensors of leaves, leaf sheaths, culms and ears of 34 spring barley cultivars at anthesis and dough ripeness. Published vegetation indices (VI), partial least square regression (PLSR) models and contour map analysis were compared to assess these traits. Contour maps are matrices consisting of coefficients of determination for all of the binary combinations of wavelengths and the biomass parameters. The PLSR models of leaves, leaf sheaths and culms showed strong correlations (R2 = 0.61–0.76). Published vegetation indices depicted similar coefficients of determination; however, their RMSEs were higher. No wavelength combination could be found by the contour map analysis to improve the results of the PLSR or published VIs. The best results were obtained for the dry weight and N uptake of leaves and culms. The PLSR models yielded satisfactory relationships for leaf sheaths at anthesis (R2 = 0.69), whereas only a low performance for all of sensors and methods was observed at dough ripeness. No relationships with ears were observed. Active and passive sensors performed comparably, with slight advantages observed for the passive spectrometer. The results indicate that tractor-based proximal sensing in combination with optimized spectral indices or PLSR models may represent a suitable tool for plant breeders to assess relevant morphological traits, allowing for a better understanding of plant architecture, which is closely linked to the physiological performance. Further validation of PLSR models is required in independent studies. Organ specific phenotyping represents a first step toward breeding by design. PMID:29163629

  19. Computerized Liver Volumetry on MRI by Using 3D Geodesic Active Contour Segmentation

    PubMed Central

    Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji

    2014-01-01

    OBJECTIVE Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. SUBJECTS AND METHODS Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. RESULTS The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). CONCLUSION The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time. PMID:24370139

  20. Computerized liver volumetry on MRI by using 3D geodesic active contour segmentation.

    PubMed

    Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji

    2014-01-01

    Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J; Balter, P; Court, L

    Purpose: To evaluate the performance of commercially available automatic segmentation tools built into treatment planning systems (TPS) in terms of their segmentation accuracy and flexibility in customization. Methods: Twelve head-and-neck cancer patients and twelve thoracic cancer patients were retrospectively selected to benchmark the model-based segmentation (MBS) and atlas-based segmentation (ABS) in RayStation TPS and the Smart Probabilistic Image Contouring Engine (SPICE) in Pinnacle TPS. Multi-atlas contouring service (MACS) that was developed in-house as a plug-in of Pinnacle TPS was evaluated as well. Manual contours used in clinic were reviewed and modified for consistency and served as ground truth for themore » evaluation. Head-and-neck evaluation included six regions of interest (ROIs): left and right parotid glands, brainstem, spinal cord, mandible, and submandibular glands. Thoracic evaluation includes seven ROIs: left and right lungs, spinal cord, heart, esophagus, and left and right brachial plexus. Auto-segmented contours were compared with the manual contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: In head- and-neck evaluation, only mandible has a high accuracy in all segmentations (DSC>85%); SPICE achieved DSC>70% for parotid glands; MACS achieved this for both parotid glands and submandibular glands; and RayStation ABS achieved this for spinal cord. In thoracic evaluation, SPICE achieved the best in lung and heart segmentation, while MACS achieved the best for all other structures. The less distinguishable structures on CT images, such as brainstem, spinal cord, parotid glands, submandibular glands, esophagus, and brachial plexus, showed great variability in different segmentation tools (mostly DSC<70% and MSD>3mm). The template for RayStation ABS can be easily customized by users, while RayStation MBS and SPICE rely on the vendors to provide the templates/models. Conclusion: Great variability was observed in different segmentation tools applied to different structures. These commercially-available segmentation tools should be carefully evaluated before clinical use.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanick, Cameron W.; Castle, Katherine O.; Vedam, Sastry

    Purpose: We prospectively compared computed tomography (CT)– and magnetic resonance imaging (MRI)–based high-risk clinical target volume (HR-CTV) contours at the time of brachytherapy for cervical cancer in an effort to identify patients who might benefit most from MRI-based planning. Methods and Materials: Thirty-seven patients who had undergone a pretreatment diagnostic MRI scan were included in the analysis. We delineated the HR-CTV on the brachytherapy CT and brachytherapy MRI scans independently for each patient. We then calculated the absolute volumes for each HR-CTV and the Dice coefficient of similarity (DC, a measure of spatial agreement) for the HR-CTV contours. We identifiedmore » the clinical and tumor factors associated with (1) a discrepancy in volume between the CT HR-CTV and MRI HR-CTV contours; and (2) DC. The mean values were compared using 1-way analysis of variance or paired or unpaired t tests, as appropriate. Simple and multivariable linear regression analyses were used to model the effects of covariates on the outcomes. Results: Patients with International Federation of Gynecology and Obstetrics stage IB to IVA cervical cancer were treated with intracavitary brachytherapy using tandem and ovoid (n=33) or tandem and cylinder (n=4) applicators. The mean CT HR-CTV volume (44.1 cm{sup 3}) was larger than the mean MRI HR-CTV volume (35.1 cm{sup 3}; P<.0001, paired t test). On multivariable analysis, a higher body mass index (BMI) and tumor size ≥5 cm with parametrial invasion on the MRI scan at diagnosis were associated with an increased discrepancy in volume between the HR-CTV contours (P<.02 for both). In addition, the spatial agreement (as measured by DC) between the HR-CTV contours decreased with an increasing BMI (P=.013). Conclusions: We recommend MRI-based brachytherapy planning for patients with tumors >5 cm and parametrial invasion on MRI at diagnosis and for those with a high BMI.« less

  3. SU-F-J-115: Target Volume and Artifact Evaluation of a New Device-Less 4D CT Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R; Pan, T

    2016-06-15

    Purpose: 4DCT is often used in radiation therapy treatment planning to define the extent of motion of the visible tumor (IGTV). Recent available software allows 4DCT images to be created without the use of an external motion surrogate. This study aims to compare this device-less algorithm to a standard device-driven technique (RPM) in regards to artifacts and the creation of treatment volumes. Methods: 34 lung cancer patients who had previously received a cine 4DCT scan on a GE scanner with an RPM determined respiratory signal were selected. Cine images were sorted into 10 phases based on both the RPM signalmore » and the device-less algorithm. Contours were created on standard and device-less maximum intensity projection (MIP) images using a region growing algorithm and manual adjustment to remove other structures. Variations in measurements due to intra-observer differences in contouring were assessed by repeating a subset of 6 patients 2 additional times. Artifacts in each phase image were assessed using normalized cross correlation at each bed position transition. A score between +1 (artifacts “better” in all phases for device-less) and −1 (RPM similarly better) was assigned for each patient based on these results. Results: Device-less IGTV contours were 2.1 ± 1.0% smaller than standard IGTV contours (not significant, p = 0.15). The Dice similarity coefficient (DSC) was 0.950 ± 0.006 indicating good similarity between the contours. Intra-observer variation resulted in standard deviations of 1.2 percentage points in percent volume difference and 0.005 in DSC measurements. Only two patients had improved artifacts with RPM, and the average artifact score (0.40) was significantly greater than zero. Conclusion: Device-less 4DCT can be used in place of the standard method for target definition due to no observed difference between standard and device-less IGTVs. Phase image artifacts were significantly reduced with the device-less method.« less

  4. Star formation in the local Universe from the CALIFA sample. I. Calibrating the SFR using integral field spectroscopy data

    NASA Astrophysics Data System (ADS)

    Catalán-Torrecilla, C.; Gil de Paz, A.; Castillo-Morales, A.; Iglesias-Páramo, J.; Sánchez, S. F.; Kennicutt, R. C.; Pérez-González, P. G.; Marino, R. A.; Walcher, C. J.; Husemann, B.; García-Benito, R.; Mast, D.; González Delgado, R. M.; Muñoz-Mateos, J. C.; Bland-Hawthorn, J.; Bomans, D. J.; Del Olmo, A.; Galbany, L.; Gomes, J. M.; Kehrig, C.; López-Sánchez, Á. R.; Mendoza, M. A.; Monreal-Ibero, A.; Pérez-Torres, M.; Sánchez-Blázquez, P.; Vilchez, J. M.; Califa Collaboration

    2015-12-01

    Context. The star formation rate (SFR) is one of the main parameters used to analyze the evolution of galaxies through time. The need for recovering the light reprocessed by dust commonly requires the use of low spatial resolution far-infrared data. Recombination line luminosities provide an alternative, although uncertain dust-extinction corrections based on narrowband imaging or long-slit spectroscopy have traditionally posed a limit to their applicability. Integral field spectroscopy (IFS) is clearly the way to overcome this kind of limitation. Aims: We obtain integrated Hα, ultraviolet (UV) and infrared (IR)-based SFR measurements for 272 galaxies from the CALIFA survey at 0.005

  5. Standard UBV Observations at the Çanakkale University Observatory (ÇUO)

    NASA Astrophysics Data System (ADS)

    Bakis, Hicran; Bakis, Volkan; Demircan, Osman; Budding, Edwin

    2005-07-01

    By using standard and comparison star observations carried out at different times of the year, at Çanakkale Onsekiz Mart University Observatory, we obtained the atmospheric extinction coefficients at the observatory. We also obtained transformation coefficients and zero-point constants for the transformation to the standard Johnson UBV system, of observations in the local system carried out with the SSP5A photometer and T40 telescope. The transmission curves and the mean wavelengths of the UBV filters as measured in the laboratory appear not much different from those of the standard Johnson system and found inside the transmission curve of the standard mean atmosphere.

  6. Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raghubanshi, A. S.

    2011-08-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.

  7. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  8. NONLINEAR OPTICAL PHENOMENA: Self-reflection in a system of excitons and biexcitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Khadzhi, P. I.; Lyakhomskaya, K. D.

    1999-10-01

    The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted.

  9. SOI ring resonators with controllable MMI coupler sections

    NASA Astrophysics Data System (ADS)

    Hu, Youfang; Gardes, Frédéric Y.; Mashanovich, Goran Z.; Reed, Graham T.

    2011-01-01

    A ring resonator using a single 2×2 MMI as the coupler section has the distinct advantages of low sensitivity to fabrication error, temperature, wavelength and polarisation. However, the coupling coefficient of the 2×2 MMI coupler is fixed; hence, the performance of this type of device is limited, e.g. transmission spectrum with high extinction ratio is difficult to achieve. We have designed and simulated ring resonators with coupler sections consisting of two 2×2 MMIs and phase shifters, so that the coupling efficiency can be varied from 0% to 100% with relative ease. For a single ring resonator, the transmission spectrum can be controlled to achieve an extinction ratio of >20dB and a spectral bandwidth of <1nm. For a multiple ring filter, the transmission spectrum can be controlled to achieve an extinction ratio of >30dB and a bandwidth of <1nm in addition, a flat-top transmission spectrum is also achievable. The whole device has a footprint of approximately 200μm by 100μm.

  10. Optical and microphysical parameters of dense stratocumulus clouds during mission 206 of EUCREX '94 as retrieved from measurements made with the airborne lidar LEANDRE 1

    NASA Astrophysics Data System (ADS)

    Pelon, J.; Flamant, C.; Trouillet, V.; Flamant, P. H.

    Cloud parameters derived from measurements performed with the airborne backscatter lidar LEANDRE 1 during mission 206 of the EUCREX '94 campaign are reported. A new method has been developed to retrieve the extinction coefficient at the top of the dense stratocumulus deck under scrutiny during this mission. The largest extinction values are found to be related to the highest cloud top altitude revealing the small-scale structure of vertical motions within the stratocumulus field. Cloud optical depth (COD) is estimated from extinction retrievals, as well as cloud top and cloud base altitude using nadir and zenith lidar observations, respectively. Lidar-derived CODs are compared with CODs deduced from radiometric measurements made onboard the French research aircraft Avion de Recherche Atmosphérique et de Télédétection (ARAT/F27). A fair agreement is obtained (within 20%) for COD's larger than 10. Our results show the potential of lidar measurements to analyze cloud properties at optical depths larger than 5.

  11. Spectrally-Invariant Approximation Within Atmospheric Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2011-01-01

    Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These "spectrally invariant relationships" are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in clouddominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction. and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with ID radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.

  12. Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria

    PubMed Central

    Steiner, Michael; Lazaroff, Norman

    1974-01-01

    A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO42+ and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration. PMID:4441066

  13. A new interpretation of Serkowski's polarization law

    NASA Astrophysics Data System (ADS)

    Papoular, R.

    2018-06-01

    The basic tenets of the alternative interpretation to be presented here are that the spectral profiles of the star light polarization peaks observed in the visible and near IR are a result of the optical properties of silicate grains in the same spectral range, not of the grain size, provided it remains within the range of Rayleigh's approximation. The silicate properties are those obtained experimentally by Scott and Duley (1996) for the non-iron bearing amorphous forsterite and enstatite. The whole range of observed Serkowski polarization profiles can be simulated with mixtures made of forsterite plus an increasing fraction (0 to 0.5) of enstatite as the spectral peak shifts from 0.8 to 0.3 μm. Fits to individual observed polarization spectra are also demonstrated. The optical extinction of silicates in the vis/IR (the "transparency range") can be understood by analogy with the thoroughly studied amorphous hydrogenated carbons and amorphous silica. It is due to structural disorder (dangling bonds and coordination defects) and impurities, which give rise to electronic states in the forbidden gap of semi-conductors. Because they are partially localized, their extinction power is dramatically reduced and has been ignored or simply described by a low, flat plateau. As their number density depends on the environment, one expects variations in the ratio of optical extinction coefficients in the visible and mid-IR. It is also argued that the measured steep rise of extinction beyond 3 μm-1 into the UV is due to atomic transitions, and so cannot give rise to coherent molecular polarization, but only localized extinction.

  14. Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings

    NASA Astrophysics Data System (ADS)

    Freedman, Andrew; Renbaum-Wollf, Lindsay; Forestieri, Sara; Lambe, Andrew; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy

    2015-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. Important in quantifying the direct radiative impacts of soot in climate models, and specifically of black carbon (BC), is the assumed BC refractive index and shape-dependent interaction of light with BC particles. The latter assumption carries significant uncertainty because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet many optical models such as Mie theory in particular, typically assume a spherical particle morphology. It remains unclear under what conditions this is an acceptable assumption. To investigate the ability of various optical models to reproduce observed BC optical properties, we obtained measurements of light absorption, scattering and extinction coefficients and thus single scattering albedo (SSA) of size-resolved soot particles. Measurements were made on denuded soot particles produced using both methane and ethylene as fuels. In addition, these soot particles were coated with dioctyl sebacate or sulfuric acid and the enhancement in the apparent mass absorption coefficient determined. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm. Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The results will be interpreted in light of both Mie theory which assumes spherical and uniform particles and Rayleigh-Debye-Gans (RDG) theory, which assumes that the absorption properties of soot are dictated by the individual spherules. For denuded soot, effective refractive indices will be determined.

  15. Comparison of Two Air Pollution Episodes over Northeast China in Winter 2016/17 Using Ground-Based Lidar

    NASA Astrophysics Data System (ADS)

    Ma, Yanjun; Zhao, Hujia; Dong, Yunsheng; Che, Huizheng; Li, Xiaoxiao; Hong, Ye; Li, Xiaolan; Yang, Hongbin; Liu, Yuche; Wang, Yangfeng; Liu, Ningwei; Sun, Cuiyan

    2018-04-01

    This study analyzes and compares aerosol properties and meteorological conditions during two air pollution episodes in 19-22 (E1) and 25-26 (E2) December 2016 in Northeast China. The visibility, particulate matter (PM) mass concentration, and surface meteorological observations were examined, together with the planetary boundary layer (PBL) properties and vertical profiles of aerosol extinction coefficient and volume depolarization ratio that were measured by a ground-based lidar in Shenyang of Liaoning Province, China during December 2016-January 2017. Results suggest that the low PBL height led to poor pollution dilution in E1, while the high PBL accompanied by low visibility in E2 might have been due to cross-regional and vertical air transmission. The PM mass concentration decreased as the PBL height increased in E1 while these two variables were positively correlated in E2. The enhanced winds in E2 diffused the pollutants and contributed largely to the aerosol transport. Strong temperature inversion in E1 resulted in increased PM2.5 and PM10 concentrations, and the winds in E2 favoured the southwesterly transport of aerosols from the North China Plain into the region surrounding Shenyang. The large extinction coefficient was partially attributed to the local pollution under the low PBL with high ground-surface PM mass concentrations in E1, whereas the cross-regional transport of aerosols within a high PBL and the low PM mass concentration near the ground in E2 were associated with severe aerosol extinction at high altitudes. These results may facilitate better understanding of the vertical distribution of aerosol properties during winter pollution events in Northeast China.

