Sample records for extinguishing system test

  1. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS FIRE PROTECTION EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-60 System piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air... installation and before extinguishing agent cylinders are connected. (1) Except as otherwise specified in this...

  2. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VESSELS FIRE PROTECTION EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-60 System piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air... installation and before extinguishing agent cylinders are connected. (1) Except as otherwise specified in this...

  3. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VESSELS FIRE PROTECTION EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-60 System piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air... installation and before extinguishing agent cylinders are connected. (1) Except as otherwise specified in this...

  4. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... extinguisher, semiportable fire extinguisher, and fixed gas fire extinguishing system to check for excessive... testing of alarms and ventilation shutdowns, for each fixed gas fire extinguishing system and detecting... gas to ensure it has been tested and marked in accordance with § 147.60 in subchapter N of this...

  5. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... extinguisher, semiportable fire extinguisher, and fixed gas fire extinguishing system to check for excessive... testing of alarms and ventilation shutdowns, for each fixed gas fire extinguishing system and detecting... gas to ensure it has been tested and marked in accordance with § 147.60 in subchapter N of this...

  6. Extinguishing Agent for Magnesium Fire: Phases 5 and 6.

    DTIC Science & Technology

    1987-07-01

    This report documents the validation testing of the extinguishing system for metal fires developed as part of Phases I-IV. The results of this...system represented a reliable metal fire extinguishing system that could control and extinguish very large metal fires . The specifications developed for...the agent and for the delivery system are discussed in detail. Keywords: Fire suppression, Metal fires , Fire extinguishers.

  7. 14 CFR 23.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... materials in the area protected by the fire extinguishing system; and (2) Have thermal stability over the... exist in the extinguishing system. This must be shown by test except for built-in carbon dioxide fuselage compartment fire extinguishing systems for which— (1) Five pounds or less of carbon dioxide will...

  8. Extinguishing agent for magnesium fire, phases 5 and 6

    NASA Astrophysics Data System (ADS)

    Beeson, H. D.; Tapscott, R. E.; Mason, B. E.

    1987-07-01

    This report documents the validation testing of the extinguishing system for metal fires developed as part of Phases 1 to 4. The results of this validation testing form the basis of information from which draft military specifications necessary to procure the agent and the agent delivery system may be developed. The developed system was tested against a variety of large-scale metal fire scenarios and the capabilities of the system were assessed. In addition the response of the system to storage and to changes in ambient conditions was tested. Results of this testing revealed that the developed system represented a reliable metal fire extinguishing system that could control and extinguish very large metal fires. The specifications developed for the agent and for the delivery system are discussed in detail.

  9. 46 CFR 108.449 - Piping tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Piping tests. 108.449 Section 108.449 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.449 Piping tests. (a) Each test prescribed in (b), (c), and (d) of this section must be performed upon completion of the...

  10. Development and Evaluation of a Prototype Wheeled Ultra-High Pressure Extinguisher System with Novec 1230

    DTIC Science & Technology

    2016-01-01

    Fire Tests Pool fire tests were conducted as outlined below, and consisted of a pretest phase, in which the F-100 engine nacelle was first...the nacelle during the test phase. Pretest Phase  Determine and record extinguisher full weight.  Initiate flow of jet fuel through the...extinguisher after test. 3.4.2. Rear Engine Fire Tests Rear engine fire tests were conducted as outlined below, and consisted of a pretest phase

  11. Development and testing of dry chemicals in advanced extinguishing systems for jet engine nacelle fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Ling, A. C. (Editor); Mayer, L. A.; Myronik, D. J.

    1979-01-01

    The effectiveness of dry chemical in extinguishing and delaying reignition of fires resulting from hydrocarbon fuel leaking onto heated surfaces such as can occur in jet engine nacelles is studied. The commercial fire extinguishant dry chemical tried are sodium and potassium bicarbonate, carbonate, chloride, carbamate (Monnex), metal halogen, and metal hydroxycarbonate compounds. Synthetic and preparative procedures for new materials developed, a new concept of fire control by dry chemical agents, descriptions of experiment assemblages to test dry chemical fire extinguishant efficiencies in controlling fuel fires initiated by hot surfaces, comparative testing data for more than 25 chemical systems in a 'static' assemblage with no air flow across the heated surface, and similar comparative data for more than ten compounds in a dynamic system with air flows up to 350 ft/sec are presented.

  12. Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent

    DTIC Science & Technology

    1993-11-01

    was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further

  13. 46 CFR 131.590 - Firefighting equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... required firefighting equipment is on board in the prescribed location and always ready for use, other than... performance of the tests and inspections of each portable fire extinguisher, semiportable fire extinguisher, and fixed fire-extinguishing system aboard described by Table 132.350 of this subchapter. (c) The...

  14. 46 CFR 131.590 - Firefighting equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... required firefighting equipment is on board in the prescribed location and always ready for use, other than... performance of the tests and inspections of each portable fire extinguisher, semiportable fire extinguisher, and fixed fire-extinguishing system aboard described by Table 132.350 of this subchapter. (c) The...

  15. 46 CFR 131.590 - Firefighting equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... required firefighting equipment is on board in the prescribed location and always ready for use, other than... performance of the tests and inspections of each portable fire extinguisher, semiportable fire extinguisher, and fixed fire-extinguishing system aboard described by Table 132.350 of this subchapter. (c) The...

  16. 46 CFR 131.590 - Firefighting equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... required firefighting equipment is on board in the prescribed location and always ready for use, other than... performance of the tests and inspections of each portable fire extinguisher, semiportable fire extinguisher, and fixed fire-extinguishing system aboard described by Table 132.350 of this subchapter. (c) The...

  17. 14 CFR 23.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing agents. 23.1197 Section... test except for built-in carbon dioxide fuselage compartment fire extinguishing systems for which— (1) Five pounds or less of carbon dioxide will be discharged, under established fire control procedures...

  18. 14 CFR 25.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing agents. 25.1197 Section... test except for built-in carbon dioxide fuselage compartment fire extinguishing systems for which— (1) Five pounds or less of carbon dioxide will be discharged, under established fire control procedures...

  19. 1. TERMINAL ROOM, INTERIOR, SHOP LEVEL, SHOWING FIRE EXTINGUISHING SYSTEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. TERMINAL ROOM, INTERIOR, SHOP LEVEL, SHOWING FIRE EXTINGUISHING SYSTEM PIPES AND VALVES AT LEFT. Looking southeast from entrance to terminal room. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  20. Test results: Halon 1301 versus water sprinkler fire protection for essential electronic equipment

    NASA Astrophysics Data System (ADS)

    Reichelt, E. F.; Walker, J. L.; Vickers, R. N.; Kwan, A. J.

    1982-07-01

    This report describes results of testing two contending extinguishants, Halon 1301 and water, for fire protection of essential electronic equipment. A series of controlled fires in a facility housing an operational electronic data processing system sought to establish immediate and long term effects of exposure of sensitive electronic equipment and stored data to fire extinguishment atmospheres. Test results lead to the conclusion that Halon 1301 is superior to water as an extinguishant for fires occurring in essential electronic equipment installations.

  1. Determination of Survivable Fires

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Niehaus, J. E.; Ruff, G. A.; Urban, D. L.; Takahashi, F.; Easton, J. W.; Abbott, A. A.; Graf, J. C.

    2012-01-01

    At NASA, there exists no standardized design or testing protocol for spacecraft fire suppression systems (either handheld or total flooding designs). An extinguisher's efficacy in safely suppressing any reasonable or conceivable fire is the primary benchmark. That concept, however, leads to the question of what a reasonable or conceivable fire is. While there exists the temptation to over-size' the fire extinguisher, weight and volume considerations on spacecraft will always (justifiably) push for the minimum size extinguisher required. This paper attempts to address the question of extinguisher size by examining how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or other accumulation of other combustion products (e.g. carbon monoxide). Estimates of these quantities are determined as a function of fire size and mass of material burned. This then becomes the basis for determining the maximum size of a target fire for future fire extinguisher testing.

  2. Spacecraft Fire Suppression: Testing and Evaluation

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; McKinnon, J. Thomas; Delplanque, Jean-Pierre; Kailasanath, Kazhikathra; Gokoglu, Suleyman; Wu, Ming-Shin

    2004-01-01

    The objective of this project is the testing and evaluation of the effectiveness of a variety of fire suppressants and fire-response techniques that will be used in the next generation of spacecraft (Crew Exploration Vehicle, CEV) and planetary habitats. From the many lessons learned in the last 40 years of space travel, there is common agreement in the spacecraft fire safety community that a new fire suppression system will be needed for the various types of fire threats anticipated in new space vehicles and habitats. To date, there is no single fire extinguishing system that can address all possible fire situations in a spacecraft in an effective, reliable, clean, and safe way. The testing conducted under this investigation will not only validate the various numerical models that are currently being developed, but it will provide new design standards on fire suppression that can then be applied to the next generation of spacecraft extinguishment systems. The test program will provide validation of scaling methods by conducting small, medium, and large scale fires. A variety of suppression methods will be tested, such as water mist, carbon dioxide, and nitrogen with single and multiple injection points and direct or distributed agent deployment. These injection methods cover the current ISS fire suppression method of a portable hand-held fire extinguisher spraying through a port in a rack and also next generation spacecraft units that may have a multi-point suppression delivery system built into the design. Consideration will be given to the need of a crew to clean-up the agent and recharge the extinguishers in flight in a long-duration mission. The fire suppression methods mentioned above will be used to extinguish several fire scenarios that have been identified as the most relevant to spaceflight, such as overheated wires, cable bundles, and circuit boards, as well as burning cloth and paper. Further testing will be conducted in which obstructions and ventilation will be added to represent actual spacecraft conditions (e.g., a series of cards in a card rack).

  3. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet a...

  4. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet a...

  5. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet a...

  6. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet a...

  7. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet a...

  8. 14 CFR 23.1201 - Fire extinguishing systems materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire extinguishing systems materials. 23... Powerplant Powerplant Fire Protection § 23.1201 Fire extinguishing systems materials. Link to an amendment... material in any fire extinguishing system may react chemically with any extinguishing agent so as to create...

  9. 46 CFR 76.50-10 - Location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Extinguishers and Semiportable Fire Extinguishing Systems, Arrangements and Details § 76.50-10 Location. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems shall be installed in... fire extinguishing systems Classification (see § 76.50-5) Quantity and location Safety area 1...

  10. 46 CFR 76.50-10 - Location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Extinguishers and Semiportable Fire Extinguishing Systems, Arrangements and Details § 76.50-10 Location. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems shall be installed in... fire extinguishing systems Classification (see § 76.50-5) Quantity and location Safety area 1...

  11. Adsorption of Halogenated Fire-Extinguishing Agents on Powders

    NASA Technical Reports Server (NTRS)

    Barduhn, Allen J.; Patel, Bhailal S.; Meyer, Walter; Smura, Bronislaw B.

    1960-01-01

    The amounts of four different Freons adsorbed by carbon, silica gel, alumina, and molecular sieves were determined at pressures up to 225 lb/sq in. The carbon adsorbed 50 to 100 percent and the silica gels, 30 to 50 percent of their own weight of Freon. Several adsorbed systems were tested in a standard dry-powder extinguisher on a 5-sq-ft gasoline fire for their effectiveness in putting out a fire. One of the Freons (bromotrifluoromethane) and carbon extinguished fires about as well as bicarbonate powder and nitrogen.

  12. 14 CFR 29.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing system materials. 29... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1201 Fire extinguishing system materials. (a) No materials in any fire extinguishing system...

  13. 14 CFR 29.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire extinguishing system materials. 29.1201 Section 29.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 29.1201 Fire extinguishing system materials. (a) No materials in any fire extinguishing system...

  14. 14 CFR 29.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire extinguishing system materials. 29.1201 Section 29.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 29.1201 Fire extinguishing system materials. (a) No materials in any fire extinguishing system...

  15. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire extinguishing system materials. 25.1201 Section 25.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing system...

  16. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing system materials. 25.1201 Section 25.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing system...

  17. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire extinguishing system materials. 25.1201 Section 25.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing system...

  18. 14 CFR 29.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire extinguishing system materials. 29.1201 Section 29.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 29.1201 Fire extinguishing system materials. (a) No materials in any fire extinguishing system...

  19. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire extinguishing system materials. 25.1201 Section 25.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing system...

  20. 14 CFR 29.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire extinguishing system materials. 29.1201 Section 29.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 29.1201 Fire extinguishing system materials. (a) No materials in any fire extinguishing system...

  1. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire extinguishing system materials. 25.1201 Section 25.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing system...

  2. Radio frequency security system, method for a building facility or the like, and apparatus and methods for remotely monitoring the status of fire extinguishers

    DOEpatents

    Runyon, Larry [Richland, WA; Gunter, Wayne M [Richland, WA; Gilbert, Ronald W [Gilroy, CA

    2006-07-25

    A system for remotely monitoring the status of one or more fire extinguishers includes means for sensing at least one parameter of each of the fire extinguishers; means for selectively transmitting the sensed parameters along with information identifying the fire extinguishers from which the parameters were sensed; and means for receiving the sensed parameters and identifying information for the fire extinguisher or extinguishers at a common location. Other systems and methods for remotely monitoring the status of multiple fire extinguishers are also provided.

  3. Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules with Temperature-Responsiveness.

    PubMed

    Yim, Taeeun; Park, Min-Sik; Woo, Sang-Gil; Kwon, Hyuk-Kwon; Yoo, Jung-Keun; Jung, Yeon Sik; Kim, Ki Jae; Yu, Ji-Sang; Kim, Young-Jun

    2015-08-12

    User safety is one of the most critical issues for the successful implementation of lithium ion batteries (LIBs) in electric vehicles and their further expansion in large-scale energy storage systems. Herein, we propose a novel approach to realize self-extinguishing capability of LIBs for effective safety improvement by integrating temperature-responsive microcapsules containing a fire-extinguishing agent. The microcapsules are designed to release an extinguisher agent upon increased internal temperature of an LIB, resulting in rapid heat absorption through an in situ endothermic reaction and suppression of further temperature rise and undesirable thermal runaway. In a standard nail penetration test, the temperature rise is reduced by 74% without compromising electrochemical performances. It is anticipated that on the strengths of excellent scalability, simplicity, and cost-effectiveness, this novel strategy can be extensively applied to various high energy-density devices to ensure human safety.

  4. 46 CFR 108.403 - Fire extinguishing systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire extinguishing systems: General. 108.403 Section 108.403 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403 Fire extinguishing systems: General. (a) Each...

  5. 46 CFR 108.403 - Fire extinguishing systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire extinguishing systems: General. 108.403 Section 108.403 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403 Fire extinguishing systems: General. (a) Each...

  6. 46 CFR 108.403 - Fire extinguishing systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire extinguishing systems: General. 108.403 Section 108.403 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403 Fire extinguishing systems: General. (a) Each...

  7. 46 CFR 108.403 - Fire extinguishing systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire extinguishing systems: General. 108.403 Section 108.403 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403 Fire extinguishing systems: General. (a) Each...

  8. 46 CFR 108.403 - Fire extinguishing systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire extinguishing systems: General. 108.403 Section 108.403 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403 Fire extinguishing systems: General. (a) Each...

  9. 14 CFR 29.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing systems. 29.1195 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1195 Fire... inches must have a fire extinguishing system for the designated fire zones. The fire extinguishing system...

  10. 14 CFR 23.1201 - Fire extinguishing systems materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing systems materials. 23... Powerplant Powerplant Fire Protection § 23.1201 Fire extinguishing systems materials. For commuter category airplanes, the following apply: (a) No material in any fire extinguishing system may react chemically with...

  11. Verification study of an emerging fire suppression system

    DOE PAGES

    Cournoyer, Michael E.; Waked, R. Ryan; Granzow, Howard N.; ...

