Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China.
Cheng, Zhen; Ma, Xin; He, Yujie; Jiang, Jingkun; Wang, Xiaoliang; Wang, Yungang; Sheng, Li; Hu, Jiangkai; Yan, Naiqiang
2017-07-01
The ambient PM 2.5 pollution problem in China has drawn substantial international attentions. The mass extinction efficiency (MEE) and hygroscopicity factor (f(RH)) of PM 2.5 can be readily applied to study the impacts on atmospheric visibility and climate. The few previous investigations in China only reported results from pilot studies and are lack of spatial representativeness. In this study, hourly average ambient PM 2.5 mass concentration, relative humidity, and atmospheric visibility data from China national air quality and meteorological monitoring networks were retrieved and analyzed. It includes 24 major Chinese cities from nine city-clusters with the period of October 2013 to September 2014. Annual average extinction coefficient in urban China was 759.3±258.3Mm -1 , mainly caused by dry PM 2.5 (305.8.2±131.0Mm -1 ) and its hygroscopicity (414.6±188.1Mm -1 ). High extinction coefficient values were resulted from both high ambient PM 2.5 concentration (68.5±21.7µg/m 3 ) and high relative humidity (69.7±8.6%). The PM 2.5 mass extinction efficiency varied from 2.87 to 6.64m 2 /g with an average of 4.40±0.84m 2 /g. The average extinction hygroscopic factor f(RH=80%) was 2.63±0.45. The levels of PM 2.5 mass extinction efficiency and hygroscopic factor in China were in comparable range with those found in developed countries in spite of the significant diversities among all 24 cities. Our findings help to establish quantitative relationship between ambient extinction coefficient (visual range) and PM 2.5 & relative humidity. It will reduce the uncertainty of extinction coefficient estimation of ambient PM 2.5 in urban China which is essential for the research of haze pollution and climate radiative forcing. Copyright © 2017 Elsevier Inc. All rights reserved.
Extinction cross-section suppression and active acoustic invisibility cloaking
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-10-01
Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-11-01
Active cloaking in its basic form requires that the extinction cross-section (or energy efficiency) from a radiating body vanishes. In this analysis, this physical effect is demonstrated for an active cylindrically radiating acoustic source in a non-viscous fluid, undergoing periodic axisymmetric harmonic vibrations near a rigid corner (i.e., quarter-space). The rigorous multipole expansion method in cylindrical coordinates, the method of images, and the addition theorem of cylindrical wave functions are used to derive closed-form mathematical expressions for the radiating, amplification, and extinction cross-sections of the active source. Numerical computations are performed assuming monopole and dipole modal oscillations of the circular source. The results reveal some of the situations where the extinction energy efficiency factor of the active source vanishes depending on its size and location with respect to the rigid corner, thus, achieving total invisibility. Moreover, the extinction energy efficiency factor varies between positive or negative values. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility in underwater acoustics or other areas.
Extinction by a Homogeneous Spherical Particle in an Absorbing Medium
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Videen, Gorden; Yang, Ping
2017-01-01
We use a recent computer implementation of the first principles theory of electromagnetic scattering to compute far-field extinction by a spherical particle embedded in an absorbing unbounded host. Our results show that the suppressing effect of increasing absorption inside the host medium on the ripple structure of the extinction efficiency factor as a function of the size parameter is similar to the well-known effect of increasing absorption inside a particle embedded in a nonabsorbing host. However, the accompanying effects on the interference structure of the extinction efficiency curves are diametrically opposite. As a result, sufficiently large absorption inside the host medium can cause negative particulate extinction. We offer a simple physical explanation of the phenomenon of negative extinction consistent with the interpretation of the interference structure as being the result of interference of the field transmitted by the particle and the diffracted field due to an incomplete wave front resulting from the blockage of the incident plane wave by the particle's geometrical projection.
Emotional trait and memory associates of sleep timing and quality
Pace-Schott, Edward F.; Rubin, Zoe S.; Tracy, Lauren E.; Spencer, Rebecca M.C.; Orr, Scott P.; Verga, Patrick W.
2015-01-01
Poor ability to remember the extinction of conditioned fear, elevated trait anxiety, and delayed or disrupted nocturnal sleep are reported in anxiety disorders. The current study examines the interrelationship of these factors in healthy young-adult males. Skin- conductance response was conditioned to two differently colored lamps. One color but not the other was then extinguished. After varying delays, both colors were presented to determine extinction recall and generalization. Questionnaires measured sleep quality, morningness - eveningness, neuroticism and trait anxiety. A subset produced a mean 7.0 nights of actigraphy and sleep diaries. Median split of mean sleep midpoint defined early-and late-”sleep timers”. Extinction was more rapidly learned in the morning than evening only in early-timers, who also better generalized extinction recall. Extinction recall was greater with higher sleep efficiency. Sleep efficiency and morningness were negatively associated with neuroticism and anxiety. However, neuroticism and anxiety did not predict extinction learning, recall or generalization. Therefore, neuroticism/anxiety and deficient fear extinction, although both associated with poor quality and late timing of sleep, are not directly associated with each other. Elevated trait anxiety, in addition to predisposing directly to anxiety disorders, may thus also indirectly promote such disorders by impairing sleep and, consequently, extinction memory. PMID:26257092
Emotional trait and memory associates of sleep timing and quality.
Pace-Schott, Edward F; Rubin, Zoe S; Tracy, Lauren E; Spencer, Rebecca M C; Orr, Scott P; Verga, Patrick W
2015-10-30
Poor ability to remember the extinction of conditioned fear, elevated trait anxiety, and delayed or disrupted nocturnal sleep are reported in anxiety disorders. The current study examines the interrelationship of these factors in healthy young-adult males. Skin-conductance response was conditioned to two differently colored lamps. One color but not the other was then extinguished. After varying delays, both colors were presented to determine extinction recall and generalization. Questionnaires measured sleep quality, morningness-eveningness, neuroticism and trait anxiety. A subset produced a mean 7.0 nights of actigraphy and sleep diaries. Median split of mean sleep midpoint defined early- and late-"sleep timers". Extinction was more rapidly learned in the morning than evening only in early timers who also better generalized extinction recall. Extinction recall was greater with higher sleep efficiency. Sleep efficiency and morningness were negatively associated with neuroticism and anxiety. However, neuroticism and anxiety did not predict extinction learning, recall or generalization. Therefore, neuroticism/anxiety and deficient fear extinction, although both associated with poor quality and late timing of sleep, are not directly associated with each other. Elevated trait anxiety, in addition to predisposing directly to anxiety disorders, may thus also indirectly promote such disorders by impairing sleep and, consequently, extinction memory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kovilakam, Mahesh; Deshler, Terry
2015-08-26
In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997-2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with the OPCmore » measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15-30% (30-50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. Furthermore, this disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the ± 40% precision of the OPC moment calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovilakam, Mahesh; Deshler, Terry
In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997-2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with the OPCmore » measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15-30% (30-50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. Furthermore, this disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the ± 40% precision of the OPC moment calculations.« less
NASA Astrophysics Data System (ADS)
Tang, Hong; Lin, Jian-Zhong
2013-01-01
An improved anomalous diffraction approximation (ADA) method is presented for calculating the extinction efficiency of spheroids firstly. In this approach, the extinction efficiency of spheroid particles can be calculated with good accuracy and high efficiency in a wider size range by combining the Latimer method and the ADA theory, and this method can present a more general expression for calculating the extinction efficiency of spheroid particles with various complex refractive indices and aspect ratios. Meanwhile, the visible spectral extinction with varied spheroid particle size distributions and complex refractive indices is surveyed. Furthermore, a selection principle about the spectral extinction data is developed based on PCA (principle component analysis) of first derivative spectral extinction. By calculating the contribution rate of first derivative spectral extinction, the spectral extinction with more significant features can be selected as the input data, and those with less features is removed from the inversion data. In addition, we propose an improved Tikhonov iteration method to retrieve the spheroid particle size distributions in the independent mode. Simulation experiments indicate that the spheroid particle size distributions obtained with the proposed method coincide fairly well with the given distributions, and this inversion method provides a simple, reliable and efficient method to retrieve the spheroid particle size distributions from the spectral extinction data.
Xing, Z F; Greenberg, J M
1994-08-20
The analyticity of the complex extinction efficiency is examined numerically in the size-parameter domain for homogeneous prolate and oblate spheroids and finite cylinders. The T-matrix code, which is the most efficient program available to date, is employed to calculate the individual particle-extinction efficiencies. Because of its computational limitations in the size-parameter range, a slightly modified Hilbert-transform algorithm is required to establish the analyticity numerically. The findings concerning analyticity that we reported for spheres (Astrophys. J. 399, 164-175, 1992) apply equally to these nonspherical particles.
Extrinsic extinction cross-section in the multiple acoustic scattering by fluid particles
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-04-01
Cross-sections (and their related energy efficiency factors) are physical parameters used in the quantitative analysis of different phenomena arising from the interaction of waves with a particle (or multiple particles). Earlier works with the acoustic scattering theory considered such quadratic (i.e., nonlinear) quantities for a single scatterer, although a few extended the formalism for a pair of scatterers but were limited to the scattering cross-section only. Therefore, the standard formalism applied to viscous particles is not suitable for the complete description of the cross-sections and energy balance of the multiple-particle system because both absorption and extinction phenomena arise during the multiple scattering process. Based upon the law of the conservation of energy, this work provides a complete comprehensive analysis for the extrinsic scattering, absorption, and extinction cross-sections (i.e., in the far-field) of a pair of viscous scatterers of arbitrary shape, immersed in a nonviscous isotropic fluid. A law of acoustic extinction taking into consideration interparticle effects in wave propagation is established, which constitutes a generalized form of the optical theorem in multiple scattering. Analytical expressions for the scattering, absorption, and extinction cross-sections are derived for plane progressive waves with arbitrary incidence. The mathematical expressions are formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. The analysis shows that the multiple scattering cross-section depends upon the expansion coefficients of both scatterers in addition to an interference factor that depends on the interparticle distance. However, the extinction cross-section depends on the expansion coefficients of the scatterer located in a particular system of coordinates, in addition to the interference term. Numerical examples illustrate the analysis for two viscous fluid circular cylindrical cross-sections immersed in a non-viscous fluid. Computations for the (non-dimensional) scattering, absorption, and extinction cross-section factors are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes, and the physical properties of the particles. A symmetric behavior is observed for the dimensionless multiple scattering cross-section, while asymmetries arise for both the dimensionless absorption and extinction cross-sections with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of cross-section and energy efficiency factors in multiple acoustic scattering of plane waves of arbitrary incidence by a pair of scatterers. The results can be used as a priori information in the direct or inverse characterization of multiple scattering systems such as acoustically engineered fluid metamaterials with reconfigurable periodicities, cloaking devices, liquid crystals, and other applications.
NASA Astrophysics Data System (ADS)
Yuen, W.; Du, K.; Rood, M. J.; Kemme, M. R.; Kim, B.; Hashmonay, R. A.
2010-12-01
A summary of the development of a novel optical remote sensing (ORS) method that determined fugitive dust emission factors for unique military activities is described for puff and mobile sources. Four field campaigns characterized artillery back blasts as puff sources (M549A1 and M107), and movement of military vehicles (M1A1, M113, Bradley Fighting Vehicle (BFV), M88, M270, M577, and HEMTT) and an airborne helicopter (Bell 210) as mobile sources. The ORS method includes a Micro-Pulse Lidar (MPL) and a reflective target that determines one-dimensional (1-D) light extinction coefficient profiles. The MPL was mounted on a positioner that allows the MPL to automatically scan vertically, which allowed 1-D extinction coefficient profiles to be measured at select angles from horizontal. Two-dimensional (2-D) light extinction coefficient profiles were then determined by interpolating the 1-D extinction profiles measured at select angles. Dust property, in the form of the mass extinction efficiency (MEE), was measured using Open Path- Fourier Transform Infrared Spectrometry (OP-FTIR) and Open Path- Laser Transmissometry (OP-LT) in the first three field campaigns and an OP-LT and DustTrak™ in the fourth field campaign. MEE was used to convert the 2-D light extinction coefficient profiles to 2-D dust mass concentration profiles. Emission factors were determined by integrating the 2-D mass concentration profiles with measured wind vectors. Results from these field campaigns show that: 1) artillery with stronger recoiling forces generates more fugitive dust; 2) the dust emission factors for tracked vehicles are correlated with vehicle momentum; 3) emission factor decreases with increasing speed for airborne helicopters; and 4) wheeled vehicles (HEMTT) generate more fugitive dust than tracked vehicles (M88, M270, M577).
Modeling The Atmosphere In The Era Of Big Data From Extremely Wide Field-Of-View Telescopes
NASA Astrophysics Data System (ADS)
Gonzalez Quiles, Junellie; Nordin, Jakob
2018-01-01
Surveys like the Sloan Digital Sky Survey (SDSS), Pan-STARRS and the Palomar Transient Factory Survey (PTF) receive large amounts of data, which need to be processed and calibrated in order to correct for various factors. One of the limiting factors in obtaining high quality data is the atmosphere, and it is therefore essential to find the appropriate calibration for the atmospheric extinction. It is to be expected that a physical atmospheric model, compared to a photometric calibration used currently by PTF, is more effective in calibrating for the atmospheric extinction due to its ability to account for rapid atmospheric fluctuation and objects of different colors. We focused on creating tools to model the atmospheric extinction for the upcoming Zwicky Transient Factory Survey (ZTF). In order to model the atmosphere, we created a program that combines input data and catalogue values, and efficiently handles them. Then, using PTF data and the SDSS catalogue, we created several models to fit the data, and tested the quality of the fits by chi-square minimization. This will allow us to optimize atmospheric extinction for the upcoming ZTF in the near future.
78 FR 58967 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... extinction and allow fire propagation out of the nacelle fire protected area, resulting in damage to the... efficiency, delay the fire extinction and allow fire propagation out of the nacelle fire protected area... the decrease of the fire extinguishing agent efficiency, which could delay fire extinction and allow...
NASA Astrophysics Data System (ADS)
Xing, Zhang-Fan; Greenberg, J. M.
1992-11-01
Results of an investigation of the analyticity of the complex extinction efficiency Q-tilde(ext) in different parameter domains are presented. In the size parameter domain, x = omega(a/c), numerical Hilbert transforms are used to study the analyticity properties of Q-tilde(ext) for homogeneous spheres. Q-tilde(ext) is found to be analytic in the entire lower complex x-tilde-plane when the refractive index, m, is fixed as a real constant (pure scattering) or infinity (perfect conductor); poles, however, appear in the left side of the lower complex x-tilde-plane as m becomes complex. The computation of the mean extinction produced by an extended size distribution of particles may be conveniently and accurately approximated using only a few values of the complex extinction evaluated in the complex plane.
Chauvenet, Aliénor L M; Baxter, Peter W J; McDonald-Madden, Eve; Possingham, Hugh P
2010-04-01
Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations of a threatened species, the combined effects of differences in habitat quality, cost of action, and current subpopulation probability of extinction need to be integrated. We provide a useful guideline for allocating resources among isolated subpopulations of any threatened species.
The centrality of fear extinction in linking risk factors to PTSD: A narrative review.
Zuj, Daniel V; Palmer, Matthew A; Lommen, Miriam J J; Felmingham, Kim L
2016-10-01
Recent prospective studies in emergency services have identified impaired fear extinction learning and memory to be a significant predictor of Posttraumatic Stress Disorder (PTSD), complementing a wealth of cross-sectional evidence of extinction deficits associated with the disorder. Additional fields of research show specific risk factors and biomarkers of the disorder, including candidate genotypes, stress and sex hormones, cognitive factors, and sleep disturbances. Studies in mostly nonclinical populations also reveal that the aforementioned factors are involved in fear extinction learning and memory. Here, we provide a comprehensive narrative review of the literature linking PTSD to these risk factors, and linking these risk factors to impaired fear extinction. On balance, the evidence suggests that fear extinction may play a role in the relationship between risk factors and PTSD. Should this notion hold true, this review carries important implications for the improvement of exposure-based treatments, as well as strategies for the implementation of treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fibroblast Growth Factor-2 Alters the Nature of Extinction
ERIC Educational Resources Information Center
Graham, Bronwyn M.; Richardson, Rick
2011-01-01
These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…
Kutlu, Munir Gunes; Cole, Robert D; Connor, David A; Natwora, Brendan; Gould, Thomas J
2018-03-01
Anxiety and stress disorders have been linked to deficits in fear extinction. Our laboratory and others have demonstrated that acute nicotine impairs contextual fear extinction, suggesting that nicotine exposure may have negative effects on anxiety and stress disorder symptomatology. However, the neurobiological mechanisms underlying the acute nicotine-induced impairment of contextual fear extinction are unknown. Therefore, based on the previous studies showing that brain-derived neurotrophic factor is central for fear extinction learning and acute nicotine dysregulates brain-derived neurotrophic factor signaling, we hypothesized that the nicotine-induced impairment of contextual fear extinction may involve changes in tyrosine receptor kinase B signaling. To test this hypothesis, we systemically, intraperitoneally, injected C57BL/6J mice sub-threshold doses (2.5 and 4.0 mg/kg) of 7,8-dihydroxyflavone, a small-molecule tyrosine receptor kinase B agonist that fully mimics the effects of brain-derived neurotrophic factor, or vehicle an hour before each contextual fear extinction session. Mice also received injections, intraperitoneally, of acute nicotine (0.18 mg/kg) or saline 2-4 min before extinction sessions. While the animals that received only 7,8-dihydroxyflavone did not show any changes in contextual fear extinction, 4.0 mg/kg of 7,8-dihydroxyflavone ameliorated the extinction deficits in mice administered acute nicotine. Overall, these results suggest that acute nicotine-induced impairment of context extinction may be related to a disrupted brain-derived neurotrophic factor signaling.
Expected time-invariant effects of biological traits on mammal species duration.
Smits, Peter D
2015-10-20
Determining which biological traits influence differences in extinction risk is vital for understanding the differential diversification of life and for making predictions about species' vulnerability to anthropogenic impacts. Here I present a hierarchical Bayesian survival model of North American Cenozoic mammal species durations in relation to species-level ecological factors, time of origination, and phylogenetic relationships. I find support for the survival of the unspecialized as a time-invariant generalization of trait-based extinction risk. Furthermore, I find that phylogenetic and temporal effects are both substantial factors associated with differences in species durations. Finally, I find that the estimated effects of these factors are partially incongruous with how these factors are correlated with extinction risk of the extant species. These findings parallel previous observations that background extinction is a poor predictor of mass extinction events and suggest that attention should be focused on mass extinctions to gain insight into modern species loss.
Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.
Leão-Neto, J P; Lopes, J H; Silva, G T
2017-11-01
The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.
Optical properties of aerosols at Grand Canyon National Park
NASA Astrophysics Data System (ADS)
Malm, William C.; Day, Derek E.
Visibility in the United States is expected to improve over the next few decades because of reduced emissions, especially sulfur dioxide. In the eastern United States, sulfates make up about 60-70% of aerosol extinction, while in the inner mountain west that fraction is only about 30%. In the inner mountain west, carbon aerosols make up about 35% of extinction, while coarse mass contributes between 15 and 25% depending on how absorption is estimated. Although sulfur dioxide emissions are projected to decrease, carbon emissions due to prescribed fire activity will increase by factors of 5-10, and while optical properties of sulfates have been extensively studied, similar properties of carbon and coarse particles are less well understood. The inability to conclusively apportion about 50% of the extinction budget motivated a study to examine aerosol physio-chemical-optical properties at Grand Canyon, Arizona during the months of July and August. Coarse particle mass has usually been assumed to consist primarily of wind-blown dust, with a mass-scattering efficiency between about 0.4 and 0.6 m 2 g -1. Although there were episodes where crustal material made up most of the coarse mass, on the average, organics and crustal material mass were about equal. Furthermore, about one-half of the sampling periods had coarse-mass-scattering efficiencies greater than 0.6 m 2 g -1 and at times coarse-mass-scattering efficiencies were near 1.0 m 2 g -1. It was shown that absorption by coarse- and fine-particle absorption were about equal and that both fine organic and sulfate mass-scattering efficiencies were substantially less than the nominal values of 4.0 and 3.0 m 2 g -1 that have typically been used.
Hafenbreidel, Madalyn; Twining, Robert C; Rafa Todd, Carolynn; Mueller, Devin
2015-12-01
Drug exposure results in structural and functional changes in brain regions that regulate reward and these changes may underlie the persistence of compulsive drug seeking and relapse. Neurotrophic factors, such as basic fibroblast growth factor (bFGF or FGF2), are necessary for neuronal survival, growth, and differentiation, and may contribute to these drug-induced changes. Following cocaine exposure, bFGF is increased in addiction-related brain regions, including the infralimbic medial prefrontal cortex (IL-mPFC). The IL-mPFC is necessary for extinction, but whether drug-induced overexpression of bFGF in this region affects extinction of drug seeking is unknown. Thus, we determined whether blocking bFGF in IL-mPFC would facilitate extinction following cocaine self-administration. Rats were trained to lever press for intravenous infusions of cocaine before extinction. Blocking bFGF in IL-mPFC before four extinction sessions resulted in facilitated extinction. In contrast, blocking bFGF alone was not sufficient to facilitate extinction, as blocking bFGF and returning rats to their home cage had no effect on subsequent extinction. Furthermore, bFGF protein expression increased in IL-mPFC following cocaine self-administration, an effect reversed by extinction. These results suggest that cocaine-induced overexpression of bFGF inhibits extinction, as blocking bFGF during extinction permits rapid extinction. Therefore, targeted reductions in bFGF during therapeutic interventions could enhance treatment outcomes for addiction.
A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories
Agis-Balboa, Roberto Carlos; Arcos-Diaz, Dario; Wittnam, Jessica; Govindarajan, Nambirajan; Blom, Kim; Burkhardt, Susanne; Haladyniak, Ulla; Agbemenyah, Hope Yao; Zovoilis, Athanasios; Salinas-Riester, Gabriella; Opitz, Lennart; Sananbenesi, Farahnaz; Fischer, Andre
2011-01-01
Extinction learning refers to the phenomenon that a previously learned response to an environmental stimulus, for example, the expression of an aversive behaviour upon exposure to a specific context, is reduced when the stimulus is repeatedly presented in the absence of a previously paired aversive event. Extinction of fear memories has been implicated with the treatment of anxiety disease but the molecular processes that underlie fear extinction are only beginning to emerge. Here, we show that fear extinction initiates upregulation of hippocampal insulin-growth factor 2 (Igf2) and downregulation of insulin-growth factor binding protein 7 (Igfbp7). In line with this observation, we demonstrate that IGF2 facilitates fear extinction, while IGFBP7 impairs fear extinction in an IGF2-dependent manner. Furthermore, we identify one cellular substrate of altered IGF2 signalling during fear extinction. To this end, we show that fear extinction-induced IGF2/IGFBP7 signalling promotes the survival of 17–19-day-old newborn hippocampal neurons. In conclusion, our data suggest that therapeutic strategies that enhance IGF2 signalling and adult neurogenesis might be suitable to treat disease linked to excessive fear memory. PMID:21873981
Liaparinos, Panagiotis F; Kandarakis, Ioannis S; Cavouras, Dionisis A; Delis, Harry B; Panayiotakis, George S
2007-05-01
Lu2SiO5: Ce (LSO) scintillator is a relatively new luminescent material which has been successfully applied in positron emission tomography systems. Since it has been recently commercially available in powder form, it could be of value to investigate its performance for use in x-ray projection imaging as both physical and scintillating properties indicate a promising material for such applications. In the present study, a custom and validated Monte Carlo simulation code was used in order to examine the performance of LSO, under diagnostic radiology (mammography and general radiography) conditions. The Monte Carlo code was based on a model using Mie scattering theory for the description of light attenuation. Imaging characteristics, related to image brightness, spatial resolution and noise of LSO screens were predicted using only physical parameters of the phosphor. The overall performance of LSO powder phosphor screens was investigated in terms of the: (i) quantum detection efficiency (ii) emitted K-characteristic radiation (iii) luminescence efficiency (iv) modulation transfer function (v) Swank factor and (vi) zero-frequency detective quantum efficiency [DQE(0)]. Results were compared to the traditional rare-earth Gd2O2S:Tb (GOS) phosphor material. The relative luminescence efficiency of LSO phosphor was found inferior to that of GOS. This is due to the lower intrinsic conversion efficiency of LSO (0.08 instead of 0.15 of GOS) and the relatively high light extinction coefficient mext of this phosphor (0.239 mircom(-1) instead of 0.218 /microm(-1) for GOS). However, the property of increased light extinction combined with the rather sharp angular distribution of scattered light photons (anisotropy factor g=0.624 for LSO instead of 0.494 for GOS) reduce lateral light spreading and improve spatial resolution. In addition, LSO screens were found to exhibit better x-ray absorption as well as higher signal to noise transfer properties in the energy range from 18 keV up to 50.2 keV (e.g. DQE(0)=0.62 at 18 keV and for 34 mg/cm2, instead of 0.58 for GOS). The results indicate that certain optical properties of LSO (optical extinction coefficient, scattering anisotropy factor) combined with the relatively high x-ray coefficients, make this material a promising phosphor which, under appropriate conditions, could be considered for use in x-ray projection imaging detectors.
Impact as a general cause of extinction: A feasibility test
NASA Technical Reports Server (NTRS)
Raup, David M.
1988-01-01
Large body impact has been implicated as the possible cause of several extinction events. This is entirely plausible if one accepts two propositions: (1) that impacts of large comets and asteroids produce environmental effects severe enough to cause significant species extinctions and (2) that the estimates of comet and asteroid flux for the Phanerozoic are approximately correct. A resonable next step is to investigate the possibility that impact could be a significant factor in the broader Phanerozoic extinction record, not limited merely to a few events of mass extinction. Monte Carlo simulation experiments based on existing flux estimates and reasonable predictions of the relationship between bolide diameter and extinction are discussed. The simulation results raise the serious possibility that large body impact may be a more pervasive factor in extinction than has been assumed heretofore. At the very least, the experiments show that the comet and asteroid flux estimates combined with a reasonable kill curve produces a reasonable extinction record, complete with occasional mass extinctions and the irregular, lower intensity extinctions commonly called background extinction.
McCreless, Erin E.; Huff, David D.; Croll, Donald A.; Tershy, Bernie R.; Spatz, Dena R.; Holmes, Nick D.; Butchart, Stuart H. M.; Wilcox, Chris
2016-01-01
Invasive mammals on islands pose severe, ongoing threats to global biodiversity. However, the severity of threats from different mammals, and the role of interacting biotic and abiotic factors in driving extinctions, remain poorly understood at a global scale. Here we model global extirpation patterns for island populations of threatened and extinct vertebrates. Extirpations are driven by interacting factors including invasive rats, cats, pigs, mustelids and mongooses, native species taxonomic class and volancy, island size, precipitation and human presence. We show that controlling or eradicating the relevant invasive mammals could prevent 41–75% of predicted future extirpations. The magnitude of benefits varies across species and environments; for example, managing invasive mammals on small, dry islands could halve the extirpation risk for highly threatened birds and mammals, while doing so on large, wet islands may have little benefit. Our results provide quantitative estimates of conservation benefits and, when combined with costs in a return-on-investment framework, can guide efficient conservation strategies. PMID:27535095
Scattering and extinction by spherical particles immersed in an absorbing host medium
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Dlugach, Janna M.
2018-05-01
Many applications of electromagnetic scattering involve particles immersed in an absorbing rather than lossless medium, thereby making the conventional scattering theory potentially inapplicable. To analyze this issue quantitatively, we employ the FORTRAN program developed recently on the basis of the first-principles electromagnetic theory to study far-field scattering by spherical particles embedded in an absorbing infinite host medium. We further examine the phenomenon of negative extinction identified recently for monodisperse spheres and uncover additional evidence in favor of its interference origin. We identify the main effects of increasing the width of the size distribution on the ensemble-averaged extinction efficiency factor and show that negative extinction can be eradicated by averaging over a very narrow size distribution. We also analyze, for the first time, the effects of absorption inside the host medium and ensemble averaging on the phase function and other elements of the Stokes scattering matrix. It is shown in particular that increasing absorption significantly suppresses the interference structure and can result in a dramatic expansion of the areas of positive polarization. Furthermore, the phase functions computed for larger effective size parameters can develop a very deep minimum at side-scattering angles bracketed by a strong diffraction peak in the forward direction and a pronounced backscattering maximum.
de la Fuente, Verónica; Freudenthal, Ramiro; Romano, Arturo
2011-04-13
In fear conditioning, aversive stimuli are readily associated with contextual features. A brief reexposure to the training context causes fear memory reconsolidation, whereas a prolonged reexposure induces memory extinction. The regulation of hippocampal gene expression plays a key role in contextual memory consolidation and reconsolidation. However, the mechanisms that determine whether memory will reconsolidate or extinguish are not known. Here, we demonstrate opposing roles for two evolutionarily related transcription factors in the mouse hippocampus. We found that nuclear factor-κB (NF-κB) is required for fear memory reconsolidation. Conversely, calcineurin phosphatase inhibited NF-κB and induced nuclear factor of activated T-cells (NFAT) nuclear translocation in the transition between reconsolidation and extinction. Accordingly, the hippocampal inhibition of both calcineurin and NFAT independently impaired memory extinction, whereas inhibition of NF-κB enhanced memory extinction. These findings represent the first insight into the molecular mechanisms that determine memory reprocessing after retrieval, supporting a transcriptional switch that directs memory toward reconsolidation or extinction. The precise molecular characterization of postretrieval processes has potential importance to the development of therapeutic strategies for fear memory disorders.
Determination of light extinction efficiency of diesel soot from smoke opacity measurements
NASA Astrophysics Data System (ADS)
Lapuerta, Magín; Martos, Francisco J.; Cárdenas, M. Dolores
2005-10-01
An experimental method for the indirect determination of the light extinction efficiency of the exhaust gas emitted by diesel engines is proposed in this paper, based on the simultaneous measurement of spot opacity and continuous opacity, together with the double modelling of the associated soot concentration. The first model simulates the projection of a differently sized soot particle population enclosed in an exhaust gas sample on the filter of a spot opacimeter. The second one simulates the light extinction caused by the soot particles flowing in the exhaust gas stream in an online continuous opacimeter, on the basis of the Beer-Lambert law. This method is an alternative to other theoretical or semi-empirical complex methods which have proved to be inadequate in the case of soot agglomerates. The application of this method to a set of experimental smoke measurements from a commercial light-duty DI diesel engine typical of vehicle road transportation permitted us to draw conclusions about the effect of different engine conditions on the mean light extinction efficiency of the soot particles flowing in the raw exhaust gas stream.
NASA Astrophysics Data System (ADS)
Haspel, C.; Adler, G.
2017-04-01
In the current study, the electromagnetic properties of porous aerosol particles are calculated in two ways. In the first, a porous target input file is generated by carving out voids in an otherwise homogeneous particle, and the discrete dipole approximation (DDA) is used to compute the extinction efficiency of the particle assuming that the voids are near vacuum dielectrics and assuming random particle orientation. In the second, an effective medium approximation (EMA) style approach is employed in which an apparent polarizability of the voids is defined based on the well-known solution to the problem in classical electrostatics of a spherical cavity within a dielectric. It is found that for porous particles with smaller overall diameter with respect to the wavelength of incident radiation, describing the voids as near vacuum dielectrics within the DDA sufficiently reproduces measured values of extinction efficiency, whereas for porous particles with moderate to larger overall diameters with respect to the wavelength of the radiation, the apparent polarizability EMA approach better reproduces the measured values of extinction efficiency.
Reactivated Memories Compete for Expression After Pavlovian Extinction
Laborda, Mario A.; Miller, Ralph R.
2012-01-01
We view the response decrement resulting from extinction treatment as an interference effect, in which the reactivated memory from acquisition competes with the reactivated memory from extinction for behavioral expression. For each of these memories, reactivation is proportional to both the strength of the stimulus-outcome association and the quality of the facilitatory cues for that association which are present at test. Here we review basic extinction and recovery-from-extinction phenomena, showing how these effects are explicable in this associative interference framework. Moreover, this orientation has and continues to dictate efficient manipulations for minimizing recovery from extinction. This in turn suggests procedures that might reduce relapse from exposure therapy for a number of psychological disorders. Some of these manipulations enhance the facilitatory cues from extinction that are present at test, others strengthen the extinction association (i.e., CS-no outcome), and yet others seem to work by a combination of these two processes. PMID:22326812
Mass Extinctions Past and Present.
ERIC Educational Resources Information Center
Allmon, Warren Douglas
1987-01-01
Discusses some parallels that seem to exist between mass extinction recognizable in the geologic record and the impending extinction of a significant proportion of the earth's species due largely to tropical deforestation. Describes some recent theories of causal factors and periodicities in mass extinction. (Author/TW)
A little bit of sex matters for genome evolution in asexual plants.
Hojsgaard, Diego; Hörandl, Elvira
2015-01-01
Genome evolution in asexual organisms is theoretically expected to be shaped by various factors: first, hybrid origin, and polyploidy confer a genomic constitution of highly heterozygous genotypes with multiple copies of genes; second, asexuality confers a lack of recombination and variation in populations, which reduces the efficiency of selection against deleterious mutations; hence, the accumulation of mutations and a gradual increase in mutational load (Muller's ratchet) would lead to rapid extinction of asexual lineages; third, allelic sequence divergence is expected to result in rapid divergence of lineages (Meselson effect). Recent transcriptome studies on the asexual polyploid complex Ranunculus auricomus using single-nucleotide polymorphisms confirmed neutral allelic sequence divergence within a short time frame, but rejected a hypothesis of a genome-wide accumulation of mutations in asexuals compared to sexuals, except for a few genes related to reproductive development. We discuss a general model that the observed incidence of facultative sexuality in plants may unmask deleterious mutations with partial dominance and expose them efficiently to purging selection. A little bit of sex may help to avoid genomic decay and extinction.
Direct and indirect effects of biological factors on extinction risk in fossil bivalves.
Harnik, Paul G
2011-08-16
Biological factors, such as abundance and body size, may contribute directly to extinction risk and indirectly through their influence on other biological characteristics, such as geographic range size. Paleontological data can be used to explicitly test many of these hypothesized relationships, and general patterns revealed through analysis of the fossil record can help refine predictive models of extinction risk developed for extant species. Here, I use structural equation modeling to tease apart the contributions of three canonical predictors of extinction--abundance, body size, and geographic range size--to the duration of bivalve species in the early Cenozoic marine fossil record of the eastern United States. I find that geographic range size has a strong direct effect on extinction risk and that an apparent direct effect of abundance can be explained entirely by its covariation with geographic range. The influence of geographic range on extinction risk is manifest across three ecologically disparate bivalve clades. Body size also has strong direct effects on extinction risk but operates in opposing directions in different clades, and thus, it seems to be decoupled from extinction risk in bivalves as a whole. Although abundance does not directly predict extinction risk, I reveal weak indirect effects of both abundance and body size through their positive influence on geographic range size. Multivariate models that account for the pervasive covariation between biological factors and extinction are necessary for assessing causality in evolutionary processes and making informed predictions in applied conservation efforts.
Prediction of apparent extinction for optical transmission through rain
NASA Astrophysics Data System (ADS)
Vasseur, H.; Gibbins, C. J.
1996-12-01
At optical wavelengths, geometrical optics holds that the extinction efficiency of raindrops is equal to two. This approximation yields a wavelength-independent extinction coefficient that, however, can hardly be used to predict accurately rain extinction measured in optical transmissions. Actually, in addition to the extinct direct incoming light, a significant part of the power scattered by the rain particles reaches the receiver. This leads to a reduced apparent extinction that depends on both rain characteristics and link parameters. A simple method is proposed to evaluate this apparent extinction. It accounts for the additional scattered power that enters the receiver when one considers the forward-scattering pattern of the raindrops as well as the multiple-scattering effects using, respectively, the Fraunhofer diffraction and Twersky theory. It results in a direct analytical formula that enables a quick and accurate estimation of the rain apparent extinction and highlights the influence of the link parameters. Predictions of apparent extinction through rain are found in excellent agreement with measurements in the visible and IR regions.
When can the cause of a population decline be determined?
Hefley, Trevor J; Hooten, Mevin B; Drake, John M; Russell, Robin E; Walsh, Daniel P
2016-11-01
Inferring the factors responsible for declines in abundance is a prerequisite to preventing the extinction of wild populations. Many of the policies and programmes intended to prevent extinctions operate on the assumption that the factors driving the decline of a population can be determined. Exogenous factors that cause declines in abundance can be statistically confounded with endogenous factors such as density dependence. To demonstrate the potential for confounding, we used an experiment where replicated populations were driven to extinction by gradually manipulating habitat quality. In many of the replicated populations, habitat quality and density dependence were confounded, which obscured causal inference. Our results show that confounding is likely to occur when the exogenous factors that are driving the decline change gradually over time. Our study has direct implications for wild populations, because many factors that could drive a population to extinction change gradually through time. © 2016 John Wiley & Sons Ltd/CNRS.
When can the cause of a population decline be determined?
Hefley, Trevor J.; Hooten, Mevin B.; Drake, John M.; Russell, Robin E.; Walsh, Daniel P.
2016-01-01
Inferring the factors responsible for declines in abundance is a prerequisite to preventing the extinction of wild populations. Many of the policies and programmes intended to prevent extinctions operate on the assumption that the factors driving the decline of a population can be determined. Exogenous factors that cause declines in abundance can be statistically confounded with endogenous factors such as density dependence. To demonstrate the potential for confounding, we used an experiment where replicated populations were driven to extinction by gradually manipulating habitat quality. In many of the replicated populations, habitat quality and density dependence were confounded, which obscured causal inference. Our results show that confounding is likely to occur when the exogenous factors that are driving the decline change gradually over time. Our study has direct implications for wild populations, because many factors that could drive a population to extinction change gradually through time.
NASA Technical Reports Server (NTRS)
Klinger, L. F.
1988-01-01
The study of mass extinction events has largely focused on defining an environmental factor or factors that might account for specific patterns of faunal demise. Several hypotheses elaborate on how a given environmental factor might affect fauna directly, but differentially, causing extinction in certain taxa but not others. Yet few studies have considered specific habitat changes that might result from natural vegetation processes or from perturbations of vegetation. The role of large-scale habitat change induced by natural successional change from forest to bog (paludification) is examined and how large perturbations (e.g., volcanism, bolide impacts) might favor increased rates of paludification and consequent mass extinctions is considered. This hypothesis has an advantage over other hypotheses for mass extinctions in that modern day analogs of paludification are common throughout the world, thus allowing for considerable testing.
Sexual selection affects local extinction and turnover in bird communities
Doherty, P.F.; Sorci, G.; Royle, J. Andrew; Hines, J.E.; Nichols, J.D.; Boulinier, T.
2003-01-01
Predicting extinction risks has become a central goal for conservation and evolutionary biologists interested in population and community dynamics. Several factors have been put forward to explain risks of extinction, including ecological and life history characteristics of individuals. For instance, factors that affect the balance between natality and mortality can have profound effects on population persistence. Sexual selection has been identified as one such factor. Populations under strong sexual selection experience a number of costs ranging from increased predation and parasitism to enhanced sensitivity to environmental and demographic stochasticity. These findings have led to the prediction that local extinction rates should be higher for species/populations with intense sexual selection. We tested this prediction by analyzing the dynamics of natural bird communities at a continental scale over a period of 21 years (1975-1996), using relevant statistical tools. In agreement with the theoretical prediction, we found that sexual selection increased risks of local extinction (dichromatic birds had on average a 23% higher local extinction rate than monochromatic species). However, despite higher local extinction probabilities, the number of dichromatic species did not decrease over the period considered in this study. This pattern was caused by higher local turnover rates of dichromatic species, resulting in relatively stable communities for both groups of species. Our results suggest that these communities function as metacommunities, with frequent local extinctions followed by colonization. Anthropogenic factors impeding dispersal might therefore have a significant impact on the global persistence of sexually selected species.
Puddington, Martín M; Papini, Mauricio R; Muzio, Rubén N
2018-01-01
Instrumental learning guides behavior toward resources. When such resources are no longer available, approach to previously reinforced locations is reduced, a process called extinction. The present experiments are concerned with factors affecting the extinction of acquired behaviors in toads. In previous experiments, total reward magnitude in acquisition and duration of extinction trials were confounded. The present experiments were designed to test the effects of these factors in factorial designs. Experiment 1 varied reward magnitude (900, 300, or 100 s of water access per trial) and amount of acquisition training (5 or 15 daily trials). With total amount of water access equated in acquisition, extinction with large rewards was faster (longer latencies in 900/5 than 300/15), but with total amount of training equated, extinction with small rewards was faster (longer latencies in 100/15 than 300/15). Experiment 2 varied reward magnitude (1200 or 120 s of water access per trial) while holding constant the number of acquisition trials (5 daily trials) and the duration of extinction trials (300 s). Extinction performance was lower with small, rather than large reward magnitude (longer latencies in 120/300 than in 1200/300). Thus, instrumental extinction depends upon the amount of time toads are exposed to the empty goal compartment during extinction trials.
Interpretation of Extinction in Gaussian-Beam Scattering
NASA Technical Reports Server (NTRS)
Lock, James A.
1995-01-01
The extinction efficiency for the interaction of a plane wave with a large nonabsorbing spherical particle is approximately 2.0. When a Gaussian beam of half-width w(sub 0) is incident upon a spherical particle of radius a with w(sub 0)/a less than 1, the extinction efficiency attains unexpectedly high or low values, contrary to intuitive expectations. The reason for this is associated with the so-called compensating term in the scattered field, which cancels the field of the Gaussian beam behind the particle, thereby producing the particle's shadow. I introduce a decomposition of the total exterior field into incoming and outgoing portions that are free of compensating terms. It is then shown that a suitably defined interaction efficiency has the intuitively expected asymptotic values of 2.0 for w(sub 0)/a much greater than 1 and 1.0 for w(sub 0)/a much less than 1.
NASA Astrophysics Data System (ADS)
Kandori, Ryo; Tamura, Motohide; Nagata, Tetsuya; Tomisaka, Kohji; Kusakabe, Nobuhiko; Nakajima, Yasushi; Kwon, Jungmi; Nagayama, Takahiro; Tatematsu, Ken’ichi
2018-04-01
The relationship between dust polarization and extinction was determined for the cold dense starless molecular cloud core FeSt 1-457 based on the background star polarimetry of dichroic extinction at near-infrared wavelengths. Owing to the known (three-dimensional) magnetic field structure, the observed polarizations from the core were corrected by considering (a) the subtraction of the ambient polarization component, (b) the depolarization effect of inclined distorted magnetic fields, and (c) the magnetic inclination angle of the core. After these corrections, a linear relationship between polarization and extinction was obtained for the core in the range up to A V ≈ 20 mag. The initial polarization versus extinction diagram changed dramatically after the corrections of (a) to (c), with the correlation coefficient being refined from 0.71 to 0.79. These corrections should affect the theoretical interpretation of the observational data. The slope of the finally obtained polarization–extinction relationship is {P}H/{E}H-{Ks}=11.00+/- 0.72 % {mag}}-1, which is close to the statistically estimated upper limit of the interstellar polarization efficiency. This consistency suggests that the upper limit of interstellar polarization efficiency might be determined by the observational viewing angle toward polarized astronomical objects.
NASA Astrophysics Data System (ADS)
Yuen, W.; Ma, Q.; Du, K.; Koloutsou-Vakakis, S.; Rood, M. J.
2015-12-01
Measurements of particulate matter (PM) emissions generated from fugitive sources are of interest in air pollution studies, since such emissions vary widely both spatially and temporally. This research focuses on determining the uncertainties in quantifying fugitive PM emission factors (EFs) generated from mobile vehicles using a vertical scanning micro-pulse lidar (MPL). The goal of this research is to identify the greatest sources of uncertainty of the applied lidar technique in determining fugitive PM EFs, and to recommend methods to reduce the uncertainties in this measurement. The MPL detects the PM plume generated by mobile fugitive sources that are carried downwind to the MPL's vertical scanning plane. Range-resolved MPL signals are measured, corrected, and converted to light extinction coefficients, through inversion of the lidar equation and calculation of the lidar ratio. In this research, both the near-end and far-end lidar equation inversion methods are considered. Range-resolved PM mass concentrations are then determined from the extinction coefficient measurements using the measured mass extinction efficiency (MEE) value, which is an intensive PM property. MEE is determined by collocated PM mass concentration and light extinction measurements, provided respectively by a DustTrak and an open-path laser transmissometer. These PM mass concentrations are then integrated with wind information, duration of plume event, and vehicle distance travelled to obtain fugitive PM EFs. To obtain the uncertainty of PM EFs, uncertainties in MPL signals, lidar ratio, MEE, and wind variation are considered. Error propagation method is applied to each of the above intermediate steps to aggregate uncertainty sources. Results include determination of uncertainties in each intermediate step, and comparison of uncertainties between the use of near-end and far-end lidar equation inversion methods.
Brewer, T D; Cinner, J E; Green, A; Pressey, R L
2013-06-01
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.
Direct and indirect effects of biological factors on extinction risk in fossil bivalves
Harnik, Paul G.
2011-01-01
Biological factors, such as abundance and body size, may contribute directly to extinction risk and indirectly through their influence on other biological characteristics, such as geographic range size. Paleontological data can be used to explicitly test many of these hypothesized relationships, and general patterns revealed through analysis of the fossil record can help refine predictive models of extinction risk developed for extant species. Here, I use structural equation modeling to tease apart the contributions of three canonical predictors of extinction—abundance, body size, and geographic range size—to the duration of bivalve species in the early Cenozoic marine fossil record of the eastern United States. I find that geographic range size has a strong direct effect on extinction risk and that an apparent direct effect of abundance can be explained entirely by its covariation with geographic range. The influence of geographic range on extinction risk is manifest across three ecologically disparate bivalve clades. Body size also has strong direct effects on extinction risk but operates in opposing directions in different clades, and thus, it seems to be decoupled from extinction risk in bivalves as a whole. Although abundance does not directly predict extinction risk, I reveal weak indirect effects of both abundance and body size through their positive influence on geographic range size. Multivariate models that account for the pervasive covariation between biological factors and extinction are necessary for assessing causality in evolutionary processes and making informed predictions in applied conservation efforts. PMID:21808004
Hadamitzky, Martin; Orlowski, Kathrin; Schwitalla, Jan Claudius; Bösche, Katharina; Unteroberdörster, Meike; Bendix, Ivo; Engler, Harald; Schedlowski, Manfred
2016-09-01
Conditioned responses gradually weaken and eventually disappear when subjects are repeatedly exposed to the conditioned stimulus (CS) in the absence of the unconditioned stimulus (US), a process called extinction. Studies have demonstrated that extinction of conditioned taste aversion (CTA) can be prevented by interfering with protein synthesis in the insular cortex (IC). However, it remained unknown whether it is possible to pharmacologically stabilize the taste aversive memory trace over longer periods of time. Thus, the present study aimed at investigating the time frame during which extinction of CTA can be efficiently prevented by blocking protein synthesis in the IC. Employing an established conditioning paradigm in rats with saccharin as CS, and the immunosuppressant cyclosporine A (CsA) as US, we show here that daily bilateral intra-insular injections of the protein synthesis inhibitor anisomycin (120μg/μl) immediately after retrieval significantly diminished CTA extinction over a period of five retrieval days and subsequently reached levels of saline-infused controls. These findings demonstrate that it is possible to efficiently delay but not to fully prevent CTA extinction during repeated retrieval trials by blocking protein translation with daily bilateral infusions of anisomycin in the IC. These data confirm and extent earlier reports indicating that the role of protein synthesis in CTA extinction learning is not limited to gastrointestinal malaise-inducing drugs such as lithium chloride (LiCl). Copyright © 2016 Elsevier Inc. All rights reserved.
Methanogenic burst in the end-Permian carbon cycle.
Rothman, Daniel H; Fournier, Gregory P; French, Katherine L; Alm, Eric J; Boyle, Edward A; Cao, Changqun; Summons, Roger E
2014-04-15
The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation.
The efficiency of photodissociation for molecules in interstellar ices
NASA Astrophysics Data System (ADS)
Kalvāns, J.
2018-05-01
Processing by interstellar photons affects the composition of the icy mantles on interstellar grains. The rate of photodissociation in solids differs from that of molecules in the gas phase. The aim of this work was to determine an average, general ratio between photodissociation coefficients for molecules in ice and gas. A 1D astrochemical model was utilized to simulate the chemical composition for a line of sight through a collapsing interstellar cloud core, whose interstellar extinction changes with time. At different extinctions, the calculated column densities of icy carbon oxides and ammonia (relative to water ice) were compared to observations. The latter were taken from literature data of background stars sampling ices in molecular clouds. The best-fit value for the solid/gas photodissociation coefficient ratio was found to be ≈0.3. In other words, gas-phase photodissociation rate coefficients have to be reduced by a factor of 0.3 before applying them to icy species. A crucial part of the model is a proper inclusion of cosmic-ray induced desorption. Observations sampling gas with total extinctions in excess of ≈22 mag were found to be uncorrelated to modelling results, possibly because of grains being covered with non-polar molecules.
Sleep supports cued fear extinction memory consolidation independent of circadian phase.
Melo, Irene; Ehrlich, Ingrid
2016-07-01
Sleep promotes memory, particularly for declarative learning. However, its role in non-declarative, emotional memories is less well understood. Some studies suggest that sleep may influence fear-related memories, and thus may be an important factor determining the outcome of treatments for emotional disorders such as post-traumatic stress disorder. Here, we investigated the effect of sleep deprivation and time of day on fear extinction memory consolidation. Mice were subjected to a cued Pavlovian fear and extinction paradigm at the beginning of their resting or active phase. Immediate post-extinction learning sleep deprivation for 5h compromised extinction memory when tested 24h after learning. Context-dependent extinction memory recall was completely prevented by sleep-manipulation during the resting phase, while impairment was milder during the active phase and extinction memory retained its context-specificity. Importantly, control experiments excluded confounding factors such as differences in baseline locomotion, fear generalization and stress hormone levels. Together, our findings indicate that post-learning sleep supports cued fear extinction memory consolidation in both circadian phases. The lack of correlation between memory efficacy and sleep time suggests that extinction memory may be influenced by specific sleep events in the early consolidation period. Copyright © 2016 Elsevier Inc. All rights reserved.
Selectivity of end-Cretaceous marine bivalve extinctions
NASA Technical Reports Server (NTRS)
Jablonski, D.; Raup, D. M.
1995-01-01
Analyses of the end-Cretaceous or Cretaceous-Tertiary mass extinction show no selectivity of marine bivalve genera by life position (burrowing versus exposed), body size, bathymetric position on the continental shelf, or relative breadth of bathymetric range. Deposit-feeders as a group have significantly lower extinction intensities than suspension-feeders, but this pattern is due entirely to low extinction in two groups (Nuculoida and Lucinoidea), which suggests that survivorship was not simply linked to feeding mode. Geographically widespread genera have significantly lower extinction intensities than narrowly distributed genera. These results corroborate earlier work suggesting that some biotic factors that enhance survivorship during times of lesser extinction intensities are ineffectual during mass extinctions.
All about Endangered and Extinct Animals. Animal Life for Children. [Videotape].
ERIC Educational Resources Information Center
2000
While there are thousands of different animals in the world, some have been extinct for many years and others are on the verge of extinction. In this videotape, students learn about the natural and man-made factors that lead to the endangerment and extinction of animals. Children find out why it is essential for people to help all forms of…
FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer.
Kim, Jun-Whee; Jang, Ji-Hyang; Oh, Min-Cheol; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jae-Hyun; Lee, Jeong-Ik
2014-01-13
The light extraction efficiency of OLEDs with a nano-sized random scattering layer (RSL-OLEDs) was analyzed using the Finite Difference Time Domain (FDTD) method. In contrast to periodic diffraction patterns, the presence of an RSL suppresses the spectral shift with respect to the viewing angle. For FDTD simulation of RSL-OLEDs, a planar light source with a certain spatial and temporal coherence was incorporated, and the light extraction efficiency with respect to the fill factor of the RSL and the absorption coefficient of the material was investigated. The design results were compared to the experimental results of the RSL-OLEDs in order to confirm the usefulness of FDTD in predicting experimental results. According to our FDTD simulations, the light confined within the ITO-organic waveguide was quickly absorbed, and the absorption coefficients of ITO and RSL materials should be reduced in order to obtain significant improvement in the external quantum efficiency (EQE). When the extinction coefficient of ITO was 0.01, the EQE in the RSL-OLED was simulated to be enhanced by a factor of 1.8.
Climate change. Accelerating extinction risk from climate change.
Urban, Mark C
2015-05-01
Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change-induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions. Copyright © 2015, American Association for the Advancement of Science.
Optical extinction of highly porous aerosol following atmospheric freeze drying
NASA Astrophysics Data System (ADS)
Adler, Gabriela; Haspel, Carynelisa; Moise, Tamar; Rudich, Yinon
2014-06-01
Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.
Mattfeldt, S.D.; Bailey, L.L.; Grant, E.H.C.
2009-01-01
Monitoring programs have the potential to identify population declines and differentiate among the possible cause(s) of these declines. Recent criticisms regarding the design of monitoring programs have highlighted a failure to clearly state objectives and to address detectability and spatial sampling issues. Here, we incorporate these criticisms to design an efficient monitoring program whose goals are to determine environmental factors which influence the current distribution and measure change in distributions over time for a suite of amphibians. In designing the study we (1) specified a priori factors that may relate to occupancy, extinction, and colonization probabilities and (2) used the data collected (incorporating detectability) to address our scientific questions and adjust our sampling protocols. Our results highlight the role of wetland hydroperiod and other local covariates in the probability of amphibian occupancy. There was a change in overall occupancy probabilities for most species over the first three years of monitoring. Most colonization and extinction estimates were constant over time (years) and space (among wetlands), with one notable exception: local extinction probabilities for Rana clamitans were lower for wetlands with longer hydroperiods. We used information from the target system to generate scenarios of population change and gauge the ability of the current sampling to meet monitoring goals. Our results highlight the limitations of the current sampling design, emphasizing the need for long-term efforts, with periodic re-evaluation of the program in a framework that can inform management decisions.
Host-pathogen metapopulation dynamics suggest high elevation refugia for boreal toads
Mosher, Brittany A.; Bailey, Larissa L.; Muths, Erin L.; Huyvaert, Kathryn P
2018-01-01
Emerging infectious diseases are an increasingly common threat to wildlife. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease that has been linked to amphibian declines around the world. Few studies exist that explore amphibian-Bd dynamics at the landscape scale, limiting our ability to identify which factors are associated with variation in population susceptibility and to develop effective in situdisease management. Declines of boreal toads (Anaxyrus boreas boreas) in the Southern Rocky Mountains are largely attributed to chytridiomycosis but variation exists in local extinction of boreal toads across this metapopulation. Using a large-scale historic dataset, we explored several potential factors influencing disease dynamics in the boreal toad-Bd system: geographic isolation of populations, amphibian community richness, elevational differences, and habitat permanence. We found evidence that boreal toad extinction risk was lowest at high elevations where temperatures may be sub-optimal for Bd growth and where small boreal toad populations may be below the threshold needed for efficient pathogen transmission. In addition, boreal toads were more likely to recolonize high elevation sites after local extinction, again suggesting that high elevations may provide refuge from disease for boreal toads. We illustrate a modeling framework that will be useful to natural resource managers striving to make decisions in amphibian-Bdsystems. Our data suggest that in the southern Rocky Mountains high elevation sites should be prioritized for conservation initiatives like reintroductions.
Baker, Kathryn D; Richardson, Rick
2017-09-01
Adolescents, both humans and rodents, exhibit a marked impairment in extinction of fear relative to younger and older groups which could be caused by a failure to efficiently recruit NMDA receptors (NMDARs) in adolescence. It is well-established that systemic administration of NMDAR antagonists (e.g., MK801) before extinction training impairs the retention of extinction in adult and juvenile rodents, but it is unknown whether this is also the case for adolescents. Therefore, in the present study we investigated the effect of pharmacologically manipulating the NMDAR on extinction retention in adolescent rats. When extinction retention is typically impaired (i.e., after one session of extinction training) adolescent male rats given d-cycloserine (a partial NMDAR agonist) showed enhanced extinction retention relative to saline-treated animals while animals given MK801 (a non-competitive antagonist) did not exhibit any further impairment of extinction retention relative to the controls. In a further two experiments we demonstrated that when two sessions of extinction training separated by either 4 or 24h intervals were given to adolescent rats, saline-treated animals exhibited good extinction retention and the animals given MK801 before the second session exhibited impaired extinction retention. These findings suggest that extinction in adolescence does not initially involve NMDARs and this is a likely mechanism that contributes to the impaired fear inhibition observed at this age. However, NMDARs appear to be recruited with extended extinction training or after administration of a partial agonist, both of which lead to effective extinction retention. Copyright © 2016 Elsevier Inc. All rights reserved.
On the size of particles near the nucleus of 2060 Chiron
NASA Technical Reports Server (NTRS)
Olkin, C. B.; Elliot, Jim L.; Dunham, Edward W.; Ford, C. H.; Gilmore, D. K.; Rank, David M.; Temi, Pasquale
1995-01-01
Simultaneous dual-wavelength observations by the KAO of a recent Chiron occultation provide a measure of the relative extinction efficiencies of particles near Chiron. This observation and Mie scattering theory allow us to constrain the size of grains causing the extinction of the starlight near Chiron.
Yedid, G; Ofria, C A; Lenski, R E
2008-09-01
Re-evolution of complex biological features following the extinction of taxa bearing them remains one of evolution's most interesting phenomena, but is not amenable to study in fossil taxa. We used communities of digital organisms (computer programs that self-replicate, mutate and evolve), subjected to periods of low resource availability, to study the evolution, loss and re-evolution of a complex computational trait, the function EQU (bit-wise logical equals). We focused our analysis on cases where the pre-extinction EQU clade had surviving descendents at the end of the extinction episode. To see if these clades retained the capacity to re-evolve EQU, we seeded one set of multiple subreplicate 'replay' populations using the most abundant survivor of the pre-extinction EQU clade, and another set with the actual end-extinction ancestor of the organism in which EQU re-evolved following the extinction episode. Our results demonstrate that stochastic, historical, genomic and ecological factors can lead to constraints on further adaptation, and facilitate or hinder re-evolution of a complex feature.
Limits to biodiversity cycles from a unified model of mass-extinction events
NASA Astrophysics Data System (ADS)
Feulner, Georg
2011-04-01
Episodes of species mass extinction dramatically affected the evolution of life on Earth, but their causes remain a source of debate. Even more controversy surrounds the hypothesis of periodicity in the fossil record, with conflicting views still being published in the scientific literature, often even based on the same state-of-the-art datasets. From an empirical point of view, limitations of the currently available data on extinctions and possible causes remain an important issue. From a theoretical point of view, it is likely that a focus on single extinction causes and strong periodic forcings has strongly contributed to this controversy. Here I show that if there is a periodic extinction signal at all, it is much more likely to result from a combination of a comparatively weak periodic cause and various random factors. Tests of this unified model of mass extinctions on the available data show that the model is formally better than a model with random extinction causes only. However, the contribution of the periodic component is small compared to factors such as impacts or volcanic eruptions.
NASA Astrophysics Data System (ADS)
Conny, Joseph M.; Ortiz-Montalvo, Diana L.
2017-09-01
We show the effect of composition heterogeneity and shape on the optical properties of urban dust particles based on the three-dimensional spatial and optical modeling of individual particles. Using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) and focused ion beam (FIB) tomography, spatial models of particles collected in Los Angeles and Seattle accounted for surface features, inclusions, and voids, as well as overall composition and shape. Using voxel data from the spatial models and the discrete dipole approximation method, we report extinction efficiency, asymmetry parameter, and single-scattering albedo (SSA). Test models of the particles involved (1) the particle's actual morphology as a single homogeneous phase and (2) simple geometric shapes (spheres, cubes, and tetrahedra) depicting composition homogeneity or heterogeneity (with multiple spheres). Test models were compared with a reference model, which included the particle's actual morphology and heterogeneity based on SEM/EDX and FIB tomography. Results show particle shape to be a more important factor for determining extinction efficiency than accounting for individual phases in a particle, regardless of whether absorption or scattering dominated. In addition to homogeneous models with the particles' actual morphology, tetrahedral geometric models provided better extinction accuracy than spherical or cubic models. For iron-containing heterogeneous particles, the asymmetry parameter and SSA varied with the composition of the iron-containing phase, even if the phase was <10% of the particle volume. For particles containing loosely held phases with widely varying refractive indexes (i.e., exhibiting "severe" heterogeneity), only models that account for heterogeneity may sufficiently determine SSA.
The Late Ordovician Extinction: How it became the best understood of the five major extinctions.
NASA Astrophysics Data System (ADS)
Sheehan, P.
2003-04-01
The end Ordovician extinction has become arguably the best-understood major extinction event in Earth History. A plethora of workers have established the pattern of faunal change and causes of the extinction with remarkably little disagreement. The first indication of increased extinction at the end of the Ordovician was a graph of global diversity patterns by Norman Newell in 1967, although he did not recognize it as a major event. The presence of a major extinction event became clear as William Berry and Art Boucot assembled data for Silurian correlation charts in the late 1960s. The first reports of North African glaciation in the late 1960s provided a cause for the extinction and study of the event snowballed. It was no accident that recognition of the extinction began in North America, because it was there that the extinction completely overturned faunas in the epicontinental seas. Glacio-eustatic regression of shallow seaway coincided with the disappearance of endemic Laurentian faunas and replacement by a highly cosmopolitan fauna in the Silurian. Once the event was established in North America, paleontologists soon found evidence of the event around the globe. The well-documented Hirnantia Fauna was found to correspond to the glacial interval, and Pat Brenchley soon recognized that there were two pulses of extinction, at the beginning and end of the glaciation. At the same time that the faunal changes were being documented geologic studies of the glaciation provided information on the environmental changes associated with the extinction. The timing of the glacial maximum was established in Africa and by the presence of dropstones in high latitude marine rocks. The 1990s saw geochemical techniques employed that allowed examination of atmospheric CO2 and temperature changes. In many places carbonate deposition declined. Glacio-eustatic regression was obvious in many areas, and a sea-level decline in the range of 50-100 m was established. Shallow epicontinental seas were drained in many places. An extensive record of changes of all the major faunal groups has been established and work continues. Compilations by Sepkoski and Benton established the Ordovician extinction as one of the five major Phanerozoic extinctions, ranking second only to the end Permian extinction in terms of taxonomic loss. However, as the ecologic changes caused by the extinction became better understood it was realized that of the five extinction events the Ordovician extinction caused the least ecologic perturbation. Given the interest and extensive study extinction events have generated in the last 20 years it is surprising the oldest of the five extinctions has the most well understood cause and the best global record of the faunal changes. In fact only one other extinction event (K/T event) has a widely accepted cause, darkness associated with an impact event. The general faunal changes allow at least a preliminary comparison of two events with differing causes. The most important factor promoting survival in both events is wide geographic distribution. Other ecologic factors differ considerably between the events. Extinction was very high in epicontinental seas during the Ordovician but not in the Cretaceous. Cretaceous organisms that could survive several months without food (such as animals with low metabolic rates, or larval stages that included dormancy) preferentially survived, while this was not a factor in the Ordovician when low metabolic rates of animals like brachiopods and echinoderms provided little advantage. Animals capable of feeding on detritus during the loss of sunlight preferentially survived the Cretaceous extinction, but this was not a buffer to extinction in the Ordovician.
Extinction of Conditioned Fear is Better Learned and Recalled in the Morning than in the Evening
Pace-Schott, Edward F.; Spencer, Rebecca M.C.; Vijayakumar, Shilpa; Ahmed, Nafis; Verga, Patrick W.; Orr, Scott P.; Pitman, Roger K.; Milad, Mohammed R.
2013-01-01
Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N=109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCR) to 2 differently colored lamps (CS+), but not a third color (CS−), within the computer image of a room (conditioning context). One CS+ (CS+E) but not the other (CS+U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 hr (within AM or PM), 12 hr (morning-to-evening or evening-to-morning) or 24 hr (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p=.002). Collapsing across CS+ type, there was smaller morning differential SCR at both extinction recall (p=.003) and fear renewal (p=.005). Morning extinction recall showed better generalization from the CS+E to CS+U with the response to the CS+U significantly larger than to the CS+E only in the evening (p=.028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicting better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. PMID:23992769
Extinction of conditioned fear is better learned and recalled in the morning than in the evening.
Pace-Schott, Edward F; Spencer, Rebecca M C; Vijayakumar, Shilpa; Ahmed, Nafis A K; Verga, Patrick W; Orr, Scott P; Pitman, Roger K; Milad, Mohammed R
2013-11-01
Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N = 109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCRs) to 2 differently colored lamps (CS+), but not a third color (CS-), within the computer image of a room (conditioning context). One CS+ (CS + E) but not the other (CS + U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 h (within AM or PM), 12 h (morning-to-evening or evening-to-morning) or 24 h (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p = .002). Collapsing across CS + type, there was smaller morning differential SCR at both extinction recall (p = .003) and fear renewal (p = .005). Morning extinction recall showed better generalization from the CS + E to CS + U with the response to the CS + U significantly larger than to the CS + E only in the evening (p = .028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicted better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enhanced THz extinction in arrays of resonant semiconductor particles.
Schaafsma, Martijn C; Georgiou, Giorgos; Rivas, Jaime Gómez
2015-09-21
We demonstrate experimentally the enhanced THz extinction by periodic arrays of resonant semiconductor particles. This phenomenon is explained in terms of the radiative coupling of localized resonances with diffractive orders in the plane of the array (Rayleigh anomalies). The experimental results are described by numerical calculations using a coupled dipole model and by Finite-Difference in Time-Domain simulations. An optimum particle size for enhancing the extinction efficiency of the array is found. This optimum is determined by the frequency detuning between the localized resonances in the individual particles and the Rayleigh anomaly. The extinction calculations and measurements are also compared to near-field simulations illustrating the optimum particle size for the enhancement of the near-field.
Organic Model of Interstellar Grains
NASA Astrophysics Data System (ADS)
Yabushita, S.; Inagaki, T.; Kawabe, T.; Wada, K.
1987-04-01
Extinction efficiency of grains is calculated from the Mie formula on the premise that the grains are of organic composition. The optical constants adopted for the calculations are those of E. coli, polystyrene and bovine albumin. The grain radius a is assumed to obey a distribution of the form N(a) ∝ a-α and the value of α is chosen so as to make the calculated extinction curve match the observed interstellar extinction curve. Although the calculated curve gives a reasonably good fit to the observed extinction curve for wavelengths less than 2100 Å, at longer wavelength regions, agreement is poor. It is concluded that another component is required for the organic model to be viable.
Fear extinction requires Arc/Arg3.1 expression in the basolateral amygdala.