  16. Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon

    NASA Astrophysics Data System (ADS)

    Kim, Young J.; Kim, Kyung W.; Kim, Shin D.; Lee, Bo K.; Han, Jin S.

    In order to investigate the causes of visibility degradation in the metropolitan area of Seoul, extensive chemical and optical monitoring of aerosol was conducted at two urban sites; Junnong, Seoul and Yonghyun, Incheon during several seasonal intensive monitoring periods between August 2002 and August 2004. Light extinction, scattering, and absorption coefficients were measured simultaneously with a transmissometer, a nephelometer, and an aethalometer, respectively. Continuous aerosol chemical measurement was also made with Sunset elemental carbon/organic carbon (EC/OC) analyzers and on-line ion monitors. The mean light extinction budget for five major aerosol components; ammonium sulfate, ammonium nitrate, fine carbonaceous particles (EC and OC), fine soil, and coarse particle was estimated based on the measurement results. Investigation of the haze level revealed that PM 2.5 mass concentrations at Junnong and Yonghyun measured under the Worst20% condition were approximately twice those of the Best20% condition. The worst visibility condition was well correlated with increases in mass concentrations of sulfate and nitrate, and EC particles. The mass concentration of aerosol components for the Worst20% was measured to be approximately two- to four-fold higher than those for the Best20%. Degree of visibility degradation was also analyzed based on the air mass pathway information obtained using the HYSPLIT model. Average light extinction coefficients under continental air flow condition at the Junnong and Yonghyun sites were the highest values of 704±414 and 773±546 Mm -1, respectively due to increased loading of fine particles. Visibility was greatly improved at both sites when atmosphere was impacted by air mass originated from Pacific Ocean.

  17. Fine Particulate Pollution and its Impact on Visibility Impairment in the Seoul Metropolitan Area during 2002-2004 Campaigns

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Jung, H.; Kim, M.; Lee, B.; Kim, S.; Park, J.; Lee, D.; Lee, B.; Han, J.; Lee, S.; Kim, K.

    2004-12-01

    In order to investigate the causes for fine particulate pollution and visibility impairment in the Seoul metropolitan area, extensive aerosol chemical and optical monitoring had been conducted at two urban sites, Junnong, Seoul and Younghyun, Incheon during six seasonal intensive monitoring periods (IMP); 5-26 August and 20-28 October 2002, 10-24 January and 6-14 June 2003, and 6-15 January and 13-22 April 2004. Light extinction and scattering coefficient were measured simultaneously with a transmissometer and a nephelometer, respectively. Average light extinction coefficient and visual range were measured to be 569ør"ú338Mm-1 and 6.9ør"ú5.4km at Junnong, Seoul and 614ør"ú409Mm-1 and 6.4ør"ú4.7km at Younghyun, Incheon, respectively. Light extinction budget for six major aerosol components; ammonium sulfate (NHSO), ammonium nitrate (NHNO), elemental carbon (EC) and organic carbon (OC) particles, fine soil (FS), and coarse particles (CM) was estimated based on the measured aerosol chemistry data. When the visibility was degraded from the worst 20% to the best 20% condition, percent increased contribution by each aerosol component was estimated to be 28.9% (NHSO), 16.8% (NHNO), 7.4% (OC), 22.4%(EC), 1.2% (FS), and 23.3% (CM), respectively at Junnong, Seoul. Contributions by ammonium sulfate and ammonium nitrate included the effects of relative humidity increase, which accounted for 47.4% and 59.5% of them, respectively. Impact of air mass characteristics on the visibility condition over the Seoul metropolitan area was also analyzed based on the air mass pathway information obtained using the HYSPLIT model.

  18. Hydrothermal Crystal Growth of Lithium Tetraborate and Lithium Gamma-Metaborate

    DTIC Science & Technology

    2014-03-27

    could be atomic nuclei, the center of mass of some complex—those details are immaterial. Both the rectangle and lozenge form potential cross-sections...HR y d L Figure 10. The red lines are the various contours of solution of 9, using a = 10 Bohr radii and the mass of coefficients on the LHS forced to...absorptivity is significantly below that of the transition metals or the actinides [9]. The lithium borate crystals are therefore a strong candidate for

  19. Deconvolution and analysis of wide-angle longwave radiation data from Nimbus 6 Earth radiation budget experiment for the first year

    NASA Technical Reports Server (NTRS)

    Bess, T. D.; Green, R. N.; Smith, G. L.

    1980-01-01

    One year of longwave radiation data from July 1975 through June 1976 from the Nimbus 6 satellite Earth radiation budget experiment is analyzed by representing the radiation field by a spherical harmonic expansion. The data are from the wide field of view instrument. Contour maps of the longwave radiation field and spherical harmonic coefficients to degree 12 and order 12 are presented for a 12 month data period.

  20. Estimating conformation content of a protein using citrate-stabilized Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Deka, Jashmini; Paul, Anumita; Chattopadhyay, Arun

    2010-08-01

    Herein we report the use of the optical properties of citrate-stabilized gold nanoparticles (Au NPs) for estimation of native or denatured conformation content in a mixture of a protein in solution. The UV-vis extinction spectrum of citrate-stabilized Au NPs is known to broaden differently in the presence of native and denatured states of α-amylase, bovine serum albumin (BSA) or amyloglucosidase (AMG). On the other hand, herein we show that when a mixture of native and denatured protein was present in the medium, the broadening of the spectrum differed for different fractional content of the conformations. Also, the total area under the extinction spectrum varied linearly with the change in the mole fraction content of a state and for a constant total protein concentration. Transmission electron microscopy (TEM) measurements revealed different levels of agglomeration for different fractional contents of the native or denatured state of a protein. In addition, time-dependent denaturation of a protein could be followed using the present method. The rate constants calculated for denaturation indicated a possible fast change in conformation of a protein before complete thermal denaturation. The observations have been explained based on the changes in extinction coefficient (thereby oscillator strength) upon interaction of citrate-stabilized NPs with proteins being in different states and levels of agglomeration.Herein we report the use of the optical properties of citrate-stabilized gold nanoparticles (Au NPs) for estimation of native or denatured conformation content in a mixture of a protein in solution. The UV-vis extinction spectrum of citrate-stabilized Au NPs is known to broaden differently in the presence of native and denatured states of α-amylase, bovine serum albumin (BSA) or amyloglucosidase (AMG). On the other hand, herein we show that when a mixture of native and denatured protein was present in the medium, the broadening of the spectrum differed for different fractional content of the conformations. Also, the total area under the extinction spectrum varied linearly with the change in the mole fraction content of a state and for a constant total protein concentration. Transmission electron microscopy (TEM) measurements revealed different levels of agglomeration for different fractional contents of the native or denatured state of a protein. In addition, time-dependent denaturation of a protein could be followed using the present method. The rate constants calculated for denaturation indicated a possible fast change in conformation of a protein before complete thermal denaturation. The observations have been explained based on the changes in extinction coefficient (thereby oscillator strength) upon interaction of citrate-stabilized NPs with proteins being in different states and levels of agglomeration. Electronic supplementary information (ESI) available: Additional UV-vis and fluorescence spectra and graphs based on UV-vis studies. See DOI: 10.1039/c0nr00154f

  1. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  2. Optical Extinction Measurements of Laser Side-Scatter During Tropical Storm Colin

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Kasparis, Takis; Metzger, Philip; Michaelides, Silas

    2017-01-01

    A side-scatter imaging (SSI) technique using a 447 nm, 500 mW laser and a Nikon D80 camera was tested at Kennedy Space Center, Florida during the passing of a rain band associated with Tropical Storm Colin. The June 6, 2016, 22:00 GMT rain event was intense but short-lived owing to the strong west-to-east advection of the rain band. An effort to validate the optical extinction measurement was conducted by setting up a line of three tipping rain gauges along an 80 m east-west path and below the laser beam. Differences between tipping bucket measurements were correlated to the extinction coefficient profile along the lasers path, as determined by the SSI measurement. In order to compare the tipping bucket to the optical extinction data, a Marshall-Palmer DSD model was assumed. Since this was a daytime event, the laser beam was difficult to detect in the camera images, pointing out an important limitation of SSI measurements: the practical limit of DSD density that can be effectively detected and analyzed under daylight conditions using this laser and camera, corresponds to a fairly moderate rainfall rate on the order of 20 mmh (night measurements achieve a much improved sensitivity). The SSI analysis model under test produced promising results, but in order to use the SSI method for routine meteorological studies, improvements to the math model will be required.

  3. Transient kinetics of the rapid shape change of unstirred human blood platelets stimulated with ADP.

    PubMed Central

    Deranleau, D A; Dubler, D; Rothen, C; Lüscher, E F

    1982-01-01

    Unstirred (isotropic) suspensions of human blood platelets stimulated with ADP in a stopped-flow laser turbidimeter exhibit a distinct extinction maximum during the course of the classical rapid conversion of initially smooth flat discoid cells to smaller-body spiny spheres. This implies the existence of a transient intermediate having a larger average light scattering cross section (extinction coefficient) than either the disc or the spiny sphere. Monophasic extinction increases reaching the same final value were observed when either discoid or spiny sphere platelets were converted to smooth spheres by treatment with chlorpromazine, and sphering of discoid cells was accompanied by a larger total extinction change than the retraction of pseudopods by already spherical cells. These and other results suggest that the ADP-induced transient state represents platelets that are approximately as "spherical" as the irregular spiny sphere but lack the characteristic long pseudopods and as a consequence are larger bodied. Fitting the ADP progress curves to the series reaction A leads to B leads to C by means of the light scattering equivalent of the Beer-Lambert law yielded scattering cross sections that are consistent with this explanation. The rate constants for the two reaction steps were identical, indicating that ADP activation corresponds to a continuous random (Poisson) process with successive apparent states "disc," "sphere," and "spiny sphere," whose individual probabilities are determined by a single rate-limiting step. PMID:6961409

  4. An experimental investigation of a cold jet emitting from a body of revolution into a subsonic free stream

    NASA Technical Reports Server (NTRS)

    Ousterhout, D. S.

    1972-01-01

    An experimental program was undertaken to determine the pressure distribution induced on aerodynamic bodies by a subsonic cold jet exhausting normal to the body surface and into a subsonic free stream. The investigation was limited to two bodies with single exhaust jets a flat plate at zero angle of attack with respect to the free-stream flow and a cylinder, fitted with a conical nose, with the longitudinal axis alined with the free-stream flow. Experimental data were obtained for free-stream velocity to jet velocity ratios between 0.3 and 0.5. The experimental data are presented in tabular form with appropriate graphs to indicate pressure coefficient contours, pressure coefficient decay, pitching-moment characteristics, and lift characteristics.

  5. Analysis of Mach number 0.8 turboprop slipstream wing/nacelle interactions

    NASA Technical Reports Server (NTRS)

    Welge, H. R.; Neuhart, D. H.; Dahlin, J. A.

    1981-01-01

    Data from wind tunnel tests of a powered propeller and nacelle mounted on a supercritical wing are analyzed. Installation of the nacelle significantly affected the wing flow and the flow on the upper surface of the wing is separated near the leading edge under powered conditions. Comparisons of various theories with the data indicated that the Neumann surface panel solution and the Jameson transonic solution gave results adequate for design purposes. A modified wing design was developed (Mod 3) which reduces the wing upper surface pressure coefficients and section lift coefficients at powered conditions to levels below those of the original wing without nacelle or power. A contoured over the wing nacelle that can be installed on the original wing without any appreciable interference to the wing upper surface pressure is described.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliwal, B; Asprey, W; Yan, Y

    Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less

  7. Computer-assisted framework for machine-learning-based delineation of GTV regions on datasets of planning CT and PET/CT images.

    PubMed

    Ikushima, Koujiro; Arimura, Hidetaka; Jin, Ze; Yabu-Uchi, Hidetake; Kuwazuru, Jumpei; Shioyama, Yoshiyuki; Sasaki, Tomonari; Honda, Hiroshi; Sasaki, Masayuki

    2017-01-01

    We have proposed a computer-assisted framework for machine-learning-based delineation of gross tumor volumes (GTVs) following an optimum contour selection (OCS) method. The key idea of the proposed framework was to feed image features around GTV contours (determined based on the knowledge of radiation oncologists) into a machine-learning classifier during the training step, after which the classifier produces the 'degree of GTV' for each voxel in the testing step. Initial GTV regions were extracted using a support vector machine (SVM) that learned the image features inside and outside each tumor region (determined by radiation oncologists). The leave-one-out-by-patient test was employed for training and testing the steps of the proposed framework. The final GTV regions were determined using the OCS method that can be used to select a global optimum object contour based on multiple active delineations with a LSM around the GTV. The efficacy of the proposed framework was evaluated in 14 lung cancer cases [solid: 6, ground-glass opacity (GGO): 4, mixed GGO: 4] using the 3D Dice similarity coefficient (DSC), which denotes the degree of region similarity between the GTVs contoured by radiation oncologists and those determined using the proposed framework. The proposed framework achieved an average DSC of 0.777 for 14 cases, whereas the OCS-based framework produced an average DSC of 0.507. The average DSCs for GGO and mixed GGO were 0.763 and 0.701, respectively, obtained by the proposed framework. The proposed framework can be employed as a tool to assist radiation oncologists in delineating various GTV regions. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  8. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    PubMed

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  9. Dose accumulation of multiple high dose rate prostate brachytherapy treatments in two commercially available image registration systems.

    PubMed

    Poder, Joel; Yuen, Johnson; Howie, Andrew; Bece, Andrej; Bucci, Joseph

    2017-11-01

    The purpose of this study was to assess whether deformable image registration (DIR) is required for dose accumulation of multiple high dose rate prostate brachytherapy (HDRPBT) plans treated with the same catheter pattern on two different CT datasets. DIR was applied to 20 HDRPBT patients' planning CT images who received two treatment fractions on sequential days, on two different CT datasets, with the same implant. Quality of DIR in Velocity and MIM image registration systems was assessed by calculating the Dice Similarity Coefficient (DSC) and mean distance to agreement (MDA) for the prostate, urethra and rectum contours. Accumulated doses from each system were then calculated using the same DIR technique and dose volume histogram (DVH) parameters compared to manual addition with no DIR. The average DSC was found to be 0.83 (Velocity) and 0.84 (MIM), 0.80 (Velocity) and 0.80 (MIM), 0.80 (Velocity) and 0.81 (MIM), for the prostate, rectum and urethra contours, respectively. The average difference in calculated DVH parameters between the two systems using dose accumulation was less than 1%, and there was no statistically significant difference found between deformably accumulated doses in the two systems versus manual DVH addition with no DIR. Contour propagation using DIR in velocity and MIM was shown to be at least equivalent to inter-observer contouring variability on CT. The results also indicate that dose accumulation through manual addition of DVH parameters may be sufficient for HDRPBT treatments treated with the same catheter pattern on two different CT datasets. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Jason A., E-mail: jason.dowling@csiro.au; University of Newcastle, Callaghan, New South Wales; Sun, Jidi

    Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1wmore » flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.« less

  11. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa

    2011-08-01

    In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.