    2016-01-01

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Moreover, plutonium gloveboxes present harsh environmental conditions for polymer materials; these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. Several studies have been conducted to determine the robustness of selfcontained fire extinguishers in plutonium gloveboxes in a nuclear facility, verification tests must be performed. These tests include activation and mass loss calorimeter tests. In addition, compatibility issues with chemical components of the self-contained fire extinguishers need to be addressed. Our study presents activation andmore » mass loss calorimeter test results. After extensive studies, no critical areas of concern have been identified for the plutonium glovebox application of Fire Foe™, except for glovebox operations that use large quantities of bulk plutonium or uranium metal such as metal casting and pyro-chemistry operations.« less

  12. Verification study of an emerging fire suppression system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Waked, R. Ryan; Granzow, Howard N.

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Moreover, plutonium gloveboxes present harsh environmental conditions for polymer materials; these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. Several studies have been conducted to determine the robustness of selfcontained fire extinguishers in plutonium gloveboxes in a nuclear facility, verification tests must be performed. These tests include activation and mass loss calorimeter tests. In addition, compatibility issues with chemical components of the self-contained fire extinguishers need to be addressed. Our study presents activation andmore » mass loss calorimeter test results. After extensive studies, no critical areas of concern have been identified for the plutonium glovebox application of Fire Foe™, except for glovebox operations that use large quantities of bulk plutonium or uranium metal such as metal casting and pyro-chemistry operations.« less

  13. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only for...

  14. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only for...

  15. 46 CFR 131.815 - Alarm for fixed gaseous fire-extinguishing system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Alarm for fixed gaseous fire-extinguishing system. 131... VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Alarm for fixed gaseous fire-extinguishing system. Each alarm for a fixed gaseous fire-extinguishing system must be...

  16. 46 CFR 131.815 - Alarm for fixed gaseous fire-extinguishing system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarm for fixed gaseous fire-extinguishing system. 131... VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Alarm for fixed gaseous fire-extinguishing system. Each alarm for a fixed gaseous fire-extinguishing system must be...

  17. 14 CFR 23.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing systems. 23.1195 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 23.1195 Fire extinguishing systems. (a) For commuter category airplanes, fire extinguishing...

  18. Acoustic Emission Test for Aircraft Halon 1301 Fire Extinguisher Bottles

    DOT National Transportation Integrated Search

    1998-04-01

    An acoustic emission test for aircraft Halon 1301 bottles has been developed, a prototype acoustic emission test system constructed, and over 200 used bottles tested at the repair facilities of the two manufacturers of these bottles. The system monit...

  19. 46 CFR 108.403a - Fire extinguishing systems: Non-vital services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire extinguishing systems: Non-vital services. 108.403a Section 108.403a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403a Fire extinguishing systems: Non...

  20. 46 CFR 108.403a - Fire extinguishing systems: Non-vital services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire extinguishing systems: Non-vital services. 108.403a Section 108.403a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403a Fire extinguishing systems: Non...

  1. 46 CFR 108.403a - Fire extinguishing systems: Non-vital services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire extinguishing systems: Non-vital services. 108.403a Section 108.403a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403a Fire extinguishing systems: Non...

  2. 46 CFR 108.403a - Fire extinguishing systems: Non-vital services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire extinguishing systems: Non-vital services. 108.403a Section 108.403a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403a Fire extinguishing systems: Non...

  3. 46 CFR 108.403a - Fire extinguishing systems: Non-vital services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire extinguishing systems: Non-vital services. 108.403a Section 108.403a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403a Fire extinguishing systems: Non...

  4. 46 CFR 132.310 - Fixed fire-extinguishing systems for paint lockers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fixed fire-extinguishing systems for paint lockers. 132... lockers. (a) Except as provided by paragraph (b) of this section, a fixed gaseous fire-extinguishing system or another approved fixed fire-extinguishing system must be installed in each paint locker. (b) No...

  5. 46 CFR 132.310 - Fixed fire-extinguishing systems for paint lockers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fixed fire-extinguishing systems for paint lockers. 132... lockers. (a) Except as provided by paragraph (b) of this section, a fixed gaseous fire-extinguishing system or another approved fixed fire-extinguishing system must be installed in each paint locker. (b) No...

  6. 46 CFR 132.310 - Fixed fire-extinguishing systems for paint lockers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fixed fire-extinguishing systems for paint lockers. 132... lockers. (a) Except as provided by paragraph (b) of this section, a fixed gaseous fire-extinguishing system or another approved fixed fire-extinguishing system must be installed in each paint locker. (b) No...

  7. 46 CFR 132.310 - Fixed fire-extinguishing systems for paint lockers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fixed fire-extinguishing systems for paint lockers. 132... lockers. (a) Except as provided by paragraph (b) of this section, a fixed gaseous fire-extinguishing system or another approved fixed fire-extinguishing system must be installed in each paint locker. (b) No...

  8. 46 CFR 132.310 - Fixed fire-extinguishing systems for paint lockers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fixed fire-extinguishing systems for paint lockers. 132... lockers. (a) Except as provided by paragraph (b) of this section, a fixed gaseous fire-extinguishing system or another approved fixed fire-extinguishing system must be installed in each paint locker. (b) No...

  9. 46 CFR 78.47-17 - Fire extinguishing system controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Fire extinguishing system controls. 78.47-17 Section 78... Markings for Fire and Emergency Equipment, Etc. § 78.47-17 Fire extinguishing system controls. (a) The control cabinets or spaces containing valves or manifolds for the various fire extinguishing systems shall...

  10. 46 CFR 78.47-17 - Fire extinguishing system controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Fire extinguishing system controls. 78.47-17 Section 78... Markings for Fire and Emergency Equipment, Etc. § 78.47-17 Fire extinguishing system controls. (a) The control cabinets or spaces containing valves or manifolds for the various fire extinguishing systems shall...

  11. 29 CFR 1910.157 - Portable fire extinguishers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...

  12. 29 CFR 1910.157 - Portable fire extinguishers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...

  13. 29 CFR 1910.157 - Portable fire extinguishers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...

  14. 29 CFR 1910.157 - Portable fire extinguishers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...

  15. 46 CFR 108.461 - Coamings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.461 Coamings. Each machinery flat in a space that has a foam extinguishing system must have coamings that are high enough to retain spilled oil and foam on the...

  16. 46 CFR 108.461 - Coamings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.461 Coamings. Each machinery flat in a space that has a foam extinguishing system must have coamings that are high enough to retain spilled oil and foam on the...

  17. Study of Fire Extinguishment of a Replacement Fluid for Use in Transformers in Lieu of Askarel

    DOT National Transportation Integrated Search

    1981-04-01

    A series of tests were performed at the Factory Mutual Test Center 1) to obtain information on the performance of various extinguishing agents used with hand-held fire extinguishers to control fire involving a Midel,a transformer fluid for replacem...

  18. 14 CFR 23.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Protection § 23.1197 Fire extinguishing agents. For all airplanes with engine(s) embedded in the fuselage or... extinguishing system; and (2) Have thermal stability over the temperature range likely to be experienced in the... personnel compartment, even though a defect may exist in the extinguishing system. This must be shown by...

  19. 14 CFR 23.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Protection § 23.1197 Fire extinguishing agents. For all airplanes with engine(s) embedded in the fuselage or... extinguishing system; and (2) Have thermal stability over the temperature range likely to be experienced in the... personnel compartment, even though a defect may exist in the extinguishing system. This must be shown by...

  20. 46 CFR 115.702 - Installation tests and inspections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  1. 46 CFR 115.702 - Installation tests and inspections.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  2. 46 CFR 115.702 - Installation tests and inspections.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  3. 46 CFR 115.702 - Installation tests and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  4. 46 CFR 115.702 - Installation tests and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  5. Fire extinguishing agents for oxygen-enriched atmospheres

    NASA Astrophysics Data System (ADS)

    Plugge, M. A.; Wilson, C. W.; Zallen, D. M.; Walker, J. L.

    1985-12-01

    Fire-suppression agent requirements for extinguishing fires in oxygen-enriched atmospheres were determined employing small-, medium-, large-, and full-scale test apparatuses. The small- and medium-scale tests showed that a doubling of the oxygen concentration required five times more HALON for extinguishment. For fires of similar size and intensity, the effect of oxygen enrichment of the diluent volume in the HC-131A was not as grate as in the smaller compartments of the B-52 which presented a higher damage scenario. The full-scale tests showed that damage to the airframe was as important a factor in extinguishment as oxygen enrichment.

  6. 14 CFR 23.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and the discharge distribution must be adequate to extinguish fires. An individual “one shot” system... to extinguish fires. An individual “one shot” system may be used, except for engine(s) embedded in the fuselage, where a “two shot” system is required. ...

  7. 46 CFR 108.444 - Lockout valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.444 Lockout valves. (a) A lockout valve must be provided on any carbon dioxide extinguishing system protecting a space over... complete isolation of the system from the protected space or spaces, making it impossible for carbon...

  8. Refractometry and Extinguishment/Burnback Testing of Pacific Air Forces AFFF

    DTIC Science & Technology

    2006-04-01

    AFRL-ML-TY-TR-2006-4536 REFRACTOMETRY AND EXTINGUISHMENT/ BURNBACK TESTING OF PACIFIC AIR FORCES AFFF Jennifer L. Kalberer...NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 31-04-2006 Interim Technical Report 01-08-2005 -- 30-09-2005 Refractometry and...AFRL) performed refractometry and extinguishment/burnback tests on samples of Ansulite and 3M aqueous film forming foam (AFFF) from an overseas air

  9. 14 CFR 23.1201 - Fire extinguishing systems materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire extinguishing systems materials. 23.1201 Section 23.1201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Powerplant Powerplant Fire Protection § 23.1201 Fire extinguishing systems materials. For commuter category...

  10. 46 CFR 189.55-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of the alarm and extinguishing systems, the fire extinguishers, means of access to different... dampers and the number identifying each system. (2) Ventilation diagram including dampers and other fire control features. (3) Details of alarm systems. (4) Details of extinguishing systems, including fire mains...

  11. 46 CFR 189.55-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., the arrangement of the alarm and extinguishing systems, the fire extinguishers, means of access to... other fire control features. (3) Details of alarm systems. (4) Details of extinguishing systems, including fire mains, carbon dioxide, clean agent, foam, and sprinkling systems. (e) Marine engineering. For...

  12. 46 CFR 189.55-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., the arrangement of the alarm and extinguishing systems, the fire extinguishers, means of access to... other fire control features. (3) Details of alarm systems. (4) Details of extinguishing systems, including fire mains, carbon dioxide, clean agent, foam, and sprinkling systems. (e) Marine engineering. For...

  13. 46 CFR 107.235 - Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire extinguishing systems. 107.235 Section 107.235 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND...

  14. 46 CFR 107.235 - Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire-extinguishing systems. 107.235 Section 107.235 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND...

  15. 46 CFR 107.235 - Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire-extinguishing systems. 107.235 Section 107.235 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND...

  16. 46 CFR 107.235 - Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire extinguishing systems. 107.235 Section 107.235 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND...

  17. 46 CFR 107.235 - Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire extinguishing systems. 107.235 Section 107.235 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND...

  18. 46 CFR 169.564 - Fixed extinguishing system, general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fixed extinguishing system, general. 169.564 Section 169.564 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.564 Fixed extinguishing system...

  19. 46 CFR 169.564 - Fixed extinguishing system, general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fixed extinguishing system, general. 169.564 Section 169.564 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.564 Fixed extinguishing system...

  20. 14 CFR 121.271 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire-extinguishing system materials. 121.271 Section 121.271 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....271 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this section, each...

  1. 14 CFR 121.271 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire-extinguishing system materials. 121.271 Section 121.271 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....271 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this section, each...

  2. 14 CFR 121.271 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire-extinguishing system materials. 121.271 Section 121.271 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....271 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this section, each...

  3. 14 CFR 121.271 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire-extinguishing system materials. 121.271 Section 121.271 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....271 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this section, each...

  4. 14 CFR 121.271 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire-extinguishing system materials. 121.271 Section 121.271 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....271 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this section, each...

  5. 14 CFR 125.169 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire-extinguishing system materials. 125.169 Section 125.169 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Requirements § 125.169 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this...

  6. 14 CFR 125.169 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire-extinguishing system materials. 125.169 Section 125.169 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Requirements § 125.169 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this...

  7. 14 CFR 125.169 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire-extinguishing system materials. 125.169 Section 125.169 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Requirements § 125.169 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this...

  8. 14 CFR 125.169 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire-extinguishing system materials. 125.169 Section 125.169 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Requirements § 125.169 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this...

  9. 14 CFR 125.169 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire-extinguishing system materials. 125.169 Section 125.169 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Requirements § 125.169 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this...

  10. 46 CFR 108.467 - Water supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  11. 46 CFR 108.467 - Water supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  12. 46 CFR 108.467 - Water supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  13. 46 CFR 108.467 - Water supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  14. 46 CFR 108.467 - Water supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  15. 46 CFR 162.161-7 - Inspections at production.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-7... Coast Guard to take samples of systems for tests prescribed by this subpart; and (4) Conduct a leakage...

  16. 46 CFR 162.161-7 - Inspections at production.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-7... Coast Guard to take samples of systems for tests prescribed by this subpart; and (4) Conduct a leakage...

  17. 46 CFR 162.161-7 - Inspections at production.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-7... Coast Guard to take samples of systems for tests prescribed by this subpart; and (4) Conduct a leakage...

  18. 46 CFR 185.612 - Fire protection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... instructions for the operation of a fixed gas fire extinguishing system must be located in a conspicuous place... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... extinguishing system and the fire main, must be plainly, conspicuously, and permanently marked indicating the...

  19. 46 CFR 185.612 - Fire protection equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... instructions for the operation of a fixed gas fire extinguishing system must be located in a conspicuous place... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... extinguishing system and the fire main, must be plainly, conspicuously, and permanently marked indicating the...

  20. 46 CFR 185.612 - Fire protection equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... instructions for the operation of a fixed gas fire extinguishing system must be located in a conspicuous place... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... extinguishing system and the fire main, must be plainly, conspicuously, and permanently marked indicating the...

  1. 46 CFR 185.612 - Fire protection equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... instructions for the operation of a fixed gas fire extinguishing system must be located in a conspicuous place... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... extinguishing system and the fire main, must be plainly, conspicuously, and permanently marked indicating the...

  2. 14 CFR 23.1201 - Fire extinguishing systems materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire extinguishing systems materials. 23... Powerplant Powerplant Fire Protection § 23.1201 Fire extinguishing systems materials. For all airplanes with engine(s) embedded in the fuselage or in pylons on the aft fuselage the following applies: (a) No...

  3. 14 CFR 23.1201 - Fire extinguishing systems materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire extinguishing systems materials. 23... Powerplant Powerplant Fire Protection § 23.1201 Fire extinguishing systems materials. For all airplanes with engine(s) embedded in the fuselage or in pylons on the aft fuselage the following applies: (a) No...

  4. Evaluation of the AMEREX Model 775 Wheeled Extinguisher with Novec 1230

    DTIC Science & Technology

    2014-11-18

    simulate different fire scenarios. The nacelle sits atop a concave concrete pad that can collect a pool of jet fuel as part of the fire scenario...Up Used for Rear Engine Testing and Access Panel Testing. In This Photo, Fuel is Flowing through the Nacelle in Preparation for a Rear Engine Test...Figure 8. Fuel Cups Positioned At 5-ft Intervals from the Amerex Extinguisher (Background) (left); Firefighter Discharges the Extinguisher into/over the

  5. Developing Standards to Qualify a Fine Water Mist Fire Extinguisher for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Graf, John

    2011-01-01

    NASA is developing a Fine Water Mist Portable Fire Extinguisher for use on the International Space Station. The International Space Station presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the US Segment and Columbus and Kibo pressurized elements. Changes in emergency breathing equipment make Fine Water Mist operationally preferable. Supplied oxygen breathing systems allow for safe discharge of a carbon dioxide fire extinguisher, without concerns of the crew inhaling unsafe levels of carbon dioxide. But the Portable Breathing Apparatus offers no more than 15 minutes of capability, and continued use of hose based supplied oxygen systems increases the oxygen content in a fire situation. NASA has developed a filtering respirator cartridge for use in a fire environment. It is qualified to provide up to 90 minutes of capability, and because it is a filtering respirator it does not add oxygen to the environment. The fire response respirator cartridge does not filter carbon dioxide, so a crew member discharging a CO2 fire extinguisher while wearing this filtering respirator would be at risk of inhaling unsafe levels of CO2. Fine Water Mist extinguishes a fire without creating a large volume of air with reduced oxygen and elevated CO2. Compared to the carbon dioxide based Portable Fire Extinguisher, the flight qualification of Fine Water Mist systems requires special care. Qualification of the CO2 based Portable Fire Extinguisher began with the assumption that any fire on ISS would be extinguished if the air in the fire environment reached a critical concentration of CO2. Qualification of a CO2 based system requires the developers to make assertions and assumptions about vehicle geometry and the ability of the extinguisher to deliver CO2 in different geometric configurations, but the developers did not need to make assertions or assumptions about the size of the fire, the temperature, or the heat generation rate. Fine Water Mist systems extinguish a fire predominantly by removing heat -- so qualification standards must evaluate geometry, but also temperature, heat transfer, and heat generation rate. This paper outlines and describes the methods used to develop standards used to qualify Fine Water Mist systems for a human spaceflight environment.