Onoue, Kousuke; Nakayama, Daisuke; Ikegaya, Yuji; Matsuki, Norio; Nomura, Hiroshi
2014-04-23
Prolonged re-exposure to a fear-eliciting cue in the absence of an aversive event extinguishes the fear response to the cue, and has been clinically used as an exposure therapy. Arc (also known as Arg3.1) is implicated in synaptic and experience-dependent plasticity. Arc is regulated by the transcription factor cAMP response element binding protein, which is upregulated with and necessary for fear extinction. Because Arc expression is also activated with fear extinction, we hypothesized that Arc expression is required for fear extinction. Extinction training increased the proportion of Arc-labeled cells in the basolateral amygdala (BLA). Arc was transcribed during latter part of extinction training, which is possibly associated with fear extinction, as well as former part of extinction training. Intra-BLA infusions of Arc antisense oligodeoxynucleotide (ODN) before extinction training impaired long-term but not short-term extinction memory. Intra-BLA infusions of Arc antisense ODN 3 h after extinction training had no effect on fear extinction. Our findings demonstrate that Arc is required for long-term extinction of conditioned fear and contribute to the understanding of extinction as a therapeutic manner.
Lidar extinction measurement in the mid infrared
NASA Astrophysics Data System (ADS)
Mitev, Valentin; Babichenko, S.; Borelli, R.; Fiorani, L.; Grigorov, I.; Nuvoli, M.; Palucci, A.; Pistilli, M.; Puiu, Ad.; Rebane, Ott; Santoro, S.
2014-11-01
We present a lidar measurement of atmospheric extinction coefficient. The measurement is performed by inversion of the backscatter lidar signal at wavelengths 3'000nm and 3'500nm. The inversion of the backscatter lidar signal was performed with constant extinction-to-backscatter ration values of 104 and exponential factor 0.1.
Auchter, Allison M.; Shumake, Jason; Gonzalez-Lima, Francisco; Monfils, Marie H.
2017-01-01
Many factors account for how well individuals extinguish conditioned fears, such as genetic variability, learning capacity and conditions under which extinction training is administered. We predicted that memory-based interventions would be more effective to reduce the reinstatement of fear in subjects genetically predisposed to display more extinction learning. We tested this hypothesis in rats genetically selected for differences in fear extinction using two strategies: (1) attenuation of fear memory using post-retrieval extinction training, and (2) pharmacological enhancement of the extinction memory after extinction training by low-dose USP methylene blue (MB). Subjects selectively bred for divergent extinction phenotypes were fear conditioned to a tone stimulus and administered either standard extinction training or retrieval + extinction. Following extinction, subjects received injections of saline or MB. Both reconsolidation updating and MB administration showed beneficial effects in preventing fear reinstatement, but differed in the groups they targeted. Reconsolidation updating showed an overall effect in reducing fear reinstatement, whereas pharmacological memory enhancement using MB was an effective strategy, but only for individuals who were responsive to extinction. PMID:28397861
Enhanced extinction of cocaine seeking in brain-derived neurotrophic factor Val66Met knock-in mice.
Briand, Lisa A; Lee, Francis S; Blendy, Julie A; Pierce, R Christopher
2012-03-01
The Val66Met polymorphism in the brain-derived neurotropic factor (BDNF) gene results in alterations in fear extinction behavior in both human populations and mouse models. However, it is not clear whether this polymorphism plays a similar role in extinction of appetitive behaviors. Therefore, we examined operant learning and extinction of both food and cocaine self-administration behavior in an inbred genetic knock-in mouse strain expressing the variant Bdnf. These mice provide a unique opportunity to relate alterations in aversive and appetitive extinction learning as well as provide insight into how human genetic variation can lead to differences in behavior. BDNF(Met/Met) mice exhibited a severe deficit in operant learning as demonstrated by an inability to learn the food self-administration task. Therefore, extinction experiments were performed comparing wildtype (BDNF(Val/Val) ) animals to mice heterozygous for the Met allele (BDNF(Val/Met) ), which did not differ in food or cocaine self-administration behavior. In contrast to the deficit in fear extinction previously demonstrated in these mice, we found that BDNF(Val/Met) mice exhibited more rapid extinction of cocaine responding compared to wildtype mice. No differences were found between the genotypes in the extinction of food self-administration behavior or the reinstatement of cocaine seeking, indicating that the effect is specific to extinction of cocaine responding. These results suggest that the molecular mechanisms underlying aversive and appetitive extinction are distinct from one another and BDNF may play opposing roles in the two phenomena. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.
Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin
2013-07-01
We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.
Estimated impact of global population growth on future wilderness extent
NASA Astrophysics Data System (ADS)
Dumont, E.
2012-06-01
Wilderness areas in the world are threatened by the environmental impacts of the growing global human population. This study estimates the impact of birth rate on the future surface area of biodiverse wilderness and on the proportion of this area without major extinctions. The following four drivers are considered: human population growth (1), agricultural efficiency (2), groundwater drawdown by irrigation (3), and non-agricultural space used by humans (buildings, gardens, roads, etc.) (4). This study indicates that the surface area of biodiverse unmanaged land will reduce with about 5.4% between 2012 and 2050. Further, it indicates that the biodiverse land without major extinctions will reduce with about 10.5%. These percentages are based on a commonly used population trajectory which assumes that birth rates across the globe will reduce in a similar way as has occurred in the past in many developed countries. Future birth rate is however very uncertain. Plausible future birth rates lower than the expected rates lead to much smaller reductions in surface area of biodiverse unmanaged land (0.7% as opposed to 5.4%), and a reduction in the biodiverse land without major extinctions of about 5.6% (as opposed to 10.5%). This indicates that birth rate is an important factor influencing the quality and quantity of wilderness remaining in the future.
Taylor, Adam B; Kim, Jooho; Chon, James W M
2012-02-27
In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.
Variable intertidal temperature explains why disease endangers black abalone
Ben-Horin, Tal; Lenihan, Hunter S.; Lafferty, Kevin D.
2013-01-01
Epidemiological theory suggests that pathogens will not cause host extinctions because agents of disease should fade out when the host population is driven below a threshold density. Nevertheless, infectious diseases have threatened species with extinction on local scales by maintaining high incidence and the ability to spread efficiently even as host populations decline. Intertidal black abalone (Haliotis cracherodii), but not other abalone species, went extinct locally throughout much of southern California following the emergence of a Rickettsiales-like pathogen in the mid-1980s. The rickettsial disease, a condition known as withering syndrome (WS), and associated mortality occur at elevated water temperatures. We measured abalone body temperatures in the field and experimentally manipulated intertidal environmental conditions in the laboratory, testing the influence of mean temperature and daily temperature variability on key epizootiological processes of WS. Daily temperature variability increased the susceptibility of black abalone to infection, but disease expression occurred only at warm water temperatures and was independent of temperature variability. These results imply that high thermal variation of the marine intertidal zone allows the pathogen to readily infect black abalone, but infected individuals remain asymptomatic until water temperatures periodically exceed thresholds modulating WS. Mass mortalities can therefore occur before pathogen transmission is limited by density-dependent factors.
Some Factors Modulating the Strength of Resurgence after Extinction of an Instrumental Behavior
ERIC Educational Resources Information Center
Winterbauer, Neil E.; Lucke, Sara; Bouton, Mark E.
2013-01-01
In resurgence, an operant behavior that has undergone extinction can return ("resurge") when a second operant that has replaced it itself undergoes extinction. The phenomenon may provide insight into relapse that may occur after incentive or contingency management therapies in humans. Three experiments with rats examined the impact of several…
Liquid-crystal-based switchable polarizers for sensor protection.
Wu, C S; Wu, S T
1995-11-01
Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately ±10°. In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.
Liquid-crystal-based switchable polarizers for sensor protection
NASA Astrophysics Data System (ADS)
Wu, Chiung-Sheng; Wu, Shin-Tson
1995-11-01
Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately +/-10 deg In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.
Extinction order and altered community structure rapidly disrupt ecosystem functioning.
Larsen, Trond H; Williams, Neal M; Kremen, Claire
2005-05-01
By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.
Out-of-Time Beam Extinction in the MU2E Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prebys, E. J.; Werkema, S.
The Mu2e Experiment at Fermilab will search for the conversion of a muon to an electron in the field of an atomic nucleus with unprecedented sensitivity. The experiment requires a beam consisting of proton bunches 250 ns FW long, separated by 1.7more » $$\\mu$$ sec, with no out-of-time protons at the $$10^{10}$$ fractional level. Satisfying this "extinction" requirement is very challenging. The formation of the bunches is expected to result in an extinction on the order of $10^5$. The remaining extinction will be accomplished by a system of resonant magnets and collimators, configured such that only in-time beam is delivered to the experiment. Our simulations show that the total extinction achievable by the system is on the order of $$10^{12}$$, with an efficiency for transmitting in-time beam of 99.6%.« less
Wan, Xinru
2017-01-01
Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal–spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming. PMID:28330916
Wan, Xinru; Zhang, Zhibin
2017-03-29
Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal-spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus ), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim; List-Kratochvil, Emil J. W.
2017-02-01
With the invention of phosphorescent emitter material, organic light emitting diodes with internal quantum yields of up to 100% can be realized. Still, the extraction of the light from the OLED stack is a bottleneck, which hampers the availability of OLEDs with large external quantum efficiencies. In this contribution, we highlight the advantages of integrating aluminum nanodisc arrays into the OLED stack. By this, not only the out-coupling of light can be enhanced, but also the emission color can be tailored and controlled. By means of extinction- and fluorescence spectroscopy measurements we are able to show how the sharp features observed in the extinction measurements correlate with a very selective fluorescence enhancement of the organic emitter materials used in these studies. At the same time, localized surface plasmon resonances of the individual nanodiscs further modify the emission spectrum, e.g., by filtering the green emission tail. A combination of these factors leads to a modification of the emission color in between CIE1931 (x,y) chromaticity coordinates of (0.149, 0.225) and (0.152, 0.352). After accounting for the sensitivity of the human eye, we are able to demonstrate that this adjustment of the chromaticity coordinates goes is accompanied by an increase in device efficiency.
A global synthesis of plant extinction rates in urban areas.
Hahs, Amy K; McDonnell, Mark J; McCarthy, Michael A; Vesk, Peter A; Corlett, Richard T; Norton, Briony A; Clemants, Steven E; Duncan, Richard P; Thompson, Ken; Schwartz, Mark W; Williams, Nicholas S G
2009-11-01
Plant extinctions from urban areas are a growing threat to biodiversity worldwide. To minimize this threat, it is critical to understand what factors are influencing plant extinction rates. We compiled plant extinction rate data for 22 cities around the world. Two-thirds of the variation in plant extinction rates was explained by a combination of the city's historical development and the current proportion of native vegetation, with the former explaining the greatest variability. As a single variable, the amount of native vegetation remaining also influenced extinction rates, particularly in cities > 200 years old. Our study demonstrates that the legacies of landscape transformations by agrarian and urban development last for hundreds of years, and modern cities potentially carry a large extinction debt. This finding highlights the importance of preserving native vegetation in urban areas and the need for mitigation to minimize potential plant extinctions in the future.
Cognitive Enhancers for Facilitating Drug Cue Extinction: Insights from Animal Models
Nic Dhonnchadha, Bríd Áine; Kantak, Kathleen M.
2011-01-01
Given the success of cue exposure (extinction) therapy combined with a cognitive enhancer for reducing anxiety, it is anticipated that this approach will prove more efficacious than exposure therapy alone in preventing relapse in individuals with substance use disorders. Several factors may undermine the efficacy of exposure therapy for substance use disorders, but we suspect that neurocognitive impairments associated with chronic drug use are an important contributing factor. Numerous insights on these issues are gained from research using animal models of addiction. In this review, the relationship between brain sites whose learning, memory and executive functions are impaired by chronic drug use and brain sites that are important for effective drug cue extinction learning is explored first. This is followed by an overview of animal research showing improved treatment outcome for drug addiction (e.g. alcohol, amphetamine, cocaine, heroin) when explicit extinction training is conducted in combination with acute dosing of a cognitive-enhancing drug. The mechanism by which cognitive enhancers are thought to exert their benefits is by facilitating consolidation of drug cue extinction memory after activation of glutamatergic receptors. Based on the encouraging work in animals, factors that may be important for the treatment of drug addiction are considered. PMID:21295059
78 FR 4835 - Endangered and Threatened Species; Recovery Plan for the North Pacific Right Whale
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
... threatened status (has no more than a 1 percent chance of extinction in 100 years) and the global population... substantially contribute to a real risk of extinction that cannot be incorporated into a Population Viability... factors or circumstances that are thought to substantially contribute to a real risk of extinction that...
On Galactic Density Modeling in the Presence of Dust Extinction
NASA Astrophysics Data System (ADS)
Bovy, Jo; Rix, Hans-Walter; Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.
2016-02-01
Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to a low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.
Interstellar extinction in the ultraviolet
NASA Technical Reports Server (NTRS)
Bless, R. C.; Savage, B. D.
1972-01-01
Interstellar extinction curves over the region 3600-1100 A for 17 stars are presented. The observations were made by the two Wisconsin spectrometers onboard the OAO-2 with spectral resolutions of 10 A and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region 1800-1350 A, and finally a rapid rise to the far ultraviolet. Large extinction variations from star to star are found, especially in the far ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20.
The biology of mass extinction: a palaeontological view
NASA Technical Reports Server (NTRS)
Jablonski, D.; Raup, D. M. (Principal Investigator)
1989-01-01
Extinctions are not biologically random: certain taxa or functional/ecological groups are more extinction-prone than others. Analysis of molluscan survivorship patterns for the end-Cretaceous mass extinctions suggests that some traits that tend to confer extinction resistance during times of normal ('background') levels of extinction are ineffectual during mass extinction. For genera, high species-richness and possession of widespread individual species imparted extinction-resistance during background times but not during the mass extinction, when overall distribution of the genus was an important factor. Reanalysis of Hoffman's (1986) data (Neues Jb. Geol. Palaont. Abh. 172, 219) on European bivalves, and preliminary analysis of a new northern European data set, reveals a similar change in survivorship rules, as do data scattered among other taxa and extinction events. Thus taxa and adaptations can be lost not because they were poorly adapted by the standards of the background processes that constitute the bulk of geological time, but because they lacked--or were not linked to--the organismic, species-level or clade-level traits favoured under mass-extinction conditions. Mass extinctions can break the hegemony of species-rich, well-adapted clades and thereby permit radiation of taxa that had previously been minor faunal elements; no net increase in the adaptation of the biota need ensue. Although some large-scale evolutionary trends transcend mass extinctions, post extinction evolutionary pathways are often channelled in directions not predictable from evolutionary patters during background times.
Unravelling the structure of species extinction risk for predictive conservation science.
Lee, Tien Ming; Jetz, Walter
2011-05-07
Extinction risk varies across species and space owing to the combined and interactive effects of ecology/life history and geography. For predictive conservation science to be effective, large datasets and integrative models that quantify the relative importance of potential factors and separate rapidly changing from relatively static threat drivers are urgently required. Here, we integrate and map in space the relative and joint effects of key correlates of The International Union for Conservation of Nature-assessed extinction risk for 8700 living birds. Extinction risk varies significantly with species' broad-scale environmental niche, geographical range size, and life-history and ecological traits such as body size, developmental mode, primary diet and foraging height. Even at this broad scale, simple quantifications of past human encroachment across species' ranges emerge as key in predicting extinction risk, supporting the use of land-cover change projections for estimating future threat in an integrative setting. A final joint model explains much of the interspecific variation in extinction risk and provides a remarkably strong prediction of its observed global geography. Our approach unravels the species-level structure underlying geographical gradients in extinction risk and offers a means of disentangling static from changing components of current and future threat. This reconciliation of intrinsic and extrinsic, and of past and future extinction risk factors may offer a critical step towards a more continuous, forward-looking assessment of species' threat status based on geographically explicit environmental change projections, potentially advancing global predictive conservation science.
Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H
2016-08-01
Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.
Active electromagnetic invisibility cloaking and radiation force cancellation
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2018-03-01
This investigation shows that an active emitting electromagnetic (EM) Dirichlet source (i.e., with axial polarization of the electric field) in a homogeneous non-dissipative/non-absorptive medium placed near a perfectly conducting boundary can render total invisibility (i.e. zero extinction cross-section or efficiency) in addition to a radiation force cancellation on its surface. Based upon the Poynting theorem, the mathematical expression for the extinction, radiation and amplification cross-sections (or efficiencies) are derived using the partial-wave series expansion method in cylindrical coordinates. Moreover, the analysis is extended to compute the self-induced EM radiation force on the active source, resulting from the waves reflected by the boundary. The numerical results predict the generation of a zero extinction efficiency, achieving total invisibility, in addition to a radiation force cancellation which depend on the source size, the distance from the boundary and the associated EM mode order of the active source. Furthermore, an attractive EM pushing force on the active source directed toward the boundary or a repulsive pulling one pointing away from it can arise accordingly. The numerical predictions and computational results find potential applications in the design and development of EM cloaking devices, invisibility and stealth technologies.
Dunsmoor, Joseph E.; Niv, Yael; Daw, Nathaniel; Phelps, Elizabeth A.
2015-01-01
Extinction serves as the leading theoretical framework and experimental model to describe how learned behaviors diminish through absence of anticipated reinforcement. In the past decade, extinction has moved beyond the realm of associative learning theory and behavioral experimentation in animals and has become a topic of considerable interest in the neuroscience of learning, memory, and emotion. Here, we review research and theories of extinction, both as a learning process and as a behavioral technique, and consider whether traditional understandings warrant a re-examination. We discuss the neurobiology, cognitive factors, and major computational theories, and revisit the predominant view that extinction results in new learning that interferes with expression of the original memory. Additionally, we reconsider the limitations of extinction as a technique to prevent the relapse of maladaptive behavior, and discuss novel approaches, informed by contemporary theoretical advances, that augment traditional extinction methods to target and potentially alter maladaptive memories. PMID:26447572
Local extinction of dragonfly and damselfly populations in low- and high-quality habitat patches.
Suhonen, Jukka; Hilli-Lukkarinen, Milla; Korkeamäki, Esa; Kuitunen, Markku; Kullas, Johanna; Penttinen, Jouni; Salmela, Jukka
2010-08-01
Understanding the risk of extinction of a single population is an important problem in both theoretical and applied ecology. Local extinction risk depends on several factors, including population size, demographic or environmental stochasticity, natural catastrophe, or the loss of genetic diversity. The probability of local extinction may also be higher in low-quality sink habitats than in high-quality source habitats. We tested this hypothesis by comparing local extinction rates of 15 species of Odonata (dragonflies and damselflies) between 1930-1975 and 1995-2003 in central Finland. Local extinction rates were higher in low-quality than in high-quality habitats. Nevertheless, for the three most common species there were no differences in extinction rates between low- and high-quality habitats. Our results suggest that a good understanding of habitat quality is crucial for the conservation of species in heterogeneous landscapes.
On Kill Curves and Sampling Protocols: Studying the Relationships between Impact and Extinction
NASA Astrophysics Data System (ADS)
Ward, Peter D.
1997-05-01
The pioneering efforts of Raup (1990) have suggested that a relationship exists between crater diameter and percentage of organisms killed as a result of meteor or comet impact with the Earth. The new data (coming from study of the Manson and Chicxulub craters) suggest that the nature of target rock may be a factor nearly as important as impacter size, and that other aspects of the target, including its latitude, the atmospheric and climate conditions characterizing the Earth, as well as the stage of biological evolution and community development at the time of impact are factors which all must be factored into any new kill curve. It may be that no single 'curve' is appropriate, but that a family of curves may be necessary to model the biological effects of large impacts. We propose that a new protocol be developed to better constrain and understand the relationship between impact and extinction. Rather than searching known mass extinction boundaries for evidence of impact (an exercise which up to now has demonstrated that only the Chicxulub crater can be unambiguously related to a mass extinction of planetary scale), we propose that four known craters be investigated to see if they are temporally correlated with extinction at any detectable level. We suggest that Kara, Popigai, Manson, and Manicouagan Craters be investigated in the following way. First, what is their age? The Manson lesson is that the first step in understanding the relationship between impact and extinction is through reliable age dating. Second, can distal components of the impact ejecta (spherules, shocked quartz, and mineral signatures) be located from sedimentary record? Third, once identified, do these signatures coincide with paleontological or geochemical markers of extinction in either the synoptic literature, or from actual outcrops (or deep sea cores).
Cognitive enhancers for facilitating drug cue extinction: insights from animal models.
Nic Dhonnchadha, Bríd Áine; Kantak, Kathleen M
2011-08-01
Given the success of cue exposure (extinction) therapy combined with a cognitive enhancer for reducing anxiety, it is anticipated that this approach will prove more efficacious than exposure therapy alone in preventing relapse in individuals with substance use disorders. Several factors may undermine the efficacy of exposure therapy for substance use disorders, but we suspect that neurocognitive impairments associated with chronic drug use are an important contributing factor. Numerous insights on these issues are gained from research using animal models of addiction. In this review, the relationship between brain sites whose learning, memory and executive functions are impaired by chronic drug use and brain sites that are important for effective drug cue extinction learning is explored first. This is followed by an overview of animal research showing improved treatment outcome for drug addiction (e.g. alcohol, amphetamine, cocaine, heroin) when explicit extinction training is conducted in combination with acute dosing of a cognitive-enhancing drug. The mechanism by which cognitive enhancers are thought to exert their benefits is by facilitating consolidation of drug cue extinction memory after activation of glutamatergic receptors. Based on the encouraging work in animals, factors that may be important for the treatment of drug addiction are considered. Copyright © 2011. Published by Elsevier Inc.
Gramage, Esther; Pérez-García, Carmen; Vicente-Rodríguez, Marta; Bollen, Silke; Rojo, Loreto; Herradón, Gonzalo
2013-09-15
The neurotrophic factors Midkine (MK) and Pleiotrophin (PTN) have been suggested to modulate drugs of abuse-induced effects. To test this hypothesis, cocaine (10 and 15mg/kg)-induced conditioned place preference (CPP) was rendered in PTN knockout (PTN-/-), MK knockout (MK-/-) and wild type (WT+/+) mice, and then extinguished after repeated saline injections (distributed in 4 extinction sessions). Cocaine induced a similar CPP in all the three genotypes. We found a significantly increased percentage of MK-/- mice that did not extinguish cocaine CPP at the end of the extinction sessions. Particularly, 40% of MK-/- mice did not extinguish cocaine (15mg/kg)-induced CPP compared to WT+/+ and PTN-/- mice (∼0-6%). Interestingly, we found that a greater magnitude of extinction of CPP after the first extinction session (5 days after last administration of cocaine) correlates with increased tyrosine phosphorylation of the enzyme peroxiredoxin 6 in the dorsal striatum of MK-/- mice. On the other hand, a greater magnitude of CPP extinction correlates with increased tyrosine phosphorylation of aconitase 2 in the prefrontal cortex of WT+/+ mice. In contrast, a lower magnitude of CPP extinction correlates with increased phosphorylation of aconitase 2 in the prefrontal cortex of PTN-/- mice, suggesting that the correlation between the tyrosine phosphorylation levels of aconitase 2 and magnitude of CPP extinction depends on the genotype considered. The data demonstrate that MK is a novel genetic factor that plays a role in the extinction of cocaine-induced CPP by mechanisms that may involve specific phosphorylation of striatal peroxiredoxin 6. Copyright © 2013 Elsevier B.V. All rights reserved.
Population control methods in stochastic extinction and outbreak scenarios.
Segura, Juan; Hilker, Frank M; Franco, Daniel
2017-01-01
Adaptive limiter control (ALC) and adaptive threshold harvesting (ATH) are two related control methods that have been shown to stabilize fluctuating populations. Large variations in population abundance can threaten the constancy and the persistence stability of ecological populations, which may impede the success and efficiency of managing natural resources. Here, we consider population models that include biological mechanisms characteristic for causing extinctions on the one hand and pest outbreaks on the other hand. These models include Allee effects and the impact of natural enemies (as is typical of forest defoliating insects). We study the impacts of noise and different levels of biological parameters in three extinction and two outbreak scenarios. Our results show that ALC and ATH have an effect on extinction and outbreak risks only for sufficiently large control intensities. Moreover, there is a clear disparity between the two control methods: in the extinction scenarios, ALC can be effective and ATH can be counterproductive, whereas in the outbreak scenarios the situation is reversed, with ATH being effective and ALC being potentially counterproductive.
ON GALACTIC DENSITY MODELING IN THE PRESENCE OF DUST EXTINCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo; Rix, Hans-Walter; Schlafly, Edward F.
Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to amore » low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.« less
Mass extinctions: Persistent problems and new directions
NASA Technical Reports Server (NTRS)
Jablonski, D.
1994-01-01
Few contest that mass extinctions have punctuated the history of life, or that those events were so pervasive environmentally, taxonomically, and geographically that physical forcing factors were probably involved. However, consensus remains elusive on the nature of those factors, and on how a given perturbation - impact, volcanism, sea-level change, or ocean anoxic event - could actually generate the observed intensity and selectivity of biotic losses. At least two basic problems underlie these long-standing disagreements: difficulties in resolving the fine details of taxon ranges and abundances immediately prior to and after an extinction boundary and the scarcity of simple, unitary cause-and-effect relations in complex biological systems.
Xu, Chang; Ye, Hui; Shen, Jian-Dong; Sun, Hong-Liang; Hong, Sheng-Mao; Jiao, Li; Huang, Kan
2014-12-01
In order to evaluate the influence of particle scattering on visibility, light scattering coefficient, particle concentrations and meteorological factor were simultaneously monitored from July 2011 to June 2012 in Hangzhou. Daily scattering coefficients ranged from 108.4 to 1 098.1 Mm(-1), with an annual average concentration of 428.6 Mm(-1) ± 200.2 Mm(-1). Seasonal variation of scattering coefficients was significant, with the highest concentrations observed in autumn and winter and the lowest in summer. It was found there were two peaks for the average diurnal variations of the scattering coefficient, which could be observed at 08:00 and 21:00. The scattering efficiencies of PM2.5 and PM10 were 7.6 m2 x g(-1) and 4.4 m2 x g(-1), respectively. The particle scattering was about 90.2 percent of the total light extinction. The scattering coefficients were 684.4 Mm(-1) ± 218.1 Mm(-1) and 1 095.4 Mm(-1) ± 397.7 Mm(-1) in hazy and heavy hazy days, respectively, which were 2.6 and 4.2 times as high as in non-hazy weather, indicating that particle scattering is the main factor for visibility degradation and the occurrence of hazy weather in Hangzhou.
Examining the relationship between local extinction risk and position in range.
Boakes, Elizabeth H; Isaac, Nicholas J B; Fuller, Richard A; Mace, Georgina M; McGowan, Philip J K
2018-02-01
Over half of globally threatened animal species have experienced rapid geographic range loss. Identifying the parts of species' distributions most vulnerable to local extinction would benefit conservation planning. However, previous studies give little consensus on whether ranges decline to the core or edge. We built on previous work by using empirical data to examine the position of recent local extinctions within species' geographic ranges, address range position as a continuum, and explore the influence of environmental factors. We aggregated point-locality data for 125 Galliform species from across the Palearctic and Indo-Malaya into equal-area half-degree grid cells and used a multispecies dynamic Bayesian occupancy model to estimate rates of local extinctions. Our model provides a novel approach to identify loss of populations from within species ranges. We investigated the relationship between extinction rates and distance from range edge by examining whether patterns were consistent across biogeographic realm and different categories of land use. In the Palearctic, local extinctions occurred closer to the range edge than range core in both unconverted and human-dominated landscapes. In Indo-Malaya, no pattern was found for unconverted landscapes, but in human-dominated landscapes extinctions tended to occur closer to the core than the edge. Our results suggest that local and regional factors override general spatial patterns of recent local extinction within species' ranges and highlight the difficulty of predicting the parts of a species' distribution most vulnerable to threat. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Late-surviving megafauna in Tasmania, Australia, implicate human involvement in their extinction.
Turney, Chris S M; Flannery, Timothy F; Roberts, Richard G; Reid, Craig; Fifield, L Keith; Higham, Tom F G; Jacobs, Zenobia; Kemp, Noel; Colhoun, Eric A; Kalin, Robert M; Ogle, Neil
2008-08-26
Establishing the cause of past extinctions is critical if we are to understand better what might trigger future occurrences and how to prevent them. The mechanisms of continental late Pleistocene megafaunal extinction, however, are still fiercely contested. Potential factors contributing to their demise include climatic change, human impact, or some combination. On the Australian mainland, 90% of the megafauna became extinct by approximately 46 thousand years (ka) ago, soon after the first archaeological evidence for human colonization of the continent. Yet, on the neighboring island of Tasmania (which was connected to the mainland when sea levels were lower), megafaunal extinction appears to have taken place before the initial human arrival between 43 and 40 ka, which would seem to exonerate people as a contributing factor in the extirpation of the island megafauna. Age estimates for the last megafauna, however, are poorly constrained. Here, we show, by direct dating of fossil remains and their associated sediments, that some Tasmanian megafauna survived until at least 41 ka (i.e., after their extinction on the Australian mainland) and thus overlapped with humans. Furthermore, a vegetation record for Tasmania spanning the last 130 ka shows that no significant regional climatic or environmental change occurred between 43 and 37 ka, when a land bridge existed between Tasmania and the mainland. Our results are consistent with a model of human-induced extinction for the Tasmanian megafauna, most probably driven by hunting, and they reaffirm the value of islands adjacent to continental landmasses as tests of competing hypotheses for late Quaternary megafaunal extinctions.
Late-surviving megafauna in Tasmania, Australia, implicate human involvement in their extinction
Turney, Chris S. M.; Flannery, Timothy F.; Roberts, Richard G.; Reid, Craig; Fifield, L. Keith; Higham, Tom F. G.; Jacobs, Zenobia; Kemp, Noel; Colhoun, Eric A.; Kalin, Robert M.; Ogle, Neil
2008-01-01
Establishing the cause of past extinctions is critical if we are to understand better what might trigger future occurrences and how to prevent them. The mechanisms of continental late Pleistocene megafaunal extinction, however, are still fiercely contested. Potential factors contributing to their demise include climatic change, human impact, or some combination. On the Australian mainland, 90% of the megafauna became extinct by ≈46 thousand years (ka) ago, soon after the first archaeological evidence for human colonization of the continent. Yet, on the neighboring island of Tasmania (which was connected to the mainland when sea levels were lower), megafaunal extinction appears to have taken place before the initial human arrival between 43 and 40 ka, which would seem to exonerate people as a contributing factor in the extirpation of the island megafauna. Age estimates for the last megafauna, however, are poorly constrained. Here, we show, by direct dating of fossil remains and their associated sediments, that some Tasmanian megafauna survived until at least 41 ka (i.e., after their extinction on the Australian mainland) and thus overlapped with humans. Furthermore, a vegetation record for Tasmania spanning the last 130 ka shows that no significant regional climatic or environmental change occurred between 43 and 37 ka, when a land bridge existed between Tasmania and the mainland. Our results are consistent with a model of human-induced extinction for the Tasmanian megafauna, most probably driven by hunting, and they reaffirm the value of islands adjacent to continental landmasses as tests of competing hypotheses for late Quaternary megafaunal extinctions. PMID:18719103
Nanofluid optical property characterization: towards efficient direct absorption solar collectors.
Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi
2011-03-15
Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.
Nanofluid optical property characterization: towards efficient direct absorption solar collectors
2011-01-01
Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750
Stressor controllability modulates fear extinction in humans
Hartley, Catherine A.; Gorun, Alyson; Reddan, Marianne C.; Ramirez, Franchesca; Phelps, Elizabeth A.
2014-01-01
Traumatic events are proposed to play a role in the development of anxiety disorders, however not all individuals exposed to extreme stress experience a pathological increase in fear. Recent studies in animal models suggest that the degree to which one is able to control an aversive experience is a critical factor determining its behavioral consequences. In this study, we examined whether stressor controllability modulates subsequent conditioned fear expression in humans. Participants were randomly assigned to an escapable stressor condition, a yoked inescapable stressor condition, or a control condition involving no stress exposure. One week later, all participants underwent fear conditioning, fear extinction, and a test of extinction retrieval the following day. Participants exposed to inescapable stress showed impaired fear extinction learning and increased fear expression the following day. In contrast, escapable stress improved fear extinction and prevented the spontaneous recovery of fear. Consistent with the bidirectional controllability effects previously reported in animal models, these results suggest that one's degree of control over aversive experiences may be an important factor influencing the development of psychological resilience or vulnerability in humans. PMID:24333646
Geography of current and future global mammal extinction risk
Shoemaker, Kevin T.; Weinstein, Ben; Costa, Gabriel C.; Brooks, Thomas M.; Ceballos, Gerardo; Radeloff, Volker C.; Rondinini, Carlo; Graham, Catherine H.
2017-01-01
Identifying which species are at greatest risk, what makes them vulnerable, and where they are distributed are central goals for conservation science. While knowledge of which factors influence extinction risk is increasingly available for some taxonomic groups, a deeper understanding of extinction correlates and the geography of risk remains lacking. Here, we develop a predictive random forest model using both geospatial and mammalian species’ trait data to uncover the statistical and geographic distributions of extinction correlates. We also explore how this geography of risk may change under a rapidly warming climate. We found distinctive macroecological relationships between species-level risk and extinction correlates, including the intrinsic biological traits of geographic range size, body size and taxonomy, and extrinsic geographic settings such as seasonality, habitat type, land use and human population density. Each extinction correlate exhibited ranges of values that were especially associated with risk, and the importance of different risk factors was not geographically uniform across the globe. We also found that about 10% of mammals not currently recognized as at-risk have biological traits and occur in environments that predispose them towards extinction. Southeast Asia had the most actually and potentially threatened species, underscoring the urgent need for conservation in this region. Additionally, nearly 40% of currently threatened species were predicted to experience rapid climate change at 0.5 km/year or more. Biological and environmental correlates of mammalian extinction risk exhibit distinct statistical and geographic distributions. These results provide insight into species-level patterns and processes underlying geographic variation in extinction risk. They also offer guidance for future conservation research focused on specific geographic regions, or evaluating the degree to which species-level patterns mirror spatial variation in the pressures faced by populations within the ranges of individual species. The added impacts from climate change may increase the susceptibility of at-risk species to extinction and expand the regions where mammals are most vulnerable globally. PMID:29145486
Wang, Wei-Sheng; Kang, Shuo; Liu, Wen-Tao; Li, Mu; Liu, Yao; Yu, Chuan; Chen, Jie; Chi, Zhi-Qiang; He, Ling; Liu, Jing-Gen
2012-10-03
Recent evidence suggests that histone deacetylase (HDAC) inhibitors facilitate extinction of rewarding memory of drug taking. However, little is known about the role of chromatin modification in the extinction of aversive memory of drug withdrawal. In this study, we used conditioned place aversion (CPA), a highly sensitive model for measuring aversive memory of drug withdrawal, to investigate the role of epigenetic regulation of brain-derived neurotrophic factor (BDNF) gene expression in extinction of aversive memory. We found that CPA extinction training induced an increase in recruiting cAMP response element-binding protein (CREB) to and acetylation of histone H3 at the promoters of BDNF exon I transcript and increased BDNF mRNA and protein expression in the ventromedial prefrontal cortex (vmPFC) of acute morphine-dependent rats and that such epigenetic regulation of BDNF gene transcription could be facilitated or diminished by intra-vmPFC infusion of HDAC inhibitor trichostatin A or extracellular signal-regulated kinase (ERK) inhibitor U0126 (1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene) before extinction training. Correspondingly, disruption of the epigenetic regulation of BDNF gene transcription with U0126 or suppression of BDNF signaling with Trk receptor antagonist K252a or BDNF scavenger tyrosine kinase receptor B (TrkB)-Fc blocked extinction of CPA behavior. We also found that extinction training-induced activation of ERK and CREB and extinction of CPA behavior could be potentiated or suppressed by intra-vmPFC infusion of d-cycloserine, a NMDA receptor partial agonist or aminophosphonopentanoic acid, a NMDA receptor antagonist. We conclude that extinction of aversive memory of morphine withdrawal requires epigenetic regulation of BDNF gene transcription in the vmPFC through activation of the ERK-CREB signaling pathway perhaps in a NMDA receptor-dependent manner.
Geography of current and future global mammal extinction risk.
Davidson, Ana D; Shoemaker, Kevin T; Weinstein, Ben; Costa, Gabriel C; Brooks, Thomas M; Ceballos, Gerardo; Radeloff, Volker C; Rondinini, Carlo; Graham, Catherine H
2017-01-01
Identifying which species are at greatest risk, what makes them vulnerable, and where they are distributed are central goals for conservation science. While knowledge of which factors influence extinction risk is increasingly available for some taxonomic groups, a deeper understanding of extinction correlates and the geography of risk remains lacking. Here, we develop a predictive random forest model using both geospatial and mammalian species' trait data to uncover the statistical and geographic distributions of extinction correlates. We also explore how this geography of risk may change under a rapidly warming climate. We found distinctive macroecological relationships between species-level risk and extinction correlates, including the intrinsic biological traits of geographic range size, body size and taxonomy, and extrinsic geographic settings such as seasonality, habitat type, land use and human population density. Each extinction correlate exhibited ranges of values that were especially associated with risk, and the importance of different risk factors was not geographically uniform across the globe. We also found that about 10% of mammals not currently recognized as at-risk have biological traits and occur in environments that predispose them towards extinction. Southeast Asia had the most actually and potentially threatened species, underscoring the urgent need for conservation in this region. Additionally, nearly 40% of currently threatened species were predicted to experience rapid climate change at 0.5 km/year or more. Biological and environmental correlates of mammalian extinction risk exhibit distinct statistical and geographic distributions. These results provide insight into species-level patterns and processes underlying geographic variation in extinction risk. They also offer guidance for future conservation research focused on specific geographic regions, or evaluating the degree to which species-level patterns mirror spatial variation in the pressures faced by populations within the ranges of individual species. The added impacts from climate change may increase the susceptibility of at-risk species to extinction and expand the regions where mammals are most vulnerable globally.
Hemstedt, Thekla J; Bengtson, C Peter; Ramírez, Omar; Oliveira, Ana M M; Bading, Hilmar
2017-07-19
Nuclear calcium is an important signaling end point in synaptic excitation-transcription coupling that is critical for long-term neuroadaptations. Here, we show that nuclear calcium acting via a target gene, VEGFD, is required for hippocampus-dependent fear memory consolidation and extinction in mice. Nuclear calcium-VEGFD signaling upholds the structural integrity and complexity of the dendritic arbor of CA1 neurons that renders those cells permissive for the efficient generation of synaptic input-evoked nuclear calcium transients driving the expression of plasticity-related genes. Therefore, the gating of memory functions rests on the reciprocally reinforcing maintenance of an intact dendrite geometry and a functional synapse-to-nucleus communication axis. In psychiatric and neurodegenerative disorders, therapeutic application of VEGFD may help to stabilize dendritic structures and network connectivity, which may prevent cognitive decline and could boost the efficacy of extinction-based exposure therapies. SIGNIFICANCE STATEMENT This study uncovers a reciprocal relationship between dendrite geometry, the ability to generate nuclear calcium transients in response to synaptic inputs, and the subsequent induction of expression of plasticity-related and dendritic structure-preserving genes. Insufficient nuclear calcium signaling in CA1 hippocampal neurons and, consequently, reduced expression of the nuclear calcium target gene VEGFD, a dendrite maintenance factor, leads to reduced-complexity basal dendrites of CA1 neurons, which severely compromises the animals' consolidation of both memory and extinction memory. The structure-protective function of VEGFD may prove beneficial in psychiatric disorders as well as neurodegenerative and aging-related conditions that are associated with loss of neuronal structures, dysfunctional excitation-transcription coupling, and cognitive decline. Copyright © 2017 the authors 0270-6474/17/376946-10$15.00/0.
[Determination of the error of aerosol extinction coefficient measured by DOAS].
Si, Fu-qi; Liu, Jian-guo; Xie, Pin-hua; Zhang, Yu-jun; Wang, Mian; Liu, Wen-qing; Hiroaki, Kuze; Liu, Cheng; Nobuo, Takeuchi
2006-10-01
The method of defining the error of aerosol extinction coefficient measured by differential optical absorption spectroscopy (DOAS) is described. Some factors which could bring errors to result, such as variation of source, integral time, atmospheric turbulence, calibration of system parameter, displacement of system, and back scattering of particles, are analyzed. The error of aerosol extinction coefficient, 0.03 km(-1), is determined by theoretical analysis and practical measurement.
Radiative Properties of Cirrus Clouds in the Infrared (8-13 microns) Spectral Region
NASA Technical Reports Server (NTRS)
Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Tsay, Si-Chee; Winker, Dave M.; Einaudi, Franco (Technical Monitor)
2000-01-01
Atmospheric radiation in the infrared (IR) 8-13 microns spectral region contains a wealth of information that is very useful for the retrieval of ice cloud properties from aircraft or space-borne measurements. To provide the scattering and absorption properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use the finite-difference time domain (FDTD) method to solve for the extinction efficiency, single-scattering albedo, and the asymmetry parameter of the phase function for ice crystals smaller than 40 microns. For particles larger than this size, the improved geometric optics method (IGOM) can be employed to calculate the asymmetry parameter with an acceptable accuracy, provided that we properly account for the inhomogeneity of the refracted wave due to strong absorption inside the ice particle. A combination of the results computed from the two methods provides the asymmetry parameter for the entire practical range of particle sizes between 1 micron and 10000 microns over wavelengths ranging from 8 microns to 13 microns. For the extinction and absorption efficiency calculations, several methods including the IGOM, Mie solution for equivalent spheres (MSFES), and the anomalous diffraction theory (ADT) can lead to a substantial discontinuity in comparison with the FDTD solutions for particle sizes on the order of 40 microns. To overcome this difficulty, we have developed a novel approach called the stretched scattering potential method (SSPM). For the IR 8-13 microns spectral region, we show that SSPM is a more accurate approximation than ADT, MSFES, and IGOM. The SSPM solution can be further refined numerically. Through a combination of the FDTD and SSPM, we have computed the extinction and absorption efficiency for hexagonal ice crystals with sizes ranging from 1 to 10000 microns at 12 wavelengths between 8 and 13 microns Calculations of the cirrus bulk scattering and absorption properties are performed for 30 size distributions obtained from various field campaigns for midlatitude and tropical cirrus cloud systems. Parameterization of these bulk scattering properties is carried out by using second-order polynomial functions for the extinction efficiency and the single-scattering albedo and the power law expression for the asymmetry parameter. We note that the volume-normalized extinction coefficient can be separated into two parts: one is inversely proportional to effective size and is independent of wavelength, and the other is the wavelength-dependent effective extinction efficiency. Unlike conventional parameterization efforts, the present parameterization scheme is more accurate because only the latter part of the volume-normalized extinction coefficient is approximated in terms of an analytical expression. After averaging over size distribution, the single-scattering albedo is shown to decrease with an increase in effective size for wavelengths shorter than 10.0 microns whereas the opposite behavior is observed for longer wavelengths. The variation of the asymmetry parameter as a function of effective size is substantial when the effective size is smaller than 50 microns. For effective sizes larger than 100 microns, the asymmetry parameter approaches its asymptotic value. The results derived in this study can be useful to remote sensing applications involving IR window bands under cirrus cloud conditions.
Estimating extinction using unsupervised machine learning
NASA Astrophysics Data System (ADS)
Meingast, Stefan; Lombardi, Marco; Alves, João
2017-05-01
Dust extinction is the most robust tracer of the gas distribution in the interstellar medium, but measuring extinction is limited by the systematic uncertainties involved in estimating the intrinsic colors to background stars. In this paper we present a new technique, Pnicer, that estimates intrinsic colors and extinction for individual stars using unsupervised machine learning algorithms. This new method aims to be free from any priors with respect to the column density and intrinsic color distribution. It is applicable to any combination of parameters and works in arbitrary numbers of dimensions. Furthermore, it is not restricted to color space. Extinction toward single sources is determined by fitting Gaussian mixture models along the extinction vector to (extinction-free) control field observations. In this way it becomes possible to describe the extinction for observed sources with probability densities, rather than a single value. Pnicer effectively eliminates known biases found in similar methods and outperforms them in cases of deep observational data where the number of background galaxies is significant, or when a large number of parameters is used to break degeneracies in the intrinsic color distributions. This new method remains computationally competitive, making it possible to correctly de-redden millions of sources within a matter of seconds. With the ever-increasing number of large-scale high-sensitivity imaging surveys, Pnicer offers a fast and reliable way to efficiently calculate extinction for arbitrary parameter combinations without prior information on source characteristics. The Pnicer software package also offers access to the well-established Nicer technique in a simple unified interface and is capable of building extinction maps including the Nicest correction for cloud substructure. Pnicer is offered to the community as an open-source software solution and is entirely written in Python.
Genetic sex determination and extinction.
Hedrick, Philip W; Gadau, Jürgen; Page, Robert E
2006-02-01
Genetic factors can affect the probability of extinction either by increasing the effect of detrimental variants or by decreasing the potential for future adaptive responses. In a recent paper, Zayed and Packer demonstrate that low variation at a specific locus, the complementary sex determination (csd) locus in Hymenoptera (ants, bees and wasps), can result in a sharply increased probability of extinction. Their findings illustrate situations in which there is a feedback process between decreased genetic variation at the csd locus owing to genetic drift and decreased population growth, resulting in an extreme type of extinction vortex for these ecologically important organisms.
50 CFR 424.11 - Factors for listing, delisting, or reclassifying species.
Code of Federal Regulations, 2012 CFR
2012-10-01
... more of the following reasons: (1) Extinction. Unless all individuals of the listed species had been... nation, or to be in danger of extinction or likely to become so within the foreseeable future by any...
50 CFR 424.11 - Factors for listing, delisting, or reclassifying species.
Code of Federal Regulations, 2014 CFR
2014-10-01
... more of the following reasons: (1) Extinction. Unless all individuals of the listed species had been... nation, or to be in danger of extinction or likely to become so within the foreseeable future by any...
50 CFR 424.11 - Factors for listing, delisting, or reclassifying species.
Code of Federal Regulations, 2010 CFR
2010-10-01
... more of the following reasons: (1) Extinction. Unless all individuals of the listed species had been... nation, or to be in danger of extinction or likely to become so within the foreseeable future by any...
50 CFR 424.11 - Factors for listing, delisting, or reclassifying species.
Code of Federal Regulations, 2011 CFR
2011-10-01
... more of the following reasons: (1) Extinction. Unless all individuals of the listed species had been... nation, or to be in danger of extinction or likely to become so within the foreseeable future by any...
Nothing is safe: Intolerance of uncertainty is associated with compromised fear extinction learning.
Morriss, Jayne; Christakou, Anastasia; van Reekum, Carien M
2016-12-01
Extinction-resistant fear is considered to be a central feature of pathological anxiety. Here we sought to determine if individual differences in Intolerance of Uncertainty (IU), a potential risk factor for anxiety disorders, underlies compromised fear extinction. We tested this hypothesis by recording electrodermal activity in 38 healthy participants during fear acquisition and extinction. We assessed the temporality of fear extinction, by examining early and late extinction learning. During early extinction, low IU was associated with larger skin conductance responses to learned threat vs. safety cues, whereas high IU was associated with skin conductance responding to both threat and safety cues, but no cue discrimination. During late extinction, low IU showed no difference in skin conductance between learned threat and safety cues, whilst high IU predicted continued fear expression to learned threat, indexed by larger skin conductance to threat vs. safety cues. These findings suggest a critical role of uncertainty-based mechanisms in the maintenance of learned fear. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Myers, Karyn M; Carlezon, William A
2010-11-01
Conditioned drug craving and withdrawal elicited by cues paired with drug use or acute withdrawal are among the many factors contributing to compulsive drug taking. Understanding how to stop these cues from having these effects is a major goal of addiction research. Extinction is a form of learning in which associations between cues and the events they predict are weakened by exposure to the cues in the absence of those events. Evidence from animal models suggests that conditioned responses to drug cues can be extinguished, although the degree to which this occurs in humans is controversial. Investigations into the neurobiological substrates of extinction of conditioned drug craving and withdrawal may facilitate the successful use of drug cue extinction within clinical contexts. While this work is still in the early stages, there are indications that extinction of drug- and withdrawal-paired cues shares neural mechanisms with extinction of conditioned fear. Using the fear extinction literature as a template, it is possible to organize the observations on drug cue extinction into a cohesive framework. Copyright © 2010 Elsevier Ltd. All rights reserved.
Range contraction enables harvesting to extinction.
Burgess, Matthew G; Costello, Christopher; Fredston-Hermann, Alexa; Pinsky, Malin L; Gaines, Steven D; Tilman, David; Polasky, Stephen
2017-04-11
Economic incentives to harvest a species usually diminish as its abundance declines, because harvest costs increase. This prevents harvesting to extinction. A known exception can occur if consumer demand causes a declining species' harvest price to rise faster than costs. This threat may affect rare and valuable species, such as large land mammals, sturgeons, and bluefin tunas. We analyze a similar but underappreciated threat, which arises when the geographic area (range) occupied by a species contracts as its abundance declines. Range contractions maintain the local densities of declining populations, which facilitates harvesting to extinction by preventing abundance declines from causing harvest costs to rise. Factors causing such range contractions include schooling, herding, or flocking behaviors-which, ironically, can be predator-avoidance adaptations; patchy environments; habitat loss; and climate change. We use a simple model to identify combinations of range contractions and price increases capable of causing extinction from profitable overharvesting, and we compare these to an empirical review. We find that some aquatic species that school or forage in patchy environments experience sufficiently severe range contractions as they decline to allow profitable harvesting to extinction even with little or no price increase; and some high-value declining aquatic species experience severe price increases. For terrestrial species, the data needed to evaluate our theory are scarce, but available evidence suggests that extinction-enabling range contractions may be common among declining mammals and birds. Thus, factors causing range contraction as abundance declines may pose unexpectedly large extinction risks to harvested species.
Barker, Jacqueline M.; Taylor, Jane R.; De Vries, Taco J.; Peters, Jamie
2015-01-01
Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular mediator of memory consolidation processes, evident at both behavioral and neurophysiological levels. Specific neural circuits are responsible for storing and executing drug-procuring motor programs, whereas other neural circuits are responsible for the active suppression of these “seeking” systems. These seeking-circuits are established as associations are formed between drug-associated cues and the conditioned responses they elicit. Such conditioned responses (e.g. drug seeking) can be diminished either through a passive weakening of seeking-circuits or an active suppression of those circuits through extinction. Extinction learning occurs when the association between cues and drug are violated, for example, by cue exposure without the drug present. Cue exposure therapy has been proposed as a therapeutic avenue for the treatment of addictions. Here we explore the role of BDNF in extinction circuits, compared to seeking-circuits that “incubate” over prolonged withdrawal periods. We begin by discussing the role of BDNF in extinction memory for fear and cocaine-seeking behaviors, where extinction circuits overlap in infralimbic prefrontal cortex (PFC). We highlight the ability of estrogen to promote BDNF-like effects in hippocampal–prefrontal circuits and consider the role of sex differences in extinction and incubation of drug-seeking behaviors. Finally, we examine how opiates and alcohol “break the mold” in terms of BDNF function in extinction circuits. PMID:25451116
Range contraction enables harvesting to extinction
Burgess, Matthew G.; Costello, Christopher; Gaines, Steven D.; Tilman, David; Polasky, Stephen
2017-01-01
Economic incentives to harvest a species usually diminish as its abundance declines, because harvest costs increase. This prevents harvesting to extinction. A known exception can occur if consumer demand causes a declining species’ harvest price to rise faster than costs. This threat may affect rare and valuable species, such as large land mammals, sturgeons, and bluefin tunas. We analyze a similar but underappreciated threat, which arises when the geographic area (range) occupied by a species contracts as its abundance declines. Range contractions maintain the local densities of declining populations, which facilitates harvesting to extinction by preventing abundance declines from causing harvest costs to rise. Factors causing such range contractions include schooling, herding, or flocking behaviors—which, ironically, can be predator-avoidance adaptations; patchy environments; habitat loss; and climate change. We use a simple model to identify combinations of range contractions and price increases capable of causing extinction from profitable overharvesting, and we compare these to an empirical review. We find that some aquatic species that school or forage in patchy environments experience sufficiently severe range contractions as they decline to allow profitable harvesting to extinction even with little or no price increase; and some high-value declining aquatic species experience severe price increases. For terrestrial species, the data needed to evaluate our theory are scarce, but available evidence suggests that extinction-enabling range contractions may be common among declining mammals and birds. Thus, factors causing range contraction as abundance declines may pose unexpectedly large extinction risks to harvested species. PMID:28351981
Impaired fear extinction learning in adult heterozygous BDNF knock-out mice.
Psotta, Laura; Lessmann, Volkmar; Endres, Thomas
2013-07-01
Brain-derived neurotrophic factor (BDNF) is a crucial regulator of neuroplasticity, which underlies learning and memory processes in different brain areas. To investigate the role of BDNF in the extinction of amygdala-dependent cued fear memories, we analyzed fear extinction learning in heterozygous BDNF knock-out mice, which possess a reduction of endogenous BDNF protein levels to ~50% of wild-type animals. Since BDNF expression has been shown to decline with aging of animals, we tested the performance in extinction learning of these mice at 2 months (young adults) and 7 months (older adults) of age. The present study shows that older adult heterozygous BDNF knock-out mice, which have a chronic 50% lack of BDNF, also possess a deficit in the acquisition of extinction memory, while extinction learning remains unaffected in young adult heterozygous BDNF knock-out mice. This deficit in extinction learning is accompanied by a reduction of BDNF protein in the hippocampus, amygdala and the prefrontal cortex. Copyright © 2013 Elsevier Inc. All rights reserved.
Resistance to extinction, generalization decrement, and conditioned reinforcement.
Dulaney, Alana E; Bell, Matthew C
2008-06-01
This study investigated generalization decrement during an extinction resistance-to-change test for pigeon key pecking using a two-component multiple schedule with equal variable-interval 3-min schedules and different reinforcer amounts (one component presented 2-s access to reinforcement and the other 8s). After establishing baseline responding, subjects were assigned to one of the two extinction conditions: hopper stimuli (hopper and hopper light were activated but no food was available) or Control (inactive hopper and hopper light). Responding in the 8-s component was more resistant to extinction than responding in the 2-s component, the hopper stimuli group was more resistant to extinction compared to the Control group, and an interaction between amount of reinforcement, extinction condition, and session block was present. This finding supports generalization decrement as a factor that influences resistance to extinction. Hopper-time data (the amount of time subjects spent with their heads in the hopper) were compared to resistance-to-change data in an investigation of the role of conditioned reinforcement on resistance to change.
Involvement of CRFR1 in the Basolateral Amygdala in the Immediate Fear Extinction Deficit
Sevelinges, Yannick; Zanoletti, Olivia
2016-01-01
Abstract Several animal and clinical studies have highlighted the ineffectiveness of fear extinction sessions delivered shortly after trauma exposure. This phenomenon, termed the immediate extinction deficit, refers to situations in which extinction programs applied shortly after fear conditioning may result in the reduction of fear behaviors (in rodents, frequently measured as freezing responses to the conditioned cue) during extinction training, but failure to consolidate this reduction in the long term. The molecular mechanisms driving this immediate extinction resistance remain unclear. Here we present evidence for the involvement of the corticotropin releasing factor (CRF) system in the basolateral amygdala (BLA) in male Wistar rats. Intra-BLA microinfusion of the CRFR1 antagonist NBI30775 enhances extinction recall, whereas administration of the CRF agonist CRF6–33 before delayed extinction disrupts recall of extinction. We link the immediate fear extinction deficit with dephosphorylation of GluA1 glutamate receptors at Ser845 and enhanced activity of the protein phosphatase calcineurin in the BLA. Their reversal after treatment with the CRFR1 antagonist indicates their dependence on CRFR1 actions. These findings can have important implications for the improvement of therapeutic approaches to trauma, as well as furthering our understanding of the neurobiological mechanisms underlying fear-related disorders. PMID:27844053
Involvement of CRFR1 in the Basolateral Amygdala in the Immediate Fear Extinction Deficit.
Hollis, Fiona; Sevelinges, Yannick; Grosse, Jocelyn; Zanoletti, Olivia; Sandi, Carmen
2016-01-01
Several animal and clinical studies have highlighted the ineffectiveness of fear extinction sessions delivered shortly after trauma exposure. This phenomenon, termed the immediate extinction deficit, refers to situations in which extinction programs applied shortly after fear conditioning may result in the reduction of fear behaviors (in rodents, frequently measured as freezing responses to the conditioned cue) during extinction training, but failure to consolidate this reduction in the long term. The molecular mechanisms driving this immediate extinction resistance remain unclear. Here we present evidence for the involvement of the corticotropin releasing factor (CRF) system in the basolateral amygdala (BLA) in male Wistar rats. Intra-BLA microinfusion of the CRFR 1 antagonist NBI30775 enhances extinction recall, whereas administration of the CRF agonist CRF 6-33 before delayed extinction disrupts recall of extinction. We link the immediate fear extinction deficit with dephosphorylation of GluA1 glutamate receptors at Ser 845 and enhanced activity of the protein phosphatase calcineurin in the BLA. Their reversal after treatment with the CRFR 1 antagonist indicates their dependence on CRFR 1 actions. These findings can have important implications for the improvement of therapeutic approaches to trauma, as well as furthering our understanding of the neurobiological mechanisms underlying fear-related disorders.
Genetic disruptions of Drosophila Pavlovian learning leave extinction learning intact.
Qin, H; Dubnau, J
2010-03-01
Individuals who experience traumatic events may develop persistent posttraumatic stress disorder. Patients with this disorder are commonly treated with exposure therapy, which has had limited long-term success. In experimental neurobiology, fear extinction is a model for exposure therapy. In this behavioral paradigm, animals are repeatedly exposed in a safe environment to the fearful stimulus, which leads to greatly reduced fear. Studying animal models of extinction already has lead to better therapeutic strategies and development of new candidate drugs. Lack of a powerful genetic model of extinction, however, has limited progress in identifying underlying molecular and genetic factors. In this study, we established a robust behavioral paradigm to study the short-term effect (acquisition) of extinction in Drosophila melanogaster. We focused on the extinction of olfactory aversive 1-day memory with a task that has been the main workhorse for genetics of memory in flies. Using this paradigm, we show that extinction can inhibit each of two genetically distinct forms of consolidated memory. We then used a series of single-gene mutants with known impact on associative learning to examine the effects on extinction. We find that extinction is intact in each of these mutants, suggesting that extinction learning relies on different molecular mechanisms than does Pavlovian learning.
Experience with dynamic reinforcement rates decreases resistance to extinction.
Craig, Andrew R; Shahan, Timothy A
2016-03-01
The ability of organisms to detect reinforcer-rate changes in choice preparations is positively related to two factors: the magnitude of the change in rate and the frequency with which rates change. Gallistel (2012) suggested similar rate-detection processes are responsible for decreases in responding during operant extinction. Although effects of magnitude of change in reinforcer rate on resistance to extinction are well known (e.g., the partial-reinforcement-extinction effect), effects of frequency of changes in rate prior to extinction are unknown. Thus, the present experiments examined whether frequency of changes in baseline reinforcer rates impacts resistance to extinction. Pigeons pecked keys for variable-interval food under conditions where reinforcer rates were stable and where they changed within and between sessions. Overall reinforcer rates between conditions were controlled. In Experiment 1, resistance to extinction was lower following exposure to dynamic reinforcement schedules than to static schedules. Experiment 2 showed that resistance to presession feeding, a disruptor that should not involve change-detection processes, was unaffected by baseline-schedule dynamics. These findings are consistent with the suggestion that change detection contributes to extinction. We discuss implications of change-detection processes for extinction of simple and discriminated operant behavior and relate these processes to the behavioral-momentum based approach to understanding extinction. © 2016 Society for the Experimental Analysis of Behavior.
Bennett, Maxwell R; Arnold, Jonathon; Hatton, Sean N; Lagopoulos, Jim
2017-02-15
The extinction of a conditioned fear response is of great interest in the search for a means of ameliorating adverse neurobiological changes resulting from stress. The discovery that endocannibinoid (EC) levels are inversely related to the extent of such stress, and that the amygdala is a primary site mediating stress, suggests that ECs in this brain region might play a major role in extinction. Supporting this are the observations that the basolateral complex of the amygdala shows an increase in ECs only during extinction and that early clinical trials indicate that cannabinoid-like agents, when taken orally by patients suffering from post traumatic stress disorder (PTSD), reduce insomnia and nightmares. In order to optimize the potential of these agents to ameliorate symptoms of PTSD four important questions need to be answered: first, what is the identity of the cells that release ECs in the amygdala during extinction; second, what are their sites of action; third, what roles do the ECs play in the alleviation of long- depression (LTD), a process central to extinction; and finally, to what extent does brain derived neurotrophic factor (BDNF) facilitate the release of ECs? A review of the relevant literature is presented in an attempt to answer these questions. It is suggested that the principal cell involved in EC synthesis and release during extinction is the so-called excitatory extinction neuron in the basal nucleus of the amygdala. Furthermore that the main site of action of the ECs is the adjacent calcitonin gene-related peptide inhibitory interneurons, whose normal role of blocking the excitatory neurons is greatly diminished. The molecular pathways leading (during extinction trials) to the synthesis and release of ECs from synaptic spines of extinction neurons, that is potentiated by BDNF, are also delineated in this review. Finally, consideration is given to how the autocrine action of BDNF, linked to the release of ECs, can lead to the sustained release of these, so maintaining extinction over long times. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui
2016-10-06
Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (J sc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultraviolet photometry from the Orbiting Astronomical Observatory. II Interstellar extinction.
NASA Technical Reports Server (NTRS)
Bless, R. C.; Savage, B. D.
1972-01-01
Evaluation of interstellar extinction curves over the region from 3600 to 1100 A for 17 stars. The observations were made by the two Wisconsin spectrometers on board the Orbiting Astronomical Observatory 2, with spectral resolutions of 10 and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region from 1800 to 1350 A, and finally a rapid rise to the far-ultraviolet. Large extinction variations from star to star are found, especially in the far-ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20. The observations appear to require a multicomponent model of the interstellar dust.
The shrinking ark: patterns of large mammal extinctions in India
Karanth, Krithi K.; Nichols, James D.; Karanth, K. Ullas; Hines, James E.; Christensen, Norman L.
2010-01-01
Mammal extinctions are widespread globally, with South Asian species being most threatened. We examine local extinctions of 25 mammals in India. We use historical records to obtain a set of locations at which each species was known to have been present at some time in the last 200 years. We then use occupancy estimation models to draw inferences about current presence at these same locations based on field observations of local experts. We examine predictions about the influence of key factors such as protected areas, forest cover, elevation, human population density and cultural tolerance on species extinction. For all 25 species, estimated local extinction probabilities (referenced to a 100 year time frame) range between 0.14 and 0.96. Time elapsed since the historical occurrence record was an important determinant of extinction probability for 14 species. Protected areas are positively associated with lower extinction of 18 species, although many species occur outside them. We find evidence that higher proportion of forest cover is associated with lower extinction probabilities for seven species. However, for species that prefer open habitats (which have experienced intensive land-use change), forest cover alone appears insufficient to ensure persistence (the complement of extinction). We find that higher altitude is positively associated with lower extinction for eight species. Human population density is positively associated with extinction of 13 species. We find that ‘culturally tolerated’ species do exhibit higher persistence. Overall, large-bodied, rare and habitat specialist mammals tend to have higher extinction probabilities. PMID:20219736
Extinction and the spatial dynamics of biodiversity
Jablonski, David
2008-01-01
The fossil record amply shows that the spatial fabric of extinction has profoundly shaped the biosphere; this spatial dimension provides a powerful context for integration of paleontological and neontological approaches. Mass extinctions evidently alter extinction selectivity, with many factors losing effectiveness except for a positive relation between survivorship and geographic range at the clade level (confirmed in reanalyses of end-Cretaceous extinction data). This relation probably also holds during “normal” times, but changes both slope and intercept with increasing extinction. The strong geographical component to clade dynamics can obscure causation in the extinction of a feature or a clade, owing to hitchhiking effects on geographic range, so that multifactorial analyses are needed. Some extinctions are spatially complex, and regional extinctions might either reset a diversity ceiling or create a diversification debt open to further diversification or invasion. Evolutionary recoveries also exhibit spatial dynamics, including regional differences in invasibilty, and expansion of clades from the tropics fuels at least some recoveries, as well as biodiversity dynamics during normal times. Incumbency effects apparently correlate more closely with extinction intensities than with standing diversities, so that regions with higher local and global extinctions are more subject to invasion; the latest Cenozoic temperate zones evidently received more invaders than the tropics or poles, but this dynamic could shift dramatically if tropical diversity is strongly depleted. The fossil record can provide valuable insights, and their application to present-day issues will be enhanced by partitioning past and present-day extinctions by driving mechanism rather than emphasizing intensity. PMID:18695229
3,4-Methylenedioxymethamphetamine facilitates fear extinction learning
Young, M B; Andero, R; Ressler, K J; Howell, L L
2015-01-01
Acutely administered 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy') has been proposed to have long-term positive effects on post-traumatic stress disorder (PTSD) symptoms when combined with psychotherapy. No preclinical data support a mechanistic basis for these claims. Given the persistent nature of psychotherapeutic gains facilitated by MDMA, we hypothesized that MDMA improves fear extinction learning, a key process in exposure-based therapies for PTSD. In these experiments, mice were first exposed to cued fear conditioning and treated with drug vehicle or MDMA before extinction training 2 days later. MDMA was administered systemically and also directly targeted to brain structures known to contribute to extinction. In addition to behavioral measures of extinction, changes in mRNA levels of brain-derived neurotrophic factor (Bdnf) and Fos were measured after MDMA treatment and extinction. MDMA (7.8 mg kg−1) persistently and robustly enhanced long-term extinction when administered before extinction training. MDMA increased the expression of Fos in the amygdala and medial prefrontal cortex (mPFC), whereas increases in Bdnf expression were observed only in the amygdala after extinction training. Extinction enhancements were recapitulated when MDMA (1 μg) was infused directly into the basolateral complex of the amygdala (BLA), and enhancement was abolished when BDNF signaling was inhibited before extinction. These findings suggest that MDMA enhances fear memory extinction through a BDNF-dependent mechanism, and that MDMA may be a useful adjunct to exposure-based therapies for PTSD and other anxiety disorders characterized by altered fear learning. PMID:26371762
3,4-Methylenedioxymethamphetamine facilitates fear extinction learning.
Young, M B; Andero, R; Ressler, K J; Howell, L L
2015-09-15
Acutely administered 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') has been proposed to have long-term positive effects on post-traumatic stress disorder (PTSD) symptoms when combined with psychotherapy. No preclinical data support a mechanistic basis for these claims. Given the persistent nature of psychotherapeutic gains facilitated by MDMA, we hypothesized that MDMA improves fear extinction learning, a key process in exposure-based therapies for PTSD. In these experiments, mice were first exposed to cued fear conditioning and treated with drug vehicle or MDMA before extinction training 2 days later. MDMA was administered systemically and also directly targeted to brain structures known to contribute to extinction. In addition to behavioral measures of extinction, changes in mRNA levels of brain-derived neurotrophic factor (Bdnf) and Fos were measured after MDMA treatment and extinction. MDMA (7.8 mg kg(-1)) persistently and robustly enhanced long-term extinction when administered before extinction training. MDMA increased the expression of Fos in the amygdala and medial prefrontal cortex (mPFC), whereas increases in Bdnf expression were observed only in the amygdala after extinction training. Extinction enhancements were recapitulated when MDMA (1 μg) was infused directly into the basolateral complex of the amygdala (BLA), and enhancement was abolished when BDNF signaling was inhibited before extinction. These findings suggest that MDMA enhances fear memory extinction through a BDNF-dependent mechanism, and that MDMA may be a useful adjunct to exposure-based therapies for PTSD and other anxiety disorders characterized by altered fear learning.