  12. Blob-Spring Model for the Dynamics of Ring Polymer in Obstacle Environment

    NASA Astrophysics Data System (ADS)

    Lele, Ashish K.; Iyer, Balaji V. S.; Juvekar, Vinay A.

    2008-07-01

    The dynamical behavior of cyclic macromolecules in a fixed obstacle (FO) environment is very different than the behavior of linear chains in the same topological environment; while the latter relax by a snake-like reptational motion from their chain ends the former can relax only by contour length fluctuations since they are endless. Duke, Obukhov and Rubinstein proposed a scaling model (the DOR model) to interpret the dynamical scaling exponents shown by Monte Carlo simulations of rings in a FO environment. We present a model (blob-spring model) to describe the dynamics of flexible and non-concatenated ring polymer in FO environment based on a theoretical formulation developed for the dynamics of an unentangled fractal polymer. We argue that the perpetual evolution of ring perimeter by the motion of contour segments results in an extra frictional load. Our model predicts self-similar dynamics with scaling exponents for the molecular weight dependence of diffusion coefficient and relaxation times that are in agreement with the scaling model proposed by Obukhov et al.

  13. Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka

    Weather Research and Forecasting (WRF)-chem model calculations were conducted to study aerosol optical properties around Beijing, China, during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) period. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. In general, model calculations reproduced observed features of spatial and temporal variations of various surface and column aerosol optical parameters in and around Beijing. Spatial and temporal variations of aerosol absorption, scattering, and extinction coefficient corresponded well to those of elemental carbon (primary aerosol),more » sulfate (secondary aerosol), and the total aerosol mass concentration, respectively. These results show that spatial and temporal variations of the absorption coefficient are controlled by local emissions (within 100 km around Beijing during the preceding 24 h), while those of the scattering coefficient are controlled by regional-scale emissions (within 500 km around Beijing during the preceding 3 days) under synoptic-scale meteorological conditions, as discussed in our previous study of aerosol mass concentration. Vertical profiles of aerosol extinction revealed that the contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer, leading to a considerable increase in column aerosol optical depth (AOD) around Beijing. These effects are the main factors causing differences in regional and temporal variations between particulate matter (PM) mass concentration at the surface and column AOD over a wide region in the northern part of the Great North China Plain.« less

  14. Development of patient-specific phantoms for verification of stereotactic body radiation therapy planning in patients with metallic screw fixation

    NASA Astrophysics Data System (ADS)

    Oh, Dongryul; Hong, Chae-Seon; Ju, Sang Gyu; Kim, Minkyu; Koo, Bum Yong; Choi, Sungback; Park, Hee Chul; Choi, Doo Ho; Pyo, Hongryull

    2017-01-01

    A new technique for manufacturing a patient-specific dosimetric phantom using three-dimensional printing (PSDP_3DP) was developed, and its geometrical and dosimetric accuracy was analyzed. External body contours and structures of the spine and metallic fixation screws (MFS) were delineated from CT images of a patient with MFS who underwent stereotactic body radiation therapy for spine metastasis. Contours were converted into a STereoLithography file format using in-house program. A hollow, four-section PSDP was designed and manufactured using three types of 3DP to allow filling with a muscle-equivalent liquid and insertion of dosimeters. To evaluate the geometrical accuracy of PSDP_3DP, CT images were obtained and compared with patient CT data for volume, mean density, and Dice similarity coefficient for contours. The dose distribution in the PSDP_3DP was calculated by applying the same beam parameters as for the patient, and the dosimetric characteristics of the PSDP_3DP were compared with the patient plan. The registered CT of the PSDP_3DP was well matched with that of the real patient CT in the axial, coronal, and sagittal planes. The physical accuracy and dosimetric characteristics of PSDP_3DP were comparable to those of a real patient. The ability to manufacture a PSDP representing an extreme patient condition was demonstrated.

  15. Light extinction method for diagnostics of particles sizes formed in magnetic field

    NASA Astrophysics Data System (ADS)

    Myshkin, Vyacheslav; Izhoykin, Dmitry; Grigoriev, Alexander; Gamov, Denis; Leonteva, Daria

    2018-03-01

    The results of laser diagnostics of dispersed particles formed upon cooling of Zn vapor are presented. The radiation attenuation in the wavelength range 420-630 nm with a step of 0.3 nm was registered. The attenuation coefficients spectral dependence was processed using known algorithms for integral equation solving. The 10 groups of 8 attenuation coefficients were formed. Each group was processed taking with considering of previous decisions. After processing of the 10th group of data, calculations were repeated from the first one. Data of the particles sizes formed in a magnetic field of 0, 44 and 76 mT are given. A model of physical processes in a magnetic field is discussed.

  16. Linear, non-linear and thermal properties of single crystal of LHMHCl

    NASA Astrophysics Data System (ADS)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2018-05-01

    The single crystal of amino acid of L-histidine monohydrochloride was grown by slow evaporation technique at room temperature. High optical quality and appropriate size of crystals were grown under optimized growth conditions. The grown crystals were transparent. Crystals are characterized with different characterizations such as Solubility test, UV-Visible, optical band gap (Eg). With the help of optical data to be calculate absorption coefficient (α), extinction coefficient (k), refractive index (n), dielectric constant (ɛ). These optical constants are shows favorable conditions for photonics devices. Second harmonic generation (NLO) test show the green light emission which is confirm that crystal have properties for laser application. Thermal stability of grown crystal is confirmed by TG/DTA.

  17. FIBER AND INTEGRATED OPTICS: Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer

    NASA Astrophysics Data System (ADS)

    Gelikonov, V. M.; Gusovskiĭ, D. D.; Konoplev, Yu N.; Leonov, V. I.; Mamaev, Yu A.; Turkin, A. A.

    1990-01-01

    A model of a plane-layer waveguide is used in a theoretical analysis of the attenuation coefficients of the TM0 and TE0 waves in a fiber-optic polarizer with a metal film and two dielectric buffer layers, one of which is the residual part of the fiber cladding. A report is given of the construction and experimental investigation of polarizers with a buffer layer of magnesium fluoride and an aluminum film operating at wavelengths of 0.63 and 0.81 μm and characterized by extinction coefficients of at least 53 and 46 dB, respectively, and by losses not exceeding 0.5 dB.

  18. The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin

    In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.

  19. Earlinet single calculus chain: new products overview

    NASA Astrophysics Data System (ADS)

    D'Amico, Giuseppe; Mattis, Ina; Binietoglou, Ioannis; Baars, Holger; Mona, Lucia; Amato, Francesco; Kokkalis, Panos; Rodríguez-Gómez, Alejandro; Soupiona, Ourania; Kalliopi-Artemis, Voudouri

    2018-04-01

    The Single Calculus Chain (SCC) is an automatic and flexible tool to analyze raw lidar data using EARLINET quality assured retrieval algorithms. It has been already demonstrated the SCC can retrieve reliable aerosol backscatter and extinction coefficient profiles for different lidar systems. In this paper we provide an overview of new SCC products like particle linear depolarization ratio, cloud masking, aerosol layering allowing relevant improvements in the atmospheric aerosol characterization.

  20. Excited-state properties of nucleic acid components

    NASA Astrophysics Data System (ADS)

    Salet, C.; Bensasson, R. V.; Becker, R. S.

    1981-12-01

    Measurements were made of the fluorescence and phosphorescence spectra and lifetimes, and also of the absorption spectra, lifetimes, extinction coefficients, and quantum yields of the T1 lower triplet states of thymine, uracil, their N, N'-dimethyl derivatives, thymidine, thymidine monophosphate, uridine, and uridine monophosphate in various solvents at 300 °K. The influence of the solvent on the quantum yield of the T1 state of nucleic acid components is discussed.

  1. PMMA and polystyrene films modification under ion implantation studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Leontyev, A. V.; Kovalev, V. I.; Khomich, A. V.; Komarov, Fadei F.; Grigoryev, V. V.; Kamishan, A. S.

    2004-05-01

    We have applied spectroscopic ellipsometry with binary polarization modulation to study the refractive index n(λ) and extinction coefficient k(λ) spectra of as-deposited and irradiated with nitrogen ions polymethylmethacrylate (PMMA) and polystyrene (PS) films in 300-1030 nm range. The results of performed investigation confirmed the possibility and estimate restrictions of the ion implantation for local change the refractive index of polymeric materials.

  2. Innovative Techniques for High-Resolution Imaging and Precision Tracking

    DTIC Science & Technology

    1990-04-20

    field-of-view ladar. 6 𔄁 The bipath method employs two separate single-ended ladar systems to measure both the backscattering and extinction coefficients... Transmissometer measurements are very important not only for determining the overall accuracy of the proposed system but also for assessing its performance under...the maximum path length difference between the target elements. The necessary laser power can be deduced from the system resolution requirement. The

  3. Optical Thin Film Modeling: Using FTG's FilmStar Software

    NASA Technical Reports Server (NTRS)

    Freese, Scott

    2009-01-01

    Every material has basic optical properties that define its interaction with light: The index of refraction (n) and extinction coefficient (k) vary for the material as a function of the wavelength of the incident light. Also significant are the phase velocity and polarization of the incident light These inherent properties allow for the accurate modeling of light s behavior upon contact with a surface: Reflectance, Transmittance, Absorptance.

  4. Microscale determination of the spectral characteristics and carbon-isotopic compositions of porphyrins

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Hayes, J. M.; Boreham, C. J.

    1993-01-01

    Molar extinction coefficients for band III of Ni porphyrins are calculated from results of spectrophotometric and manometric analyses of individual etioporphyrins, DPEP, cyclic, and diDPEP porphyrins known to initially be pure from mass spectrometry, 1H NMR, and analytical HPLC studies. A method for determining carbon-isotopic compositions and purity of micromolar quantities of individual porphyrins using combined spectrophotometric and manometric techniques is presented.

  5. Correlation between Satellite-Derived Aerosol Characteristics and Oceanic Dimethylsulfide (DMS)

    DTIC Science & Technology

    1988-12-01

    intensity gained by multiple scattering into the beam from all directions and the beam addition term accounting for single scattering events. The physical...the extinction and scattering coefficients are the integracion over radius of the product of the cross sectional area of aerosol particles, the...the same photon more than once is small. Therefore, the multiple interaction term can be neglected and a single scattering approximation is made. The

  6. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  7. Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry

    NASA Astrophysics Data System (ADS)

    Song, Baokun; Gu, Honggang; Zhu, Simin; Jiang, Hao; Chen, Xiuguo; Zhang, Chuanwei; Liu, Shiyuan

    2018-05-01

    Optical properties of mono-graphene fabricated by chemical vapor deposition (CVD) and highly oriented pyrolytic graphite (HOPG) are comparatively studied by Mueller matrix ellipsometry (MME) over an ultra-wide energy range of 0.73-6.42 eV. A multilayer stacking model is constructed to describe the CVD mono-graphene, in which the roughness of the glass substrate and the water adsorption on the graphene are considered. We introduce a uniaxial anisotropic dielectric model to parameterize the optical constants of both the graphene and the HOPG. With the established models, broadband optical constants of the graphene and the HOPG are determined from the Mueller matrix spectra based on a point-by-point method and a non-linear regression method, respectively. Two significant absorption peaks at 4.75 eV and 6.31 eV are observed in the extinction coefficient spectra of the mono-graphene, which can be attributed to the von-Hove singularity (i.e., the π-to-π∗ exciton transition) near the M point and the σ-to-σ∗ exciton transition near the Γ point of the Brillouin zone, respectively. Comparatively, only a major absorption peak at 4.96 eV appears in the ordinary extinction coefficient spectra of the HOPG, which is mainly formed by the π-to-π∗ interband transition.

  8. Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou.

    PubMed

    Su, Wenjing; Liu, Cheng; Hu, Qihou; Fan, Guangqiang; Xie, Zhouqing; Huang, Xin; Zhang, Tianshu; Chen, Zhenyi; Dong, Yunsheng; Ji, Xiangguang; Liu, Haoran; Wang, Zhuang; Liu, Jianguo

    2017-12-12

    Recently, atmospheric ozone pollution has demonstrated an aggravating tendency in China. To date, most research about atmospheric ozone has been confined near the surface, and an understanding of the vertical ozone structure is limited. During the 2016 G20 conference, strict emission control measures were implemented in Hangzhou, a megacity in the Yangtze River Delta, and its surrounding regions. Here, we monitored the vertical profiles of ozone concentration and aerosol extinction coefficients in the lower troposphere using an ozone lidar, in addition to the vertical column densities (VCDs) of ozone and its precursors in the troposphere through satellite-based remote sensing. The ozone concentrations reached a peak near the top of the boundary layer. During the control period, the aerosol extinction coefficients in the lower lidar layer decreased significantly; however, the ozone concentration fluctuated frequently with two pollution episodes and one clean episode. The sensitivity of ozone production was mostly within VOC-limited or transition regimes, but entered a NOx-limited regime due to a substantial decline of NOx during the clean episode. Temporary measures took no immediate effect on ozone pollution in the boundary layer; instead, meteorological conditions like air mass sources and solar radiation intensities dominated the variations in the ozone concentration.

  9. Determination of nocturnal aerosol properties from a combination of lunar photometer and lidar observations

    NASA Astrophysics Data System (ADS)

    Li, Donghui; Li, Zhengqiang; Lv, Yang; Zhang, Ying; Li, Kaitao; Xu, Hua

    2015-10-01

    Aerosol plays a key role in the assessment of global climate change and environmental health, while observation is one of important way to deepen the understanding of aerosol properties. In this study, the newly instrument - lunar photometer is used to measure moonlight and nocturnal column aerosol optical depth (AOD, τ) is retrieved. The AOD algorithm is test and verified with sun photometer both in high and low aerosol loading. Ångström exponent (α) and fine/coarse mode AOD (τf, τc) 1 is derived from spectral AOD. The column aerosol properties (τ, α, τf, τc) inferred from the lunar photometer is analyzed based on two month measurement in Beijing. Micro-pulse lidar has advantages in retrieval of aerosol vertical distribution, especially in night. However, the typical solution of lidar equation needs lidar ratio(ratio of aerosol backscatter and extinction coefficient) assumed in advance(Fernald method), or constrained by AOD2. Yet lidar ratio is varied with aerosol type and not easy to fixed, and AOD is used of daylight measurement, which is not authentic when aerosol loading is different from day and night. In this paper, the nocturnal AOD measurement from lunar photometer combined with mie scattering lidar observations to inverse aerosol extinction coefficient(σ) profile in Beijing is discussed.

  10. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Robaee, M.S.; Krishna, M.G.; Rao, K.N.