  6. 75 FR 48728 - The Hydrostatic Testing Provision of the Portable Fire Extinguishers Standard; Extension of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... Hydrostatic Testing Provision of the Portable Fire Extinguishers Standard; Extension of the Office of... the information collection requirements contained in the Hydrostatic Testing provision of the Portable... 48729

  7. 46 CFR 108.493 - Location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Hand Portable and Semiportable Fire Extinguishing Systems § 108.493 Location. (a) Each unit must have the hand portable and semiportable fire extinguishers prescribed in Table 108.495(a) of...

  8. 46 CFR 108.493 - Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Hand Portable and Semiportable Fire Extinguishing Systems § 108.493 Location. (a) Each unit must have the hand portable and semiportable fire extinguishers prescribed in Table 108.495(a) of...

  9. 46 CFR 108.493 - Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Hand Portable and Semiportable Fire Extinguishing Systems § 108.493 Location. (a) Each unit must have the hand portable and semiportable fire extinguishers prescribed in Table 108.495(a) of...

  10. 46 CFR 108.493 - Location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Hand Portable and Semiportable Fire Extinguishing Systems § 108.493 Location. (a) Each unit must have the hand portable and semiportable fire extinguishers prescribed in Table 108.495(a) of...

  11. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2) Are...

  12. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2) Are...

  13. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide fire extinguishing system requirements. 167.45-45 Section 167.45-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-45 Carbon dioxide fire extinguishing system...

  14. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide fire extinguishing system requirements. 167.45-45 Section 167.45-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-45 Carbon dioxide fire extinguishing system...

  15. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide fire extinguishing system requirements. 167.45-45 Section 167.45-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-45 Carbon dioxide fire extinguishing system...

  16. 46 CFR 108.477 - Fire hydrants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire hydrants. 108.477 Section 108.477 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.477 Fire hydrants. (a) If a fixed foam extinguishing system has outlets in a main machinery space, at least 2 fire hydrants, in addition to the fire...

  17. 46 CFR 193.15-35 - Enclosure openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing... carbon dioxide extinguishing system, provisions shall be made for easily and effectively closing off the...

  18. 46 CFR 193.15-35 - Enclosure openings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing... carbon dioxide extinguishing system, provisions shall be made for easily and effectively closing off the...

  19. 33 CFR 149.413 - On a manned deepwater port, what spaces require a fixed fire extinguishing system?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capacity of more than 200 cubic feet, and similar spaces containing flammable liquids. (b) Galley ranges or... spaces require a fixed fire extinguishing system? 149.413 Section 149.413 Navigation and Navigable Waters... manned deepwater port, what spaces require a fixed fire extinguishing system? The manned deepwater port...

  20. 33 CFR 149.413 - On a manned deepwater port, what spaces require a fixed fire extinguishing system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... capacity of more than 200 cubic feet, and similar spaces containing flammable liquids. (b) Galley ranges or... spaces require a fixed fire extinguishing system? 149.413 Section 149.413 Navigation and Navigable Waters... manned deepwater port, what spaces require a fixed fire extinguishing system? The manned deepwater port...

  1. 33 CFR 149.413 - On a manned deepwater port, what spaces require a fixed fire extinguishing system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capacity of more than 200 cubic feet, and similar spaces containing flammable liquids. (b) Galley ranges or... spaces require a fixed fire extinguishing system? 149.413 Section 149.413 Navigation and Navigable Waters... manned deepwater port, what spaces require a fixed fire extinguishing system? The manned deepwater port...

  2. 33 CFR 149.413 - On a manned deepwater port, what spaces require a fixed fire extinguishing system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... capacity of more than 200 cubic feet, and similar spaces containing flammable liquids. (b) Galley ranges or... spaces require a fixed fire extinguishing system? 149.413 Section 149.413 Navigation and Navigable Waters... manned deepwater port, what spaces require a fixed fire extinguishing system? The manned deepwater port...

  3. 33 CFR 149.413 - On a manned deepwater port, what spaces require a fixed fire extinguishing system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... capacity of more than 200 cubic feet, and similar spaces containing flammable liquids. (b) Galley ranges or... spaces require a fixed fire extinguishing system? 149.413 Section 149.413 Navigation and Navigable Waters... manned deepwater port, what spaces require a fixed fire extinguishing system? The manned deepwater port...

  4. Study of Hand-Held Fire Extinguishers Aboard Civil Aviation Aircraft.

    DTIC Science & Technology

    1982-06-01

    or combustion products of the polymers used in aircraft construction have been found to include carbon monoxide (CO), carbon dioxide (CO ), hydrogen...toxicity rating, and ease of cleanup. The extinguishing agents used in this country for hand portable fire extinguishers are Carbon Dioxide, water, Halon...point where combustion stops." " Carbon dioxide fire extinguishing systems are useful within the limits of this standard in extinguishing fires in

  5. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...

  6. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...

  7. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...

  8. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...

  9. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam extinguishing...

  10. 46 CFR 76.50-10 - Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Location. 76.50-10 Section 76.50-10 Shipping COAST GUARD... Extinguishers and Semiportable Fire Extinguishing Systems, Arrangements and Details § 76.50-10 Location. (a... fire extinguishing systems Classification (see § 76.50-5) Quantity and location Safety area 1...

  11. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Test Procedure F Appendix F to Part 23...—Test Procedure Part I—Acceptable Test Procedure for Self-Extinguishing Materials for Showing Compliance With §§ 23.853, 23.855, and 23.1359 Acceptable test procedure for self-extinguishing materials for...

  12. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Test Procedure F Appendix F to Part 23...—Test Procedure Part I—Acceptable Test Procedure for Self-Extinguishing Materials for Showing Compliance With §§ 23.853, 23.855, and 23.1359 Acceptable test procedure for self-extinguishing materials for...

  13. 40 CFR Appendix L to Subpart G of... - Substitutes Listed in the January 27, 2003, Final Rule, Effective March 28, 2003

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... environments protected by HFC227-BC extinguishing systemsEach HFC227-BC extinguisher should be clearly labelled... Agent Fire Extinguishing Systems. See additional comments 1, 2, 3, 4, 5. Additional comments. 1—Should... or performance requirements. 4—The agent should be recovered from the fire protection system in...

  14. 40 CFR Appendix L to Subpart G of... - Substitutes Listed in the January 27, 2003, Final Rule, Effective March 28, 2003

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... environments protected by HFC227-BC extinguishing systemsEach HFC227-BC extinguisher should be clearly labelled... Agent Fire Extinguishing Systems. See additional comments 1, 2, 3, 4, 5. Additional comments. 1—Should... or performance requirements. 4—The agent should be recovered from the fire protection system in...

  15. 40 CFR Appendix L to Subpart G of... - Substitutes Listed in the January 27, 2003, Final Rule, Effective March 28, 2003

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... environments protected by HFC227-BC extinguishing systemsEach HFC227-BC extinguisher should be clearly labelled... Agent Fire Extinguishing Systems. See additional comments 1, 2, 3, 4, 5. Additional comments. 1—Should... or performance requirements. 4—The agent should be recovered from the fire protection system in...

  16. 46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... serviceable condition to the satisfaction of the Coast Guard inspector. Dry chemical (cartridge-operated... chemical is free-flowing (not caked) and that extinguisher contains full charge. Dry chemical (stored... determine that extinguisher is fully charged with dry chemical. Recharge if pressure is low or if dry...

  17. 46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... serviceable condition to the satisfaction of the Coast Guard inspector. Dry chemical (cartridge-operated... chemical is free-flowing (not caked) and that extinguisher contains full charge. Dry chemical (stored... determine that extinguisher is fully charged with dry chemical. Recharge if pressure is low or if dry...

  18. 46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... serviceable condition to the satisfaction of the Coast Guard inspector. Dry chemical (cartridge-operated... chemical is free-flowing (not caked) and that extinguisher contains full charge. Dry chemical (stored... determine that extinguisher is fully charged with dry chemical. Recharge if pressure is low or if dry...

  19. 46 CFR 162.161-6 - Tests for approval.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... have been conditioned for 24 hours at 32 °F or at the expected service temperature, if lower than 32 °F... distribution of the extinguishing agent; (3) Salt spray corrosion resistance for marine-type systems; (4) Vibration resistance of installed components for marine-type systems; and (5) Any additional tests contained...

  20. 46 CFR 162.161-6 - Tests for approval.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... have been conditioned for 24 hours at 32 °F or at the expected service temperature, if lower than 32 °F... distribution of the extinguishing agent; (3) Salt spray corrosion resistance for marine-type systems; (4) Vibration resistance of installed components for marine-type systems; and (5) Any additional tests contained...

  1. 46 CFR 162.161-6 - Tests for approval.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... have been conditioned for 24 hours at 32 °F or at the expected service temperature, if lower than 32 °F... distribution of the extinguishing agent; (3) Salt spray corrosion resistance for marine-type systems; (4) Vibration resistance of installed components for marine-type systems; and (5) Any additional tests contained...

  2. Fire extinguishing tests -80 with methyl alcohol gasoline

    NASA Astrophysics Data System (ADS)

    Holmstedt, G.; Ryderman, A.; Carlsson, B.; Lennmalm, B.

    1980-10-01

    Large scale tests and laboratory experiments were carried out for estimating the extinguishing effectiveness of three alcohol resistant aqueous film forming foams (AFFF), two alcohol resistant fluoroprotein foams and two detergent foams in various poolfires: gasoline, isopropyl alcohol, acetone, methyl-ethyl ketone, methyl alcohol and M15 (a gasoline, methyl alcohol, isobutene mixture). The scaling down of large scale tests for developing a reliable laboratory method was especially examined. The tests were performed with semidirect foam application, in pools of 50, 11, 4, 0.6, and 0.25 sq m. Burning time, temperature distribution in the liquid, and thermal radiation were determined. An M15 fire can be extinguished with a detergent foam, but it is impossible to extinguish fires in polar solvents, such as methyl alcohol, acetone, and isopropyl alcohol with detergent foams, AFFF give the best results; and performances with small pools can hardly be correlated with results from large scale fires.

  3. Research on environmental impact of water-based fire extinguishing agents

    NASA Astrophysics Data System (ADS)

    Wang, Shuai

    2018-02-01

    This paper offers current status of application of water-based fire extinguishing agents, the environmental and research considerations of the need for the study of toxicity research. This paper also offers systematic review of test methods of toxicity and environmental impact of water-based fire extinguishing agents currently available, illustrate the main requirements and relevant test methods, and offer some research findings for future research considerations. The paper also offers limitations of current study.

  4. 46 CFR 76.50-5 - Classification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Classification. 76.50-5 Section 76.50-5 Shipping COAST... Classification. (a) Hand portable fire extinguishers and semiportable fire extinguishing systems shall be... extinguishing systems are set forth in table 76.50-5(c). Table 76.50-5(c) Classification Type Size Soda acid and...

  5. 46 CFR 76.50-5 - Classification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Classification. 76.50-5 Section 76.50-5 Shipping COAST... Classification. (a) Hand portable fire extinguishers and semiportable fire extinguishing systems shall be... extinguishing systems are set forth in table 76.50-5(c). Table 76.50-5(c) Classification Type Size Soda acid and...

  6. 46 CFR 76.50-5 - Classification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Classification. 76.50-5 Section 76.50-5 Shipping COAST... Classification. (a) Hand portable fire extinguishers and semiportable fire extinguishing systems shall be... extinguishing systems are set forth in table 76.50-5(c). Table 76.50-5(c) Classification Type Size Soda acid and...

  7. 46 CFR 76.50-5 - Classification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Classification. 76.50-5 Section 76.50-5 Shipping COAST... Classification. (a) Hand portable fire extinguishers and semiportable fire extinguishing systems shall be... extinguishing systems are set forth in table 76.50-5(c). Table 76.50-5(c) Classification Type Size Soda acid and...

  8. 46 CFR 76.50-5 - Classification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Classification. 76.50-5 Section 76.50-5 Shipping COAST... Classification. (a) Hand portable fire extinguishers and semiportable fire extinguishing systems shall be... extinguishing systems are set forth in table 76.50-5(c). Table 76.50-5(c) Classification Type Size Soda acid and...

  9. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...

  10. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...

  11. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...

  12. 78 FR 70324 - Thy Hydrostatic Testing Provision of the Portable Fire Extinguishers Standard; Extension of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ..., as well as how they use it. Test Records (Sec. 1910.157(f)(16)) Paragraph (f)(16) requires employers... performed the test, and the serial number (or other identifier) of the fire extinguisher that was tested. Disclosure of Test Certification Records The certification record must be available to the Assistant...

  13. Generalization of Extinguished Skin Conductance Responding in Human Fear Conditioning

    ERIC Educational Resources Information Center

    Vervliet, Bram; Vansteenwegen, Debora; Eelen, Paul

    2004-01-01

    In a human fear conditioning paradigm using the skin conductance response (SCR), participants were assigned to two groups. Following identical acquisition, group ABA (n = 16) was extinguished to a generalization stimulus (GS), whereas group AAB (n = 20) was extinguished to the conditioned stimulus (CS). At test, presenting the CS in group ABA…

  14. Powder Extinguishants for Jet-Fuel Fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Mayer, L. A.; Ling, A. C.

    1986-01-01

    Mixtures of alkali metal dawsonite and metal halide show superior performance. In tests of new dry powder fire extinguishants, mixtures of potassium dawsonite with either stannous iodide or potassium iodide found effective for extinguishing jet-fuel fires on hot metal surfaces (up to 900 degrees C). Mixtures performed more effectively than either compound alone.

  15. Aircraft Hangar Fire Suppression System Evaluation-Intermediate- Scale Studies

    DTIC Science & Technology

    1999-12-23

    aqueous film forming foam ( AFFF ) extinguishing systems [1]. The overhead AFFF system typically consists of standard closed head sprinklers that...of Water Spray on Fire-Fighting Foam ," Fire Journal, 63 (6), November 1969. 5. MIL-F-24385F, "Fire Extinguishing Agent, Aqueous Film Forming Foam ...extinguishing capability of the foam and the ability of the blanket to resist burnback. When AFFF is applied over a flammable liquid spill

  16. Spontaneous Recovery But Not Reinstatement of the Extinguished Conditioned Eyeblink Response in the Rat

    PubMed Central

    Thanellou, Alexandra; Green, John T.