NASA Astrophysics Data System (ADS)
Corsetti, F. A.; Thibodeau, A. M.; Ritterbush, K. A.; West, A. J.; Yager, J. A.; Ibarra, Y.; Bottjer, D. J.; Berelson, W.; Bergquist, B. A.
2015-12-01
Recent high-resolution age dating demonstrates that the end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and the release of CO2 and other volatiles to the atmosphere has been implicated in the extinction. Given the potentially massive release of CO2, ocean acidification is commonly considered a factor in the extinction and the collapse of shallow marine carbonate ecosystems. However, the timing of global marine biotic recovery versus the CAMP eruptions is more uncertain. Here, we use Hg concentrations and Hg/TOC ratios as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg and Hg/TOC levels are low prior to the extinction, rise sharply in the extinction interval, peak just prior to the appearance of the first Jurassic ammonite, and remain above background in association with a depauperate (low diversity) earliest Jurassic fauna. The return of Hg to pre-extinction levels is associated with a significant pelagic and benthic faunal recovery. We conclude that significant biotic recovery did not begin until CAMP eruptions ceased. Furthermore, the initial benthic recovery in the Muller Canyon section involves the expansion of a siliceous sponge-dominated ecosystem across shallow marine environments, a feature now known from other sections around the world (e.g., Peru, Morocco, Austria, etc.). Carbonate dominated benthic ecosystems (heralded by the return of abundant corals and other skeletal carbonates) did not recover for ~1 million years following the last eruption of CAMP, longer than the typical duration considered for ocean acidification events, implying other factors may have played a role in carbonate ecosystem dynamics after the extinction.
In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent
2016-11-01
has over 15 years of experience investigating signaling in the prostate, and is well versed in both cell culture and animal models for prostate cancer...as Hb generate relatively weak photoacoustic signals (due to a small absorptivity factor or extinction coefficient) and lack cancer specificity...oxyhemoglobin (dHb) and oxyhemoglobin (HbO2) have two limitations: i) their small absorptivity factor ( extinction coefficient) leads to weak PA signals
Narayanan, Venu; Heiming, Rebecca S.; Jansen, Friederike; Lesting, Jörg; Sachser, Norbert; Pape, Hans-Christian; Seidenbecher, Thomas
2011-01-01
Emotions, such as fear and anxiety, can be modulated by both environmental and genetic factors. One genetic factor is for example the genetically encoded variation of the serotonin transporter (5-HTT) expression. In this context, the 5-HTT plays a key role in the regulation of central 5-HT neurotransmission, which is critically involved in the physiological regulation of emotions including fear and anxiety. However, a systematic study which examines the combined influence of environmental and genetic factors on fear-related behavior and the underlying neurophysiological basis is missing. Therefore, in this study we used the 5-HTT-deficient mouse model for studying emotional dysregulation to evaluate consequences of genotype specific disruption of 5-HTT function and repeated social defeat for fear-related behaviors and corresponding neurophysiological activities in the lateral amygdala (LA) and infralimbic region of the medial prefrontal cortex (mPFC) in male 5-HTT wild-type (+/+), homo- (−/−) and heterozygous (+/−) mice. Naive males and experienced losers (generated in a resident-intruder paradigm) of all three genotypes, unilaterally equipped with recording electrodes in LA and mPFC, underwent a Pavlovian fear conditioning. Fear memory and extinction of conditioned fear was examined while recording neuronal activity simultaneously with fear-related behavior. Compared to naive 5-HTT+/+ and +/− mice, 5-HTT−/− mice showed impaired recall of extinction. In addition, 5-HTT−/− and +/− experienced losers showed delayed extinction learning and impaired recall of extinction. Impaired behavioral responses were accompanied by increased theta synchronization between the LA and mPFC during extinction learning in 5-HTT-/− and +/− losers. Furthermore, impaired extinction recall was accompanied with increased theta synchronization in 5-HTT−/− naive and in 5-HTT−/− and +/− loser mice. In conclusion, extinction learning and memory of conditioned fear can be modulated by both the 5-HTT gene activity and social experiences in adulthood, accompanied by corresponding alterations of the theta activity in the amygdala-prefrontal cortex network. PMID:21818344
NASA Astrophysics Data System (ADS)
Wu, Feng
2018-03-01
We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.
A sphingolipid mechanism for behavioral extinction.
Huston, Joseph P; Kornhuber, Johannes; Mühle, Christiane; Japtok, Lukasz; Komorowski, Mara; Mattern, Claudia; Reichel, Martin; Gulbins, Erich; Kleuser, Burkhard; Topic, Bianca; De Souza Silva, Maria A; Müller, Christian P
2016-05-01
Reward-dependent instrumental behavior must continuously be re-adjusted according to environmental conditions. Failure to adapt to changes in reward contingencies may incur psychiatric disorders like anxiety and depression. When an expected reward is omitted, behavior undergoes extinction. While extinction involves active re-learning, it is also accompanied by emotional behaviors indicative of frustration, anxiety, and despair (extinction-induced depression). Here, we report evidence for a sphingolipid mechanism in the extinction of behavior. Rapid extinction, indicating efficient re-learning, coincided with a decrease in the activity of the enzyme acid sphingomyelinase (ASM), which catalyzes turnover of sphingomyelin to ceramide, in the dorsal hippocampus of rats. The stronger the decline in ASM activity, the more rapid was the extinction. Sphingolipid-focused lipidomic analysis showed that this results in a decline of local ceramide species in the dorsal hippocampus. Ceramides shape the fluidity of lipid rafts in synaptic membranes and by that way can control neural plasticity. We also found that aging modifies activity of enzymes and ceramide levels in selective brain regions. Aging also changed how the chronic treatment with corticosterone (stress) or intranasal dopamine modified regional enzyme activity and ceramide levels, coinciding with rate of extinction. These data provide first evidence for a functional ASM-ceramide pathway in the brain involved in the extinction of learned behavior. This finding extends the known cellular mechanisms underlying behavioral plasticity to a new class of membrane-located molecules, the sphingolipids, and their regulatory enzymes, and may offer new treatment targets for extinction- and learning-related psychopathological conditions. Sphingolipids are common lipids in the brain which form lipid domains at pre- and postsynaptic membrane compartments. Here we show a decline in dorsal hippocampus ceramide species together with a reduction of acid sphingomyelinase activity during extinction of conditioned behavior in rats. This reduction was associated with expression of re-learning-related behavior, but not with emotional behaviors. Read the Editorial Highlight for this article on page 485. © 2016 International Society for Neurochemistry.
Topic, Bianca; Huston, Joseph P; Namestkova, Katerina; Zhu, Shun-Wei; Mohammed, Abdul H; Schulz, Daniela
2008-10-01
In the search for animal models of human geriatric depression, we found that operant extinction of escape from water results in the expression of immobility in different age groups, indicative of behavioral "despair", which was also associated with the resistance-to-extinction (RTE) expressed by these animals. With respect to the neurotrophin hypothesis of depression, nerve-growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) protein levels in frontal cortex (FC) and hippocampus (HP) were examined and related to behavioral immobility and RTE in the water maze in aged and adult Wistar rats. Age-related increases in levels of NGF were found in HP and of NT-3 in FC. Indices of immobility showed relationships in the aged with NGF and, in adults, with BDNF, pointing to a dissociation of neurotrophic involvement in extinction trial-induced "despair" in aged and adult rats. The present results support the hypothesis, that extinction-induced immobility in the water maze reflects a state akin to behavioral despair and point to age-related differences of neurotrophic involvement in depressive-like symptoms. The concept of extinction-induced behavioral "despair" in the aged subsumes several aspects of human geriatric depression, such as co-morbidity of learning impairment and anxiety, and, thus could represent a useful paradigm to examine the neuronal mechanisms underlying depression, especially in aged rodents.
Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.
Rao, V Kesava; Radhakrishnan, T P
2015-06-17
Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.
Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response
NASA Astrophysics Data System (ADS)
Khlebtsov, Boris N.; Liu, Zhonghui; Ye, Jian; Khlebtsov, Nikolai G.
2015-12-01
Recent studies have conclusively shown that the plasmonic properties of Au nanorods can be finely controlled by Ag coating. Here, we investigate the effect of asymmetric silver overgrowth of Au nanorods on their extinction and surface-enhanced Raman scattering (SERS) properties for colloids and self-assembled monolayers. Au@Ag core/shell cuboids and dumbbells were fabricated through a seed-mediated anisotropic growth process, in which AgCl was reduced by use of Au nanorods with narrow size and shape distribution as seeds. Upon tailoring the reaction rate, monodisperse cuboids and dumbbells were synthesized and further transformed into water-soluble powders of PEGylated nanoparticles. The extinction spectra of AuNRs were in excellent agreement with T-matrix simulations based on size and shape distributions of randomly oriented particles. The multimodal plasmonic properties of the Au@Ag cuboids and dumbbells were investigated by comparing the experimental extinction spectra with finite-difference time-domain (FDTD) simulations. The SERS efficiencies of the Au@Ag cuboids and dumbbells were compared in two options: (1) individual SERS enhancers in colloids and (2) self-assembled monolayers formed on a silicon wafer by drop casting of nanopowder solutions mixed with a drop of Raman reporters. By using 1,4-aminothiophenol Raman reporter molecules, the analytical SERS enhancement factor (AEF) of the colloidal dumbbells was determined to be 5.1×106, which is an order of magnitude higher than the AEF=4.0×105 for the cuboids. This difference can be explained by better fitting of the dumbbell plasmon resonance to the excitation laser wavelength. In contrast to the colloidal measurements, the AEF=5×107 of self-assembled cuboid monolayers was almost twofold higher than that for dumbbell monolayers, as determined with rhodamine 6G Raman reporters. According to TEM data and electromagnetic simulations, the better SERS response of the self-assembled cuboids is due to uniform packing and more efficient generation of electromagnetic hot spots, as compared to the dumbbell monolayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.
We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor ofmore » ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.« less
Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE
NASA Astrophysics Data System (ADS)
Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.
2003-10-01
Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.
Pavanello, Fabio; Zeng, Xiaoge; Wade, Mark T; Popović, Miloš A
2016-11-28
We propose ring modulators based on interdigitated p-n junctions that exploit standing rather than traveling-wave resonant modes to improve modulation efficiency, insertion loss and speed. Matching the longitudinal nodes and antinodes of a standing-wave mode with high (contacts) and low (depletion regions) carrier density regions, respectively, simultaneously lowers loss and increases sensitivity significantly. This approach permits further to relax optical constraints on contacts placement and can lead to lower device capacitance. Such structures are well-matched to fabrication in advanced microelectronics CMOS processes. Device architectures that exploit this concept are presented along with their benefits and drawbacks. A temporal coupled mode theory model is used to investigate the static and dynamic response. We show that modulation efficiencies or loss Q factors up to 2 times higher than in previous traveling-wave geometries can be achieved leading to much larger extinction ratios. Finally, we discuss more complex doping geometries that can improve carrier dynamics for higher modulation speeds in this context.
Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy.
MacPherson, Kathryn; Whittle, Nigel; Camp, Marguerite; Gunduz-Cinar, Ozge; Singewald, Nicolas; Holmes, Andrew
2013-07-05
Various neuropsychiatric conditions, including posttraumatic stress disorder (PTSD), are characterized by deficient fear extinction, but individuals differ greatly in risk for these. While there is growing evidence that fear extinction is influenced by certain procedural variables, it is unclear how these influences might vary across individuals and subpopulations. To model individual differences in fear extinction, prior studies identified a strain of inbred mouse, 129S1/SvImJ (S1), which exhibits a profound deficit in fear extinction, as compared to other inbred strains, such as C57BL/6J (B6). Here, we assessed the effects of procedural variables on the impaired extinction phenotype of the S1 strain and, by comparison, the extinction-intact B6 strain. The variables studied were 1) the interval between conditioning and extinction, 2) the interval between cues during extinction training, 3) single-cue exposure before extinction training, and 4) extinction of a second-order conditioned cue. Conducting extinction training soon after ('immediately') conditioning attenuated fear retrieval in S1 mice and impaired extinction in B6 mice. Spacing cue presentations with long inter-trial intervals during extinction training augmented fear in S1 and B6 mice. The effect of spacing was lost with one-trial fear conditioning in B6, but not S1 mice. A single exposure to a conditioned cue before extinction training did not alter extinction retrieval, either in B6 or S1 mice. Both the S1 and B6 strains exhibited robust second-order fear conditioning, in which a cue associated with footshock was sufficient to serve as a conditioned exciter to condition a fear association to a second cue. B6 mice extinguished the fear response to the second-order conditioned cue, but S1 mice failed to do so. These data provide further evidence that fear extinction is strongly influenced by multiple procedural variables and is so in a highly strain-dependent manner. This suggests that the efficacy of extinction-based behavioral interventions, such as exposure therapy, for trauma-related anxiety disorders will be determined by the procedural parameters employed and the degree to which the patient can extinguish.
Human influence on distribution and extinctions of the late Pleistocene Eurasian megafauna.
Pushkina, Diana; Raia, Pasquale
2008-06-01
Late Pleistocene extinctions are of interest to paleontological and anthropological research. In North America and Australia, human occupation occurred during a short period of time and overexploitation may have led to the extinction of mammalian megafauna. In northern Eurasia megafaunal extinctions are believed to have occurred over a relatively longer period of time, perhaps as a result of changing environmental conditions, but the picture is much less clear. To consider megafaunal extinction in Eurasia, we compare differences in the geographical distribution and commonness of extinct and extant species between paleontological and archaeological localities from the late middle Pleistocene to Holocene. Purely paleontological localities, as well as most extinct species, were distributed north of archaeological sites and of the extant species, suggesting that apart from possible differences in adaptations between humans and other species, humans could also have a detrimental effect on large mammal distribution. However, evidence for human overexploitation applies only to the extinct steppe bison Bison priscus. Other human-preferred species survive into the Holocene, including Rangifer tarandus, Equus ferus, Capreolus capreolus, Cervus elaphus, Equus hemionus, Saiga tatarica, and Sus scrofa. Mammuthus primigenius and Megaloceros giganteus were rare in archaeological sites. Carnivores appear little influenced by human presence, although they become rarer in Holocene archaeological sites. Overall, the data are consistent with the conclusion that humans acted as efficient hunters selecting for the most abundant species. Our study supports the idea that the late Pleistocene extinctions were environmentally driven by climatic changes that triggered habitat fragmentation, species range reduction, and population decrease, after which human interference either by direct hunting or via indirect activities probably became critical.
Variation in crown light utilization characteristics among tropical canopy trees.
Kitajima, Kaoru; Mulkey, Stephen S; Wright, S Joseph
2005-02-01
Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.
Chang, Yao-Ju; Yang, Chih-Hao; Liang, Ying-Ching; Yeh, Che-Ming; Huang, Chiung-Chun; Hsu, Kuei-Sen
2009-11-01
Females and males are different in brain and behavior. These sex differences occur early during development due to a combination of genetic and hormonal factors and continue throughout the lifespan. Previous studies revealed that male rats exhibited significantly higher levels of contextual fear memory than female rats. However, it remains unknown whether a sex difference exists in the contextual fear extinction. To address this issue, male, normally cycling female, and ovariectomized (OVX) female Sprague-Dawley rats were subjected to contextual fear conditioning and extinction trials. Here we report that although male rats exhibited higher levels of freezing than cycling female rats after contextual fear conditioning, female rats subjected to conditioning in the proestrus and estrus stage exhibited an enhancement of fear extinction than male rats. An estrogen receptor (ER) beta agonist diarylpropionitrile but not an ERalpha agonist propyl-pyrazole-triol administration also enhanced extinction of contextual fear in OVX female rats, suggesting that estrogen-mediated facilitation of extinction involves the activation of ERbeta. Intrahippocampal injection of estradiol or diarylpropionitrile before extinction training in OVX female rats remarkably reduced the levels of freezing response during extinction trials. In addition, the locomotion or anxiety state of female rats does not vary across the ovarian cycle. These results reveal a crucial role for estrogen in mediating sexually dimorphic contextual fear extinction, and that estrogen-mediated enhancement of fear extinction involves the activation of ERbeta.
Yang, Guan-Dong; Agapow, Paul-Michael
2017-01-01
The kind and duration of phylogenetic topological “signatures” left in the wake of macroevolutionary events remain poorly understood. To this end, we examined a broad range of simulated phylogenies generated using trait-biased, heritable speciation probabilities and mass extinction that could be either random or selective on trait value, but also using background extinction and diversity-dependence to constrain clade sizes. In keeping with prior results, random mass extinction increased imbalance of clades that recovered to pre-extinction size, but was a relatively weak effect. Mass extinction that was selective on trait values tended to produce clades of similar or greater balance compared to random extinction or controls. Allowing evolution to continue past the point of clade-size recovery resulted in erosion and eventual erasure of this signal, with all treatments converging on similar values of imbalance, except for very intense extinction regimes targeted at taxa with high speciation rates. Return to a more balanced state with extended post-extinction evolution was also associated with loss of the previous phylogenetic root in most treatments. These results further demonstrate that while a mass extinction event can produce a recognizable phylogenetic signal, its effects become increasingly obscured the further an evolving clade gets from that event, with any sharp imbalance due to unrelated evolutionary factors. PMID:28644846
Rethinking Trade-Driven Extinction Risk in Marine and Terrestrial Megafauna.
McClenachan, Loren; Cooper, Andrew B; Dulvy, Nicholas K
2016-06-20
Large animals hunted for the high value of their parts (e.g., elephant ivory and shark fins) are at risk of extinction due to both intensive international trade pressure and intrinsic biological sensitivity. However, the relative role of trade, particularly in non-perishable products, and biological factors in driving extinction risk is not well understood [1-4]. Here we identify a taxonomically diverse group of >100 marine and terrestrial megafauna targeted for international luxury markets; estimate their value across three points of sale; test relationships among extinction risk, high value, and body size; and quantify the effects of two mitigating factors: poaching fines and geographic range size. We find that body size is the principal driver of risk for lower value species, but that this biological pattern is eliminated above a value threshold, meaning that the most valuable species face a high extinction risk regardless of size. For example, once mean product values exceed US$12,557 kg(-1), body size no longer drives risk. Total value scales with size for marine animals more strongly than for terrestrial animals, incentivizing the hunting of large marine individuals and species. Poaching fines currently have little effect on extinction risk; fines would need to be increased 10- to 100-fold to be effective. Large geographic ranges reduce risk for terrestrial, but not marine, species, whose ranges are ten times greater. Our results underscore both the evolutionary and ecosystem consequences of targeting large marine animals and the need to geographically scale up and prioritize conservation of high-value marine species to avoid extinction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sturm, Anna; Czisch, Michael; Spoormaker, Victor I
2013-12-01
Impaired fear extinction and disturbed sleep coincide in post-traumatic stress disorder (PTSD), but the nature of this relationship is unclear. Rapid eye movement (REM) sleep deprivation impairs fear extinction recall in rodents and young healthy subjects, and animal models have demonstrated both disrupted sleep after fear conditioning and normalized sleep after extinction learning. As a correlation between unconditioned stimulus (US) responding and subsequent sleep architecture has been observed in healthy subjects, the goal of this study was to test whether US intensity would causally affect subsequent sleep. Twenty-four young healthy subjects underwent a fear conditioning session with skin conductance response measurements before an afternoon session of polysomnographically recorded sleep (up to 120 min) in the sleep laboratory. Two factors were manipulated experimentally in a 2 × 2 design: US (electrical shock) was set at high or low intensity, and subjects did or did not receive an extinction session after fear conditioning. We observed that neither factor affected REM sleep amount, that high US intensity nominally increased sleep fragmentation (more Stage 1 sleep, stage shifts and wake after sleep onset), and that extinction increased Stage 4 amount. Moreover, reduced Stage 1 and increased Stage 4 and REM sleep were associated with subjective sleep quality of the afternoon nap. These results provide evidence for the notion that US intensity and extinction affect subsequent sleep architecture in young healthy subjects, which may provide a translational bridge from findings in animal studies to correlations observed in PTSD patients. © 2013 European Sleep Research Society.
Evaluation of light penetration on Navigation Pools 8 and 13 of the Upper Mississippi River
Giblin, Shawn; Hoff, Kraig; Fischer, Jim; Dukerschein, Terry
2010-01-01
The availability of light can have a dramatic affect on macrophyte and phytoplankton abundance in virtually all aquatic ecosystems. The Long Term Resource Monitoring Program and other monitoring programs often measure factors that affect light extinction (nonvolatile suspended solids, volatile suspended solids, and chlorophyll) and correlates of light extinction (turbidity and Secchi depth), but rarely do they directly measure light extinction. Data on light extinction, Secchi depth, transparency tube, turbidity, total suspended solids, and volatile suspended solids were collected during summer 2003 on Pools 8 and 13 of the Upper Mississippi River. Regressions were developed to predict light extinction based upon Secchi depth, transparency tube, turbidity, and total suspended solids. Transparency tube, Secchi depth, and turbidity all showed strong relations with light extinction and can effectively predict light extinction. Total suspended solids did not show as strong a relation to light extinction. Volatile suspended solids had a greater affect on light extinction than nonvolatile suspended solids. The data were compared to recommended criteria established for light extinction, Secchi depth, total suspended solids, and turbidity by the Upper Mississippi River Conservation Committee to sustain submersed aquatic vegetation in the Upper Mississippi River. During the study period, the average condition in Pool 8 met or exceeded all of the criteria whereas the average condition in Pool 13 failed to meet any of the criteria. This report provides river managers with an effective tool to predict light extinction based upon readily available data.
Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons.
Sepulveda-Orengo, Marian T; Lopez, Ana V; Soler-Cedeño, Omar; Porter, James T
2013-04-24
Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor (AMPAR) rectification, and intrinsic excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp recording. We observed that fear extinction increases the AMPA/NMDA ratio, consistent with insertion of AMPARs into IL synapses. In addition, extinction training increased inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPARs into IL synapses. Consistent with this, selectively blocking calcium-permeable AMPARs with Naspm reduced the AMPA EPSCs in IL neurons to a larger degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an mGluR5 antagonist. These findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic excitability of IL neurons and modifying the composition of AMPARs in IL synapses. Therefore, impaired mGluR5 activity in IL synapses could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders.
Xin, Jian; Ma, Ling; Zhang, Tian-Yi; Yu, Hui; Wang, Yue; Kong, Liang; Chen, Zhe-Yu
2014-05-21
Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), play a critical role in memory extinction. However, the detailed role of BDNF in memory extinction on the basis of neural circuit has not been fully understood. Here, we aim to investigate the role of BDNF signaling circuit in mediating conditioned taste aversion (CTA) memory extinction of the rats. We found region-specific changes in BDNF gene expression during CTA extinction. CTA extinction led to increased BDNF gene expression in the basolateral amygdala (BLA) and infralimbic prefrontal cortex (IL) but not in the central amygdaloid nucleus (CeA) and hippocampus (HIP). Moreover, blocking BDNF signaling or exogenous microinjection of BDNF into the BLA or IL could disrupt or enhance CTA extinction, which suggested that BDNF signaling in the BLA and IL is necessary and sufficient for CTA extinction. Interestingly, we found that microinjection of BDNF-neutralizing antibody into the BLA could abolish the extinction training-induced BDNF mRNA level increase in the IL, but not vice versa, demonstrating that BDNF signaling is transmitted from the BLA to IL during extinction. Finally, the accelerated extinction learning by infusion of exogenous BDNF in the BLA could also be blocked by IL infusion of BDNF-neutralizing antibody rather than vice versa, indicating that the IL, but not BLA, is the primary action site of BDNF in CTA extinction. Together, these data suggest that BLA-IL circuit regulates CTA memory extinction by identifying BDNF as a key regulator. Copyright © 2014 the authors 0270-6474/14/347302-12$15.00/0.
Efficient iodine-free dye-sensitized solar cells employing truxene-based organic dyes.
Zong, Xueping; Liang, Mao; Chen, Tao; Jia, Jiangnan; Wang, Lina; Sun, Zhe; Xue, Song
2012-07-07
Two new truxene-based organic sensitizers (M15 and M16) featuring high extinction coefficients were synthesized for dye-sensitized solar cells employing cobalt electrolyte. The M16-sensitized device displays a 7.6% efficiency at an irradiation of AM1.5 full sunlight.
Huang, Long; Ma, Pengfei; Tao, Rumao; Shi, Chen; Wang, Xiaolin; Zhou, Pu
2015-04-01
A linearly polarized monolithic fiber laser based on a master oscillator power amplifier structure with a master oscillator and a one-stage power amplifier is reported. We design a homemade oscillator based on the theory that, in the coiled gain fiber, the higher modes and the polarized mode of the fundamental mode along the fast axis are suppressed effectively because of their obviously higher bend loss than that of the polarized mode of the fundamental mode along the slow axis. The oscillator operates at 1080 nm, launching a 30 W seed laser with a high polarization extinction ratio of 19 dB into the power amplifier via a mode field adapter. The power amplifier utilizes Yb-doped polarization-maintaining fiber of 20/400 μm, which produces nearly diffraction-limited output power of about 1.5 kW with an optical-optical efficiency of 81.5% and a polarization extinction ratio of 13.8 dB. Both the M(x)² factor and the M(y)² factor of the collimated beam are measured to be about 1.2. The spectral width of the output power is broadened approximately linearly, and the full width at half maximum of the spectrum at the maximum output power is about 5.8 nm. It is known as the highest linearly polarized output power to the best of our knowledge.
Niche Specialization and Conservation Biology of Cicindela Nevadica Lincolniana
ERIC Educational Resources Information Center
Brosius, Tierney R.
2010-01-01
As with many organisms across the globe, "Cicindela nevadica lincolniana" is threatened with extinction. Understanding ecological factors that contribute to extinction vulnerability and what methods aid in the recovery of those species is essential in developing successful conservation programs. Here we examine behavioral mechanisms for niche…
Flood basalts and extinction events
NASA Technical Reports Server (NTRS)
Stothers, Richard B.
1993-01-01
The largest known effusive eruptions during the Cenozoic and Mesozoic Eras, the voluminous flood basalts, have long been suspected as being associated with major extinctions of biotic species. Despite the possible errors attached to the dates in both time series of events, the significance level of the suspected correlation is found here to be 1 percent to 4 percent. Statistically, extinctions lag eruptions by a mean time interval that is indistinguishable from zero, being much less than the average residual derived from the correlation analysis. Oceanic flood basalts, however, must have had a different biological impact, which is still uncertain owing to the small number of known examples and differing physical factors. Although not all continental flood basalts can have produced major extinction events, the noncorrelating eruptions may have led to smaller marine extinction events that terminated at least some of the less catastrophically ending geologic stages. Consequently, the 26 Myr quasi-periodicity seen in major marine extinctions may be only a sampling effect, rather than a manifestation of underlying periodicity.
NASA Astrophysics Data System (ADS)
Payne, Anna; Inami, Hanae
2015-01-01
We report on measurements for dust extinction and star formation rates (SFRs) for luminous infrared galaxies (LIRGs). We utilized the hydrogen recombination lines Brα, Hα, and Hβ observed in the infrared and optical wavelengths with AKARI and the Lick Observatory's Kast Double spectrograph to produce spectra. By calculating Brα/Hα ratios for the target galaxies, extinction is estimated. A possible correlation between higher LIR, IR/UV, specific SFRs and higher Brα/Hα has been found. Through comparisons with Hα/Hβ, it may be possible to determine if Hα is, in fact, underestimating extinction, since Hα is more strongly affected by extinction compared to longer wavelengths such as Brα. The accuracy of using Hα in extinction corrections is important for SFR studies, and, thus, one goal is to find a more accurate reddening correction factor. Payne was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).
NASA Astrophysics Data System (ADS)
Deparis, Olivier; Kazansky, Peter G.; Podlipensky, Alexander; Abdolvand, Amin; Seifert, Gerhard; Graener, Heinrich
2006-08-01
The recently discovered poling-assisted bleaching of glass with embedded silver nanoparticles has renewed the interest in thermal poling as a simple, reliable, and low-cost technique for controlling locally the surface-plasmon-resonant optical properties of metal-doped nanocomposite glasses. In the present study, the emphasis is put on the influence of the volume filling factor of metallic clusters on poling-assisted bleaching. Soda-lime silicate glass samples containing spherical silver nanoparticles with a decreasing filling factor across the depth were subject to thermal poling experiments with various poling temperatures, voltages, and times. Optical extinction spectra were measured from ultraviolet to near-infrared ranges and the surface-plasmon-resonant extinction due to silver nanoparticles (around 410nm) was modeled by the Maxwell Garnett [Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904); 205, 237 (1906)] effective medium theory which was adapted in order to take into account the filling factor depth profile. A method was proposed for the retrieval of the filling factor depth profile from optical extinction spectra recorded in fresh and chemically etched samples. A stretched exponential depth profile turned out to be necessary in order to model samples having a high filling factor near the surface. Based on the fact that the electric-field-assisted dissolution of embedded metallic nanoparticles proceeded progressively from the top surface, a bleaching front was defined that moved forward in depth as time elapsed. The position of the bleaching front was determined after each poling experiment by fitting the measured extinction spectrum to the theoretical one. In samples with higher peak value and steeper gradient of the filling factor, the bleaching front reached more rapidly a steady-state depth as poling time increased. Also it increased less strongly with increasing poling voltage. These results were in agreement with the physics of the dissolution process. Finally, clear evidence of injection of hydrogenated ionic species from the atmosphere into the sample during poling was obtained from the growth of the infrared extinction peak associated with OH radicals.
Solid hydrogen coated graphite particles in the interstellar medium. I.
NASA Technical Reports Server (NTRS)
Swamy, K. S. K.; Wickramasinghe, N. C.
1969-01-01
Solid para hydrogen coated graphite particles expulsion into interstellar medium from star formation regions, considering mantles stability and particles extinction efficiency, albedo and phase function
Negative appraisals and fear extinction are independently related to PTSD symptoms.
Zuj, Daniel V; Palmer, Matthew A; Gray, Kate E; Hsu, Chia-Ming K; Nicholson, Emma L; Malhi, Gin S; Bryant, Richard A; Felmingham, Kim L
2017-08-01
Considerable research has revealed impaired fear extinction to be a significant predictor of PTSD. Fear extinction is also considered the primary mechanism of exposure therapy, and a critical factor in PTSD recovery. The cognitive theory of PTSD proposes that symptoms persist due to excessive negative appraisals about the trauma and its sequelae. Research has not yet examined the relationship between fear extinction and negative appraisals in PTSD. A cross-sectional sample of participants with PTSD (n =21), and trauma-exposed controls (n =33) underwent a standardized differential fear conditioning and extinction paradigm, with skin conductance response (SCR) amplitude serving as the index of conditioned responses. The Posttraumatic Cognitions Inventory (PTCI) was used to index catastrophic negative appraisals. Participants with PTSD demonstrated a slower decrease in overall SCR responses during extinction and greater negative appraisals compared to the group. A moderation analysis revealed that both negative trauma-relevant appraisals and fear extinction learning were independently associated with PTSD symptoms, but there was no moderation interaction. The current study was limited by a modest sample size, leading to the inclusion of participants with subclinical PTSD symptoms. Further, the current study only assessed fear extinction learning; including a second day extinction recall task may show alternative effects. These findings indicate that negative appraisals and fear extinction did not interact, but had independent relationships with PTSD symptoms. Here we show for the first time in an experimental framework that negative appraisals and fear extinction play separate roles in PTSD symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.
Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons
Sepulveda-Orengo, Marian T.; Lopez, Ana V.; Soler-Cedeño, Omar; Porter, James T.
2013-01-01
Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor rectification, and intrinsic excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp. We observed that fear extinction increases the AMPA/NMDA ratio, consistent with insertion of AMPA receptors into IL synapses. In addition, extinction training increased inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPA receptors into IL synapses. Consistent with this, selectively blocking calcium-permeable AMPA receptors with Naspm reduced the AMPA EPSCs in IL neurons to a larger degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an mGluR5 antagonist. Together, these findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic excitability of IL neurons and modifying the composition of AMPA receptors in IL synapses. Consequently, impaired mGluR5 activity in IL synapses could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders. PMID:23616528
Establishing endangered species recovery criteria using predictive simulation modeling
McGowan, Conor P.; Catlin, Daniel H.; Shaffer, Terry L.; Gratto-Trevor, Cheri L.; Aron, Carol
2014-01-01
Listing a species under the Endangered Species Act (ESA) and developing a recovery plan requires U.S. Fish and Wildlife Service to establish specific and measurable criteria for delisting. Generally, species are listed because they face (or are perceived to face) elevated risk of extinction due to issues such as habitat loss, invasive species, or other factors. Recovery plans identify recovery criteria that reduce extinction risk to an acceptable level. It logically follows that the recovery criteria, the defined conditions for removing a species from ESA protections, need to be closely related to extinction risk. Extinction probability is a population parameter estimated with a model that uses current demographic information to project the population into the future over a number of replicates, calculating the proportion of replicated populations that go extinct. We simulated extinction probabilities of piping plovers in the Great Plains and estimated the relationship between extinction probability and various demographic parameters. We tested the fit of regression models linking initial abundance, productivity, or population growth rate to extinction risk, and then, using the regression parameter estimates, determined the conditions required to reduce extinction probability to some pre-defined acceptable threshold. Binomial regression models with mean population growth rate and the natural log of initial abundance were the best predictors of extinction probability 50 years into the future. For example, based on our regression models, an initial abundance of approximately 2400 females with an expected mean population growth rate of 1.0 will limit extinction risk for piping plovers in the Great Plains to less than 0.048. Our method provides a straightforward way of developing specific and measurable recovery criteria linked directly to the core issue of extinction risk. Published by Elsevier Ltd.
Adhikary, Sweta; Caprioli, Daniele; Venniro, Marco; Kallenberger, Paige; Shaham, Yavin; Bossert, Jennifer M
2017-07-01
In rats trained to self-administer methamphetamine, extinction responding in the presence of drug-associated contextual and discrete cues progressively increases after withdrawal (incubation of methamphetamine craving). The conditioning factors underlying this incubation are unknown. Here, we studied incubation of methamphetamine craving under different experimental conditions to identify factors contributing to this incubation. We also determined whether the rats' response to methamphetamine priming incubates after withdrawal. We trained rats to self-administer methamphetamine in a distinct context (context A) for 14 days (6 hours/day). Lever presses were paired with a discrete light cue. We then tested groups of rats in context A or a different non-drug context (context B) after 1 day, 1 week or 1 month for extinction responding with or without the discrete cue. Subsequently, we tested the rats for reinstatement of drug seeking induced by exposure to contextual, discrete cue, or drug priming (0, 0.25 and 0.5 mg/kg). Operant responding in the extinction sessions in contexts A or B was higher after 1 week and 1 month of withdrawal than after 1 day; this effect was context-independent. Independent of the withdrawal period, operant responding in the extinction sessions was higher when responding led to contingent delivery of the discrete cue. After extinction, discrete cue-induced reinstatement, but not context- or drug priming-induced reinstatement, progressively increased after withdrawal. Together, incubation of methamphetamine craving, as assessed in extinction tests, is primarily mediated by time-dependent increases in non-reinforced operant responding, and this effect is potentiated by exposure to discrete, but not contextual, cues. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Adhikary, Sweta; Caprioli, Daniele; Venniro, Marco; Kallenberger, Paige; Shaham, Yavin; Bossert, Jennifer M.
2016-01-01
In rats trained to self-administer methamphetamine, extinction responding in the presence of drug-associated contextual and discrete cues progressively increases after withdrawal (incubation of methamphetamine craving). The conditioning factors underlying this incubation are unknown. Here, we studied incubation of methamphetamine craving under different experimental conditions to identify factors contributing to this incubation. We also determined whether the rats’ response to methamphetamine priming incubates after withdrawal. We trained rats to self-administer methamphetamine in a distinct context (context A) for 14 days (6-h/day). Lever presses were paired with a discrete light cue. We then tested groups of rats in context A or a different non-drug context (context B) after 1 day, 1 week, or 1 month for extinction responding with or without the discrete cue. Subsequently, we tested the rats for reinstatement of drug seeking induced by exposure to contextual, discrete cue, or drug priming (0, 0.25, and 0.5 mg/kg). Operant responding in the extinction sessions in contexts A or B was higher after 1 week and 1 month of withdrawal than after 1 day; this effect was context-independent. Independent of the withdrawal period, operant responding in the extinction sessions was higher when responding led to contingent delivery of the discrete cue. After extinction, discrete cue-induced reinstatement, but not context- or drug priming-induced reinstatement, progressively increased after withdrawal. Together, incubation of methamphetamine craving, as assessed in extinction tests, is primarily mediated by time-dependent increases in non-reinforced operant responding, and this effect is potentiated by exposure to discrete, but not contextual, cues. PMID:26989042
Vecchi, R; Bernardoni, V; Valentini, S; Piazzalunga, A; Fermo, P; Valli, G
2018-02-01
In this paper, results from receptor modelling performed on a well-characterised PM 1 dataset were combined to chemical light extinction data (b ext ) with the aim of assessing the impact of different PM 1 components and sources on light extinction and visibility at a European polluted urban area. It is noteworthy that, at the state of the art, there are still very few papers estimating the impact of different emission sources on light extinction as we present here, although being among the major environmental challenges at many polluted areas. Following the concept of the well-known IMPROVE algorithm, here a tailored site-specific approach (recently developed by our group) was applied to assess chemical light extinction due to PM 1 components and major sources. PM 1 samples collected separately during daytime and nighttime at the urban area of Milan (Italy) were chemically characterised for elements, major ions, elemental and organic carbon, and levoglucosan. Chemical light extinction was estimated and results showed that at the investigated urban site it is heavily impacted by ammonium nitrate and organic matter. Receptor modelling (i.e. Positive Matrix Factorization, EPA-PMF 5.0) was effective to obtain source apportionment; the most reliable solution was found with 7 factors which were tentatively assigned to nitrates, sulphates, wood burning, traffic, industry, fine dust, and a Pb-rich source. The apportionment of aerosol light extinction (b ext,aer ) according to resolved sources showed that considering all samples together nitrate contributed at most (on average 41.6%), followed by sulphate, traffic, and wood burning accounting for 18.3%, 17.8% and 12.4%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
PN-type carrier-induced filter with modulatable extinction ratio.
Fang, Qing; Tu, Xiaoguang; Song, Junfeng; Jia, Lianxi; Luo, Xianshu; Yang, Yan; Yu, Mingbin; Lo, Guoqiang
2014-12-01
We demonstrate the first PN-type carrier-induced silicon waveguide Bragg grating filter on a SOI wafer. The optical extinction ratio of this kind of filter can be efficiently modulated under both reverse and forward biases. The carrier-induced Bragg grating based on a PN junction is fabricated on the silicon waveguide using litho compensation technology. The measured optical bandwidth and the extinction ratio of the filter are 0.45 nm and 19 dB, respectively. The optical extinction ratio modulation under the reverse bias is more than 11.5 dB and it is more than 10 dB under the forward bias. Only 1-dB optical transmission loss is realized in this Bragg grating under a reverse bias. The shifting rates of the central wavelength under forward and reverse biases are ~-1.25 nm/V and 0.01 nm/V, respectively. The 3-dB modulation bandwidth of this filter is 5.1 GHz at a bias of -10 V.
Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy
2013-01-01
Background Various neuropsychiatric conditions, including posttraumatic stress disorder (PTSD), are characterized by deficient fear extinction, but individuals differ greatly in risk for these. While there is growing evidence that fear extinction is influenced by certain procedural variables, it is unclear how these influences might vary across individuals and subpopulations. To model individual differences in fear extinction, prior studies identified a strain of inbred mouse, 129S1/SvImJ (S1), which exhibits a profound deficit in fear extinction, as compared to other inbred strains, such as C57BL/6J (B6). Methods Here, we assessed the effects of procedural variables on the impaired extinction phenotype of the S1 strain and, by comparison, the extinction-intact B6 strain. The variables studied were 1) the interval between conditioning and extinction, 2) the interval between cues during extinction training, 3) single-cue exposure before extinction training, and 4) extinction of a second-order conditioned cue. Results Conducting extinction training soon after (‘immediately’) conditioning attenuated fear retrieval in S1 mice and impaired extinction in B6 mice. Spacing cue presentations with long inter-trial intervals during extinction training augmented fear in S1 and B6 mice. The effect of spacing was lost with one-trial fear conditioning in B6, but not S1 mice. A single exposure to a conditioned cue before extinction training did not alter extinction retrieval, either in B6 or S1 mice. Both the S1 and B6 strains exhibited robust second-order fear conditioning, in which a cue associated with footshock was sufficient to serve as a conditioned exciter to condition a fear association to a second cue. B6 mice extinguished the fear response to the second-order conditioned cue, but S1 mice failed to do so. Conclusions These data provide further evidence that fear extinction is strongly influenced by multiple procedural variables and is so in a highly strain-dependent manner. This suggests that the efficacy of extinction-based behavioral interventions, such as exposure therapy, for trauma-related anxiety disorders will be determined by the procedural parameters employed and the degree to which the patient can extinguish. PMID:23830244
NASA Technical Reports Server (NTRS)
Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.
2011-01-01
The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case study seems to partially fix factor (i) although the aerosol retrieved by CALIOP is still somewhat lower than the profile measured by HSRL; the cloud contamination (ii) appears to be corrected; no particular change is apparent in the observation-based CALIOP Sa value (iii). Our case study also showed very little difference in version 2 and version 3 CALIOP attenuated backscatter coefficient profiles, illustrating a minor change in the calibration scheme (iv).
Social-ecological predictors of global invasions and extinctions
Lotz, Aaron; Allen, Craig R.
2013-01-01
Most assessments of resilience have been focused on local conditions. Studies focused on the relationship between humanity and environmental degradation are rare, and are rarely comprehensive. We investigated multiple social-ecological factors for 100 countries around the globe in relation to the percentage of invasions and extinctions within each country. These 100 countries contain approximately 87% of the world’s population, produce 43% of the world’s per capita gross domestic product (GDP), and take up 74% of the earth’s total land area. We used an information theoretic approach to determine which models were most supported by our data, utilizing an a priori set of plausible models that included a combination of 15 social-ecological variables, each social-ecological factor by itself, and selected social-ecological factors grouped into three broad classes. These variables were per capita GDP, export-import ratio, tourism, undernourishment, energy efficiency, agricultural intensity, rainfall, water stress, wilderness protection, total biodiversity, life expectancy, adult literacy, pesticide regulation, political stability, and female participation in government. Our results indicate that as total biodiversity and total land area increase, the percentage of endangered birds also increases. As the independent variables (agricultural intensity, rainfall, water stress, and total biodiversity) in the ecological class model increase, the percentage of endangered mammals in a country increases. The percentage of invasive birds and mammals in a country increases as per capita GDP increases. As life expectancy increases, the percentage of invasive and endangered birds and mammals increases. Although our analysis does not determine mechanisms, the patterns observed in this study provide insight into the dynamics of a complex, global, social-ecological system.
Resonant activation of population extinctions
NASA Astrophysics Data System (ADS)
Spalding, Christopher; Doering, Charles R.; Flierl, Glenn R.
2017-10-01
Understanding the mechanisms governing population extinctions is of key importance to many problems in ecology and evolution. Stochastic factors are known to play a central role in extinction, but the interactions between a population's demographic stochasticity and environmental noise remain poorly understood. Here we model environmental forcing as a stochastic fluctuation between two states, one with a higher death rate than the other. We find that, in general, there exists a rate of fluctuations that minimizes the mean time to extinction, a phenomenon previously dubbed "resonant activation." We develop a heuristic description of the phenomenon, together with a criterion for the existence of resonant activation. Specifically, the minimum extinction time arises as a result of the system approaching a scenario wherein the severity of rare events is balanced by the time interval between them. We discuss our findings within the context of more general forms of environmental noise and suggest potential applications to evolutionary models.
The biodiversity of species and their rates of extinction, distribution, and protection.
Pimm, S L; Jenkins, C N; Abell, R; Brooks, T M; Gittleman, J L; Joppa, L N; Raven, P H; Roberts, C M; Sexton, J O
2014-05-30
Recent studies clarify where the most vulnerable species live, where and how humanity changes the planet, and how this drives extinctions. We assess key statistics about species, their distribution, and their status. Most are undescribed. Those we know best have large geographical ranges and are often common within them. Most known species have small ranges. The numbers of small-ranged species are increasing quickly, even in well-known taxa. They are geographically concentrated and are disproportionately likely to be threatened or already extinct. Current rates of extinction are about 1000 times the likely background rate of extinction. Future rates depend on many factors and are poised to increase. Although there has been rapid progress in developing protected areas, such efforts are not ecologically representative, nor do they optimally protect biodiversity. Copyright © 2014, American Association for the Advancement of Science.
How does climate change cause extinction?
Cahill, Abigail E.; Aiello-Lammens, Matthew E.; Fisher-Reid, M. Caitlin; Hua, Xia; Karanewsky, Caitlin J.; Yeong Ryu, Hae; Sbeglia, Gena C.; Spagnolo, Fabrizio; Waldron, John B.; Warsi, Omar; Wiens, John J.
2013-01-01
Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies. PMID:23075836
How does climate change cause extinction?
Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J
2013-01-07
Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.
NASA Technical Reports Server (NTRS)
Portscht, R.
1977-01-01
Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.
SAGE 1 and SAM 2 measurements of 1 micron aerosol extinction in the free troposphere
NASA Technical Reports Server (NTRS)
Kent, G. S.; Farrukh, U. O.; Wang, P. H.; Deepak, A.
1988-01-01
The SAGE 1 and SAM 2 satellite sensors were designed to measure, with global coverage, the 1 micron extinction produced by the stratospheric aerosol. In the absence of high altitude cloud, similar measurements may be made for the free tropospheric aerosol. Median extinction values in the Northern Hemisphere, for altitudes between 5 and 10 km, are found to be one-half to one order of magnitude greater than values at corresponding latitudes in the Southern Hemisphere. In addition, a seasonal increase by a factor of 1.5 yields 2 is observed in both hemispheres in local spring and summer. Following major volcanic eruptions, a long-lived enhancement of the aerosol extinction is observed for altitudes above 5 km.
Climate change, extinction risks, and reproduction of terrestrial vertebrates.
Carey, Cynthia
2014-01-01
This review includes a broad, but superficial, summary of our understanding about current and future climate changes, the predictions about how these changes will likely affect the risks of extinction of organisms, and how current climate changes are already affecting reproduction in terrestrial vertebrates. Many organisms have become extinct in the last century, but habitat destruction, disease and man-made factors other than climate change have been implicated as the causal factor in almost all of these. Reproduction is certain to be negatively impacted in all vertebrate groups for a variety of reasons, such as direct thermal and hydric effects on mortality of embryos, mismatches between optimal availability of food supplies, frequently determined by temperature, and reproductive capacities, sometimes determined by rigid factors such as photoperiod, and disappearance of appropriate foraging opportunities, such as melting sea ice. The numbers of studies documenting correlations between climate changes and biological phenomena are rapidly increasing, but more direct information about the consequences of these changes for species survival and ecosystem health is needed than is currently available.
Human impacts on the rates of recent, present, and future bird extinctions.
Pimm, Stuart; Raven, Peter; Peterson, Alan; Sekercioglu, Cagan H; Ehrlich, Paul R
2006-07-18
Unqualified, the statement that approximately 1.3% of the approximately 10,000 presently known bird species have become extinct since A.D. 1500 yields an estimate of approximately 26 extinctions per million species per year (or 26 E/MSY). This is higher than the benchmark rate of approximately 1 E/MSY before human impacts, but is a serious underestimate. First, Polynesian expansion across the Pacific also exterminated many species well before European explorations. Second, three factors increase the rate: (i) The number of known extinctions before 1800 is increasing as taxonomists describe new species from skeletal remains. (ii) One should calculate extinction rates over the years since taxonomists described the species. Most bird species were described only after 1850. (iii) Some species are probably extinct; there is reluctance to declare them so prematurely. Thus corrected, recent extinction rates are approximately 100 E/MSY. In the last decades, the rate is <50 E/MSY, but would be 150 E/MSY were it not for conservation efforts. Increasing numbers of extinctions are on continents, whereas previously most were on islands. We predict a 21st century rate of approximately 1,000 E/MSY. Extinction threatens 12% of bird species; another 12% have small geographical ranges and live where human actions rapidly destroy their habitats. If present forest losses continue, extinction rates will reach 1,500 E/MSY by the century's end. Invasive species, expanding human technologies, and global change will harm additional species. Birds are poor models for predicting extinction rates for other taxa. Human actions threaten higher fractions of other well known taxa than they do birds. Moreover, people take special efforts to protect birds.
Human impacts on the rates of recent, present, and future bird extinctions
Pimm, Stuart; Raven, Peter; Peterson, Alan; Şekercioğlu, Çağan H.; Ehrlich, Paul R.
2006-01-01
Unqualified, the statement that ≈1.3% of the ≈10,000 presently known bird species have become extinct since A.D. 1500 yields an estimate of ≈26 extinctions per million species per year (or 26 E/MSY). This is higher than the benchmark rate of ≈1 E/MSY before human impacts, but is a serious underestimate. First, Polynesian expansion across the Pacific also exterminated many species well before European explorations. Second, three factors increase the rate: (i) The number of known extinctions before 1800 is increasing as taxonomists describe new species from skeletal remains. (ii) One should calculate extinction rates over the years since taxonomists described the species. Most bird species were described only after 1850. (iii) Some species are probably extinct; there is reluctance to declare them so prematurely. Thus corrected, recent extinction rates are ≈100 E/MSY. In the last decades, the rate is <50 E/MSY, but would be 150 E/MSY were it not for conservation efforts. Increasing numbers of extinctions are on continents, whereas previously most were on islands. We predict a 21st century rate of ≈1,000 E/MSY. Extinction threatens 12% of bird species; another 12% have small geographical ranges and live where human actions rapidly destroy their habitats. If present forest losses continue, extinction rates will reach 1,500 E/MSY by the century’s end. Invasive species, expanding human technologies, and global change will harm additional species. Birds are poor models for predicting extinction rates for other taxa. Human actions threaten higher fractions of other well known taxa than they do birds. Moreover, people take special efforts to protect birds. PMID:16829570
Lucantonio, Federica; Kambhampati, Sarita; Haney, Richard Z; Atalayer, Deniz; Rowland, Neil E; Shaham, Yavin; Schoenbaum, Geoffrey
2015-05-15
Addiction is characterized by an inability to stop using drugs, despite adverse consequences. One contributing factor to this compulsive drug taking could be the impact of drug use on the ability to extinguish drug seeking after changes in expected outcomes. Here, we compared effects of cocaine, morphine, and heroin self-administration on two forms of extinction learning: standard extinction driven by reward omission and extinction driven by reward overexpectation. In experiment 1, we trained rats to self-administer cocaine, morphine, or sucrose for 3 hours per day (limited access). In experiment 2, we trained rats to self-administer heroin or sucrose for 12 hours per day (extended access). Three weeks later, we trained the rats to associate several cues with palatable food reward, after which we assessed extinction of the learned Pavlovian response, first by pairing two cues together in the overexpectation procedure and later by omitting the food reward. Rats trained under limited access conditions to self-administer sucrose or morphine demonstrated normal extinction in response to both overexpectation and reward omission, whereas cocaine-experienced rats or rats trained to self-administer heroin under extended access conditions exhibited normal extinction in response to reward omission but failed to show extinction in response to overexpectation. Here we show that cocaine and heroin can induce long-lasting deficits in the ability to extinguish reward seeking. These deficits were not observed in a standard extinction procedure but instead only affected extinction learning driven by a more complex phenomenon of overexpectation. Published by Elsevier Inc.
Synergistic effects of climate change and harvest on extinction risk of American ginseng.
Souther, Sara; McGraw, James B
Over the next century, the conservation of biodiversity will depend not only on our ability to understand the effect of climate change, but also on our capacity to predict how other factors interact with climate change to influence species viability. We used American ginseng (Panax quinquefolius L.), the United States' premier wild-harvested medicinal, as a model system to ask whether the effect of harvest on extinction risk depends on changing climatic conditions. We performed stochastic projections of viability response to an increase in maximum growing-season temperature of 1°C over the next 70 years by sampling matrices from long-term demographic studies of 12 populations (representing 75 population-years of data). In simulations that included harvest and climate change, extinction risk at the median population size (N = 140) was 65%, far exceeding the additive effects of the two factors (extinction risk = 8% and 6% for harvest and climate change, respectively; quasi-extinction threshold = 20). We performed a life table response experiment (LTRE) to determine underlying causes of the effect of warming and harvest on deterministic λ (λd). Together, these factors decreased λd values primarily by reducing growth of juvenile and small adult plants to the large-adult stage, as well as decreasing stasis of the juveniles and large adults. The interaction observed in stochastic model results followed from a nonlinear increase in extinction risk as the combined impact of harvest and warming consistently reduced λ values below the demographic tipping point of λ = 1. While further research is needed to create specific recommendations, these findings indicate that ginseng harvest regulations should be revised to account for changing climate. Given the possibility of nonlinear response like that reported here, pre-emptive adaptation of management strategies may increase efficacy of biodiversity conservation by allowing behavior modification prior to precipitous population decline.
Holocene extinction dynamics of Equus hydruntinus, a late-surviving European megafaunal mammal
NASA Astrophysics Data System (ADS)
Crees, Jennifer J.; Turvey, Samuel T.
2014-05-01
The European wild ass (Equus hydruntinus) is a globally extinct Eurasian equid. This species was widespread in Europe and southwest Asia during the Late Pleistocene, but its distribution became restricted to southern Europe and adjacent geographic regions in the Holocene. Previous research on E. hydruntinus has focused predominantly on its taxonomy and Late Pleistocene distribution. However, its Holocene distribution and extinction remain poorly understood, despite the fact that the European wild ass represents one of Europe's very few globally extinct Holocene megafaunal mammal species. We summarise all available Holocene zooarchaeological spatio-temporal occurrence data for the species, and analyse patterns of its distribution and extinction using point pattern analysis (kernel density estimation and Clark Evans index) and optimal linear estimation. We demonstrate that the geographic range of E. hydruntinus became highly fragmented into discrete subpopulations during the Holocene, which were associated with separate regions of open habitat and which became progressively extinct between the Neolithic and Iron Age. These data challenge previous suggestions of the late survival of E. hydruntinus into the medieval period in Spain, and instead suggest that postglacial climate-driven vegetational changes were a primary factor responsible for extinction of the species, driving isolation of small remnant subpopulations that may have been increasingly vulnerable to human exploitation. This study contributes to a more nuanced understanding of Late Quaternary species extinctions in Eurasia, suggesting that they were temporally staggered and distinct in their respective extinction trajectories.
Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska
Graham, Russell W.; Belmecheri, Soumaya; Choy, Kyungcheol; Culleton, Brendan J.; Davies, Lauren J.; Hritz, Carrie; Kapp, Joshua D.; Newsom, Lee A.; Rawcliffe, Ruth; Saulnier-Talbot, Émilie; Wang, Yue; Williams, John W.; Wooller, Matthew J.
2016-01-01
Relict woolly mammoth (Mammuthus primigenius) populations survived on several small Beringian islands for thousands of years after mainland populations went extinct. Here we present multiproxy paleoenvironmental records to investigate the timing, causes, and consequences of mammoth disappearance from St. Paul Island, Alaska. Five independent indicators of extinction show that mammoths survived on St. Paul until 5,600 ± 100 y ago. Vegetation composition remained stable during the extinction window, and there is no evidence of human presence on the island before 1787 CE, suggesting that these factors were not extinction drivers. Instead, the extinction coincided with declining freshwater resources and drier climates between 7,850 and 5,600 y ago, as inferred from sedimentary magnetic susceptibility, oxygen isotopes, and diatom and cladoceran assemblages in a sediment core from a freshwater lake on the island, and stable nitrogen isotopes from mammoth remains. Contrary to other extinction models for the St. Paul mammoth population, this evidence indicates that this mammoth population died out because of the synergistic effects of shrinking island area and freshwater scarcity caused by rising sea levels and regional climate change. Degradation of water quality by intensified mammoth activity around the lake likely exacerbated the situation. The St. Paul mammoth demise is now one of the best-dated prehistoric extinctions, highlighting freshwater limitation as an overlooked extinction driver and underscoring the vulnerability of small island populations to environmental change, even in the absence of human influence. PMID:27482085
Li, Min; Li, Xiaobai; Zhang, Xinxin; Ren, Jintao; Jiang, Han; Wang, Yan; Ma, Yuchao; Cheng, Wenwen
2014-06-01
Stress during pregnancy has been implicated as a risk factor for the development of many mental disorders; however, the influence of prenatal stress on the fear or anxiety-related behaviors, especially the fear extinction in adult offspring has been little investigated. In order to investigate how prenatal stress affects fear extinction, which is regarded as a form of new learning that counteracts the expression of Pavlovian's conditioned fear, a rat model of prenatal chronic mild stress (PNS) was used to evaluate the effects of PNS on fear extinction in adult offspring. The expression of hippocampal glycogen synthase kinase-3s (GSK-3α, β), N-methyl-d-aspartic acid receptors (NMDARs)-2B and the hippocampal cell proliferation in dentate gyrus in the adult offspring during fear extinction were studied. Our results showed that PNS significantly reduced body weight of pups, indicating PNS might induce growth retardation in offspring. Moreover, PNS significantly enhanced the freezing behavior of offspring at the phase of extinction, suggesting PNS impaired the abilities of fear extinction learning. In addition, PNS significantly increased the levels of GSK-3α, β and NR2B, but reduced hippocampal cell proliferation during fear extinction. Taken together, our findings suggest that maternal stress during pregnancy can impair the fear extinction of adult offspring, probably by affecting the neural plasticity of brain. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.
Zayed, Amro; Packer, Laurence
2005-07-26
The role of genetic factors in extinction is firmly established for diploid organisms, but haplodiploids have been considered immune to genetic load impacts because deleterious alleles are readily purged in haploid males. However, we show that single-locus complementary sex determination ancestral to the haplodiploid Hymenoptera (ants, bees, and wasps) imposes a substantial genetic load through homozygosity at the sex locus that results in the production of inviable or sterile diploid males. Using stochastic modeling, we have discovered that diploid male production (DMP) can initiate a rapid and previously uncharacterized extinction vortex. The extinction rate in haplodiploid populations with DMP is an order of magnitude greater than in its absence under realistic but conservative demographic parameter values. Furthermore, DMP alone can elevate the base extinction risk in haplodiploids by over an order of magnitude higher than that caused by inbreeding depression in threatened diploids. Thus, contrary to previous expectations, haplodiploids are more, rather than less, prone to extinction for genetic reasons. Our findings necessitate a fundamental shift in approaches to the conservation and population biology of these ecologically and economically crucial insects.
Mass Extinctions and Biosphere-Geosphere Stability
NASA Astrophysics Data System (ADS)
Rothman, Daniel; Bowring, Samuel
2015-04-01
Five times in the past 500 million years, mass extinctions have resulted in the loss of greater than three-fourths of living species. Each of these events is associated with significant environmental change recorded in the carbon-isotopic composition of sedimentary rocks. There are also many such environmental events in the geologic record that are not associated with mass extinctions. What makes them different? Two factors appear important: the size of the environmental perturbation, and the time scale over which it occurs. We show that the natural perturbations of Earth's carbon cycle during the past 500 million years exhibit a characteristic rate of change over two orders of magnitude in time scale. This characteristic rate is consistent with the maximum rate that limits quasistatic (i.e., near steady-state) evolution of the carbon cycle. We identify this rate with marginal stability, and show that mass extinctions occur on the fast, unstable side of the stability boundary. These results suggest that the great extinction events of the geologic past, and potentially a "sixth extinction" associated with modern environmental change, are characterized by common mechanisms of instability.
NASA Astrophysics Data System (ADS)
Lam, G.; Wang, I. M.; Heim, N.; Payne, J.
2016-12-01
Extinction is a fundamental phenomenon that has been occurring for millions of years and is critical to the development of new organisms and niches. However, the current extinction rate is now one hundred to a thousand times the past background extinction rate due to human influences and rapidly changing environments. Research on geographic range and life history has been performed in extinction analyses, but rarely any on feeding type and trophic level. We compiled data from the IUCN Red List Database, Paleobiology database and diets from Pauly et al. (1998) to explore the possible correlation between various aspects of ecology and extinction threat. By doing so, we can better understand where to focus our conservation efforts, and what type of approach will reap the best results. We discovered that terrestrial carnivores are slightly less at risk than herbivores and omnivores, and that the feeding and tiering of marine mammals have minimal effect on their IUCN threat level. Body mass is the most influential factor on risk level, with larger adult body masses being most at risk.
Human Population Density and Extinction Risk in the World's Carnivores
Purvis, Andy; Sechrest, Wes; Gittleman, John L; Bielby, Jon; Mace, Georgina M
2004-01-01
Understanding why some species are at high risk of extinction, while others remain relatively safe, is central to the development of a predictive conservation science. Recent studies have shown that a species' extinction risk may be determined by two types of factors: intrinsic biological traits and exposure to external anthropogenic threats. However, little is known about the relative and interacting effects of intrinsic and external variables on extinction risk. Using phylogenetic comparative methods, we show that extinction risk in the mammal order Carnivora is predicted more strongly by biology than exposure to high-density human populations. However, biology interacts with human population density to determine extinction risk: biological traits explain 80% of variation in risk for carnivore species with high levels of exposure to human populations, compared to 45% for carnivores generally. The results suggest that biology will become a more critical determinant of risk as human populations expand. We demonstrate how a model predicting extinction risk from biology can be combined with projected human population density to identify species likely to move most rapidly towards extinction by the year 2030. African viverrid species are particularly likely to become threatened, even though most are currently considered relatively safe. We suggest that a preemptive approach to species conservation is needed to identify and protect species that may not be threatened at present but may become so in the near future. PMID:15252445
Compact plasmonic memristor with high extinction efficiency
NASA Astrophysics Data System (ADS)
Tian, Ye; Jiang, Lianjun; Zhang, Xuejun; Zhang, Guangfu
2017-10-01
Here we present a plasmonic memristor operated at the telecommunication wavelength with compact size (0.61 μm), and high extinction efficiency (4.6 dB/μm). The plasmonic memristor consists of a triangle-shaped metal taper mounted on the top of a Si waveguide with rational doping in the area below the apex of the taper. This device can achieve vertical coupling of light energy from the Si waveguide to the plasmonic region and at the same time concentrates the plasmon to the apex of the metal taper. Moreover, the area with concentrated plasmon is overlap with that where the memristive behavior occurs due to the formation/removal of the metallic nanofilament. As a result, the highly distinct transmission induced by the switching of the plasmonic memristor can be achieved due to the maximized interaction between the plasmon and the filament.
Variation in developmental time affects mating success and Allee effects
Christelle Robinet; Andrew Liebhold; David Gray
2007-01-01
A fundamental question in biological conservation and invasion biology is why do some populations go extinct? Allee effects, notably those caused by mate location failure, are potentially key factors leading to the extinction of sparse populations. Several previous studies have focused on the inability of males and females to locate each other in space when populations...
Alien plant invasions and native plant extinctions: a six-threshold framework
Downey, Paul O.; Richardson, David M.
2016-01-01
Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat—in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the ‘extinction trajectory’, global extinction being the final threshold. Although there are no documented examples of either ‘in the wild’ (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1–3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader threat. PMID:27422543
Alien plant invasions and native plant extinctions: a six-threshold framework.
Downey, Paul O; Richardson, David M
2016-01-01
Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat-in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the 'extinction trajectory', global extinction being the final threshold. Although there are no documented examples of either 'in the wild' (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1-3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader threat. Published by Oxford University Press on behalf of the Annals of Botany Company.
Looking beyond fear: the extinction of other emotions implicated in anxiety disorders.
Mason, Elizabeth C; Richardson, Rick
2010-01-01
Previous research examining anxiety has traditionally focused on models of fear. More recently, attention has been directed to the role of disgust as an important emotion in the context of certain anxiety disorders. Further, it has been suggested that disgust, a form of evaluative responding, may be resistant to extinction and may contribute to relapse. However, previous work on this has largely relied on self-report ratings. In the current experiment, using a disgust conditioning and extinction procedure, disgust reactions were indeed shown to be resistant to extinction, as indexed by both self-report and an objective behavioral measure (visual avoidance). Furthermore, our research shows that individuals with greater levels of disgust sensitivity exhibit heightened resistance to extinction. In addition, expectancy of the disgusting US during extinction was dissociated from measures of disgust responding. Given that the treatment of choice for anxiety disorders (exposure therapy) is based on models of extinction, this research suggests that current treatments for anxiety disorders may not be adequately targeting disgust reactions, a crucial maintaining factor in certain anxiety disorders. As such, this inattention to disgust reactions may reduce the effectiveness of treatment in the short-term or may leave the patient vulnerable to relapse in the long-term.
Roesler, Rafael; Reolon, Gustavo K.; Maurmann, Natasha; Schwartsmann, Gilberto; Schröder, Nadja; Amaral, Olavo B.; Valvassori, Samira; Quevedo, João
2014-01-01
Established fear-related memories can undergo phenomena such as extinction or reconsolidation when recalled. Extinction probably involves the creation of a new, competing memory trace that decreases fear expression, whereas reconsolidation can mediate memory maintenance, updating, or strengthening. The factors determining whether retrieval will initiate extinction, reconsolidation, or neither of these two processes include training intensity, duration of the retrieval session, and age of the memory. However, previous studies have not shown that the same behavioral protocol can be used to induce either extinction or reconsolidation and strengthening, depending on the pharmacological intervention used. Here we show that, within an experiment that leads to extinction in control rats, memory can be strengthened if rolipram, a selective inhibitor of phosphodiesterase type 4 (PDE4), is administered into the dorsal hippocampus immediately after retrieval. The memory-enhancing effect of rolipram lasted for at least 1 week, was blocked by the protein synthesis inhibitor anisomycin, and did not occur when drug administration was not paired with retrieval. These findings indicate that the behavioral outcome of memory retrieval can be pharmacologically switched from extinction to strengthening. The cAMP/protein kinase A (PKA) signaling pathway might be a crucial mechanism determining the fate of memories after recall. PMID:24672454
Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction
Friedman, Matt
2009-01-01
Despite the attention focused on mass extinction events in the fossil record, patterns of extinction in the dominant group of marine vertebrates—fishes—remain largely unexplored. Here, I demonstrate ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction, based on a genus-level dataset that accounts for lineages predicted on the basis of phylogeny but not yet sampled in the fossil record. Two ecologically relevant anatomical features are considered: body size and jaw-closing lever ratio. Extinction intensity is higher for taxa with large body sizes and jaws consistent with speed (rather than force) transmission; resampling tests indicate that victims represent a nonrandom subset of taxa present in the final stage of the Cretaceous. Logistic regressions of the raw data reveal that this nonrandom distribution stems primarily from the larger body sizes of victims relative to survivors. Jaw mechanics are also a significant factor for most dataset partitions but are always less important than body size. When data are corrected for phylogenetic nonindependence, jaw mechanics show a significant correlation with extinction risk, but body size does not. Many modern large-bodied, predatory taxa currently suffering from overexploitation, such billfishes and tunas, first occur in the Paleocene, when they appear to have filled the functional space vacated by some extinction victims. PMID:19276106
Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction.