    Single layer films of CeO{sub 2} have been deposited both by conventional electron beam evaporation and ion assisted deposition with oxygen and argon ions. A broad beam Kaufman ion source (3 cm diam) has been used to generate the ions. A systematic study has been made on optical properties such as refractive index, extinction coefficient and inhomogeneity of the films as a function of: (1) oxygen partial pressure in the range 1{times}10{sup {minus}4} to 1{times}10{sup {minus}5} mbar. (2) Incidence of oxygen ions with energy in the range 300--700 eV and current density in the range 50--220 {mu}A/cm{sup 2}. (3) Incidencemore » of mixed argon and oxygen ions of different ratios. The refractive index of the films deposited under the influence of ion bombardment showed higher indices than the conventionally evaporated films. The maximum index obtained with an oxygen ion bombardment was 2.3 at an ion energy of 600 eV and current density of 220 {mu}A/cm{sup 2}. The bombardment of the films with a mixed argon--oxygen (25% Ar) ion beam of the same energy and current density was found to further increase the refractive index. The extinction coefficient in both cases was negligible.« less

  12. Estimation of underwater visibility in coastal and inland waters using remote sensing data.

    PubMed

    Kulshreshtha, Anuj; Shanmugam, Palanisamy

    2017-04-01

    An optical method is developed to estimate water transparency (or underwater visibility) in terms of Secchi depth (Z sd ), which follows the remote sensing and contrast transmittance theory. The major factors governing the variation in Z sd , namely, turbidity and length attenuation coefficient (1/(c + K d ), c = beam attenuation coefficient; K d  = diffuse attenuation coefficient at 531 nm), are obtained based on band rationing techniques. It was found that the band ratio of remote sensing reflectance (expressed as (R rs (443) + R rs (490))/(R rs (555) + R rs (670)) contains essential information about the water column optical properties and thereby positively correlates to turbidity. The beam attenuation coefficient (c) at 531 nm is obtained by a linear relationship with turbidity. To derive the vertical diffuse attenuation coefficient (K d ) at 531 nm, K d (490) is estimated as a function of reflectance ratio (R rs (670)/R rs (490)), which provides the bio-optical link between chlorophyll concentration and K d (531). The present algorithm was applied to MODIS-Aqua images, and the results were evaluated by matchup comparisons between the remotely estimated Z sd and in situ Z sd in coastal waters off Point Calimere and its adjoining regions on the southeast coast of India. The results showed the pattern of increasing Z sd from shallow turbid waters to deep clear waters. The statistical evaluation of the results showed that the percent mean relative error between the MODIS-Aqua-derived Z sd and in situ Z sd values was within ±25%. A close agreement achieved in spatial contours of MODIS-Aqua-derived Z sd and in situ Z sd for the month of January 2014 and August 2013 promises the model capability to yield accurate estimates of Z sd in coastal, estuarine, and inland waters. The spatial contours have been included to provide the best data visualization of the measured, modeled (in situ), and satellite-derived Z sd products. The modeled and satellite-derived Z sd values were compared with measurement data which yielded RMSE = 0.079, MRE = -0.016, and R 2  = 0.95 for the modeled Z sd and RMSE = 0.075, MRE = 0.020, and R 2  = 0.95 for the satellite-derived Z sd products.

  13. Extinction-sedimentation inversion technique for measuring size distribution of artificial fogs

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Vaughan, O. H.

    1978-01-01

    In measuring the size distribution of artificial fog particles, it is important that the natural state of the particles not be disturbed by the measuring device, such as occurs when samples are drawn through tubes. This paper describes a method for carrying out such a measurement by allowing the fog particles to settle in quiet air inside an enclosure through which traverses a parallel beam of light for measuring the optical depth as a function of time. An analytic function fit to the optical depth time decay curve can be directly inverted to yield the size distribution. Results of one such experiment performed on artificial fogs are shown as an example. The forwardscattering corrections to the measured extinction coefficient are also discussed with the aim of optimizing the experimental design so that the error due to forwardscattering is minimized.

  14. Estimation of vegetation parameters such as Leaf Area Index from polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Hetz, Marina; Blumberg, Dan G.; Rotman, Stanley R.

    2010-05-01

    This work presents the analysis of the capability to use the radar backscatter coefficient in semi-arid zones to estimate the vegetation crown in terms of Leaf Area Index (LAI). The research area is characterized by the presence of a pine forest with shrubs as an underlying vegetation layer (understory), olive trees, natural grove areas and eucalyptus trees. The research area was imaged by an airborne RADAR system in L-band during February 2009. The imagery includes multi-look radar images. All the images were fully polarized i.e., HH, VV, HV polarizations. For this research we used the central azimuth angle (113° ). We measured LAI using the ?T Sun Scan Canopy Analysis System. Verification was done by analytic calculations and digital methods for the leaf's and needle's surface area. In addition, we estimated the radar extinction coefficient of the vegetation volume by comparing point calibration targets (trihedral corner reflectors with 150cm side length) within and without the canopy. The radar extinction in co- polarized images was ~26dB and ~24dB for pines and olives respectively, compared to the same calibration target outside the vegetation. We used smaller trihedral corner reflectors (41cm side length) and covered them with vegetation to measure the correlation between vegetation density, LAI and radar backscatter coefficient for pines and olives under known conditions. An inverse correlation between the radar backscatter coefficient of the trihedral corner reflectors covered by olive branches and the LAI of those branches was observed. The correlation between LAI and the optical transmittance was derived using the Beer-Lambert law. In addition, comparing this law's principle to the principle of the radar backscatter coefficient production, we derived the equation that connects between the radar backscatter coefficient and LAI. After extracting the radar backscatter coefficient of forested areas, all the vegetation parameters were used as inputs for the MIMICS model that simulates the radar backscatter coefficient of pines. The model results show a backscatter of -18dB in HV polarization which is 13dB higher than the mean pines backscatter in the radar images, whereas the co-polarized images revealed a backscatter of -10dB which is 23dB higher than the actual backscatter value deriver from the radar images. Therefore, next step in the research will incorporate other vegetation parameters and attempt to understand the discrepancies between the simulation and the actual data.

  15. Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.

    2003-10-01

    Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.

  16. Radiative Properties of Cirrus Clouds in the Infrared (8-13 microns) Spectral Region

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Tsay, Si-Chee; Winker, Dave M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Atmospheric radiation in the infrared (IR) 8-13 microns spectral region contains a wealth of information that is very useful for the retrieval of ice cloud properties from aircraft or space-borne measurements. To provide the scattering and absorption properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use the finite-difference time domain (FDTD) method to solve for the extinction efficiency, single-scattering albedo, and the asymmetry parameter of the phase function for ice crystals smaller than 40 microns. For particles larger than this size, the improved geometric optics method (IGOM) can be employed to calculate the asymmetry parameter with an acceptable accuracy, provided that we properly account for the inhomogeneity of the refracted wave due to strong absorption inside the ice particle. A combination of the results computed from the two methods provides the asymmetry parameter for the entire practical range of particle sizes between 1 micron and 10000 microns over wavelengths ranging from 8 microns to 13 microns. For the extinction and absorption efficiency calculations, several methods including the IGOM, Mie solution for equivalent spheres (MSFES), and the anomalous diffraction theory (ADT) can lead to a substantial discontinuity in comparison with the FDTD solutions for particle sizes on the order of 40 microns. To overcome this difficulty, we have developed a novel approach called the stretched scattering potential method (SSPM). For the IR 8-13 microns spectral region, we show that SSPM is a more accurate approximation than ADT, MSFES, and IGOM. The SSPM solution can be further refined numerically. Through a combination of the FDTD and SSPM, we have computed the extinction and absorption efficiency for hexagonal ice crystals with sizes ranging from 1 to 10000 microns at 12 wavelengths between 8 and 13 microns Calculations of the cirrus bulk scattering and absorption properties are performed for 30 size distributions obtained from various field campaigns for midlatitude and tropical cirrus cloud systems. Parameterization of these bulk scattering properties is carried out by using second-order polynomial functions for the extinction efficiency and the single-scattering albedo and the power law expression for the asymmetry parameter. We note that the volume-normalized extinction coefficient can be separated into two parts: one is inversely proportional to effective size and is independent of wavelength, and the other is the wavelength-dependent effective extinction efficiency. Unlike conventional parameterization efforts, the present parameterization scheme is more accurate because only the latter part of the volume-normalized extinction coefficient is approximated in terms of an analytical expression. After averaging over size distribution, the single-scattering albedo is shown to decrease with an increase in effective size for wavelengths shorter than 10.0 microns whereas the opposite behavior is observed for longer wavelengths. The variation of the asymmetry parameter as a function of effective size is substantial when the effective size is smaller than 50 microns. For effective sizes larger than 100 microns, the asymmetry parameter approaches its asymptotic value. The results derived in this study can be useful to remote sensing applications involving IR window bands under cirrus cloud conditions.

  17. Opposed Jet Burner Approach for Characterizing Flameholding Potentials of Hydrocarbon Scramjet Fuels

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Convery, Janet L.; Wilson, Lloyd G.

    2006-01-01

    Opposed Jet Burner (OJB) tools have been used extensively by the authors to measure Flame Strength (FS) extinction limits of laminar H2/N2 air and (recently) hydrocarbon (HC) air Counterflow Diffusion Flames (CFDFs) at one atm. This paper details normalization of FSs of N2- diluted H2 and HC systems to account for effects of fuel composition, temperature, pressure, jet diameter, inflow Reynolds number, and inflow velocity profile (plug, contoured nozzle; and parabolic, straight tube). Normalized results exemplify a sensitive accurate means of validating, globally, reduced chemical kinetic models at approx. 1 atm and the relatively low temperatures approximating the loss of non-premixed idealized flameholding, e.g., in scramjet combustors. Laminar FS is defined locally as maximum air input velocity, U(sub air), that sustains combustion of a counter-jet of g-fuel at extinction. It uniquely characterizes a fuel. And global axial strain rate at extinction (U(sub air) normalized by nozzle or tube diameter, D(sub n or (sub t)) can be compared directly with computed extinction limits, determined using either a 1-D Navier Stokes stream-function solution, using detailed transport and finite rate chemistry, or (better yet) a detailed 2-D Navier Stokes numerical simulation. The experimental results define an idealized flameholding reactivity scale that shows wide ranging (50 x) normalized FS s for various vaporized-liquid and gaseous HCs, including, in ascending order: JP-10, methane, JP-7, n-heptane, n-butane, propane, ethane, and ethylene. Results from H2 air produce a unique and exceptionally strong flame that agree within approx. 1% of a recent 2-D numerically simulated FS for a 3 mm tube-OJB. Thus we suggest that experimental FS s and/or FS ratios, for various neat and blended HCs w/ and w/o additives, offer accurate global tests of chemical kinetic models at the Ts and Ps of extinction. In conclusion, we argue the FS approach is more direct and fundamental, for assessing, e.g., idealized scramjet flameholding potentials, than measurements of laminar burning velocity or blowout in a Perfectly Stirred Reactor, because the latter characterize premixed combustion in the absence of aerodynamic strain. And FS directly measures a chemical kinetic characteristic of non-premixed combustion at typical flameholding temperatures. It mimics conditions where gfuels are typically injected into a subsonic flameholding recirculation zone that captures air, where the effects of aerodynamic strain and associated multi-component diffusion become important.

  18. Geography of cretaceous extinctions: Data base development

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    Data bases built from the source literature are plagued by problems of data quality. Unless the data acquisition is done by experts, working slowly, the data base may contain so much garbage that true signals and patterns cannot be detected. On the other hand, high quality data bases develop so slowly that satisfactory statistical analysis may never be possible due to the small sample sizes. Results of a test are presented of the opposite strategy: rapid data acquisition by non-experts with minimal control on data quality. A published list of 186 species and genera of fossil invertibrates of the latest Cretaceous Age (Maestrichtian) were located through a random search of the paleobiological and geological literature. The geographic location for each faunal list was then transformed electronically to Maestrichtian latitude and longitude and the lists were further digested to identify the genera occurring in each ten-degree, latitude-longitude block. The geographical lists were clustered using the Otsuka similarity coefficient and a standard unweight-pair-group method. The resulting clusters are remarkably consistent geographically, indicating that a strong biogeographic signal is visible despite low-quality data. A further test evaluated the geographic pattern of end-Cretaceaous extinctions. All genera in the data base were compared with Sepkoski's compendium of time ranges of genera to determine which of the reported genera survived the Cretaceous mass extinction. In turn, extinction rates for the ten-degree, latitude-longitude blocks were mapped. The resulting distribution is readily interpretable as a robust pattern of the geography of the mass extinction. The study demonstrates that a low-quality data base, built rapidly, can provide a basis for meaningful analysis of past biotic events.

  19. Can an aversive, extinction-resistant memory trigger impairments in walking adaptability? An experimental study using adult rats.

    PubMed

    Medeiros, Filipe Mello; de Carvalho Myskiw, Jociane; Baptista, Pedro Porto Alegre; Neves, Laura Tartari; Martins, Lucas Athaydes; Furini, Cristiane Regina Guerino; Izquierdo, Iván; Xavier, Léder Leal; Hollands, Kristen; Mestriner, Régis Gemerasca

    2018-02-05

    Cognitive demands can influence the adaptation of walking, a crucial skill to maintain body stability and prevent falls. Whilst previous research has shown emotional load tunes goal-directed movements, little attention has been given to this finding. This study sought to assess the effects of suffering an extinction-resistant memory on skilled walking performance in adult rats, as an indicator of walking adaptability. Thus, 36 Wistar rats were divided in a two-part experiment. In the first part (n=16), the aversive, extinction-resistance memory paradigm was established using a fear-conditioning chamber. In the second, rats (n=20) were assessed in a neutral room using the ladder rung walking test before and tree days after inducing an extinction-resistance memory. In addition, the elevated plus-maze test was used to control the influence of the anxiety-like status on gait adaptability. Our results revealed the shock group exhibited worse walking adaptability (lower skilled walking score), when compared to the sham group. Moreover, the immobility time in the ladder rung walking test was similar to the controls, suggesting that gait adaptability performance was not a consequence of the fear generalization. No anxiety-like behavior was observed in the plus maze test. Finally, correlation coefficients also showed the skilled walking performance score was positively correlated with the number of gait cycles and trial time in the ladder rung walking test and the total crossings in the plus maze. Overall, these preliminary findings provide evidence to hypothesize an aversive, extinction-resistant experience might change the emotional load, affecting the ability to adapt walking. Copyright © 2017. Published by Elsevier B.V.

  20. Gamma ray interaction studies of organic nonlinear optical materials in the energy range 122 keV-1330 keV

    NASA Astrophysics Data System (ADS)

    Awasarmol, V. V.; Gaikwad, D. K.; Raut, S. D.; Pawar, P. P.

    The mass attenuation coefficients (μm) for organic nonlinear optical materials measured at 122-1330 keV photon energies were investigated on the basis of mixture rule and compared with obtained values of WinXCOM program. It is observed that there is a good agreement between theoretical and experimental values of the samples. All samples were irradiated with six radioactive sources such as 57Co, 133Ba, 22Na, 137Cs, 54Mn and 60Co using transmission arrangement. Effective atomic and electron numbers or electron densities (Zeff and Neff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa,en) were determined experimentally and theoretically using the obtained μm values for investigated samples and graphs have been plotted. The graph shows that the variation of all samples decreases with increasing photon energy.

  1. Lidar method of measurement of atmospheric extinction and ozone profiles

    NASA Technical Reports Server (NTRS)

    Cooney, J. A.

    1986-01-01

    A description of a method of measurement of atmospheric extinction and of ozone profiles by use of the backscatter signal from a monostatic lidar is given. The central feature of the procedure involves a measurement of the ratio of the Raman backscatter returns of both the oxygen and nitrogen atmospheric content. Because the ratio of the number density of both species is known to high accuracy, the measurement itself becomes a measure of the ratio of two transmissions to altitude along with a ratio of the two system constants. The calibration measurement for determining the value of the ratio of the two system constants or electro-optical conversion constants is accomplished by a lidar measurement of identical atmospheric targets while at the same time interchanging the two optical filters in the two optical channels of the receiver. More details of the procedure are discussed. Factoring this calibrated value into the measured O2/N2 profile ratio provides a measured value of the ratio of the two transmissions. Or equivalently, it provides a measurement of the difference of the two extinction coefficients at the O2 and N2 Raman wavelengths as a function of the height.