    2011-01-01

    Reinstatement, the return of an extinguished conditioned response (CR) after reexposure to the unconditioned stimulus (US), and spontaneous recovery, the return of an extinguished CR with the passage of time, are two of four well-established phenomena which demonstrate that extinction does not erase the conditioned stimulus (CS)-US association. However, reinstatement of extinguished eyeblink CRs has never been demonstrated and spontaneous recovery of extinguished eyeblink CRs has not been systematically demonstrated in rodent eyeblink conditioning. In Experiment 1, US reexposure was administered 24 hours prior to a reinstatement test. In Experiment 2, US reexposure was administered 5 min prior to a reinstatement test. In Experiment 3, a long, discrete cue (a houselight), present in all phases of training and testing, served as a context within which each trial occurred to maximize context processing, which in other preparations has been shown to be required for reinstatement. In Experiment 4, an additional group was included that received footshock exposure, rather than US reexposure, between extinction and test, and contextual freezing was measured prior to test. Spontaneous recovery was robust in Experiments 3 and 4. In Experiment 4, context freezing was strong in a group given footshock exposure but not in a group given eyeshock US reexposure. There was no reinstatement observed in any experiment. With stimulus conditions that produce eyeblink conditioning and research designs that produce reinstatement in other forms of classical conditioning, we observed spontaneous recovery but not reinstatement of extinguished eyeblink CRs. This suggests that reinstatement, but not spontaneous recovery, is a preparation- or substrate-dependent phenomenon. PMID:21517145

  17. Relapse of Extinguished Fear after Exposure to a Dangerous Context Is Mitigated by Testing in a Safe Context

    ERIC Educational Resources Information Center

    Goode, Travis D.; Kim, Janice J.; Maren, Stephen

    2015-01-01

    Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context ("dangerous"…

  18. 14 CFR 29.853 - Compartment interiors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... self-extinguishing when tested vertically in accordance with the applicable portions of appendix F of... paragraph (a)(3) of this section, must be self extinguishing when tested vertically in accordance with the... of elastometric materials, edge lighted instrument assemblies consisting of two or more instruments...

  19. 46 CFR 193.15-50 - Clean agent systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-50 Clean agent... carbon dioxide fire extinguishing system. [USCG-2006-24797, 77 FR 33893, June 7, 2012] ...

  20. 46 CFR 193.15-50 - Clean agent systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-50 Clean agent... carbon dioxide fire extinguishing system. [USCG-2006-24797, 77 FR 33893, June 7, 2012] ...

  1. 46 CFR 176.810 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Inspection of each hand portable fire extinguisher, semiportable fire extinguisher, and fixed gas fire..., and valves, and the inspection and testing of alarms and ventilation shutdowns, for each fixed gas...) Checking of each cylinder containing compressed gas to ensure it has been tested and marked in accordance...

  2. 46 CFR 131.590 - Firefighting equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... performance of the tests and inspections of each portable fire extinguisher, semiportable fire extinguisher... master shall keep records of these tests and inspections, showing the dates of their performance, the... maintain the prescribed firefighting equipment in working order for use at any time when the vessel is...

  3. Fire extinguishing tests -80 with methyl alcohol gasoline (in MIXED)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmstedt, G.; Ryderman, A.; Carlsson, B.

    1980-01-01

    Large scale tests and laboratory experiments were carried out for estimating the extinguishing effectiveness of three alcohol resistant aqueous film forming foams (AFFF), two alcohol resistant fluoroprotein foams and two detergent foams in various poolfires: gasoline, isopropyl alcohol, acetone, methyl-ethyl ketone, methyl alcohol and M15 (a gasoline, methyl alcohol, isobutene mixture). The scaling down of large scale tests for developing a reliable laboratory method was especially examined. The tests were performed with semidirect foam application, in pools of 50, 11, 4, 0.6, and 0.25 sq m. Burning time, temperature distribution in the liquid, and thermal radiation were determined. An M15more » fire can be extinguished with a detergent foam, but it is impossible to extinguish fires in polar solvents, such as methyl alcohol, acetone, and isopropyl alcohol with detergent foams, AFFF give the best results, and performances with small pools can hardly be correlated with results from large scale fires.« less

  4. 14 CFR 23.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and the discharge distribution must be adequate to extinguish fires. An individual “one shot” system may be used, except for engine(s) embedded in the fuselage, where a “two shot” system is required. (3...

  5. 14 CFR 23.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and the discharge distribution must be adequate to extinguish fires. An individual “one shot” system may be used, except for engine(s) embedded in the fuselage, where a “two shot” system is required. (3...

  6. 46 CFR 162.028-5 - Independent laboratories: Listing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type... or tests of portable fire extinguishers: (a) For dry chemical, CO2, water and foam type portable fire...

  7. 46 CFR 162.028-5 - Independent laboratories: Listing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type... or tests of portable fire extinguishers: (a) For dry chemical, CO2, water and foam type portable fire...

  8. 46 CFR 162.028-5 - Independent laboratories: Listing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type... or tests of portable fire extinguishers: (a) For dry chemical, CO2, water and foam type portable fire...

  9. 46 CFR 162.028-5 - Independent laboratories: Listing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type... or tests of portable fire extinguishers: (a) For dry chemical, CO2, water and foam type portable fire...

  10. 46 CFR 162.028-5 - Independent laboratories: Listing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Extinguishers, Fire, Portable, Marine Type... or tests of portable fire extinguishers: (a) For dry chemical, CO2, water and foam type portable fire...

  11. 46 CFR 169.247 - Firefighting equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... certification and periodic inspection and at such other times as considered necessary all fire-extinguishing... condition of the equipment. The inspector verifies that the tests and inspections required in Tables 169.247.... Table 169.247(a)(1)—Portable Extinguishers Type unit Test Foam Discharge. Clean hose and inside of...

  12. 46 CFR 169.247 - Firefighting equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... certification and periodic inspection and at such other times as considered necessary all fire-extinguishing... condition of the equipment. The inspector verifies that the tests and inspections required in Tables 169.247.... Table 169.247(a)(1)—Portable Extinguishers Type unit Test Foam Discharge. Clean hose and inside of...

  13. Self-Contained AFFF Sprinkler System,

    DTIC Science & Technology

    1982-05-01

    aqueous film forming foam ( AFFF ). Such systems are...supply. Extinguishing Agents All fire tests were run with a pre-mixed solution of 6% aqueous film forming foam ( AFFF ) agent in accordance with MIL-F...Applying Aqueous Film Forming Foam on Large-Scale Fires", Civil and Environmental Engineering Development Office (Air Force Systems Command) Report

  14. 46 CFR 181.410 - Fixed gas fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... protected at the first joint between the nozzles and the storage cylinders. (iii) A small independent system... and the first nozzle in the system must be capped and pneumatically tested for a period of 10 minutes... protect the piping from over-pressurization. (3) Nozzles must be approved by the Commandant. (4) When...

  15. 46 CFR 181.410 - Fixed gas fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... protected at the first joint between the nozzles and the storage cylinders. (iii) A small independent system... and the first nozzle in the system must be capped and pneumatically tested for a period of 10 minutes... protect the piping from over-pressurization. (3) Nozzles must be approved by the Commandant. (4) When...

  16. 46 CFR 181.410 - Fixed gas fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... protected at the first joint between the nozzles and the storage cylinders. (iii) A small independent system... and the first nozzle in the system must be capped and pneumatically tested for a period of 10 minutes... protect the piping from over-pressurization. (3) Nozzles must be approved by the Commandant. (4) When...

  17. Analysis of the Earthquake Impact towards water-based fire extinguishing system

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hur, M.; Lee, K.

    2015-09-01

    Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.

  18. 46 CFR 95.16-50 - Instructions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-50 Instructions. (a) Simple, complete... agent cylinder storage room. (b) On a system in which extinguishing agent cylinders are stored outside...

  19. 46 CFR 95.16-50 - Instructions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-50 Instructions. (a) Simple, complete... agent cylinder storage room. (b) On a system in which extinguishing agent cylinders are stored outside...

  20. 46 CFR 95.16-50 - Instructions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-50 Instructions. (a) Simple, complete... agent cylinder storage room. (b) On a system in which extinguishing agent cylinders are stored outside...

  1. Development of the International Space Station (ISS) Fine Water Mist (FWM) Portable Fire Extinguisher

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle; Graf, John; Carlile, Christie; Young, GIna

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is developing a Fine Water Mist (FWM) Portable Fire Extinguisher (PFE) for use on the International Space Station (ISS). The ISS presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the United States Orbital Segments, which include Columbus and Kibo pressurized elements. Currently, there are operational concerns with the emergency breathing equipment and the carbon dioxide extinguisher. The toxicity of the carbon dioxide requires the crew members to have an oxygen supply present during a fire event, therefore inherently creating an unsafe environment. The FWM PFE extinguishes a fire without creating a hazardous breathing environment for crew members. The following paper will discuss the unique functional and performance requirements that have been levied on the FWM PFE, identify unique microgravity design considerations for liquid and gas systems, as well as discuss the NASA ISS specific fire standards that were developed to establish an acceptable portable fire extinguisher s performance.

  2. Fire Suppression in Low Gravity Using a Cup Burner

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches. The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.

  3. Fire Suppression in Low Gravity Using a Cup Burner

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    Longer duration missions to the moon, to Mars, and on the International Space Station increase the likelihood of accidental fires. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of numerical models, which include detailed combustion-suppression chemistry and radiation sub-models; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches.The structure and extinguishment of enclosed, laminar, methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using various fire-extinguishing agents (CO2, N2, He, Ar, CF3H, and Fe(CO)5). The experiments involve both 1g laboratory testing and low-g testing (in drop towers and the KC-135 aircraft). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An agent was introduced into a low-speed coflowing oxidizing stream until extinguishment occurred under a fixed minimal fuel velocity, and thus, the extinguishing agent concentrations were determined. The extinguishment of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff of the trailing diffusion flame. Furthermore, the buoyancy-induced flame flickering in 1g and thermal and transport properties of the agents affected the flame extinguishment limits.

  4. Fire training in a virtual-reality environment

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Jurgen; Bucken, Arno

    2005-03-01

    Although fire is very common in our daily environment - as a source of energy at home or as a tool in industry - most people cannot estimate the danger of a conflagration. Therefore it is important to train people in combating fire. Beneath training with propane simulators or real fires and real extinguishers, fire training can be performed in virtual reality, which means a pollution-free and fast way of training. In this paper we describe how to enhance a virtual-reality environment with a real-time fire simulation and visualisation in order to establish a realistic emergency-training system. The presented approach supports extinguishing of the virtual fire including recordable performance data as needed in teletraining environments. We will show how to get realistic impressions of fire using advanced particle-simulation and how to use the advantages of particles to trigger states in a modified cellular automata used for the simulation of fire-behaviour. Using particle systems that interact with cellular automata it is possible to simulate a developing, spreading fire and its reaction on different extinguishing agents like water, CO2 or oxygen. The methods proposed in this paper have been implemented and successfully tested on Cosimir, a commercial robot-and VR-simulation-system.

  5. 46 CFR 28.320 - Fixed gas fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... only in a normally unoccupied machinery space, paint locker, or space containing flammable liquid... protect more than one space. The quantity of extinguishing agent must be at least sufficient for the... to indicate the discharge of the extinguishing agent; (ii) An audible alarm to sound upon discharge...

  6. 46 CFR 28.320 - Fixed gas fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... only in a normally unoccupied machinery space, paint locker, or space containing flammable liquid... protect more than one space. The quantity of extinguishing agent must be at least sufficient for the... to indicate the discharge of the extinguishing agent; (ii) An audible alarm to sound upon discharge...

  7. 46 CFR 28.320 - Fixed gas fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... only in a normally unoccupied machinery space, paint locker, or space containing flammable liquid... protect more than one space. The quantity of extinguishing agent must be at least sufficient for the... to indicate the discharge of the extinguishing agent; (ii) An audible alarm to sound upon discharge...

  8. 46 CFR 108.474 - Aqueous film forming foam systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...

  9. 46 CFR 108.474 - Aqueous film forming foam systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...

  10. 46 CFR 108.474 - Aqueous film forming foam systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...

  11. 46 CFR 108.474 - Aqueous film forming foam systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...

  12. 46 CFR 108.474 - Aqueous film forming foam systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Aqueous film forming foam systems. 108.474 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.474 Aqueous film forming foam systems. Aqueous film forming foam systems may be installed if approved by the Commandant. ...

  13. 46 CFR 95.17-25 - Additional protection required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-25 Additional protection required. (a) In order that any residual fires above the floor plates may be extinguished when a foam system is...

  14. 46 CFR 76.17-25 - Additional protection required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-25 Additional protection required. (a) In order that any residual fires above the floor plates may be extinguished when a foam system is installed...

  15. 46 CFR 95.17-25 - Additional protection required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-25 Additional protection required. (a) In order that any residual fires above the floor plates may be extinguished when a foam system is...

  16. 46 CFR 76.17-25 - Additional protection required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-25 Additional protection required. (a) In order that any residual fires above the floor plates may be extinguished when a foam system is installed...

  17. 14 CFR 25.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... extinguishing systems. (a) Except for combustor, turbine, and tail pipe sections of turbine engine installations that contain lines or components carrying flammable fluids or gases for which it is shown that a fire...

  18. 14 CFR 25.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... extinguishing systems. (a) Except for combustor, turbine, and tail pipe sections of turbine engine installations that contain lines or components carrying flammable fluids or gases for which it is shown that a fire...

  19. 14 CFR 25.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... extinguishing systems. (a) Except for combustor, turbine, and tail pipe sections of turbine engine installations that contain lines or components carrying flammable fluids or gases for which it is shown that a fire...

  20. 14 CFR 25.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... extinguishing systems. (a) Except for combustor, turbine, and tail pipe sections of turbine engine installations that contain lines or components carrying flammable fluids or gases for which it is shown that a fire...

  1. 14 CFR 25.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... extinguishing systems. (a) Except for combustor, turbine, and tail pipe sections of turbine engine installations that contain lines or components carrying flammable fluids or gases for which it is shown that a fire...

  2. Relapse of extinguished fear after exposure to a dangerous context is mitigated by testing in a safe context

    PubMed Central

    Goode, Travis D.; Kim, Janice J.

    2015-01-01

    Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context (“dangerous” context) 24 h prior to auditory fear conditioning in another context. Fear to the auditory conditioned stimulus (CS) was subsequently extinguished either in the conditioning context (“ambiguous” context) or in a third novel context (“safe” context). Exposure to the dangerous context 30 min before a CS retention test caused relapse to the CS in the ambiguous and safe test contexts relative to nonextinguished controls. When rats were tested 24 h later (with or without short-term testing), rats tested in the ambiguous context continued to exhibit relapse, whereas rats tested in the safe context did not. Additionally, exposure of rats to the conditioning context—in place of the unsignaled shock context—did not result in relapse of fear to the CS in the safe testing context. Our work highlights the vulnerabilities of extinction recall to interference, and demonstrates the importance of context associations in the relapse of fear after extinction. PMID:25691517

  3. Relapse of extinguished fear after exposure to a dangerous context is mitigated by testing in a safe context.

    PubMed

    Goode, Travis D; Kim, Janice J; Maren, Stephen

    2015-03-01

    Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context ("dangerous" context) 24 h prior to auditory fear conditioning in another context. Fear to the auditory conditioned stimulus (CS) was subsequently extinguished either in the conditioning context ("ambiguous" context) or in a third novel context ("safe" context). Exposure to the dangerous context 30 min before a CS retention test caused relapse to the CS in the ambiguous and safe test contexts relative to nonextinguished controls. When rats were tested 24 h later (with or without short-term testing), rats tested in the ambiguous context continued to exhibit relapse, whereas rats tested in the safe context did not. Additionally, exposure of rats to the conditioning context--in place of the unsignaled shock context--did not result in relapse of fear to the CS in the safe testing context. Our work highlights the vulnerabilities of extinction recall to interference, and demonstrates the importance of context associations in the relapse of fear after extinction. © 2015 Goode et al.; Published by Cold Spring Harbor Laboratory Press.

  4. 29 CFR 1910.163 - Fixed extinguishing systems, water spray and foam.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....160. This section does not apply to automatic sprinkler systems which are covered under § 1910.159. (b...] Other Fire Protection Systems ... 29 Labor 5 2012-07-01 2012-07-01 false Fixed extinguishing systems, water spray and foam. 1910.163...

  5. 29 CFR 1910.163 - Fixed extinguishing systems, water spray and foam.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....160. This section does not apply to automatic sprinkler systems which are covered under § 1910.159. (b...] Other Fire Protection Systems ... 29 Labor 5 2014-07-01 2014-07-01 false Fixed extinguishing systems, water spray and foam. 1910.163...

  6. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (ABC) fire extinguishers that are listed or approved by a nationally recognized independent testing... (ABC) fire extinguishers that are listed or approved by a nationally recognized independent testing... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that...