Friedman, Matt
2009-03-31
Despite the attention focused on mass extinction events in the fossil record, patterns of extinction in the dominant group of marine vertebrates-fishes-remain largely unexplored. Here, I demonstrate ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction, based on a genus-level dataset that accounts for lineages predicted on the basis of phylogeny but not yet sampled in the fossil record. Two ecologically relevant anatomical features are considered: body size and jaw-closing lever ratio. Extinction intensity is higher for taxa with large body sizes and jaws consistent with speed (rather than force) transmission; resampling tests indicate that victims represent a nonrandom subset of taxa present in the final stage of the Cretaceous. Logistic regressions of the raw data reveal that this nonrandom distribution stems primarily from the larger body sizes of victims relative to survivors. Jaw mechanics are also a significant factor for most dataset partitions but are always less important than body size. When data are corrected for phylogenetic nonindependence, jaw mechanics show a significant correlation with extinction risk, but body size does not. Many modern large-bodied, predatory taxa currently suffering from overexploitation, such billfishes and tunas, first occur in the Paleocene, when they appear to have filled the functional space vacated by some extinction victims.
Marine extinction risk shaped by trait-environment interactions over 500 million years.
Orzechowski, Emily A; Lockwood, Rowan; Byrnes, Jarrett E K; Anderson, Sean C; Finnegan, Seth; Finkel, Zoe V; Harnik, Paul G; Lindberg, David R; Liow, Lee Hsiang; Lotze, Heike K; McClain, Craig R; McGuire, Jenny L; O'Dea, Aaron; Pandolfi, John M; Simpson, Carl; Tittensor, Derek P
2015-10-01
Perhaps the most pressing issue in predicting biotic responses to present and future global change is understanding how environmental factors shape the relationship between ecological traits and extinction risk. The fossil record provides millions of years of insight into how extinction selectivity (i.e., differential extinction risk) is shaped by interactions between ecological traits and environmental conditions. Numerous paleontological studies have examined trait-based extinction selectivity; however, the extent to which these patterns are shaped by environmental conditions is poorly understood due to a lack of quantitative synthesis across studies. We conducted a meta-analysis of published studies on fossil marine bivalves and gastropods that span 458 million years to uncover how global environmental and geochemical changes covary with trait-based extinction selectivity. We focused on geographic range size and life habit (i.e., infaunal vs. epifaunal), two of the most important and commonly examined predictors of extinction selectivity. We used geochemical proxies related to global climate, as well as indicators of ocean acidification, to infer average global environmental conditions. Life-habit selectivity is weakly dependent on environmental conditions, with infaunal species relatively buffered from extinction during warmer climate states. In contrast, the odds of taxa with broad geographic ranges surviving an extinction (>2500 km for genera, >500 km for species) are on average three times greater than narrow-ranging taxa (estimate of odds ratio: 2.8, 95% confidence interval = 2.3-3.5), regardless of the prevailing global environmental conditions. The environmental independence of geographic range size extinction selectivity emphasizes the critical role of geographic range size in setting conservation priorities. © 2015 John Wiley & Sons Ltd.
Scholz, Birger; Doidge, Amie N.; Barnes, Philip; Hall, Jeremy; Wilkinson, Lawrence S.; Thomas, Kerrie L.
2016-01-01
We investigated the distinctiveness of gene regulatory networks in CA1 associated with the extinction of contextual fear memory (CFM) after recall using Affymetrix GeneChip Rat Genome 230 2.0 Arrays. These data were compared to previously published retrieval and reconsolidation-attributed, and consolidation datasets. A stringent dual normalization and pareto-scaled orthogonal partial least-square discriminant multivariate analysis together with a jack-knifing-based cross-validation approach was used on all datasets to reduce false positives. Consolidation, retrieval and extinction were correlated with distinct patterns of gene expression 2 hours later. Extinction-related gene expression was most distinct from the profile accompanying consolidation. A highly specific feature was the discrete regulation of neuroimmunological gene expression associated with retrieval and extinction. Immunity–associated genes of the tyrosine kinase receptor TGFβ and PDGF, and TNF families’ characterized extinction. Cytokines and proinflammatory interleukins of the IL-1 and IL-6 families were enriched with the no-extinction retrieval condition. We used comparative genomics to predict transcription factor binding sites in proximal promoter regions of the retrieval-regulated genes. Retrieval that does not lead to extinction was associated with NF-κB-mediated gene expression. We confirmed differential NF-κBp65 expression, and activity in all of a representative sample of our candidate genes in the no-extinction condition. The differential regulation of cytokine networks after the acquisition and retrieval of CFM identifies the important contribution that neuroimmune signalling plays in normal hippocampal function. Further, targeting cytokine signalling upon retrieval offers a therapeutic strategy to promote extinction mechanisms in human disorders characterised by dysregulation of associative memory. PMID:27224427
Is Global Anoxia an Alternative Cause for the Hirnantian Mass Extinction?
NASA Astrophysics Data System (ADS)
De Weirdt, Julie; Vandenbroucke, Thijs; Emsbo, Poul; McLaughlin, Patrick; Delabroye, Aurélien; Munnecke, Axel; Desrochers, André
2017-04-01
Cooling and glacial episodes have long been considered the main driver of Late Ordovician-Silurian (mass) extinction events that coincide with δ13Ccarb excursions. However, emerging evidence for protracted cooling during most of the Ordovician and the misalignment between major regressions and faunal turnovers in the Upper Ordovician, suggests a more complex relation between glaciations and extinctions. Emsbo et al. (2010, GSA Abstracts with Programs) demonstrated dramatic enrichments in redox sensitive metals during the early Wenlock Ireviken extinction event and suggested ocean anoxia as an alternative kill-mechanism. Vandenbroucke et al. (2015, Nature Communications), built on this idea and recorded a similar increase of redox-sensitive metals at the onset of the mid-Pridoli extinction event, coinciding with peak abundances of malformed (teratological) fossil microplankton (acritarchs and chitinozoans). By analogy with metal-induced malformations in modern marine microplankton, teratology might serve as an independent proxy for monitoring changes in the metal concentration of the Palaeozoic ocean. These data from the Ireviken and Pridoli events are the foundation for the hypothesis that many, if not all, of these Late Ordovician-Silurian extinctions are caused by large-scale 'oceanic anoxic events'. Here, we are testing this hypothesis for the most devastating extinction event in this series, the Hirnantian mass extinction. Bulk rock samples spanning the Hirnantian strata of Anticosti Island were geochemically analysed. Our choice of sections is guided by the presence of teratological acritarchs (Delabroye et al., 2012, Rev. Pal. Pal.) that overlap the base of the extinction horizon. Revealing similar results as in our the previous studies, the new XRF data show distinct peaks in redox sensitive metals, supporting ocean anoxia and metal pollution as an important factor in the Hirnantian extinction, if not its fundamental cause.
Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons
Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong
2015-01-01
Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm−2. This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon–phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth. PMID:26514372
Earth System Stability Through Geologic Time
NASA Astrophysics Data System (ADS)
Rothman, D.; Bowring, S. A.
2015-12-01
Five times in the past 500 million years, mass extinctions haveresulted in the loss of greater than three-fourths of living species.Each of these events is associated with significant environmentalchange recorded in the carbon-isotopic composition of sedimentaryrocks. There are also many such environmental events in the geologicrecord that are not associated with mass extinctions. What makes themdifferent? Two factors appear important: the size of theenvironmental perturbation, and the time scale over which it occurs.We show that the natural perturbations of Earth's carbon cycle during thepast 500 million years exhibit a characteristic rate of change overtwo orders of magnitude in time scale. This characteristic rate isconsistent with the maximum rate that limits quasistatic (i.e., nearsteady-state) evolution of the carbon cycle. We identify this rate withmarginal stability, and show that mass extinctions occur on the fast,unstable side of the stability boundary. These results suggest thatthe great extinction events of the geologic past, and potentially a"sixth extinction" associated with modern environmental change, arecharacterized by common mechanisms of instability.
Linking extinction-colonization dynamics to genetic structure in a salamander metapopulation.
Cosentino, Bradley J; Phillips, Christopher A; Schooley, Robert L; Lowe, Winsor H; Douglas, Marlis R
2012-04-22
Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.
Army Civil Affairs Functional Specialists: On the Verge of Extinction
2012-03-22
the following six areas: rule of law, economic stability , infrastructure, governance, public health and welfare, and public education and information...as defined in table 1. Rule of Law Economic Stability Infrastructure Rule of law pertains to the fair, competent, and efficient application and... Economic stability pertains to the efficient management (for example, production, distribution, trade, and consumption) of resources, goods
NASA Technical Reports Server (NTRS)
Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.
2012-01-01
An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.
Hermann, Andrea; Küpper, Yvonne; Schmitz, Anja; Walter, Bertram; Vaitl, Dieter; Hennig, Jürgen; Stark, Rudolf; Tabbert, Katharina
2012-01-01
Fear acquisition and extinction are crucial mechanisms in the etiology and maintenance of anxiety disorders. Moreover, they might play a pivotal role in conveying the influence of genetic and environmental factors on the development of a (more or less) stronger proneness for, or resilience against psychopathology. There are only few insights in the neurobiology of genetically and environmentally based individual differences in fear learning and extinction. In this functional magnetic resonance imaging study, 74 healthy subjects were investigated. These were invited according to 5-HTTLPR/rs25531 (S+ vs. L(A)L(A); triallelic classification) and TPH2 (G(-703)T) (T+ vs. T-) genotype. The aim was to investigate the influence of genetic factors and traumatic life events on skin conductance responses (SCRs) and neural responses (amygdala, insula, dorsal anterior cingulate cortex (dACC) and ventromedial prefrontal cortex (vmPFC)) during acquisition and extinction learning in a differential fear conditioning paradigm. Fear acquisition was characterized by stronger late conditioned and unconditioned responses in the right insula in 5-HTTLPR S-allele carriers. During extinction traumatic life events were associated with reduced amygdala activation in S-allele carriers vs. non-carriers. Beyond that, T-allele carriers of the TPH2 (G(-703)T) polymorphism with a higher number of traumatic life events showed enhanced responsiveness in the amygdala during acquisition and in the vmPFC during extinction learning compared with non-carriers. Finally, a combined effect of the two polymorphisms with higher responses in S- and T-allele carriers was found in the dACC during extinction. The results indicate an increased expression of conditioned, but also unconditioned fear responses in the insula in 5-HTTLPR S-allele carriers. A combined effect of the two polymorphisms on dACC activation during extinction might be associated with prolonged fear expression. Gene-by-environment interactions in amygdala and vmPFC activation may reflect a neural endophenotype translating genetic and adverse environmental influences into vulnerability for or resilience against developing affective psychopathology.
Meulders, Ann; Meulders, Michel; Vlaeyen, Johan W S
2014-06-01
From a treatment perspective, it is highly relevant to pinpoint individual vulnerability factors for resistance to exposure treatment in highly fearful chronic pain patients. Previous fear conditioning research showed that healthy individuals scoring relatively high on trait anxiety display sustained fear to safety cues during extinction. In the context of fear of movement-related pain, this intriguing question has been largely neglected so far. Even more importantly, positive psychological traits such as trait positive affect may function as protective factors against the spreading of fear to safe movements and improve exposure treatment outcomes. In this study, healthy participants completed a trait anxiety and trait positive affect questionnaire and underwent acquisition and extinction of fear of movement-related pain using an experimental voluntary movement paradigm. During acquisition, one movement (CS+) was paired with a painful stimulus and another movement was not (CS-). During extinction, the CS+ was no longer reinforced. Results show failure of fear inhibition to the CS- during extinction in healthy individuals scoring relatively high on trait anxiety or relatively low on positive affect. These findings seem to suggest that safety learning is more vulnerable in healthy people with a high anxious disposition and/or relatively lower levels of positive affect. In addition, this is the first study to show that the negative impact of high trait anxiety on fear inhibition to safety cues during extinction can be countered by high levels of positive affect. These findings may have important clinical implications. Both low positive affect and high trait anxiety are associated with impaired fear inhibition to nonpainful movements during fear extinction. Interestingly, high levels of positive affect buffer against the negative impact of trait anxiety. Increasing positive affect during exposure may counter the effects of trait vulnerabilities and improve treatment outcomes. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
Detecting Hidden Diversification Shifts in Models of Trait-Dependent Speciation and Extinction.
Beaulieu, Jeremy M; O'Meara, Brian C
2016-07-01
The distribution of diversity can vary considerably from clade to clade. Attempts to understand these patterns often employ state-dependent speciation and extinction models to determine whether the evolution of a particular novel trait has increased speciation rates and/or decreased extinction rates. It is still unclear, however, whether these models are uncovering important drivers of diversification, or whether they are simply pointing to more complex patterns involving many unmeasured and co-distributed factors. Here we describe an extension to the popular state-dependent speciation and extinction models that specifically accounts for the presence of unmeasured factors that could impact diversification rates estimated for the states of any observed trait, addressing at least one major criticism of BiSSE (Binary State Speciation and Extinction) methods. Specifically, our model, which we refer to as HiSSE (Hidden State Speciation and Extinction), assumes that related to each observed state in the model are "hidden" states that exhibit potentially distinct diversification dynamics and transition rates than the observed states in isolation. We also demonstrate how our model can be used as character-independent diversification models that allow for a complex diversification process that is independent of the evolution of a character. Under rigorous simulation tests and when applied to empirical data, we find that HiSSE performs reasonably well, and can at least detect net diversification rate differences between observed and hidden states and detect when diversification rate differences do not correlate with the observed states. We discuss the remaining issues with state-dependent speciation and extinction models in general, and the important ways in which HiSSE provides a more nuanced understanding of trait-dependent diversification. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DeMiguel, Daniel; Rook, Lorenzo
2018-03-01
Despite its long history of scientific study, the causes underlying the extinction of the insular hominoid Oreopithecus bambolii are still a matter of ongoing debate. While some authors consider intense tectonism and invading species the cause of its extinction ca. 6.7 Ma, others propose climatic change as the main contributing factor. We rely on long-term patterns of tooth wear and hypsodonty of the Baccinello and Fiume Santo herbivore-faunas to reconstruct changes in habitat prior to, during and after the extinction. While a mosaic of habitats was represented in Baccinello V1 (as shown by a record of browsers, mixed feeders and species engaged in grazing), more closed forests (higher proportion of browsers, shortage of mixed feeders and lack of grazers) characterised Baccinello V2. Finally, there was a partial loss of canopy cover and development of open-patches and low-abrasive grasses in Baccinello V3 (as denoted by new records of taxa involved in grazing)-although still dominated by a forested habitat (since browse was a component in all diets). Our results provide evidence for two perceptible shifts in climate, one between 8.1 and 7.1 Ma and other ca. 6.7 Ma, though this latter was not drastic enough to lead to intensive forest loss, substantially alter the local vegetation or affect Oreopithecus lifestyle-especially if considering the growing evidence of its versatile diet. Although the disappearance of Oreopithecus is complex, our data reject the hypothesis of environmental change as the main factor in the extinction of Oreopithecus and Maremma fauna. When our results are analysed together with other evidence, faunal interaction and predation by invading species from mainland Europe seems to be the most parsimonious explanation for this extinction event. This contrasts with European hominoid extinctions that were associated with major climatic shifts that led to environmental uniformity and restriction of the preferred habitats of Miocene apes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Guodong; Qin, Laian; Hou, Zaihong; Jing, Xu; He, Feng; Tan, Fengfu; Zhang, Silong
2018-03-19
In this paper, a new prototypical Scheimpflug lidar capable of detecting the aerosol extinction coefficient and vertical atmospheric transmittance at 1 km above the ground is described. The lidar system operates at 532 nm and can be used to detect aerosol extinction coefficients throughout an entire day. Then, the vertical atmospheric transmittance can be determined from the extinction coefficients with the equation of numerical integration in this area. CCD flat fielding of the image data is used to mitigate the effects of pixel sensitivity variation. An efficient method of two-dimensional wavelet transform according to a local threshold value has been proposed to reduce the Gaussian white noise in the lidar signal. Furthermore, a new iteration method of backscattering ratio based on genetic algorithm is presented to calculate the aerosol extinction coefficient and vertical atmospheric transmittance. Some simulations are performed to reduce the different levels of noise in the simulated signal in order to test the precision of the de-noising method and inversion algorithm. The simulation result shows that the root-mean-square errors of extinction coefficients are all less than 0.02 km -1 , and that the relative errors of the atmospheric transmittance between the model and inversion data are below 0.56% for all cases. The feasibility of the instrument and the inversion algorithm have also been verified by an optical experiment. The average relative errors of aerosol extinction coefficients between the Scheimpflug lidar and the conventional backscattering elastic lidar are 3.54% and 2.79% in the full overlap heights of two time points, respectively. This work opens up new possibilities of using a small-scale Scheimpflug lidar system for the remote sensing of atmospheric aerosols.
Wagstaff, Bradley J; Kroutter, Emily N; Derbes, Rebecca S; Belancio, Victoria P; Roy-Engel, Astrid M
2013-01-01
Non-long terminal repeat retroelements continue to impact the human genome through cis-activity of long interspersed element-1 (LINE-1 or L1) and trans-mobilization of Alu. Current activity is dominated by modern subfamilies of these elements, leaving behind an evolutionary graveyard of extinct Alu and L1 subfamilies. Because Alu is a nonautonomous element that relies on L1 to retrotranspose, there is the possibility that competition between these elements has driven selection and antagonistic coevolution between Alu and L1. Through analysis of synonymous versus nonsynonymous codon evolution across L1 subfamilies, we find that the C-terminal ORF2 cys domain experienced a dramatic increase in amino acid substitution rate in the transition from L1PA5 to L1PA4 subfamilies. This observation coincides with the previously reported rapid evolution of ORF1 during the same transition period. Ancestral Alu sequences have been previously reconstructed, as their short size and ubiquity have made it relatively easy to retrieve consensus sequences from the human genome. In contrast, creating constructs of extinct L1 copies is a more laborious task. Here, we report our efforts to recreate and evaluate the retrotransposition capabilities of two ancestral L1 elements, L1PA4 and L1PA8 that were active ~18 and ~40 Ma, respectively. Relative to the modern L1PA1 subfamily, we find that both elements are similarly active in a cell culture retrotransposition assay in HeLa, and both are able to efficiently trans-mobilize Alu elements from several subfamilies. Although we observe some variation in Alu subfamily retrotransposition efficiency, any coevolution that may have occurred between LINEs and SINEs is not evident from these data. Population dynamics and stochastic variation in the number of active source elements likely play an important role in individual LINE or SINE subfamily amplification. If coevolution also contributes to changing retrotransposition rates and the progression of subfamilies, cell factors are likely to play an important mediating role in changing LINE-SINE interactions over evolutionary time.
Wagstaff, Bradley J.; Kroutter, Emily N.; Derbes, Rebecca S.; Belancio, Victoria P.; Roy-Engel, Astrid M.
2013-01-01
Non-long terminal repeat retroelements continue to impact the human genome through cis-activity of long interspersed element-1 (LINE-1 or L1) and trans-mobilization of Alu. Current activity is dominated by modern subfamilies of these elements, leaving behind an evolutionary graveyard of extinct Alu and L1 subfamilies. Because Alu is a nonautonomous element that relies on L1 to retrotranspose, there is the possibility that competition between these elements has driven selection and antagonistic coevolution between Alu and L1. Through analysis of synonymous versus nonsynonymous codon evolution across L1 subfamilies, we find that the C-terminal ORF2 cys domain experienced a dramatic increase in amino acid substitution rate in the transition from L1PA5 to L1PA4 subfamilies. This observation coincides with the previously reported rapid evolution of ORF1 during the same transition period. Ancestral Alu sequences have been previously reconstructed, as their short size and ubiquity have made it relatively easy to retrieve consensus sequences from the human genome. In contrast, creating constructs of extinct L1 copies is a more laborious task. Here, we report our efforts to recreate and evaluate the retrotransposition capabilities of two ancestral L1 elements, L1PA4 and L1PA8 that were active ∼18 and ∼40 Ma, respectively. Relative to the modern L1PA1 subfamily, we find that both elements are similarly active in a cell culture retrotransposition assay in HeLa, and both are able to efficiently trans-mobilize Alu elements from several subfamilies. Although we observe some variation in Alu subfamily retrotransposition efficiency, any coevolution that may have occurred between LINEs and SINEs is not evident from these data. Population dynamics and stochastic variation in the number of active source elements likely play an important role in individual LINE or SINE subfamily amplification. If coevolution also contributes to changing retrotransposition rates and the progression of subfamilies, cell factors are likely to play an important mediating role in changing LINE-SINE interactions over evolutionary time. PMID:22918960
Endangered & Extinct Animals. Animal Life in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
This 23-minute videotape for grades 5-8, presents the myriad of animal life that exists on the planet. Students can view and perform experiments and investigations that help explain animal traits and habits. Due to environmental factors and human interference, many of Earth's creatures have ceased to exist or are on the verge of extinction. In…
MONSTER IN THE DARK: THE ULTRALUMINOUS GRB 080607 AND ITS DUSTY ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perley, D. A.; Morgan, A. N.; Miller, A. A.
2011-02-15
We present early-time optical through infrared photometry of the bright Swift gamma-ray burst (GRB) 080607, starting only 6 s following the initial trigger in the rest frame. Complemented by our previously published spectroscopy, this high-quality photometric data set allows us to solve for the extinction properties of the redshift 3.036 sightline, giving perhaps the most detailed information to date on the ultraviolet continuum absorption properties of any sightline outside our Local Group. The extinction properties are not adequately modeled by any ordinary extinction template (including the average Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud curves), partially because themore » 2175 A feature (while present) is weaker by about a factor of two than when seen under similar circumstances locally. However, the spectral energy distribution is exquisitely fitted by the more general Fitzpatrick and Massa parameterization of Local-Group extinction, putting it in the same family as some peculiar Milky Way extinction curves. After correcting for this (considerable, A{sub V} = 3.3 {+-} 0.4 mag) extinction, GRB 080607 is revealed to have been among the most optically luminous events ever observed, comparable to the naked-eye burst GRB 080319B. Its early peak time (t{sub rest} < 6 s) indicates a high initial Lorentz factor ({Gamma}>600), while the extreme luminosity may be explained in part by a large circumburst density. Only because of its early high luminosity could the afterglow of GRB 080607 be studied in such detail in spite of the large attenuation and great distance, making this burst an excellent prototype for the understanding of other highly obscured extragalactic objects, and of the class of 'dark' GRBs in particular.« less
Lonsdorf, Tina B; Golkar, Armita; Lindström, Kara M; Haaker, Jan; Öhman, Arne; Schalling, Martin; Ingvar, Martin
2015-05-01
Brain-derived neurotrophic factor (BDNF), the most abundant neutrophin in the mammalian central nervous system, is critically involved in synaptic plasticity. In both rodents and humans, BDNF has been implicated in hippocampus- and amygdala-dependent learning and memory and has more recently been linked to fear extinction processes. Fifty-nine healthy participants, genotyped for the functional BDNFval66met polymorphism, underwent a fear conditioning and 24h-delayed extinction protocol while skin conductance and blood oxygenation level dependent (BOLD) responses (functional magnetic resonance imaging) were acquired. We present the first report of neural activation pattern during fear acquisition 'and' extinction for the BDNFval66met polymorphism using a differential conditioned stimulus (CS)+ > CS- comparison. During conditioning, we observed heightened allele dose-dependent responses in the amygdala and reduced responses in the subgenual anterior cingulate cortex in BDNFval66met met-carriers. During early extinction, 24h later, we again observed heightened responses in several regions ascribed to the fear network in met-carriers as opposed to val-carriers (insula, amygdala, hippocampus), which likely reflects fear memory recall. No differences were observed during late extinction, which likely reflects learned extinction. Our data thus support previous associations of the BDNFval66met polymorphism with neural activation in the fear and extinction network, but speak against a specific association with fear extinction processes. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Uncertain sightings and the extinction of the Ivory-billed Woodpecker.
Solow, Andrew; Smith, Woollcott; Burgman, Mark; Rout, Tracy; Wintle, Brendan; Roberts, David
2012-02-01
The extinction of a species can be inferred from a record of its sightings. Existing methods for doing so assume that all sightings in the record are valid. Often, however, there are sightings of uncertain validity. To date, uncertain sightings have been treated in an ad hoc way, either excluding them from the record or including them as if they were certain. We developed a Bayesian method that formally accounts for such uncertain sightings. The method assumes that valid and invalid sightings follow independent Poisson processes and use noninformative prior distributions for the rate of valid sightings and for a measure of the quality of uncertain sightings. We applied the method to a recently published record of sightings of the Ivory-billed Woodpecker (Campephilus principalis). This record covers the period 1897-2010 and contains 39 sightings classified as certain and 29 classified as uncertain. The Bayes factor in favor of extinction was 4.03, which constitutes substantial support for extinction. The posterior distribution of the time of extinction has 3 main modes in 1944, 1952, and 1988. The method can be applied to sighting records of other purportedly extinct species. ©2011 Society for Conservation Biology.
Can fear extinction be enhanced? A review of pharmacological and behavioral findings
Fitzgerald, Paul J.; Seemann, Jocelyn R.; Maren, Stephen
2014-01-01
There is considerable interest, from both a basic and clinical standpoint, in gaining a greater understanding of how pharmaceutical or behavioral manipulations alter fear extinction in animals. Not only does fear extinction in rodents model exposure therapy in humans, where the latter is a cornerstone of behavioral intervention for anxiety disorders such as post-traumatic stress disorder and specific phobias, but also understanding more about extinction provides basic information into learning and memory processes and their underlying circuitry. In this paper, we briefly review three principal approaches that have been used to modulate extinction processes in animals and humans: a purely pharmacological approach, the more widespread approach of combining pharmacology with behavior, and a purely behavioral approach. The pharmacological studies comprise modulation by: brain derived neurotrophic factor (BDNF), d-cycloserine, serotonergic and noradrenergic drugs, neuropeptides, endocannabinoids, glucocorticoids, histone deacetylase (HDAC) inhibitors, and others. These studies strongly suggest that extinction can be modulated by drugs, behavioral interventions, or their combination, although not always in a lasting manner. We suggest that pharmacotherapeutic manipulations provide considerable promise for promoting effective and lasting fear reduction in individuals with anxiety disorders. PMID:24374101
Global late Quaternary megafauna extinctions linked to humans, not climate change.
Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian
2014-07-22
The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132,000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial-interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary.
Separating sensitivity from exposure in assessing extinction risk from climate change.
Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M
2014-11-04
Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.
Climate modelling of mass-extinction events: a review
NASA Astrophysics Data System (ADS)
Feulner, Georg
2009-07-01
Despite tremendous interest in the topic and decades of research, the origins of the major losses of biodiversity in the history of life on Earth remain elusive. A variety of possible causes for these mass-extinction events have been investigated, including impacts of asteroids or comets, large-scale volcanic eruptions, effects from changes in the distribution of continents caused by plate tectonics, and biological factors, to name but a few. Many of these suggested drivers involve or indeed require changes of Earth's climate, which then affect the biosphere of our planet, causing a global reduction in the diversity of biological species. It can be argued, therefore, that a detailed understanding of these climatic variations and their effects on ecosystems are prerequisites for a solution to the enigma of biological extinctions. Apart from investigations of the paleoclimate data of the time periods of mass extinctions, climate-modelling experiments should be able to shed some light on these dramatic events. Somewhat surprisingly, however, only a few comprehensive modelling studies of the climate changes associated with extinction events have been undertaken. These studies will be reviewed in this paper. Furthermore, the role of modelling in extinction research in general and suggestions for future research are discussed.
Global late Quaternary megafauna extinctions linked to humans, not climate change
Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian
2014-01-01
The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132 000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial–interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary. PMID:24898370
Separating sensitivity from exposure in assessing extinction risk from climate change
Dickinson, Maria G.; Orme, C. David L.; Suttle, K. Blake; Mace, Georgina M.
2014-01-01
Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk. PMID:25367429
Thermal Transgressions and Phanerozoic Extinctions
NASA Astrophysics Data System (ADS)
Worsley, T. R.; Kidder, D. L.
2007-12-01
A number of significant Phanerozoic extinctions are associated with marine transgressions that were probably driven by rapid ocean warming. The conditions associated with what we call thermal transgressions are extremely stressful to life on Earth. The Earth system setting associated with end-Permian extinction exemplifies an end-member case of our model. The conditions favoring extreme warmth and sea-level increases driven by thermal expansion are also conducive to changes in ocean circulation that foster widespread anoxia and sulfidic subsurface ocean waters. Equable climates are characterized by reduced wind shear and weak surface ocean circulation. Late Permian and Early Triassic thermohaline circulation differs considerably from today's world, with minimal polar sinking and intensified mid-latitude sinking that delivers sulfate from shallow evaporative areas to deeper water where it is reduced to sulfide. Reduced nutrient input to oceans from land at many of the extinction intervals results from diminished silicate weathering and weakened delivery of iron via eolian dust. The falloff in iron-bearing dust leads to minimal nitrate production, weakening food webs and rendering faunas and floras more susceptible to extinction when stressed. Factors such as heat, anoxia, ocean acidification, hypercapnia, and hydrogen sulfide poisoning would significantly affect these biotas. Intervals of tectonic quiescence set up preconditions favoring extinctions. Reductions in chemical silicate weathering lead to carbon dioxide buildup, oxygen drawdown, nutrient depletion, wind and ocean current abatement, long-term global warming, and ocean acidification. The effects of extinction triggers such as large igneous provinces, bolide impacts, and episodes of sudden methane release are more potent against the backdrop of our proposed preconditions. Extinctions that have characteristics we call for in the thermal transgressions include the Early Cambrian Sinsk event, as well as extinction events at the Frasnian-Famennian, end-Devonian, end Permian, Early Toarcian, Cenomanian-Turonian, and end Cretaceous. The Late Paleocene and end Triassic extinctions are still under evaluation. The extinctions associated with the glacio-eustatic sea-level change in the Late Ordovician are not consistent with the conditions of our model.
Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.
Tejero, Héctor; Montero, Francisco; Nuño, Juan Carlos
2016-01-01
RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal mutagenesis.
Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands.
Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun
2015-10-15
This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection.
Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands
Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun
2015-01-01
This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection. PMID:26469768
The rediscovered Hula painted frog is a living fossil.
Biton, Rebecca; Geffen, Eli; Vences, Miguel; Cohen, Orly; Bailon, Salvador; Rabinovich, Rivka; Malka, Yoram; Oron, Talya; Boistel, Renaud; Brumfeld, Vlad; Gafny, Sarig
2013-01-01
Amphibian declines are seen as an indicator of the onset of a sixth mass extinction of life on earth. Because of a combination of factors such as habitat destruction, emerging pathogens and pollutants, over 156 amphibian species have not been seen for several decades, and 34 of these were listed as extinct by 2004. Here we report the rediscovery of the Hula painted frog, the first amphibian to have been declared extinct. We provide evidence that not only has this species survived undetected in its type locality for almost 60 years but also that it is a surviving member of an otherwise extinct genus of alytid frogs, Latonia, known only as fossils from Oligocene to Pleistocene in Europe. The survival of this living fossil is a striking example of resilience to severe habitat degradation during the past century by an amphibian.
Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation
Zapata, J. D.; Steinberg, D.; Saito, L. A. M.; de Oliveira, R. E. P.; Cárdenas, A. M.; de Souza, E. A. Thoroh
2016-01-01
We demonstrated a method to construct high efficiency saturable absorbers based on the evanescent light field interaction of CVD monolayer graphene deposited on side-polished D-shaped optical fiber. A set of samples was fabricated with two different core-graphene distances (0 and 1 μm), covered with graphene ranging between 10 and 25 mm length. The mode-locking was achieved and the best pulse duration was 256 fs, the shortest pulse reported in the literature with CVD monolayer graphene in EDFL. As result, we find a criterion between the polarization relative extinction ratio in the samples and the pulse duration, which relates the better mode-locking performance with the higher polarization extinction ratio of the samples. This criterion also provides a better understanding of the graphene distributed saturable absorbers and their reproducible performance as optoelectronic devices for optical applications. PMID:26856886
Condamine, Fabien L; Rolland, Jonathan; Höhna, Sebastian; Sperling, Felix A H; Sanmartín, Isabel
2018-02-09
In macroevolution, the Red Queen (RQ) model posits that biodiversity dynamics depend mainly on species-intrinsic biotic factors such as interactions among species or life-history traits, while the Court Jester (CJ) model states that extrinsic environmental abiotic factors have a stronger role. Until recently, a lack of relevant methodological approaches has prevented the unraveling of contributions from these two types of factors to the evolutionary history of a lineage. Here we take advantage of the rapid development of new macroevolution models that tie diversification rates to changes in paleoenvironmental (extrinsic) and/or biotic (intrinsic) factors. We inferred a robust and fully-sampled species-level phylogeny, as well as divergence times and ancestral geographic ranges, and related these to the radiation of Apollo butterflies (Parnassiinae) using both extant (molecular) and extinct (fossil/morphological) evidence. We tested whether their diversification dynamics are better explained by a RQ or CJ hypothesis, by assessing whether speciation and extinction were mediated by diversity-dependence (niche filling) and clade-dependent host-plant association (RQ) or by large-scale continuous changes in extrinsic factors such as climate or geology (CJ). For the RQ hypothesis, we found significant differences in speciation rates associated with different host-plants but detected no sign of diversity-dependence. For CJ, the role of Himalayan-Tibetan building was substantial for biogeography but not a driver of high speciation, while positive dependence between warm climate and speciation/extinction was supported by continuously varying maximum-likelihood models. We find that rather than a single factor, the joint effect of multiple factors (biogeography, species traits, environmental drivers, and mass extinction) is responsible for current diversity patterns, and that the same factor might act differently across clades, emphasizing the notion of opportunity. This study confirms the importance of the confluence of several factors rather than single explanations in modeling diversification within lineages. © The Author(s) 2018. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Light scattering by marine algae: two-layer spherical and nonspherical models
NASA Astrophysics Data System (ADS)
Quirantes, Arturo; Bernard, Stewart
2004-11-01
Light scattering properties of algae-like particles are modeled using the T-matrix for coated scatterers. Two basic geometries have been considered: off-centered coated spheres and centered spheroids. Extinction, scattering and absorption efficiencies, plus scattering in the backward plane, are compared to simpler models like homogeneous (Mie) and coated (Aden-Kerker) models. The anomalous diffraction approximation (ADA), of widespread use in the oceanographic light-scattering community, has also been used as a first approximation, for both homogeneous and coated spheres. T-matrix calculations show that some light scattering values, such as extinction and scattering efficiencies, have little dependence on particle shape, thus reinforcing the view that simpler (Mie, Aden-Kerker) models can be applied to infer refractive index (RI) data from absorption curves. The backscattering efficiency, on the other hand, is quite sensitive to shape. This calls into question the use of light scattering techniques where the phase function plays a pivotal role, and can help explain the observed discrepancy between theoretical and experimental values of the backscattering coefficient in observed in oceanic studies.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
Optical characterization of broad plasmon resonances of Pd/Pt nanoparticles
NASA Astrophysics Data System (ADS)
Valizade-Shahmirzadi, N.; Pakizeh, T.
2018-04-01
In this paper, optical properties of nanoparticles (nanodisks and nanospheres) composed of photofunctional metals like palladium (Pd) and platinum (Pt) over a large dimension range are investigated using the electromagnetic simulation and quasi-static theory. These characteristics are compared with their counterparts in plasmonic gold (Au) nanoparticles. Pd/Pt-nanodisks with larger dimension have higher absorption and lower scattering efficiencies than Au-nanodisks that accompany with lower extinction efficiencies and broader resonances. Although an increment in the dimension (diameter and height) of Au/Pd/Pt-nanoparticles decreases the absorption-to-scattering ratios, these ratios are less sensitive to the height size in Au-nanodisks, which causes their LSPR spectra become much broader. It is noteworthy that the LSPR quality factor of Pd nanoparticles is improved by considering the radiative damping and depolarization in quasi-static method unlike the Au nanoparticles. The importance of the highly absorptive Pd/Pt nanoparticles can be traced in the photo-functionalized and energy applications.
Dynamic expression of FKBP5 in the medial prefrontal cortex regulates resiliency to conditioned fear
Criado-Marrero, Marangelie; Morales Silva, Roberto J.; Velazquez, Bethzaly; Hernández, Anixa; Colon, María; Cruz, Emmanuel; Soler-Cedeño, Omar; Porter, James T.
2017-01-01
The factors influencing resiliency to the development of post-traumatic stress disorder (PTSD) remain to be elucidated. Clinical studies associate PTSD with polymorphisms of the FK506 binding protein 5 (FKBP5). However, it is unclear whether changes in FKBP5 expression alone could produce resiliency or susceptibility to PTSD-like symptoms. In this study, we used rats as an animal model to examine whether FKBP5 in the infralimbic (IL) or prelimbic (PL) medial prefrontal cortex regulates fear conditioning or extinction. First, we examined FKBP5 expression in IL and PL during fear conditioning or extinction. In contrast to the stable expression of FKBP5 seen in PL, FKBP5 expression in IL increased after fear conditioning and remained elevated even after extinction suggesting that IL FKBP5 levels may modulate fear conditioning or extinction. Consistent with this possibility, reducing basal FKBP5 expression via local infusion of FKBP5–shRNA into IL reduced fear conditioning. Furthermore, reducing IL FKBP5, after consolidation of the fear memory, enhanced extinction memory indicating that IL FKBP5 opposed formation of the extinction memory. Our findings demonstrate that lowering FKBP5 expression in IL is sufficient to both reduce fear acquisition and enhance extinction, and suggest that lower expression of FKBP5 in the ventral medial prefrontal cortex could contribute to resiliency to PTSD. PMID:28298552
Vagus nerve stimulation reduces cocaine seeking and alters plasticity in the extinction network.
Childs, Jessica E; DeLeon, Jaime; Nickel, Emily; Kroener, Sven
2017-01-01
Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces rates of relapse. Here we used vagus nerve stimulation (VNS) to induce targeted synaptic plasticity to facilitate extinction of appetitive behaviors and to reduce relapse. Rats self-administered cocaine and were given VNS during extinction. Relapse to drug-seeking was assessed in a cued reinstatement session. We used immunohistochemistry to measure changes in the expression of the phosphorylated transcription factor cAMP response-element binding protein (pCREB) in the PFC and the basolateral amygdala (BLA), which regulate cue learning and extinction. In vivo recordings of evoked field potentials measured drug- and VNS-induced changes in metaplasticity in the pathway from the PFC to the BLA. VNS-treated rats showed improved rates of extinction and reduced reinstatement. Following reinstatement, pCREB levels were reduced in the IL and BLA of VNS-treated rats. Evoked responses in the BLA were greatly reduced in VNS-treated rats, and these rats were also resistant to the induction of LTD. Taken together, these results show that VNS facilitates extinction and reduces reinstatement. Changes in the pathway between the PFC and the amygdala may contribute to these beneficial effects. © 2016 Childs et al.; Published by Cold Spring Harbor Laboratory Press.
Vagus nerve stimulation reduces cocaine seeking and alters plasticity in the extinction network
Childs, Jessica E.; DeLeon, Jaime; Nickel, Emily
2017-01-01
Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces rates of relapse. Here we used vagus nerve stimulation (VNS) to induce targeted synaptic plasticity to facilitate extinction of appetitive behaviors and to reduce relapse. Rats self-administered cocaine and were given VNS during extinction. Relapse to drug-seeking was assessed in a cued reinstatement session. We used immunohistochemistry to measure changes in the expression of the phosphorylated transcription factor cAMP response-element binding protein (pCREB) in the PFC and the basolateral amygdala (BLA), which regulate cue learning and extinction. In vivo recordings of evoked field potentials measured drug- and VNS-induced changes in metaplasticity in the pathway from the PFC to the BLA. VNS-treated rats showed improved rates of extinction and reduced reinstatement. Following reinstatement, pCREB levels were reduced in the IL and BLA of VNS-treated rats. Evoked responses in the BLA were greatly reduced in VNS-treated rats, and these rats were also resistant to the induction of LTD. Taken together, these results show that VNS facilitates extinction and reduces reinstatement. Changes in the pathway between the PFC and the amygdala may contribute to these beneficial effects. PMID:27980074
Robinson, John D; Wares, John P; Drake, John M
2013-01-01
Extinction is ubiquitous in natural systems and the ultimate fate of all biological populations. However, the factors that contribute to population extinction are still poorly understood, particularly genetic diversity and composition. A laboratory experiment was conducted to examine the influences of environmental variation and genotype diversity on persistence in experimental Daphnia magna populations. Populations were initiated in two blocks with one, two, three, or six randomly selected and equally represented genotypes, fed and checked for extinction daily, and censused twice weekly over a period of 170 days. Our results show no evidence for an effect of the number of genotypes in a population on extinction hazard. Environmental variation had a strong effect on hazards in both experimental blocks, but the direction of the effect differed between blocks. In the first block, variable environments hastened extinction, while in the second block, hazards were reduced under variable food input. This occurred despite greater fluctuations in population size in variable environments in the second block of our experiment. Our results conflict with previous studies, where environmental variation consistently increased extinction risk. They are also at odds with previous studies in other systems that documented significant effects of genetic diversity on population persistence. We speculate that the lack of sexual reproduction, or the phenotypic similarity among our experimental lines, might underlie the lack of a significant effect of genotype diversity in our study. PMID:23467276
New U/Th ages for Pleistocene megafauna deposits of southeastern Queensland, Australia
NASA Astrophysics Data System (ADS)
Price, Gilbert J.; Zhao, Jian-xin; Feng, Yue-xing; Hocknull, Scott A.
2009-02-01
Arguments over the extinction of Pleistocene megafauna have become particularly polarised in recent years. Causes for the extinctions are widely debated with climate change, human hunting and/or habitat modification, or a combination of those factors, being the dominant hypotheses. However, a lack of a spatially constrained chronology for many megafauna renders most hypotheses difficult to test. Here, we present several new U/Th dates for a series of previously undated, megafauna-bearing localities from southeastern Queensland, Australia. The sites were previously used to argue for or against various megafauna extinction hypotheses, and are the type localities for two now-extinct Pleistocene marsupials (including the giant koala, Phascolarctos stirtoni). The new dating allows the deposits to be placed in a spatially- and temporally constrained context relevant to the understanding of Australian megafaunal extinctions. The results indicate that The Joint (Texas Caves) megafaunal assemblage is middle Pleistocene or older (>292 ky); the Cement Mills (Gore) megafaunal assemblage is late Pleistocene or older (>53 ky); and the Russenden Cave Bone Chamber (Texas Caves) megafaunal assemblage is late Pleistocene (˜55 ky). Importantly, the new results broadly show that the sites date prior to the hypothesised megafaunal extinction 'window' (i.e., ˜30-50 ky), and therefore, cannot be used to argue exclusively for or against human/climate change extinction models, without first exploring their palaeoecological significance on wider temporal and spatial scales.
Waiting can be an optimal conservation strategy, even in a crisis discipline
Possingham, Hugh P.; Bode, Michael
2017-01-01
Biodiversity conservation projects confront immediate and escalating threats with limited funding. Conservation theory suggests that the best response to the species extinction crisis is to spend money as soon as it becomes available, and this is often an explicit constraint placed on funding. We use a general dynamic model of a conservation landscape to show that this decision to “front-load” project spending can be suboptimal if a delay allows managers to use resources more strategically. Our model demonstrates the existence of temporal efficiencies in conservation management, which parallel the spatial efficiencies identified by systematic conservation planning. The optimal timing of decisions balances the rate of biodiversity decline (e.g., the relaxation of extinction debts, or the progress of climate change) against the rate at which spending appreciates in value (e.g., through interest, learning, or capacity building). We contrast the benefits of acting and waiting in two ecosystems where restoration can mitigate forest bird extinction debts: South Australia’s Mount Lofty Ranges and Paraguay’s Atlantic Forest. In both cases, conservation outcomes cannot be maximized by front-loading spending, and the optimal solution recommends substantial delays before managers undertake conservation actions. Surprisingly, these delays allow superior conservation benefits to be achieved, in less time than front-loading. Our analyses provide an intuitive and mechanistic rationale for strategic delay, which contrasts with the orthodoxy of front-loaded spending for conservation actions. Our results illustrate the conservation efficiencies that could be achieved if decision makers choose when to spend their limited resources, as opposed to just where to spend them. PMID:28894004
Waiting can be an optimal conservation strategy, even in a crisis discipline.
Iacona, Gwenllian D; Possingham, Hugh P; Bode, Michael
2017-09-26
Biodiversity conservation projects confront immediate and escalating threats with limited funding. Conservation theory suggests that the best response to the species extinction crisis is to spend money as soon as it becomes available, and this is often an explicit constraint placed on funding. We use a general dynamic model of a conservation landscape to show that this decision to "front-load" project spending can be suboptimal if a delay allows managers to use resources more strategically. Our model demonstrates the existence of temporal efficiencies in conservation management, which parallel the spatial efficiencies identified by systematic conservation planning. The optimal timing of decisions balances the rate of biodiversity decline (e.g., the relaxation of extinction debts, or the progress of climate change) against the rate at which spending appreciates in value (e.g., through interest, learning, or capacity building). We contrast the benefits of acting and waiting in two ecosystems where restoration can mitigate forest bird extinction debts: South Australia's Mount Lofty Ranges and Paraguay's Atlantic Forest. In both cases, conservation outcomes cannot be maximized by front-loading spending, and the optimal solution recommends substantial delays before managers undertake conservation actions. Surprisingly, these delays allow superior conservation benefits to be achieved, in less time than front-loading. Our analyses provide an intuitive and mechanistic rationale for strategic delay, which contrasts with the orthodoxy of front-loaded spending for conservation actions. Our results illustrate the conservation efficiencies that could be achieved if decision makers choose when to spend their limited resources, as opposed to just where to spend them.
Coal Field Fire Fighting - Practiced methods, strategies and tactics
NASA Astrophysics Data System (ADS)
Wündrich, T.; Korten, A. A.; Barth, U. H.
2009-04-01
Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be achieved. For an effective and efficient fire fighting optimal tactics are requiered and can be divided into four fundamental tactics to control fire hazards: - Defense (digging away the coal, so that the coal can not begin to burn; or forming a barrier, so that the fire can not reach the not burning coal), - Rescue the coal (coal mining of a not burning seam), - Attack (active and direct cooling of burning seam), - Retreat (only monitoring till self-extinction of a burning seam). The last one is used when a fire exceeds the organizational and/or technical scope of a mission. In other words, "to control a coal fire" does not automatically and in all situations mean "to extinguish a coal fire". Best-practice tactics or a combination of them can be selected for control of a particular coal fire. For the extinguishing works different extinguishing agents are available. They can be applied by different application techniques and varying distinctive operating expenses. One application method may be the drilling of boreholes from the surface or covering the surface with low permeability soils. The mainly used extinction agents for coal field fire are as followed: Water (with or without additives), Slurry, Foaming mud/slurry, Inert gases, Dry chemicals and materials and Cryogenic agents. Because of its tremendous dimension and its complexity the worldwide challenge of coal fires is absolutely unique - it can only be solved with functional application methods, best fitting strategies and tactics, organisation and research as well as the dedication of the involved fire fighters, who work under extreme individual risks on the burning coal fields.
NASA Astrophysics Data System (ADS)
Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.
2016-07-01
Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz-Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz-Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz-Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz-Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex.
Correlation among extinction efficiency and other parameters in an aggregate dust model
NASA Astrophysics Data System (ADS)
Dhar, Tanuj Kumar; Sekhar Das, Himadri
2017-10-01
We study the extinction properties of highly porous Ballistic Cluster-Cluster Aggregate dust aggregates in a wide range of complex refractive indices (1.4≤ n≤ 2.0, 0.001≤ k≤ 1.0) and wavelengths (0.11 {{μ }}{{m}}≤ {{λ }}≤ 3.4 {{μ }} m). An attempt has been made for the first time to investigate the correlation among extinction efficiency ({Q}{ext}), composition of dust aggregates (n,k), wavelength of radiation (λ) and size parameter of the monomers (x). If k is fixed at any value between 0.001 and 1.0, {Q}{ext} increases with increase of n from 1.4 to 2.0. {Q}{ext} and n are correlated via linear regression when the cluster size is small, whereas the correlation is quadratic at moderate and higher sizes of the cluster. This feature is observed at all wavelengths (ultraviolet to optical to infrared). We also find that the variation of {Q}{ext} with n is very small when λ is high. When n is fixed at any value between 1.4 and 2.0, it is observed that {Q}{ext} and k are correlated via a polynomial regression equation (of degree 1, 2, 3 or 4), where the degree of the equation depends on the cluster size, n and λ. The correlation is linear for small size and quadratic/cubic/quartic for moderate and higher sizes. We have also found that {Q}{ext} and x are correlated via a polynomial regression (of degree 3, 4 or 5) for all values of n. The degree of regression is found to be n and k-dependent. The set of relations obtained from our work can be used to model interstellar extinction for dust aggregates in a wide range of wavelengths and complex refractive indices.
Heinrichs, Stephen C.; Leite-Morris, Kimberly A.; Guy, Marsha D.; Goldberg, Lisa R.; Young, Angela J.; Kaplan, Gary B.
2015-01-01
Previous research suggests that morphology and arborization of dendritic spines change as a result of fear conditioning in cortical and subcortical brain regions. This study uniquely aims to delineate these structural changes in the basolateral amygdala (BLA) after both fear conditioning and fear extinction. C57BL/6 mice acquired robust conditioned fear responses (70–80% cued freezing behavior) after six pairings with a tone cue associated with footshock in comparison to unshocked controls. During fear acquisition, freezing behavior was significantly affected by both shock exposure and trial number. For fear extinction, mice were exposed to the conditioned stimulus tone in the absence of shock administration and behavioral responses significantly varied by shock treatment. In the retention tests over 3 weeks, the percentage time spent freezing varied with the factor of extinction training. In all treatment groups, alterations in dendritic plasticity were analyzed using Golgi–Cox staining of dendrites in the BLA. Spine density differed between the fear conditioned group and both the fear extinction and control groups on third order dendrites. Spine density was significantly increased in the fear conditioned group compared to the fear extinction group and controls. Similarly in Sholl analyses, fear conditioning significantly increased BLA spine numbers and dendritic intersections while subsequent extinction training reversed these effects. In summary, fear extinction produced enduring behavioral plasticity that is associated with a reversal of alterations in BLA dendritic plasticity produced by fear conditioning. These neuroplasticity findings can inform our understanding of structural mechanisms underlying stress-related pathology can inform treatment research into these disorders. PMID:23570859
Fear extinction and BDNF: Translating animal models of PTSD to the clinic
Andero, Raül; Ressler, Kerry J
2012-01-01
Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophin involved in synaptic plasticity processes that are required for long-term learning and memory. Specifically, BDNF gene expression and activation of its high-affinity TrkB receptor are necessary in the amygdala, hippocampus and prefrontal cortex for the formation of emotional memories, including fear memories. Among the psychiatric disorders with altered fear processing there is Post-traumatic Stress Disorder (PTSD) which is characterized by an inability to extinguish fear memories. Since BDNF appears to enhance extinction of fear, targeting impaired extinction in anxiety disorders such as PTSD via BDNF signalling may be an important and novel way to enhance treatment efficacy. The aim of this review is to provide a translational point of view that stems from findings in the BDNF regulation of synaptic plasticity and fear extinction. In addition, there are different systems that seem to alter fear extinction through BDNF modulation like the endocannabionoid system and the hypothalamic-pituitary adrenal axis (HPA). Recent work also finds that the pituitary adenylate cyclase-activating polypeptide (PACAP) and PAC1 receptor, which are upstream of BDNF activation, may be implicated in PTSD. Especially interesting are data that exogenous fear extinction enhancers such as antidepressants, histone deacetylases inhibitors (HDACi) and D-cycloserine, a partial NMDA agonist, may act through or in concert with the BDNF-TrkB system. Finally, we review studies where recombinant BDNF and a putative TrkB agonist, 7,8-DHF, may enhance extinction of fear. These approaches may lead to novel agents that improve extinction in animal models and eventually humans. PMID:22530815
Partial reinforcement of avoidance and resistance to extinction in humans.
Xia, Weike; Dymond, Simon; Lloyd, Keith; Vervliet, Bram
2017-09-01
In anxiety, maladaptive avoidance behavior provides for near-perfect controllability of potential threat. There has been little laboratory-based treatment research conducted on controllability as a contributing factor in the transition from adaptive to maladaptive avoidance. Here, we investigated for the first time whether partial reinforcement rate, or the reliability of avoidance at controlling or preventing contact with an aversive event, influences subsequent extinction of avoidance in humans. Five groups of participants were exposed to different partial reinforcement rates where avoidance cancelled upcoming shock on 100%, 75%, 50%, 25% or 0% of trials. During extinction, all shocks were withheld. Avoidance behavior, online shock expectancy ratings and skin conductance responses (SCRs) were measured throughout. We found that avoidance was a function of relative controllability: higher reinforcement rate groups engaged in significantly more extinction-resistant avoidance than lower reinforcement groups, and shock expectancy was inversely related with reinforcement rate during avoidance acquisition. Partial reinforcement effects were not evident in SCRs. Overall, the current study highlights the clinical relevance of laboratory-based treatment research on partial reinforcement or controllability effects on extinction of avoidance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution Under Environmental Stress at Macro- and Microscales
Nevo, Eviatar
2011-01-01
Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589–610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717–745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) “Evolution Canyon”; 5) human brain evolution, and 6) global warming. PMID:21979157
Minimizing species extinctions through strategic planning for conservation fencing.
Ringma, Jeremy L; Wintle, Brendan; Fuller, Richard A; Fisher, Diana; Bode, Michael
2017-10-01
Conservation fences are an increasingly common management action, particularly for species threatened by invasive predators. However, unlike many conservation actions, fence networks are expanding in an unsystematic manner, generally as a reaction to local funding opportunities or threats. We conducted a gap analysis of Australia's large predator-exclusion fence network by examining translocation of Australian mammals relative to their extinction risk. To address gaps identified in species representation, we devised a systematic prioritization method for expanding the conservation fence network that explicitly incorporated population viability analysis and minimized expected species' extinctions. The approach was applied to New South Wales, Australia, where the state government intends to expand the existing conservation fence network. Existing protection of species in fenced areas was highly uneven; 67% of predator-sensitive species were unrepresented in the fence network. Our systematic prioritization yielded substantial efficiencies in that it reduced expected number of species extinctions up to 17 times more effectively than ad hoc approaches. The outcome illustrates the importance of governance in coordinating management action when multiple projects have similar objectives and rely on systematic methods rather than expanding networks opportunistically. © 2017 Society for Conservation Biology.
Evolution under environmental stress at macro- and microscales.
Nevo, Eviatar
2011-01-01
Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589-610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717-745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) "Evolution Canyon"; 5) human brain evolution, and 6) global warming.
Unterseher, Martin; Schnittler, Martin
2009-05-01
Two cultivation-based isolation techniques - the incubation of leaf fragments (fragment plating) and dilution-to-extinction culturing on malt extract agar - were compared for recovery of foliar endophytic fungi from Fagus sylvatica near Greifswald, north-east Germany. Morphological-anatomical characters of vegetative and sporulating cultures and ITS sequences were used to assign morphotypes and taxonomic information to the isolates. Data analysis included species-accumulation curves, richness estimators, multivariate statistics and null model testing. Fragment plating and extinction culturing were significantly complementary with regard to species composition, because around two-thirds of the 35 fungal taxa were isolated with only one of the two cultivation techniques. The difference in outcomes highlights the need for caution in assessing fungal biodiversity based upon single isolation techniques. The efficiency of cultivation-based studies of fungal endophytes was significantly increased with the combination of the two isolation methods and estimations of species richness, when compared with a 20-years old reference study, which needed three times more isolates with fragment plating to attain the same species richness. Intensified testing and optimisation of extinction culturing in endophyte research is advocated.
NASA Technical Reports Server (NTRS)
1981-01-01
The effects of large impacts on the environment are discussed and include thermal effects, atmospheric effects, changes in ocean temperatures, and geomagnetic anomalies. Biological factors such as extinction and increases in mutation development were investigated. Geological anomalies studied include stratigraphic gaps, extinction of entire boundary layers from the geological record, and geochemical oddities. Evidence was examined for impact cratering throughout the world.
Duclot, Florian; Perez-Taboada, Iara; Wright, Katherine N.; Kabbaj, Mohamed
2016-01-01
Only a portion of the population exposed to trauma will develop persistent emotional alterations characteristic of posttraumatic stress disorder (PTSD), which illustrates the necessity for identifying vulnerability factors and novel pharmacotherapeutic alternatives. Interestingly, clinical evidence suggests that novelty seeking is a good predictor for vulnerability to the development of excessive and persistent fear. Here, we first tested this hypothesis by analyzing contextual and cued fear responses of rats selected for their high (high responders, HR) or low (low responders, LR) exploration of a novel environment, indicator of novelty seeking. While HR and LR rats exhibited similar sensitivity to the shock and cued fear memory retention, fewer extinction sessions were required in HR than LR animals to reach extinction, indicating faster contextual and cued memory extinction. In a second part, we found an effective disruption of contextual fear reconsolidation by the N-methyl-D-aspartate receptor antagonist ketamine, associated with a down-regulation of early growth response 1 (Egr1) in the hippocampal CA1 area, and up-regulation of brain-derived neurotrophic factor (Bdnf) mRNA levels in the prelimbic and infralimbic cortices. Altogether, these data demonstrate a link between novelty seeking and conditioned fear extinction, and highlight a promising novel role of ketamine in affecting established fear memory. PMID:27343386
Zhu, Li-Hua; Tao, Jun; Chen, Zhong-Ming; Zhao, Yue; Zhang, Ren-Jian; Cao, Jun-Ji
2012-01-01
Aerosol samples for PM2.5 were collected from 1st January to 31st January 2010, in Beijing. The concentrations of organic carbon, elemental carbon, water-solubile ions and soil elements of all particle samples were determined by thermal/optical carbon analyzer, ion chromatography and X-ray fluorescence spectrometer, respectively. The scattering coefficients (b(sp)), absorbing coefficients (b(ap)) and meteorological parameters for this period were also measured. Ambient light extinction coefficients were reconstructed by IMPROVE formula and were compared with measured light extinction coefficients. The results showed that the average mass concentration of PM2.5 was (144.3 +/- 89.1) microg x m(-3) during campaigning period. The average values of measured b(ap), b(sp) and extinction coefficient (b(ext)) were (67.4 +/- 54.3), (328.5 +/- 353.8) and (395.9 +/- 405.2) Mm(-1), respectively. IMPROVE formula is suitable for source apportionment of light extinction coefficient in campaign period. The average value of calculated b'(ext) was (611 +/- 503) Mm(-1) in January, 2010. The major contributors to ambient light extinction coefficients included (NH4) 2SO4 (24.6%), NH4NO3 (11.6%), OM (45.5%), EC (11.9%) and FS (6.4%), respectively.
Acoustic startle response in rats predicts inter-individual variation in fear extinction.
Russo, Amanda S; Parsons, Ryan G
2017-03-01
Although a large portion of the population is exposed to a traumatic event at some point, only a small percentage of the population develops post-traumatic stress disorder (PTSD), suggesting the presence of predisposing factors. Abnormal acoustic startle response (ASR) has been shown to be associated with PTSD, implicating it as a potential predictor of the development of PTSD-like behavior. Since poor extinction and retention of extinction learning are characteristic of PTSD patients, it is of interest to determine if abnormal ASR is predictive of development of such deficits. To determine whether baseline ASR has utility in predicting the development of PTSD-like behavior, the relationship between baseline ASR and freezing behavior following Pavlovian fear conditioning was examined in a group of adult, male Sprague-Dawley rats. Baseline acoustic startle response (ASR) was assessed preceding exposure to a Pavlovian fear conditioning paradigm where freezing behavior was measured during fear conditioning, extinction training, and extinction testing. Although there was no relationship between baseline ASR and fear memory following conditioning, rats with low baseline ASR had significantly lower magnitude of retention of the extinction memory than rats with high baseline ASR. The results suggest that baseline ASR has value as a predictive index of the development of a PTSD-like phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.
Immunogenetics and resistance to avian malaria in Hawaiian honeycreepers (Drepanidinae)
Jarvi, Susan I.; Atkinson, Carter T.; Fleischer, Robert C.
2001-01-01
Although a number of factors have contributed to the decline and extinction of Hawai‘i’s endemic terrestrial avifauna, introduced avian malaria (Plasmodium relicturn) is probably the single most important factor preventing recovery of these birds in low-elevation habitats. Continued decline in numbers, fragmentation of populations, and extinction of species that are still relatively common will likely continue without new, aggressive approaches to managing avian disease. Methods of intervention in the disease cycle such as chemotherapy and vaccine development are not feasible because of efficient immune-evasion strategies evolved by the parasite, technical difficulties associated with treating wild avian populations, and increased risk of selection for more virulent strains of the parasite. We are investigating the natural evolution of disease resistance in some low-elevation native bird populations, particularly Hawai‘i ‘Amakihi (Hemignathus virens), to perfect genetic methods for identifying individuals with a greater immunological capacity to survive malarial infection. We are focusing on genetic analyses of the major histocompatibility complex, due to its critical role in both humoral and cell-mediated immune responses. In the parasite, we are evaluating conserved ribosomal genes as well as variable genes encoding cell-surface molecules as a first step in developing a better understanding of the complex interactions between malarial parasites and the avian immune system. A goal is to provide population managers with new criteria for maintaining long-term population stability for threatened species through the development of methods for evaluating and maintaining genetic diversity in small populations at loci important in immunological responsiveness to pathogens.
Pei, Kai; Wu, Yongzhen; Li, Hui; Geng, Zhiyuan; Tian, He; Zhu, Wei-Hong
2015-03-11
In the efficient cosensitization, the pure organic sensitizers with high molecular extinction coefficients and long wavelength response are highly preferable since the dye loading amount for each dye in cosensitization is decreased with respect to single dye sensitization. A D-A-π-A featured quinoxaline organic sensitizer IQ21 is specifically designed. The high conjugation building block of 4H-cyclopenta[2,1-b:3,4-b']dithiophene (CPDT) is introduced as the π bridge, instead of the traditional thiophene unit, especially in realizing high molecular extinction coefficients (up to 66 600 M(-1) cm(-1)) and extending the light response wavelength. With respect to the reference dye IQ4, the slightly lower efficiency of IQ21 (9.03%) arises from the decrease of VOC, which offsets the gain in JSC. While cosensitized with a smaller D-π-A dye S2, the efficiency in IQ21 is further improved to 10.41% (JSC = 19.8 mA cm(-2), VOC = 731 mV, FF = 0.72). The large improvement in efficiency is attributed to the well-matched molecular structures and loading amounts of both dyes in the cosensitization system. We also demonstrated that coabsorbent dye S2 can distinctly compensate the inherent drawbacks of IQ21, not only enhancing the response intensity of IPCE, making up the absorption defects around low wavelength region of IPCE, but also repressing the charge recombination rate to some extent.
Different evolution dynamics of vector solitons depending on their polarization states
NASA Astrophysics Data System (ADS)
Chen, Wei-Cheng; Chen, Guo-Jie
2014-03-01
There are three types of temporal evolution dynamics of vector solitons observed in a ring fiber laser with a semiconductor saturable absorption mirror (SESAM) as a mode-locker. It is found that the polarization property of vector solitons is an important factor for achieving different evolution dynamics. The vector soliton with a uniform polarization state across the whole pulse profile and zero polarization extinction ratio operates at a fundamental repetition rate with a single pulse profile. The elliptically polarized vector soliton with a larger polarization extinction ratio exhibits a harmonic pulse train. The soliton bunching with multi-peak structures exists between the above two states and shows elliptical polarization with a small polarization extinction ratio.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.
1985-01-01
Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.
Goode, Travis D.; Maren, Stephen
2014-01-01
Whereas fear memories are rapidly acquired and enduring over time, extinction memories are slow to form and are susceptible to disruption. Consequently, behavioral therapies that involve extinction learning (e.g., exposure therapy) often produce only temporary suppression of fear and anxiety. This review focuses on the factors that are known to influence the relapse of extinguished fear. Several phenomena associated with the return of fear after extinction are discussed, including renewal, spontaneous recovery, reacquisition, and reinstatement. Additionally, this review describes recent work, which has focused on the role of psychological stress in the relapse of extinguished fear. Recent developments in behavioral and pharmacological research are examined in light of treatment of pathological fear in humans. PMID:25225304
Efficient unidirectional launching of surface plasmons by a cascade asymmetric-groove structure.
Song, Xue-Yang; Zhang, Zhengxing; Liao, Huimin; Li, Zhi; Sun, Chengwei; Chen, Jianjun; Gong, Qihuang
2016-03-28
Increasing the unidirectional launching efficiency of surface plasmon polaritons (SPPs) is crucial in plasmonics. Here, we demonstrate that this efficiency may be improved by cascading subwavelength unidirectional SPP launching units. A unidirectional SPP launching efficiency of at least 46% and an extinction ratio of 40 are experimentally demonstrated using a cascade asymmetric-groove structure. Meanwhile, the device is ultracompact, and has a lateral dimension of only 1.1 μm. The proposed structure also presents a broadband response and is easy to fabricate. This high-performance wavelength-scale unidirectional SPP launcher represents an important development in practical SPP sources.
Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J
2011-06-15
Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.
White, Emily C; Graham, Bronwyn M
2016-10-01
Anxiety disorders are more prevalent in women than men. One contributing factor may be the sex hormone estradiol, which is known to impact the long term recall of conditioned fear extinction, a laboratory procedure that forms the basis of exposure therapy for anxiety disorders. To date, the literature examining estradiol and fear extinction in humans has focused primarily on physiological measures of fear, such as skin conductance response (SCR) and fear potentiated startle. This is surprising, given that models of anxiety identify at least three important components: physiological symptoms, cognitive beliefs, and avoidance behavior. To help address this gap, we exposed women with naturally high (n=20) or low estradiol (n=19), women using hormonal contraceptives (n=16), and a male control group (n=18) to a fear extinction task, and measured SCR, US expectancy and CS valence ratings. During extinction recall, low estradiol was associated with greater recovery of SCR, but was not related to US expectancy or CS evaluation. Importantly, women using hormonal contraceptives showed a dissociation between SCR and cognitive beliefs: they exhibited a greater recovery of SCR during extinction recall, yet reported similar US expectancy and CS valence ratings to the other female groups. This divergence underscores the importance of assessing multiple measures of fear when examining the role of estradiol in human fear extinction, especially when considering the potential of estradiol as an enhancement for psychological treatments for anxiety disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
VISION - Vienna Survey in Orion. II. Infrared extinction in Orion A
NASA Astrophysics Data System (ADS)
Meingast, Stefan; Alves, João; Lombardi, Marco
2018-06-01
We have investigated the shape of the extinction curve in the infrared up to 25μm for the Orion A star-forming complex. The basis of this work is near-infrared data acquired with the Visual and Infrared Survey Telescope for Astronomy, in combination with Pan-STARRS and mid-infrared Spitzer photometry. We obtain colour excess ratios for eight passbands by fitting a series of colour-colour diagrams. The fits are performed using Markov chain Monte Carlo methods, together with a linear model under a Bayesian formalism. The resulting colour excess ratios are directly interpreted as a measure of the extinction law. We show that the Orion A molecular cloud is characterized by flat mid-infrared extinction, similar to many other recently studied sightlines. Moreover, we find statistically significant evidence that the extinction law from 1μm to at least 6μm varies across the cloud. In particular, we find a gradient along galactic longitude, where regions near the Orion Nebula Cluster show a different extinction law compared to L1641 and L1647, the low-mass star-forming sites in the cloud complex. These variations are of the order of only 3% and are most likely caused by the influence of the massive stars on their surrounding medium. While the observed general trends in our measurements are in agreement with model predictions, both well-established and new dust grain models are not able to fully reproduce our infrared extinction curve. We also present a new extinction map featuring a resolution of 1' and revisit the correlation between extinction and dust optical depth. This analysis shows that cloud substructure, which is not sampled by background sources, affects the conversion factor between these two measures. In conclusion, we argue that specific characteristics of the infrared extinction law are still not well understood, but Orion A can serve as an unbiased template for future studies. The extinction map (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A65
NASA Astrophysics Data System (ADS)
Wang, Y.; Porter, W.; Miller, P. A.; Graham, R. W.; Williams, J. W.