  2. Rapid-cadence optical monitoring for short-period variability of ɛ Aurigae

    NASA Astrophysics Data System (ADS)

    Billings, Gary

    2013-07-01

    ɛ Aurigae was observed with CCD cameras and 35 mm SLR camera lenses, at rapid cadence (>1/minute), for long runs (up to 11 hours), on multiple occasions during 2009 - 2011, to monitor for variability of the system at scales of minutes to hours. The lens and camera were changed during the period to improve results, finalizing on a 135 mm focal length Canon f/2 lens (at f/2.8), an ND8 neutral density filter, a Johnson V filter, and an SBIG ST-8XME camera (Kodak KAF-1603ME microlensed chip). Differential photometry was attempted, but because of the large separation between the variable and comparison star (η Aur), noise caused by transient extinction variations was not consistently eliminated. The lowest-noise time series for searching for short-period variability proved to be the extinction-corrected instrumental magnitude of ɛ Aur obtained on "photometric nights", with η Aur used to determine and monitor the extinction coefficient for the night. No flares or short-period variations of ɛ Aur were detected by visual inspection of the light curves from observing runs with noise levels as low as 0.008 magnitudes rms.

  3. Energy dependence of radiation interaction parameters of some organic compounds

    NASA Astrophysics Data System (ADS)

    Singh, Mohinder; Tondon, Akash; Sandhu, B. S.; Singh, Bhajan

    2018-04-01

    Gamma rays interact with a material through photoelectric absorption, Compton scattering, Rayleigh scattering and Pair production in the intermediate energy range. The probability of occurrence of a particular type of process depends on the energy of incident gamma rays, atomic number of the material, scattering angle and geometrical conditions. Various radiological parameters for organic compounds, namely ethylene glycol (C2H6O2), propylene glycol (C3H8O2), glycerin (C3H8O3), isoamyl alcohol (C5H12O), butanone (C4H8O), acetophenone (C8H8O2), cyclohexanone (C6H10O), furfural (C5H4O2), benzaldehyde (C7H6O), cinnamaldehyde (C9H8O), glutaraldehyde (C5H8O2), aniline (C6H7N), benzyl amine (C6H7N), nitrobenzene (C6H5NO2), ethyl benzene (C8H10), ethyl formate (C3H6O2) and water (H2O) are presented at 81, 122, 356 and 511 keV energies employing NaI(Tl) scintillation detector in narrow-beam transmission geometry. The radiation interaction parameters such as mass attenuation, molar extinction and mass energy absorption coefficients, half value layer, total atomic and effective electronic cross-sections and CT number have been evaluated for these organic compounds. The general trend of values of mass attenuation coefficients, half value layer, molar extinction coefficients, total atomic and effective electronic cross-sections and mass energy absorption coefficients shows a decrease with increase in incident gamma photon energy. The values of CT number are found to increases linearly with increase of effective atomic number (Zeff). The variation in CT number around Zeff ≈ 3.3 shows the peak like structure with respect to water and the correlation between CT number and linear attenuation coefficient is about 0.99. Appropriate equations are fitted to these experimentally determined parameters for the organic compounds at incident photon energy ranging from 81 keV to 511 keV used in the present study. Experimental values are compared with the theoretical data obtained using WinXcom software package, and are found in good agreement.

  4. Effect of 50MeV Li{sup 3+} ion irradiation on structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Shabir, E-mail: shaphyjmi@gmail.com; Sethi, Riti; Nasir, Mohd

    2015-08-28

    Present work focuses on the effect of swift heavy ion (SHI) irradiation of 50MeV Li{sup 3+} ions by varying the fluencies in the range of 1×10{sup 12} to 5×10{sup 13} ions/cm{sup 2} on the morphological, structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films. Thin films of ~250nm thickness were deposited on cleaned glass substrates by thermal evaporation technique. X-ray diffraction (XRD) analysis shows the pristine thin film of Se{sub 95}Zn{sub 5} growsin hexagonal phase structure. Also it was found that the small peak observed in XRD spectra vanishes after SHI irradiation indicates the defects of themore » material increases. The optical parameters: absorption coefficient (α), extinction coefficient (K), refractive index (n) optical band gap (E{sub g}) and Urbach’s energy (E{sub U}) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200-1000nm. It was found that the values of absorption coefficient, refractive index and extinction coefficient increases while the value optical band gap decreases with the increase of ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model. Electrical properties such as dc conductivity and temperature dependent photoconductivity of investigated thin films were carried out in the temperature range 309-370 K. Analysis of data shows activation energy of dark current is greater as compared to activation energy photocurrent. The value of activation energy decreases with the increase of ion fluence indicates that the defect density of states increases.Also it was found that the value of dc conductivity and photoconductivity increases with the increase of ion fluence.« less

  5. Experimental investigation of the radiation of sound from an unflanged duct and a bellmouth, including the flow effect

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    The radiation of sound from an inlet as a function of flow velocity, frequency, duct mode structure, and inlet geometry was examined by using a spinning mode synthesizer to insure a given space-time structure inside the duct. Measurements of the radiation pattern (amplitude and phase) and of the pressure reflection coefficient were obtained over an azimuthal wave number range of 0 to 6 and a frequency range up to 5000 Hz for an unflanged duct and a bellmouth. The measured radiated field and pressure reflection coefficient without flow for the unflanged duct agree reasonably well with theory. The influence of the inlet contour appears to be very drastic near the cut-on frequency of a mode and reasonable agreement is found between the bellmouth pressure reflection coefficient and a infinite hyperboloidal inlet theory. It is also shown that the flow has a weak effect on the amplitude of the directivity factor but significantly shifts the directivity factor phase. The influence of the flow on the modulus of the pressure reflection coefficient is found to be well described by a theoretical prediction.

  6. Forster resonance energy transfer in the system of human serum albumin-xanthene dyes

    NASA Astrophysics Data System (ADS)

    Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.

    2016-04-01

    The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.

  7. Mathematical Structure of Electromagnetic Terrain Feature Canopy Models.

    DTIC Science & Technology

    1982-11-01

    problems in this formulation is how to introduce canopy abstraction and how to project the foliage area index. Suits -- - "-7 U -16- (1972...extinction coefficient of light through vegetation canopy will determine how the beam will be depleted with depth. The intensity of light reaching the...describe how lations of the canopy reflectance problem are being at- layer i responds to flux incident from below. The flux tempted, most notably by Verhoef

  8. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  9. Altitude Differentiated Aerosol Extinction Over Tenerife (North Atlantic Coast) During ACE-2 by Means of Ground and Airborne Photometry and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.; hide

    2000-01-01

    Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.

  10. Audio-Visual Biofeedback Does Not Improve the Reliability of Target Delineation Using Maximum Intensity Projection in 4-Dimensional Computed Tomography Radiation Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei, E-mail: wlu@umm.edu; Neuner, Geoffrey A.; George, Rohini

    2014-01-01

    Purpose: To investigate whether coaching patients' breathing would improve the match between ITV{sub MIP} (internal target volume generated by contouring in the maximum intensity projection scan) and ITV{sub 10} (generated by combining the gross tumor volumes contoured in 10 phases of a 4-dimensional CT [4DCT] scan). Methods and Materials: Eight patients with a thoracic tumor and 5 patients with an abdominal tumor were included in an institutional review board-approved prospective study. Patients underwent 3 4DCT scans with: (1) free breathing (FB); (2) coaching using audio-visual (AV) biofeedback via the Real-Time Position Management system; and (3) coaching via a spirometer systemmore » (Active Breathing Coordinator or ABC). One physician contoured all scans to generate the ITV{sub 10} and ITV{sub MIP}. The match between ITV{sub MIP} and ITV{sub 10} was quantitatively assessed with volume ratio, centroid distance, root mean squared distance, and overlap/Dice coefficient. We investigated whether coaching (AV or ABC) or uniform expansions (1, 2, 3, or 5 mm) of ITV{sub MIP} improved the match. Results: Although both AV and ABC coaching techniques improved frequency reproducibility and ABC improved displacement regularity, neither improved the match between ITV{sub MIP} and ITV{sub 10} over FB. On average, ITV{sub MIP} underestimated ITV{sub 10} by 19%, 19%, and 21%, with centroid distance of 1.9, 2.3, and 1.7 mm and Dice coefficient of 0.87, 0.86, and 0.88 for FB, AV, and ABC, respectively. Separate analyses indicated a better match for lung cancers or tumors not adjacent to high-intensity tissues. Uniform expansions of ITV{sub MIP} did not correct for the mismatch between ITV{sub MIP} and ITV{sub 10}. Conclusions: In this pilot study, audio-visual biofeedback did not improve the match between ITV{sub MIP} and ITV{sub 10}. In general, ITV{sub MIP} should be limited to lung cancers, and modification of ITV{sub MIP} in each phase of the 4DCT data set is recommended.« less

  11. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimwegen, Frederika A. van; Cutter, David J.; Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Oxford

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–controlmore » study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a meaningful measure of mean heart dose for use in studies of late cardiac complications.« less

  12. Simple method to estimate mean heart dose from Hodgkin lymphoma radiation therapy according to simulation X-rays.

    PubMed

    van Nimwegen, Frederika A; Cutter, David J; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D G; Janus, Cécile P M; Darby, Sarah C; van Leeuwen, Flora E; Aleman, Berthe M P

    2015-05-01

    To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case-control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a meaningful measure of mean heart dose for use in studies of late cardiac complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Nanoparticle Distributions in Cancer and other Cells from Light Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison; Sun, Nan; Johnson, Jeffery; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    We have measured the optical properties of whole cells and lysates using light transmission spectroscopy (LTS). LTS provides both the optical extinction coefficient in the wavelength range from 220 to 1100 nm and (by spectral inversion using a Mie model) the particle distribution density in the size range from 1 to 3000 nm. Our current work involves whole cells and lysates of cultured human oral cells and other plant and animal cells. We have found systematic differences in the optical extinction between cancer and normal whole cells and lysates, which translate to different particle size distributions (PSDs) for these materials. We have also found specific power-law dependences of particle density with particle diameter for cell lysates. This suggests a universality of the packing distribution in cells that can be compared to ideal Apollonian packing, with the cell modeled as a fractal body comprised of spheres on all size scales.

  14. MULTIPLY: Development of a European HSRL Airborne Facility

    NASA Astrophysics Data System (ADS)

    Binietoglou, Ioannis; Serikov, Ilya; Nicolae, Doina; Amiridis, Vassillis; Belegante, Livio; Boscornea, Andrea; Brugmann, Bjorn; Costa Suros, Montserrat; Hellmann, David; Kokkalis, Panagiotis; Linne, Holger; Stachlewska, Iwona; Vajaiac, Sorin-Nicolae

    2016-08-01

    MULTIPLY is a novel airborne high spectral resolution lidar (HSRL) currently under development by a consortium of European institutions from Romania, Germany, Greece, and Poland. Its aim is to contribute to calibration and validations activities of the upcoming ESA aerosol sensing missions like ADM-Aeolus, EarthCARE and the Sentinel-3/-4/-5/-5p which include products related to atmospheric aerosols. The effectiveness of these missions depends on independent airborne measurements to develop and test the retrieval methods, and validate mission products following launch. The aim of ESA's MULTIPLY project is to design, develop, and test a multi-wavelength depolarization HSRL for airborne applications. The MULTIPLY lidar will deliver the aerosol extinction and backscatter coefficient profiles at three wavelengths (355nm, 532nm, 1064nm), as well as profiles of aerosol intensive parameters (Ångström exponents, extinction- to-backscatter ratios, and linear particle depolarization ratios).

  15. Iterative algorithms for a non-linear inverse problem in atmospheric lidar

    NASA Astrophysics Data System (ADS)

    Denevi, Giulia; Garbarino, Sara; Sorrentino, Alberto

    2017-08-01

    We consider the inverse problem of retrieving aerosol extinction coefficients from Raman lidar measurements. In this problem the unknown and the data are related through the exponential of a linear operator, the unknown is non-negative and the data follow the Poisson distribution. Standard methods work on the log-transformed data and solve the resulting linear inverse problem, but neglect to take into account the noise statistics. In this study we show that proper modelling of the noise distribution can improve substantially the quality of the reconstructed extinction profiles. To achieve this goal, we consider the non-linear inverse problem with non-negativity constraint, and propose two iterative algorithms derived using the Karush-Kuhn-Tucker conditions. We validate the algorithms with synthetic and experimental data. As expected, the proposed algorithms out-perform standard methods in terms of sensitivity to noise and reliability of the estimated profile.

  16. LASER BIOLOGY AND MEDICINE: Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1

    NASA Astrophysics Data System (ADS)

    Banishev, A. A.; Vrzheshch, E. P.; Shirshin, E. A.

    2009-03-01

    Individual photophysical parameters of the chromophore of a fluorescent protein mRFP1 and its two mutants (amino-acid substitution at position 66 - mRFP1/ Q66C and mRFP1/Q66S proteins) are determined. For this purpose, apart from conventional methods of fluorimetry and spectrophotometry, nonlinear laser fluorimetry is used. It is shown that the individual extinction coefficients of the chromophore of proteins correlate (correlation coefficient above 0.9) with the volume of the substituted amino-acid residue at position 66 (similar to the positions of the absorption, fluorescence excitation and emission maxima).

  17. Aerosol characteristics inversion based on the improved lidar ratio profile with the ground-based rotational Raman-Mie lidar

    NASA Astrophysics Data System (ADS)

    Ji, Hongzhu; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan

    2018-06-01

    An iterative method, based on a derived inverse relationship between atmospheric backscatter coefficient and aerosol lidar ratio, is proposed to invert the lidar ratio profile and aerosol extinction coefficient. The feasibility of this method is investigated theoretically and experimentally. Simulation results show the inversion accuracy of aerosol optical properties for iterative method can be improved in the near-surface aerosol layer and the optical thick layer. Experimentally, as a result of the reduced insufficiency error and incoherence error, the aerosol optical properties with higher accuracy can be obtained in the near-surface region and the region of numerical derivative distortion. In addition, the particle component can be distinguished roughly based on this improved lidar ratio profile.

  18. Mathematical modeling of reflectance and intrinsic fluorescence for cancer detection in human pancreatic tissue

    NASA Astrophysics Data System (ADS)

    Wilson, Robert H.; Chandra, Malavika; Scheiman, James; Simeone, Diane; McKenna, Barbara; Purdy, Julianne; Mycek, Mary-Ann

    2009-02-01

    Pancreatic adenocarcinoma has a five-year survival rate of only 4%, largely because an effective procedure for early detection has not been developed. In this study, mathematical modeling of reflectance and fluorescence spectra was utilized to quantitatively characterize differences between normal pancreatic tissue, pancreatitis, and pancreatic adenocarcinoma. Initial attempts at separating the spectra of different tissue types involved dividing fluorescence by reflectance, and removing absorption artifacts by applying a "reverse Beer-Lambert factor" when the absorption coefficient was modeled as a linear combination of the extinction coefficients of oxy- and deoxy-hemoglobin. These procedures demonstrated the need for a more complete mathematical model to quantitatively describe fluorescence and reflectance for minimally-invasive fiber-based optical diagnostics in the pancreas.

  19. Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima

    2016-05-06

    This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less

  20. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications.

    PubMed

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-21

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8.8  ±  12.6 mm, an MSSD of 1.5  ±  3.2 mm, and an SDSSD of 1.8  ±  3.4 mm when comparing to the physician drawn ground truth. The result indicated that the developed automatic segmentation strategy yielded accurate brain tumor delineation and presented as a useful clinical tool for SRS applications.

  1. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-01

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8.8  ±  12.6 mm, an MSSD of 1.5  ±  3.2 mm, and an SDSSD of 1.8  ±  3.4 mm when comparing to the physician drawn ground truth. The result indicated that the developed automatic segmentation strategy yielded accurate brain tumor delineation and presented as a useful clinical tool for SRS applications.

  2. Controlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2017-08-01

    The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.

  3. Aerosols and lightning activity: The effect of vertical profile and aerosol type

    NASA Astrophysics Data System (ADS)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.