  7. 46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and halon portable fire extinguishers must be refilled when the weight loss of net content exceeds... weight loss exceeds 10% of weight of charge. Test time delays, alarms, and ventilation shutdowns with.... Inspect hoses and nozzles to be sure they are clean. Halon Weigh cylinders. Recharge if weight loss...

  8. 46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and halon portable fire extinguishers must be refilled when the weight loss of net content exceeds... weight loss exceeds 10% of weight of charge. Test time delays, alarms, and ventilation shutdowns with.... Inspect hoses and nozzles to be sure they are clean. Halon Weigh cylinders. Recharge if weight loss...

  9. 15. DETAIL SHOWING HYDROGEN (LEFT) AND OXYGEN (RIGHT) SPHERICAL TANKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAIL SHOWING HYDROGEN (LEFT) AND OXYGEN (RIGHT) SPHERICAL TANKS ON RUN LINE DECK, THIRD LEVEL. DARK TONED PIPING IS THE FIRE EXTINGUISHING SYSTEM. Looking south southwest. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  10. 46 CFR 108.473 - Foam system components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Foam system components. 108.473 Section 108.473 Shipping... EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.473 Foam system components. (a) Each foam agent, each tank for a foam agent, each discharge outlet, each control, and each valve for the...

  11. 46 CFR 108.473 - Foam system components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Foam system components. 108.473 Section 108.473 Shipping... EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.473 Foam system components. (a) Each foam agent, each tank for a foam agent, each discharge outlet, each control, and each valve for the...

  12. 29 CFR 1910.160 - Fixed extinguishing systems, general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sprinkler systems which are covered by § 1910.159. (2) This section also applies to fixed systems not.... (3) Systems otherwise covered in paragraph (a)(2) of this section which are installed in areas with... light levels, on all extinguishing systems in those portions of the workplace covered by the...

  13. 46 CFR 95.50-5 - Classification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Classification. 95.50-5 Section 95.50-5 Shipping COAST... Details § 95.50-5 Classification. (a) Hand portable fire extinguishers and semiportable fire extinguishing... extinguishing systems are set forth in Table 95.50-5(c). Table 95.50-5(c) Classification Type Size Soda-acid and...

  14. 46 CFR 95.50-5 - Classification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Classification. 95.50-5 Section 95.50-5 Shipping COAST... Details § 95.50-5 Classification. (a) Hand portable fire extinguishers and semiportable fire extinguishing... extinguishing systems are set forth in Table 95.50-5(c). Table 95.50-5(c) Classification Type Size Soda-acid and...

  15. 46 CFR 95.50-5 - Classification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Classification. 95.50-5 Section 95.50-5 Shipping COAST... Details § 95.50-5 Classification. (a) Hand portable fire extinguishers and semiportable fire extinguishing... extinguishing systems are set forth in Table 95.50-5(c). Table 95.50-5(c) Classification Type Size Soda-acid and...

  16. 46 CFR 95.50-5 - Classification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Classification. 95.50-5 Section 95.50-5 Shipping COAST... Details § 95.50-5 Classification. (a) Hand portable fire extinguishers and semiportable fire extinguishing... extinguishing systems are set forth in Table 95.50-5(c). Table 95.50-5(c) Classification Type Size Soda-acid and...

  17. 46 CFR 95.50-5 - Classification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Classification. 95.50-5 Section 95.50-5 Shipping COAST... Details § 95.50-5 Classification. (a) Hand portable fire extinguishers and semiportable fire extinguishing... extinguishing systems are set forth in Table 95.50-5(c). Table 95.50-5(c) Classification Type Size Soda-acid and...

  18. 46 CFR 193.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... provided for internal combustion engine installations in accordance with the following: (1) Enclosed spaces containing gasoline engines shall have fixed carbon dioxide systems. (2) If a fire extinguishing system is...

  19. 46 CFR 193.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... provided for internal combustion engine installations in accordance with the following: (1) Enclosed spaces containing gasoline engines shall have fixed carbon dioxide systems. (2) If a fire extinguishing system is...

  20. 46 CFR 108.430 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Automatic Sprinkling Systems § 108.430 General. Automatic Sprinkler Systems shall comply with NFPA 13-1996. [CGD 95-028, 62 FR 51208, Sept. 30, 1997] Fixed Carbon Dioxide Fire Extinguishing...

  1. 46 CFR 108.430 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Automatic Sprinkling Systems § 108.430 General. Automatic Sprinkler Systems shall comply with NFPA 13-1996. [CGD 95-028, 62 FR 51208, Sept. 30, 1997] Fixed Carbon Dioxide Fire Extinguishing...

  2. 46 CFR 108.430 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Automatic Sprinkling Systems § 108.430 General. Automatic Sprinkler Systems shall comply with NFPA 13-1996. [CGD 95-028, 62 FR 51208, Sept. 30, 1997] Fixed Carbon Dioxide Fire Extinguishing...

  3. 46 CFR 108.430 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Automatic Sprinkling Systems § 108.430 General. Automatic Sprinkler Systems shall comply with NFPA 13-1996. [CGD 95-028, 62 FR 51208, Sept. 30, 1997] Fixed Carbon Dioxide Fire Extinguishing...

  4. 46 CFR 108.430 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Automatic Sprinkling Systems § 108.430 General. Automatic Sprinkler Systems shall comply with NFPA 13-1996. [CGD 95-028, 62 FR 51208, Sept. 30, 1997] Fixed Carbon Dioxide Fire Extinguishing...

  5. Development of the International Space Station Fine Water Mist Portable Fire Extinguisher

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle; Young, GIna

    2013-01-01

    The National Aeronautics and Space Administration (NASA) is developing a Fine Water Mist (FWM) Portable Fire Extinguisher (PFE) for use on the International Space Station (ISS). The ISS presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segments, and a carbon dioxide extinguisher in the United States Orbital Segments, which include Columbus and Kibo pressurized elements. Currently, there are operational and compatibility concerns with the emergency breathing equipment and the carbon dioxide extinguisher. ISS emergency response breathing equipment does not filter carbon dioxide; therefore, crew members are required to have an oxygen supply present during a fire event since the carbon dioxide PFE creates an unsafe breathing environment. The ISS program recommended a nontoxic fire extinguisher to mitigate this operational risk. The FWM PFE can extinguish a fire without creating a hazardous breathing environment for crewmembers. This paper will discuss the unique functional and performance requirements that have been levied on the FWM PFE, identify unique microgravity design considerations for liquid and gas systems, and discuss the NASA ISS specific fire standards that were developed to establish an acceptable portable fire extinguisher s performance.

  6. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (7) Inspection and testing of smoke and fire detecting systems (including sensors and alarms) and... Coast Guard inspector. Dry chemical (cartridge operated) Examine pressure cartridge and replace if end... clear. Insert charged cartridge. Ensure dry chemical is free flowing, not caked, and extinguisher...

  7. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (7) Inspection and testing of smoke and fire detecting systems (including sensors and alarms) and... Coast Guard inspector. Dry chemical (cartridge operated) Examine pressure cartridge and replace if end... clear. Insert charged cartridge. Ensure dry chemical is free flowing, not caked, and extinguisher...

  8. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (7) Inspection and testing of smoke and fire detecting systems (including sensors and alarms) and... Coast Guard inspector. Dry chemical (cartridge operated) Examine pressure cartridge and replace if end... clear. Insert charged cartridge. Ensure dry chemical is free flowing, not caked, and extinguisher...

  9. Mammalian Toxicology Testing: Problem Definition Study, Technical Plan.

    DTIC Science & Technology

    1981-03-01

    Acute Oral Exposure Area, Rzdent 2. Subchrcnic Oral Exposure Area, .odent 3. Chronic Oral Exposure Area, Rodent 4. Subchronic Oral Eposure Area, "og...Alarms Fire Extinguisher First Aid Fiscal Year Record Fixtures (See Jigs, Fixtures & Molds Control System) Food Preparation/Blending Forms Control...Insurance Invoicing (See Bookkeeping) Janitorial Service Jigs, Fixtures & Molds Control System Key Control System Keypunch Control System Label

  10. 46 CFR 162.161-1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-1 Scope. (a) This subpart applies to each engineered fixed fire extinguishing system using a halocarbon or an inert gas as an agent. It does not apply to pre-engineered systems. (b) Each system must be designed for...

  11. 46 CFR 162.161-1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-1 Scope. (a) This subpart applies to each engineered fixed fire extinguishing system using a halocarbon or an inert gas as an agent. It does not apply to pre-engineered systems. (b) Each system must be designed for...

  12. 46 CFR 162.161-1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-1 Scope. (a) This subpart applies to each engineered fixed fire extinguishing system using a halocarbon or an inert gas as an agent. It does not apply to pre-engineered systems. (b) Each system must be designed for...

  13. 46 CFR 34.17-25 - Additional protection required-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Fixed Foam Extinguishing Systems, Details § 34.17-25 Additional protection required—T/ALL. (a) In order that any residual fires above the floor plates may be extinguished when a foam system is installed for...

  14. 46 CFR 34.17-25 - Additional protection required-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Fixed Foam Extinguishing Systems, Details § 34.17-25 Additional protection required—T/ALL. (a) In order that any residual fires above the floor plates may be extinguished when a foam system is installed for...

  15. Extinguishment and Burnback Testing of Fire Fighting Agents

    DTIC Science & Technology

    2005-09-26

    resisting burnback for hydrocarbon fuel fires. Potential Aqueous Film Forming Foam ( AFFF ) replacements are required to exhibit an...simple, reliable test to evaluate the effectiveness of new foams being introduced into the market as potential Aqueous Film Forming Foam ( AFFF ...normal concentrations. Reference: Military Specification MIL-F-24385F, Fire Extinguishing Agent, Aqueous Film - Forming Foam

  16. Aviation Engine Test Facilities (AETF) fire protection study

    NASA Astrophysics Data System (ADS)

    Beller, R. C.; Burns, R. E.; Leonard, J. T.

    1989-07-01

    An analysis is presented to the effectiveness of various types of fire fighting agents in extinguishing the kinds of fires anticipated in Aviation Engine Test Facilities (AETF), otherwise known as Hush Houses. The agents considered include Aqueous Film-Forming Foam, Halon 1301, Halon 1211 and water. Previous test work has shown the rapidity with which aircraft, especially high performance aircraft, can be damaged by fire. Based on this, tentative criteria for this evaluation included a maximum time of 20 s from fire detection to extinguishment and a period of 30 min in which the agent would prevent reignition. Other issues examined included: toxicity, corrosivity, ease of personnel egress, system reliability, and cost effectiveness. The agents were evaluated for their performance in several fire scenarios, including: under frame fire, major engine fire, engine disintegration fire, high-volume pool fire with simultaneous spill fire, internal electrical fire, and runaway engine fire.

  17. 46 CFR 31.10-18 - Firefighting equipment: General-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... extinguishing agent is needed. Carbon dioxide Weigh cylinders. Recharge if weight loss exceeds 10 percent of... ascertain that the system is in good operating condition. For carbon dioxide or clean agent systems as... be tested with at least 50 pounds per square inch of air pressure or by blowing steam through the...

  18. 46 CFR 31.10-18 - Firefighting equipment: General-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... extinguishing agent is needed. Carbon dioxide Weigh cylinders. Recharge if weight loss exceeds 10 percent of... ascertain that the system is in good operating condition. For carbon dioxide or clean agent systems as... be tested with at least 50 pounds per square inch of air pressure or by blowing steam through the...

  19. 46 CFR 118.410 - Fixed gas fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... piping must be capped within the space protected at the first joint between the nozzles and the storage... and the first nozzle in the system must be capped and pneumatically tested for a period of 10 minutes... protect the piping from overpressurization. (3) Nozzles must be approved by the Commandant. (4) When...

  20. 46 CFR 118.410 - Fixed gas fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... piping must be capped within the space protected at the first joint between the nozzles and the storage... and the first nozzle in the system must be capped and pneumatically tested for a period of 10 minutes... protect the piping from overpressurization. (3) Nozzles must be approved by the Commandant. (4) When...

  1. 46 CFR 118.410 - Fixed gas fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... piping must be capped within the space protected at the first joint between the nozzles and the storage... and the first nozzle in the system must be capped and pneumatically tested for a period of 10 minutes... protect the piping from overpressurization. (3) Nozzles must be approved by the Commandant. (4) When...

  2. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  3. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  4. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  5. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  6. 29 CFR 1910.160 - Fixed extinguishing systems, general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sprinkler systems which are covered by § 1910.159. (2) This section also applies to fixed systems not... flooding systems by means of an approved fire detection device installed and interconnected with a pre... 29 Labor 5 2012-07-01 2012-07-01 false Fixed extinguishing systems, general. 1910.160 Section 1910...

  7. 29 CFR 1910.160 - Fixed extinguishing systems, general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sprinkler systems which are covered by § 1910.159. (2) This section also applies to fixed systems not... flooding systems by means of an approved fire detection device installed and interconnected with a pre... 29 Labor 5 2011-07-01 2011-07-01 false Fixed extinguishing systems, general. 1910.160 Section 1910...

  8. 29 CFR 1910.160 - Fixed extinguishing systems, general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sprinkler systems which are covered by § 1910.159. (2) This section also applies to fixed systems not... flooding systems by means of an approved fire detection device installed and interconnected with a pre... 29 Labor 5 2013-07-01 2013-07-01 false Fixed extinguishing systems, general. 1910.160 Section 1910...

  9. 29 CFR 1910.160 - Fixed extinguishing systems, general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sprinkler systems which are covered by § 1910.159. (2) This section also applies to fixed systems not... flooding systems by means of an approved fire detection device installed and interconnected with a pre... 29 Labor 5 2014-07-01 2014-07-01 false Fixed extinguishing systems, general. 1910.160 Section 1910...

  10. Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher

    NASA Technical Reports Server (NTRS)

    Butz, James R.; Turchi, Craig S.; Kimball, Amanda; McKinnon, Thomas; Riedel, Edward

    2010-01-01

    A fine-water-mist fire-suppression device has been designed so that it can be discharged uniformly in any orientation via a high-pressure gas propellant. Standard fire extinguishers used while slightly tilted or on their side will not discharge all of their contents. Thanks to the new design, this extinguisher can be used in multiple environments such as aboard low-gravity spacecraft, airplanes, and aboard vehicles that may become overturned prior to or during a fire emergency. Research in recent years has shown that fine water mist can be an effective alternative to Halons now banned from manufacture. Currently, NASA uses carbon dioxide for fire suppression on the International Space Station (ISS) and Halon chemical extinguishers on the space shuttle. While each of these agents is effective, they have drawbacks. The toxicity of carbon dioxide requires that the crew don breathing apparatus when the extinguishers are deployed on the ISS, and Halon use in future spacecraft has been eliminated because of international protocols on substances that destroy atmospheric ozone. A major advantage to the new system on occupied spacecraft is that the discharged system is locally rechargeable. Since the only fluids used are water and nitrogen, the system can be recharged from stores of both carried aboard the ISS or spacecraft. The only support requirement would be a pump to fill the water and a compressor to pressurize the nitrogen propellant gas. This system uses a gaseous agent to pressurize the storage container as well as to assist in the generation of the fine water mist. The portable fire extinguisher hardware works like a standard fire extinguisher with a single storage container for the agents (water and nitrogen), a control valve assembly for manual actuation, and a discharge nozzle. The design implemented in the proof-of-concept experiment successfully extinguished both open fires and fires in baffled enclosures.

  11. 30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fire suppression devices; extinguishant supply systems. (a) Fire suppression systems using water or... equivalent protective devices and a rising stem or other visual indicator-type shutoff valve. (b) Water supplies for fire suppression devices installed on underground equipment may be maintained in mounted water...

  12. 30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fire suppression devices; extinguishant supply systems. (a) Fire suppression systems using water or... equivalent protective devices and a rising stem or other visual indicator-type shutoff valve. (b) Water supplies for fire suppression devices installed on underground equipment may be maintained in mounted water...

  13. 30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fire suppression devices; extinguishant supply systems. (a) Fire suppression systems using water or... equivalent protective devices and a rising stem or other visual indicator-type shutoff valve. (b) Water supplies for fire suppression devices installed on underground equipment may be maintained in mounted water...