2016-12-01
Estimate of megafauna behaviors dynamically under associated environmental factors is important to understand the mechanisms and causes of the late Quaternary megafaunal extinctions. On St. Paul Island, an isolated remnant of the Bering Land Bridge, a late-surviving population of woolly mammoth (Mammuthus primigenius) persisted until 5,600 cal BP, while 37 out of 54 megafauna species in the continent of North America, all herbivores, went extinct at the end of Pleistocene between 13,800 and 11,500 cal BP. Proposed natural drivers of the extinction events include abrupt temperature changes, food resource loss and freshwater shortage. Here we tested these three hypothesized mechanisms, using a physiological model (Niche Mapper) to estimate individual megafauna behaviors from the perspectives of metabolic rate, individual vegetation and freshwater requirement under simulated climates from Community Climate System Model version 3 (CCSM3), vegetation reconstructions based on dynamic LPJ-GUESS model and woolly mammoth and megafauna species trait data reconstructed based on mammal fossils. Preliminary simulations of woolly mammoth on St. Paul Island point to the importance of net vegetation primary productivity and freshwater availability as limits on the carrying capacity of St. Paul for mammoth populations, with a low carrying capacity in the middle Holocene making this population highly vulnerable to extinction. Results also indicate that the abrupt warming based around 14,000 cal BP in Bering land bridge on CCSM3 simulations causes woolly mammoth extinction, by driving metabolic rate high up beyond the active basic metabolic rate. Analysis suggests a positive relationship between temperature and metabolic rate, and woolly mammoth would go extinct when summer temperature is up to 12 °C or higher. However the temperature reconstructed based on regional proxies is relatively stable compared to CCSM3 simulations, and leads to stable metabolic rate of woolly mammoth and no extinction events. Proposed simulations of megafauna species in North America indicate the role of ice sheets in limiting habitats. This work helps resolve the drivers of extinction for a small island surviving woolly mammoth population and worldwide megafauna extinctions in the late Quaternary.
Razavi, Yasaman; Alamdary, Shabnam Zeighamy; Katebi, Seyedeh-Najmeh; Khodagholi, Fariba; Haghparast, Abbas
2014-03-01
Some data suggest that morphine induces apoptosis in neurons, while other evidences show that morphine could have protective effects against cell death. In this study, we suggested that there is a parallel role of morphine in reward circuitry and apoptosis processing. Therefore, we investigated the effect of morphine on modifications of apoptotic factors in the ventral tegmental area (VTA) and hippocampus (HPC) which are involved in the reward circuitry after the acquisition and extinction periods of conditioned place preference (CPP). In behavioral experiments, different doses of morphine (0.5, 5, and 10 mg/kg) and saline were examined in the CPP paradigm. Conditioning score and locomotor activity were recorded by Ethovision software after acquisition on the post-conditioning day, and days 4 and 8 of extinction periods. In order to investigate the molecular mechanisms in each group, we then dissected the brains and measured the expression of apoptotic factors in the VTA and HPC by western blotting analysis. All of the morphine-treated groups showed an increase of apoptotic factors in these regions during acquisition but not in extinction period. In the HPC, morphine significantly increased the ratio of Bax/Bcl-2, caspases-3, and PARP by the lowest dose (0.5 mg/kg), but, in the VTA, a considerable increase was seen in the dose of 5 mg/kg; promotion of apoptotic factors in the HPC and VTA insinuates that morphine can affect the molecular mechanisms that interfere with apoptosis through different receptors. Our findings suggest that a specific opioid receptor involves in modification of apoptotic factors expression in these areas. It seems that the reduction of cell death in response to high dose of morphine in the VTA and HPC may be due to activation of low affinity opioid receptors which are involved in neuroprotective features of morphine.
Switchgrass leaf area index and light extinction coefficients
USDA-ARS?s Scientific Manuscript database
Biomass production simulation modeling for plant species is often dependent upon accurate simulation or measurement of canopy light interception and radiation use efficiency. With the recent interest in converting large tracts of land to biofuel species cropping, modeling vegetative yield with grea...
Light-harvesting organic photoinitiators of polymerization.
Lalevée, Jacques; Tehfe, Mohamad-Ali; Dumur, Frédéric; Gigmes, Didier; Graff, Bernadette; Morlet-Savary, Fabrice; Fouassier, Jean-Pierre
2013-02-12
Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red-shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20-1000 fold factor) are found. These compounds are highly efficient light-harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chu, Qiuhui; Zhao, Pengfei; Li, Chengyu; Wang, Bopeng; Lin, Honghuan; Guo, Chao; Liu, Yu; Jing, Feng; Tang, Chuanxiang
2018-03-01
A high power 1030 nm ytterbium-doped polarization maintained fiber laser with optimized parameters is presented in this paper. The master oscillator power amplifier system with counter-pumped amplifier is established. The output power is 900 W, along with a light-to-light efficiency of 64.2%. The amplified spontaneous emission suppression ratio of spectrum reaches to 40 dB with 3 dB linewidth of 0.14 nm. The polarization extinction ratio is 12 dB, and the beam quality factor is M2x=1.07, M2y=1.12. To the best of our knowledge, this is the first demonstration of 1030 nm high power fiber laser with narrow linewidth, near linear polarization, and neardiffraction-limited beam quality
Strong, Ellen E.; Rumi, Alejandra; Peso, Juana G.
2016-01-01
Highly oxygenated freshwater habitats in the High Paraná River (Argentina–Paraguay) were home to highly endemic snails of the genus Aylacostoma, which face extinction owing to the impoundment of the Yacyretá Reservoir in the 1990s. Two species, A. chloroticum and A. brunneum, are currently included in an ongoing ex situ conservation programme, whereas A. guaraniticum and A. stigmaticum are presumed extinct. Consequently, the validity and affinities of the latter two have remained enigmatic. Here, we provide the first molecular data on the extinct A. stigmaticum by means of historical DNA analysis. We describe patterns of molecular evolution based on partial sequences of the mitochondrial 12S ribosomal RNA gene from the extinct species and from those being bred within the ex situ programme. We further use this gene to derive a secondary structure model, to examine the specific status of A. stigmaticum and to explore the evolutionary history of these snails. The secondary structure model based on A. stigmaticum revealed that most polymorphic sites are located in unpaired regions. Our results support the view that the mitochondrial 12S region is an efficient marker for the discrimination of species, and the extinct A. stigmaticum is recognized here as a distinct evolutionary genetic species. Molecular phylogenetic analyses revealed a sister group relationship between A. chloroticum and A. brunneum, and estimated divergence times suggest that diversification of Aylacostoma in the High Paraná River might have started in the late Miocene via intra-basin speciation due to a past marine transgression. Finally, our findings reveal that DNA may be obtained from dried specimens at least 80 years after their collection, and confirms the feasibility of extracting historical DNA from museum collections for elucidating evolutionary patterns and processes in gastropods. PMID:28033407
NASA Astrophysics Data System (ADS)
Davis, A. B.; Xu, F.; Diner, D. J.
2017-12-01
Two perennial problems in applied theoretical and computational radiative transfer (RT) are: (1) the impact of unresolved spatial variability on large-scale fluxes (in climate models) or radiances (in remote sensing); and (2) efficient-yet-accurate estimation of broadband spectral integrals in radiant energy budget estimation as well as in remote sensing, in particular, of trace gases.Generalized RT (GRT) is a modification of classic RT in an optical medium with uniform extinction where Beer's exponential law for direct transmission is replaced by a monotonically decreasing function with a slower power-law decay. In a convenient parameterized version of GRT, mean extinction replaces the uniform value and just one new property is introduced. As a non-dimensional metric for the unresolved variability, we use the square of the mean extinction coefficient divided by its variance. This parameter is also the exponent of the power-law tail of the modified transmission law.This specific form of sub-exponential transmission has explored for almost two decades in application to spatial variability in the presence of long-range correlations, much like in turbulent media such as clouds, with a focus on multiple scattering. It has also been proposed by Conley and Collins (JQSRT, 112, 1525-, 2011) to improve on the standard (weak-line) implementation of the correlated-k technique for efficient spectral integration.We have merged these two applications within a rigorous formulation of the combined problem, and solve the new integral RT equations in the single-scattering limit. The result is illustrated by addressing practical problems in multi-angle remote sensing of aerosols using the O2 A-band, an emerging methodology for passive profiling of coarse aerosols and clouds.
Mixing of Dust and NH3 Observed Globally over Anthropogenic Dust Sources
NASA Technical Reports Server (NTRS)
Ginoux, P.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Dubovik, O.; Hsu, N. C.; Van Damme, M.
2012-01-01
The global distribution of dust column burden derived from MODIS Deep Blue aerosol products is compared to NH3 column burden retrieved from IASI infrared spectra. We found similarities in their spatial distributions, in particular their hot spots are often collocated over croplands and to a lesser extent pastures. Globally, we found 22% of dust burden collocated with NH3, with only 1% difference between land-use databases. This confirms the importance of anthropogenic dust from agriculture. Regionally, the Indian subcontinent has the highest amount of dust mixed with NH3 (26 %), mostly over cropland and during the pre-monsoon season. North Africa represents 50% of total dust burden but accounts for only 4% of mixed dust, which is found over croplands and pastures in Sahel and the coastal region of the Mediterranean. In order to evaluate the radiative effect of this mixing on dust optical properties, we derive the mass extinction efficiency for various mixtures of dust and NH3, using AERONET sunphotometers data. We found that for dusty days the coarse mode mass extinction efficiency decreases from 0.62 to 0.48 square meters per gram as NH3 burden increases from 0 to 40 milligrams per square meter. The fine mode extinction efficiency, ranging from 4 to 16 square mters per gram, does not appear to depend on NH3 concentration or relative humidity but rather on mineralogical composition and mixing with other aerosols. Our results imply that a significant amount of dust is already mixed with ammonium salt before its long range transport. This in turn will affect dust lifetime, and its interactions with radiation and cloud properties
Persistence of black-tailed prairie-dog populations affected by plague in northern Colorado, USA.
George, Dylan B; Webb, Colleen T; Pepin, Kim M; Savage, Lisa T; Antolini, Michael F
2013-07-01
The spatial distribution of prairie dog (Cynomys ludovicianus) colonies in North America has changed from large, contiguous populations to small, isolated colonies in metapopulations. One factor responsible for this drastic change in prairie-dog population structure is plague (caused by the bacterium Yersinia pestis). We fit stochastic patch occupancy models to 20 years of prairie-dog colony occupancy data from two discrete metapopulations (west and east) in the Pawnee National Grassland in Colorado, USA, that differ in connectivity among suitable habitat patches. We conducted model selection between two hypothesized modes of plague movement: independent of prairie-dog dispersal (colony-area) vs. plague movement consistent with prairie-dog dispersal (connectivity to extinct colonies). The best model, which fit the data well (area under the curve [AUC]: 0.94 west area; 0.79 east area), revealed that over time the proportion of extant colonies was better explained by colony size than by connectivity to extinct (plagued) colonies. The idea that prairie dogs are not likely to be the main vector that spreads Y. pestis across the landscape is supported by the observation that colony extinctions are primarily caused by plague, prairie-dog dispersal is short range, and connectivity to extinct colonies was not selected as a factor in the models. We also conducted simulations with the best model to examine long-term patterns of colony occupancy and persistence of prairie-dog metapopulations. In the case where the metapopulations persist, our model predicted that the western metapopulation would have a colony occupancy rate approximately 2.5 times higher than that of the eastern metapopulation (-50% occupied colonies vs. 20%) in 50 years, but that the western metapopulation has -80% chance of extinction in 100 years while the eastern metapopulation has a less than 25% chance. Extinction probability of individual colonies depended on the frequency with which colonies of the same size class occurred in the metapopulation. Thus, the long-term persistence of prairie-dog metapopulations depended on specific details of the metapopulation.
Food web structure and interaction strength pave the way for vulnerability to extinction.
Karlsson, Patrik; Jonsson, Tomas; Jonsson, Annie
2007-11-07
This paper focuses on how food web structure and interactions among species affects the vulnerability, due to environmental variability, to extinction of species at different positions in model food webs. Vulnerability is here not measured by a traditional extinction threshold but is instead inspired by the IUCN criteria for endangered species: an observed rapid decline in population abundance. Using model webs influenced by stochasticity with zero autocorrelation, we investigate the ecological determinants of species vulnerability, i.e. the trophic interactions between species and food web structure and how these interact with the risk of sudden drops in abundance of species. We find that (i) producers fulfil the criterion of vulnerable species more frequently than other species, (ii) food web structure is related to vulnerability, and (iii) the vulnerability of species is greater when involved in a strong trophic interaction than when not. We note that our result on the relationship between extinction risk and trophic position of species contradict previous suggestions and argue that the main reason for the discrepancy probably is due to the fact that we study the vulnerability to environmental stochasticity and not extinction risk due to overexploitation, habitat destruction or interactions with introduced species. Thus, we suggest that the vulnerability of species to environmental stochasticity may be differently related to trophic position than the vulnerability of species to other factors. Earlier research on species extinctions has looked for intrinsic traits of species that correlate with increased vulnerability to extinction. However, to fully understand the extinction process we must also consider that species interactions may affect vulnerability and that not all extinctions are the result of long, gradual reductions in species abundances. Under environmental stochasticity (which importance frequently is assumed to increase as a result of climate change) and direct and indirect interactions with other species some extinctions may occur rapidly and apparently unexpectedly. To identify the first declines of population abundances that may escalate and lead to extinctions as early as possible, we need to recognize which species are at greatest risk of entering such dangerous routes and under what circumstances. This new perspective may contribute to our understanding of the processes leading to extinction of populations and eventually species. This is especially urgent in the light of the current biodiversity crisis where a large fraction of the world's biodiversity is threatened.
Vicarious extinction learning during reconsolidation neutralizes fear memory.
Golkar, Armita; Tjaden, Cathelijn; Kindt, Merel
2017-05-01
Previous studies have suggested that fear memories can be updated when recalled, a process referred to as reconsolidation. Given the beneficial effects of model-based safety learning (i.e. vicarious extinction) in preventing the recovery of short-term fear memory, we examined whether consolidated long-term fear memories could be updated with safety learning accomplished through vicarious extinction learning initiated within the reconsolidation time-window. We assessed this in a final sample of 19 participants that underwent a three-day within-subject fear-conditioning design, using fear-potentiated startle as our primary index of fear learning. On day 1, two fear-relevant stimuli (reinforced CSs) were paired with shock (US) and a third stimulus served as a control (CS). On day 2, one of the two previously reinforced stimuli (the reminded CS) was presented once in order to reactivate the fear memory 10 min before vicarious extinction training was initiated for all CSs. The recovery of the fear memory was tested 24 h later. Vicarious extinction training conducted within the reconsolidation time window specifically prevented the recovery of the reactivated fear memory (p = 0.03), while leaving fear-potentiated startle responses to the non-reactivated cue intact (p = 0.62). These findings are relevant to both basic and clinical research, suggesting that a safe, non-invasive model-based exposure technique has the potential to enhance the efficiency and durability of anxiolytic therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chirped femtosecond pulse scattering by spherical particles
NASA Astrophysics Data System (ADS)
Kim, Dal-Woo; Xiao, Gang-Yao; Lee, Tong-Nyong
1996-05-01
Generalized Lorentz-Mie formulas are used to study the scattering characteristics when a chirped femtosecond pulse illuminates a spherical particle. For a linear chirped Gaussian pulse with the envelope function g( tau ) = exp[- pi (1 + ib) tau 2], dimensionless parameter b is defined as a chirp. The calculation illustrated that even for pulses with a constant carrier wavelength ( lambda 0 = 0.5 mu m) and pulse-filling coefficient (l0 = 1.98), the efficiencies for extinction and scattering differ very much between the carrier wave and the different chirped pulses. The slowly varying background of the extinction and the scattering curves is damped by the chirp. When the pulse is deeply chirped, the maxima and minima of the background curves reduce to the point where they disappear, and the efficiency curves illustrate a steplike dependence on the sphere size. Another feature is that the only on the amount of chirp (|b|), regardless of upchirp (b greater than 0) or downchirp (b less than 0).
Hanson, Susan Kloek; Pollington, Anthony Douglas; Waidmann, Christopher Russell; ...
2016-07-05
This study describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products 95Zr and 97Zr. By measuring both the perturbation of the 95Mo/ 96Mo and 97Mo/ 96Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the 95Zrmore » and 97Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Susan Kloek; Pollington, Anthony Douglas; Waidmann, Christopher Russell
This study describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products 95Zr and 97Zr. By measuring both the perturbation of the 95Mo/ 96Mo and 97Mo/ 96Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the 95Zrmore » and 97Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.« less
Hanson, Susan K.; Pollington, Anthony D.; Waidmann, Christopher R.; Kinman, William S.; Wende, Allison M.; Miller, Jeffrey L.; Berger, Jennifer A.; Oldham, Warren J.; Selby, Hugh D.
2016-01-01
This paper describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products 95Zr and 97Zr. By measuring both the perturbation of the 95Mo/96Mo and 97Mo/96Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the 95Zr and 97Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test. PMID:27382169
The threat of disease increases as species move toward extinction.
Heard, Matthew J; Smith, Katherine F; Ripp, Kelsey; Berger, Melanie; Chen, Jane; Dittmeier, Justin; Goter, Maggie; McGarvey, Stephen T; Ryan, Elizabeth
2013-12-01
At local scales, infectious disease is a common driver of population declines, but globally it is an infrequent contributor to species extinction and endangerment. For species at risk of extinction from disease important questions remain unanswered, including when does disease become a threat to species and does it co-occur, predictably, with other threats? Using newly compiled data from the International Union for Conservation of Nature (IUCN) Red List, we examined the relative role and co-occurrence of threats associated with amphibians, birds, and mammals at 6 levels of extinction risk (i.e., Red List status categories: least concern, near threatened, vulnerable, endangered, critically endangered, and extinct in the wild/extinct). We tested the null hypothesis that the proportion of species threatened by disease is the same in all 6 Red List status categories. Our approach revealed a new method for determining when disease most frequently threatens species at risk of extinction. The proportion of species threatened by disease varied significantly between IUCN status categories and linearly increased for amphibians, birds, and all species combined as these taxa move from move from least concern to critically endangered. Disease was infrequently the single contributing threat. However, when a species was negatively affected by a major threat other than disease (e.g., invasive species, land-use change) that species was more likely to be simultaneously threatened by disease than species that had no other threats. Potential drivers of these trends include ecological factors, clustering of phylogenetically related species in Red List status categories, discovery bias among species at greater risk of extinction, and availability of data. We echo earlier calls for baseline data on the presence of parasites and pathogens in species when they show the first signs of extinction risk and arguably before. La Amenaza de Enfermedades Incrementa a Medida que las Especies se Aproximan a la Extinción. © 2013 Society for Conservation Biology.
Latagliata, Emanuele C; Lo Iacono, Luisa; Chiacchierini, Giulia; Sancandi, Marco; Rava, Alessandro; Oliva, Valeria; Puglisi-Allegra, Stefano
2017-01-01
Exposure to drug-associated cues to induce extinction is a useful strategy to contrast cue-induced drug seeking. Norepinephrine (NE) transmission in medial prefrontal cortex has a role in the acquisition and extinction of conditioned place preference induced by amphetamine. We have reported recently that NE in prelimbic cortex delays extinction of amphetamine-induced conditioned place preference (CPP). A potential involvement of α1-adrenergic receptors in the extinction of appetitive conditioned response has been also suggested, although their role in prelimbic cortex has not been yet fully investigated. Here, we investigated the effects of the α1-adrenergic receptor antagonist prazosin infusion in the prelimbic cortex of C57BL/6J mice on expression and extinction of amphetamine-induced CPP. Acute prelimbic prazosin did not affect expression of amphetamine-induced CPP on the day of infusion, while in subsequent days it produced a clear-cut advance of extinction of preference for the compartment previously paired with amphetamine (Conditioned stimulus, CS). Moreover, prazosin-treated mice that had extinguished CS preference showed increased mRNA expression of brain-derived neurotrophic factor ( BDNF ) and post-synaptic density 95 ( PSD-95 ) in the nucleus accumbens shell or core, respectively, thus suggesting that prelimbic α1-adrenergic receptor blockade triggers neural adaptations in subcortical areas that could contribute to the extinction of cue-induced drug-seeking behavior. These results show that the pharmacological blockade of α1-adrenergic receptors in prelimbic cortex by a single infusion is able to induce extinction of amphetamine-induced CPP long before control (vehicle) animals, an effect depending on contingent exposure to retrieval, since if infused far from or after reactivation it did not affect preference. Moreover, they suggest strongly that the behavioral effects depend on post-treatment neuroplasticity changes in corticolimbic network, triggered by a possible "priming" effect of prazosin, and point to a potential therapeutic power of the antagonist for maladaptive memories.
SAGE aerosol measurements. Volume 3: January 1, 1981 to November 18, 1981
NASA Technical Reports Server (NTRS)
Mccormick, M. Patrick
1987-01-01
The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched February 18, 1979, obtained profiles of aerosol extinction at 1.00 micron and 0.45 micron ozone concentration, and nitrogen dioxide concentration. Data taken during sunset events are presented in the form of zonal and seasonal averages of aerosol extinction of 1.00 micron and 0.45 micron, ratios of aerosol extinction to molecular extinction at 1.00 micron and ratios of aerosol extinction at 0.45 micron to aerosol extinction at 1.00 micron. Averages for 1981 are shown in tables, and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by NOAA for the time and location of each SAGE measurement are averaged and shown in a similar format. The stratospheric aerosol distribution for 1981 shows effects of volcanically injected material from eruptions of Ulawun, Alaid, and Pagan. Peak values of aerosol extinction at 0.45 micron and 1.00 micron were 2 to 4 times higher than typical peak values observed during near background conditions. Stratospheric aerosol optical depth values at 1.00 microns increased by a factor of about 2 from near background levels in regions of volcanic activity. During the year, these values ranged from between 0.001 and 0.006. The largest were near the location of a recent eruption. The distribution of the ratio of aerosol to molecular extinction at 1.00 microns also showed that maximum values are found in the vicinity of an eruption. These maximums varied in altitude, but remained below a height of about 25 km. No attempt has been made to give detailed explanations or interpretations of these data. The intent is to provide, in a ready-to-use visual format, representative zonal and seasonal averages of aerosol extinction data for the third calendar year of the SAGE data set to facilitate atmospheric and climatic studies.
Earth orbital variations and vertebrate bioevolution
NASA Technical Reports Server (NTRS)
Mclean, Dewey M.
1988-01-01
Cause of the Pleistocene-Holocene transition mammalian extinctions at the end of the last age is the subject of debate between those advocating human predation and climate change. Identification of an ambient air temperature (AAT)-uterine blood flow (UBF) coupling phenomenon supports climate change as a factor in the extinctions, and couples the extinctions to earth orbital variations that drive ice age climatology. The AAT-UBF phenomenon couples mammalian bioevolution directly to climate change via effects of environmental heat upon blood flow to the female uterus and damage to developing embryos. Extinctions were in progress during climatic warming before the Younger Dryas event, and after, at times when the AAT-UBF couple would have been operative; however, impact of a sudden short-term cooling on mammals in the process of adapting to smaller size and relatively larger S/V would have been severe. Variations in earth's orbit, and orbital forcing of atmospheric CO2 concentrations, were causes of the succession of Pleistocene ice ages. Coincidence of mammalian extinctions with terminations of the more intense cold stages links mammalian bioevolution to variations in earth's orbit. Earth orbital variations are a driving source of vertebrate bioevolution.
Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages
2010-01-01
Background A positive relationship between diversification (i.e., speciation) and nucleotide substitution rates is commonly reported for angiosperm clades. However, the underlying cause of this relationship is often unknown because multiple intrinsic and extrinsic factors can affect the relationship, and these have confounded previous attempts infer causation. Determining which factor drives this oft-reported correlation can lend insight into the macroevolutionary process. Results Using a new database of 13 time-calibrated angiosperm phylogenies based on internal transcribed spacer (ITS) sequences, and controlling for extrinsic variables of life history and habitat, I evaluated several potential intrinsic causes of this correlation. Speciation rates (λ) and relative extinction rates (ε) were positively correlated with mean substitution rates, but were uncorrelated with substitution rate heterogeneity. It is unlikely that the positive diversification-substitution correlation is due to accelerated molecular evolution during speciation (e.g., via enhanced selection or drift), because punctuated increases in ITS rate (i.e., greater mean and variation in ITS rate for rapidly speciating clades) were not observed. Instead, fast molecular evolution likely increases speciation rate (via increased mutational variation as a substrate for selection and reproductive isolation) but also increases extinction (via mutational genetic load). Conclusions In general, these results predict that clades with higher background substitution rates may undergo successful diversification under new conditions while clades with lower substitution rates may experience decreased extinction during environmental stasis. PMID:20515493
Dust reddening and extinction curves toward gamma-ray bursts at z > 4
NASA Astrophysics Data System (ADS)
Bolmer, J.; Greiner, J.; Krühler, T.; Schady, P.; Ledoux, C.; Tanvir, N. R.; Levan, A. J.
2018-01-01
Context. Dust is known to be produced in the envelopes of asymptotic giant branch (AGB) stars, the expanded shells of supernova (SN) remnants, and in situ grain growth within the interstellar medium (ISM), although the corresponding efficiency of each of these dust formation mechanisms at different redshifts remains a topic of debate. During the first Gyr after the Big Bang, it is widely believed that there was not enough time to form AGB stars in high numbers, hence the dust at this epoch is expected to be purely from SNe or subsequent grain growth in the ISM. The time period corresponding to z 5-6 is thus expected to display the transition from SN-only dust to a mixture of both formation channels as is generally recognized at present. Aims: Here we aim to use afterglow observations of gamma-ray bursts (GRBs) at redshifts larger than z > 4 to derive host galaxy dust column densities along their line of sight and to test if a SN-type dust extinction curve is required for some of the bursts. Methods: We performed GRB afterglow observations with the seven-channel Gamma-Ray Optical and Near-infrared Detector (GROND) at the 2.2 m MPI telescope in La Silla, Chile (ESO), and we combined these observations with quasi-simultaneous data gathered with the XRT telescope on board the Swift satellite. Results: We increase the number of measured AV values for GRBs at z > 4 by a factor of 2-3 and find that, in contrast to samples at mostly lower redshift, all of the GRB afterglows have a visual extinction of AV < 0.5 mag. Analysis of the GROND detection thresholds and results from a Monte Carlo simulation show that although we partly suffer from an observational bias against highly extinguished sight-lines, GRB host galaxies at 4 < z < 6 seem to contain on average less dust than at z 2. Additionally, we find that all of the GRBs can be modeled with locally measured extinction curves and that the SN-like dust extinction curve, as previously found toward GRB 071025, provides a better fit for only two of the afterglow SEDs. However, because of the lack of highly extinguished sight lines and the limited wavelength coverage we cannot distinguish between the different scenarios. For the first time we also report a photometric redshift of zphot = 7.88-0.94+0.75 for GRB 100905A, making it one of the most distant GRBs known to date.
Modeling Effects of Local Extinctions on Culture Change and Diversity in the Paleolithic
Premo, L. S.; Kuhn, Steven L.
2010-01-01
The persistence of early stone tool technologies has puzzled archaeologists for decades. Cognitively based explanations, which presume either lack of ability to innovate or extreme conformism, do not account for the totality of the empirical patterns. Following recent research, this study explores the effects of demographic factors on rates of culture change and diversification. We investigate whether the appearance of stability in early Paleolithic technologies could result from frequent extinctions of local subpopulations within a persistent metapopulation. A spatially explicit agent-based model was constructed to test the influence of local extinction rate on three general cultural patterns that archaeologists might observe in the material record: total diversity, differentiation among spatially defined groups, and the rate of cumulative change. The model shows that diversity, differentiation, and the rate of cumulative cultural change would be strongly affected by local extinction rates, in some cases mimicking the results of conformist cultural transmission. The results have implications for understanding spatial and temporal patterning in ancient material culture. PMID:21179418
Direct dating of Pleistocene stegodon from Timor Island, East Nusa Tenggara.
Louys, Julien; Price, Gilbert J; O'Connor, Sue
2016-01-01
Stegodons are a commonly recovered extinct proboscidean (elephants and allies) from the Pleistocene record of Southeast Asian oceanic islands. Estimates on when stegodons arrived on individual islands and the timings of their extinctions are poorly constrained due to few reported direct geochronological analyses of their remains. Here we report on uranium-series dating of a stegodon tusk recovered from the Ainaro Gravels of Timor. The six dates obtained indicate the local presence of stegodons in Timor at or before 130 ka, significantly pre-dating the earliest evidence of humans on the island. On the basis of current data, we find no evidence for significant environmental changes or the presence of modern humans in the region during that time. Thus, we do not consider either of these factors to have contributed significantly to their extinction. In the absence of these, we propose that their extinction was possibly the result of long-term demographic and genetic declines associated with an isolated island population.
Extinction in neutrally stable stochastic Lotka-Volterra models
NASA Astrophysics Data System (ADS)
Dobrinevski, Alexander; Frey, Erwin
2012-05-01
Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.
Extinction in neutrally stable stochastic Lotka-Volterra models.
Dobrinevski, Alexander; Frey, Erwin
2012-05-01
Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.
Effects of roost specialization on extinction risk in bats.
Sagot, Maria; Chaverri, Gloriana
2015-12-01
Understanding causes and consequences of ecological specialization is of major concern in conservation. Specialist species are particularly vulnerable to human activities. If their food or habitats are depleted or lost, they may not be able to exploit alternative resources, and population losses may result. We examined International Union for Conservation of Nature (IUCN) Red List bat data and the number of roosts used per species (accounting for phylogenetic independence) to determine whether roost specialization is correlated with extinction risk. We found a significant correlation between the IUCN Red List category and the number of roost types used. Species that use fewer roost types had a higher risk of extinction. We found that caves and similar structures were the most widely used roost types, particularly by species under some level of risk of extinction. Many critically endangered, endangered, or vulnerable species used natural roosts exclusively, whereas less threatened species used natural and human-made roosts. Our results suggest that roost loss, particularly in species that rely on a single roost type, may be linked to extinction risk. Our focus on a single life history trait prevented us from determining how important this variable is for extinction risk relative to other variables, but we have taken a first step toward prioritizing conservation actions. Our results also suggest that roost specialization may exacerbate population declines due to other risk factors, such as hunting pressure or habitat loss, and thus that management actions to preserve species under risk of extinction should prioritize protection of roosting sites. © 2015 Society for Conservation Biology.
Early-life inflammation with LPS delays fear extinction in adult rodents.
Doenni, V M; Song, C M; Hill, M N; Pittman, Q J
2017-07-01
A large body of evidence has been brought forward connecting developmental immune activation to abnormal fear and anxiety levels. Anxiety disorders have extremely high lifetime prevalence, yet susceptibility factors that contribute to their emergence are poorly understood. In this research we investigated whether an inflammatory insult early in life can alter the response to fear conditioning in adulthood. Fear learning and extinction are important and adaptive behaviors, mediated largely by the amygdala and its interconnectivity with cortico-limbic circuits. Male and female rat pups were given LPS (100μg/kg i.p.) or saline at postnatal day 14; LPS activated cFos expression in the central amygdala 2.5h after exposure, but not the basal or lateral nuclei. When tested in adulthood, acquisition of an auditory cued or contextual learned fear memory was largely unaffected as was the extinction of fear to a conditioned context. However, we detected a deficit in auditory fear extinction in male and female rats that experienced early-life inflammation, such that there is a significant delay in fear extinction processes resulting in more sustained fear behaviors in response to a conditioned cue. This response was specific to extinction training and did not persist into extinction recall. The effect could not be explained by differences in pain threshold (unaltered) or in baseline anxiety, which was elevated in adolescent females only and unaltered in adolescent males and adult males and females. This research provides further evidence for the involvement of the immune system during development in the shaping of fear and anxiety related behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.
Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction.
Taylor, Jane R; Olausson, Peter; Quinn, Jennifer J; Torregrossa, Mary M
2009-01-01
Drug addiction is a progressive and compulsive disorder, where recurrent craving and relapse to drug-seeking occur even after long periods of abstinence. A major contributing factor to relapse is drug-associated cues. Here we review behavioral and pharmacological studies outlining novel methods of effective and persistent reductions in cue-induced relapse behavior in animal models. We focus on extinction and reconsolidation of cue-drug associations as the memory processes that are the most likely targets for interventions. Extinction involves the formation of new inhibitory memories rather than memory erasure; thus, it should be possible to facilitate the extinction of cue-drug memories to reduce relapse. We propose that context-dependency of extinction might be altered by mnemonic agents, thereby enhancing the efficacy of cue-exposure therapy as treatment strategy. In contrast, interfering with memory reconsolidation processes can disrupt the integrity or strength of specific cue-drug memories. Reconsolidation is argued to be a distinct process that occurs over a brief time period after memory is reactivated/retrieved - when the memory becomes labile and vulnerable to disruption. Reconsolidation is thought to be an independent, perhaps opposing, process to extinction and disruption of reconsolidation has recently been shown to directly affect subsequent cue-drug memory retrieval in an animal model of relapse. We hypothesize that a combined approach aimed at both enhancing the consolidation of cue-drug extinction and interfering with the reconsolidation of cue-drug memories will have a greater potential for persistently inhibiting cue-induced relapse than either treatment alone.
Limitations on K-T mass extinction theories based upon the vertebrate record
NASA Technical Reports Server (NTRS)
Archibald, J. David; Bryant, Laurie J.
1988-01-01
Theories of extinction are only as good as the patterns of extinction that they purport to explain. Often such patterns are ignored. For the terminal Cretaceous events, different groups of organisms in different environments show different patterns of extinction that to date cannot be explained by a single causal mechanism. Several patterns of extinction (and/or preservational bias) can be observed for the various groups of vertebrates from the uppermost Cretaceous Hell Creek Formation and lower Paleocene Tullock Formation in eastern Montana. The taxonomic level at which the percentage of survivals (or extinctions) is calculated will have an effect upon the perception of faunal turnover. In addition to the better known mammals and better publicized dinosaurs, there are almost 60 additional species of reptiles, birds, amphibians, and fish in the HELL Creek Formation. Simple arithmetic suggests only 33 percent survival of these vertebrates from the Hell Creek Fm. into the Tullock Fm. A more critical examination of the data shows that almost all Hell Creek species not found in the Tullock are represented in one of the following categories; extremely rare forms, elasmobranch fish that underwent rapid speciation taxa that although not known or rare in the Tullock, are found elsewhere. Each of the categories is largely the result of the following biases: taphonomy, ecological differences, taxonomic artifact paleogeography. The two most important factors appear to be the possible taphonomic biases and the taxonomic artifacts. The extinction patterns among the vertebrates do not appear to be attributable to any single cause, catastrophic or otherwise.
Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS
NASA Astrophysics Data System (ADS)
Kahre, L.; Walterbos, R. A.; Kim, H.; Thilker, D.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Aloisi, A.; Cignoni, M.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sacchi, E.; Smith, L. J.; Tosi, M.; Adamo, A.; Andrews, J. E.; Ashworth, G.; Bright, S. N.; Brown, T. M.; Chandar, R.; Christian, C.; de Mink, S. E.; Dobbs, C.; Evans, A. S.; Herrero, A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Messa, M.; Nair, P.; Nota, A.; Pellerin, A.; Ryon, J. E.; Schaerer, D.; Shabani, F.; Van Dyk, S. D.; Whitmore, B. C.; Wofford, A.
2018-03-01
We present a study of the dust-to-gas ratios in five nearby galaxies: NGC 628 (M74), NGC 6503, NGC 7793, UGC 5139 (Holmberg I), and UGC 4305 (Holmberg II). Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury program Legacy ExtraGalactic UV Survey (LEGUS) combined with archival HST/Advanced Camera for Surveys data, we correct thousands of individual stars for extinction across these five galaxies using an isochrone-matching (reddening-free Q) method. We generate extinction maps for each galaxy from the individual stellar extinctions using both adaptive and fixed resolution techniques and correlate these maps with neutral H I and CO gas maps from the literature, including the H I Nearby Galaxy Survey and the HERA CO-Line Extragalactic Survey. We calculate dust-to-gas ratios and investigate variations in the dust-to-gas ratio with galaxy metallicity. We find a power-law relationship between dust-to-gas ratio and metallicity, consistent with other studies of dust-to-gas ratio compared to metallicity. We find a change in the relation when H2 is not included. This implies that underestimation of {N}{{{H}}2} in low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X CO could have produced too low a slope in the derived relationship between dust-to-gas ratio and metallicity. We also compare our extinctions to those derived from fitting the spectral energy distribution (SED) using the Bayesian Extinction and Stellar Tool for NGC 7793 and find systematically lower extinctions from SED fitting as compared to isochrone matching.
Hippocampal Mek/Erk signaling mediates extinction of contextual freezing behavior.
Fischer, Andre; Radulovic, Marko; Schrick, Christina; Sananbenesi, Farahnaz; Godovac-Zimmermann, Jasminka; Radulovic, Jelena
2007-01-01
Fear memories elicit multiple behavioral responses, encompassing avoidance, or behavioral inhibition in response to threatening contexts. Context-specific freezing, reflecting fear-induced behavioral inhibition, has been proposed as one of the main risks factors for the development of anxiety disorders. We attempted to define the key hippocampal mediators of extinction in a mouse model of context-dependent freezing. Nine-week-old male C57BL/6J mice were trained and tested for contextual fear conditioning and extinction. Freezing behavior scored by unbiased sampling, was used as an index of fear. Proteomic, immunoblot, and immunohistochemical approaches were employed to identify, verify, and analyze the alterations of the hippocampal extracellular signal-regulated kinases 1 and 2 (Erk-1/2). Targeted pharmacological inhibition of the Erk-1/2 activating kinase, the mitogen activated and extracellular signal-regulated kinase (Mek), served to establish the role of Mek/Erk signaling in extinction. When compared to acquisition, extinction of contextual freezing triggered a rapid activation of Erk-1/2 showing a distinctive time-course, nuclear localization, and subcellular isoform distribution. These differences suggested that the upstream regulation and downstream effects of this pathway might be specific for each process. Dorsohippocampal injections of the Mek inhibitors U0126 (0.5 microg/site) and PD98059 (1.5 microg/site) immediately after the nonreinforced trials prevented Erk-1/2 activation and significantly impaired extinction. This effect was dissociable from potential actions on memory retrieval or reconsolidation. On the basis of these findings, we propose that hippocampal Mek/Erk signaling might serve as one of the key mediators of contextual fear extinction.
Catlett, Kierstin K; Schwartz, Gary T; Godfrey, Laurie R; Jungers, William L
2010-07-01
Studies of primate life history variation are constrained by the fact that all large-bodied extant primates are haplorhines. However, large-bodied strepsirrhines recently existed. If we can extract life history information from their skeletons, these species can contribute to our understanding of primate life history variation. This is particularly important in light of new critiques of the classic "fast-slow continuum" as a descriptor of variation in life history profiles across mammals in general. We use established dental histological methods to estimate gestation length and age at weaning for five extinct lemur species. On the basis of these estimates, we reconstruct minimum interbirth intervals and maximum reproductive rates. We utilize principal components analysis to create a multivariate "life history space" that captures the relationships among reproductive parameters and brain and body size in extinct and extant lemurs. Our data show that, whereas large-bodied extinct lemurs can be described as "slow" in some fashion, they also varied greatly in their life history profiles. Those with relatively large brains also weaned their offspring late and had long interbirth intervals. These were not the largest of extinct lemurs. Thus, we distinguish size-related life history variation from variation that linked more strongly to ecological factors. Because all lemur species larger than 10 kg, regardless of life history profile, succumbed to extinction after humans arrived in Madagascar, we argue that large body size increased the probability of extinction independently of reproductive rate. We also provide some evidence that, among lemurs, brain size predicts reproductive rate better than body size. (c) 2010 Wiley-Liss, Inc.
Human Fear Conditioning and Extinction in Neuroimaging: A Systematic Review
Sehlmeyer, Christina; Schöning, Sonja; Zwitserlood, Pienie; Pfleiderer, Bettina; Kircher, Tilo; Arolt, Volker; Konrad, Carsten
2009-01-01
Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance between neuroimaging investigations on human fear conditioning and extinction and should, therefore, be taken into serious consideration in the planning and the interpretation of research projects. PMID:19517024
Source apportionment of PM2.5 light extinction in an urban atmosphere in China.
Lan, Zijuan; Zhang, Bin; Huang, Xiaofeng; Zhu, Qiao; Yuan, Jinfeng; Zeng, Liwu; Hu, Min; He, Lingyan
2018-01-01
Haze in China is primarily caused by high pollution of atmospheric fine particulates (PM 2.5 ). However, the detailed source structures of PM 2.5 light extinction have not been well established, especially for the roles of various organic aerosols, which makes haze management lack specified targets. This study obtained the mass concentrations of the chemical compositions and the light extinction coefficients of fine particles in the winter in Dongguan, Guangdong Province, using high time resolution aerosol observation instruments. We combined the positive matrix factor (PMF) analysis model of organic aerosols and the multiple linear regression method to establish a quantitative relationship model between the main chemical components, in particular the different sources of organic aerosols and the extinction coefficients of fine particles with a high goodness of fit (R 2 =0.953). The results show that the contribution rates of ammonium sulphate, ammonium nitrate, biomass burning organic aerosol (BBOA), secondary organic aerosol (SOA) and black carbon (BC) were 48.1%, 20.7%, 15.0%, 10.6%, and 5.6%, respectively. It can be seen that the contribution of the secondary aerosols is much higher than that of the primary aerosols (79.4% versus 20.6%) and are a major factor in the visibility decline. BBOA is found to have a high visibility destroying potential, with a high mass extinction coefficient, and was the largest contributor during some high pollution periods. A more detailed analysis indicates that the contribution of the enhanced absorption caused by BC mixing state was approximately 37.7% of the total particle absorption and should not be neglected. Copyright © 2017. Published by Elsevier B.V.
Kabir, Zeeba D; Katzman, Aaron C; Kosofsky, Barry E
2013-01-01
Prenatal cocaine exposure has been shown to alter cognitive processes of exposed individuals, presumed to be a result of long-lasting molecular alterations in the brain. In adult prenatal cocaine exposed (PCOC) mice we have identified a deficit in recall of fear extinction, a behavior that is dependent on the medial prefrontal cortex (mPFC) and the hippocampus. While we observed no change in the constitutive expression of brain derived neurotrophic factor (BDNF) protein and mRNA in the mPFC and hippocampus of adult PCOC mice, we observed blunted BDNF signaling in the mPFC of adult PCOC mice after fear extinction compared to the control animals. Specifically, during the consolidation phase of the extinction memory, we observed a decrease in BDNF protein and it's phospho-TrkB receptor expression. Interestingly, at this same time point there was a significant increase in total Bdnf mRNA levels in the mPFC of PCOC mice as compared with controls. In the Bdnf gene, we identified decreased constitutive binding of the transcription factors, MeCP2 and P-CREB at the promoters of Bdnf exons I and IV in the mPFC of PCOC mice, that unlike control mice remained unchanged when measured during the behavior. Finally, bilateral infusion of recombinant BDNF protein into the infralimbic subdivision of the mPFC during the consolidation phase of the extinction memory rescued the behavioral deficit in PCOC mice. In conclusion, these findings extend our knowledge of the neurobiologic impact of prenatal cocaine exposure on the mPFC of mice, which may lead to improved clinical recognition and treatment of exposed individuals.
Shorter, John R.; Odet, Fanny; Aylor, David L.; Pan, Wenqi; Kao, Chia-Yu; Fu, Chen-Ping; Morgan, Andrew P.; Greenstein, Seth; Bell, Timothy A.; Stevans, Alicia M.; Feathers, Ryan W.; Patel, Sunny; Cates, Sarah E.; Shaw, Ginger D.; Miller, Darla R.; Chesler, Elissa J.; McMillian, Leonard; O’Brien, Deborah A.; de Villena, Fernando Pardo-Manuel
2017-01-01
The goal of the Collaborative Cross (CC) project was to generate and distribute over 1000 independent mouse recombinant inbred strains derived from eight inbred founders. With inbreeding nearly complete, we estimated the extinction rate among CC lines at a remarkable 95%, which is substantially higher than in the derivation of other mouse recombinant inbred populations. Here, we report genome-wide allele frequencies in 347 extinct CC lines. Contrary to expectations, autosomes had equal allelic contributions from the eight founders, but chromosome X had significantly lower allelic contributions from the two inbred founders with underrepresented subspecific origins (PWK/PhJ and CAST/EiJ). By comparing extinct CC lines to living CC strains, we conclude that a complex genetic architecture is driving extinction, and selection pressures are different on the autosomes and chromosome X. Male infertility played a large role in extinction as 47% of extinct lines had males that were infertile. Males from extinct lines had high variability in reproductive organ size, low sperm counts, low sperm motility, and a high rate of vacuolization of seminiferous tubules. We performed QTL mapping and identified nine genomic regions associated with male fertility and reproductive phenotypes. Many of the allelic effects in the QTL were driven by the two founders with underrepresented subspecific origins, including a QTL on chromosome X for infertility that was driven by the PWK/PhJ haplotype. We also performed the first example of cross validation using complementary CC resources to verify the effect of sperm curvilinear velocity from the PWK/PhJ haplotype on chromosome 2 in an independent population across multiple generations. While selection typically constrains the examination of reproductive traits toward the more fertile alleles, the CC extinct lines provided a unique opportunity to study the genetic architecture of fertility in a widely genetically variable population. We hypothesize that incompatibilities between alleles with different subspecific origins is a key driver of infertility. These results help clarify the factors that drove strain extinction in the CC, reveal the genetic regions associated with poor fertility in the CC, and serve as a resource to further study mammalian infertility. PMID:28592496
Interstellar Extinction in the Vicinity of the Galactic Center
NASA Technical Reports Server (NTRS)
Cotera, Angela S.; Simpson, Janet P.; Erickson, Edwin F.; Colgan, Sean W. J.; Burton, Michael G.; Allen, David A.
2000-01-01
We present J (1.2 microns), H (1-6 microns), K' (2.11 microns) and Br(gamma) (2.166 microns) images from four large regions within the central 40 pc of the Galaxy. Localized variations in the extinction, as determined by observations of the stellar population, are examined using the median H-K' color as a function of position within each region. As the value of the derived extinction from the stars is dependent upon the intrinsic magnitude of the assumed stellar type, the J-H vs. H-K' diagrams are first used to investigate the distribution of stellar types in the four regions. We find that there is a distinct OB population, contrary to earlier assumptions, with the ratio of K and M giants and supergiants to OB stars approximately twice that of the solar neighborhood. Although the on the scale of approx. l' fluctuations in the extinction are on the order of A(sub V) approx. 2, throughout the entire region the extinction varies from A(sub V) approx. greater than 25 to A(sub V) approx. less than 40. We also examine whether there is any variation in the extinction and stellar number density relative to the usual radio features in these regions and do not find a significant correlation. Spectral imaging in Br(gamma) 2.166 microns emission shows a strong morphological correspondence between the 6 cm radio images and the diffuse Br(gamma) emission. By comparing the theoretical Br(gamma) flux derived from the radio flux using recombination theory, with our measured Br(gamma) flux, we obtain a second, independent, estimate of the extinction. We compare the two data sets and find that the extinction as derived from the stars is consistently greater, sometimes by a factor of two, than the value of the extinction derived from the Br(gamma) images. The derived extinction in various regions, however, is insufficient for any of these regions-to be located behind the molecular clouds as previously observed in the Galactic Center, consistent with the theory that the observed radio emission is produced on the foreground surface of these clouds.
Interstellar Extinction in the Vicinity of the Galactic Center
NASA Technical Reports Server (NTRS)
Cotera, Angela S.; Simpson, Janet P.; Erickson, Edwin F.; Colgan, Sean W. J.
1998-01-01
We present J (1.2 microns) H (1-6 microns) K' (2.11 microns) and Br(gamma) (2.166 microns) images from four large regions within the central 40 pc of the Galaxy. Localized variations in the extinction, as determined by observations of the stellar population, are examined using the median H-K' color as a function of position within each region. As the value of the derived extinction from the stars is dependent upon the intrinsic magnitude of the assumed stellar type, the J-H vs. H-K' diagrams are first used to investigate the distribution of stellar types in the four regions. We find that there is a distinct OB population, contrary to earlier assumptions, with the ratio of K and M giants and supergiants to OB stars approximately twice that of the solar neighborhood. Although the on the scale of approx. 1 min. fluctuations in the extinction are on the order of A(sub V) approx. greater than 2, throughout the entire region the extinction varies from A(sub V) approx. greater than 25 to A(sub V) approx. less than 40. We also examine whether there is any variation in the extinction and stellar number density relative to the unusual radio features in these regions and do not find a significant correlation. Spectral imaging in Br(gamma) 2.166 microns emission shows a strong morphological correspondence between the 6 cm radio images and the diffuse Br(gamma) emission. By comparing the theoretical Br(gamma) flux derived from the radio flux using recombination theory, with our measured Br(gamma) flux, we obtain a second, independent, estimate of the extinction. We compare the two data sets and find that the extinction as derived from the stars is consistently greater, sometimes by a factor of two, than the value of the extinction derived from the Br(gamma) images. The derived extinction in various regions, however, is insufficient for any of these regions to be located behind the molecular clouds as previously observed in the Galactic Center, consistent with the theory that the observed radio emission is produced on the foreground surface of these clouds.
Travelling wave resonators fabricated with low-loss hydrogenated amorphous silicon
NASA Astrophysics Data System (ADS)
Lipka, Timo; Amthor, Julia; Trieu, Hoc Khiem; Müller, Jörg
2013-05-01
Low-loss hydrogenated amorphous silicon is employed for the fabrication of various planar integrated travelling wave resonators. Microring, racetrack, and disk resonators of different dimensions were fabricated with CMOS-compatible processes and systematically investigated. The key properties of notch filter ring resonators as extinction ratio, Q-factor, free spectral range, and the group refractive index were determined for resonators of varying radius, thereby achieving critically coupled photonic systems with high extinction ratios of about 20 dB for both polarizations. Racetrack resonators that are arranged in add/drop configuration and high quality factor microdisk resonators were optically characterized, with the microdisks exhibiting Q-factors of greater than 100000. Four-channel add/drop wavelength-division multiplexing filters that are based on cascaded racetrack resonators are studied. The design, the fabrication, and the optical characterization are presented.
Influence of environmental factors on college alcohol drinking patterns.
Bani, Ridouan; Hameed, Rasheed; Szymanowski, Steve; Greenwood, Priscilla; Kribs-Zaleta, Christopher M; Mubayi, Anuj
2013-01-01
Alcohol abuse is a major problem, especially among students on and around college campuses. We use the mathematical framework of [16] and study the role of environmental factors on the long term dynamics of an alcohol drinking population. Sensitivity and uncertainty analyses are carried out on the relevant functions (for example, on the drinking reproduction number and the extinction time of moderate and heavy drinking because of interventions) to understand the impact of environmental interventions on the distributions of drinkers. The reproduction number helps determine whether or not the high-risk alcohol drinking behavior will spread and become persistent in the population, whereas extinction time of high-risk drinking measures the effectiveness of control programs. We found that the reproduction number is most sensitive to social interactions, while the time to extinction of high-risk drinkers is significantly sensitive to the intervention programs that reduce initiation, and the college drop-out rate. The results also suggest that in a population, higher rates of intervention programs in low-risk environments (more than intervention rates in high-risk environments) are needed to reduce heavy drinking in the population.
Invasions and extinctions through the looking glass of evolutionary ecology
2017-01-01
Invasive and endangered species reflect opposite ends of a spectrum of ecological success, yet they experience many similar eco-evolutionary challenges including demographic bottlenecks, hybridization and novel environments. Despite these similarities, important differences exist. Demographic bottlenecks are more transient in invasive species, which (i) maintains ecologically relevant genetic variation, (ii) reduces mutation load, and (iii) increases the efficiency of natural selection relative to genetic drift. Endangered species are less likely to benefit from admixture, which offsets mutation load but also reduces fitness when populations are locally adapted. Invading species generally experience more benign environments with fewer natural enemies, which increases fitness directly and also indirectly by masking inbreeding depression. Adaptive phenotypic plasticity can maintain fitness in novel environments but is more likely to evolve in invasive species encountering variable habitats and to be compromised by demographic factors in endangered species. Placed in an eco-evolutionary context, these differences affect the breadth of the ecological niche, which arises as an emergent property of antagonistic selection and genetic constraints. Comparative studies of invasions and extinctions that apply an eco-evolutionary perspective could provide new insights into the environmental and genetic basis of ecological success in novel environments and improve efforts to preserve global biodiversity. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920376
Lessons from Red Data Books: Plant Vulnerability Increases with Floral Complexity
Stefanaki, Anastasia; Kantsa, Aphrodite; Tscheulin, Thomas; Charitonidou, Martha; Petanidou, Theodora
2015-01-01
The architectural complexity of flower structures (hereafter referred to as floral complexity) may be linked to pollination by specialized pollinators that can increase the probability of successful seed set. As plant—pollinator systems become fragile, a loss of such specialized pollinators could presumably result in an increased likelihood of pollination failure. This is an issue likely to be particularly evident in plants that are currently rare. Using a novel index describing floral complexity we explored whether this aspect of the structure of flowers could be used to predict vulnerability of plant species to extinction. To do this we defined plant vulnerability using the Red Data Book of Rare and Threatened Plants of Greece, a Mediterranean biodiversity hotspot. We also tested whether other intrinsic (e.g. life form, asexual reproduction) or extrinsic (e.g. habitat, altitude, range-restrictedness) factors could affect plant vulnerability. We found that plants with high floral complexity scores were significantly more likely to be vulnerable to extinction. Among all the floral complexity components only floral symmetry was found to have a significant effect, with radial-flower plants appearing to be less vulnerable. Life form was also a predictor of vulnerability, with woody perennial plants having significantly lower risk of extinction. Among the extrinsic factors, both habitat and maximum range were significantly associated with plant vulnerability (coastal plants and narrow-ranged plants are more likely to face higher risk). Although extrinsic and in particular anthropogenic factors determine plant extinction risk, intrinsic traits can indicate a plant’s proneness to vulnerability. This raises the potential threat of declining global pollinator diversity interacting with floral complexity to increase the vulnerability of individual plant species. There is potential scope for using plant—pollinator specializations to identify plant species particularly at risk and so target conservation efforts towards them. PMID:26390402
Lessons from Red Data Books: Plant Vulnerability Increases with Floral Complexity.
Stefanaki, Anastasia; Kantsa, Aphrodite; Tscheulin, Thomas; Charitonidou, Martha; Petanidou, Theodora
2015-01-01
The architectural complexity of flower structures (hereafter referred to as floral complexity) may be linked to pollination by specialized pollinators that can increase the probability of successful seed set. As plant-pollinator systems become fragile, a loss of such specialized pollinators could presumably result in an increased likelihood of pollination failure. This is an issue likely to be particularly evident in plants that are currently rare. Using a novel index describing floral complexity we explored whether this aspect of the structure of flowers could be used to predict vulnerability of plant species to extinction. To do this we defined plant vulnerability using the Red Data Book of Rare and Threatened Plants of Greece, a Mediterranean biodiversity hotspot. We also tested whether other intrinsic (e.g. life form, asexual reproduction) or extrinsic (e.g. habitat, altitude, range-restrictedness) factors could affect plant vulnerability. We found that plants with high floral complexity scores were significantly more likely to be vulnerable to extinction. Among all the floral complexity components only floral symmetry was found to have a significant effect, with radial-flower plants appearing to be less vulnerable. Life form was also a predictor of vulnerability, with woody perennial plants having significantly lower risk of extinction. Among the extrinsic factors, both habitat and maximum range were significantly associated with plant vulnerability (coastal plants and narrow-ranged plants are more likely to face higher risk). Although extrinsic and in particular anthropogenic factors determine plant extinction risk, intrinsic traits can indicate a plant's proneness to vulnerability. This raises the potential threat of declining global pollinator diversity interacting with floral complexity to increase the vulnerability of individual plant species. There is potential scope for using plant-pollinator specializations to identify plant species particularly at risk and so target conservation efforts towards them.
Genetic factors in Threatened Species Recovery Plans on three continents
Threatened species' recovery planning is applied globally to stem the current species extinction crisis. Evidence supports a key role of genetic processes, such as inbreeding depression, in determining species viability. We examined whether genetic factors are considered in threa...
Large and small-scale structures and the dust energy balance problem in spiral galaxies
NASA Astrophysics Data System (ADS)
Saftly, W.; Baes, M.; De Geyter, G.; Camps, P.; Renaud, F.; Guedes, J.; De Looze, I.
2015-04-01
The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a Sérsic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.
Optical properties of potential condensates in exoplanetary atmospheres
NASA Astrophysics Data System (ADS)
Kitzmann, Daniel; Heng, Kevin
2018-03-01
The prevalence of clouds in currently observable exoplanetary atmospheres motivates the compilation and calculation of their optical properties. First, we present a new open-source Mie scattering code known as LX-MIE, which is able to consider large-size parameters (˜107) using a single computational treatment. We validate LX-MIE against the classical MIEVO code as well as previous studies. Secondly, we embark on an expanded survey of the published literature for both the real and imaginary components of the refractive indices of 32 condensate species. As much as possible, we rely on experimental measurements of the refractive indices and resort to obtaining the real from the imaginary component (or vice versa), via the Kramers-Kronig relation, only in the absence of data. We use these refractive indices as input for LX-MIE to compute the absorption, scattering and extinction efficiencies of all 32 condensate species. Finally, we use a three-parameter function to provide convenient fits to the shape of the extinction efficiency curve. We show that the errors associated with these simple fits in the Wide Field Camera 3 (WFC3), J, H, and K wavebands are ˜ 10 per cent. These fits allow for the extinction cross-section or opacity of the condensate species to be easily included in retrieval analyses of transmission spectra. We discuss prospects for future experimental work. The compilation of the optical constants and LX-MIE is publicly available as part of the open-source Exoclime Simulation Platform (http://www.exoclime.org).
Press/Pulse: Explaining selective terrestrial extinctions at the Cretaceous/Palaeogene boundary
NASA Astrophysics Data System (ADS)
Arens, Nan Crystal
2010-05-01
Single-cause mass extinction scenarios require extreme conditions to generate sufficiently strong kill mechanisms. Such dire effects are commonly at odds with the taxonomic selectivity that characterizes most extinction events. In response, some researchers have proposed that the interaction of a variety of factors typify episodes of elevated extinction. Previous work (Arens & West 2008 Paleobiology 34:456-471) has shown that a combination of press and pulse disturbances increases the probability of elevated extinction. The press/pulse contrast is borrowed from community ecology, where researchers have long recognized that the ecological response to long-term stress differs from that of an instantaneous catastrophe. Scaled to the macroevolutionary level, press disturbances alter community composition by placing multigenerational stress on populations. Press disturbances do not necessarily cause mortality, but reduce population size by a variety of mechanisms such as curtailed reproduction. Pulse disturbances are sudden catastrophic events that cause extensive mortality. Either press or pulse disturbances of sufficient magnitude can cause extinction, however elevated extinction occurs more commonly during the coincidence of lower-magnitude press and pulse events. The Cretaceous/Palaeogene (K/P) extinction is one of the best examples of a press/pulse extinction. Deccan Trap volcanism, which straddled the K/P boundary, altered atmospheric composition and climate. This episodic volcanism likely contributed to the climate instability observed in terrestrial ecosystems and exerted press stress. Pulse disturbance was produced by bolide impact, which punctuated the end of the Cretaceous. The press/pulse mechanism also more effectively explains selectivity in terrestrial vertebrate and plant extinctions at the K/P boundary than do single-mechanisms scenarios. For example, why do environmentally sensitive vertebrates such as amphibians experience no extinction? And why do mire plants preferentially survive? Deccan Trap volcanism generated climatic warming and instability during the last 500 Ka of the Cretaceous. This resulted in extensive rearrangement of terrestrial floras. Dramatic cooling in the millennia immediately preceding the K/P boundary caused regional diversity loss and an apparent increase in vegetation heterogeneity. These changes, coupled with the spread of wetland ecosystems across the western interior of North America in the latest Cretaceous, exerted stress—press disturbance—on some elements of the biota, while favoring others. This press stress may have rendered lineages requiring well-drained or large homogeneous habitats endangered and vulnerable to extinction in the face of the terminal-Cretaceous bolide impact(s)—pulse disturbance. And, in fact, the impact's survivors were primarily wetland plants and animals.
Singewald, N.; Schmuckermair, C.; Whittle, N.; Holmes, A.; Ressler, K.J.
2015-01-01
Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery. PMID:25550231
NASA Astrophysics Data System (ADS)
Dingle, Justin H.; Vu, Kennedy; Bahreini, Roya; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank; Fried, Alan; Herndon, Scott; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Reeves, Mike; Richter, Dirk; Roscioli, Joseph R.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoff; Walega, James; Weibring, Petter; Weinheimer, Andrew
2016-09-01
Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July-August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext / ΔCO) were higher in aged urban air masses compared to fresh air masses by ˜ 50 %. The resulting increase in Δβext / ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g-1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11-12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.
Investigation of real tissue water equivalent path lengths using an efficient dose extinction method
NASA Astrophysics Data System (ADS)
Zhang, Rongxiao; Baer, Esther; Jee, Kyung-Wook; Sharp, Gregory C.; Flanz, Jay; Lu, Hsiao-Ming
2017-07-01
For proton therapy, an accurate conversion of CT HU to relative stopping power (RSP) is essential. Validation of the conversion based on real tissue samples is more direct than the current practice solely based on tissue substitutes and can potentially address variations over the population. Based on a novel dose extinction method, we measured water equivalent path lengths (WEPL) on animal tissue samples to evaluate the accuracy of CT HU to RSP conversion and potential variations over a population. A broad proton beam delivered a spread out Bragg peak to the samples sandwiched between a water tank and a 2D ion-chamber detector. WEPLs of the samples were determined from the transmission dose profiles measured as a function of the water level in the tank. Tissue substitute inserts and Lucite blocks with known WEPLs were used to validate the accuracy. A large number of real tissue samples were measured. Variations of WEPL over different batches of tissue samples were also investigated. The measured WEPLs were compared with those computed from CT scans with the Stoichiometric calibration method. WEPLs were determined within ±0.5% percentage deviation (% std/mean) and ±0.5% error for most of the tissue surrogate inserts and the calibration blocks. For biological tissue samples, percentage deviations were within ±0.3%. No considerable difference (<1%) in WEPL was observed for the same type of tissue from different sources. The differences between measured WEPLs and those calculated from CT were within 1%, except for some bony tissues. Depending on the sample size, each dose extinction measurement took around 5 min to produce ~1000 WEPL values to be compared with calculations. This dose extinction system measures WEPL efficiently and accurately, which allows the validation of CT HU to RSP conversions based on the WEPL measured for a large number of samples and real tissues.
Light scattering by a nematic liquid crystal droplet: Wentzel–Kramers–Brillouin approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.; Miskevich, A. A.
2016-01-15
Light scattering by an optically anisotropic liquid crystal (LC) droplet of a nematic in an isotropic polymer matrix is considered in the Wentzel–Kramers–Brillouin (WKB) approximation. General relations are obtained for elements of the amplitude matrix of light scattering by a droplet of arbitrary shape and for the structure of the director field. Analytic expressions for the amplitude matrices are derived for spherical LC droplets with a uniformly oriented structure of local optical axes for strictly forward and strictly backward scattering. The efficiency factors of extinction and backward scattering for a spherical nonabsorbing LC droplet depending on the LC optical anisotropy,more » refractive index of the polymer, illumination conditions, and orientation of the optical axis of the droplet are analyzed. Verification of the obtained solutions has been performed.« less
Diet and Co-ecology of Pleistocene Short-Faced Bears and Brown Bears in Eastern Beringia
NASA Astrophysics Data System (ADS)
Matheus, Paul E.
1995-11-01
Carbon and nitrogen stable isotope analysis of fossil bone collagen reveals that Pleistocene short-faced bears ( Arctodus simus) of Beringia were highly carnivorous, while contemporaneous brown bears ( Ursus arctos) had highly variable diets that included varying amounts of terrestrial vegetation, salmon, and small amounts of terrestrial meat. A reconsideration of the short-faced bear's highly derived morphology indicates that they foraged as scavengers of widely dispersed large mammal carcasses and were simultaneously designed both for highly efficient locomotion and for intimidating other large carnivores. This allowed Arctodus to forage economically over a large home range and seek out, procure, and defend carcasses from other large carnivores. The isotope data and this reconstruction of Arctodus' foraging behavior refute the hypothesis that competition from brown bears was a significant factor in the extinction of short-faced bears.
Wightman, Jade; Julio, Flávia; Virués-Ortega, Javier
2014-05-01
Experimental functional analysis is an assessment methodology to identify the environmental factors that maintain problem behavior in individuals with developmental disabilities and in other populations. Functional analysis provides the basis for the development of reinforcement-based approaches to treatment. This article reviews the procedures, validity, and clinical implementation of the methodological variations of functional analysis and function-based interventions. We present six variations of functional analysis methodology in addition to the typical functional analysis: brief functional analysis, single-function tests, latency-based functional analysis, functional analysis of precursors, and trial-based functional analysis. We also present the three general categories of function-based interventions: extinction, antecedent manipulation, and differential reinforcement. Functional analysis methodology is a valid and efficient approach to the assessment of problem behavior and the selection of treatment strategies.
NASA Astrophysics Data System (ADS)
Burgener, J. A.