  4. Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom

    NASA Astrophysics Data System (ADS)

    Gade, John; Palmqvist, Dorte; Plomgård, Peter; Greisen, Gorm

    2006-01-01

    The purpose of the study was to compare algorithms of four methods (plus two modifications) for spectrophotometric haemoglobin saturation measurements. Comparison was made in tissue phantoms basically consisting of a phosphate buffer, Intralipid and blood, allowing samples to be taken for reference measurements. Three experimental series were made. In experiment A (eight phantoms) we used the Knoefel method and measured specific extinction coefficients with a reflection spectrophotometer. In experiment B (six phantoms) the fully oxygenated phantoms were gradually deoxygenated with baker's yeast, and simultaneous measurements were made with our spectrophotometer and with a reference oxymeter (ABL-605) in 3 min intervals. For each spectrophotometric measurement haemoglobin saturation was calculated with all algorithms and modifications, and compared with reference. In experiment C (11 phantoms) we evaluated the ability of a modification of the Knoefel method to measure haemoglobin concentration in absolute quantities using extinction coefficients from experiment A. Results. Experiment A: with the Knoefel method extinction coefficients (±SD) for oxyhaemoglobin at 553.04 and 573.75 nm were 1.117 (±0.0396) ODmM-1 and 1.680 (± 0.0815) ODmM-1, respectively, and for deoxyhaemoglobin 1.205 (± 0.0514) ODmM-1 and 0.953 (±0.0487) ODmM-1, respectively. Experiment B: high correlation with the reference was found in all methods (r = 0.94-0.97). However, agreement varied from evidently wrong in method 3 and the original method 4 (e.g. saturation above 160%) to high agreement in method 2 as well as the modifications of methods 1 and 4, where oxygen dissociation curves were close to the reference method. Experiment C: with the modified Knoefel method the mean haemoglobin concentration difference from reference was 8.3% and the correlation was high (r = 0.91). We conclude that method 2 and the modifications of 1 and 4 were superior to the others, but depended on known values in the same or similar phantoms. The original method 1 was independent of results from the tissue phantoms, but agreement was slightly poorer. Method 3 and the original method 4 could not be recommended. The ability of the modified method 1 to measure haemoglobin concentration is promising, but needs further development.

  5. Comparison of experimental and modeled absorption enhancement by black carbon (BC) cored polydisperse aerosols under hygroscopic conditions.

    PubMed

    Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa

    2012-08-07

    The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.

  6. Hydrologic record extension of water-level data in the Everglades Depth Estimation Network (EDEN), 1991-99

    USGS Publications Warehouse

    Conrads, Paul; Petkewich, Matthew D.; O'Reilly, Andrew M.; Telis, Pamela A.

    2015-01-01

    To hindcast and fill data records, 214 empirical models were developed—189 are linear regression models and 25 are artificial neural network models. The coefficient of determination (R2) for 163 of the models is greater than 0.80 and the median percent model error (root mean square error divided by the range of the measured data) is 5 percent. To evaluate the performance of the hindcast models as a group, contour maps of modeled water-level surfaces at 2-centimeter (cm) intervals were generated using the hindcasted data. The 2-cm contour maps were examined for selected days to verify that water surfaces from the EDEN model are consistent with the input data. The biweekly 2-cm contour maps did show a higher number of issues during days in 1990 as compared to days after 1990. May 1990 had the lowest water levels in the Everglades of the 21-year dataset used for the hindcasting study. To hindcast these record low conditions in 1990, many of the hindcast models would require large extrapolations beyond the range of the predictive quality of the models. For these reasons, it was decided to limit the hindcasted data to the period January 1, 1991, to December 31, 1999. Overall, the hindcasted and gap-filled data are assumed to provide reasonable estimates of station-specific water-level data for an extended historical period to inform research and natural resource management in the Everglades.

  7. Technical Note: A new zeolite PET phantom to test segmentation algorithms on heterogeneous activity distributions featured with ground-truth contours.

    PubMed

    Soffientini, Chiara D; De Bernardi, Elisabetta; Casati, Rosangela; Baselli, Giuseppe; Zito, Felicia

    2017-01-01

    Design, realization, scan, and characterization of a phantom for PET Automatic Segmentation (PET-AS) assessment are presented. Radioactive zeolites immersed in a radioactive heterogeneous background simulate realistic wall-less lesions with known irregular shape and known homogeneous or heterogeneous internal activity. Three different zeolite families were evaluated in terms of radioactive uptake homogeneity, necessary to define activity and contour ground truth. Heterogeneous lesions were simulated by the perfect matching of two portions of a broken zeolite, soaked in two different 18 F-FDG radioactive solutions. Heterogeneous backgrounds were obtained with tissue paper balls and sponge pieces immersed into radioactive solutions. Natural clinoptilolite proved to be the most suitable zeolite for the construction of artificial objects mimicking homogeneous and heterogeneous uptakes in 18 F-FDG PET lesions. Heterogeneous backgrounds showed a coefficient of variation equal to 269% and 443% of a uniform radioactive solution. Assembled phantom included eight lesions with volumes ranging from 1.86 to 7.24 ml and lesion to background contrasts ranging from 4.8:1 to 21.7:1. A novel phantom for the evaluation of PET-AS algorithms was developed. It is provided with both reference contours and activity ground truth, and it covers a wide range of volumes and lesion to background contrasts. The dataset is open to the community of PET-AS developers and utilizers. © 2016 American Association of Physicists in Medicine.

  8. Method for contour extraction for object representation

    DOEpatents

    Skourikhine, Alexei N.; Prasad, Lakshman

    2005-08-30

    Contours are extracted for representing a pixelated object in a background pixel field. An object pixel is located that is the start of a new contour for the object and identifying that pixel as the first pixel of the new contour. A first contour point is then located on the mid-point of a transition edge of the first pixel. A tracing direction from the first contour point is determined for tracing the new contour. Contour points on mid-points of pixel transition edges are sequentially located along the tracing direction until the first contour point is again encountered to complete tracing the new contour. The new contour is then added to a list of extracted contours that represent the object. The contour extraction process associates regions and contours by labeling all the contours belonging to the same object with the same label.

  9. [Correction of light refraction and reflection in medical transmission optical tomography].

    PubMed

    Tereshchenko, S A; Potapov, D A

    2002-01-01

    The effects of light refraction and reflection on the quality of image reconstruction in medical transmission optical tomography of high-scattering media are considered. It has been first noted that light refraction not only distorts the geometric scheme of measurements, but may lead to the appearance of object areas that cannot be scanned. Some ways of decreasing the effect of refraction on the reconstruction of spatial distribution of the extinction coefficient are stated.

  10. Lidar stand-alone retrieval of atmospheric aerosol microphysical properties during SLOPE

    NASA Astrophysics Data System (ADS)

    Ortiz-Amezcua, Pablo; Samaras, Stefanos; Böckmann, Christine; Antonio Benavent-Oltra, Jose; Luis Guerrero-Rascado, Juan; Román, Roberto; Alados-Arboledas, Lucas

    2018-04-01

    Two cases from SLOPE campaign at Granada are analyzed in terms of particle microphysical properties using novel software developed at Potsdam University. Multiwavelength Raman lidar measurements of particle extinction and backscatter coefficients as well as linear particle depolarization ratios are used as input for the software. The result of the retrieval is a 2-dimensional particle volume distribution as a function of radius and aspect ratio, from which the particle microphysical properties are obtained.

  11. Vertical leaf area distribution, light transmittance, and application of the Beer-Lambert Law in four mature hardwood stands in the southern Appalachians

    Treesearch

    James M. Vose; Neal H. Sullivan; Barton D. Clinton; Paul V. Bolstad

    1995-01-01

    We quantified stand leaf area index and vertical leaf area distribution, and developed canopy extinction coefficients (k), in four mature hardwood stands. Leaf area index, calculated from litter fall and specific leaf area (cm²·g-1), ranged from 4.3 to 5.4 m²·m-2. In three of the four stands, leaf area was distributed in...

  12. European Conference on Thermophysical Properties (11th) Held on 13-16 June 1988, University of Umea, Sweden. Abstracts

    DTIC Science & Technology

    1988-06-16

    University of Urnea 901 87 UMEA SWEDEN E Karawacki Dept of Physics 48 Chalmers Tekniska Hogskola 412 96 GOTEBORG SWEDEN S Klarsfeld Glass Properties...Saunders, Electrical Conductivity and Dielectric Constant of Samarium Phosphate Glasses © 0 Andersson, P Andersson, R G Ross & G Backstrcm. Thermophysical...delivers extinction coefficients of about 50 m-/kg for pure (conventional) glass fiber insulations. We have thoroughly studied the potentials for a

  13. ’In situ’ Measurement of the Ratio of Aerosol Absorption to Extinction Coefficient.

    DTIC Science & Technology

    1980-08-01

    procedure for settling measurements was to obtain a reference (presmoke) level of stabilized power on both of the calorimeters indicated in figure 1...sizing measurements which might be appropriate and accurate for this application as also being investigated. 16 REFERENCES 1. Selby, J. E. A., and L...Projectiles," ECOM-5570, August 1975. 7. Duncan, Louis D., "An Improved Algorithm for the Iterated Minimal Information Solution for Remote Sounding of

  14. Some Optical Properties of Blowing Snow.

    DTIC Science & Technology

    1981-06-01

    TR-0058, May 1980. 130. Heaps, Melvin G., Robert 0. Olsen, Warren Berning, John Cross, and Arthur Gilcrease, 񓟛 Solar Eclipse, Part I - Atmospheric...Near-Millimeter Wave (NMMW) 9ronacation Measurements," ASL-T.-OC63, August 1980. 135. Bruce, Charles W., Young Paul Yee, and S. G. Jennings, "In Situ...Measurement of the Ratio of Aerosol Absorption to Extinction Coefficient," ASL-TR-0064, August 1980. 136. Yee, Young Paul , Charles W. Bruce, and Ralph J

  15. Markov chain formalism for generalized radiative transfer in a plane-parallel medium, accounting for polarization

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Davis, Anthony B.; Diner, David J.

    2016-11-01

    A Markov chain formalism is developed for computing the transport of polarized radiation according to Generalized Radiative Transfer (GRT) theory, which was developed recently to account for unresolved random fluctuations of scattering particle density and can also be applied to unresolved spectral variability of gaseous absorption as an improvement over the standard correlated-k method. Using Gamma distribution to describe the probability density function of the extinction or absorption coefficient, a shape parameter a that quantifies the variability is introduced, defined as the mean extinction or absorption coefficient squared divided by its variance. It controls the decay rate of a power-law transmission that replaces the usual exponential Beer-Lambert-Bouguer law. Exponential transmission, hence classic RT, is recovered when a→∞. The new approach is verified to high accuracy against numerical benchmark results obtained with a custom Monte Carlo method. For a<∞, angular reciprocity is violated to a degree that increases with the spatial variability, as observed for finite portions of real-world cloudy scenes. While the degree of linear polarization in liquid water cloudbows, supernumerary bows, and glories is affected by spatial heterogeneity, the positions in scattering angle of these features are relatively unchanged. As a result, a single-scattering model based on the assumption of subpixel homogeneity can still be used to derive droplet size distributions from polarimetric measurements of extended stratocumulus clouds.

  16. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    PubMed

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-05-18

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  17. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    PubMed Central

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-01-01

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1) and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind. PMID:27213414

  18. Some studies on TiO2 films deposited by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Narasimha Rao, K.; Vishwas, M.; Kumar Sharma, Sudhir; Arjuna Gowda, K. V.

    2008-08-01

    TiO2 films are extensively used in various applications including optical multi-layers, sensors, photo catalysis, environmental purification, and solar cells etc. These are prepared by both vacuum and non-vacuum methods. In this paper, we present the results on TiO2 thin films prepared by a sol-gel spin coating process in non-aqueous solvent. Titanium isopropoxide is used as TiO2 precursor. The films were annealed at different temperatures up to 3000 C for 5 hours in air. The influence of the various deposition parameters like spinning speed, spinning time and annealing temperature on the thickness of the TiO2 films has been studied. The variation of film thickness with time in ambient atmosphere was also studied. The optical, structural and morphological characteristics were investigated by optical transmittance-reflectance measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The refractive index and extinction coefficient of the films were determined by envelope technique and spectroscopic ellipsometry. TiO2 films exhibited high transparency (92%) in the visible region with a refractive index of 2.04 at 650 nm. The extinction coefficient was found to be negligibly small. The X-ray diffraction analysis showed that the TiO2 film deposited on glass substrate changes from amorphous to crystalline (anatase) phase with annealing temperature above 2500 C. SEM results show that the deposited films are uniform and crack free.

  19. Spectroellipsometric studies of sol-gel derived Sr0.6Ba0.4Nb2O6 films

    NASA Astrophysics Data System (ADS)

    Ho, Melanie M. T.; Tang, T. B.; Mak, C. L.; Pang, G. K. H.; Chan, K. Y.; Wong, K. H.

    2006-10-01

    Sr0.6Ba0.4Nb2O6 (SBN) films have been fabricated on (001)Si substrates by a sol-gel technique. The annealing process was carried out in air at various temperatures ranging from 200to700°C. Studies using x-ray diffractometry, high resolution transmission electron microscopy, and scanning electron microscopy showed that polycrystalline films, with a grain size of about 100nm, were obtained only for annealing temperatures ⩾600°C. The optical properties of these sol-gel derived SBN films were studied by spectroscopic ellipsometry (SE). In the analysis of the measured SE spectra, a triple-layer Lorentz model has been developed and used to deduce the optical properties of the SBN films. Our systematic SE measurements revealed that the refractive indices of the SBN films increase with the annealing temperature. This increase is more pronounced at around the crystallization temperature, i.e., between 500 and 600°C. The extinction coefficients of the films also exhibit a similar trend, showing a zero value for amorphous films and larger values for films annealed at above 600°C. Our results demonstrate that while crystallization helps to raise the refractive index of the film due to film densification, it also promotes scattering by grain boundary, resulting in a larger extinction coefficient.

  20. Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J.S.; Krishnan, S.K.; Faeth, G.M.

    1996-11-01

    Measurements of the optical properties of soot, emphasizing refractive indices, are reported for visible wavelengths. The experiments considered soot in the fuel-lean (overfire) region of buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and residence time. Flames fueled with acetylene, propylene, ethylene and propane burning in still air provided a range of soot physical and structure properties. Measurements included soot composition, density, structure, gravimetric volume fraction, scattering properties and absorption properties. These data were analyzed to find soot fractal dimensions, refractive indices and dimensionless extinction coefficients, assumingmore » Rayleigh-Debye-Gans scattering for polydisperse mass fractal aggregates (RDG-PFA theory). RDG-PFA theory was successfully evaluated, based on measured scattering patterns. Soot fractal dimensions were independent of both fuel type and wavelength, yielding a mean value of 1.77 with a standard deviation of 0.04. Refractive indices were independent of fuel type within experimental uncertainties and were in reasonably good agreement with earlier measurements for soot in the fuel-lean region of diffusion flames due to Dalzell and Sarofim (1969). Dimensionless extinction coefficients were independent of both fuel type and wavelength, yielding a mean value of 5.1 with a standard deviation of 0.5, which is lower than earlier measurements for reasons that still must be explained.« less

  1. Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik, E-mail: youngkim@hongik.ac.kr

    2014-10-15

    Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dyemore » as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.« less

  2. A comparison of lidar inversion methods for cirrus applications

    NASA Technical Reports Server (NTRS)

    Elouragini, Salem; Flamant, Pierre H.