  14. Pressure Flammability Thresholds of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susana A.; Beeson, Harold D.; Ruff, Gary A.; Pedley, Michael D.

    2010-01-01

    A test program was performed to determine the highest pressure in oxygen where materials used in the planned NASA Constellation Program Orion Crew Exploration Vehicle (CEV) Crew Module (CM) would not propagate a flame if an ignition source was present. The test methodology used was similar to that previously used to determine the maximum oxygen concentration (MOC) at which self-extinguishment occurs under constant total pressure conditions. An upward limiting pressure index (ULPI) was determined, where approximately 50 percent of the materials self-extinguish in a given environment. Following this, the maximum total pressure (MTP) was identified; where all samples tested (at least five) self-extinguished following the NASA-STD-6001.A Test 1 burn length criteria. The results obtained on seven materials indicate that the non-metallic materials become flammable in oxygen between 0.4 and 0.9 psia.

  15. Testing memory for unseen visual stimuli in patients with extinction and spatial neglect.

    PubMed

    Vuilleumier, Patrik; Schwartz, Sophie; Clarke, Karen; Husain, Masud; Driver, Jon

    2002-08-15

    Visual extinction after right parietal damage involves a loss of awareness for stimuli in the contralesional field when presented concurrently with ipsilesional stimuli, although contralesional stimuli are still perceived if presented alone. However, extinguished stimuli can still receive some residual on-line processing, without awareness. Here we examined whether such residual processing of extinguished stimuli can produce implicit and/or explicit memory traces lasting many minutes. We tested four patients with right parietal damage and left extinction on two sessions, each including distinct study and subsequent test phases. At study, pictures of objects were shown briefly in the right, left, or both fields. Patients were asked to name them without memory instructions (Session 1) or to make an indoor/outdoor categorization and memorize them (Session 2). They extinguished most left stimuli on bilateral presentation. During the test (up to 48 min later), fragmented pictures of the previously exposed objects (or novel objects) were presented alone in either field. Patients had to identify each object and then judge whether it had previously been exposed. Identification of fragmented pictures was better for previously exposed objects that had been consciously seen and critically also for objects that had been extinguished (as compared with novel objects), with no influence of the depth of processing during study. By contrast, explicit recollection occurred only for stimuli that were consciously seen at study and increased with depth of processing. These results suggest implicit but not explicit memory for extinguished visual stimuli in parietal patients.

  16. 46 CFR 34.15-1 - Application-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-1 Application—T/ALL. (a) Where a carbon dioxide extinguishing system is... pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature...

  17. 46 CFR 193.15-16 - Lockout valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-16 Lockout valves. (a) A lockout valve must be provided on any carbon dioxide extinguishing system protecting a space over 6,000... complete isolation of the system from the protected space or spaces, making it impossible for carbon...

  18. 46 CFR 34.15-1 - Application-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-1 Application—T/ALL. (a) Where a carbon dioxide extinguishing system is... pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature...

  19. 46 CFR 34.15-1 - Application-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-1 Application—T/ALL. (a) Where a carbon dioxide extinguishing system is... pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature...

  20. 46 CFR 193.15-16 - Lockout valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-16 Lockout valves. (a) A lockout valve must be provided on any carbon dioxide extinguishing system protecting a space over 6,000... complete isolation of the system from the protected space or spaces, making it impossible for carbon...

  1. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls and valves. (a) At least one control for operating a CO2 system must be outside the space or spaces that the...

  2. Space Experiment Concepts: Cup-Burner Flame Extinguishment

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki

    2004-01-01

    Space Fire Suppression Processes & Technology. Space experiment concepts of cup-burner flame extinguishment have been conceived to address to the key issues (i.e., organizing questions) in space fire suppression. Cup-burner flame extinguishment experiment can reveal physical and chemical suppression processes and provide agent effectiveness data useful for technology development of space fire suppression systems in various reduced-gravity platforms.

  3. Development of the International Space Station (ISS) Fine Water Mist (FWM) Portable Fire Extinguisher ICES Abstract

    NASA Technical Reports Server (NTRS)

    Clements, Anna L.; Carlile, Christie; Graf, John; Young, Gina

    2011-01-01

    NASA is developing a Fine Water Mist (FWM) Portable Fire Extinguisher (PFE) for use on the International Space Station. The International Space Station presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the US Segment and Columbus and Kibo pressurized elements. Changes in emergency breathing equipment make Fine Water Mist operationally preferable. Supplied oxygen breathing systems allow for safe discharge of a carbon dioxide fire extinguisher, without concerns of the crew inhaling unsafe levels of carbon dioxide. But the Portable Breathing Apparatus (PBA) offers no more than 15 minutes of capability, and continued use of hose based supplied oxygen system increases the oxygen content in a fire situation. NASA has developed a filtering respirator cartridge for use in a fire environment. It is qualified to provide up to 90 minutes of capability, and because it is a filtering respirator it does not add oxygen to the environment. The fire response respirator cartridge does not filter carbon dioxide (CO2), so a crew member discharging a CO2 fire extinguisher while wearing this filtering respirator would be at risk of inhaling unsafe levels of CO2. FWM extinguishes a fire without creating a large volume of air with reduced oxygen and elevated CO2. The following paper will discuss the unique functional and performance requirements that have been levied on the FWM PFE. In addition, the NASA ISS specific fire standards will be described which were developed to establish acceptable extinguisher performance. The paper will also discuss the flight hardware design. The fin e water mist fire extinguisher has two major elements: (1) the nozzle and crew interface, and (2) the tank. The nozzle and crew interface have been under development for several years. They have gone through several design iterations, and have been part of more than 400 fire challenge and spray characterizations. The crew and vehicle interface aspects of the design will use the heritage of the CO2 based Portable Fire Extinguisher, to minimize the disruption to the crew and integration impacts to the ISS. The microgravity use environment of the system poses a set of unique design requirements specifically for the tank. The nozzle requirements drive a tank pressure that is 2-5 times higher than any commercially available water mist systems. Microgravity requires deliberate separation of gas and water, facilitated by a bladder, a diaphragm, a piston, or separate tanks. This paper will describe status of the project to date, the design details of the tank and the nozzle, and discuss the trade studies that informed the decisions to select the tank and nozzle configuration.

  4. Development of the International Space Station (ISS) Fine Water Mist (FWM) Portable Fire Extinguisher

    NASA Technical Reports Server (NTRS)

    Clements, Anna L.

    2011-01-01

    NASA is developing a Fine Water Mist Portable Fire Extinguisher for use on the International Space Station. The International Space Station presently uses two different types of fire extinguishers: a water foam extinguisher in the Russian Segment, and a carbon dioxide extinguisher in the US Segment and Columbus and Kibo pressurized elements. Changes in emergency breathing equipment make Fine Water Mist operationally preferable. Supplied oxygen breathing systems allow for safe discharge of a carbon dioxide fire extinguisher, without concerns of the crew inhaling unsafe levels of carbon dioxide. But the Portable Breathing Apparatus (PBA) offers no more than 15 minutes of capability, and continued use of hose based supplied oxygen system increases the oxygen content in a fire situation. NASA has developed a filtering respirator cartridge for use in a fire environment. It is qualified to provide up to 90 minutes of capability, and because it is a filtering respirator it does not add oxygen to the environment. The fire response respirator cartridge does not filter carbon dioxide (CO2), so a crew member discharging a CO2 fire extinguisher while wearing this filtering respirator would be at risk of inhaling unsafe levels of CO2. Fine Water Mist extinguishes a fire without creating a large volume of air with reduced oxygen and elevated CO2. From a flight hardware design perspective, the fine water mist fire extinguisher has two major elements: (1) the nozzle and crew interface, and (2) the tank. The nozzle and crew interface has been under development for several years. It has gone through several design iterations, and has been part of more than 400 fire challenge and spray characterizations. The crew and vehicle interface aspects of the design will use the heritage of the CO2 based Portable Fire Extinguisher, to minimize the disruption to the crew and integration impacts to the ISS. The microgravity use environment of the system poses a set of unique design requirements specifically for the tank. The nozzle requirements drive a tank pressure that is 2-5 times higher than any commercially available water mist systems. Microgravity requires deliberate separation of gas and water, facilitated by a bladder, a diaphragm, a piston, or separate tanks. This paper will describe the design details of the tank and the nozzle, and discuss the trade studies that informed the decisions to select the tank and nozzle configuration.

  5. 40 CFR Appendix S to Subpart G of... - Substitutes Listed in the September 19, 2012 Final Rule, Effective December 18, 2012.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Extinguishing Systems.For establishments filling, installing, servicing, using, or disposing of containers or systems to be used in total flooding applications, EPA recommends the following: —appropriate protective... 2010 standard for Aerosol Extinguishing Systems.For establishments filling, installing, servicing...

  6. 40 CFR Appendix S to Subpart G of... - Substitutes Listed in the September 19, 2012 Final Rule, Effective December 18, 2012.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Extinguishing Systems.For establishments filling, installing, servicing, using, or disposing of containers or systems to be used in total flooding applications, EPA recommends the following: —appropriate protective... 2010 standard for Aerosol Extinguishing Systems.For establishments filling, installing, servicing...

  7. 46 CFR 122.612 - Fire protection equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...

  8. 46 CFR 122.612 - Fire protection equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...

  9. 46 CFR 122.612 - Fire protection equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...

  10. 46 CFR 122.612 - Fire protection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...

  11. 46 CFR 122.612 - Fire protection equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...

  12. 46 CFR 169.564 - Fixed extinguishing system, general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., general. (a) A fixed carbon dioxide, Halon 1301, or clean agent extinguishing system must be installed to... open to the atmosphere as to make the use of a fixed system ineffective; (2) Any paint or oil room, or... an approved carbon dioxide, Halon 1301, halogenated, or clean agent type and installed to the...

  13. 46 CFR 169.564 - Fixed extinguishing system, general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., general. (a) A fixed carbon dioxide, Halon 1301, or clean agent extinguishing system must be installed to... open to the atmosphere as to make the use of a fixed system ineffective; (2) Any paint or oil room, or... an approved carbon dioxide, Halon 1301, halogenated, or clean agent type and installed to the...

  14. 46 CFR 169.564 - Fixed extinguishing system, general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., general. (a) A fixed carbon dioxide, Halon 1301, or clean agent extinguishing system must be installed to... open to the atmosphere as to make the use of a fixed system ineffective; (2) Any paint or oil room, or... an approved carbon dioxide, Halon 1301, halogenated, or clean agent type and installed to the...

  15. 46 CFR 108.455 - Enclosure openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Enclosure openings. 108.455 Section 108.455 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.455 Enclosure...

  16. 46 CFR 108.453 - Discharge outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Discharge outlets. 108.453 Section 108.453 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.453 Discharge...

  17. 46 CFR 193.15-35 - Enclosure openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing systems provisions... to that space. (b) Where natural ventilation is provided for spaces protected by a carbon dioxide...

  18. 46 CFR 108.453 - Discharge outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Discharge outlets. 108.453 Section 108.453 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.453 Discharge...

  19. 46 CFR 108.455 - Enclosure openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Enclosure openings. 108.455 Section 108.455 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.455 Enclosure...

  20. 46 CFR 193.15-35 - Enclosure openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing systems provisions... to that space. (b) Where natural ventilation is provided for spaces protected by a carbon dioxide...

  1. 14 CFR 125.161 - Fire-extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 125.161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... protection against destruction of the airplane in case of fire is provided by the use of fireproof materials... be provided to serve all designated fire zones. (b) Materials in the fire-extinguishing system must...

  2. 14 CFR 125.161 - Fire-extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 125.161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... protection against destruction of the airplane in case of fire is provided by the use of fireproof materials... be provided to serve all designated fire zones. (b) Materials in the fire-extinguishing system must...

  3. Effects of Multiple Contexts and Context Similarity on the Renewal of Extinguished Conditioned Behaviour in an ABA Design with Humans

    ERIC Educational Resources Information Center

    Balooch, Siavash Bandarian; Neumann, David L.

    2011-01-01

    The ABA renewal procedure involves pairing a conditional stimulus (CS) and an unconditional stimulus (US) in one context (A), presenting extinction trials of the CS alone in a second context (B), and nonreinforced test trials of the CS in the acquisition context (A). The renewal of extinguished conditioned behaviour is observed during test. The…

  4. Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft

    NASA Astrophysics Data System (ADS)

    Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.

    2012-01-01

    For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.

  5. 46 CFR 76.17-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Application. 76.17-1 Section 76.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-1 Application. (a) Where a foam extinguishing system is installed, the...

  6. 46 CFR 76.17-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Application. 76.17-1 Section 76.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-1 Application. (a) Where a foam extinguishing system is installed, the...

  7. 46 CFR 95.17-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Application. 95.17-1 Section 95.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-1 Application. (a) Where a foam extinguishing system...

  8. 46 CFR 95.17-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Application. 95.17-1 Section 95.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-1 Application. (a) Where a foam extinguishing system...

  9. 46 CFR 108.477 - Fire hydrants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire hydrants. 108.477 Section 108.477 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.477 Fire hydrants. (a) If a fixed foam...

  10. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Controls and valves. 108.443 Section 108.443 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls and...

  11. 46 CFR 95.15-35 - Enclosure openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...

  12. 46 CFR 76.15-35 - Enclosure openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...

  13. 46 CFR 95.15-35 - Enclosure openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...

  14. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Controls and valves. 108.443 Section 108.443 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls and...

  15. 46 CFR 76.15-35 - Enclosure openings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...

  16. 46 CFR 76.15-35 - Enclosure openings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...

  17. 46 CFR 95.15-35 - Enclosure openings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...

  18. 46 CFR 76.15-35 - Enclosure openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...

  19. 29 CFR 1910.163 - Fixed extinguishing systems, water spray and foam.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 1910.163 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Fire Protection Fixed Fire... extinguishing agent, installed to meet a particular OSHA standard. These systems shall also comply with § 1910...

  20. 29 CFR 1910.163 - Fixed extinguishing systems, water spray and foam.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 1910.163 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Fire Protection Fixed Fire... extinguishing agent, installed to meet a particular OSHA standard. These systems shall also comply with § 1910...

  1. 46 CFR 76.15-35 - Enclosure openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces other than cargo and similar spaces which are protected by a carbon dioxide... protected by a carbon dioxide extinguishing system, provisions shall be made for easily and effectively...

  2. 46 CFR 108.493 - Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Location. 108.493 Section 108.493 Shipping COAST GUARD... Extinguishing Systems Hand Portable and Semiportable Fire Extinguishing Systems § 108.493 Location. (a) Each... this subpart and installed in the locations prescribed in the table. (b) Each portable and semi...

  3. 14 CFR 121.263 - Fire-extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 121.263 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... the airplane in case of fire is provided by the use of fireproof materials in the nacelle and other... designated fire zones. (b) Materials in the fire-extinguishing system must not react chemically with the...

  4. 14 CFR 121.263 - Fire-extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 121.263 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... the airplane in case of fire is provided by the use of fireproof materials in the nacelle and other... designated fire zones. (b) Materials in the fire-extinguishing system must not react chemically with the...

  5. 40 CFR Appendix O to Subpart G of... - Substitutes Listed in the September 27, 2006 Final Rule, Effective November 27, 2006

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... Systems.Sodium bicarbonate release in all settings should be targeted so that increased blood pH level... to be in environments protected by Envirogel with sodium bicarbonate additive extinguishing systems...

  6. 40 CFR Appendix O to Subpart G of... - Substitutes Listed in the September 27, 2006 Final Rule, Effective November 27, 2006

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... Systems.Sodium bicarbonate release in all settings should be targeted so that increased blood pH level... to be in environments protected by Envirogel with sodium bicarbonate additive extinguishing systems...

  7. 40 CFR Appendix O to Subpart G of... - Substitutes Listed in the September 27, 2006 Final Rule, Effective November 27, 2006

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... Systems.Sodium bicarbonate release in all settings should be targeted so that increased blood pH level... to be in environments protected by Envirogel with sodium bicarbonate additive extinguishing systems...