2016-12-01
The Chicxulub impact is well associated with the K/Pg boundary layer and extinction event [Schulte et al., 2010]. However, most agree that Chicxulub is considered to be too small to have caused the extinction in itself [Kring, 2007; Keller, 2014]. Keller [2014] discusses how the K/Pg extinction event may have been due to many factors, of which Chicxulub would be part, but global warming or volcanic fumes or other factors were the main killers. There are several features in the K/Pg layer that require a much higher energy impact than Chicxulub. The worldwide distribution of shocked crystals does not fit Chicxulub - Chicxulub would only send such granules 400 km away [Morgan et al, 2006]. The Fern Spore anomaly extends too far from Chicxulub indicating a much larger fireball and impact [Fleming 1990; Robertson, 2103]. Fireballs falling around the planet have been proposed and dismissed as not possible. [Goldin & Melosh, 2009] and [Adair,2010] rule out a firestorm from ejecta. One of the reasons that Chicxulub is convincingly attributed with the K/Pg boundary layer is the calculation that the size of the impacting asteroid should have been about 10 km in diameter, based on the thickness of the boundary layer and the amount of iridium in the boundary layer [Alvarez, 1980]. Alvarez used the factor from the Krakatoa eruption (0.22) as the amount of asteroid material that would stay in the atmosphere. More recent studies imply that far less than 0.22 of an asteroid would stay in the atmosphere after an impact. When a comet hits at 55 - 72 km/sec, the vast majority of the comet material will be buried deep into the Earth or ejected at speeds in excess of the escape velocity, and very little would remain [Jeffers et al.2001]. Therefore a comet impact should leave a relatively small boundary layer, requiring a much larger impact by a comet to form what Alvaraz calculated for a 10 km asteroid. If a much larger impact occurred at the end of the Cretaceous, it would resolve the challenges of Chicxulub as long as it was near the location of Chicxulub. If the Amazon Basin was considered as an impact, it would be large enough to fit the K/Pg boundary layer details much better than Chicxulub, and it would explain the extinction event without any need to rely on extenuating factors - the impact itself would have been sufficient to cause the extinction.
NASA Astrophysics Data System (ADS)
Aktas, Metin; Maral, Hakan; Akgun, Toygar
2018-02-01
Extinction ratio is an inherent limiting factor that has a direct effect on the detection performance of phase-OTDR based distributed acoustics sensing systems. In this work we present a model based analysis of Rayleigh scattering to simulate the effects of extinction ratio on the received signal under varying signal acquisition scenarios and system parameters. These signal acquisition scenarios are constructed to represent typically observed cases such as multiple vibration sources cluttered around the target vibration source to be detected, continuous wave light sources with center frequency drift, varying fiber optic cable lengths and varying ADC bit resolutions. Results show that an insufficient ER can result in high optical noise floor and effectively hide the effects of elaborate system improvement efforts.
Dinasour extinction and volcanic activity
NASA Astrophysics Data System (ADS)
Gledhill, J. A.
There is at present some controversy about the reason for the mass extinction of dinosaurs and other forms of life at the end of the Cretaceous. A suggestion by Alvarez et al. [1980] that this was due to the collision of the earth with a meteorite 10 km or so in diameter has excited considerable interest [Silver and Schultz, 1982] and also some criticism [Stanley, 1984]. A recent publication [Wood, 1984] describing the catastrophic effects of a relatively minor lava flow in Iceland suggests that intense volcanic activity could have played a large part in the extinctions. In this letter it is pointed out that the Deccan lava flows in India took place in the appropriate time and may well have been of sufficient magnitude to be a major factor in the Cretaceous-Tertiary (C-T) boundary catastrophe.
Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J
2017-08-02
We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.
Metcalf, Jessica L; Turney, Chris; Barnett, Ross; Martin, Fabiana; Bray, Sarah C; Vilstrup, Julia T; Orlando, Ludovic; Salas-Gismondi, Rodolfo; Loponte, Daniel; Medina, Matías; De Nigris, Mariana; Civalero, Teresa; Fernández, Pablo Marcelo; Gasco, Alejandra; Duran, Victor; Seymour, Kevin L; Otaola, Clara; Gil, Adolfo; Paunero, Rafael; Prevosti, Francisco J; Bradshaw, Corey J A; Wheeler, Jane C; Borrero, Luis; Austin, Jeremy J; Cooper, Alan
2016-06-01
The causes of Late Pleistocene megafaunal extinctions (60,000 to 11,650 years ago, hereafter 60 to 11.65 ka) remain contentious, with major phases coinciding with both human arrival and climate change around the world. The Americas provide a unique opportunity to disentangle these factors as human colonization took place over a narrow time frame (~15 to 14.6 ka) but during contrasting temperature trends across each continent. Unfortunately, limited data sets in South America have so far precluded detailed comparison. We analyze genetic and radiocarbon data from 89 and 71 Patagonian megafaunal bones, respectively, more than doubling the high-quality Pleistocene megafaunal radiocarbon data sets from the region. We identify a narrow megafaunal extinction phase 12,280 ± 110 years ago, some 1 to 3 thousand years after initial human presence in the area. Although humans arrived immediately prior to a cold phase, the Antarctic Cold Reversal stadial, megafaunal extinctions did not occur until the stadial finished and the subsequent warming phase commenced some 1 to 3 thousand years later. The increased resolution provided by the Patagonian material reveals that the sequence of climate and extinction events in North and South America were temporally inverted, but in both cases, megafaunal extinctions did not occur until human presence and climate warming coincided. Overall, metapopulation processes involving subpopulation connectivity on a continental scale appear to have been critical for megafaunal species survival of both climate change and human impacts.
Evidence for the role of infectious disease in species extinction and endangerment
Smith, Katherine F.; Sax, Dov F.; Lafferty, Kevin D.
2006-01-01
Infectious disease is listed among the top five causes of global species extinctions. However, the majority of available data supporting this contention is largely anecdotal. We used the IUCN Red List of Threatened and Endangered Species and literature indexed in the ISI Web of Science to assess the role of infectious disease in global species loss. Infectious disease was listed as a contributing factor in <4% of species extinctions known to have occurred since 1500 (833 plants and animals) and as contributing to a species' status as critically endangered in <8% of cases (2852 critically endangered plants and animals). Although infectious diseases appear to play a minor role in global species loss, our findings underscore two important limitations in the available evidence: uncertainty surrounding the threats to species survival and a temporal bias in the data. Several initiatives could help overcome these obstacles, including rigorous scientific tests to determine which infectious diseases present a significant threat at the species level, recognition of the limitations associated with the lack of baseline data for the role of infectious disease in species extinctions, combining data with theory to discern the circumstances under which infectious disease is most likely to serve as an agent of extinction, and improving surveillance programs for the detection of infectious disease. An evidence-based understanding of the role of infectious disease in species extinction and endangerment will help prioritize conservation initiatives and protect global biodiversity.
Metcalf, Jessica L.; Turney, Chris; Barnett, Ross; Martin, Fabiana; Bray, Sarah C.; Vilstrup, Julia T.; Orlando, Ludovic; Salas-Gismondi, Rodolfo; Loponte, Daniel; Medina, Matías; De Nigris, Mariana; Civalero, Teresa; Fernández, Pablo Marcelo; Gasco, Alejandra; Duran, Victor; Seymour, Kevin L.; Otaola, Clara; Gil, Adolfo; Paunero, Rafael; Prevosti, Francisco J.; Bradshaw, Corey J. A.; Wheeler, Jane C.; Borrero, Luis; Austin, Jeremy J.; Cooper, Alan
2016-01-01
The causes of Late Pleistocene megafaunal extinctions (60,000 to 11,650 years ago, hereafter 60 to 11.65 ka) remain contentious, with major phases coinciding with both human arrival and climate change around the world. The Americas provide a unique opportunity to disentangle these factors as human colonization took place over a narrow time frame (~15 to 14.6 ka) but during contrasting temperature trends across each continent. Unfortunately, limited data sets in South America have so far precluded detailed comparison. We analyze genetic and radiocarbon data from 89 and 71 Patagonian megafaunal bones, respectively, more than doubling the high-quality Pleistocene megafaunal radiocarbon data sets from the region. We identify a narrow megafaunal extinction phase 12,280 ± 110 years ago, some 1 to 3 thousand years after initial human presence in the area. Although humans arrived immediately prior to a cold phase, the Antarctic Cold Reversal stadial, megafaunal extinctions did not occur until the stadial finished and the subsequent warming phase commenced some 1 to 3 thousand years later. The increased resolution provided by the Patagonian material reveals that the sequence of climate and extinction events in North and South America were temporally inverted, but in both cases, megafaunal extinctions did not occur until human presence and climate warming coincided. Overall, metapopulation processes involving subpopulation connectivity on a continental scale appear to have been critical for megafaunal species survival of both climate change and human impacts. PMID:27386563
HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand?
Whittle, Nigel; Singewald, Nicolas
2014-01-01
A novel strategy to treat anxiety and fear-related disorders such as phobias, panic and PTSD (post-traumatic stress disorder) is combining CBT (cognitive behavioural therapy), including extinction-based exposure therapy, with cognitive enhancers. By targeting and boosting mechanisms underlying learning, drug development in this field aims at designing CBT-augmenting compounds that help to overcome extinction learning deficits, promote long-term fear inhibition and thus support relapse prevention. Progress in revealing the role of epigenetic regulation of specific genes associated with extinction memory generation has opened new avenues in this direction. The present review examines recent evidence from pre-clinical studies showing that increasing histone acetylation, either via genetic or pharmacological inhibition of HDACs (histone deacetylases) by e.g. vorinostat/SAHA (suberoylanilide hydroxamic acid), entinostat/MS-275, sodium butyrate, TSA (trichostatin A) or VPA (valproic acid), or by targeting HATs (histone acetyltransferases), augments fear extinction and, importantly, generates a long-term extinction memory that can protect from return of fear phenomena. The molecular mechanisms and pathways involved including BDNF (brain-derived neurotrophic factor) and NMDA (N-methyl-D-aspartate) receptor signalling are just beginning to be revealed. First studies in healthy humans are in support of extinction-facilitating effects of HDAC inhibitors. Very recent evidence that HDAC inhibitors can rescue deficits in extinction-memory-impaired rodents indicates a potential clinical utility of this approach also for exposure therapy-resistant patients. Important future work includes investigation of the long-term safety aspects of HDAC inhibitor treatment, as well as design of isotype(s)-specific inhibitors. Taken together, HDAC inhibitors display promising potential as pharmacological adjuncts to augment the efficacy of exposure-based approaches in anxiety and trauma therapy. PMID:24646280
EXTINCTION AND DUST GEOMETRY IN M83 H II REGIONS: AN HUBBLE SPACE TELESCOPE/WFC3 STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guilin; Calzetti, Daniela; Hong, Sungryong
We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H II regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with A{sub V} values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H II regions. By comparing thesemore » observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground ''dust screen'' assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100-200 pc) scales, the extinction becomes consistent with a ''dust screen'', suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.« less
Neuroadaptive changes in NMDAR1 gene expression after extinction of cocaine self-administration.
Crespo, José A; Oliva, José M; Ghasemzadeh, M Benham; Kalivas, Peter W; Ambrosio, E
2002-06-01
The aim of the present work was to study the time course effects in levels of mRNA encoding N-methyl-d-aspartate receptor subunit 1 (NMDAR1) after long-term cocaine self-administration (1 mg/kg/ injection) and its extinction using a yoked-box procedure. NMDAR1 content was measured by quantitative in situ hybridization histochemistry in prefrontal cortex, caudate-putamen, nucleus accumbens, olfactory tubercle, and piriform cortex immediately after cessation of the last session of cocaine self-administration (Day 0) and 1, 5, and 10 days after the extinction period. The results show that long-term cocaine self-administration and its extinction alter NMDAR1 gene expression in these forebrain regions, and that the changes depend upon the brain region examined and the type of cocaine administration (contingent, noncontingent, and saline). Compared to saline and noncontingent cocaine administration, contingent cocaine produced an up-regulation in NMDAR1 gene expression on Day 0 in all the brain regions analyzed. NMDAR1 levels of contingent animals decreased progressively in the absence of cocaine, and the decrement persisted 10 days after the extinction of cocaine self-administration behavior in all the forebrain areas, with the exception of olfactory tubercle. In contrast, noncontingent cocaine administration did not produce any change in NMDAR1 gene expression on Day 0, and extinction resulted in an increase of NMDAR1 mRNA content on Days 1 and 5 and returned to control (saline) values on Day 10. These results suggest that an interaction between environmental stimuli and the pharmacological action of cocaine during drug self-administration and its extinction may represent an important factor in the regulation of cocaine effects on NMDAR1 gene expression.
Wang, Xueying; Gautam, Raju; Pinedo, Pablo J; Allen, Linda J S; Ivanek, Renata
2014-08-01
Many infectious agents transmitting through a contaminated environment are able to persist in the environment depending on the temperature and sanitation determined rates of their replication and clearance, respectively. There is a need to elucidate the effect of these factors on the infection transmission dynamics in terms of infection outbreaks and extinction while accounting for the random nature of the process. Also, it is important to distinguish between the true and apparent extinction, where the former means pathogen extinction in both the host and the environment while the latter means extinction only in the host population. This study proposes a stochastic-differential equation model as an approximation to a Markov jump process model, using Escherichia coli O157:H7 in cattle as a model system. In the model, the host population infection dynamics are described using the standard susceptible-infected-susceptible framework, and the E. coli O157:H7 population in the environment is represented by an additional variable. The backward Kolmogorov equations that determine the probability distribution and the expectation of the first passage time are provided in a general setting. The outbreak and apparent extinction of infection are investigated by numerically solving the Kolmogorov equations for the probability density function of the associated process and the expectation of the associated stopping time. The results provide insight into E. coli O157:H7 transmission and apparent extinction, and suggest ways for controlling the spread of infection in a cattle herd. Specifically, this study highlights the importance of ambient temperature and sanitation, especially during summer.
Pape, Hans-Christian; Pare, Denis
2009-01-01
The last ten years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate to the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled to the fact that the underlying circuitry is evolutionarily well conserved makes it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances, came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses. PMID:20393190
Fear acquisition and extinction in offspring of mothers with anxiety and depressive disorders.
Waters, Allison M; Peters, Rosie-Mae; Forrest, Kylee E; Zimmer-Gembeck, Melanie
2014-01-01
Maternal anxiety and depression are significant risk factors for the development of these disorders in offspring. The pathways through which risk is conferred remain unclear. This study examined fear acquisition and extinction in 26 children at high risk for emotional disorders by virtue of maternal psychopathology (n=14 with a mother with a principal anxiety disorder and n=12 with a mother with a principal unipolar depressive disorder) and 31 low risk controls using a discriminative Pavlovian conditioning procedure. Participants, aged between 7 and 14 years, completed 16 trials of discriminative conditioning of two geometric figures, with (CS+) and without (CS-) an aversive tone (US), followed by 8 extinction trials (4×CS+, 4×CS-). In the context of comparable discriminative conditioning, children of anxious mothers showed larger skin conductance responses during extinction to the CS+ compared to the CS-, and to both CSs from the first to the second block of extinction trials, in comparison with low risk controls. Compared to low risk controls, children of depressed mothers showed smaller skin conductance responses to the CS+ than the CS- during acquisition. These findings suggest distinct psychophysiological premorbid risk markers in offspring of anxious and depressed mothers. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Faith, Daniel P
2008-12-01
New species conservation strategies, including the EDGE of Existence (EDGE) program, have expanded threatened species assessments by integrating information about species' phylogenetic distinctiveness. Distinctiveness has been measured through simple scores that assign shared credit among species for evolutionary heritage represented by the deeper phylogenetic branches. A species with a high score combined with a high extinction probability receives high priority for conservation efforts. Simple hypothetical scenarios for phylogenetic trees and extinction probabilities demonstrate how such scoring approaches can provide inefficient priorities for conservation. An existing probabilistic framework derived from the phylogenetic diversity measure (PD) properly captures the idea of shared responsibility for the persistence of evolutionary history. It avoids static scores, takes into account the status of close relatives through their extinction probabilities, and allows for the necessary updating of priorities in light of changes in species threat status. A hypothetical phylogenetic tree illustrates how changes in extinction probabilities of one or more species translate into changes in expected PD. The probabilistic PD framework provided a range of strategies that moved beyond expected PD to better consider worst-case PD losses. In another example, risk aversion gave higher priority to a conservation program that provided a smaller, but less risky, gain in expected PD. The EDGE program could continue to promote a list of top species conservation priorities through application of probabilistic PD and simple estimates of current extinction probability. The list might be a dynamic one, with all the priority scores updated as extinction probabilities change. Results of recent studies suggest that estimation of extinction probabilities derived from the red list criteria linked to changes in species range sizes may provide estimated probabilities for many different species. Probabilistic PD provides a framework for single-species assessment that is well-integrated with a broader measurement of impacts on PD owing to climate change and other factors.
Emittance Theory for Thin Film Selective Emitter
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.
1994-01-01
Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).
Friedman, Matt
2010-06-07
The spiny-finned teleost fishes (Acanthomorpha) include nearly one-third of all living vertebrate species and assume a bewildering array of bodyplans, but the macroevolutionary assembly of modern acanthomorph biodiversity remains largely unexplored. Here, I reconstruct the trajectory of morphological diversification in this major radiation from its first appearance in the Late Cretaceous to the Miocene using a geometric morphometric database comprising more than 600 extinct species known from complete body fossils. The anatomical diversity (disparity) of acanthomorphs is low throughout the Cretaceous, increases sharply and significantly in the wake of the Cretaceous-Palaeogene (K-P) extinction, and shows little change throughout subsequent Cenozoic intervals. This pattern of morphological diversification appears robust to two potential biasing factors: the 'Lagerstätten effect', and the non-random segregation of rare and common taxa along phenotypic axes. Dissecting the trajectory of acanthomorph radiation along phylogenetic lines reveals that the abrupt post-extinction increase in disparity is driven largely by the proliferation of trophically diverse modern groups within Percomorpha, a spiny-fin subclade containing more than 15 000 living species and identified as showing a substantially elevated diversification rate relative to background vertebrate levels. A major component of the Palaeogene acanthomorph radiation reflects colonization of morphospace previously occupied by non-acanthomorph victims of the K-P. However, other aspects of morphological diversification cannot be explained by this simple ecological release model, suggesting that multiple factors contributed to the prolific anatomical radiation of acanthomorphs.
What makes red quasars red?. Observational evidence for dust extinction from line ratio analysis
NASA Astrophysics Data System (ADS)
Kim, Dohyeong; Im, Myungshin
2018-02-01
Red quasars are very red in the optical through near-infrared (NIR) wavelengths, which is possibly due to dust extinction in their host galaxies as expected in a scenario in which red quasars are an intermediate population between merger-driven star-forming galaxies and unobscured type 1 quasars. However, alternative mechanisms also exist to explain their red colors: (i) an intrinsically red continuum; (ii) an unusual high covering factor of the hot dust component, that is, CFHD = LHD/Lbol, where the LHD is the luminosity from the hot dust component and the Lbol is the bolometric luminosity; and (iii) a moderate viewing angle. In order to investigate why red quasars are red, we studied optical and NIR spectra of 20 red quasars at z 0.3 and 0.7, where the usage of the NIR spectra allowed us to look into red quasar properties in ways that are little affected by dust extinction. The Paschen to Balmer line ratios were derived for 13 red quasars and the values were found to be 10 times higher than unobscured type 1 quasars, suggesting a heavy dust extinction with AV > 2.5 mag. Furthermore, the Paschen to Balmer line ratios of red quasars are difficult to explain with plausible physical conditions without adopting the concept of the dust extinction. The CFHD of red quasars are similar to, or marginally higher than, those of unobscured type 1 quasars. The Eddington ratios, computed for 19 out of 20 red quasars, are higher than those of unobscured type 1 quasars (by factors of 3-5), and hence the moderate viewing angle scenario is disfavored. Consequently, these results strongly suggest the dust extinction that is connected to an enhanced nuclear activity as the origin of the red color of red quasars, which is consistent with the merger-driven quasar evolution scenario. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A31
NASA Astrophysics Data System (ADS)
Devi, Jutika; Saikia, Rashmi; Datta, Pranayee
2016-10-01
The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.
Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, Sang Hee; Sun, Wenting; Ju, Yiguang
The impact of toluene addition in n-decane on OH concentrations, maximum heat release rates, and extinction limits were studied experimentally and computationally by using counterflow diffusion flames with laser induced fluorescence imaging. Sensitivity analyses of kinetic path ways and species transport on flame extinction were also conducted. The results showed that the extinction strain rate of n-decane/toluene/nitrogen flames decreased significantly with an increase of toluene addition and depended linearly on the maximum OH concentration. It was revealed that the maximum OH concentration, which depends on the fuel H/C ratio, can be used as an index of the radical pool andmore » chemical heat release rate, since it plays a significant role on the heat production via the reaction with other species, such as CO, H{sub 2}, and HCO. Experimental results further demonstrated that toluene addition in n-decane dramatically reduced the peak OH concentration via H abstraction reactions and accelerated flame extinction via kinetic coupling between toluene and n-decane mechanisms. Comparisons between experiments and simulations revealed that the current toluene mechanism significantly over-predicts the radical destruction rate, leading to under-prediction of extinction limits and OH concentrations, especially caused by the uncertainty of the H abstraction reaction from toluene, which rate coefficient has a difference by a factor of 5 in the tested toluene models. In addition, sensitivity analysis of diffusive transport showed that in addition to n-decane and toluene, the transport of OH and H also considerably affects the extinction limit. A reduced linear correlation between the extinction limits of n-decane/toluene blended fuels and the H/C ratio as well as the mean fuel molecular weight was obtained. The results suggest that an explicit prediction of the extinction limits of aromatic and alkane blended fuels can be established by using H/C ratio (or radical index) and the mean fuel molecular weight which represent the rates of radical production and the fuel transport, respectively. (author)« less
Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C
2015-08-01
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by lessening the impact of future land-use activities on biodiversity within hotspots. © 2015 Society for Conservation Biology.
Evaluation of assumptions for estimating chemical light extinction at U.S. national parks.
Lowenthal, Douglas; Zielinska, Barbara; Samburova, Vera; Collins, Don; Taylor, Nathan; Kumar, Naresh
2015-03-01
Studies were conducted at Great Smoky Mountains National Park (NP) (GRSM), Tennessee, Mount Rainier NP (MORA), Washington, and Acadia NP (ACAD), Maine, to evaluate assumptions used to estimate aerosol light extinction from chemical composition. The revised IMPROVE equation calculates light scattering from concentrations of PM2.5 sulfates, nitrates, organic carbon mass (OM), and soil. Organics are assumed to be nonhygroscopic. Organic carbon (OC) is converted to OM with a multiplier of 1.8. Experiments were conducted to evaluate assumptions on aerosol hydration state, the OM/OC ratio, OM hygroscopicity, and mass scattering efficiencies. Sulfates were neutralized by ammonium during winter at GRSM (W, winter) and at MORA during summer but were acidic at ACAD and GRSM (S, summer) during summer. Hygroscopic growth was mostly smooth and continuous, rarely exhibiting hysteresis. Deliquescence was not observed except infrequently during winter at GRSM (W). Water-soluble organic carbon (WSOC) was separated from bulk OC with solid-phase absorbents. The average OM/OC ratios were 2.0, 2.7, 2.1, and 2.2 at GRSM (S), GRSM (W), MORA, and ACAD, respectively. Hygroscopic growth factors (GF) at relative humidity (RH) 90% for aerosols generated from WSOC extracts averaged 1.19, 1.06, 1.13, and 1.16 at GRSM (S), GRSM (W), MORA, and ACAD, respectively. Thus, the assumption that OM is not hygroscopic may lead to underestimation of its contribution to light scattering. Studies at IMPROVE sites conducted in U.S. national parks showed that aerosol organics comprise more PM2.5 mass and absorb more water as a function of relative humidity than is currently assumed by the IMPROVE equation for calculating chemical light extinction. Future strategies for reducing regional haze may therefore need to focus more heavily on understanding the origins and control of anthropogenic sources of organic aerosols.
NASA Astrophysics Data System (ADS)
Melott, Adrian L.; Bambach, Richard K.
2010-09-01
The hypothesis of a companion object (Nemesis) orbiting the Sun was motivated by the claim of a terrestrial extinction periodicity, thought to be mediated by comet showers. The orbit of a distant companion to the Sun is expected to be perturbed by the Galactic tidal field and encounters with passing stars, which will induce variation in the period. We examine the evidence for the previously proposed periodicity, using two modern, greatly improved paleontological data sets of fossil biodiversity. We find that there is a narrow peak at 27 Myr in the cross-spectrum of extinction intensity time series between these independent data sets. This periodicity extends over a time period nearly twice that for which it was originally noted. An excess of extinction events is associated with this periodicity at 99 per cent confidence. In this sense we confirm the originally noted feature in the time series for extinction. However, we find that it displays extremely regular timing for about 0.5 Gyr. The regularity of the timing compared with earlier calculations of orbital perturbation would seem to exclude the Nemesis hypothesis as a causal factor.
NASA Astrophysics Data System (ADS)
Abidin, Z.; Marwoto, P.; Iswari, R. S.
2018-03-01
Tor douronensis (God Fish) species are endemic freshwater fish that only live in Kuningan District. Originally these fish scattered in the pool Cigugur, Cibulan, Balong Kambang, Darma Loka and Balong Dalem. However, since 2006 the god fish that existed in Balong Dalem extinct. This study aims to analyze the possible factors causing extinction of the god fish in situ Balong Dalem. The study was conducted during May 2017. The results showed that there were 11 phytoplankton and 13 genera of Gomphonema, Stigeoclonium, Desmidium, Closterium, Navicula, Spirulina, Phormidium, Melosira, Gloeotrichia, Oedogonium, Hyalodiscus, Moscocrocis and Cladophora. While zooplankton found 3 genus of Cyclops, Rotifera and Tanypus. The results showed that the abundance, diversity and uniformity of zooplankton correlated positively with pH, temperature, DO and water flow but not with others. Condition of water quality (physical-chemical parameter) Balong Dalem in bad condition, low productivity and labile. Condition of substrate base there Balong Dalem in the form of sand and fine mud. All of these conditions caused the extinction of Tor douronensis in situ Balong Dalem.
SOI ring resonators with controllable MMI coupler sections
NASA Astrophysics Data System (ADS)
Hu, Youfang; Gardes, Frédéric Y.; Mashanovich, Goran Z.; Reed, Graham T.
2011-01-01
A ring resonator using a single 2×2 MMI as the coupler section has the distinct advantages of low sensitivity to fabrication error, temperature, wavelength and polarisation. However, the coupling coefficient of the 2×2 MMI coupler is fixed; hence, the performance of this type of device is limited, e.g. transmission spectrum with high extinction ratio is difficult to achieve. We have designed and simulated ring resonators with coupler sections consisting of two 2×2 MMIs and phase shifters, so that the coupling efficiency can be varied from 0% to 100% with relative ease. For a single ring resonator, the transmission spectrum can be controlled to achieve an extinction ratio of >20dB and a spectral bandwidth of <1nm. For a multiple ring filter, the transmission spectrum can be controlled to achieve an extinction ratio of >30dB and a bandwidth of <1nm in addition, a flat-top transmission spectrum is also achievable. The whole device has a footprint of approximately 200μm by 100μm.
The Possible Role of Climatic Changes In Later Pleistocene Human Evolution and Extinctions
NASA Astrophysics Data System (ADS)
Stringer, C.
Problems of chronological resolution greatly restrict our ability to match the Pleis- tocene fossil human succession to detailed palaeoclimatic records. This talk will ad- dress two relevant research areas. The first concerns the ancient human occupation of Britain, now the focus of a specific project (AHOB). Human occupation of Britain was influenced by two main factors, palaeogeography (particularly in relation to the periodic absence of a land bridge, largely controlled by climate) and palaeoclimate (particularly influenced by conditions in the North Atlantic). The second area con- cerns the European extinction of the Neanderthals and their replacement by modern humans. Particularly in the latter case, if we can move beyond reliance on uncalibrated radiocarbon chronologies, we may eventually be able to correlate human demographic changes, including Neanderthal extinction, with rapid climatic fluctuations.
Animal models of fear relapse.
Goode, Travis D; Maren, Stephen
2014-01-01
Whereas fear memories are rapidly acquired and enduring over time, extinction memories are slow to form and are susceptible to disruption. Consequently, behavioral therapies that involve extinction learning (e.g., exposure therapy) often produce only temporary suppression of fear and anxiety. This review focuses on the factors that are known to influence the relapse of extinguished fear. Several phenomena associated with the return of fear after extinction are discussed, including renewal, spontaneous recovery, reacquisition, and reinstatement. Additionally, this review describes recent work, which has focused on the role of psychological stress in the relapse of extinguished fear. Recent developments in behavioral and pharmacological research are examined in light of treatment of pathological fear in humans. © The Author 2014. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... extinction, predominantly due to the threat of white-nose syndrome (Factor C). However, other threats (Factors A, B, E) when combined with white-nose syndrome heighten the level of risk to the species. We will...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R; Baer, E; Jee, K
Purpose: For proton therapy, an accurate model of CT HU to relative stopping power (RSP) conversion is essential. In current practice, validation of these models relies solely on measurements of tissue substitutes with standard compositions. Validation based on real tissue samples would be much more direct and can address variations between patients. This study intends to develop an efficient and accurate system based on the concept of dose extinction to measure WEPL and retrieve RSP in biological tissue in large number of types. Methods: A broad AP proton beam delivering a spread out Bragg peak (SOBP) is used to irradiatemore » the samples with a Matrixx detector positioned immediately below. A water tank was placed on top of the samples, with the water level controllable in sub-millimeter by a remotely controlled dosing pump. While gradually lowering the water level with beam on, the transmission dose was recorded at 1 frame/sec. The WEPL were determined as the difference between the known beam range of the delivered SOBP (80%) and the water level corresponding to 80% of measured dose profiles in time. A Gammex 467 phantom was used to test the system and various types of biological tissue was measured. Results: RSP for all Gammex inserts, expect the one made with lung-450 material (<2% error), were determined within ±0.5% error. Depends on the WEPL of investigated phantom, a measurement takes around 10 min, which can be accelerated by a faster pump. Conclusion: Based on the concept of dose extinction, a system was explored to measure WEPL efficiently and accurately for a large number of samples. This allows the validation of CT HU to stopping power conversions based on large number of samples and real tissues. It also allows the assessment of beam uncertainties due to variations over patients, which issue has never been sufficiently studied before.« less
Investigation of shortcomings in simulated aerosol vertical profiles
NASA Astrophysics Data System (ADS)
Park, S.; Allen, R.
2017-12-01
The vertical distribution of aerosols is one important factor for aerosol radiative forcing. Previous studies show that climate models poorly reproduce the aerosol vertical profile, with too much aerosol aloft in the upper troposphere. This bias may be related to several factors, including excessive convective mass flux and wet removal. In this study, we evaluate the aerosol vertical profile from several Coupled Model Intercomparison Project 5 (CMIP5) models, as well as the Community Atmosphere Model 5 (CAM5), relative to the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO). The results show that all models significantly underestimate extinction coefficient in the lower troposphere, while overestimating extinction coefficient in the upper troposphere. In addition, the majority of models indicate a land-ocean dependence in the relationship between aerosol extinction coefficient in the upper troposphere and convective mass flux. Over the continents, more convective mass flux is related to more aerosol aloft; over the ocean, more convective mass flux is associated with less aerosol in upper troposphere. Sensitivity experiments are conducted to investigate the role that convection and wet deposition have in contributing to the deficient simulation of the vertical aerosol profile, including the land-ocean dependence.
Predator Dispersal Determines the Effect of Connectivity on Prey Diversity
Limberger, Romana; Wickham, Stephen A.
2011-01-01
Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation. PMID:22194992
Minocycline attenuates interferon-α-induced impairments in rat fear extinction.
Bi, Qiang; Shi, Lijuan; Yang, Pingting; Wang, Jianing; Qin, Ling
2016-06-30
Extinction of conditioned fear is an important brain function for animals to adapt to a new environment. Accumulating evidence suggests that innate immune cytokines are involved in the pathology of psychotic disorders. However, the involvement of cytokines in fear dysregulation remains less investigated. In the present study, we investigated how interferon (IFN)-α disrupts the extinction of conditioned fear and propose an approach to rescue IFN-α-induced neurologic impairment. We used a rat model of auditory fear conditioning to study the effect of IFN-α on the fear memory process. IFN-α was infused directly into the amygdala of rats and examined the rats' behavioral response (freezing) to fear-conditioned stimuli. Immunohistochemical staining was used to examine the glia activity status of glia in the amygdala. The levels of the proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the amygdala were measured by enzyme-linked immunosorbent assay. We also administrated minocycline, a microglial activation inhibitor, before the IFN-α infusion to testify the possibility to reverse the IFN-α-induced effects. Infusing the amygdala with IFN-α impaired the extinction of conditioned fear in rats and activated microglia and astrocytes in the amygdala. Administering minocycline prevented IFN-α from impairing fear extinction. The immunohistochemical and biochemical results show that minocycline inhibited IFN-α-induced microglial activation and reduced IL-1β and TNF-α production. Our findings suggest that IFN-α disrupts the extinction of auditory fear by activating glia in the amygdala and provides direction for clinical studies of novel treatments to modulate the innate immune system in patients with psychotic disorders.
Bassi, Maria Rosaria; Sempere, Raquel Navarro; Meyn, Prashansa; Polacek, Charlotta; Arias, Armando
2018-06-18
Flaviviruses constitute an increasing source of public health concern with growing numbers of pathogens causing disease, and a geographic spread to temperate climates. Despite a large body of evidence supporting mutagenesis as a conceivable antiviral strategy, there is currently no data on the sensitivity to increased mutagenesis for Zika virus (ZIKV) and Usutu virus (USUV), two emerging flaviviral threats. In this study, we demonstrate that both viruses are sensitive to three ribonucleosides that have shown mutagenic activity against other RNA viruses - favipiravir, ribavirin and 5-fluorouracil - while they remain unaffected by a mutagenic deoxyribonucleoside. Serial cell culture passages of ZIKV in the presence of these compounds resulted in the rapid extinction of infectivity, suggesting elevated sensitivity to mutagenesis. USUV extinction was achieved when a 10-fold dilution was applied between every passage, but not in experiments involving undiluted virus, indicating an overall lower susceptibility than ZIKV. Although both viruses are inhibited by the same three drugs, ZIKV is relatively more susceptive to serial passage in the presence of purine analogues (favipiravir and ribavirin) while USUV replication is suppressed more efficiently by 5-fluorouracil. These differences in sensitivity typically correlate with the increases in the mutation frequencies observed in each nucleoside treatment. These results are relevant to the development of efficient therapies based on lethal mutagenesis, and support the rational selection of different mutagenic nucleosides for each pathogen. We will discuss the implications of these results to the fidelity of flavivirus replication, and the design of antiviral therapies based on lethal mutagenesis. Copyright © 2018 Bassi et al.
Piou, Cyril; Prévost, Etienne
2013-03-01
Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life-history pathways. Using an individual-based demo-genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life-history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life-history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might not impede changes in migration life history. © 2012 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Lin, Bing; Hu, Yongxiang; Sun, Wenbo; Min, Qilong
2008-01-01
This study uses 3-dimensional finite difference time domain method to accurately calculate single-scattering properties of randomly orientated leaves and evaluate the influences of vegetation water content (VWC) on these properties at 19 and 37 GHz frequencies. The studied leaves are assumed to be thin elliptic disks with two different sizes and have various VWC values. Although the leaf moisture produces considerable absorption during scattering processes, the effective efficiencies of extinction and scattering of leaves still near-linearly increase with VWC. Calculated asymmetry factors and phase functions indicate that there are significant amounts of scattering at large scattering angles in microwave wavelengths, which provides good opportunities for off-nadir microwave remote sensing of forests. This study lays a basic foundation in future quantifications of the relations between satellite measurements and physical properties of vegetation canopies.
Design of tunable thermo-optic C-band filter based on coated silicon slab
NASA Astrophysics Data System (ADS)
Pinhas, Hadar; Malka, Dror; Danan, Yossef; Sinvani, Moshe; Zalevsky, Zeev
2018-03-01
Optical filters are required to have narrow band-pass filtering in the spectral C-band for applications such as signal tracking, sub-band filtering or noise suppression. These requirements lead to a variety of filters such as Mach-Zehnder interferometer inter-leaver in silica, which offer thermo-optic effect for optical switching, however, without proper thermal and optical efficiency. In this paper we propose tunable thermo-optic filtering device based on coated silicon slab resonator with increased Q-factor for the C-band optical switching. The device can be designed either for long range wavelength tuning of for short range with increased wavelength resolution. Theoretical examination of the thermal parameters affecting the filtering process is shown together with experimental results. Proper channel isolation with an extinction ratio of 20dBs is achieved with spectral bandpass width of 0.07nm.
Zhu, Youqin; Liu, Jingli; Zhao, Jiao; Li, Yang; Qiao, Bo; Song, Dandan; Huang, Yan; Xu, Zheng; Zhao, Suling; Xu, Xurong
2018-01-01
Small molecule organic solar cells (SMOSCs) have attracted extensive attention in recent years. Squaraine (SQ) is a kind of small molecule material for potential use in high-efficiency devices, because of its high extinction coefficient and low-cost synthesis. However, the charge carrier mobility of SQ-based film is much lower than other effective materials, which leads to the pretty low fill factor (FF). In this study, we improve the performance of SQ derivative-based solar cells by incorporating PCDTBT into LQ-51/PC71BM host binary blend film. The incorporation of PCDTBT can not only increase the photon harvesting, but also provide an additional hole transport pathway. Through the charge carrier mobility and transient photovoltage measurement, we find that the hole mobility and charge carrier lifetime increase in the ternary system. Also, we carefully demonstrate that the charge carrier transport follows a parallel-like behavior. PMID:29747394
Cavity-enhanced Raman microscopy of individual carbon nanotubes
Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David
2016-01-01
Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165
Assessment and validation of the community radiative transfer model for ice cloud conditions
NASA Astrophysics Data System (ADS)
Yi, Bingqi; Yang, Ping; Weng, Fuzhong; Liu, Quanhua
2014-11-01
The performance of the Community Radiative Transfer Model (CRTM) under ice cloud conditions is evaluated and improved with the implementation of MODIS collection 6 ice cloud optical property model based on the use of severely roughened solid column aggregates and a modified Gamma particle size distribution. New ice cloud bulk scattering properties (namely, the extinction efficiency, single-scattering albedo, asymmetry factor, and scattering phase function) suitable for application to the CRTM are calculated by using the most up-to-date ice particle optical property library. CRTM-based simulations illustrate reasonable accuracy in comparison with the counterparts derived from a combination of the Discrete Ordinate Radiative Transfer (DISORT) model and the Line-by-line Radiative Transfer Model (LBLRTM). Furthermore, simulations of the top of the atmosphere brightness temperature with CRTM for the Crosstrack Infrared Sounder (CrIS) are carried out to further evaluate the updated CRTM ice cloud optical property look-up table.
DeMiguel, Daniel; Alba, David M.; Moyà-Solà, Salvador
2014-01-01
Given the central adaptive role of diet, paleodietary inference is essential for understanding the relationship between evolutionary and paleoenvironmental change. Here we rely on dental microwear analysis to investigate the role of dietary specialization in the diversification and extinction of Miocene hominoids from Western Eurasian between 14 and 7 Ma. New microwear results for five extinct taxa are analyzed together with previous data for other Western Eurasian genera. Except Pierolapithecus (that resembles hard-object feeders) and Oreopithecus (a soft-frugivore probably foraging opportunistically on other foods), most of the extinct taxa lack clear extant dietary analogues. They display some degee of sclerocarpy, which is most clearly expressed in Griphopithecus and Ouranopithecus (adapted to more open and arid environments), whereas Anoiapithecus, Dryopithecus and, especially, Hispanopithecus species apparently relied more strongly on soft-frugivory. Thus, contrasting with the prevailing sclerocarpic condition at the beginning of the Eurasian hominoid radiation, soft- and mixed-frugivory coexisted with hard-object feeding in the Late Miocene. Therefore, despite a climatic trend towards cooling and increased seasonality, a progressive dietary diversification would have occurred (probably due to competitive exclusion and increased environmental heterogeneity), although strict folivory did not evolve. Overall, our analyses support the view that the same dietary specializations that enabled Western Eurasian hominoids to face progressive climatic deterioration were the main factor ultimately leading to their extinction when more drastic paleoenvironmental changes took place. PMID:24848272
Targeted habitat restoration can reduce extinction rates in fragmented forests.
Newmark, William D; Jenkins, Clinton N; Pimm, Stuart L; McNeally, Phoebe B; Halley, John M
2017-09-05
The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species-area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21-$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide.
Targeted habitat restoration can reduce extinction rates in fragmented forests
Newmark, William D.; Pimm, Stuart L.; McNeally, Phoebe B.; Halley, John M.
2017-01-01
The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species–area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21–$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide. PMID:28827340
2003-09-01
silicon dioxide that is composed of fine sub- micron SiO2 particles. Used commercially as a thickening agent for food and cosmetics, this silica ... aerogel ” is extremely amorphous (94% of its volume is air) and is sometimes used as a fluidizer to improve aerosol dissemination efficiencies. As a
Terahertz wave polarization beam splitter using a cascaded multimode interference structure.
Li, Jiu-sheng; Liu, Han; Zhang, Le
2014-08-01
A terahertz wave polarization beam splitter, based on two cascaded multimode interference structures with different widths, is designed and numerically demonstrated. The numerical calculation results show that the designed polarization beam splitter can split transverse-electric (TE) and transverse-magnetic (TM)-polarized terahertz waves into different propagation directions with high efficiency over a frequency range from 6.40 to 6.50 THz. This polarization beam splitter shows more than a 22.06 dB extinction ratio for TE-polarization and a 31.65 dB extinction ratio for TM-polarization. Using such a polarization beam splitter, the whole length of the polarization beam splitter is reduced to about 1/12 that of a conventional design. This enables the polarization beam splitter to be used in terahertz wave integrated circuit fields.
Assessing solar energy and water use efficiencies in winter wheat
NASA Technical Reports Server (NTRS)
Asrar, G.; Hipps, L. E.; Kanemasu, E. T.
1982-01-01
The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.
Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters.
Ripple, Dean C; Hu, Zhishang
2016-03-01
Industry and regulatory bodies desire more accurate methods for counting and characterizing particles. Measurements of proteinaceous-particle concentrations by light obscuration and flow imaging can differ by factors of ten or more. We propose methods to correct the diameters reported by light obscuration and flow imaging instruments. For light obscuration, diameters were rescaled based on characterization of the refractive index of typical particles and a light scattering model for the extinction efficiency factor. The light obscuration models are applicable for either homogeneous materials (e.g., silicone oil) or for chemically homogeneous, but spatially non-uniform aggregates (e.g., protein aggregates). For flow imaging, the method relied on calibration of the instrument with silica beads suspended in water-glycerol mixtures. These methods were applied to a silicone-oil droplet suspension and four particle suspensions containing particles produced from heat stressed and agitated human serum albumin, agitated polyclonal immunoglobulin, and abraded ethylene tetrafluoroethylene polymer. All suspensions were measured by two flow imaging and one light obscuration apparatus. Prior to correction, results from the three instruments disagreed by a factor ranging from 3.1 to 48 in particle concentration over the size range from 2 to 20 μm. Bias corrections reduced the disagreement from an average factor of 14 down to an average factor of 1.5. The methods presented show promise in reducing the relative bias between light obscuration and flow imaging.
Stang, Martina; Klinkhamer, Peter G L; van der Meijden, Eddy
2007-03-01
A recently discovered feature of plant-flower visitor webs is the asymmetric specialization of the interaction partners: specialized plants interact mainly with generalized flower visitors and specialized flower visitors mainly with generalized plants. Little is known about the factors leading to this asymmetry and their consequences for the extinction risk of species. Previous studies have proposed random interactions proportional to species abundance as an explanation. However, the simulation models used in these studies did not include potential biological constraints. In the present study, we tested the potential role of both morphological constraints and species abundance in promoting asymmetric specialization. We compared actual field data of a Mediterranean plant-flower visitor web with predictions of Monte Carlo simulations including different combinations of the potential factors structuring the web. Our simulations showed that both nectar-holder depth and abundance were able to produce asymmetry; but that the expected degree of asymmetry was stronger if based on both. Both factors can predict the number of interaction partners, but only nectar-holder depth was able to predict the degree of asymmetry of a certain species. What is more, without the size threshold the influence of abundance would disappear over time. Thus, asymmetric specialization seems to be the result of a size threshold and, only among the allowed interactions above this size threshold, a result of random interactions proportional to abundance. The simulations also showed that asymmetric specialization could not be the reason that the extinction risk of specialists and generalists is equalized, as suggested in the literature. In asymmetric webs specialists clearly had higher short-term extinction risks. In fact, primarily generalist visitors seem to profit from asymmetric specialization. In our web, specialists were less abundant than generalists. Therefore, including abundance in the simulation models increased the difference between specialists and generalists even more.
Predicting loss of evolutionary history: Where are we?
Veron, Simon; Davies, T Jonathan; Cadotte, Marc W; Clergeau, Philippe; Pavoine, Sandrine
2017-02-01
The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic groups and test the assumption that preserving ED and PD also protects rare species and ecosystem services. Such research will be useful to inform and guide the conservation of Earth's biodiversity and the services it provides. © 2015 Cambridge Philosophical Society.
Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS)
Dittert, Natalie; Hüttner, Sandrina; Polak, Thomas; Herrmann, Martin J.
2018-01-01
Although posttraumatic stress disorder (PTSD; DSM-V 309.82) and anxiety disorders (DSM-V 300.xx) are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS) might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS) and a 95-dB female scream as unconditioned stimulus (UCS). We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC), which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR) and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84). The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS– discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS– in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be tested in a clinical context further investigation is needed to assess the reason for the reaction increase on CS–. If this negative side effect can be avoided, tDCS may be a tool to improve exposure-based anxiety therapies. PMID:29922133
SED-dependent galactic extinction prescription for Euclid and future cosmological surveys
NASA Astrophysics Data System (ADS)
Galametz, Audrey; Saglia, Roberto; Paltani, Stéphane; Apostolakos, Nikolaos; Dubath, Pierre
2017-02-01
The outcome of upcoming cosmological surveys will depend on the accurate estimates of photometric redshifts. In the framework of the implementation of the photometric redshift algorithm for the ESA Euclid mission, we are exploring new avenues to improve current template-fitting methods. This paper focusses in particular on the prescription of the extinction of a source light by dust in the Milky Way. Since Galactic extinction strongly correlates with wavelength and photometry is commonly obtained through broad-band filters, the amount of absorption depends on the source intrinsic spectral energy distribution (SED), a point however neglected as the source SED is not known a-priori. A consequence of this dependence is that the observed EB-V (=AB-AV) will in general be different from the EB-V used to normalise the Galactic absorption law kλ (=Aλ/EB-V). Band-pass corrections are thus required to adequately renormalise the law for a given SED. In this work, we assess the band-pass corrections of a range of SEDs and find they vary by up to 20%. We have investigated how neglecting these corrections biases the calibration of dust into reddening map and how the scaling of the map depends of the sources used for its calibration. We derive dust-to-reddening scaling factors from the colour excesses of z< 0.4 SDSS red galaxies and show that band-pass corrections predict the observed differences. Extinction corrections are then estimated for a range of SEDs and a set of optical to near-infrared filters relevant to Euclid and upcoming cosmological ground-based surveys. For high extinction line-of-sights (EB-V> 0.1, 8% of the Euclid Wide survey), the variations in corrections can be up to 0.1 mag in the "bluer" optical filters (ugr) and up to 0.04 mag in the near-infrared filters. We find that an inaccurate correction of Galactic extinction critically affects photometric redshift estimates. In particular, for high extinction lines of sights and z < 0.5, the bias (I.e. the mean Δz = zphot-zreal) exceeds 0.2%(1 + z), the precision required for weak-lensing analyses. Additional uncertainty on the parametrisation of the Milky Way extinction curve itself further reduces the photometric redshift precision. We propose a new prescription of Galactic absorption for template-fitting algorithms which takes into consideration the dependence of extinction with SED.
van der Hoek, Yntze; Renfrew, Rosalind; Manne, Lisa L
2013-01-01
Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions. We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to 51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at 19.45-87.96% forest cover for persistence and 50.82-91.02% for extinction dynamics. Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that regardless of the reasons behind these differences, our results merit a warning that threshold values cannot simply be transferred across regions or interpreted as clear-cut targets for ecosystem management and conservation.
Diao, Xiao-jun; Li, Yi-wei; Wang, Shu-guang
2015-01-01
Although impacts of algal bloom on the physicochemical and biological properties of water and sediment in many lakes have been largely studied, less attention is paid to the impact of outbreak and extinction of algal blooms on the microbial community structure in sediment. In this study, outbreak and extinction of algal blooms and their effects on the microbial community structure in sediment of Chaohu Lake were studied by PCR-DGGE method. The results showed that algal blooms formed between May 15 and June 20, sustained from June 20 to September 5, and then went into extinction. In the region without algal blooms, PCR-DGGE analysis showed that microbial species, Shannon-Wiener diversity index and Simpson dominance index changed slightly over time; moreover, the microbial community structure had high similarity during the whole study. Temperature may be the main factor affecting the fluctuation of the microbial community structure in this region. In the region with algal blooms, however, microbial species and Shannon-Wiener diversity index were higher during the formation and extinction of algal blooms and lower in the sustaining blooms stage than those in the region without algal blooms. But the Simpson dominance index showed the opposite trend over time. In addition, the microbial community structure had low similarity during the whole study. The results suggested that outbreak and extinction of algal blooms produced different effects on the microbial community structure and the dominant microbial species, which may be related to the variation of water properties caused by temperature and algal blooms. This study showed that outbreak and extinction of algal blooms caused different effects on microbes in lake sediment, and this is significantly important to deeply evaluate the effects of algal bloom on the aquatic ecosystem of the lake and effectively control algal blooms using sediment microbes.
NASA Astrophysics Data System (ADS)
Fanciullo, L.; Guillet, V.; Aniano, G.; Jones, A. P.; Ysard, N.; Miville-Deschênes, M.-A.; Boulanger, F.; Köhler, M.
2015-08-01
Aims: We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. Methods: We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS, and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. Results: We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor ~2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Conclusions: Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the V band extinction cross-section presents variations of the order of ~20% (40-50% in extreme cases), while ISRF intensity varies by ~30% (~60% in extreme cases). This must be accounted for in future modelling. Appendices are available in electronic form at http://www.aanda.org
Campese, Vincent D; Delamater, Andrew R
2014-08-01
Destruction or inactivation of the dorsal hippocampus (DH) has been shown to eliminate the renewal of extinguished fear [1-4]. However, it has recently been reported that the contextual control of responding to extinguished appetitive stimuli is not disrupted when the DH is destroyed or inactivated prior to tests for renewal of Pavlovian conditioned magazine approach [5]. In the present study we extend the analysis of DH control of appetitive extinction learning to the spontaneous recovery of Pavlovian conditioned magazine approach responding. Subjects were trained to associate two separate stimuli with the delivery of food and had muscimol or vehicle infused into the DH prior to a single test-session for spontaneous recovery occurring immediately following extinction of one of these stimuli, but one week following extinction of the other. While vehicle treated subjects showed more recovery to the distally extinguished stimulus than the proximal one, muscimol treated subjects failed to show spontaneous recovery to either stimulus. This result suggests that, while the DH is not involved in the control of extinction by physical contexts [5], it may be involved when time is the gating factor controlling recovery of extinguished responding. Copyright © 2014 Elsevier B.V. All rights reserved.
Campese, Vincent D.; Delamater, Andrew R.
2014-01-01
Destruction or inactivation of the dorsal hippocampus (DH) has been shown to eliminate the renewal of extinguished fear [1–4]. However, it has recently been reported that the contextual control of responding to extinguished appetitive stimuli is not disrupted when the DH is destroyed or inactivated prior to tests for renewal of Pavlovian conditioned magazine approach [5]. In the present study we extend the analysis of DH control of appetitive extinction learning to the spontaneous recovery of Pavlovian conditioned magazine approach responding. Subjects were trained to associate two separate stimuli with the delivery of food and had muscimol or vehicle infused into the DH prior to a single test-session for spontaneous recovery occurring immediately following extinction of one of these stimuli, but one week following extinction of the other. While vehicle treated subjects showed more recovery to the distally extinguished stimulus than the proximal one, muscimol treated subjects failed to show spontaneous recovery to either stimulus. This result suggests that, while the DH is not involved in the control of extinction by physical contexts [5], it may be involved when time is the gating factor controlling recovery of extinguished responding. PMID:24742862
Berro, Laís F; Andersen, Monica L; Tufik, Sergio; Howell, Leonard L
2016-04-01
The objective of this study was to investigate nighttime activity of nonhuman primates during extinction and cue- and drug-primed reinstatement of methamphetamine self-administration. Adult rhesus monkeys (Macaca mulatta; n = 5) self-administered methamphetamine (0.01 mg/kg/injection, i.v.) under a fixed-ratio 20 schedule of reinforcement. Saline infusions were then substituted for methamphetamine and stimulus light (drug-conditioned stimulus presented during drug self-administration) withheld until subjects reached extinction criteria. Drug- and cue-induced reinstatement effects were evaluated after i.v. noncontingent priming injections of methamphetamine (0.03, 0.1, or 0.3 mg/kg). Activity-based sleep measures were evaluated with Actiwatch monitors a week before (baseline nighttime activity parameters) and throughout the protocol. Although methamphetamine self-administration did not significantly affect nighttime activity compared to baseline, sleeplike parameters were improved during extinction compared to self-administration maintenance. Priming injection of 0.1 mg/kg methamphetamine, but not 0.03 or 0.3 mg/kg, induced significant reinstatement effects. These behavioral responses were accompanied by nighttime outcomes, with increased sleep fragmentation and decreased sleep efficiency in the night following 0.1 mg/kg methamphetamine-induced reinstatement. In the absence of both drug and drug-paired cues (extinction conditions), nighttime activity decreased compared to self-administration maintenance. Additionally, effective reinstatement conditions impaired sleeplike measures. Our data indicate that the reintroduction of the stimulus light as a drug-paired cue increased nighttime activity. (c) 2016 APA, all rights reserved).
Hierarchical random walks in trace fossils and the origin of optimal search behavior
Sims, David W.; Reynolds, Andrew M.; Humphries, Nicolas E.; Southall, Emily J.; Wearmouth, Victoria J.; Metcalfe, Brett; Twitchett, Richard J.
2014-01-01
Efficient searching is crucial for timely location of food and other resources. Recent studies show that diverse living animals use a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behavior and the search strategies of extinct organisms. Here, using simulations of self-avoiding trace fossil trails, we show that randomly introduced strophotaxis (U-turns)—initiated by obstructions such as self-trail avoidance or innate cueing—leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts that optimal Lévy searches may emerge from simple behaviors observed in fossil trails. We then analyzed fossilized trails of benthic marine organisms by using a novel path analysis technique and find the first evidence, to our knowledge, of Lévy-like search strategies in extinct animals. Our results show that simple search behaviors of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterizing mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest that Lévy-like behavior has been used by foragers since at least the Eocene but may have a more ancient origin, which might explain recent widespread observations of such patterns among modern taxa. PMID:25024221
NASA Astrophysics Data System (ADS)
Han, Tingting; Xu, Weiqi; Chen, Chen; Liu, Xingang; Wang, Qingqing; Li, Jie; Zhao, Xiujuan; Du, Wei; Wang, Zifa; Sun, Yele
2015-12-01
We have investigated the chemical and optical properties of aerosol particles during the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China, using the highly time-resolved measurements by a high-resolution aerosol mass spectrometer and a cavity attenuated phase shift extinction monitor. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 186.5 (±184.5) M m-1 and 23.3 (±21.9) M m-1 during APEC, which were decreased by 63% and 56%, respectively, compared to those before APEC primarily due to strict emission controls. The aerosol composition and size distributions showed substantial changes during APEC; as a response, the mass scattering efficiency (MSE) of PM1 was decreased from 4.7 m2 g-1 to 3.5 m2 g-1. Comparatively, the average single-scattering albedo (SSA) remained relatively unchanged, illustrating the synchronous reductions of bext and bap during APEC. MSE and SSA were found to increase as function of the oxidation degree of organic aerosol (OA), indicating a change of aerosol optical properties during the aging processes. The empirical relationships between chemical composition and particle extinction were established using a multiple linear regression model. Our results showed the largest contribution of ammonium nitrate to particle extinction, accounting for 35.1% and 29.3% before and during APEC, respectively. This result highlights the important role of ammonium nitrate in the formation of severe haze pollution during this study period. We also observed very different optical properties of primary and secondary aerosol. Owing to emission controls in Beijing and surrounding regions and also partly the influences of meteorological changes, the average bext of secondary aerosol during APEC was decreased by 71% from 372.3 M m-1 to 108.5 M m-1, whereas that of primary aerosol mainly from cooking, traffic, and biomass burning emissions showed a smaller reduction from 136.7 M m-1 to 71.3 M m-1. As a result, the contribution of primary aerosol to particle extinction increased from 26.8% to 39.6%, elucidating an enhanced role of local primary sources in visibility deterioration during APEC. Further analysis of chemically resolved particle extinction showed that the extinction contributions of aerosol species varied greatly between different air masses but generally with ammonium nitrate, ammonium sulfate, and secondary OA being the three major contributors.
NASA Astrophysics Data System (ADS)
Tan, Jonathan
We describe a research plan to develop and extend the mid-infrared (MIR) extinction mapping technique presented by Butler & Tan (2009), who studied Infrared Dark Clouds (IRDCs) using Spitzer Space Telescope Infrared Array Camera (IRAC) 8 micron images. This method has the ability to probe the detailed spatial structure of very high column density regions, i.e. the gas clouds thought to represent the initial conditions for massive star and star cluster formation. We will analyze the data Spitzer obtained at other wavelengths, i.e. the IRAC bands at 3.6, 4.5 and 5.8 microns, and the Multiband Imaging Photometer (MIPS) bands, especially at 24 microns. This will allow us to measure the dust extinction law across the MIR and search for evidence of dust grain evolution, e.g. grain growth and ice mantle formation, as a function of gas density and column density. We will also study the detailed structure of the extinction features, including individual cores that may form single stars or close binaries, especially focusing on those cores that may form massive stars. By studying independent dark cores in a given IRDC, we will be able to test if they have a common minimum observed intensity, which we will then attribute to the foreground. This is a new method that should allow us to more accurately map distant, high column density IRDCs, probing more extreme regimes of star formation. We will combine MIR extinction mapping, which works best at high column densities, with near- IR mapping based on 2MASS images of star fields, which is most useful at lower columns that probe the extended giant molecular cloud structure. This information is crucial to help understand the formation process of IRDCs, which may be the rate limiting step for global galactic star formation rates. We will use our new extinction mapping methods to analyze large samples of IRDCs and thus search the Galaxy for the most extreme examples of high column density cores and assess the global star formation efficiency in dense gas. We will estimate the ability of future NASA missions, such as JWST, to carry out MIR extinction mapping science. We will develop the results of this research into an E/PO presentation to be included in the various public outreach events organized and courses taught by the PI.
Estrogen Levels Are Associated with Extinction Deficits in Women with Posttraumatic Stress Disorder
Glover, Ebony M.; Jovanovic, Tanja; Mercer, Kristina B.; Kerley, Kimberly; Bradley, Bekh; Ressler, Kerry J.; Norrholm, Seth D.
2013-01-01
Background Women are twice as likely to develop posttraumatic stress disorder (PTSD) than men. As shown in our previous work, the inability to suppress fear responses in safe conditions may be a biomarker for PTSD. Low estrogen in naturally cycling women is associated with deficits in fear extinction. On the basis of these findings, we have now examined the influence of estrogen levels on fear extinction in women with and without PTSD. Methods We measured fear-potentiated startle during fear conditioning and extinction in women. The study sample (N = 81) was recruited from an urban, highly traumatized civilian population at Grady Memorial Hospital in Atlanta, Georgia. We assayed serum estrogen levels and used a median split to divide the sample into high and low estradiol (E2) groups. Seventeen of 41 women (41.5%) in the low E2 group and 15 of 40 women (37.5%) met criteria for PTSD in the high E2 group. Results The results showed that all groups had equivalent levels of fear conditioning. However, we found significant interaction effects between high versus low E2 groups and PTSD diagnosis [F(1,71) = 4.55, p < .05] on extinction. Among women with low estrogen levels, fear-potentiated startle was higher during extinction in the PTSD group compared with traumatized control women [F(1,38) = 5.04, p < .05]. This effect was absent in the High E2 group. Conclusion This study suggests that low estrogen may be a vulnerability factor for development of PTSD in women with trauma histories. Research on the role of estrogen in fear regulation may provide insight into novel treatment strategies for PTSD. PMID:22502987
Siahposht-Khachaki, Ali; Fatahi, Zahra; Yans, Asal; Khodagholi, Fariba; Haghparast, Abbas
2017-03-01
Glutamate receptors in mesolimbic areas such as the nucleus accumbens, ventral tegmental area, prefrontal cortex (PFC), and hippocampus (HIP) are a component of the mechanisms of drug-induced reward and can modulate the firing pattern of dopaminergic neurons in the reward system. In addition, several lines of study have indicated that cAMP response element-binding protein (CREB) and c-fos have important role in morphine-induced conditioned place preference (CPP) induced by drugs of abuse, such as morphine, cocaine, nicotine, and alcohol. Therefore, in the present study, we investigated the changes in phosphorylated CREB (p-CREB) and c-fos induction within the nucleus accumbens (NAc), HIP, and PFC after intracerebroventricular (ICV) administration of different doses of CNQX or vehicle during extinction period or reinstatement of morphine-induced CPP. In all groups, the CPP procedure was done; afterward, the conditioning scores were recorded by Ethovision software. After behavioral test recording, we dissected out the NAc, HIP, and PFC regions and measured the p-CREB/CREB ratio and c-fos level by Western blot analysis. Our results showed that administration of CNQX significantly shortened the extinction of morphine CPP. Besides, ICV microinjection of CNQX following extinction period decreased the reinstatement of morphine CPP in extinguished rats. In molecular section, in treatment group, all mentioned factors were dose-dependently decreased in comparison with vehicle group (DMSO) after ICV microinjection of different doses of CNQX but not in pre-extinction microinjection. These findings suggested that antagonism of AMPA receptor decreased p-CREB/CREB ratio and c-fos level in the PFC, NAc, and HIP. Modulation of the drug memory reconsolidation may be useful for faster extinction of drug-induced reward and attenuation of drug-seeking behavior.
Corcoran, K A; Leaderbrand, K; Jovasevic, V; Guedea, A L; Kassam, F; Radulovic, J
2015-01-01
In patients suffering from post-traumatic stress disorder (PTSD), fear evoked by trauma-related memories lasts long past the traumatic event and it is often complicated by general anxiety and depressed mood. This poses a treatment challenge, as drugs beneficial for some symptoms might exacerbate others. For example, in preclinical studies, antagonists of the NR2B subunit of N-methyl-d-aspartate receptors and activators of cAMP-dependent protein kinase (PKA) act as potent antidepressants and anxiolytics, but they block fear extinction. Using mice, we attempted to overcome this problem by interfering with individual NR2B and PKA signaling complexes organized by scaffolding proteins. We infused cell-permeable Tat peptides that displaced either NR2B from receptor for activated C kinase 1 (RACK1), or PKA from A-kinase anchor proteins (AKAPs) or microtubule-associated proteins (MAPs). The infusions were targeted to the retrosplenial cortex, an area involved in both fear extinction of remotely acquired memories and in mood regulation. Tat-RACK1 and Tat-AKAP enhanced fear extinction, all peptides reduced anxiety and none affected baseline depression-like behavior. However, disruption of PKA complexes distinctively interfered with the rapid antidepressant actions of the N-methyl-D-aspartate receptors antagonist MK-801 in that Tat-MAP2 blocked, whereas Tat-AKAP completely inverted the effect of MK-801 from antidepressant to depressant. These effects were unrelated to the MK-801-induced changes of brain-derived neurotrophic factor messenger RNA levels. Together, the findings suggest that NR2B–RACK1 complexes specifically contribute to fear extinction, and may provide a target for the treatment of PTSD. AKAP-PKA, on the other hand, appears to modulate fear extinction and antidepressant responses in opposite directions. PMID:26460481
Corcoran, K A; Leaderbrand, K; Jovasevic, V; Guedea, A L; Kassam, F; Radulovic, J
2015-10-13
In patients suffering from post-traumatic stress disorder (PTSD), fear evoked by trauma-related memories lasts long past the traumatic event and it is often complicated by general anxiety and depressed mood. This poses a treatment challenge, as drugs beneficial for some symptoms might exacerbate others. For example, in preclinical studies, antagonists of the NR2B subunit of N-methyl-d-aspartate receptors and activators of cAMP-dependent protein kinase (PKA) act as potent antidepressants and anxiolytics, but they block fear extinction. Using mice, we attempted to overcome this problem by interfering with individual NR2B and PKA signaling complexes organized by scaffolding proteins. We infused cell-permeable Tat peptides that displaced either NR2B from receptor for activated C kinase 1 (RACK1), or PKA from A-kinase anchor proteins (AKAPs) or microtubule-associated proteins (MAPs). The infusions were targeted to the retrosplenial cortex, an area involved in both fear extinction of remotely acquired memories and in mood regulation. Tat-RACK1 and Tat-AKAP enhanced fear extinction, all peptides reduced anxiety and none affected baseline depression-like behavior. However, disruption of PKA complexes distinctively interfered with the rapid antidepressant actions of the N-methyl-D-aspartate receptors antagonist MK-801 in that Tat-MAP2 blocked, whereas Tat-AKAP completely inverted the effect of MK-801 from antidepressant to depressant. These effects were unrelated to the MK-801-induced changes of brain-derived neurotrophic factor messenger RNA levels. Together, the findings suggest that NR2B-RACK1 complexes specifically contribute to fear extinction, and may provide a target for the treatment of PTSD. AKAP-PKA, on the other hand, appears to modulate fear extinction and antidepressant responses in opposite directions.
Estrogen levels are associated with extinction deficits in women with posttraumatic stress disorder.
Glover, Ebony M; Jovanovic, Tanja; Mercer, Kristina B; Kerley, Kimberly; Bradley, Bekh; Ressler, Kerry J; Norrholm, Seth D
2012-07-01
Women are twice as likely to develop posttraumatic stress disorder (PTSD) than men. As shown in our previous work, the inability to suppress fear responses in safe conditions may be a biomarker for PTSD. Low estrogen in naturally cycling women is associated with deficits in fear extinction. On the basis of these findings, we have now examined the influence of estrogen levels on fear extinction in women with and without PTSD. We measured fear-potentiated startle during fear conditioning and extinction in women. The study sample (N = 81) was recruited from an urban, highly traumatized civilian population at Grady Memorial Hospital in Atlanta, Georgia. We assayed serum estrogen levels and used a median split to divide the sample into high and low estradiol (E(2)) groups. Seventeen of 41 women (41.5%) in the low E(2) group and 15 of 40 women (37.5%) met criteria for PTSD in the high E(2) group. The results showed that all groups had equivalent levels of fear conditioning. However, we found significant interaction effects between high versus low E(2) groups and PTSD diagnosis [F(1,71) = 4.55, p < .05] on extinction. Among women with low estrogen levels, fear-potentiated startle was higher during extinction in the PTSD group compared with traumatized control women [F(1,38) = 5.04, p < .05]. This effect was absent in the High E(2) group. This study suggests that low estrogen may be a vulnerability factor for development of PTSD in women with trauma histories. Research on the role of estrogen in fear regulation may provide insight into novel treatment strategies for PTSD. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Allee effect: the story behind the stabilization or extinction of microbial ecosystem.
Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun
2017-03-01
A population exhibiting Allee effect shows a positive correlation between population fitness and population size or density. Allee effect decides the extinction or conservation of a microbial population and thus appears to be an important criterion in population ecology. The underlying factor of Allee effect that decides the stabilization and extinction of a particular population density is the threshold or the critical density of their abundance. According to Allee, microbial populations exhibit a definite, critical or threshold density, beyond which the population fitness of a particular population increases with the rise in population density and below it, the population fitness goes down with the decrease in population density. In particular, microbial population displays advantageous traits such as biofilm formation, expression of virulence genes, spore formation and many more only at a high population density. It has also been observed that microorganisms exhibiting a lower population density undergo complete extinction from the residual microbial ecosystem. In reference to Allee effect, decrease in population density or size introduces deleterious mutations among the population density through genetic drift. Mutations are carried forward to successive generations resulting in its accumulation among the population density thus reducing its microbial fitness and thereby increasing the risk of extinction of a particular microbial population. However, when the microbial load is high, the chance of genetic drift is less, and through the process of biofilm formation, the cooperation existing among the microbial population increases that increases the microbial fitness. Thus, the high microbial population through the formation of microbial biofilm stabilizes the ecosystem by increasing fitness. Taken together, microbial fitness shows positive correlation with the ecosystem conservation and negative correlation with ecosystem extinction.
NASA Astrophysics Data System (ADS)
Legarda-Lisarri, A.
2013-12-01
During the Eocene/Oligocene transition, in a massive extinction event that took place about 33.7 million years ago, the current high resolution study analyzes qualitatively and quantitatively the community structure of the planktonic foraminifera that were preserved in the hemipelagic sediments of the Tethys Sea. The sampled section of the Fuente Caldera column, located in the Baetic mountain ranges, spans a register of 396,551.7 years. Based in the identification of 27 species, that belong to 13 genera and 2 families of foraminifera, there have been found three biozones of Gonzalvo Zonation (Gonzalvo, 2002) in the studied stratigraphic interval: Turborotalia cocoaensis and Cribrohantkenina lazzarii Biozones (Rupelian), and Paragloborotalia increbescens (Priabonian). The planktonic foraminifera associations variability patterns are defined by paleoecologic indexes (diversity index, high and low latitude species index and planktonic and benthic foraminifera index), by geochemical proxies: δ18O and δ13C and by 'Q' Mode Factor Analysis. They prove that the deposition environment is outer platform and also, they suggest that the studied area in the Tethys Sea underwent many thermal pulses, during which some species extinct or appear. In the first extinction event the species Turborotalia cocoaensis and Turborotalia cunialensis became extinct. In the second one, Hantkenina alabamensis, Hantkenina brevispina, Cribrohantkenina lazzarii and Pseudohastigerina micra became extinct while a succession occured; Globigerina officinalis, Globoturborotalita anguliofficinalis and Tenuitellinata angustiumbilicata appeared. The cooling event that finished in the Lower Oligocene was the biggest of these pulses, which was extremely abrupt and corresponds to the Oi-1 event that was described by Miller (Miller, 1991). All this evidences that the planktonic foraminifera extinction in the Upper Eocene was a gradual and fast event, what is supported by the Factor Analysis application. Key words: Eocene/Oligocene boundary, Planktonic foraminifera, Paleoecology. References Gonzalvo, C., 2002. Los foraminíferos planctónicos del tránsito Eoceno medio-Oligoceno inferior: Bioestratigrafía, cronoestratigrafía y eventos paleoceanográficos, Tesis Doctoral, Universidad de Zaragoza, 314 pp. Miller, K.G., Wright, J.D., Fairbanks, R.G., 1991. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. Journal of Geophysical Research 96, 6829-6848.
Ciccocioppo, R; Angeletti, S; Weiss, F
2001-10-01
The conditioning of ethanol's reinforcing effects with specific environmental stimuli is thought to be a critical factor in long-lasting relapse risk associated with alcoholism. To study the significance of such learning factors in the addictive potential of ethanol, this experiment was designed (1) to characterize the effects of stimuli associated with alcohol availability on the reinstatement of responding at a previously ethanol-paired lever in rats with genetically determined ethanol preference versus nonpreference and (2) to examine the persistence of the motivating effects of these stimuli over time. Male alcohol-preferring (P) and alcohol-nonpreferring (NP) rats were trained to operantly self-administer ethanol (10% w/v) or water on a fixed-ratio 1 schedule in a 30-min daily session. Ethanol and water sessions were scheduled in random sequence across training days. Ethanol availability was signaled by an olfactory discriminative stimulus (banana extract, S+), and each lever press was paired with brief presentation of the conditioning chamber's house light (CS+). The discriminative stimulus signaling water availability (i.e., nonreward) consisted of anise odor (S-), and lever-responses during water sessions were paired with a brief white noise generation (CS-). The rats then were placed on extinction conditions during which ethanol and water, as well as the corresponding stimuli, were withheld. The effects of noncontingent exposure to the S+ versus S- paired with response-contingent presentation of the CS+ versus CS- on responding at the previously active lever were then determined in 30-min reinstatement sessions. To study the resistance to extinction of the effects of the ethanol-associated stimuli, additional tests were conducted at 3-day intervals for a total of 50 days. The number of ethanol-reinforced responses during self-administration training was significantly greater in P than in NP rats (p < 0.01). After extinction, a significant recovery of responding was observed in both groups of rats under the stimulus conditions associated with ethanol (S+/CS+) but not those associated with water (S-/CS-). However, the response reinstatement was significantly greater in P than NP rats (p < 0.01). In addition, the results revealed a considerable resistance to extinction to the effects of the ethanol-associated stimuli. Throughout the 50-day test period, responding remained significantly above extinction levels in both P and NP rats (p < 0.01), but with an overall greater number of responses in P than NP rats (p < 0.05). The results support the hypothesis that conditioning factors contribute importantly to compulsive ethanol seeking and long-lasting vulnerability to relapse. In addition, the results suggest that genetic predisposition toward heightened ethanol intake extends to greater susceptibility to the motivating effects of ethanol-related environmental stimuli.
Graham, Bronwyn M; Richardson, Rick
2010-06-01
Fibroblast growth factor-2 (FGF2) is a potent neurotrophic factor that is involved in brain development and the formation of long-term memory. It has recently been shown that acute FGF2, administered at the time of learning, enhances long-term memory for contextual fear conditioning as well as extinction of conditioned fear in developing rats. As other research has shown that administering FGF2 on the first day of life leads to long-term morphological changes in the hippocampus, in the present study we investigated whether early life exposure to FGF2 affects contextual fear conditioning, and renewal following extinction, later in life. Experiment 1 demonstrated that a single injection of FGF2 on Postnatal Day (PND) 1 did not lead to any detectable changes in contextual fear conditioning in PND 16 or PND 23 rats. Experiments 2 and 3 demonstrated that 5 days of injections of FGF2 (from PND 1-5) facilitated contextual fear conditioning in PND 16 and PND 23 rats. Experiment 4 demonstrated that the observed facilitation of memory was not due to FGF2 increasing rats' sensitivity to foot shock. Experiment 5 showed that early life exposure to FGF2 did not affect learning about a discrete conditioned stimulus, but did allow PND 16 rats to use contextual information in more complex ways, leading to context-dependent extinction of conditioned fear. These results further implicate FGF2 as a critical signal involved in the development of learning and memory.
Sleep Deprivation Disrupts Recall of Conditioned Fear Extinction.
Straus, Laura D; Acheson, Dean T; Risbrough, Victoria B; Drummond, Sean P A
2017-03-01
Learned fear is crucial in the development and maintenance of posttraumatic stress disorder (PTSD) and other anxiety disorders, and extinction of learned fear is necessary for response to exposure-based treatments. In humans, research suggests disrupted sleep impairs consolidation of extinction, though no studies have examined this experimentally using total sleep deprivation. Seventy-one healthy controls underwent a paradigm to acquire conditioned fear to a visual cue. Twenty-four hours after fear conditioning, participants underwent extinction learning. Twenty-four hours after extinction learning, participants underwent extinction recall. Participants were randomized to three groups: 1) well-rested throughout testing ("normal sleep"; n = 21); 2) 36 hours total sleep deprivation before extinction learning ("pre-extinction deprivation"; n = 25); or 3) 36 hours total sleep deprivation after extinction learning and before extinction recall ("post-extinction deprivation"; n = 25). The groups were compared on blink EMG reactivity to the condition stimulus during extinction learning and recall. There were no differences among the three groups during extinction learning. During extinction recall, the pre-extinction deprivation group demonstrated significantly less extinction recall than the normal sleep group. There was no significant difference between the normal sleep and post-extinction deprivation group during extinction recall. Results indicated sleep deprivation prior to extinction training significantly disrupts extinction recall. These findings suggest that (1) sleep deprivation in the immediate aftermath of trauma could be a potential contributor to PTSD development and maintenance via interference with natural extinction processes and (2) management of sleep symptoms should be considered during extinction-based therapy.
Application of rainbow refractometry for measurement of droplets with solid inclusions
NASA Astrophysics Data System (ADS)
Li, Can; Wu, Xue-cheng; Cao, Jian-zheng; Chen, Ling-hong; Gréhan, Gerard; Cen, Ke-fa
2018-01-01
Characterization of droplets with solid inclusions is of great research interest and has wide industrial applications. Reported here is a theoretical and experimental investigation of the measurement of droplets with solid inclusions using rainbow refractometry. A rainbow extinction model of a droplet with solid inclusions was deduced based on Beer-Lambert's Law. It takes into account the volume concentration, relative size, scattering efficiency of the solid inclusion, and liquid refractive index. An acoustic levitation system for a single droplet and a global rainbow instrumentation system for spray were integrated to study the effect of the H2O-CaCO3 suspension droplets on the rainbow signal and the measured parameters. The results showed that the rainbow encountered unusual disturbances, introduced by the solid inclusions, but its overall structure was not destroyed. Discoveries also included that for volume concentrations of 2.5% or less the CaCO3 particles with diameters below 4 μm had little effect on the measured parameters of the host droplet. The extinction characteristic was also analyzed. The rainbow extinction model failed to quantity the volume concentration of CaCO3, but succeeded in its qualitative analysis.
ERIC Educational Resources Information Center
Eisenhardt, Dorothea
2014-01-01
The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…
Bocherens, H; Michaux, J; Billiou, D; Castanet, J; Garcìa-Talavera, F
2003-09-01
The paleodiet and paleoenvironmental context of two extinct species from Tenerife island, one giant rat Canariomys bravoi and one giant lizard Gallotia goliath, have been investigated using carbon and nitrogen isotopic compositions of fossil bone collagen. Preliminary to this study, a calibration of the isotopic variations of bone collagen from modern Rat Rattus rattus, Rabbit Oryctolagus cuniculus and Lizard Gallotia galotti relative to environmental conditions on Tenerife Islands has been attempted. No clear relationship could be found between collagen delta13C and delta15N values and aridity; the only relevant factors seem to be seashore proximity for rat, and the relative amount of C3 and CAM plants. It seems that anthropic activities have interfered with the expected relationships between collagen isotopic compositions and environmental conditions. Most fossil specimens yielded well preserved collagen. The isotopic composition of giant rat and giant lizard collagen suggest a purely C3 environment, possibly more humid than today on Tenerife. Large ranges of nitrogen isotopic compositions, especially within giant rats, may be due to local environmental conditions. Further work is needed in order to provide more valuable paleobiological information in order to better understand the role of environmental factors in the evolution and extinction of insular endemic species on Tenerife.
Extinction efficiencies from DDA calculations solved for finite circular cylinders and disks
NASA Technical Reports Server (NTRS)
Withrow, J. R.; Cox, S. K.
1993-01-01
One of the most commonly noted uncertainties with respect to the modeling of cirrus clouds and their effect upon the planetary radiation balance is the disputed validity of the use of Mie scattering results as an approximation to the scattering results of the hexagonal plates and columns found in cirrus clouds. This approximation has historically been a kind of default, a result of the lack of an appropriate analytical solution of Maxwell's equations to particles other than infinite cylinders and spheroids. Recently, however, the use of such approximate techniques as the Discrete Dipole Approximation has made scattering solutions on such particles a computationally intensive but feasible possibility. In this study, the Discrete Dipole Approximation (DDA) developed by Flatau (1992) is used to find such solutions for homogeneous, circular cylinders and disks. This can serve to not only assess the validity of the current radiative transfer schemes which are available for the study of cirrus but also to extend the current approximation of equivalent spheres to an approximation of second order, homogeneous finite circular cylinders and disks. The results will be presented in the form of a single variable, the extinction efficiency.
Design and Fabrication of nanowire-grid polarizer in near-infrared broadband
NASA Astrophysics Data System (ADS)
Jin, Qiufeng; Liu, Quan; Wu, Jianhong; Cheng, Yu
2012-11-01
The infrared polarizers are widely used in the infrared imaging systems as the core components, such as infrared stealth, target acquisition and mine detection, automobile night-vision instrument and other systems. For the requirements of near-infrared imaging systems, a nanowire-grid is designed by Finite Difference Time Domain (FDTD) method. Herein, considering the high reflection of metal aluminum in the manufacturing process, we propose a structure with aluminum-copper nanowire-grid. FDTD method is adapted to analyze the effects of the thickness of aluminumcopper in different combinations on the TM and TE polarization transmission efficiency as well as the extinction ratio when the grating's period is 300nm. Numerical results and theoretical analysis show that: the reflection on the substrate is suppressed with the optimal thickness of the Cu layer. Considering the resist-substrate reflectivity and the final performance of the polarizer, the structure with an 120nm Al layer, and a 50nm anti-reflection Cu layer is chosen; and the TM transmission efficiency is more than 71%, and the extinction ratio is more than 25dB. At last we used Holographic lithography and IBE to fabricate a prototype of the nanowire-grid.
NASA Technical Reports Server (NTRS)
Koffi, Brigitte; Schulz, Michael; Breon, Francois-Marie; Griesfeller, Jan; Winker, David; Balkanski, Yves; Bauer, Susanne; Berntsen, Terje; Chin, Mian; Collins, William D.;
2012-01-01
The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) layer product is used for a multimodel evaluation of the vertical distribution of aerosols. Annual and seasonal aerosol extinction profiles are analyzed over 13 sub-continental regions representative of industrial, dust, and biomass burning pollution, from CALIOP 2007-2009 observations and from AeroCom (Aerosol Comparisons between Observations and Models) 2000 simulations. An extinction mean height diagnostic (Z-alpha) is defined to quantitatively assess the models' performance. It is calculated over the 0-6 km and 0-10 km altitude ranges by weighting the altitude of each 100 m altitude layer by its aerosol extinction coefficient. The mean extinction profiles derived from CALIOP layer products provide consistent regional and seasonal specificities and a low inter-annual variability. While the outputs from most models are significantly correlated with the observed Z-alpha climatologies, some do better than others, and 2 of the 12 models perform particularly well in all seasons. Over industrial and maritime regions, most models show higher Z-alpha than observed by CALIOP, whereas over the African and Chinese dust source regions, Z-alpha is underestimated during Northern Hemisphere Spring and Summer. The positive model bias in Z-alpha is mainly due to an overestimate of the extinction above 6 km. Potential CALIOP and model limitations, and methodological factors that might contribute to the differences are discussed.
What can experimental geobiology tell us about mass extinctions, past, present and future?
NASA Astrophysics Data System (ADS)
Bond, David
2017-04-01
We know more than ever about the causes and consequences of Earth's greatest mass extinctions thanks to much improved resolution in the fossil record, dating, and proxies for palaeoenvironmental change. Despite much progress, there is no consensus on what drives ecosystems to collapse. The realisation that Earth is again facing stresses implicated in its past crises (e.g. proximal kill mechanisms such as global warming, ocean acidification and anoxia) has intensified research on the ultimate cause(s) of extinctions (e.g. large igneous provinces and bolide impacts). However, the links between proximal kill mechanisms and their drivers remains poorly understood. Here I evaluate environmental factors implicated in major episodes of species extinctions and explores the mechanistic links by which they did their damage. Experimental geobiology is beginning to unlock the secrets of past crises by examining responses of species to change. Reduced pH, for instance alters the efficacy of fishes' chemical receptors, leaving them less equipped to detect prey, predators and mates - invoking "death-by-celibacy" scenarios. Elevated atmospheric CO2 induces hypercapnic stress (as well as being the root cause of ocean acidification). Prolonged exposure to anoxia causes death without selectivity. Global warming induces a multitude of stresses, primarily linked to increased metabolic rate according to the Q10 law. Experimental geobiologists and Earth scientists could together unravel the causes of past extinctions, better inform understanding of the modern crisis and our approach to the future.
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1988-01-01
This meeting presentation examines mass extinctions through earth's history. Extinctions are charted for marine families and marine genera. Timing of marine genera extinctions is discussed. Periodicity in extinctions during the Mesozoic and Cenozoic eras is plotted and compared with Paleozoic extinction peaks. The role of extinction in evolution and mankind's role in present extinctions are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr; Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8; Institute of Theoretical Physics, Goethe Universität Frankfurt, D-60438 Frankfurt am Main
Recent photometric and polarimetric observations of Type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratios ( R {sub V} < 2) and wavelengths of maximum polarization ( λ{sub max} < 0.4 μ m) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN-hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use an inversion technique to infer the best-fit grain size distribution and the alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SN 1986G, SN 2006X, SNmore » 2008fp, and SN 2014J). We find that to reproduce low values of R{sub V}, a significant enhancement in the mass of small grains of radius a < 0.1 μ m is required. For SN 2014J, a simultaneous fit to its observed extinction and polarization is unsuccessful if all the data are attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our best-fit results for model 1 show that in order to reproduce an extreme value of λ{sub max} ∼ 0.15 μ m, small silicate grains must be aligned as efficiently as big grains. For this case, we suggest that strong radiation from the SN can induce efficient alignment of small grains in a nearby intervening molecular cloud via the radiative torque (RAT) mechanism. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths.« less
NASA Astrophysics Data System (ADS)
Thomas-Osip, J. E.; Elliot, J. L.; Clancy, K. B.
2002-12-01
Multi-wavelength observations of the occultation of P131.1 by Pluto (see Elliot et al., this conference) allow for a re-examination of the possibility of the existence of haze in Pluto's atmosphere. Models of the extinction efficiency of haze particles as a function of wavelength are being used investigate the potential for the existence of haze in the 2002 Pluto atmosphere. The existence of a haze layer in Pluto's atmosphere was postulated to explain the abrupt change in slope seen in the light curve of the 1988 stellar occultation by Pluto (Elliot and Young 1992, AJ, 103, 991). An alternative explanation (Hubbard et al. 1990, Icarus, 84, 1) includes a steep thermal gradient near the surface instead of, or in addition to, a haze layer. Modeling of the growth and sedimentation of photo-chemically produced spherical aerosols (Stansberry et al. 1989, Geophys. Res. Let., 16, 1221) suggested that an appropriate production rate is not sufficient to produce the opacity necessary to account for change in slope found in the 1988 light curve, if it were due solely to spherical particle haze extinction. Recent studies (see for example, Rannou et al. 1995, Icarus, 188, 355 and Thomas-Osip et al. 2002, Icarus, submitted) have shown that it is likely that photochemical hazes on Titan are aggregate in nature. Fractal aggregate particles can have larger extinction efficiencies than equivalent mass spheres of the same material (Rannou et al. 1999, Planet. Space Sci., 47,385). We are, therefore, also re-examining the effect of a haze with an aggregate morphology on modeling of the 1988 occultation observations. This research has been supported in part by NSF Grant AST-0073447 and NASA Grant NAG5-10444.
Enhancement of coupling ratios in SOI based asymmetrical optical directional couplers
NASA Astrophysics Data System (ADS)
Pendam, Nagaraju; Vardhani, Chunduru Parvatha
2017-11-01
A novel design of slab structured asymmetrical optical directional coupler with S-bend waveguides on silicon-on-insulator (SOI) platform has been designed by using R-Soft CAD tool. Beam propagation method (BPM) is used for light propagation analysis. The simulation results of asymmetrical optical directional couplers are reported. We find that the asymmetrical directional coupler has lower coupling ratios and higher extinction ratios with waveguide parameters such as width, wavelength, waveguide spacing, and coupling length. Simulation results designate that the coupling efficiency for transverse electric (TE) and transverse magnetic (TM) modes can reach about more than 95% and extinction ratio about 6 dB when the coupling length is 6 mm for both the polarization modes and insertion loss is 17 dB with same coupling length 6 mm at central wavelength 1550 nm.
Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber
Jen, Yi-Jun; Huang, Yu-Jie; Liu, Wei-Chih; Lin, Yueh Weng
2017-01-01
Metals have been formed into nanostructures to absorb light with high efficiency through surface plasmon resonances. An ultra-thin plasmonic structure that exhibits strong absorption over wide ranges of wavelengths and angles of incidence is sought. In this work, a nearly perfect plasmonic nanostructure is fabricated using glancing angle deposition. The difference between the morphologies of obliquely deposited aluminum and silver nanohelices is exploited to form a novel three-dimensional structure, which is an aluminum-silver nanohelix array on a pattern-free substrate. With a thickness of only 470 nm, densely distributed nanohelices support rod-to-rod localized surface plasmons for broadband and polarization-independent light extinction. The extinctance remains high over wavelengths from 400 nm to 2000 nm and angles of incidence from 0° to 70°. PMID:28045135
Silver Eco-Solvent Ink for Reactive Printing of Polychromatic SERS and SPR Substrates
Dustov, Mavlavi; Goldt, Anastasia E.; Sukhorukova, Irina V.; Grünert, Wolfgang; Grigorieva, Anastasia V.
2018-01-01
A new reactive ink based on a silver citrate complex is proposed for a photochemical route to surface-enhanced Raman spectroscopy active substrates with controllable extinction spectra. The drop-cast test of the ink reveals homogeneous nucleation of silver and colloid particle growth originating directly from photochemical in situ reduction in droplets, while the following evaporation of the deposited ink produces small nano- and micron-size particles. The prepared nanostructures and substrates were accurately characterized by electron microscopy methods and optical extinction spectroscopy. Varying the duration of UV irradiation allows tuning the morphology of individual silver nanoparticles forming hierarchical ring structures with numerous “hot spots” for most efficient Raman enhancement. Raman measurements of probe molecules of rhodamine 6G and methylene blue reached the largest signal enhancement of 106 by the resonance effects. PMID:29425119
Silver Eco-Solvent Ink for Reactive Printing of Polychromatic SERS and SPR Substrates.
Dustov, Mavlavi; Golovina, Diana I; Polyakov, Alexander Yu; Goldt, Anastasia E; Eliseev, Andrei A; Kolesnikov, Efim A; Sukhorukova, Irina V; Shtansky, Dmitry V; Grünert, Wolfgang; Grigorieva, Anastasia V
2018-02-09
A new reactive ink based on a silver citrate complex is proposed for a photochemical route to surface-enhanced Raman spectroscopy active substrates with controllable extinction spectra. The drop-cast test of the ink reveals homogeneous nucleation of silver and colloid particle growth originating directly from photochemical in situ reduction in droplets, while the following evaporation of the deposited ink produces small nano- and micron-size particles. The prepared nanostructures and substrates were accurately characterized by electron microscopy methods and optical extinction spectroscopy. Varying the duration of UV irradiation allows tuning the morphology of individual silver nanoparticles forming hierarchical ring structures with numerous "hot spots" for most efficient Raman enhancement. Raman measurements of probe molecules of rhodamine 6G and methylene blue reached the largest signal enhancement of 10⁶ by the resonance effects.
Macaques at the margins: the biogeography and extinction of Macaca sylvanus in Europe
NASA Astrophysics Data System (ADS)
Elton, Sarah; O'Regan, Hannah J.
2014-07-01
The genus Macaca (Primates: Cercopithecidae) originated in Africa, dispersed into Europe in the Late Miocene and resided there until the Late Pleistocene. In this contribution, we provide an overview of the evolutionary history of Macaca in Europe, putting it into context with the wider late Miocene, Pliocene and Pleistocene European monkey fossil record (also comprising Mesopithecus, Paradolichopithecus, Dolichopithecus and Theropithecus). The Pliocene and Pleistocene European Macaca fossil material is largely regarded as Macaca sylvanus, the same species as the extant Barbary macaque in North Africa. The M. sylvanus specimens found at West Runton in Norfolk (53°N) during the Middle Pleistocene are among the most northerly euprimates ever discovered. Our simple time-budget model indicates that short winter day lengths would have imposed a significant constraint on activity at such relatively high latitudes, so macaque populations in Britain may have been at the limit of their ecological tolerance. Two basic models using climatic and topographic data for the Last Interglacial and the Last Glacial Maximum alongside Middle and Late Pleistocene fossil distributions indicate that much of Europe may have been suitable habitat for macaques. The models also indicate that areas of southern Europe in the present day have a climate that could support macaque populations. However, M. sylvanus became locally extinct in the Late Pleistocene, possibly at a similar time as the straight-tusked elephant, Palaeoloxodon antiquus, and narrow-nosed rhinoceros, Stephanorhinus hemitoechus. Its extinction may be related to vegetation change or increased predation from Homo, although other factors (such as stochastic factors occurring as a result of small population sizes) cannot be ruled out. Notwithstanding the cause of extinction, the European macaque may thus be a previously overlooked member of the Late Pleistocene faunal turnover.
Jonah Piovia-Scott; Karen L. Pope; Sharon P. Lawler; Esther M. Cole; Janet E. Foley
2011-01-01
The fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis, has been associated with declines and extinctions of montane amphibians worldwide. To gain insight into factors affecting its distribution and prevalence we focus on the amphibian community of the Klamath Mountains in northwest...
Jonah Piovia-Scott; Karen Pope; S. Joy Worth; Erica Bree Rosenblum; Dean Simon; Gordon Warburton; Louise A. Rollins-Smith; Laura K. Reinert; Heather L. Wells; Dan Rejmanek; Sharon Lawler; Janet Foley
2015-01-01
The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We...
Leslie, Julian C; Norwood, Kelly
2013-05-01
The aim was to compare operant extinction with re-extinction following re-acquisition and to investigate neuropharmacological mechanisms through administration of drugs potentiating GABAergic or glutamatergic systems. Groups of C57Bl/6 mice were trained to lever press for food on a fixed ratio schedule, then extinguished with or without pre-session chlordiazepoxide or post-session d-cycloserine administration (15mg/kg in each case), then retrained to lever press for food, then re-extinguished with or without pre-session chlordiazepoxide or post-session d-cycloserine. Under vehicle injections, extinction and re-extinction curves were indistinguishable, but drug treatments showed that there was less resistance to extinction in the re-extinction phase. Chlordiazepoxide facilitated extinction and re-extinction, with an earlier effect during re-extinction. d-Cycloserine also facilitated extinction and re-extinction, with some evidence of an earlier effect during re-extinction. These results replicate and extend earlier findings with operant extinction, but differ from some previous reports of d-cycloserine on re-extinction of Pavlovian conditioned fear. Implications for accounts of the similarities and differences between neural mechanisms of extinction following either Pavlovian or operant conditioning, and applications of these findings, are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Bustamante, Javier; Uengoer, Metin; Thorwart, Anna; Lachnit, Harald
2016-09-01
In two human predictive-learning experiments, we investigated the effects of extinction in multiple contexts on the rate of extinction and the strength of response recovery. In each experiment, participants initially received acquisition training with a target cue in one context, followed by extinction either in a different context (extinction in a single context) or in three different contexts (extinction in multiple contexts). The results of both experiments showed that conducting extinction in multiple contexts led to higher levels of responding during extinction than did extinction in a single context. Additionally, Experiment 2 showed that extinction in multiple contexts prevented ABC renewal but had no detectable impact on ABA renewal. Our results are discussed within the framework of contemporary learning theories of contextual control and extinction.
Optical Extinction Measurements of Dust Density in the GMRO Regolith Test Bin
NASA Technical Reports Server (NTRS)
Lane, J.; Mantovani, J.; Mueller, R.; Nugent, M.; Nick, A.; Schuler, J.; Townsend, I.
2016-01-01
A regolith simulant test bin was constructed and completed in the Granular Mechanics and Regolith Operations (GMRO) Lab in 2013. This Planetary Regolith Test Bed (PRTB) is a 64 sq m x 1 m deep test bin, is housed in a climate-controlled facility, and contains 120 MT of lunar-regolith simulant, called Black Point-1 or BP-1, from Black Point, AZ. One of the current uses of the test bin is to study the effects of difficult lighting and dust conditions on Telerobotic Perception Systems to better assess and refine regolith operations for asteroid, Mars and polar lunar missions. Low illumination and low angle of incidence lighting pose significant problems to computer vision and human perception. Levitated dust on Asteroids interferes with imaging and degrades depth perception. Dust Storms on Mars pose a significant problem. Due to these factors, the likely performance of telerobotics is poorly understood for future missions. Current space telerobotic systems are only operated in bright lighting and dust-free conditions. This technology development testing will identify: (1) the impact of degraded lighting and environmental dust on computer vision and operator perception, (2) potential methods and procedures for mitigating these impacts, (3) requirements for telerobotic perception systems for asteroid capture, Mars dust storms and lunar regolith ISRU missions. In order to solve some of the Telerobotic Perception system problems, a plume erosion sensor (PES) was developed in the Lunar Regolith Simulant Bin (LRSB), containing 2 MT of JSC-1a lunar simulant. PES is simply a laser and digital camera with a white target. Two modes of operation have been investigated: (1) single laser spot - the brightness of the spot is dependent on the optical extinction due to dust and is thus an indirect measure of particle number density, and (2) side-scatter - the camera images the laser from the side, showing beam entrance into the dust cloud and the boundary between dust and void. Both methods must assume a mean particle size in order to extract a number density. The optical extinction measurement yields the product of the 2nd moment of the particle size distribution and the extinction efficiency Qe. For particle sizes in the range of interest (greater than 1 micrometer), Qe approximately equal to 2. Scaling up of the PES single laser and camera system is underway in the PRTB, where an array of lasers penetrate a con-trolled dust cloud, illuminating multiple targets. Using high speed HD GoPro video cameras, the evolution of the dust cloud and particle size density can be studied in detail.
Mass Extinctions of Pangea (Jean Baptiste Lamarck Medal Lecture)
NASA Astrophysics Data System (ADS)
Wignall, Paul B.
2017-04-01
The 80 million years of Earth history from middle of the Permian to the early Jurassic were some of the worst life ever experienced. The interval includes two mass extinctions that bracket the Triassic period and several lesser crises. It was to be nearly another 120 million years before another major crisis was to strike (this time it was the famous one that removed the dinosaurs). So what was so bad about the 80 million years and why was it so good afterwards? My talk will try to provide at least some of the answers. There are plenty of clues. Notably, the interval coincides with the presence of the Pangea supercontinent and all the extinctions coincided with the eruption of large igneous provinces (LIPs). Indeed, every LIP of this interval coincides with an extinction crisis, a perfect correlation that completely breaks down afterwards. However, getting from correlation to causation is far from straight forward. There are many unknowns - how much gas was released by the volcanism, how quickly and what type of gases were they? These are all questions under investigation. Most of the extinctions of Pangean time coincide with rapid global warming and extensive marine anoxia suggesting that greenhouse gas emissions linked to volcanism were an important extinction driver. For the most severe crises (Permo-Triassic and end-Triassic) losses occurred throughout the food chain all the way down to the primary producers of the oceans and across all habitats including terrestrial ecosystems. At the other end of the spectrum of disaster, the lesser extinctions (Toarcian, Smithian/Spathian) only affected marine invertebrates. The full panoply of catastrophe was played out during the Permo-Triassic mass extinction and has received the most attention. The record in South China shows that there were two phases of extinction. These straddle the boundary and show selective losses initially for shallow-water organisms that were susceptible to high temperatures and then for deeper-water dwellers that succumbed to expanding deep-water anoxia. The contemporary plant losses show a similar duration for extinction losses ( 60 kyr) but the ultimate cause of these extinctions is less clear. It is unlikely to have been directly attributable to greenhouse gases because warm and wet conditions on land are a good thing. A greenhouse is a good place for plants after all. Ozone destruction by halogen emissions followed by intense UV-B radiation is a more promising extinction agent. A key factor in the extinction vulnerability of Pangean life may lie in the subdued nature of carbon cycling in a supercontinent configuration. Feedback mechanisms such as enhanced silicate weathering in warmer, more humid conditions would be less effective because of the vast arid interiors. The burial of carbon in shelf seas would also be minimal because the area of shallow waters around the periphery of the supercontinent was at a Phanerozoic minimum. Once initiated, warmer temperatures would have led to increased rate of organic remineralisation. This may have been responsible the absence of terrestrial organic carbon burial during the most severe crises, further decreasing the ability to drawdown atmospheric carbon. This combination of causes would have produced a planet that was only weakly responsive to sudden influxes of greenhouse gases into the atmosphere. It was a bad time to endure LIP eruptions.
Bingham, Brian C; Sheela Rani, C S; Frazer, Alan; Strong, Randy; Morilak, David A
2013-11-01
Exposure to early-life stress is a risk factor for the development of cognitive and emotional disorders later in life. We previously demonstrated that prenatal stress (PNS) in rats results in long-term, stable changes in central stress-response systems and impairs the ability to extinguish conditioned fear responding, a component of post-traumatic stress disorder (PTSD). Maternal corticosterone (CORT), released during prenatal stress, is a possible mediator of these effects. The purpose of the present study was to investigate whether fetal exposure to CORT at levels induced by PNS is sufficient to alter the development of adult stress neurobiology and fear extinction behavior. Pregnant dams were subject to either PNS (60 min immobilization/day from ED 14-21) or a daily injection of CORT (10mg/kg), which approximated both fetal and maternal plasma CORT levels elicited during PNS. Control dams were given injections of oil vehicle. Male offspring were allowed to grow to adulthood undisturbed, at which point they were sacrificed and the medial prefrontal cortex (mPFC), hippocampus, hypothalamus, and a section of the rostral pons containing the locus coeruleus (LC) were dissected. PNS and prenatal CORT treatment decreased glucocorticoid receptor protein levels in the mPFC, hippocampus, and hypothalamus when compared to control offspring. Both treatments also decreased tyrosine hydroxylase levels in the LC. Finally, the effect of prenatal CORT exposure on fear extinction behavior was examined following chronic stress. Prenatal CORT impaired both acquisition and recall of cue-conditioned fear extinction. This effect was additive to the impairment induced by previous chronic stress. Thus, these data suggest that fetal exposure to high levels of maternal CORT is responsible for many of the lasting neurobiological consequences of PNS as they relate to the processes underlying extinction of learned fear. The data further suggest that adverse prenatal environments constitute a risk factor for PTSD-like symptomatology, especially when combined with chronic stressors later in life. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biological review of 82 species of coral petitioned to be included in the Endangered Species Act
Brainard, Russell E.; Birkeland, Charles; Eakin, C. Mark; McElhany, Paul; Miller, Margaret W.; Patterson, Matt; Piniak, G.A.
2011-01-01
The BRT considered two major factors in conducting this review. The first factor was the interaction of natural phenomena and anthropogenic stressors that could potentially contribute to coral extinction. After extensive review of available scientific information, the BRT considers ocean warming, disease, and ocean acidification to be the most influential threats in posing extinction risks to the 82 candidate coral species between now and the year 2100. Threats of local origin but having widespread impact, such as sedimentation, nutrient enrichment, and fishing, were considered of medium importance in determining extinction risks. It is acknowledged that many other threats (e.g., physical damage from storms or ship groundings, invasive species or predator outbreaks, collection and trade) also negatively affect corals, often acutely and dramatically, but generally at relatively small local scales. These local threats were considered to be of limited scope and not deemed to contribute appreciably to the risk of species extinction, except in those special cases where species have restricted geographic or habitat ranges or species have already undergone precipitous population declines such that these local threats further contribute to depensatory processes that can magnify extinction risks (e.g., feedback-loops whereby individual survival decreases with smaller population size). The BRT acknowledges that local and global threats operate on different time scales and, though there is high confidence in the general progression of some key global threats, such as ocean warming and ocean acidification, there is much less certainty in the timing and spatial patterns of these threats. There is also substantial uncertainty in the abilities of the 82 candidate coral species to tolerate or adapt to each of the threats examined, as well as uncertainty in the dynamics of multiple simultaneous stresses. The BRT specifically identified increasing human population levels and the intensity of their collective human consumption as the root drivers of almost all global and local threats to coral species. In evaluating future threat impacts, the BRT attempted to project current trends, without assumptions of future policy changes or technological advances that could potentially alter the projections used in this analysis.
NASA Astrophysics Data System (ADS)
Zhu, Junjie
2017-02-01
Localized surface plasmon resonances arising from the free carriers in copper-deficient copper chalcogenides nanocrystals (Cu2-xE, E=S,Se) enables them with high extinction coefficient in the near-infrared range, which was superior for photothermal related purpose. Although Cu2-xE nanocrystals with different compositions (0< x≪1) all possess NIR absorption, their extinction coefficients were significantly different due to their distinct valence band free carrier concentration. Herein, by optimizing the synthetic conditions, we were able to obtain pure covellite phase CuS nanoparticles with maximized free carrier concentration (x=1), which provides extremely high mass extinction coefficient (up to 60 Lg-1cm-1 at 980 nm and 32.4 Lg-1cm-1 at 800 nm). To the best of our knowledge, these values was maximal among all inorganic nanomaterials. High quality Cu2-xSe can also be obtained with a similar approach. In order to introduce CuS nanocrystals for biomedical applications, we further transferred these nanocrystals into aqueous solution with an amphiphilic polymer and colvalently linked with beta-cyclodextrin. Using host-guest interaction, adamantine-modified RGD peptide can be further anchored on the nanoparticles for the recognition of integrin-positive cancer cells. Together with the high extinction coefficient and outstand photothermal conversion efficiency (determined to be higher than 40%), these CuS nanocrystals were applied for photothermal therapy of cancer cells and photoacoustic imaging. In addition, anticancer drug doxorubicin can also be loading onto the nanoparticles through either hydrophobic or electrostatic interaction for chemotherapy.
Gomes Rodrigues, Helder; Billet, Guillaume
2017-01-01
Investigating life history traits in mammals is crucial to understand their survival in changing environments. However, these parameters are hard to estimate in a macroevolutionary context. Here we show that the use of dental ontogenetic parameters can provide clues to better understand the adaptive nature of phenotypic traits in extinct species such as South American notoungulates. This recently extinct order of mammals evolved in a context of important geological, climatic, and environmental variations. Interestingly, notoungulates were mostly herbivorous and acquired high-crowned teeth very early in their evolutionary history. We focused on the variations in crown height, dental eruption pattern, and associated body mass of 69 notoungulate taxa, placed in their phylogenetic and geological contexts. We showed that notoungulates evolved higher crowns several times between 45 and 20 Ma, independently of the variation in body mass. Interestingly, the independent acquisitions of ever-growing teeth were systematically accompanied by eruption of molars faster than permanent premolars. These repeated associations of dental innovations have never been documented for other mammals and raise questions on their significance and causal relationships. We suggest that these correlated changes could originate from ontogenetic adjustments favored by structural constraints, and may indicate accelerated life histories. Complementarily, these more durable and efficient dentitions could be selected to cope with important ingestions of abrasive particles in the context of intensified volcanism and increasing aridity. This study demonstrates that assessing both life history and ecological traits allows a better knowledge of the specializations of extinct mammals that evolved under strong environmental constraints. PMID:28096389
A general framework for predicting delayed responses of ecological communities to habitat loss.
Chen, Youhua; Shen, Tsung-Jen
2017-04-20
Although biodiversity crisis at different spatial scales has been well recognised, the phenomena of extinction debt and immigration credit at a crossing-scale context are, at best, unclear. Based on two community patterns, regional species abundance distribution (SAD) and spatial abundance distribution (SAAD), Kitzes and Harte (2015) presented a macroecological framework for predicting post-disturbance delayed extinction patterns in the entire ecological community. In this study, we further expand this basic framework to predict diverse time-lagged effects of habitat destruction on local communities. Specifically, our generalisation of KH's model could address the questions that could not be answered previously: (1) How many species are subjected to delayed extinction in a local community when habitat is destructed in other areas? (2) How do rare or endemic species contribute to extinction debt or immigration credit of the local community? (3) How will species differ between two local areas? From the demonstrations using two SAD models (single-parameter lognormal and logseries), the predicted patterns of the debt, credit, and change in the fraction of unique species can vary, but with consistencies and depending on several factors. The general framework deepens the understanding of the theoretical effects of habitat loss on community dynamic patterns in local samples.
NASA Technical Reports Server (NTRS)
Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.;
2006-01-01
If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.
Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China.
Li, Zhiheng; Clarke, Julia A; Eliason, Chad M; Stidham, Thomas A; Deng, Tao; Zhou, Zhonghe
2018-05-25
Modifications to the upper vocal tract involving hyper-elongated tracheae have evolved many times within crown birds, and their evolution has been linked to a 'size exaggeration' hypothesis in acoustic signaling and communication, whereby smaller-sized birds can produce louder sounds. A fossil skeleton of a new extinct species of wildfowl (Galliformes: Phasianidae) from the late Miocene of China, preserves an elongated, coiled trachea that represents the oldest fossil record of this vocal modification in birds and the first documentation of its evolution within pheasants. The phylogenetic position of this species within Phasianidae has not been fully resolved, but appears to document a separate independent origination of this vocal modification within Galliformes. The fossil preserves a coiled section of the trachea and other remains supporting a tracheal length longer than the bird's body. This extinct species likely produced vocalizations with a lower fundamental frequency and reduced harmonics compared to similarly-sized pheasants. The independent evolution of this vocal feature in galliforms living in both open and closed habitats does not appear to be correlated with other factors of biology or its open savanna-like habitat. Features present in the fossil that are typically associated with sexual dimorphism suggest that sexual selection may have resulted in the evolution of both the morphology and vocalization mechanism in this extinct species.
Gruene, Tina M; Lipps, Jennifer; Rey, Colin D; Bouck, Anna; Shansky, Rebecca M
2014-11-01
Despite a twofold higher prevalence of fear-related disorders in women, the neurobiological factors that modulate and drive fear expression are rarely studied in female animals. Fear conditioning and extinction are useful tools for dissecting these mechanisms, and here we tested the effects of environmental manipulations - four days of exposure to 31°C temperatures in the animal housing facility - on fear learning and memory exclusively in female rats. We found that heat exposure disrupted freezing to tone during fear conditioning, and elicited enhanced freezing during extinction and extinction retrieval. We also performed immunohistochemistry for c-fos expression in the infralimbic (IL) and prelimbic (PL) regions of the prefrontal cortex during extinction retrieval, and found that heat exposure induced a switch from IL-dominated activity to PL-dominated activity. Finally, morphological analysis of spines in hippocampal CA3 neurons revealed an increase in spine head diameter in heat-exposed animals, which may partly underlie the persistent freezing observed in these animals. Together, our data show that heat exposure can induce changes at behavioral, physiological, and structural levels, and add to a woefully lacking body of literature on fear processes in female animals. Copyright © 2014 Elsevier Inc. All rights reserved.
Petry, Fernanda S; Dornelles, Arethuza S; Lichtenfels, Martina; Valiati, Fernanda E; de Farias, Caroline Brunetto; Schwartsmann, Gilberto; Parent, Marise B; Roesler, Rafael
2016-07-01
Hippocampal gastrin-releasing peptide receptors (GRPR) regulate memory formation and extinction, and disturbances in GRPR signaling may contribute to cognitive impairment associated with neurodevelopmental disorders. Histone acetylation is an important epigenetic mechanism that regulates gene expression involved in memory formation, and histone deacetylase inhibitors (HDACis) rescue memory deficits in several models. The present study determined whether inhibiting histone deacetylation would prevent memory impairments produced by GRPR blockade in the hippocampus. Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or the HDACi sodium butyrate (NaB) shortly before inhibitory avoidance (IA) training, followed by an infusion of either SAL or the selective GRPR antagonist RC-3095 immediately after training. In a second experiment, the infusions were administered before and after a retention test trial that served as extinction training. As expected, RC-3095 significantly impaired consolidation and extinction of IA memory. More importantly, pretraining administration of NaB, at a dose that had no effect when given alone, prevented the effects of RC-3095. In addition, the combination of NaB and RC-3095 increased hippocampal levels of the brain-derived neurotrophic factor (BDNF). These findings indicate that HDAC inhibition can protect against memory impairment caused by GRPR blockade. Copyright © 2016 Elsevier B.V. All rights reserved.
Permo-Triassic vertebrate extinctions: A program
NASA Technical Reports Server (NTRS)
Olson, E. C.
1988-01-01
Since the time of the Authors' study on this subject, a great deal of new information has become available. Concepts of the nature of extinctions have changed materially. The Authors' conclusion that a catastrophic event was not responsible for the extinction of vertebrates has modified to the extent that hypotheses involving either the impact of a massive extra-terrestrial body or volcanism provide plausible but not currently fully testable hypotheses. Stated changes resulted in a rapid decrease in organic diversity, as the ratio of origins of taxa to extinctions shifted from strongly positive to negative, with momentary equilibrium being reached at about the Permo-Triassic boundary. The proximate causes of the changes in the terrestrial biota appear to lie in two primary factors: (1) strong climatic changes (global mean temperatures, temperature ranges, humidity) and (2) susceptibility of the dominant vertebrates (large dicynodonts) and the glossopteris flora to disruption of the equlibrium of the world ecosystem. The following proximate causes have been proposed: (1) rhythmic fluctuations in solar radiation, (2) tectonic events as Pangea assembled, altering land-ocean relationships, patterns of wind and water circulation and continental physiography, (3) volcanism, and (4) changes subsequent to impacts of one or more massive extra terrestrial objects, bodies or comets. These hypotheses are discussed.
Physical and Chemical Processes in Flames
2010-02-15
7. "An efficient reduced mechanism for methane oxidation with NOx chemistry ," by T. F. Lu and C. K. Law, Paper No. C17, Fifth US Combustion Meeting... Mechanical and Aerospace Engineering Princeton University Princeton, NJ 08544 9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...TERMS Laminar flame speeds; ignition temperatures; extinction limits; mechanism reduction; skeletal mechanism ; CO/H2 oxidation; ethy lene oxidation
Retrieval and Reconsolidation Accounts of Fear Extinction
Ponnusamy, Ravikumar; Zhuravka, Irina; Poulos, Andrew M.; Shobe, Justin; Merjanian, Michael; Huang, Jeannie; Wolvek, David; O’Neill, Pia-Kelsey; Fanselow, Michael S.
2016-01-01
Extinction is the primary mode for the treatment of anxiety disorders. However, extinction memories are prone to relapse. For example, fear is likely to return when a prolonged time period intervenes between extinction and a subsequent encounter with the fear-provoking stimulus (spontaneous recovery). Therefore there is considerable interest in the development of procedures that strengthen extinction and to prevent such recovery of fear. We contrasted two procedures in rats that have been reported to cause such deepened extinction. One where extinction begins before the initial consolidation of fear memory begins (immediate extinction) and another where extinction begins after a brief exposure to the consolidated fear stimulus. The latter is thought to open a period of memory vulnerability similar to that which occurs during initial consolidation (reconsolidation update). We also included a standard extinction treatment and a control procedure that reversed the brief exposure and extinction phases. Spontaneous recovery was only found with the standard extinction treatment. In a separate experiment we tested fear shortly after extinction (i.e., within 6 h). All extinction procedures, except reconsolidation update reduced fear at this short-term test. The findings suggest that strengthened extinction can result from alteration in both retrieval and consolidation processes. PMID:27242459
The role of introduced species in the degradation of island ecosystems: A case history of guam
Fritts, T.H.; Rodda, G.H.
1998-01-01
The accidental introduction of the brown treesnake (Boiga irregularis) on Guam around 1950 induced a cascade of extirpations that may be unprecedented among historical extinction events in taxonomic scope and severity. Birds, bats, and reptiles were affected, and by 1990 most forested areas on Guam retained only three native vertebrates, all of which were small lizards. Of the hypotheses to account for the severity of this extinction event, we find some support for the importance of lack of coevolution between introduced predator and prey, availability of alternate prey, extraordinary predatory capabilities of the snake, and vulnerabilities of the Guam ecosystem. In addition, there were important interactions among these factors, especially the presence of introduced prey (possessing coevolutionary experience) that were thus able to maintain their populations and provide alternate prey to the introduced predator while it was driving the native prey species to extinction. This complex of vulnerabilities is common on oceanic islands.
The role of introduced species in the degradation of island ecosystems: A case history of Guam
Fritts, T.H.; Rodda, G.H.
1998-01-01
The accidental introduction of the brown treesnake (Boiga irregularis) on Guam around 1950 induced a cascade of extirpations that may be unprecedented among historical extinction events in taxonomic scope and severity. Birds, bats, and reptiles were affected, and by 1990 most forested areas on Guam retained only three native vertebrates, all of which were small lizards. Of the hypotheses to account for the severity of this extinction event, we find some support for the importance of lack of coevolution between introduced predator and prey, availability of alternate prey, extraordinary predatory capabilities of the snake, and vulnerabilities of the Guam ecosystem. In addition, there were important interactions among these factors, especially the presence of introduced prey (possessing coevolutionary experience) that were thus able to maintain their populations and provide alternate prey to the introduced predator while it was driving the native prey species to extinction. This complex of vulnerabilities is common on oceanic islands.
Ephemeral ecological speciation and the latitudinal biodiversity gradient.
Cutter, Asher D; Gray, Jeremy C
2016-10-01
The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Easy to remember, difficult to forget: the development of fear regulation
Johnson, D.C.; Casey, B.J.
2014-01-01
Fear extinction learning is a highly adaptive process that involves the integrity of frontolimbic circuitry. Its disruption has been associated with emotional dysregulation in stress and anxiety disorders. In this article we consider how age, genetics and experiences shape our capacity to regulate fear in cross-species studies. Evidence for adolescent-specific diminished fear extinction learning is presented in the context of immature frontolimbic circuitry. We also present evidence for less neural plasticity in fear regulation as a function of early life stress and by genotype, focusing on the common brain derived neurotrophin factor (BDNF) Val66Met polymorphism. Finally, we discuss this work in the context of exposure-based behavioral therapies for the treatment of anxiety and stress disorders that are based on principles of fear extinction. We conclude by speculating on how such therapies may be optimized for the individual based on the patient’s age, genetic profile and personal history to move from standard treatment of care to personalized and precision medicine. PMID:25238998
Electro-optical full-adder/full-subtractor based on graphene-silicon switches
NASA Astrophysics Data System (ADS)
Zivarian, Hossein; Zarifkar, Abbas; Miri, Mehdi
2018-01-01
A compact footprint, low-power consumption, and high-speed operation electro-optical full-adder/full-subtractor based on graphene-silicon electro-optical switches is demonstrated. Each switch consists of a Mach-Zehnder interferometer in which few-layer graphene is embedded in a silicon slot waveguide to construct phase shifters. The presented structure can be used as full-adder and full-subtractor simultaneously. The analysis of various factors such as extinction ratio, power consumption, and operation speed has been presented. As will be shown, the proposed electro-optical switch has a minimum extinction ratio of 36.21 dB, maximum insertion loss about 0.18 dB, high operation speed of 180 GHz, and is able to work with a low applied voltage about 1.4 V. Also, the extinction ratio and insertion loss of the full-adder/full-subtractor are about 30 and 1.5 dB, respectively, for transfer electric modes at telecommunication wavelength of 1.55 μm.
TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND INTERSTELLAR DUST
NASA Astrophysics Data System (ADS)
Huang, Xiaosheng; Biederman, M.; Herger, B.; Aldering, G. S.
2014-01-01
TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND NON-UNIFORM INTERSTELLAR DUST ABSTRACT We investigate the time variation of the visual extinction, AV, and the total-to-selective extinction ratio, RV, resulting from interstellar dust in front of an expanding photospheric disk of a type Ia supernova (SN Ia). We simulate interstellar dust clouds according to a power law power spectrum and produce extinction maps that either follow a pseudo-Gaussian distribution or a lognormal distribution. The RV maps are produced through a correlation between AV and RV. With maps of AV and RV generated in each case (pseudo-Gaussian and lognormal), we then compute the effective AV and RV for a SN as its photospheric disk expands behind the dust screen. We find for a small percentage of SNe the AV and RV values can vary by a large factor from day to day in the first 40 days after explosion.
Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; McKinney, F. K.; Lidgard, S.; Sepkoski JJ, J. r. (Principal Investigator)
2000-01-01
Encrusting bryozoans provide one of the few systems in the fossil record in which ecological competition can be observed directly at local scales. The macroevolutionary history of diversity of cyclostome and cheilostome bryozoans is consistent with a coupled-logistic model of clade displacement predicated on species within clades interacting competitively. The model matches observed diversity history if the model is perturbed by a mass extinction with a position and magnitude analogous to the Cretaceous/Tertiary boundary event, Although it is difficult to measure all parameters in the model from fossil data, critical factors are intrinsic rates of extinction, which can be measured. Cyclostomes maintained a rather low rate of extinction, and the model solutions predict that they would lose diversity only slowly as competitively superior species of cheilostomes diversified into their environment. Thus, the microecological record of preserved competitive interactions between cyclostome and cheilostome bryozoans and the macroevolutionary record of global diversity are consistent in regard to competition as a significant influence on diversity histories of post-Paleozoic bryozoans.
Competition Between Extinction and Enhancement in Surface Enhanced Raman Spectroscopy.
van Dijk, Thomas; Sivapalan, Sean T; Devetter, Brent M; Yang, Timothy K; Schulmerich, Matthew V; Murphy, Catherine J; Bhargava, Rohit; Carney, P Scott
2013-04-04
Conjugated metallic nanoparticles are a promising means to achieve ultrasensitive and multiplexed sensing in intact three-dimensional samples, especially for biological applications, via surface enhanced Raman scattering (SERS). We show that enhancement and extinction are linked and compete in a collection of metallic nanoparticles. Counterintuitively, the Raman signal vanishes when nanoparticles are excited at their plasmon resonance, while increasing nanoparticle concentrations at off-resonance excitation sometimes leads to decreased signal. We develop an effective medium theory that explains both phenomena. Optimal choices of excitation wavelength, individual particle enhancement factor and concentrations are indicated. The same processes which give rise to enhancement also lead to increased extinction of both the illumination and the Raman scattered light. Nanoparticles attenuate the incident field (blue) and at the same time provide local enhancement for SERS. Likewise the radiation of the Raman-scattered field (green) is enhanced by the near-by sphere but extinguished by the rest of the spheres in the suspension on propagation.
Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology.
Köhler, Meike; Marín-Moratalla, Nekane; Jordana, Xavier; Aanes, Ronny
2012-07-19
Cyclical growth leaves marks in bone tissue that are in the forefront of discussions about physiologies of extinct vertebrates. Ectotherms show pronounced annual cycles of growth arrest that correlate with a decrease in body temperature and metabolic rate; endotherms are assumed to grow continuously until they attain maturity because of their constant high body temperature and sustained metabolic rate. This apparent dichotomy has driven the argument that zonal bone denotes ectotherm-like physiologies, thus fuelling the controversy on dinosaur thermophysiology and the evolution of endothermy in birds and mammal-like reptiles. Here we show, from a comprehensive global study of wild ruminants from tropical to polar environments, that cyclical growth is a universal trait of homoeothermic endotherms. Growth is arrested during the unfavourable season concurrently with decreases in body temperature, metabolic rate and bone-growth-mediating plasma insulin-like growth factor-1 levels, forming part of a plesiomorphic thermometabolic strategy for energy conservation. Conversely, bouts of intense tissue growth coincide with peak metabolic rates and correlated hormonal changes at the beginning of the favourable season, indicating an increased efficiency in acquiring and using seasonal resources. Our study supplies the strongest evidence so far that homeothermic endotherms arrest growth seasonally, which precludes the use of lines of arrested growth as an argument in support of ectothermy. However, high growth rates are a distinctive trait of mammals, suggesting the capacity for endogenous heat generation. The ruminant annual cycle provides an extant model on which to base inferences regarding the thermophysiology of dinosaurs and other extinct taxa.
ERIC Educational Resources Information Center
Johnson, Justin S.; Escobar, Martha; Kimble, Whitney L.
2010-01-01
Short acquisition-extinction intervals (immediate extinction) can lead to either more or less spontaneous recovery than long acquisition-extinction intervals (delayed extinction). Using rat subjects, we observed less spontaneous recovery following immediate than delayed extinction (Experiment 1). However, this was the case only if a relatively…
Hara, Makoto; Lee, Joung-Hun; Iwasa, Yoh
2015-11-21
In this study, we used a cultural dynamic model to explain the persistence of the hinoeuma superstition in traditional Japan. Men with this superstition avoid marrying women born in a hinoeuma year (or hinoeuma-women). Parents avoided childbirth during the last hinoeuma year out of the concern that their daughter would have trouble finding a husband in the future, and this resulted in a large drop in the number of babies born in 1966. A previous theoretical analysis of the hinoeuma superstition considered two alternative cultural factors: believers and nonbelievers. In the present study, we considered a third cultural factor, the half-believer. A man that is a half-believer accepts a hinoeuma-woman as his wife, but parents that are half-believers avoid childbirth during hinoeuma years. With these three cultural factors, there are two possible outcomes for the population. In the first outcome, [1] non-believers become extinct, with the population consisting of believers and half-believers; some men refuse hinoeuma-women as their mate choice, and most parents attempt to avoid childbirth during hinoeuma years. In the second outcome, [2] believers become extinct, and the remaining population consists of non-believers and half-believers; no man refuses hinoeuma-women, and some parents avoid childbirth in hinoeuma years to prevent potential harm to their daughters. If birth control fails at a steady rate, believers will become extinct eventually. The superstition is more likely to be maintained if the mother has a stronger influence on the beliefs of her children than the father. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bai, John Y H; Podlesnik, Christopher A
2017-05-01
Greater rates of intermittent reinforcement in the presence of discriminative stimuli generally produce greater resistance to extinction, consistent with predictions of behavioral momentum theory. Other studies reveal more rapid extinction with higher rates of reinforcers - the partial reinforcement extinction effect. Further, repeated extinction often produces more rapid decreases in operant responding due to learning a discrimination between training and extinction contingencies. The present study examined extinction repeatedly with training with different rates of intermittent reinforcement in a multiple schedule. We assessed whether repeated extinction would reverse the pattern of greater resistance to extinction with greater reinforcer rates. Counter to this prediction, resistance to extinction was consistently greater across twelve assessments of training followed by six successive sessions of extinction. Moreover, patterns of responding during extinction resembled those observed during satiation tests, which should not alter discrimination processes with repeated testing. These findings join others suggesting operant responding in extinction can be durable across repeated tests. Copyright © 2017 Elsevier B.V. All rights reserved.
Stability of an intraguild predation system with mutual predation
NASA Astrophysics Data System (ADS)
Wang, Yuanshi; DeAngelis, Donald L.
2016-04-01
We examine intraguild predation (IGP), in which species both compete for resources or space and prey on each other. The IGP system is modeled here by a lattice gas model of the mean-field theory. First, we consider the IGP system of one species in which individuals of the same species cannibalize each other. The dynamical behavior of the model demonstrates a mechanism by which the intraspecific predation promotes persistence of the species. Then we consider the IGP system of two species with mutual predation. Global dynamics of the model exhibit basic properties of IGP: (i) When both species' efficiencies in converting the consumptions into fitness are large, the outcome of their interaction is mutualistic in form and the IGP promotes persistence of both species. (ii) When one species' efficiency is large but the other's is small, the interaction outcomes become parasitic in nature, in which an obligate species can survive through the mutual predation with a facultative one. (iii) When both species' efficiencies are small, the interaction outcomes are competitive in nature and the IGP leads to extinction of one of the species. A novel result of this work is that varying one parameter or population density of the species can lead to transition of interaction outcomes between mutualism, parasitism and competition. On the other hand, dynamics of the models demonstrate that over-predation or under-predation will result in extinction of one/both species, while intermediate predation is favorable under certain parameter ranges.
Amount of fear extinction changes its underlying mechanisms.
An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo
2017-07-03
There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that.
NASA Technical Reports Server (NTRS)
Calzetti, Daniela; Kinney, Anne L.; Storchi-Bergmann, Thaisa
1994-01-01
We analyze the International Ultraviolet Explorer (IUE) UV and the optical spectra of 39 starburst and blue compact galaxies in order to study the average properties of dust extinction in extended regions of galaxies. The optical spectra have been obtained using an aperture which matches that of IUE, so comparable regions within each galaxy are sampled. The data from the 39 galaxies are compared with five models for the geometrical distribution of dust, adopting as extinction laws both the Milky Way and the Large Magellanic Cloud laws. The commonly used uniform dust screen is included among the models. We find that none of the five models is in satisfactory agreement with the data. In order to understand the discrepancy between the data and the models, we have derived an extinction law directly from the data in the UV and optical wavelength range. The resulting curve is characterized by an overall slope which is more gray than the Milky Way extinction law's slope, and by the absence of the 2175 A dust feature. Remarkably, the difference in optical depth between the Balmer emission lines H(sub alpha) and H(sub beta) is about a factor of 2 larger than the difference in the optical depth between the continuum underlying the two Balmer lines. We interpret this discrepancy as a consequence of the fact that the hot ionizing stars are associated with dustier regions than the cold stellar population is. The absence of the 2175 A dust feature can be due either to the effects of the scattering and clumpiness of the dust or to a chemical composition different from that of the Milky Way dust grains. Disentangling the two interpretations is not easy because of the complexity of the spatial distribution of the emitting regions. The extinction law of the UV and optical spectral continua of extended regions can be applied to the spectra of medium- and high-redshift galaxies, where extended regions of a galaxy are, by necessity, sampled.
van der Hoek, Yntze; Renfrew, Rosalind; Manne, Lisa L.
2013-01-01
Background Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions. Methodology/Principal Findings We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to 51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at 19.45–87.96% forest cover for persistence and 50.82–91.02% for extinction dynamics. Conclusions/Significance Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that regardless of the reasons behind these differences, our results merit a warning that threshold values cannot simply be transferred across regions or interpreted as clear-cut targets for ecosystem management and conservation. PMID:23409106
Ma, Pengfei; Huang, Long; Wang, Xiaolin; Zhou, Pu; Liu, Zejin
2016-01-25
In this manuscript, a high power broadband superfluorescent source (SFS) with linear polarization and near-diffraction-limited beam quality is achieved based on an ytterbium-doped (Yb-doped), all fiberized and polarization-maintained master oscillator power amplifier (MOPA) configuration. The MOPA structure generates a linearly polarized output power of 1427 W with a slope efficiency of 80% and a full width at half maximum (FWHM) of 11 nm, which is power scaled by an order of magnitude compared with the previously reported SFSs with linear polarization. In the experiment, both the polarization extinction ratio (PER) and beam quality (M(2) factor) are degraded little during the power scaling process. At maximal output power, the PER and M(2) factor are measured to be 19.1dB and 1.14, respectively. The root-mean-square (RMS) and peak-vale (PV) values of the power fluctuation at maximal output power are just 0.48% and within 3%, respectively. Further power scaling of the whole system is limited by the available pump sources. To the best of our knowledge, this is the first demonstration of kilowatt level broadband SFS with linear polarization and near-diffraction-limited beam quality.
Efficient On-chip Optical Microresonator for Optical Comb Generation: Design and Fabrication
NASA Astrophysics Data System (ADS)
Han, Kyunghun
An optical frequency comb is a series of equally spaced frequency components. It has gained much attention since Nobel physics prize was awarded John L. Hall and Theodor W. Hansch for their contribution to the optical frequency comb technique in 2005. The optical frequency comb has been extensively studied because of its precision as a tool for spectroscopy, and is now widely used in bio- and chemical sensors, optical clocks, mode-locked dark pulse generation, soliton generation, and optical communication. Recently, thanks to the developments in nanotechnology, the optical frequency comb generation is made possible at a chip-scale level with microresonators. However, because the threshold power of the optical frequency comb generation is beyond the capability of the on-chip laser source, efficient microresonator is required. Here, we demonstrate an ultra-compact and highly efficient strip-slot direct mode coupler, aiming to achieve slotted silicon microresonator cladded with nonlinear polymer Poly-DDMEBT in SOI platform. As an application of the strip-slot direct mode coupling, a double slot fiber-to-chip edge coupler is demonstrated showing 2 dB insertion loss reduction compared to the conventional single tip edge coupler. For silicon nitride platform, we investigated evanescent wave coupling of microresonator, focusing on bus waveguide geometry optimization. The optimized waveguide width offers an efficient excitation of a fundamental mode in the resonator waveguide. This investigation can benefit low threshold comb generation by enhancing the extinction ratio. We experimentally demonstrated the high Q-factor micro-ring resonator with intrinsic Q of 12.6 million as well as the single FSR comb generation with 63 mW.
Evolution of the locomotory system in eels (Teleostei: Elopomorpha).
Pfaff, Cathrin; Zorzin, Roberto; Kriwet, Jürgen
2016-08-11
Living anguilliform eels represent a distinct clade of elongated teleostean fishes inhabiting a wide range of habitats. Locomotion of these fishes is highly influenced by the elongated body shape, the anatomy of the vertebral column, and the corresponding soft tissues represented by the musculotendinous system. Up to now, the evolution of axial elongation in eels has been inferred from living taxa only, whereas the reconstruction of evolutionary patterns and functional ecology in extinct eels still is scarce. Rare but excellently preserved fossil eels from the Late Cretaceous and Cenozoic were investigated here to gain a better understanding of locomotory system evolution in anguilliforms and, consequently, their habitat occupations in deep time. The number of vertebrae in correlation with the body length separates extinct and extant anguilliforms. Even if the phylogenetic signal cannot entirely be excluded, the analyses performed here reveal a continuous shortening of the vertebral column with a simultaneous increase in vertebral numbers in conjunction with short lateral tendons throughout the order. These anatomical changes contradict previous hypotheses based on extant eels solely. The body curvatures of extant anguilliforms are highly flexible and can be clearly distinguished from extinct species. Anatomical changes of the vertebral column and musculotendinous system through time and between extinct and extant anguilliforms correlate with changes of the body plan and swimming performance and reveal significant shifts in habitat adaptation and thus behaviour. Evolutionary changes in the skeletal system of eels established here also imply that environmental shifts were triggered by abiotic rather than biotic factors (e.g., K/P boundary mass extinction event).
NASA Astrophysics Data System (ADS)
Long, Yun; Wang, Jian
2014-06-01
Tunability is a desirable property of microring resonators to facilitate superior performance. Using light to control light, we present an alternative simple approach to tuning the extinction ratio (ER) and Q-factor of silicon microring resonators based on optical forces. We design an opto-mechanical tunable silicon microring resonator consisting of an add-drop microring resonator and a control-light-carrying waveguide (``controlling'' waveguide). One of the two bus waveguides of the microring resonator is a deformable nanostring put in parallel with the ``controlling'' waveguide. The tuning mechanism relies on the optical force induced deflection of suspended nanostring, leading to the change of coupling coefficient of microring and resultant tuning of ER and Q-factor. Two possible geometries, i.e. double-clamped nanostring and cantilever nanostring, are studied in detail for comparison. The obtained results imply a favorable structure with the microring positioned at the end of the cantilever nanostring. It features a wide tuning range of ER from 5.6 to 39.9 dB and Q-factor from 309 to 639 as changing the control power from 0 to 1.4 mW.