    1992-01-01

    Several methods for inverting the lidar equation are suggested as means to derive the cirrus optical properties (beta backscatter, alpha extinction coefficients, and delta optical depth) at one wavelength. The lidar equation can be inverted in a linear or logarithmic form; either solution assumes a linear relationship: beta = kappa(alpha), where kappa is the lidar ratio. A number of problems prevent us from calculating alpha (or beta) with a good accuracy. Some of these are as follows: (1) the multiple scattering effect (most authors neglect it); (2) an absolute calibration of the lidar system (difficult and sometimes not possible); (3) lack of accuracy on the lidar ratio k (taken as constant, but in fact it varies with range and cloud species); and (4) the determination of boundary condition for logarithmic solution which depends on signal to noise ration (SNR) at cloud top. An inversion in a linear form needs an absolute calibration of the system. In practice one uses molecular backscattering below the cloud to calibrate the system. This method is not permanent because the lower atmosphere turbidity is variable. For a logarithmic solution, a reference extinction coefficient (alpha(sub f)) at cloud top is required. Several methods to determine alpha(sub f) were suggested. We tested these methods at low SNR. This led us to propose two new methods referenced as S1 and S2.

  3. Two-dimensional shape classification using generalized Fourier representation and neural networks

    NASA Astrophysics Data System (ADS)

    Chodorowski, Artur; Gustavsson, Tomas; Mattsson, Ulf

    2000-04-01

    A shape-based classification method is developed based upon the Generalized Fourier Representation (GFR). GFR can be regarded as an extension of traditional polar Fourier descriptors, suitable for description of closed objects, both convex and concave, with or without holes. Explicit relations of GFR coefficients to regular moments, moment invariants and affine moment invariants are given in the paper. The dual linear relation between GFR coefficients and regular moments was used to compare shape features derive from GFR descriptors and Hu's moment invariants. the GFR was then applied to a clinical problem within oral medicine and used to represent the contours of the lesions in the oral cavity. The lesions studied were leukoplakia and different forms of lichenoid reactions. Shape features were extracted from GFR coefficients in order to classify potentially cancerous oral lesions. Alternative classifiers were investigated based on a multilayer perceptron with different architectures and extensions. The overall classification accuracy for recognition of potentially cancerous oral lesions when using neural network classifier was 85%, while the classification between leukoplakia and reticular lichenoid reactions gave 96% (5-fold cross-validated) recognition rate.

  4. Extraction of breast lesions from ultrasound imagery: Bhattacharyya gradient flow approach

    NASA Astrophysics Data System (ADS)

    Torkaman, Mahsa; Sandhu, Romeil; Tannenbaum, Allen

    2018-03-01

    Breast cancer is one of the most commonly diagnosed neoplasms among American women and the second leading cause of death among women all over the world. In order to reduce the mortality rate and cost of treatment, early diagnosis and treatment are essential. Accurate and reliable diagnosis is required in order to ensure the most effective treatment and a second opinion is often advisable. In this paper, we address the problem of breast lesion detection from ultrasound imagery by means of active contours, whose evolution is driven by maximizing the Bhattacharyya distance1 between the probability density functions (PDFs). The proposed method was applied to ultrasound breast imagery, and the lesion boundary was obtained by maximizing the distance-based energy functional such that the maximum (optimal contour) is attained at the boundary of the potential lesion. We compared the results of the proposed method quantitatively using the Dice coefficient (similarity index)2 to well-known GrowCut segmentation method3 and demonstrated that Bhattacharyya approach outperforms GrowCut in most of the cases.

  5. Generalized Skew Coefficients of Annual Peak Flows for Rural, Unregulated Streams in West Virginia

    USGS Publications Warehouse

    Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.

    2009-01-01

    Generalized skew was determined from analysis of records from 147 streamflow-gaging stations in or near West Virginia. The analysis followed guidelines established by the Interagency Advisory Committee on Water Data described in Bulletin 17B, except that stations having 50 or more years of record were used instead of stations with the less restrictive recommendation of 25 or more years of record. The generalized-skew analysis included contouring, averaging, and regression of station skews. The best method was considered the one with the smallest mean square error (MSE). MSE is defined as the following quantity summed and divided by the number of peaks: the square of the difference of an individual logarithm (base 10) of peak flow less the mean of all individual logarithms of peak flow. Contouring of station skews was the best method for determining generalized skew for West Virginia, with a MSE of about 0.2174. This MSE is an improvement over the MSE of about 0.3025 for the national map presented in Bulletin 17B.

  6. A two-dimensional adaptive-wall test section with ventilated walls in the Ames 2- by 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Lee, George; Mcdevitt, T. Kevin

    1989-01-01

    The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted.

  7. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light absorption ability and its vertical distribution.

  8. Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail

    2005-03-01

    The dimensionless extinction coefficient, K{sub e}, was measured for soot produced in 2 m JP-8 pool fires. Light extinction and gravimetric sampling measurements were performed simultaneously at 635 and 1310 nm wavelengths at three heights in the flame zone and in the overfire region. Measured average K{sub e} values of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm in the overfire region agree well with values from 8-10 recently reported for different fuels and flame conditions. The overfire K{sub e} values are also relatively independent of wavelength, in agreement with recent findings for JP-8 sootmore » in smaller flames. K{sub e} was nearly constant at 635 nm for all sampling locations in the large fires. However, at 1310 nm, the overfire K{sub e} was higher than in the flame zone. Chemical analysis of physically sampled soot shows variations in carbon-to-hydrogen (C/H) ratio and polycyclic aromatic hydrocarbon (PAH) concentration that may account for the smaller K{sub e} values measured in the flame zone. Rayleigh-Debye-Gans theory of scattering for polydisperse fractal aggregate (RDG-PFA) was applied to measured aggregate fractal dimensions and found to under-predict the extinction coefficient by 17-30% at 635 nm using commonly accepted refractive indices of soot, and agreed well with the experiments using the more recently published refractive index of 1.99-0.89i. This study represents the first measurements of soot chemistry, morphology, and optical properties in the flame zone of large, fully-turbulent pool fires, and emphasizes the importance of accurate measurements of optical properties both in the flame zone and overfire regions for models of radiative transport and interpretation of laser-based diagnostics of soot volume fraction and temperature.« less

  9. An Analysis of Neptune's Stratospheric Haze Using High-Phase-Angle Voyager Images

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Rages, Kathy; Pollack, James B.

    1995-01-01

    We have inverted high-phase-angle Voyager images of Neptune to determine the atmospheric extinction coefficient as a function of altitude and the scattering phase function at a reference altitude. Comparisons between theoretical model and observations help separate the contributions from molecular Rayleigh and aerosol scattering and help determine the variation of the aerosol size, concentration, and scattering properties with altitude. Further comparisons between models and data allow us to place constraints on the location and composition of the hazes, the concentration and downward flux of certain condensible hydrocarbon gases, the eddy diffusion coefficient in the lower stratosphere, and the thermal profile in parts of Neptune's stratosphere. We find that a distinct stratospheric haze layer exists near 12(sub -1, sup +1) mbar in Neptune's lower stratosphere, most probably due to condensed ethane. The derived stratospheric haze production rate of 1.0(sub -0.3, sup +0.2) x 10(exp -15) g cm(exp -2) sec(exp -1) is substantially lower than photochemical model predictions. Evidence for hazes at higher altitudes also exists. Unlike the situation on Uranus, large particles (0.08-0.11 microns) may be present at high altitudes on Neptune (e.g., near 0.5 mbar), well above the region in which we expect the major hydrocarbon species to condense. Near 28 mbar, the mean particle size is about 0.13(sub -0.02, sup +0.02) microns with a concentration of 5(sub -3, sup +3) particles cm(exp -3). The cumulative haze extinction optical depth above 15 mbar in the clear filter is approx. 3 x 10(exp -3), and much of this extinction is due to scattering rather than absorption; thus, if our limb-scan sites are typical, the hazes cannot account for the stratospheric temperature inversion on Neptune and may not contribute significantly to atmospheric heating. We compare the imaging results with the results from other observations, including those of the Voyager Photopolarimeter Subsystem, and discuss differences between Neptune and Uranus.

  10. QCD Condensates and Holographic Wilson Loops for Asymptotically AdS Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quevedo, R. Carcasses; Goity, Jose L.; Trinchero, Roberto C.

    2014-02-01

    The minimization of the Nambu-Goto (NG) action for a surface whose contour defines a circular Wilson loop of radius a placed at a finite value of the coordinate orthogonal to the border is considered. This is done for asymptotically AdS spaces. The condensates of dimension n = 2, 4, 6, 8, and 10 are calculated in terms of the coefficients in the expansion in powers of the radius a of the on-shell subtracted NG action for small a->0. The subtraction employed is such that it presents no conflict with conformal invariance in the AdS case and need not introduce anmore » additional infrared scale for the case of confining geometries. It is shown that the UV value of the gluon condensates is universal in the sense that it only depends on the first coefficients of the difference with the AdS case.« less

  11. Electric-field-induced structural modulation of epitaxial BiFeO3 multiferroic thin films as studied using x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Bark, Chung W.; Ryu, Sangwoo; Koo, Yang M.; Jang, Hyun M.; Youn, Hwa S.

    2007-01-01

    An in situ method, called synchrotron x-ray microdiffraction, was introduced to examine the electric-field-induced structural modulation of the epitaxially grown pseudotetragonal BiFeO3 thin film. To evaluate the d spacing (d001) from the measured intensity contour in the 2θ-χ space, the peak position in each diffraction profile was determined by applying two-dimensional Lorentzian fitting. By tracing the change of d spacing as a function of the applied electric field and by examining the Landau free energy function for P4mm symmetry, the authors were able to estimate the two important parameters that characterize the field-induced structural modulation. The estimated linear piezoelectric coefficient (d33) at zero-field limit is 15pm /V, and the effective nonlinear electrostrictive coefficient (Qeff) is as low as ˜8.0×10-3m4/C2.

  12. Comparative 3D QSAR study on β1-, β2-, and β3-adrenoceptor agonists

    PubMed Central

    Senthil Kumar, P.

    2009-01-01

    A quantitative structure–activity relationship study of tryptamine-based derivatives of β1-, β2-, and β3-adrenoceptor agonists was conducted using comparative molecular field analysis (CoMFA). Correlation coefficients (cross-validated r2) of 0.578, 0.595, and 0.558 were obtained for the three subtypes, respectively, in three different CoMFA models. All three CoMFA models have different steric and electrostatic contributions, implying different requirements inside the binding cavity. The CoMFA coefficient contour plots of the three models and comparisons among these plots provide clues regarding the main chemical features responsible for the biological activity variations and also result in predictions which correlate very well with the observed biological activity. Based on the analysis, a summary regeospecific description of the requirements for improving β-adrenoceptor subtype selectivity is given. PMID:21170122

  13. Kidney segmentation in CT sequences using graph cuts based active contours model and contextual continuity.

    PubMed

    Zhang, Pin; Liang, Yanmei; Chang, Shengjiang; Fan, Hailun

    2013-08-01

    Accurate segmentation of renal tissues in abdominal computed tomography (CT) image sequences is an indispensable step for computer-aided diagnosis and pathology detection in clinical applications. In this study, the goal is to develop a radiology tool to extract renal tissues in CT sequences for the management of renal diagnosis and treatments. In this paper, the authors propose a new graph-cuts-based active contours model with an adaptive width of narrow band for kidney extraction in CT image sequences. Based on graph cuts and contextual continuity, the segmentation is carried out slice-by-slice. In the first stage, the middle two adjacent slices in a CT sequence are segmented interactively based on the graph cuts approach. Subsequently, the deformable contour evolves toward the renal boundaries by the proposed model for the kidney extraction of the remaining slices. In this model, the energy function combining boundary with regional information is optimized in the constructed graph and the adaptive search range is determined by contextual continuity and the object size. In addition, in order to reduce the complexity of the min-cut computation, the nodes in the graph only have n-links for fewer edges. The total 30 CT images sequences with normal and pathological renal tissues are used to evaluate the accuracy and effectiveness of our method. The experimental results reveal that the average dice similarity coefficient of these image sequences is from 92.37% to 95.71% and the corresponding standard deviation for each dataset is from 2.18% to 3.87%. In addition, the average automatic segmentation time for one kidney in each slice is about 0.36 s. Integrating the graph-cuts-based active contours model with contextual continuity, the algorithm takes advantages of energy minimization and the characteristics of image sequences. The proposed method achieves effective results for kidney segmentation in CT sequences.

  14. Target volume and artifact evaluation of a new data-driven 4D CT.

    PubMed

    Martin, Rachael; Pan, Tinsu

    Four-dimensional computed tomography (4D CT) is often used to define the internal gross target volume (IGTV) for radiation therapy of lung cancer. Traditionally, this technique requires the use of an external motion surrogate; however, a new image, data-driven 4D CT, has become available. This study aims to describe this data-driven 4D CT and compare target contours created with it to those created using standard 4D CT. Cine CT data of 35 patients undergoing stereotactic body radiation therapy were collected and sorted into phases using standard and data-driven 4D CT. IGTV contours were drawn using a semiautomated method on maximum intensity projection images of both 4D CT methods. Errors resulting from reproducibility of the method were characterized. A comparison of phase image artifacts was made using a normalized cross-correlation method that assigned a score from +1 (data-driven "better") to -1 (standard "better"). The volume difference between the data-driven and standard IGTVs was not significant (data driven was 2.1 ± 1.0% smaller, P = .08). The Dice similarity coefficient showed good similarity between the contours (0.949 ± 0.006). The mean surface separation was 0.4 ± 0.1 mm and the Hausdorff distance was 3.1 ± 0.4 mm. An average artifact score of +0.37 indicated that the data-driven method had significantly fewer and/or less severe artifacts than the standard method (P = 1.5 × 10 -5 for difference from 0). On average, the difference between IGTVs derived from data-driven and standard 4D CT was not clinically relevant or statistically significant, suggesting data-driven 4D CT can be used in place of standard 4D CT without adjustments to IGTVs. The relatively large differences in some patients were usually attributed to limitations in automatic contouring or differences in artifacts. Artifact reduction and setup simplicity suggest a clinical advantage to data-driven 4D CT. Published by Elsevier Inc.