  8. 40 CFR Appendix O to Subpart G of... - Substitutes Listed in the September 27, 2006 Final Rule, Effective November 27, 2006

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... Systems.Sodium bicarbonate release in all settings should be targeted so that increased blood pH level... to be in environments protected by Envirogel with sodium bicarbonate additive extinguishing systems...

  9. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....4201 NFPA No. 10—Portable Fire Extinguisher. NFPA No. 11—Low Expansion Foam and Combined Agent Systems.... 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler Systems. NFPA No. 14—Standpipe and... AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire...

  10. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....4201 NFPA No. 10—Portable Fire Extinguisher. NFPA No. 11—Low Expansion Foam and Combined Agent Systems.... 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler Systems. NFPA No. 14—Standpipe and... AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire...

  11. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....4201 NFPA No. 10—Portable Fire Extinguisher. NFPA No. 11—Low Expansion Foam and Combined Agent Systems.... 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler Systems. NFPA No. 14—Standpipe and... AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire...

  12. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....4201 NFPA No. 10—Portable Fire Extinguisher. NFPA No. 11—Low Expansion Foam and Combined Agent Systems.... 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler Systems. NFPA No. 14—Standpipe and... AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire...

  13. 46 CFR 34.15-1 - Application-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-T/ALL. 34.15-1 Section 34.15-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-1 Application—T/ALL. (a) Where a carbon dioxide extinguishing system is...

  14. 46 CFR 34.25-1 - Application-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-T/ALL. 34.25-1 Section 34.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-1 Application—T/ALL. (a) Where a water spray extinguishing system is...

  15. 46 CFR 34.25-1 - Application-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application-T/ALL. 34.25-1 Section 34.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-1 Application—T/ALL. (a) Where a water spray extinguishing system is...

  16. 46 CFR 181.400 - Where required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Where required. 181.400 Section 181.400 Shipping COAST... PROTECTION EQUIPMENT Fixed Fire Extinguishing and Detecting Systems § 181.400 Where required. (a) The... cubic meters (6,000 cubic feet); (2) A pre-engineered fixed gas fire extinguishing system must be in...

  17. 46 CFR 34.17-1 - Application-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application-T/ALL. 34.17-1 Section 34.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-1 Application—T/ALL. (a) Where a fixed foam extinguishing system is...

  18. 46 CFR 34.17-1 - Application-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-T/ALL. 34.17-1 Section 34.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-1 Application—T/ALL. (a) Where a fixed foam extinguishing system is...

  19. 46 CFR 108.433 - Quantity of CO2: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Quantity of CO2: General. 108.433 Section 108.433 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.433...

  20. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Alarm and means of escape. 108.445 Section 108.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.445...

  1. 46 CFR 34.15-60 - Odorizing units-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-60 Odorizing units—T/ALL. Each carbon dioxide extinguishing system... wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a...

  2. 46 CFR 108.433 - Quantity of CO2: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Quantity of CO2: General. 108.433 Section 108.433 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.433...

  3. 46 CFR 34.15-60 - Odorizing units-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-60 Odorizing units—T/ALL. Each carbon dioxide extinguishing system... wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a...

  4. 46 CFR 193.15-17 - Odorizing units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-17 Odorizing units. Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved... carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may...

  5. 46 CFR 193.15-17 - Odorizing units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-17 Odorizing units. Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved... carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may...

  6. 46 CFR 34.15-60 - Odorizing units-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-60 Odorizing units—T/ALL. Each carbon dioxide extinguishing system... wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a...

  7. 46 CFR 108.433 - Quantity of CO2: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Quantity of CO2: General. 108.433 Section 108.433 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.433...

  8. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarm and means of escape. 108.445 Section 108.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.445...

  9. 46 CFR 108.451 - CO2 storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false CO2 storage. 108.451 Section 108.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.451 CO2 storage. (a...

  10. 46 CFR 108.451 - CO2 storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false CO2 storage. 108.451 Section 108.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.451 CO2 storage. (a...

  11. 46 CFR 108.451 - CO2 storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false CO2 storage. 108.451 Section 108.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.451 CO2 storage. (a...

  12. 46 CFR 108.451 - CO2 storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false CO2 storage. 108.451 Section 108.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.451 CO2 storage. (a...

  13. 46 CFR 108.451 - CO2 storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false CO2 storage. 108.451 Section 108.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.451 CO2 storage. (a...

  14. 40 CFR Appendix P to Subpart G of... - Substitutes Listed in the September 27, 2006 Final Rule, Effective November 27, 2006

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... requirements. 4—The agent should be recovered from the fire protection system in conjunction with testing or... coverage related to the use of personal protective equipment (e.g., respiratory protection), fire...

  15. 40 CFR Appendix P to Subpart G of... - Substitutes Listed in the September 27, 2006 Final Rule, Effective November 27, 2006

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... requirements. 4—The agent should be recovered from the fire protection system in conjunction with testing or... coverage related to the use of personal protective equipment (e.g., respiratory protection), fire...

  16. 40 CFR Appendix P to Subpart G of... - Substitutes Listed in the September 27, 2006 Final Rule, Effective November 27, 2006

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... requirements. 4—The agent should be recovered from the fire protection system in conjunction with testing or... coverage related to the use of personal protective equipment (e.g., respiratory protection), fire...

  17. 2005 TACOM APBI - Partnering to Reset, Recapitalize and Restructure the Force

    DTIC Science & Technology

    2005-10-28

    training. 28 Oct 05~APBI ~9~ Force Projection ~ Technology Challenges (cont.) Force Sustainment Systems Develop smart airdrop systems using Global... UART ). General Purpose Electronic Test Equipment (GPETE) Transform multiple conventional GPETE instruments into a single Virtual Instrument with a...Consists of tools and equipment to refill and repair carbon dioxide fire extinguishers. Rapid Runway Repair - Components include sand grid sections

  18. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Dioxide Extinguishing Systems. NFPA No. 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler.... § 57.4261 NFPA No. 14—Standpipe and Hose Systems. § 57.4533 NFPA Fire Protection Handbook. § 57.4560... Fire Prevention and Control Pt. 57, Subpt. C., App. I Appendix I to Subpart C of Part 57—National...

  19. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Dioxide Extinguishing Systems. NFPA No. 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler.... § 57.4261 NFPA No. 14—Standpipe and Hose Systems. § 57.4533 NFPA Fire Protection Handbook. § 57.4560... Fire Prevention and Control Pt. 57, Subpt. C., App. I Appendix I to Subpart C of Part 57—National...

  20. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Dioxide Extinguishing Systems. NFPA No. 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler.... § 57.4261 NFPA No. 14—Standpipe and Hose Systems. § 57.4533 NFPA Fire Protection Handbook. § 57.4560... Fire Prevention and Control Pt. 57, Subpt. C., App. I Appendix I to Subpart C of Part 57—National...

  1. 30 CFR Appendix I to Subpart C of... - National Consensus Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Dioxide Extinguishing Systems. NFPA No. 12A—Halon 1301 Extinguishing Systems. NFPA No. 13—Water Sprinkler.... § 57.4261 NFPA No. 14—Standpipe and Hose Systems. § 57.4533 NFPA Fire Protection Handbook. § 57.4560... Fire Prevention and Control Pt. 57, Subpt. C., App. I Appendix I to Subpart C of Part 57—National...

  2. 78 FR 58960 - Airworthiness Directives; BAE SYSTEMS (OPERATIONS) LIMITED Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... inspection of certain engine and auxiliary power unit (APU) fire extinguishers to determine if the fire... system to extinguish fires in the engine or APU fire zones, possibly resulting in damage to the airplane... Unit (APU) fire zones, possibly resulting in damage to the aeroplane and injury to the occupants. For...

  3. 29 CFR Appendix C to Subpart L of... - Fire Protection References For Further Information

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Standard for Occupational and Educational Eye and Face Protection, ANSI Z87.1; American National..., Batterymarch Park, Quincy, MA 02269 9. Standard for Dry Chemical Extinguishing Systems, ANSI/NFPA 17; National... systems—dry chemical: 1. Standard for Dry Chemical Extinguishing Systems, ANSI/NFPA 17; National Fire...

  4. 29 CFR Appendix C to Subpart L of... - Fire Protection References For Further Information

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...—September 30, 1978. Evaluation and Performance of Open Circuit Breathing Apparatus. NU REG/CR-1235. Los.... § 1910.160. Fixed extinguishing systems—general information: 1. Standard for Foam Extinguishing Systems... for Hi-Expansion Foam Systems, ANSI/NFPA 11A; National Fire Protection Association, Batterymarch Park...

  5. 29 CFR 1910.163 - Fixed extinguishing systems, water spray and foam.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Fixed extinguishing systems, water spray and foam. 1910.163 Section 1910.163 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Fire Protection Fixed Fire Suppression Equipment § 1910.163 Fixed...

  6. Study to optimize gellant polymer-water systems for the control of hypergolic spills and fires

    NASA Technical Reports Server (NTRS)

    Jennings, R. R.; Macwilliams, D. C.; Foshee, W. C.; Katzer, M. F.

    1973-01-01

    A system of buffered gelled water was developed to prevent and control fires from small spills of nitrogen tetroxide-(N2O4)-Aerozine 50-hypergolic fuel. Laboratory studies on various alkalis, buffers, and seavengers for the fuel components are described. Chilling and sodium acetate-acetic acid buffer was found to be the best additives to the gelled water. Field tests and a delivery system (airborne) for the extinguishant are described. A short movie showing the field testing is available upon request.

  7. Counterconditioned Fear Responses Exhibit Greater Renewal than Extinguished Fear Responses

    ERIC Educational Resources Information Center

    Holmes, Nathan M.; Leung, Hiu T.; Westbrook, R. Frederick

    2016-01-01

    This series of experiments used rats to compare counterconditioning and extinction of conditioned fear responses (freezing) with respect to the effects of a context shift. In each experiment, a stimulus was paired with shock in context A, extinguished or counterconditioned through pairings with sucrose in context B, and then tested for renewal…

  8. 75 FR 9439 - FM Approvals: Application for Expansion of Recognition; Wyle Laboratories: Voluntary Modification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Water-Type Fire Extinguishers UL 711 Rating and Fire Testing of Fire Extinguishers UL 796 Printed-Wiring... Equipment UL 1053 Ground-Fault Sensing and Relaying Equipment UL 1054 Special-Use Switches UL 1058... Halon 1211 Recovery/Recharge Equipment UL 2111 Overheating Protection for Motors III. Temporary...

  9. National Fire Codes. A Compilation of NFPA Codes, Standards, Recommended Practices, and Manuals. Volume 7: Alarm and Special Extinguishing Systems. 1969-70.

    ERIC Educational Resources Information Center

    National Fire Protection Association, Boston, MA.

    These NFPA recommendations are phrased in terms of performance or objectives, the intent being to permit the utilization of any methods, devices, or materials which will produce the desired results. The major topics included are--(1) extinguishing systems, (2) standpipe and hose systems, (3) wetting agents, (4) fire hydrants, (5) water charges for…

  10. 49 CFR 571.138 - Standard No. 138; Tire pressure monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... complying with S4 must provide an image of the Low Tire Pressure Telltale symbol (and an image of the TPMS... telltale has extinguished. If necessary, drive the vehicle until the telltale has been extinguished. (j...

  11. 49 CFR 571.138 - Standard No. 138; Tire pressure monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... complying with S4 must provide an image of the Low Tire Pressure Telltale symbol (and an image of the TPMS... telltale has extinguished. If necessary, drive the vehicle until the telltale has been extinguished. (j...

  12. 49 CFR 571.138 - Standard No. 138; Tire pressure monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... complying with S4 must provide an image of the Low Tire Pressure Telltale symbol (and an image of the TPMS... telltale has extinguished. If necessary, drive the vehicle until the telltale has been extinguished. (j...

  13. 49 CFR 571.138 - Standard No. 138; Tire pressure monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... complying with S4 must provide an image of the Low Tire Pressure Telltale symbol (and an image of the TPMS... telltale has extinguished. If necessary, drive the vehicle until the telltale has been extinguished. (j...

  14. 49 CFR 571.138 - Standard No. 138; Tire pressure monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... complying with S4 must provide an image of the Low Tire Pressure Telltale symbol (and an image of the TPMS... telltale has extinguished. If necessary, drive the vehicle until the telltale has been extinguished. (j...

  15. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....30-10(C): Table 25.30-10(C) Classification Foam, liters (gallons) Carbon dioxide, kilograms (pounds... tampering or use when broken) are not intact, the boarding officer or marine inspector will inspect such...

  16. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....30-10(C): Table 25.30-10(c) Classification Foam, liters (gallons) Carbon dioxide, kilograms (pounds... tampering or use when broken) are not intact, the boarding officer or marine inspector will inspect such...

  17. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....30-10(C): Table 25.30-10(c) Classification Foam, liters (gallons) Carbon dioxide, kilograms (pounds... tampering or use when broken) are not intact, the boarding officer or marine inspector will inspect such...

  18. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....30-10(C): Table 25.30-10(c) Classification Foam,liters (gallons) Carbon dioxide, kilograms (pounds... tampering or use when broken) are not intact, the boarding officer or marine inspector will inspect such...

  19. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....30-10(C): Table 25.30-10(c) Classification Foam,liters (gallons) Carbon dioxide, kilograms (pounds... tampering or use when broken) are not intact, the boarding officer or marine inspector will inspect such...

  20. Protection from Extinction by Concurrent Presentation of an Excitor or an Extensively Extinguished CS

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2007-01-01

    One conditioned taste aversion experiment with rats assessed the impact of extinguishing a target conditioned stimulus (CS), S, in compound with a second CS, A, upon conditioned responding elicited by CS S when presented alone at test. Following initial conditioning treatment with CSs A and S, the experiment manipulated number of extinction trials…

  1. Study of smoke detection and fire extinguishment for rail transit vehicles.

    DOT National Transportation Integrated Search

    1983-08-31

    This document presents the results of a study to determine the feasibility and cost effectiveness of the use of heat/smoke/fire sensors and automatic extinguishing systems in rail transit vehicles. Work presented includes: a survey of major rail tran...

  2. 46 CFR 108.459 - Number and location of outlets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...

  3. 46 CFR 108.459 - Number and location of outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...

  4. 46 CFR 108.459 - Number and location of outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...

  5. 46 CFR 108.459 - Number and location of outlets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...

  6. 46 CFR 108.459 - Number and location of outlets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...

  7. 77 FR 22362 - Exemption Requests for Special Nuclear Material License SNM-362, Department of Commerce...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... irradiation room at a panoramic irradiator be equipped with a fire extinguishing system capable of extinguishing a fire without the entry of personnel into the room. The system for the irradiation room must have... 10 CFR 36.27(b) is to deny the exemption request and require NIST to provide the irradiation room...

  8. 46 CFR 34.15-30 - Alarms-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing...) which are protected by a carbon dioxide extinguishing system and are normally accessible to persons on... the carbon dioxide is admitted to the space. The alarm shall be conspicuously and centrally located...

  9. 46 CFR 34.15-30 - Alarms-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing...) which are protected by a carbon dioxide extinguishing system and are normally accessible to persons on... the carbon dioxide is admitted to the space. The alarm shall be conspicuously and centrally located...

  10. 46 CFR 34.15-30 - Alarms-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing...) which are protected by a carbon dioxide extinguishing system and are normally accessible to persons on... the carbon dioxide is admitted to the space. The alarm shall be conspicuously and centrally located...

  11. 46 CFR 95.50-10 - Location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Accommodations1 Staterooms, toilet spaces, public spaces, offices, lockers, isolated storerooms, and pantries... Extinguisher and Semiportable Fire-Extinguishing Systems Space Classification (see § 95.50-5) Quantity and... fraction thereof suitable for hazards involved. Paint and lamp rooms B-II 1 outside space in vicinity of...

  12. 46 CFR 95.50-10 - Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Accommodations1 Staterooms, toilet spaces, public spaces, offices, lockers, isolated storerooms, and pantries... Extinguisher and Semiportable Fire-Extinguishing Systems Space Classification (see § 95.50-5) Quantity and... fraction thereof suitable for hazards involved. Paint and lamp rooms B-II 1 outside space in vicinity of...