Kutlu, Munir Gunes; Garrett, Brendan; Gadiwalla, Sana; Tumolo, Jessica M; Gould, Thomas J
2017-11-01
Previous research has shown that acute nicotine, an agonist of nAChRs, impaired fear extinction. However, the effects of acute nicotine on consolidation of contextual fear extinction memories and associated cell signaling cascades are unknown. Therefore, we examined the effects of acute nicotine injections before (pre-extinction) and after (post-extinction) contextual fear extinction on behavior and the phosphorylation of dorsal and ventral hippocampal ERK1/2 and JNK1 and protein levels on the 1st and 3rd day of extinction. Our results showed that acute nicotine administered prior to extinction sessions downregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but not dorsal hippocampus, and JNK1 in both dorsal and ventral hippocampus on the 3rd extinction day. These effects were absent on the 1st day of extinction. We also showed that acute nicotine administered immediately and 30 min, but not 6 h, following extinction impaired contextual fear extinction suggesting that acute nicotine disrupts consolidation of contextual fear extinction memories. Finally, acute nicotine injections immediately after extinction sessions upregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but did not affect JNK1. These results show that acute nicotine impairs contextual fear extinction potentially by altering molecular processes responsible for the consolidation of extinction memories. Copyright © 2017 Elsevier Inc. All rights reserved.
Woods, Amanda M; Bouton, Mark E
2008-12-01
Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In all experiments, conditioning and extinction were accomplished in single sessions, and retention testing took place 24 h after extinction. In both fear and appetitive conditioning, immediate extinction (beginning 10 min after conditioning) caused a faster loss of responding than delayed extinction (beginning 24 h after conditioning). However, immediate extinction was less durable than delayed extinction: There was stronger spontaneous recovery during the final retention test. There was also substantial renewal of responding when the physical context was changed between immediate extinction and testing (Experiment 1). The results suggest that, in these two widely used conditioning preparations, immediate extinction does not erase or depotentiate the original learning, and instead creates a less permanent reduction in conditioned responding. Results did not support the possibility that the strong recovery after immediate extinction was due to a mismatch in the recent "context" provided by the presence or absence of a recent conditioning experience. Several other accounts are considered.
Biostratigraphic case studies of six major extinctions
NASA Technical Reports Server (NTRS)
Sloan, R. E.
1988-01-01
Biostratigraphic case studies of six major extinctions show all are gradual save one, which is a catastrophic extinction of terrestrial origin. These extinctions show a continuum of environmental insults from major to minor. The major causes of these extinctions are positive and negative eustatic sea level changes, temperature, or ecological competition. Extraterrestrial causes should not be posited without positive association with a stratigraphically sharp extinction. The Cretaceous-Tertiary terrestrial extinction is considerably smaller in percentage of extinction than the marine extinction and is spread over 10 my of the Cretaceous and 1 my of the Tertiary. Sixty percent of the 30 dinosaurs in the northern Great Plains of the U.S. and Canada had become extinct in the 9 my before the late Maastrichtian sea level drop. The best data on the Permo-Triassic terrestrial extinction are from the Karoo basin of South Africa. This is a series of 6 extinctions in some 8 my, recorded in some 2800 meters of sediment. Precision of dating is enhanced by the high rate of accumulation of these sediments. Few data are readily available on the timing of the marine Permo-Triassic extinction, due to the very restricted number of sequences of Tatarian marine rocks. The terminal Ordovician extinction at 438 my is relatively rapid, taking place over about 0.5 my. The most significant aspect of this extinction is a eustatic sea level lowering associated with a major episode of glaciation. New data on this extinction is the reduction from 61 genera of trilobites in North America to 14, for a 77 percent extinction. Another Ordovician extinction present over 10 percent of the North American craton occurs at 454 my in the form of a catastrophic extinction due to a volcanic eruption which blanketed the U.S. east of the Transcontinental Arch. This is the only other sizeable extinction in the Ordovician.
NASA Technical Reports Server (NTRS)
Collom, Christopher J.
1988-01-01
Traditional mass extinction research has predominently concentrated on statistically demonstrating that mass extinction intervals are significantly above background levels of familial and generic extinction in terms of extinction percentage, extinction rate, and per-taxon extinction rate; mass extinction intervals occur on a set periodicity throughout geologic time, which is estimated to be some 30 MYR in duration. The published literature has given little emphasis to equally important considerations and metrics such as origination rate, standing diversity, and rate of generation of new taxa DURING mass extinction intervals. The extent to which a mass extinction affects the regional or global biota, must ultimately be gauged by taking into consideration both the number of taxa which become extinct at or near the event (stage) boundary, and the number of taxa which are either not affected at all by the extinction or actually evolved during or shortly before/after the extinction interval. These effects can be seen in Cretaceous Ammonoidea (at the genus level), and their combined usage allow better insight into paleobiological dynamics and responses to mass extinction and its affect on this dominant Molluscan organism.
NASA Astrophysics Data System (ADS)
Wright, M. W.
2000-04-01
Semiconductor lasers offer promise as high-speed transmitters for free-space optical communication systems. This article examines the performance of a semiconductor laser system in a master-oscillator power-amplifier (MOPA) geometry developed through a Small Business Innovation Research (SBIR) contract with SDL, Inc. The compact thermo-electric cooler (TEC) packaged device is capable of 1-W output optical power at greater than 2-Gb/s data rates and a wavelength of 960 nm. In particular, we have investigated the effects of amplified spontaneous emission on the modulation extinction ratio and bit-error rate (BER) performance. BERs of up to 10^(-9) were possible at 1.4 Gb/s; however, the modulation extinction ratio was limited to 6 dB. Other key parameters for a free-space optical transmitter, such as the electrical-optical efficiency (24 percent) and beam quality, also were measured.
Acoustical radiation torque and force for spheres and Bessel beam extinction efficiency
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Zhang, Likun
2014-11-01
The scattering of optical and acoustical beams is relevant to the levitation and manipulation of drops. Here we examine theoretical developments in the acoustical case. We previously showed how the optical theorem for extinction can be extended to invariant beams. The example of a sphere in a Bessel beam facilitates the direct comparison with a circular disc computed using Babinet's principle and the Kirchhoff approximation. In related work, by considering traveling or standing wave first-order vortex beams we previously showed that the radiation torque is the ratio of the absorbed power and the radian acoustic frequency. By modifying the scattering to account for the viscosity of the surrounding fluid in the analysis of the absorbed power, approximations for radiation torque and force are obtained at long wavelengths in special cases and these can be compared with results published elsewhere.
Expanding the Intertrial Interval During Extinction: Response Cessation and Recovery
Orinstein, Alyssa J.; Urcelay, Gonzalo P.; Miller, Ralph R.
2010-01-01
We examined trial spacing during extinction following a human contingency learning task. Specifically, we assessed if an expanding retrieval practice schedule (Bjork & Bjork, 1992, 2006), in which the spacing between extinction trials was progressively increased, would result in faster immediate extinction and less recovery from extinction than uniformly spaced extinction trials. We used an ABB vs. ABA renewal design and observed that, whereas the expanding group extinguished faster during extinction treatment, the expanding and constant groups showed the same level of extinction with an immediate test in the extinction context (ABB) and the two groups showed equivalent ABA renewal at test in the training context. We conclude that the faster extinction observed in the expanding groups could be misleading in clinical treatment, if the therapist used the absence of fear during extinction as the basis for terminating treatment. PMID:20171324
Inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear.
Jiang, Lizhu; Mao, Rongrong; Tong, Jianbin; Li, Jinnan; Chai, Anping; Zhou, Qixin; Yang, Yuexiong; Wang, Liping; Li, Lingjiang; Xu, Lin
2016-10-01
Promoting extinction of fear memory is the main treatment of fear disorders, especially post-traumatic stress disorder (PTSD). However, fear extinction is often incomplete in these patients. Our previous study had shown that Rac1 activity in hippocampus plays a crucial role in the learning of contextual fear memory in rats. Here, we further investigated whether Rac1 activity also modulated the extinction of contextual fear memory. We found that massed extinction obviously upregulated hippocampal Rac1 activity and induced long-term extinction of contextual fear in rats. Intrahippocampal injection of the Rac1 inhibitor NSC23766 prevents extinction of contextual fear in massed extinction training rats. In contrast, long-spaced extinction downregulated Rac1 activity and caused less extinction. And Rac1 activator CN04-A promotes extinction of contextual fear in long-spaced extinction rats. Our study demonstrates that inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear, suggesting that modulating Rac1 activity of the hippocampus may be promising therapy of fear disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rosa, Jessica; Myskiw, Jociane C; Furini, Cristiane R G; Sapiras, Gerson G; Izquierdo, Ivan
2014-09-01
We investigate whether the extinction of inhibitory avoidance (IA) learning can be subjected to endogenous state-dependence with systemic injections of epinephrine (E), and whether endogenous norepinephrine (NE) and the nucleus tractus solitarius (NTS)→locus coeruleus→hippocampus/amygdala (HIPP/BLA) pathway participate in this. Rats trained in IA were submitted to two sessions of extinction 24 h apart: In the first, the animals were submitted to a training session of extinction, and in the second they were tested for the retention of extinction. Saline or E were given i.p. immediately after the extinction training (post-extinction training injections) and/or 6 min before the extinction test (pre-extinction test). Post-extinction training E (50 or 100 μg/kg) induced a poor retrieval of extinction in the test session of this task unless an additional E injection (50 μg/kg) was given prior to the extinction test. This suggested state-dependence. Muscimol (0.01 μg/side) microinfused into the NTS prior to the extinction test session blocked E-induced state-dependence. Norepinephrine (NE, 1 μg/side) infused bilaterally into NTS restores the extinction impairment caused by post-extinction training i.p. E. In animals with bilateral NTS blockade induced by muscimol, NE (1 μg/side) given prior to the extinction test into the CA1 region of the dorsal hippocampus or into the basolateral amygdala restored the normal extinction levels that had been impaired by muscimol. These results suggest a role for the NTS→locus coeruleus→HIPP/BLA pathway in the retrieval of extinction, as it has been shown to have in the consolidation of inhibitory avoidance and of object recognition learning. Copyright © 2013 Elsevier Inc. All rights reserved.
Extinction and anti-extinction: the "attentional waiting" hypothesis.
Watling, Rosamond; Danckert, James; Linnell, Karina J; Cocchini, Gianna
2013-03-01
Patients with visual extinction have difficulty detecting a single contralesional stimulus when a second stimulus is simultaneously presented on the ipsilesional side. The rarely reported phenomenon of visual anti-extinction describes the opposite behavior, in which patients show greater difficulty in reporting a stimulus presented in isolation than they do in reporting 2 simultaneously presented stimuli. S. J. Goodrich and R. Ward (1997, Anti-extinction following unilateral parietal damage, Cognitive Neuropsychology, Vol. 14, pp. 595-612) suggested that visual anti-extinction is the result of a task-specific mechanism in which processing of the ipsilesional stimulus facilitates responses to the contralesional stimulus; in contrast, G. W. Humphreys, M. J. Riddoch, G. Nys, and D. Heinke (2002, Transient binding by time: Neuropsychological evidence from anti-extinction, Cognitive Neuropsychology, Vol. 19, pp. 361-380) suggested that temporal binding groups contralesional and ipsilesional stimuli together at brief exposure durations. We investigated extinction and anti-extinction phenomena in 3 brain-damaged patients using an extinction paradigm in which the stimulus exposure duration was systematically manipulated. Two patients showed both extinction and anti-extinction depending on the exposure duration of stimuli. Data confirmed the crucial role of duration in modulating the effect of extinction and anti-extinction. However, contrary to Humphreys and colleagues' (2002) single case, our patients showed extinction for short and anti-extinction for long exposure durations, suggesting that different mechanisms might underlie our patients' pattern of data. We discuss a novel "attentional waiting" hypothesis, which proposes that anti-extinction may be observed in patients showing extinction if the exposure duration of stimuli is increased. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Furlong, T M; Pan, M J; Corbit, L H
2015-01-01
Alcohol-related stimuli can trigger relapse of alcohol-seeking behaviors even after extended periods of abstinence. Extinction of such stimuli can reduce their impact on relapse; however, the expression of extinction can be disrupted when testing occurs outside the context where extinction learning took place, an effect termed renewal. Behavioral and pharmacological methods have recently been shown to augment extinction learning; yet, it is not known whether the improved expression of extinction following these treatments remains context-dependent. Here we examined whether two methods, compound–stimulus extinction and treatment with the noradrenaline reuptake inhibitor atomoxetine, would reduce the vulnerability of extinction to a change in context. Following alcohol self-administration, responding was extinguished in a distinct context. After initial extinction, further extinction was given to a target stimulus presented in compound with another alcohol-predictive stimulus intended to augment prediction error (Experiment 1) or after a systemic injection of atomoxetine (1.0 mg kg−1; Experiment 2). A stimulus extinguished as part of a compound elicited less responding than a stimulus receiving equal extinction alone regardless of whether animals were tested in the training or extinction context; however, reliable renewal was not observed in this paradigm. Importantly, atomoxetine enhanced extinction relative to controls even in the presence of a reliable renewal effect. Thus, extinction of alcohol-seeking behavior can be improved by extinguishing multiple alcohol-predictive stimuli or enhancing noradrenaline neurotransmission during extinction training. Importantly, both methods improve extinction even when the context is changed between extinction training and test, and thus could be utilized to enhance the outcome of extinction-based treatments for alcohol-use disorders. PMID:26327688
Contrasting responses of functional diversity to major losses in taxonomic diversity.
Edie, Stewart M; Jablonski, David; Valentine, James W
2018-01-23
Taxonomic diversity of benthic marine invertebrate shelf species declines at present by nearly an order of magnitude from the tropics to the poles in each hemisphere along the latitudinal diversity gradient (LDG), most steeply along the western Pacific where shallow-sea diversity is at its tropical maximum. In the Bivalvia, a model system for macroevolution and macroecology, this taxonomic trend is accompanied by a decline in the number of functional groups and an increase in the evenness of taxa distributed among those groups, with maximum functional evenness (FE) in polar waters of both hemispheres. In contrast, analyses of this model system across the two era-defining events of the Phanerozoic, the Permian-Triassic and Cretaceous-Paleogene mass extinctions, show only minor declines in functional richness despite high extinction intensities, resulting in a rise in FE owing to the persistence of functional groups. We hypothesize that the spatial decline of taxonomic diversity and increase in FE along the present-day LDG primarily reflect diversity-dependent factors, whereas retention of almost all functional groups through the two mass extinctions suggests the operation of diversity-independent factors. Comparative analyses of different aspects of biodiversity thus reveal strongly contrasting biological consequences of similarly severe declines in taxonomic diversity and can help predict the consequences for functional diversity among different drivers of past, present, and future biodiversity loss.
Myers, Catherine E.; VanMeenen, Kirsten M.; McAuley, J. Devin; Beck, Kevin D.; Pang, Kevin C. H.; Servatius, Richard J.
2012-01-01
Prior studies have sometimes demonstrated facilitated acquisition of classically-conditioned responses and/or resistance to extinction in post-traumatic stress disorder (PTSD). However, it is unclear whether these behaviors are acquired as a result of PTSD or exposure to trauma, or reflect pre-existing risk factors that confer vulnerability for PTSD. Here, we examined classical eyeblink conditioning and extinction in veterans self-assessed for current PTSD symptoms, exposure to combat, and the personality trait of behavioral inhibition (BI), a risk factor for PTSD. 128 veterans were recruited (mean age 51.2 years; 13.3% female); 126 completed self-assessment, with 25.4% reporting a history of exposure to combat and 30.9% reporting severe, current PTSD symptoms (PTSS). PTSD symptom severity was correlated with current BI (R2=0.497) and PTSS status could be predicted based on current BI and combat history (80.2% correct classification). A subset of the veterans (n=87) also completed eyeblink conditioning. Among veterans without PTSS, childhood BI was associated with faster acquisition; veterans with PTSS showed delayed extinction, under some conditions. These data demonstrate a relationship between current BI and PTSS, and suggest that the facilitated conditioning sometimes observed in PTSD patients may partially reflect personality traits such as childhood BI that pre-date and contribute to vulnerability for PTSD. PMID:21790343
A Wavelength Optimization Study on Visible and Infrared Propagation Systems in Coastal Environments
NASA Technical Reports Server (NTRS)
Reid, J. S.; Tsay, Si-Chee; Moision, W. K.; Gasso, S.; Cook, J. R.; Westphal, D. L.; Paulus, R. A.; Bucholtz, A.; Lau, William K. M. (Technical Monitor)
2002-01-01
Electro-optical (EO) systems employed for communications, surveillance and weapons systems are commonly assessed in the North American and European continents. However, the atmospheric propagation environment in these regions is often dissimilar to most other parts of the world. In particular, atmospheric dust, industrial pollution, and smoke frequently reduce visibility to less than 5 km in Asia and South America significantly hampering EO system performance. Because atmospheric aerosol species vary considerably in size and chemistry, optimal wavelengths for EO systems vary from region to region. In this paper we examine the extinction effects from aerosol particles and water vapor on a regional basis. Theoretical studies are coupled with visibility and satellite climatologies to make an assessment for the coastal regions of the world. While longer wavelengths permit higher transmission by particles in regions significantly hampered by fine mode particles (such as industrial pollution and smoke), this advantage is commonly offset by high extinction values from water vapor. This offsetting effect is particularly strong in industrial and developing countries in the tropics and sub-tropics such as Southeast Asia and South America. Conversely, the advantage of low water vapor concentrations in longer wavelengths is offset by high mass-extinction efficiencies of atmospheric dust in this portion of the spectrum.
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Feng; Xing, Jian
2017-10-01
In this paper, a hybrid artificial bee colony (ABC) algorithm and pattern search (PS) method is proposed and applied for recovery of particle size distribution (PSD) from spectral extinction data. To be more useful and practical, size distribution function is modelled as the general Johnson's ? function that can overcome the difficulty of not knowing the exact type beforehand encountered in many real circumstances. The proposed hybrid algorithm is evaluated through simulated examples involving unimodal, bimodal and trimodal PSDs with different widths and mean particle diameters. For comparison, all examples are additionally validated by the single ABC algorithm. In addition, the performance of the proposed algorithm is further tested by actual extinction measurements with real standard polystyrene samples immersed in water. Simulation and experimental results illustrate that the hybrid algorithm can be used as an effective technique to retrieve the PSDs with high reliability and accuracy. Compared with the single ABC algorithm, our proposed algorithm can produce more accurate and robust inversion results while taking almost comparative CPU time over ABC algorithm alone. The superiority of ABC and PS hybridization strategy in terms of reaching a better balance of estimation accuracy and computation effort increases its potentials as an excellent inversion technique for reliable and efficient actual measurement of PSD.
The NASA Micro-Pulse Lidar Network (MPLNET): Co-location of Lidars with AERONET
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Holben, Brent; Tsay, Si-Chee
2004-01-01
We present the formation of a global-ground based eye-safe lidar network, the NASA Micro-Pulse Lidar Network (MPLNET). The aim of MPLNET is to acquire long-term observations of aerosol and cloud vertical profiles at unique geographic sites within the NASA Aerosol Robotic Network (AERONET). Network growth follows a federated approach, pioneered by AERONET, wherein independent research groups may join MPLNET with their own instrument and site. MPLNET utilizes standard instrumentation and data processing algorithms for efficient network operations and direct comparison of data between each site. The micro-pulse lidar is eye-safe, compact, and commercially available, and most easily allows growth of the network without sacrificing standardized instrumentation gods. Red-time data products (next-day) are available, and include Level 1 daily lidar signal images from the surface to -2Okm, and Level 1.5 aerosol extinction provides at times co-incident with AERONET observations. Testing of our quality assured aerosol extinction products, Level 2, is near completion and data will soon be available. Level 3 products, continuous daylight aerosol extinction profiles, are under development and testing has begun. An overview of h4PL" will be presented. Successful methods of merging standardized lidar operations with AERONET will also be discussed, with the first 4 years of MPLNET results serving as an example.
Amount of fear extinction changes its underlying mechanisms
An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo
2017-01-01
There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that. DOI: http://dx.doi.org/10.7554/eLife.25224.001 PMID:28671550
Local population extinction and vitality of an epiphytic lichen in fragmented old-growth forest.
Ockinger, Erik; Nilsson, Sven G
2010-07-01
The population dynamics of organisms living in short-lived habitats will largely depend on the turnover of habitat patches. It has been suggested that epiphytes, whose host plants can be regarded as habitat patches, often form such patch-tracking populations. However, very little is known about the long-term fate of epiphyte individuals and populations. We estimated life span and assessed environmental factors influencing changes in vitality, fertility, abundance, and distribution of the epiphytic lichen species Lobaria pulmonaria on two spatial scales, individual trees and forest patches, over a period of approximately 10 years in 66 old-growth forest fragments. The lichen had gone extinct from 7 of the 66 sites (13.0%) where it was found 10 years earlier, even though the sites remained unchanged. The risk of local population extinction increased with decreasing population size. In contrast to the decrease in the number of occupied trees and sites, the mean area of the lichen per tree increased by 43.0%. The number of trees with fertile ramets of L. pulmonaria increased from 7 (approximately 1%) to 61 (approximately 10%) trees, and the number of forest fragments with fertile ramets increased from 4 to 23 fragments. The mean annual rate of L. pulmonaria extinction at the tree level was estimated to be 2.52%, translating into an expected lifetime of 39.7 years. This disappearance rate is higher than estimated mortality rates for potential host trees. The risk of extinction at the tree level was significantly positively related to tree circumference and differed between tree species. The probability of presence of fertile ramets increased significantly with local population size. Our results show a long expected lifetime of Lobaria pulmonaria ramets on individual trees and a recent increase in vitality, probably due to decreasing air pollution. The population is, however, declining slowly even though remaining stands are left uncut, which we interpret as an extinction debt.
Global warming and extinctions of endemic species from biodiversity hotspots.
Malcolm, Jay R; Liu, Canran; Neilson, Ronald P; Hansen, Lara; Hannah, Lee
2006-04-01
Global warming is a key threat to biodiversity, but few researchers have assessed the magnitude of this threat at the global scale. We used major vegetation types (biomes) as proxies for natural habitats and, based on projected future biome distributions under doubled-CO2 climates, calculated changes in habitat areas and associated extinctions of endemic plant and vertebrate species in biodiversity hotspots. Because of numerous uncertainties in this approach, we undertook a sensitivity analysis of multiple factors that included (1) two global vegetation models, (2) different numbers of biome classes in our biome classification schemes, (3) different assumptions about whether species distributions were biome specific or not, and (4) different migration capabilities. Extinctions were calculated using both species-area and endemic-area relationships. In addition, average required migration rates were calculated for each hotspot assuming a doubled-CO2 climate in 100 years. Projected percent extinctions ranged from <1 to 43% of the endemic biota (average 11.6%), with biome specificity having the greatest influence on the estimates, followed by the global vegetation model and then by migration and biome classification assumptions. Bootstrap comparisons indicated that effects on hotpots as a group were not significantly different from effects on random same-biome collections of grid cells with respect to biome change or migration rates; in some scenarios, however, botspots exhibited relatively high biome change and low migration rates. Especially vulnerable hotspots were the Cape Floristic Region, Caribbean, Indo-Burma, Mediterranean Basin, Southwest Australia, and Tropical Andes, where plant extinctions per hotspot sometimes exceeded 2000 species. Under the assumption that projected habitat changes were attained in 100 years, estimated global-warming-induced rates of species extinctions in tropical hotspots in some cases exceeded those due to deforestation, supporting suggestions that global warming is one of the most serious threats to the planet's biodiversity.
Maisey, J G
2012-04-01
The Subclass Elasmobranchii is widely considered nowadays to be the sister group of the Subclass Holocephali, although chimaeroid fishes were originally classified as elasmobranchs along with modern sharks and rays. While this modern systematic treatment provides an accurate reflection of the phylogenetic relationships among extant taxa, the classification of many extinct non-holocephalan shark-like chondrichthyans as elasmobranchs is challenged. A revised, apomorphy-based definition of elasmobranchs is presented in which they are considered the equivalent of neoselachians, i.e. a monophyletic group of modern sharks and rays which not only excludes all stem and crown holocephalans, but also many Palaeozoic shark-like chondrichthyans and even close extinct relatives of neoselachians such as hybodonts. The fossil record of elasmobranchs (i.e. neoselachians) is reviewed, focusing not only on their earliest records but also on their subsequent distribution patterns through time. The value and limitations of the fossil record in answering questions about elasmobranch phylogeny are discussed. Extinction is seen as a major factor in shaping early elasmobranch history, especially during the Triassic. Extinctions may also have helped shape modern lamniform diversity, despite uncertainties surrounding the phylogenetic affinities of supposedly extinct clades such as cretoxyrhinids, anacoracids and odontids. Apart from these examples, and the supposed Cretaceous extinction of 'sclerorhynchids', elasmobranch evolution since the Jurassic has mostly involved increased diversification (especially during the Cretaceous). The biogeographical distribution of early elasmobranchs may be obscured by sampling bias, but the earliest records of numerous groups are located within the Tethyan realm. The break-up of Gondwana, and particularly the opening of the South Atlantic Ocean (together with the development of epicontinental seaways across Brazil and Africa during the Cretaceous), provided repeated opportunities for dispersal from both eastern (European) and western (Caribbean) Tethys into newly formed ocean basins. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Maschinski, Joyce; Baggs, Joanne E; Quintana-Ascencio, Pedro F; Menges, Eric S
2006-02-01
The threat of global warming to rare species is a growing concern, yet few studies have predicted its effects on rare populations. Using demographic data gathered in both drought and nondrought years between 1996-2003 in central Arizona upper Sonoran Desert, we modeled population viability for the federally endangered Purshia subintegra (Kearney) Henrickson (Arizona cliffrose). We used deterministic matrix projection models and stochastic models simulating weather conditions during our study, given historical weather variation and under scenarios of increased aridity. Our models suggest that the P. subintegra population in Verde Valley is slowly declining and will be at greater risk of extinction with increased aridity. Across patches at a fine spatial scale, demographic performance was associated with environmental factors. Moist sites (patches with the highest soil moisture, lowest sand content, and most northern aspects) had the highest densities, highest seedling recruitment, and highest risk of extinction over the shortest time span. Extinction risk in moist sites was exacerbated by higher variance in recruitment and mortality. Dry sites had higher cumulative adult survival and lower extinction risk but negative growth rates. Steps necessary for the conservation of the species include introductions at more northern latitudes and in situ manipulations to enhance seedling recruitment and plant survival. We demonstrate that fine spatial-scale modeling is necessary to predict where patches with highest extinction risk or potential refugia for rare species may occur Because current climate projections for the 21st century imply range shifts at rates of 300 to 500 km/century, which are beyond even exceptional examples of shifts in the fossil record of 100-150 km, it is likely that preservation of many rare species will require human intervention and a long-term commitment. Global warming conditions are likely to reduce the carrying capacity of many rare species' habitats.
Extinction rates in North American freshwater fishes, 1900-2010
Burkhead, Noel M.
2012-01-01
Widespread evidence shows that the modern rates of extinction in many plants and animals exceed background rates in the fossil record. In the present article, I investigate this issue with regard to North American freshwater fishes. From 1898 to 2006, 57 taxa became extinct, and three distinct populations were extirpated from the continent. Since 1989, the numbers of extinct North American fishes have increased by 25%. From the end of the nineteenth century to the present, modern extinctions varied by decade but significantly increased after 1950 (post-1950s mean = 7.5 extinct taxa per decade). In the twentieth century, freshwater fishes had the highest extinction rate worldwide among vertebrates. The modern extinction rate for North American freshwater fishes is conservatively estimated to be 877 times greater than the background extinction rate for freshwater fishes (one extinction every 3 million years). Reasonable estimates project that future increases in extinctions will range from 53 to 86 species by 2050.
A globally-distributed alien invasive species poses risks to United States imperiled species.
McClure, Meredith L; Burdett, Christopher L; Farnsworth, Matthew L; Sweeney, Steven J; Miller, Ryan S
2018-03-28
In the midst of Earth's sixth mass extinction event, non-native species are a driving factor in many imperiled species' declines. One of the most widespread and destructive alien invasive species in the world, wild pigs (Sus scrofa) threaten native species through predation, habitat destruction, competition, and disease transmission. We show that wild pigs co-occur with up to 87.2% of imperiled species in the contiguous U.S. identified as susceptible to their direct impacts, and we project increases in both the number of species at risk and the geographic extent of risks by 2025. Wild pigs may therefore present a severe threat to U.S. imperiled species, with serious implications for management of at-risk species throughout wild pigs' global distribution. We offer guidance for efficient allocation of research effort and conservation resources across species and regions using a simple approach that can be applied to wild pigs and other alien invasive species globally.
Theoretical Study of Effect of Introducing π-Conjugation on Efficiency of Dye-Sensitized Solar Cell.
Lee, Geon Hyeong; Kim, Young Sik
2018-09-01
In this study, phenoxazine (PXZ)-based dye sensitizers with triphenylamine (TPA) as a dual-electron donor and thiophen and benzothiadiazole (BTD) or 4,7-diethynylbenzo[c][1,2,5]thiadiazole (DEBT) as an electron acceptor (dye1, dye2, and dye3) were designed and investigated. dye3 can significantly stabilize the lowest unoccupied molecular orbital (LUMO) energy level of an organic dye. We used density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations to better understand the factors responsible for the photovoltaic performance. The absorption spectrum of the dyes showed different forms because of the different energy levels of the molecular orbital (MO) of each dye and the intramolecular energy transfer (EnT). Among the three dyes, dye3 showed greater red-shift, broader absorption spectra, and higher molar extinction coefficient. These results indicate that adding a withdrawing unit and π-conjugation to a dye can result in good photovoltaic properties for dye-sensitized solar cells (DSSCs).
Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition
ERIC Educational Resources Information Center
Archbold, Georgina E.; Dobbek, Nick; Nader, Karim
2013-01-01
Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…
Erosion of lizard diversity by climate change and altered thermal niches.
Sinervo, Barry; Méndez-de-la-Cruz, Fausto; Miles, Donald B; Heulin, Benoit; Bastiaans, Elizabeth; Villagrán-Santa Cruz, Maricela; Lara-Resendiz, Rafael; Martínez-Méndez, Norberto; Calderón-Espinosa, Martha Lucía; Meza-Lázaro, Rubi Nelsi; Gadsden, Héctor; Avila, Luciano Javier; Morando, Mariana; De la Riva, Ignacio J; Victoriano Sepulveda, Pedro; Rocha, Carlos Frederico Duarte; Ibargüengoytía, Nora; Aguilar Puntriano, César; Massot, Manuel; Lepetz, Virginie; Oksanen, Tuula A; Chapple, David G; Bauer, Aaron M; Branch, William R; Clobert, Jean; Sites, Jack W
2010-05-14
It is predicted that climate change will cause species extinctions and distributional shifts in coming decades, but data to validate these predictions are relatively scarce. Here, we compare recent and historical surveys for 48 Mexican lizard species at 200 sites. Since 1975, 12% of local populations have gone extinct. We verified physiological models of extinction risk with observed local extinctions and extended projections worldwide. Since 1975, we estimate that 4% of local populations have gone extinct worldwide, but by 2080 local extinctions are projected to reach 39% worldwide, and species extinctions may reach 20%. Global extinction projections were validated with local extinctions observed from 1975 to 2009 for regional biotas on four other continents, suggesting that lizards have already crossed a threshold for extinctions caused by climate change.
Hafenbreidel, Madalyn; Todd, Carolynn Rafa; Twining, Robert C.; Tuscher, Jennifer J.; Mueller, Devin
2014-01-01
Rationale Extinction of drug seeking is facilitated by NMDA receptor (NMDAr) agonists, but it remains unclear whether extinction is dependent on NMDAr activity. Objectives We investigated the necessity of NMDArs for extinction of cocaine seeking, and whether extinction altered NMDAr expression within extinction-related neuroanatomical loci. Methods Rats were trained to lever press for i.v. infusions of cocaine or sucrose reinforcement prior to extinction training or withdrawal. Results Administration of the NMDAr competitive antagonist CPP prior to four brief extinction sessions impaired subsequent extinction retention. In contrast, post-extinction administration of the NMDAr coagonist D-serine attenuated lever pressing across days as compared to saline administration, indicative of facilitated consolidation of extinction. Furthermore, expression of the NMDAr subunits, GluN2A and GluN2B, was not altered in the ventromedial prefrontal cortex. However, both GluN2A and GluN2B subunit expression in the nucleus accumbens was increased following cocaine self-administration, and this increased expression was relatively resistant to modulation by extinction. Conclusions Our findings demonstrate that extinction of cocaine seeking is bidirectionally mediated by NMDArs and suggest that selective modulation of NMDAr activity could facilitate extinction-based therapies for treatment of cocaine abuse. PMID:24847958
The role of the medial prefrontal cortex in trace fear extinction
Kwapis, Janine L.; Jarome, Timothy J.
2015-01-01
The extinction of delay fear conditioning relies on a neural circuit that has received much attention and is relatively well defined. Whether this established circuit also supports the extinction of more complex associations, however, is unclear. Trace fear conditioning is a better model of complex relational learning, yet the circuit that supports extinction of this memory has received very little attention. Recent research has indicated that trace fear extinction requires a different neural circuit than delay extinction; trace extinction requires the participation of the retrosplenial cortex, but not the amygdala, as noted in a previous study. Here, we tested the roles of the prelimbic and infralimbic regions of the medial prefrontal cortex in trace and delay fear extinction by blocking NMDA receptors during extinction learning. We found that the prelimbic cortex is necessary for trace, but not for delay fear extinction, whereas the infralimbic cortex is involved in both types of extinction. These results are consistent with the idea that trace fear associations require plasticity in multiple cortical areas for successful extinction. Further, the infralimbic cortex appears to play a role in extinction regardless of whether the animal was initially trained in trace or delay conditioning. Together, our results provide new information about how the neural circuits supporting trace and delay fear extinction differ. PMID:25512576
Burke, Christopher S; Byrne, Aisling; Keyes, Tia E
2018-06-06
Exploiting NF-κB transcription factor peptide conjugation, a Ru(II)-bis-tap complex (tap = 1,4,5,8-tetraazaphenanthrene) was targeted specifically to the nuclei of live HeLa and CHO cells for the first time. DNA binding of the complex within the nucleus of live cells was evident from gradual extinction of the metal complex luminescence after it had crossed the nuclear envelope, attributed to guanine quenching of the ruthenium emission via photoinduced electron transfer. Resonance Raman imaging confirmed that the complex remained in the nucleus after emission is extinguished. In the dark and under imaging conditions the cells remain viable, but efficient cellular destruction was induced with precise spatiotemporal control by applying higher irradiation intensities to selected cells. Solution studies indicate that the peptide conjugated complex associates strongly with calf thymus DNA ex-cellulo and gel electrophoresis confirmed that the peptide conjugate is capable of singlet oxygen independent photodamage to plasmid DNA. This indicates that the observed efficient cellular destruction likely operates via direct DNA oxidation by photoinduced electron transfer between guanine and the precision targeted Ru(II)-tap probe. The discrete targeting of polyazaaromatic complexes to the cell nucleus and confirmation that they are photocytotoxic after nuclear delivery is an important step toward their application in cellular phototherapy.
Plasmon-mediated Energy Conversion in Metal Nanoparticle-doped Hybrid Nanomaterials
NASA Astrophysics Data System (ADS)
Dunklin, Jeremy R.
Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was obtained between measured and estimated thermal profiles for AuNP-polymer dispersions. Concurrently, in situ reduction of AuNPs on two-dimensional semiconducting tungsten disulfide (WS2) addressed two current material limitations for efficient light harvesting: low monolayer content and lack of optoelectronic tunability. Order-of-magnitude increases in WS2 monolayer content, enhanced broadband optical extinction, and energetic electron injection were probed using a combination of spectroscopic techniques and continuum electromagnetic descriptions. Together, engineering these plasmon-mediated hybrid nanomaterials to facilitate local exchange of optical, thermal, and electronic energy supports design and implementation into several emerging sustainable water and energy applications.
Maeng, Lisa Y; Cover, Kara K; Taha, Mohamad B; Landau, Aaron J; Milad, Mohammed R; Lebrón-Milad, Kelimer
2017-01-02
There is growing evidence that estradiol (E2) enhances fear extinction memory consolidation. However, it is unclear how E2 influences the nodes of the fear extinction network to enhance extinction memory. This study begins to delineate the neural circuits underlying the influence of E2 on fear extinction acquisition and consolidation in female rats. After fear conditioning (day 1), naturally cycling female rats underwent extinction learning (day 2) in a low-E2 state, receiving a systemic administration of either E2 or vehicle prior to extinction training. Extinction memory recall was then tested 24 hr later (day 3). We measured immediate early gene c-fos expression within the extinction network during fear extinction learning and extinction recall. During extinction learning, E2 treatment increased centrolateral amygdala c-fos activity and reduced lateral amygdala activity relative to vehicle. During extinction recall, E2-treated rats exhibited reduced c-fos expression in the centromedial amygdala. There were no group differences in c-fos expression within the medial prefrontal cortex or dorsal hippocampus. Examining c-fos ratios with the infralimbic cortex (IL) revealed that, despite the lack of group differences within the IL, E2 treatment induced greater IL activity relative to both prelimbic cortex and central amygdala (CeA) activity during extinction memory recall. Only the relationship between IL and CeA activity positively correlated with extinction retention. In conclusion, E2 appears to modify interactions between the IL and the CeA in females, shifting from stronger amygdalar modulation of fear during extinction learning to stronger IL control during extinction recall. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chai, Ning; Liu, Jian-Feng; Xue, Yan-Xue; Yang, Chang; Yan, Wei; Wang, Hui-Min; Luo, Yi-Xiao; Shi, Hai-Shui; Wang, Ji-Shi; Bao, Yan-Ping; Meng, Shi-Qiu; Ding, Zeng-Bo; Wang, Xue-Yi; Lu, Lin
2014-01-01
Fear extinction has been extensively studied, but little is known about the molecular processes that underlie the persistence of extinction long-term memory (LTM). We found that microinfusion of norepinephrine (NE) into the CA1 area of the dorsal hippocampus during the early phase (0 h) after extinction enhanced extinction LTM at 2 and 14 days after extinction. Intra-CA1 infusion of NE during the late phase (12 h) after extinction selectively promoted extinction LTM at 14 days after extinction that was blocked by the β-receptor antagonist propranolol, protein kinase A (PKA) inhibitor Rp-cAMPS, and protein synthesis inhibitors anisomycin and emetine. The phosphorylation levels of PKA, cyclic adenosine monophosphate response element-binding protein (CREB), GluR1, and the membrane GluR1 level were increased by NE during the late phase after extinction that was also blocked by propranolol and Rp-cAMPS. These results suggest that the enhancement of extinction LTM persistence induced by NE requires the activation of the β-receptor/PKA/CREB signaling pathway and membrane GluR1 trafficking. Moreover, extinction increased the phosphorylation levels of Erk1/2, CREB, and GluR1, and the membrane GluR1 level during the late phase, and anisomycin/emetine alone disrupted the persistence of extinction LTM, indicating that the persistence of extinction LTM requires late-phase protein synthesis in the CA1. Propranolol and Rp-cAMPS did not completely disrupt the persistence of extinction LTM, suggesting that another β-receptor/PKA-independent mechanism underlies the persistence of extinction LTM. Altogether, our results showed that enhancing hippocampal noradrenergic activity during the late phase after extinction selectively promotes the persistence of extinction LTM. PMID:24553734
Associative learning versus fear habituation as predictors of long-term extinction retention.
Brown, Lily A; LeBeau, Richard T; Chat, Ka Yi; Craske, Michelle G
2017-06-01
Violation of unconditioned stimulus (US) expectancy during extinction training may enhance associative learning and result in improved long-term extinction retention compared to within-session habituation. This experiment examines variation in US expectancy (i.e., expectancy violation) as a predictor of long-term extinction retention. It also examines within-session habituation of fear-potentiated startle (electromyography, EMG) and fear of conditioned stimuli (CS) throughout extinction training as predictors of extinction retention. Participants (n = 63) underwent fear conditioning, extinction and retention and provided continuous ratings of US expectancy and EMG, as well as CS fear ratings before and after each phase. Variation in US expectancy throughout extinction and habituation of EMG and fear was entered into a regression as predictors of retention and reinstatement of levels of expectancy and fear. Greater variation in US expectancy throughout extinction training was significantly predictive of enhanced extinction performance measured at retention test, although not after reinstatement test. Slope of EMG and CS fear during extinction did not predict retention of extinction. Within-session habituation of EMG and self-reported fear is not sufficient for long-term retention of extinction learning, and models emphasizing expectation violation may result in enhanced outcomes.
Diffuse interstellar clouds as a chemical laboratory - The chemistry of diatomic carbon species
NASA Technical Reports Server (NTRS)
Federman, S. R.; Huntress, W. T., Jr.
1989-01-01
The chemistry of C2, CH, and CO in diffuse interstellar clouds is analyzed and compared to absorption line measurements toward background stars. Analytical expressions in terms of column densities are derived for the rate equations. The results indicate that in clouds with 4 mag of visual extinction, the abundance of C+ has to decrease by a factor of about 15 from the value traditionally used for clouds with 1 mag of extinction. The rate coefficients for the reactions C+ + CH - C2+ + H and C+ + H2 - CH2+ + h-nu need to be reduced from previous estimates. Chemical arguments are presented for the revised rate coefficients.
Cumulative frequency distribution of past species extinctions
NASA Technical Reports Server (NTRS)
Raup, D. M.
1991-01-01
Analysis of Sepkoski's compendium of the time ranges of 30,000+ taxa yields a mean duration of 28.4 ma for genera of fossil invertebrates. This converts to an average extinction rate of 3.5 percent per million years or about one percent every 286,000 years. Using survivorship techniques, these estimates can be converted to the species level, yielding a Phanerozoic average of one percent species extinction every 40,000 years. Variation in extinction rates through time is far greater than the null expectation of a homogeneous birth-death model and this reflects the well-known episodicity of extinction ranging from a few large mass extinctions to so-called background extinction. The observed variation in rates can be used to construct a cumulative frequency distribution of extinction intensity, and this distribution, in the form of a kill curve for species, shows the expected waiting times between extinction events of a given intensity. The kill curve is an average description of the extinction events of a given intensity. The kill curve is an average description of the extinction record and does not imply any cause or causes of extinction. The kill curve shows, among other things, that only about five percent of total species extinctions in the Phanerozoic were involved in the five largest mass extinctions. The other 95 percent were distributed among large and small events not normally called mass extinctions. As an exploration of the possibly absurd proposition that most past extinctions were produced by the effects of large-body impact, the kill curve for species was mapped on the comparable distribution for comet and asteroid impacts. The result is a curve predicting the species kill for a given size of impacting object (expressed as crater size). The results are reasonable in that impacts producing craters less than 30 km (diameter) cause negligible extinction but those producing craters 100-150 km (diameter) cause extinction of species in the range of 45-60 percent.
Nature and causes of the immediate extinction deficit: a brief review.
Maren, Stephen
2014-09-01
Recent data in both rodents and humans suggests that the timing of extinction trials after conditioning influences the magnitude and duration of extinction. For example, administering extinction trials soon after Pavlovian fear conditioning in rats, mice, and humans results in minimal fear suppression - the so-called immediate extinction deficit. Here I review recent work examining the behavioral and neural substrates of the immediate extinction deficit. I suggest that extinction is most effective at some delay after conditioning, because brain systems involved in encoding and retrieving extinction memories function sub-optimally under stress. Copyright © 2013 Elsevier Inc. All rights reserved.
Nature and Causes of the Immediate Extinction Deficit: A Brief Review
Maren, Stephen
2013-01-01
Recent data in both rodents and humans suggests that the timing of extinction trials after conditioning influences the magnitude and duration of extinction. For example, administering extinction trials soon after Pavlovian fear conditioning in rats, mice, and humans results in minimal fear suppression--the so-called immediate extinction deficit. Here I review recent work examining the behavioral and neural substrates of the immediate extinction deficit. I suggest that extinction is most effective at some delay after conditioning, because brain systems involved in encoding and retrieving extinction memories function sub-optimally under stress. PMID:24176924
Alessandri, Jérôme; Cançado, Carlos R X
2017-03-01
The effects of instructions on the sensitivity of negatively reinforced (escape) behavior to extinction were studied. Initially, responding produced timeouts from pressing a force cell on a variable-ratio (VR) schedule, which was then discontinued (extinction). Based on extinction data, participants were distributed into two groups. Participants in the Persistence Group (for which response rates were low in extinction) were instructed that the experimenter expected them to continue responding in extinction after a second exposure to the VR schedule. Participants in the Extinction group (for which response rates were high in extinction) were instructed that the experimenter expected them to stop responding in extinction. Relative to the condition in which instructions were absent, extinction-response rates increased and decreased, respectively, for participants in the Persistence and Extinction groups. These results replicate and extend to negatively reinforced responding previous findings that showed behavioral control by instructions formulated as explicit experimenter demands or expectations. Copyright © 2017 Elsevier B.V. All rights reserved.
Extinction and the fossil record
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)
1994-01-01
The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.
Crampton, James S; Cooper, Roger A; Sadler, Peter M; Foote, Michael
2016-02-09
Two distinct regimes of extinction dynamic are present in the major marine zooplankton group, the graptolites, during the Ordovician and Silurian periods (486-418 Ma). In conditions of "background" extinction, which dominated in the Ordovician, taxonomic evolutionary rates were relatively low and the probability of extinction was highest among newly evolved species ("background extinction mode"). A sharp change in extinction regime in the Late Ordovician marked the onset of repeated severe spikes in the extinction rate curve; evolutionary turnover increased greatly in the Silurian, and the extinction mode changed to include extinction that was independent of species age ("high-extinction mode"). This change coincides with a change in global climate, from greenhouse to icehouse conditions. During the most extreme episode of extinction, the Late Ordovician Mass Extinction, old species were selectively removed ("mass extinction mode"). Our analysis indicates that selective regimes in the Paleozoic ocean plankton switched rapidly (generally in <0.5 My) from one mode to another in response to environmental change, even when restoration of the full ecosystem was much slower (several million years). The patterns observed are not a simple consequence of geographic range effects or of taxonomic changes from Ordovician to Silurian. Our results suggest that the dominant primary controls on extinction throughout the lifespan of this clade were abiotic (environmental), probably mediated by the microphytoplankton.
Crampton, James S.; Cooper, Roger A.; Sadler, Peter M.; Foote, Michael
2016-01-01
Two distinct regimes of extinction dynamic are present in the major marine zooplankton group, the graptolites, during the Ordovician and Silurian periods (486−418 Ma). In conditions of “background” extinction, which dominated in the Ordovician, taxonomic evolutionary rates were relatively low and the probability of extinction was highest among newly evolved species (“background extinction mode”). A sharp change in extinction regime in the Late Ordovician marked the onset of repeated severe spikes in the extinction rate curve; evolutionary turnover increased greatly in the Silurian, and the extinction mode changed to include extinction that was independent of species age (“high-extinction mode”). This change coincides with a change in global climate, from greenhouse to icehouse conditions. During the most extreme episode of extinction, the Late Ordovician Mass Extinction, old species were selectively removed (“mass extinction mode”). Our analysis indicates that selective regimes in the Paleozoic ocean plankton switched rapidly (generally in <0.5 My) from one mode to another in response to environmental change, even when restoration of the full ecosystem was much slower (several million years). The patterns observed are not a simple consequence of geographic range effects or of taxonomic changes from Ordovician to Silurian. Our results suggest that the dominant primary controls on extinction throughout the lifespan of this clade were abiotic (environmental), probably mediated by the microphytoplankton. PMID:26811471
Stanfield, Briana R.; Staib, Jennifer M.; David, Nina P.; Keller, Samantha M.; DePietro, Thomas
2016-01-01
Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions critical for extinction retention (i.e., fear extinction circuit). These were the ventral hippocampus (vHipp), dorsal hippocampus (dHipp), basolateral amygdala (BLA), prelimbic cortex (PL), and infralimbic cortex (IL). SPS or control rats were fear conditioned then subjected to extinction training and testing. Subsets of rats were euthanized after extinction training, extinction testing, or immediate removal from the housing colony (baseline condition) to assay c-Fos levels (measure of neural activity) in respective brain region. SPS induced extinction retention deficits. During extinction training SPS disrupted enhanced IL neural activity and inhibited BLA neural activity. SPS also disrupted inhibited BLA and vHipp neural activity during extinction testing. Statistical analyses suggested that SPS disrupted functional connectivity within the dHipp during extinction training and increased functional connectivity between the BLA and vHipp during extinction testing. Our findings suggest that SPS induces extinction retention deficits by disrupting both excitatory and inhibitory changes in neural activity within the fear extinction circuit and inducing changes in functional connectivity within the Hipp and BLA. PMID:27918273
HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner.
Malvaez, Melissa; McQuown, Susan C; Rogge, George A; Astarabadi, Mariam; Jacques, Vincent; Carreiro, Samantha; Rusche, James R; Wood, Marcelo A
2013-02-12
Nonspecific histone deacetylase (HDAC) inhibition has been shown to facilitate the extinction of drug-seeking behavior in a manner resistant to reinstatement. A key open question is which specific HDAC is involved in the extinction of drug-seeking behavior. Using the selective HDAC3 inhibitor RGFP966, we investigated the role of HDAC3 in extinction and found that systemic treatment with RGFP966 facilitates extinction in mice in a manner resistant to reinstatement. We also investigated whether the facilitated extinction is related to the enhancement of extinction consolidation during extinction learning or to negative effects on performance or reconsolidation. These are key distinctions with regard to any compound being used to modulate extinction, because a more rapid decrease in a defined behavior is interpreted as facilitated extinction. Using an innovative combination of behavioral paradigms, we found that a single treatment of RGFP966 enhances extinction of a previously established cocaine-conditioned place preference, while simultaneously enhancing long-term object-location memory within subjects. During extinction consolidation, HDAC3 inhibition promotes a distinct pattern of histone acetylation linked to gene expression within the infralimbic cortex, hippocampus, and nucleus accumbens. Thus, the facilitated extinction of drug-seeking cannot be explained by adverse effects on performance. These results demonstrate that HDAC3 inhibition enhances the memory processes involved in extinction of drug-seeking behavior.
ERIC Educational Resources Information Center
Woods, Amanda M.; Bouton, Mark E.
2008-01-01
Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In…
NASA Technical Reports Server (NTRS)
Gerber, Hermann E.
2004-01-01
Cloud Integrating Nephelometers (CIN) were flown on the U. North Dakota Citation aircraft and the NASA WB-57 aircraft for the purpose of measuring in-situ the optical extinction coefficient and the asymmetry parameter (g) at a wavelength of 635 nm of primarily ice particles encountered during the NASA CRYSTAL-FACE study of large cumulus clouds (Cu) and their anvils found in the southern Florida region. The probes performance was largely successful and produced archived data for vertical profiles of extinction, asymmetry parameter, and effective radius (Re), the latter being obtained by combining CIN and CVI (total water; Oregon State U.) measurements. Composites of the CIN and CVI data describing the average microphysical and optical behavior of the Cu and their anvils showed the following: The extinction increases with height as a result of the size of the particles also decreasing with height as shown by the Re measurements; near the top of anvils the size of the primary ice particles is about 10-um radius; and the value of g does not vary significantly with height and has a mean value of about 0.73 consistent with the idea that ambient ice crystals are primarily of complex shape and reflect solar radiation more efficiently than particles of pristine crystal shape. Other observations include: The g measurements were found to be an indicator of the phase of the cloud permitting identification of the clouds with water droplets, rain, and ice; visual ranges as small as several tens of meters were occasionally found in "extinction cores" that coincided with strong updraft cores; and comparison of the cloud probes on the Citation showed significant disagreement.
NASA Astrophysics Data System (ADS)
Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.
2015-12-01
We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.
Shimabukuro, Carolina; Putrino, Natalia; Helbling, Julia; Tognetti, Sandra; Bentosela, Mariana
2015-04-01
Dogs are able to solve different problems by trial and error learning, but it seems that they cannot understand the means-end connection. Some studies suggest that dogs' performance is influenced by their breed and by the level of familiarity with the person they interact with. In our study, we assess individual differences in both social and non-social responses in a problem-solving task during the acquisition, extinction, and reacquisition phases. In order to investigate the effect of familiarity, in the first experiment, the human present during the task was either a familiar (the dog's owner) or unfamiliar person. In the second experiment, we compared breeds (Retrievers and Shepherds) that had previously shown differences in a communicative task. The results revealed that all groups learned the task and became more efficient in the acquisition trials. These non-social responses diminished during extinction, where an increase in social responses was observed. With regard to individual differences, dogs were more persistent in searching the reward during the second extinction trial when the owner was present (in contrast with a stranger), and also looked longer at the unfamiliar person at the beginning of the acquisition trial. On the other hand, Retrievers showed greater social motivation during reacquisition and Shepherds picked up more bones during the third acquisition trial, thus suggesting a more persistent search of the reward. These findings highlight the relevance of studying different learning schedules as well as individual differences in problem-solving ability so as to improve selection and training techniques. Copyright © 2015 Elsevier B.V. All rights reserved.
Sharko, Amanda C; Fadel, Jim R; Kaigler, Kris F; Wilson, Marlene A
2017-09-01
Identifying the neurobiological mechanisms that underlie differential sensitivity to stress is critical for understanding the development and expression of stress-induced disorders, such as post-traumatic stress disorder (PTSD). Preclinical studies have suggested that rodents display different phenotypes associated with extinction of Pavlovian conditioned fear responses, with some rodent populations being resistant to extinction. An emerging literature also suggests a role for orexins in the consolidation processes associated with fear learning and extinction. To examine the possibility that the orexin system might be involved in individual differences in fear extinction, we used a Pavlovian conditioning paradigm in outbred Long-Evans rats. Rats showed significant variability in the extinction of cue-conditioned freezing and extinction recall, and animals were divided into groups based on their extinction profiles based on a median split of percent freezing behavior during repeated exposure to the conditioned cue. Animals resistant to extinction (high freezers) showed more freezing during repeated cue presentations during the within trial and between trial extinction sessions compared with the group showing significant extinction (low freezers), although there were no differences between these groups in freezing upon return to the conditioned context or during the conditioning session. Following the extinction recall session, activation of orexin neurons was determined using dual label immunohistochemistry for cFos in orexin positive neurons in the hypothalamus. Individual differences in the extinction of cue conditioned fear were associated with differential activation of hypothalamic orexin neurons. Animals showing poor extinction of cue-induced freezing (high freezers) had significantly greater percentage of orexin neurons with Fos in the medial hypothalamus than animals displaying significant extinction and good extinction recall (low freezers). Further, the freezing during extinction learning was positively correlated with the percentage of activated orexin neurons in both the lateral and medial hypothalamic regions. No differences in the overall density of orexin neurons or Fos activation were seen between extinction phenotypes. Although correlative, our results support other studies implicating a role of the orexinergic system in regulating extinction of conditioned responses to threat. Copyright © 2016 Elsevier Inc. All rights reserved.
Can Transcranial Direct Current Stimulation Augment Extinction of Conditioned Fear?
van ’t Wout, Mascha; Mariano, Timothy Y.; Garnaat, Sarah L.; Reddy, Madhavi K.; Rasmussen, Steven A.; Greenberg, Benjamin D.
2016-01-01
Background Exposure-based therapy parallels extinction learning of conditioned fear. Prior research points to the ventromedial prefrontal cortex as a potential site for the consolidation of extinction learning and subsequent retention of extinction memory. Objective/hypothesis The present study aimed to evaluate whether the application of non-invasive transcranial direct current stimulation (tDCS) during extinction learning enhances late extinction and early recall in human participants. Methods Forty-four healthy volunteers completed a 2-day Pavlovian fear conditioning, extinction, and recall paradigm while skin conductance activity was continuously measured. Twenty-six participants received 2 mA anodal tDCS over EEG coordinate AF3 during extinction of a first conditioned stimulus. The remaining 18 participants received similar tDCS during extinction of a second conditioned stimulus. Sham stimulation was applied for the balance of extinction trials in both groups. Normalized skin conductance changes were analyzed using linear mixed models to evaluate effects of tDCS over late extinction and early recall trials. Results We observed a significant interaction between timing of tDCS during extinction blocks and changes in skin conductance reactivity over late extinction trials. These data indicate that tDCS was associated with accelerated late extinction learning of a second conditioned stimulus after tDCS was combined with extinction learning of a previous conditioned stimulus. No significant effects of tDCS timing were observed on early extinction recall. Conclusions Results could be explained by an anxiolytic aftereffect of tDCS and extend previous studies on tDCS-induced modulation of fear and threat related learning processes. These findings support further exploration of the clinical use of tDCS. PMID:27037186
NASA Astrophysics Data System (ADS)
Williford, Kenneth H.; Grice, Kliti; Holman, Alexander; McElwain, Jennifer C.
2014-02-01
Terrestrial ecosystem collapse at the end of the Triassic Period coincided with a major mass extinction in the marine realm and has been linked to increasing atmospheric carbon dioxide, global warming, and fire activity. Extractable hydrocarbons in samples from the fluvial Triassic-Jurassic boundary section at Astartekløft, East Greenland were analyzed to investigate the molecular and isotopic organic record of biotic and environmental change during this event. Carbon isotopic compositions of individual plant wax lipids show a >4‰ negative excursion coinciding with peak extinction and a further decrease of 2‰ coinciding with peak pCO2 as estimated from the stomatal indices of fossil Gingkoales. An increase of ˜30‰ in the hydrogen isotopic compositions of the same plant wax lipids coincides with ecosystem collapse, suggesting that the biotic crisis was accompanied by strong hydrologic change. Concentrations of polycyclic aromatic hydrocarbons related to combustion also increase together with abrupt plant diversity loss and peak with fossil charcoal abundance and maximum plant turnover, supporting the role of fire in terrestrial extinctions. Anomalously high concentrations of a monoaromatic diterpenoid related to gymnosperm resin derivatives (and similar to dehydroabietane) occur uniquely in samples from the boundary bed, indicating that environmental stress factors leading to peak plant extinction stimulated increased resin production, and that plant resin derivatives may be effective biomarkers of terrestrial ecosystem stress.
NASA Astrophysics Data System (ADS)
Shinozuka, Y.; Clarke, A.; Howell, S.; Kapustin, V.; McNaughton, C.; Zhou, J.; Decarlo, P.; Jimenez, J.; Roberts, G.; Tomlinson, J.; Collins, D.
2008-12-01
Remote sensing of the concentration of cloud condensation nuclei (CCN) would help investigate the indirect effect of tropospheric aerosols on clouds and climate. In order to assess its feasibility, this paper evaluates the spectral-based retrieval technique for aerosol number and seeks one for aerosol solubility, using in-situ aircraft measurements of aerosol size distribution, chemical composition, hygroscopicity, CCN activity and optical properties. Our statistical analysis reveals that the CCN concentration over Mexico can be optically determined to a relative error of <20%, smaller than that for the mainland US and the surrounding oceans (~a factor of 2). Mexico's advantage is four-fold. Firstly, many particles originating from the lightly regulated industrial combustion and biomass burning are large enough to significantly affect light extinction, elevating the correlation between extinction and CCN number in absence of substantial dust. Secondly, the generally low ambient humidity near the major aerosol sources limits the error in the estimated response of particle extinction to humidity changes. Thirdly, because many CCN contain black carbon, light absorption also provides a measure of the CCN concentration. Fourthly, the organic fraction of volatile mass of submicron particles (OMF) is anti-correlated with the wavelength dependence of extinction due to preferential anion uptake by coarse dust, which provides a potential tool for remote-sensing OMF and the particle solubility.
Stampfl, Thomas G.
1987-01-01
Why do human phobias last for months or years when such behavior should undergo extinction? This failure of extinction or persistence of self-defeating behavior of human disorders was labeled by Mowrer as the neurotic paradox. The paradox is cited by an ever-increasing number of critics who challenge any laboratory-based learning model of human psychopathology. Laboratory research, of course, omits essential requirements in the analysis of behavior, and the principles derived from such analyses must be combined in order to explain complex human behavaior. Validation for a behavioral model can thus be achieved if (a) basic principles inferred from observation of humans treated with a laboratory-derived extinction procedure (e.g., implosive therapy) are combined with (b) principles examined in laboratory research that are combined to generate unique predictions that correspond to known features of human phobic behavior. The latter evidence is briefly reviewed in research demonstrating sustained responding over one thousand consecutive active avoidance responses with complete avoidance of the “phobic” CS for an initial single shock trial. Differential reinforcement for responses to early sequential stimuli depends on minimal work requirement, and reinforcement by timeout from avoidance. This combination of factors effectively precludes extinction to main conditioned aversive stimuli for nonhumans, as it does for human phobias. Support for a laboratory model of human phobia is thereby attained. PMID:22477974
NASA Astrophysics Data System (ADS)
Chandrasekharam, Malapaka; Rajkumar, Ganugula; Srinivasa Rao, Chikkam; Suresh, Thogiti; Yella Reddy, Paidi; Yum, Jun-Ho; Khaja Nazeeruddin, Mahammad; Graetzel, Michael
2011-09-01
A new high molar extinction coefficient ruthenium(II) bipyridyl complex 'cis-Ru(L1)(2,2'-bipyridine-4,4'-dicarboxylic acid) (NCS)2, BDF', where L1=4,4-bis(9,9-dibutyl-9H-fluorene-2-yl)-[2,2] bipyridine, has been synthesized and characterized by Fourier transform infrared (FTIR), hydrogen nuclear magnetic resonance (1H-NMR) and electrospray ionization mass (ESI-MASS) spectroscopes. The dye, upon anchoring onto mesoporous nano-crystalline TiO2 solar cells, exhibited a broader photocurrent action spectrum, with a solar-to-electric energy conversion efficiency (η) of 6.58% (JSC=14.66 mA cm-2, VOC=640 mV, fill factor=0.71) under sunlight at air mass (AM) 1.5, larger than the reference Z907 sensitized solar cell fabricated under similar conditions, which exhibited an η-value of 4.65% (JSC=11.52 mA cm-2, VOC=566 mV, fill factor=0.72). Absorption measurements and time-dependent density functional theory (TDDFT) calculations show that the increased conjugation length by introducing 9,9-dibutyl-9H-fluorene moiety relatively enhances the spectral response of the ancillary ligand and the corresponding BDF complex. The calculated dipole moments for BDF and Z907 are 17.71 and 16.34 Debye, respectively. The first three highest occupied molecular orbitals (HOMOs) of BDF have a t2g character, as observed in Z907, while HOMO-4 and HOMO-5 have considerable sizable mixing from Ru-NCS with π-orbitals of L1.
Biological extinction in earth history
NASA Technical Reports Server (NTRS)
Raup, D. M.
1986-01-01
Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.
Erasing fear memories with extinction training
Quirk, Gregory J.; Paré, Denis; Richardson, Rick; Herry, Cyril; Monfils, Marie H.; Schiller, Daniela; Vicentic, Aleksandra
2012-01-01
Decades of behavioral studies have confirmed that extinction does not erase classically-conditioned fear memories. For this reason, research efforts have focused on the mechanisms underlying the development of extinction-induced inhibition within fear circuits. However, recent studies in rodents have uncovered mechanisms that stabilize and destabilize fear memories, opening the possibility that extinction might be used to erase fear memories. This symposium focuses on several of these new developments, which involve the timing of extinction training. Extinction-induced erasure of fear occurs in very young rats, but is lost with the development of perineuronal nets in the amygdala that render fear memories impervious to extinction. Moreover, extinction administered during the reconsolidation phase, when fear memory is destabilized, updates the fear association as safe, thereby preventing the return of fear, in both rats and humans. The use of modified extinction protocols to eliminate fear memories complements existing pharmacological strategies for strengthening extinction. PMID:21068303
Extinction rates in North American freshwater fishes, 1900-2010
Burkhead, Noel M.
2012-01-01
Widespread evidence shows that the modern rates of extinction in many plants and animals exceed background rates in the fossil record. In the present article, I investigate this issue with regard to North American freshwater fishes. From 1898 to 2006, 57 taxa became extinct, and three distinct populations were extirpated from the continent. Since 1989, the numbers of extinct North American fishes have increased by 25%. From the end of the nineteenth century to the present, modern extinctions varied by decade but significantly increased after 1950 (post-1950s mean = 7.5 extinct taxa per decade). The modern extinction rate for North American freshwater fishes is conservatively estimated to be 877 times greater than the background extinction rate for freshwater fishes (one extinction every 3 million years). Reasonable estimates project that future increases in extinctions will range from 53 to 86 species by 2050.
Miller, Joshua H.; Fraser, Danielle; Smith, Felisa A.; Boyer, Alison; Lindsey, Emily; Mychajliw, Alexis M.
2016-01-01
Understanding extinction drivers in a human-dominated world is necessary to preserve biodiversity. We provide an overview of Quaternary extinctions and compare mammalian extinction events on continents and islands after human arrival in system-specific prehistoric and historic contexts. We highlight the role of body size and life-history traits in these extinctions. We find a significant size-bias except for extinctions on small islands in historic times. Using phylogenetic regression and classification trees, we find that while life-history traits are poor predictors of historic extinctions, those associated with difficulty in responding quickly to perturbations, such as small litter size, are good predictors of prehistoric extinctions. Our results are consistent with the idea that prehistoric and historic extinctions form a single continuing event with the same likely primary driver, humans, but the diversity of impacts and affected faunas is much greater in historic extinctions. PMID:27330176
Lyons, S Kathleen; Miller, Joshua H; Fraser, Danielle; Smith, Felisa A; Boyer, Alison; Lindsey, Emily; Mychajliw, Alexis M
2016-06-01
Understanding extinction drivers in a human-dominated world is necessary to preserve biodiversity. We provide an overview of Quaternary extinctions and compare mammalian extinction events on continents and islands after human arrival in system-specific prehistoric and historic contexts. We highlight the role of body size and life-history traits in these extinctions. We find a significant size-bias except for extinctions on small islands in historic times. Using phylogenetic regression and classification trees, we find that while life-history traits are poor predictors of historic extinctions, those associated with difficulty in responding quickly to perturbations, such as small litter size, are good predictors of prehistoric extinctions. Our results are consistent with the idea that prehistoric and historic extinctions form a single continuing event with the same likely primary driver, humans, but the diversity of impacts and affected faunas is much greater in historic extinctions. © 2016 The Author(s).
Biological Extinction in Earth History
NASA Astrophysics Data System (ADS)
Raup, David M.
1986-03-01
Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.
NASA Astrophysics Data System (ADS)
Rutter, Nick; Sandells, Mel; Derksen, Chris; Toose, Peter; Royer, Alain; Montpetit, Benoit; Langlois, Alex; Lemmetyinen, Juha; Pulliainen, Jouni
2014-03-01
Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size, and temperature) were used as inputs to the multilayer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations, and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical specific surface area to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested that the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed that a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%.