  15. SU-E-J-226: Propagation of Pancreas Target Contours On Respiratory Correlated CT Images Using Deformable Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, F; Yorke, E; Mageras, G

    2014-06-01

    Purpose: Respiratory Correlated CT (RCCT) scans to assess intra-fraction motion among pancreatic cancer patients undergoing radiotherapy allow for dose sparing of normal tissues, in particular for the duodenum. Contour propagation of the gross tumor volume (GTV) from one reference respiratory phase to 9 other phases is time consuming. Deformable image registration (DIR) has been successfully used for high contrast disease sites but lower contrast for pancreatic tumors may compromise accuracy. This study evaluates the accuracy of Fast Free Form (FFF) registration-based contour propagation of the GTV on RCCT scans of pancreas cancer patients. Methods: Twenty-four pancreatic cancer patients were retrospectivelymore » studied; 20 had tumors in the pancreatic head/neck, 4 in the body/tail. Patients were simulated with RCCT and images were sorted into 10 respiratory phases. A radiation oncologist manually delineated the GTV for 5 phases (0%, 30%, 50%, 70% and 90%). The FFF algorithm was used to map deformations between the EE (50%) phase and each of the other 4 phases. The resultant deformation fields served to propagate GTV contours from EE to the other phases. The Dice Similarity Coefficient (DSC), which measures agreement between the DIR-propagated and manually-delineated GTVs, was used to quantitatively examine DIR accuracy. Results: Average DSC over all scans and patients is 0.82 and standard deviation is 0.09 (DSC range 0.97–0.57). For GTV volumes above and below the median volume of 20.2 cc, a Wilcoxon rank-sum test shows significantly different DSC (p=0.0000002). For the GTVs above the median volume, average +/− SD is 0.85 +/− 0.07; and for the GTVs below, the average +/− SD is 0.75 +/−0.08. Conclusion: For pancreatic tumors, the FFF DIR algorithm accurately propagated the GTV between the images in different phases of RCCT, with improved performance for larger tumors.« less

  16. SU-E-J-132: Automated Segmentation with Post-Registration Atlas Selection Based On Mutual Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X; Gao, H; Sharp, G

    2015-06-15

    Purpose: The delineation of targets and organs-at-risk is a critical step during image-guided radiation therapy, for which manual contouring is the gold standard. However, it is often time-consuming and may suffer from intra- and inter-rater variability. The purpose of this work is to investigate the automated segmentation. Methods: The automatic segmentation here is based on mutual information (MI), with the atlas from Public Domain Database for Computational Anatomy (PDDCA) with manually drawn contours.Using dice coefficient (DC) as the quantitative measure of segmentation accuracy, we perform leave-one-out cross-validations for all PDDCA images sequentially, during which other images are registered to eachmore » chosen image and DC is computed between registered contour and ground truth. Meanwhile, six strategies, including MI, are selected to measure the image similarity, with MI to be the best. Then given a target image to be segmented and an atlas, automatic segmentation consists of: (a) the affine registration step for image positioning; (b) the active demons registration method to register the atlas to the target image; (c) the computation of MI values between the deformed atlas and the target image; (d) the weighted image fusion of three deformed atlas images with highest MI values to form the segmented contour. Results: MI was found to be the best among six studied strategies in the sense that it had the highest positive correlation between similarity measure (e.g., MI values) and DC. For automated segmentation, the weighted image fusion of three deformed atlas images with highest MI values provided the highest DC among four proposed strategies. Conclusion: MI has the highest correlation with DC, and therefore is an appropriate choice for post-registration atlas selection in atlas-based segmentation. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  17. SU-F-J-84: Comparison of Quantitative Deformable Image Registration Evaluation Tools: Application to Prostate IGART

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dogan, N; Weiss, E; Sleeman, W

    Purpose: Errors in displacement vector fields (DVFs) generated by Deformable Image Registration (DIR) algorithms can give rise to significant uncertainties in contour propagation and dose accumulation in Image-Guided Adaptive Radiotherapy (IGART). The purpose of this work is to assess the accuracy of two DIR algorithms using a variety of quality metrics for prostate IGART. Methods: Pelvic CT images were selected from an anonymized database of nineteen prostate patients who underwent 8–12 serial scans during radiotherapy. Prostate, bladder, and rectum were contoured on 34 image-sets for three patients by the same physician. The planning CT was deformably-registered to daily CT usingmore » three variants of the Small deformation Inverse Consistent Linear Elastic (SICLE) algorithm: Grayscale-driven (G), Contour-driven (C, which utilizes segmented structures to drive DIR), combined (G+C); and also grayscale ITK demons (Gd). The accuracy of G, C, G+C SICLE and Gd registrations were evaluated using a new metric Edge Gradient Distance to Agreement (EGDTA) and other commonly-used metrics such as Pearson Correlation Coefficient (PCC), Dice Similarity Index (DSI) and Hausdorff Distance (HD). Results: C and G+C demonstrated much better performance at organ boundaries, revealing the lowest HD and highest DSI, in prostate, bladder and rectum. G+C demonstrated the lowest mean EGDTA (1.14 mm), which corresponds to highest registration quality, compared to G and C DVFs (1.16 and 2.34 mm). However, demons DIR showed the best overall performance, revealing lowest EGDTA (0.73 mm) and highest PCC (0.85). Conclusion: As expected, both C- and C+G SICLE more accurately reproduce manually-contoured target datasets than G-SICLE or Gd using HD and DSI metrics. In general, the Gd appears to have difficulty reproducing large daily position and shape changes in the rectum and bladder. However, Gd outperforms SICLE in terms of EGDTA and PCC metrics, possibly at the expense of topological quality of the estimated DVFs.« less

  18. Extracting atmospheric turbulence and aerosol characteristics from passive imagery

    NASA Astrophysics Data System (ADS)

    Reinhardt, Colin N.; Wayne, D.; McBryde, K.; Cauble, G.

    2013-09-01

    Obtaining accurate, precise and timely information about the local atmospheric turbulence and extinction conditions and aerosol/particulate content remains a difficult problem with incomplete solutions. It has important applications in areas such as optical and IR free-space communications, imaging systems performance, and the propagation of directed energy. The capability to utilize passive imaging data to extract parameters characterizing atmospheric turbulence and aerosol/particulate conditions would represent a valuable addition to the current piecemeal toolset for atmospheric sensing. Our research investigates an application of fundamental results from optical turbulence theory and aerosol extinction theory combined with recent advances in image-quality-metrics (IQM) and image-quality-assessment (IQA) methods. We have developed an algorithm which extracts important parameters used for characterizing atmospheric turbulence and extinction along the propagation channel, such as the refractive-index structure parameter C2n , the Fried atmospheric coherence width r0 , and the atmospheric extinction coefficient βext , from passive image data. We will analyze the algorithm performance using simulations based on modeling with turbulence modulation transfer functions. An experimental field campaign was organized and data were collected from passive imaging through turbulence of Siemens star resolution targets over several short littoral paths in Point Loma, San Diego, under conditions various turbulence intensities. We present initial results of the algorithm's effectiveness using this field data and compare against measurements taken concurrently with other standard atmospheric characterization equipment. We also discuss some of the challenges encountered with the algorithm, tasks currently in progress, and approaches planned for improving the performance in the near future.

  19. Cool-Flame Burning and Oscillations of Envelope Diffusion Flames in Microgravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2018-05-01

    The two-stage combustion, local extinction, and flame-edge oscillations have been observed in single-droplet combustion tests conducted on the International Space Station. To understand such dynamic behavior of initially enveloped diffusion flames in microgravity, two-dimensional (axisymmetric) computation is performed for a gaseous n-heptane flame using a time-dependent code with a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a simple radiation model (for CO2, H2O, CO, CH4, and soot). The calculated combustion characteristics vary profoundly with a slight movement of air surrounding a fuel source. In a near-quiescent environment (≤ 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), extinction of a growing spherical diffusion flame due to radiative heat losses is predicted at the flame temperature at ≈ 1200 K. The radiative extinction is typically followed by a transition to the "cool flame" burning regime (due to the negative temperature coefficient in the low-temperature chemistry) with a reaction zone (at ≈ 700 K) in close proximity to the fuel source. By contrast, if there is a slight relative velocity (≈ 3 mm/s) between the fuel source and the air, a local extinction of the envelope diffusion flame is predicted downstream at ≈ 1200 K, followed by periodic flame-edge oscillations. At higher relative velocities (4 to 10 mm/s), the locally extinguished flame becomes steady state. The present 2D computational approach can help in understanding further the non-premixed "cool flame" structure and flame-flow interactions in microgravity environments.

  20. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  1. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  2. On Spectral Invariance of Single Scattering Albedo for Water Droplets and Ice Crystals at Weakly Absorbing Wavelengths

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2012-01-01

    The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

  3. Thickness dependent optical and electrical properties of CdSe thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, A., E-mail: anuradha.purohit34@gmail.com; Chander, S.; Nehra, S. P.

    2016-05-06

    The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows thatmore » the electrical resistivity is observed to be decreased with thickness.« less

  4. Proposal for an optical multicarrier generator based on single silicon micro-ring modulator

    NASA Astrophysics Data System (ADS)

    Bhowmik, Bishanka Brata; Gupta, Sumanta

    2015-08-01

    We propose an optical multicarrier generation technique using silicon micro-ring modulator (MRM) and analyze the scheme. Numerical studies have been done for three types MRMs having different power coupling coefficients. The proposed scheme is found to generate four optical carriers having 12.5 GHz spacing. According to simulation, the maximum side-mode-suppression ratio (SMSR) of ~16.3 dB with flatness of ~0.2 dB is achieved by using this scheme. The minimum extinction ratio (ER) of the generated carriers is found to be more than 35 dB. We also propose modulator driver circuit to generate RF signal, which is needed to generate multicarrier using MRM. The effect of coupling coefficient on the SMSR of the generated carriers is also investigated.

  5. The structural, electronic, magnetic and optical properties of the half-metallic binary alloys ZCl3 (Z=Be, Mg, Ca, Sr): A first-principles study

    NASA Astrophysics Data System (ADS)

    Song, Jun-Tao; Zhang, Jian-Min

    2018-06-01

    The investigations of the electronic and magnetic properties show the binary Heusler alloys ZCl3 (Z = Be, Mg, Ca, Sr) are half-metallic (HM) ferromagnets with an integer magnetic moment (Mt) of 1 μB /f.u.. The alloy BeCl3 is thermodynamic meta-stable, while other alloys are thermodynamic stable according to their cohesive energies and formation energies. Moreover, wide HM regions for alloys ZCl3 (Z = Be, Mg, Ca, Sr) show their HM characters are robust when the lattices are expanded or compressed under uniform and tetragonal strains. Finally, some optical properties are analyzed in detail, such as the dielectric function, the absorption coefficient, the refractive index and the extinction coefficient.

  6. Experimental Investigations on Combustion Behaviors of Live PVC Cables

    NASA Astrophysics Data System (ADS)

    Wang, Liufang; Zhang, Jiaqing; Zhang, Bosi; Liu, Min; Fan, Minghao; Li, Qiang

    2018-03-01

    This paper investigated the combustion behaviors of live PVC cables with overload currents experimentally. The smoke coefficient of released smoke and the released gas concentration were examined. The results indicate that the combustion of live PVC cables can be divided into four stages, i.e., core exposed with a little smoke, obvious flame, maximum smoke and smoke depress. For most cases, using blue laser is better than using rad laser, since the extinction coefficient of the rad laser was larger than that of the blue laser. The response time of the detection of the released typical gases due to cable pyrolysis decreased and the peak values of the typical gases increased with the overload currents. In addition, the time to reach the peak value of gas concentration also decreased with the overload currents.

  7. Pushability and frictional characteristics of medical instruments.

    PubMed

    Wünsche, P; Werner, C; Bloss, P

    2002-01-01

    A tensile testing equipment is combined with a torque module and a 3D force tranducer to characterize the pushability of catheter systems inside modular vessel phantoms. The modular construction of the phantom allows using two dimensional vessel shapes with different contours. Inside the phantom we put a tube or a guide catheter in which the instruments are pushed or redrawn in the presence of a liquid (water, blood, etc.) at body temperature. During pushing or redrawing we measure axial and rotational values. Additionally, friction forces and coefficients are separately determined by using a special designed friction module. First results are presented and discussed.

  8. Pressure Available for Cooling with Cowling Flaps

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Naiman, Irven; Crigler, John L

    1941-01-01

    Report presents the results of a full-scale investigation conducted in the NACA 20-foot tunnel to determine the pressure difference available for cooling with cowling flaps. The flaps were applied to an exit slot of smooth contour at 0 degree flap angle. Flap angles of 0 degree, 15 degrees, and 30 degrees were tested. Two propellers were used; propeller c which has conventional round blade shanks and propeller f which has airfoil sections extending closer to the hub. The pressure available for cooling is shown to be a direct function of the thrust disk-loading coefficient of the propeller.

  9. Measurements of print-through in graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.

    1989-01-01

    High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.

  10. [Quantitative determination of 7-phenoxyacetamidodesacetoxycephalosporanic acid].

    PubMed

    Dzegilenko, N B; Riabova, N M; Zinchenko, E Ia; Korchagin, V B

    1976-11-01

    7-Phenoxyacetamidodesacetoxycephalosporanic acid, an intermediate product in synthesis of cephalexin, was prepared by oxydation of phenoxymethylpenicillin into the respective sulphoxide and transformation of the latter. The UV-spectra of the reaction products were studied. A quantitative method is proposed for determination of 7-phenoxyacetamidodesacetoxycephalosporanic acid in the finished products based on estimation os the coefficient of specific extinction of the ethanol solutions at a wave length of 268 um in the UV-spectrum region in combination with semiquantitative estimation of the admixtures with the method of thin-layer chromatography.

  11. International Conference on Aerosols and Background Pollution Abstracts Held in Galway, Ireland on 13-15 June 1989

    DTIC Science & Technology

    1989-06-15

    Andes near Santiago de Chile extinction coefficients have been determined at elevations above 3000 meters. Values betwee 0.018 km and 0.15 km have been...McGovern 1515 North Atlantic Aerosol Background concentrations measured at a Hebridean coastal site N.H. Smith, P.M. Park and I.E. Consterdine 1530...ocean V. Dreiling, R. Maser and L. Schutz 1615 Measurements of aerosol concentration and distribution at Helgoland Island P. Brand, J. Gebhart, M. Below

  12. Green Light Pulse Oximeter

    DOEpatents

    Scharf, John Edward

    1998-11-03

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  13. A comparison of cirrus clouds determined by ISCCP and SAGE-II and their relation to convection in the tropics

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Vonder Haar, Thomas H.

    1992-01-01

    Results of tropical thin cirrus cloud retrievals using International Satellite Cloud Climatology Project (ISCCP) and Stratospheric Aerosol and Gaseous Experiment (SAGE-II) data from January 1985 are presented. A preliminary analysis of the results shows that thin cirrus increases with increasing height in both data sets, and SAGE-II exhibits a high frequency of occurrence. The thin cirrus extinction coefficient shows maxima around the convective regions of South America and the western Pacific Ocean.

  14. Fog Characteristics at Otis AFB, Massachusetts.

    DTIC Science & Technology

    1980-10-01

    AFGL-owned EG&G Forward Scatter Meters at heights of S, 30, 45 and 60 m above the surface. The scope of Calspan’s contract did not permit more than...characteristics, and supporting meteorological variables. For fog microphysics, a Calspan drop sampler, a hi-vol LWC sampler, AFGL’s Forward Scatter Meters and a...Eq. (i), was measured as "scattering" coefficient in fog at Otis with EG&G Forward Scatter Meters . The measured extinction can be related to visual

  15. A Tomographic Method for the Reconstruction of Local Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Sivathanu, Y. R.; Gore, J. P.

    1993-01-01

    A method of obtaining the probability density function (PDF) of local properties from path integrated measurements is described. The approach uses a discrete probability function (DPF) method to infer the PDF of the local extinction coefficient from measurements of the PDFs of the path integrated transmittance. The local PDFs obtained using the method are compared with those obtained from direct intrusive measurements in propylene/air and ethylene/air diffusion flames. The results of this comparison are good.

  16. Joint Aerospace Weapon System Support, Sensors And Simulation Symposium (5th Annual). Held In San Diego, California on 13-18 June 1999

    DTIC Science & Technology

    1999-06-18

    and 1.54 microns and to compute the spectral extinction coefficient. 3. Near IR (1.54 um) Laser rangefinders measure the time-of-flight of a short...quantitative understanding n n Research ( long term) n Encourage research in adaptive systems : evolutionary programming, genetic algorithms, neural nets... measures , such as false alarm rate , are not measurable in field applications. Other measures such as Incremental Fault Resolution, Operational Isolation

  17. Global statistics of liquid water content and effective number density of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.

    2007-03-01

    This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.

  18. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  19. Extinction measurement of dense media by an optical coherence tomography technique

    NASA Astrophysics Data System (ADS)

    Ago, Tomoki; Iwai, Toshiaki; Yokota, Ryoko

    2016-10-01

    The optical coherence tomography will make progress as the next stage toward a spectroscopic analysis technique. The spectroscopic analysis is based on the Beer-Lambert law. The absorption and scattering coefficients even for the dense medium can be measured by the Beer-Lambert law because the OCT can detect only the light keeping the coherency which propagated rectilinearly and retro-reflected from scatters. This study is concerned with the quantitative verification of Beer-Lambert law in the OCT imaging.

  20. Dynamic Optical Grating Device and Associated Method for Modulating Light

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Chu, Sang-Hyon (Inventor)

    2012-01-01

    A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity fo the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.

Top