  13. 46 CFR 95.50-10 - Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Accommodations1 Staterooms, toilet spaces, public spaces, offices, lockers, isolated storerooms, and pantries... Extinguisher and Semiportable Fire-Extinguishing Systems Space Classification (see § 95.50-5) Quantity and... fraction thereof suitable for hazards involved. Paint and lamp rooms B-II 1 outside space in vicinity of...

  14. 46 CFR 95.50-10 - Location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Accommodations1 Staterooms, toilet spaces, public spaces, offices, lockers, isolated storerooms, and pantries... Extinguisher and Semiportable Fire-Extinguishing Systems Space Classification (see § 95.50-5) Quantity and... fraction thereof suitable for hazards involved. Paint and lamp rooms B-II 1 outside space in vicinity of...

  15. Prefrontal oscillations during recall of conditioned and extinguished fear in humans.

    PubMed

    Mueller, Erik M; Panitz, Christian; Hermann, Christiane; Pizzagalli, Diego A

    2014-05-21

    Human neuroimaging studies indicate that the anterior midcingulate cortex (AMC) and the ventromedial prefrontal cortex (vmPFC) play important roles in the expression and extinction of fear, respectively. Electrophysiological rodent studies further indicate that oscillatory neuronal activity in homolog regions (i.e., prelimbic and infralimbic cortices) changes during fear expression and fear extinction recall. Whether similar processes occur in humans remains largely unexplored. By assessing scalp surface EEG in conjunction with LORETA source estimation of CS-related theta and gamma activity, we tested whether a priori defined ROIs in the human AMC and vmPFC similarly modulate their oscillatory activity during fear expression and extinction recall, respectively. To this end, 42 healthy individuals underwent a differential conditioning/differential extinction protocol with a Recall Test on the next day. In the Recall Test, nonextinguished versus extinguished stimuli evoked an increased differential (CS(+) vs CS(-)) response with regard to skin conductance and AMC-localized theta power. Conversely, extinguished versus nonextinguished stimuli evoked an increased differential response with regard to vmPFC-localized gamma power. Finally, individuals who failed to show a suppressed skin conductance response to the extinguished versus nonextinguished CS(+) also failed to show the otherwise observed alterations in vmPFC gamma power to extinguished CS(+). These results indicate that fear expression is associated with AMC theta activity, whereas successful fear extinction recall relates to changes in vmPFC gamma activity. The present work thereby bridges findings from prior rodent electrophysiological research and human neuroimaging studies and indicates that EEG is a valuable tool for future fear extinction research. Copyright © 2014 the authors 0270-6474/14/347059-08$15.00/0.

  16. Fire Extinguishing Agents, Aqueous Film Forming Foam (AFFF) Liquid Concentration Partial Percentage

    DTIC Science & Technology

    1989-08-31

    AFFF concentrations. aqueous film forming foam , AFFF , firefighting ...Extinguishing Agents, Aqueous Film Forming Foam ( AFFF ) Liquid Concentration Partial Percentage F08637-88-C-0067 06022104F 2104 30 21043034 Applied Research...objective of this test series was to qualify 3/4 and 1 percent Aqueous Film Forming Foam ( AFFF ) concentrate for use in Air Force fire fighting

  17. Dorsal hippocampus inactivation impairs spontaneous recovery of Pavlovian magazine approach responding in rats.

    PubMed

    Campese, Vincent D; Delamater, Andrew R

    2014-08-01

    Destruction or inactivation of the dorsal hippocampus (DH) has been shown to eliminate the renewal of extinguished fear [1-4]. However, it has recently been reported that the contextual control of responding to extinguished appetitive stimuli is not disrupted when the DH is destroyed or inactivated prior to tests for renewal of Pavlovian conditioned magazine approach [5]. In the present study we extend the analysis of DH control of appetitive extinction learning to the spontaneous recovery of Pavlovian conditioned magazine approach responding. Subjects were trained to associate two separate stimuli with the delivery of food and had muscimol or vehicle infused into the DH prior to a single test-session for spontaneous recovery occurring immediately following extinction of one of these stimuli, but one week following extinction of the other. While vehicle treated subjects showed more recovery to the distally extinguished stimulus than the proximal one, muscimol treated subjects failed to show spontaneous recovery to either stimulus. This result suggests that, while the DH is not involved in the control of extinction by physical contexts [5], it may be involved when time is the gating factor controlling recovery of extinguished responding. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Dorsal hippocampus inactivation impairs spontaneous recovery of Pavlovian magazine approach responding in rats

    PubMed Central

    Campese, Vincent D.; Delamater, Andrew R.

    2014-01-01

    Destruction or inactivation of the dorsal hippocampus (DH) has been shown to eliminate the renewal of extinguished fear [1–4]. However, it has recently been reported that the contextual control of responding to extinguished appetitive stimuli is not disrupted when the DH is destroyed or inactivated prior to tests for renewal of Pavlovian conditioned magazine approach [5]. In the present study we extend the analysis of DH control of appetitive extinction learning to the spontaneous recovery of Pavlovian conditioned magazine approach responding. Subjects were trained to associate two separate stimuli with the delivery of food and had muscimol or vehicle infused into the DH prior to a single test-session for spontaneous recovery occurring immediately following extinction of one of these stimuli, but one week following extinction of the other. While vehicle treated subjects showed more recovery to the distally extinguished stimulus than the proximal one, muscimol treated subjects failed to show spontaneous recovery to either stimulus. This result suggests that, while the DH is not involved in the control of extinction by physical contexts [5], it may be involved when time is the gating factor controlling recovery of extinguished responding. PMID:24742862

  19. 46 CFR 189.25-20 - Fire extinguishing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... each inspection for certification, periodic inspection, and at such other times as considered necessary... conducted. At each inspection for certification and periodic inspection the inspector shall conduct the... and semiportable fire-extinguishing systems shall be checked as noted in Table 189.25-20(a)(1). In...

  20. 46 CFR 91.25-20 - Fire-extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... each inspection for certification, periodic inspection and at other times necessary, the inspector will... certification and periodic inspection, the inspector will check fire-extinguishing equipment with the following... systems shall be checked as noted in Table 91.25-20(a)(1). In addition, the hand portable fire...

  1. 46 CFR 189.25-20 - Fire extinguishing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... each inspection for certification, periodic inspection, and at such other times as considered necessary... conducted. At each inspection for certification and periodic inspection the inspector shall conduct the... and semiportable fire-extinguishing systems shall be checked as noted in Table 189.25-20(a)(1). In...

  2. 46 CFR 189.25-20 - Fire extinguishing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... each inspection for certification, periodic inspection, and at such other times as considered necessary... conducted. At each inspection for certification and periodic inspection the inspector shall conduct the... and semiportable fire-extinguishing systems shall be checked as noted in Table 189.25-20(a)(1). In...

  3. 46 CFR 91.25-20 - Fire extinguishing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... each inspection for certification, periodic inspection and at other times necessary, the inspector will... certification and periodic inspection, the inspector will check fire-extinguishing equipment with the following... systems shall be checked as noted in Table 91.25-20(a)(1). In addition, the hand portable fire...

  4. 46 CFR 189.25-20 - Fire-extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... each inspection for certification, periodic inspection, and at such other times as considered necessary... conducted. At each inspection for certification and periodic inspection the inspector shall conduct the... and semiportable fire-extinguishing systems shall be checked as noted in Table 189.25-20(a)(1). In...

  5. 46 CFR 91.25-20 - Fire extinguishing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... each inspection for certification, periodic inspection and at other times necessary, the inspector will... certification and periodic inspection, the inspector will check fire-extinguishing equipment with the following... systems shall be checked as noted in Table 91.25-20(a)(1). In addition, the hand portable fire...

  6. 46 CFR 91.25-20 - Fire-extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... each inspection for certification, periodic inspection and at other times necessary, the inspector will... certification and periodic inspection, the inspector will check fire-extinguishing equipment with the following... systems shall be checked as noted in Table 91.25-20(a)(1). In addition, the hand portable fire...

  7. 46 CFR 189.25-20 - Fire-extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... each inspection for certification, periodic inspection, and at such other times as considered necessary... conducted. At each inspection for certification and periodic inspection the inspector shall conduct the... and semiportable fire-extinguishing systems shall be checked as noted in Table 189.25-20(a)(1). In...

  8. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    PubMed

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment.

  9. Vulnerability Methodology and Protective Measures for Aircraft Fire and Explosion Hazards. Volume 2. Aircraft Engine Nacelle Fire Test Programs. Part 1. Fire Detection, Fire Extinguishment and Surface Ignition Studies

    DTIC Science & Technology

    1986-01-01

    by sensors in the test cell and sampled, digitized, averaged, and calibrated by the facility computer system. The data included flowrates calculated ...before the next test could be started. This required about 2 minutes. 6.4 Combat Damage Testing Appendix C contains calculations and analysis...were comparable (Figure 7-5). Agent quantities required per MIL-E-22285 were again calculated using the equations noted in paragraph 7.1.1. The

  10. 46 CFR 193.50-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Application. 193.50-1 Section 193.50-1 Shipping COAST... EQUIPMENT Hand Portable Fire Extinguishers and Semiportable Fire Extinguishing Systems, Arrangements and Details § 193.50-1 Application. (a) The provisions of this subpart, with the exception of § 193.50-90...

  11. 46 CFR 95.50-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Application. 95.50-1 Section 95.50-1 Shipping COAST... EQUIPMENT Hand Portable Fire Extinguishers and Semiportable Fire Extinguishing Systems, Arrangements and Details § 95.50-1 Application. (a) The provisions of this subpart, with the exception of § 95.50-90, shall...

  12. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  13. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  14. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  15. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  16. 46 CFR 95.50-10 - Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Location. 95.50-10 Section 95.50-10 Shipping COAST GUARD...-10 Location. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems shall be installed in accordance with Table 95.50-10(a). The location of the equipment shall be to...

  17. 46 CFR 167.45-30 - Use of approved fire-fighting equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-30 Use of approved fire-fighting equipment. Portable fire extinguishers or fire-extinguishing systems which conform... 46 Shipping 7 2010-10-01 2010-10-01 false Use of approved fire-fighting equipment. 167.45-30...

  18. Emissions from simulated deep-seated fires in domestic waste.

    PubMed

    Lönnermark, Anders; Blomqvist, Per; Marklund, Stellan

    2008-01-01

    The emissions from deep-seated fires in domestic waste have been investigated. The gas phase yields of PAH, PCDD/F, PCB, HCB, particles, and metals associated to the particulate matter were analysed during a series of simulated deep-seated fires. The method of extinguishment was varied and in cases where water was used for extinguishment, the runoff water was analysed for PAH, PCDD/F, PCB, hexachlorobenzene, and metals. In total six tests were performed. In four of the tests, samples of the fire residue were analysed for PCDD/F, PCBs, and chlorobenzenes.

  19. Additives for Water Mist Fire Suppression Systems: A Review

    DTIC Science & Technology

    2012-11-01

    TM 2012-236; R & D pour la défense Canada – Atlantique; novembre 2012. Introduction : On utilisait les halons comme agents extincteurs dans les... 13 Table 11: Results of fire extinguishment tests on kerosene or heptanes pan fires using water mist and water mist with 2 vol...Forafac® WM. ....................................................... 13 x DRDC Atlantic TM 2012-236 This page intentionally left

  20. Selective Automatic Fire Extinguisher for Computers (SAFECOMP). Developmental Test and Evaluation/Initial Operational Test and Evaluation

    DTIC Science & Technology

    1990-01-01

    ininsj^>ji-f\\Jinoj(vjM o ro -»T co m o •- IO M a m»*NO>M>fNNininNOmso(\\iOfininO’Om<-<if(MO- jio o^MONroN«-o»-Of-|ioinf-N>tO’-m>iin...will present interesting challanges for the SAFECOMP system. The Powell site remote location from Malmstrom AFB (Host Support Base) requires the

  1. Power packs: A passive approach to extinguishing fire in combat vehicles

    NASA Astrophysics Data System (ADS)

    Finnerty, Anthony E.; Polyanski, Stanley

    1991-01-01

    Thin (12.7 and 6.4 mm) panels of fire extinguishing powder in a honeycomb matrix were tested for their ability to extinguish fires in the FAASV ammunition resupply vehicle. These powder packs were applied to the exterior of hydraulic fluid reservoirs and fuel cells for protection from hydrocarbon fires caused by shaped charge jets penetrating the fluid containers. It was found that a surround of 12.7-mm-thick panels was required to achieve a sub 250-ms fire-out time with no second-degree burns expected to personnel with hot hydraulic fluid reservoirs. Power packs as thin as 6.4 mm provided the same protection in the case of hot diesel fuel.

  2. Fire Extinguisher Robot Using Ultrasonic Camera and Wi-Fi Network Controlled with Android Smartphone

    NASA Astrophysics Data System (ADS)

    Siregar, B.; Purba, H. A.; Efendi, S.; Fahmi, F.

    2017-03-01

    Fire disasters can occur anytime and result in high losses. It is often that fire fighters cannot access the source of fire due to the damage of building and very high temperature, or even due to the presence of explosive materials. With such constraints and high risk in the handling of the fire, a technological breakthrough that can help fighting the fire is necessary. Our paper proposed the use of robots to extinguish the fire that can be controlled from a specified distance in order to reduce the risk. A fire extinguisher robot was assembled with the intention to extinguish the fire by using a water pump as actuators. The robot movement was controlled using Android smartphones via Wi-fi networks utilizing Wi-fi module contained in the robot. User commands were sent to the microcontroller on the robot and then translated into robotic movement. We used ATMega8 as main microcontroller in the robot. The robot was equipped with cameras and ultrasonic sensors. The camera played role in giving feedback to user and in finding the source of fire. Ultrasonic sensors were used to avoid collisions during movement. Feedback provided by camera on the robot displayed on a screen of smartphone. In lab, testing environment the robot can move following the user command such as turn right, turn left, forward and backward. The ultrasonic sensors worked well that the robot can be stopped at a distance of less than 15 cm. In the fire test, the robot can perform the task properly to extinguish the fire.

  3. 46 CFR 76.50-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Application. 76.50-1 Section 76.50-1 Shipping COAST... Portable Fire Extinguishers and Semiportable Fire Extinguishing Systems, Arrangements and Details § 76.50-1 Application. (a) The provisions of this subpart, with the exception of § 76.50-90, shall apply to all vessels...

  4. 46 CFR 95.16-40 - Locked spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Locked spaces. 95.16-40 Section 95.16-40 Shipping COAST... EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-40 Locked spaces. If a space or enclosure containing extinguishing agent supply or controls is lockable, a key to the space or enclosure...

  5. 46 CFR 95.16-40 - Locked spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Locked spaces. 95.16-40 Section 95.16-40 Shipping COAST... EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-40 Locked spaces. If a space or enclosure containing extinguishing agent supply or controls is lockable, a key to the space or enclosure...

  6. 46 CFR 95.16-40 - Locked spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Locked spaces. 95.16-40 Section 95.16-40 Shipping COAST... EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-40 Locked spaces. If a space or enclosure containing extinguishing agent supply or controls is lockable, a key to the space or enclosure...

  7. The effects of compound stimulus extinction and inhibition of noradrenaline reuptake on the renewal of alcohol seeking

    PubMed Central

    Furlong, T M; Pan, M J; Corbit, L H

    2015-01-01

    Alcohol-related stimuli can trigger relapse of alcohol-seeking behaviors even after extended periods of abstinence. Extinction of such stimuli can reduce their impact on relapse; however, the expression of extinction can be disrupted when testing occurs outside the context where extinction learning took place, an effect termed renewal. Behavioral and pharmacological methods have recently been shown to augment extinction learning; yet, it is not known whether the improved expression of extinction following these treatments remains context-dependent. Here we examined whether two methods, compound–stimulus extinction and treatment with the noradrenaline reuptake inhibitor atomoxetine, would reduce the vulnerability of extinction to a change in context. Following alcohol self-administration, responding was extinguished in a distinct context. After initial extinction, further extinction was given to a target stimulus presented in compound with another alcohol-predictive stimulus intended to augment prediction error (Experiment 1) or after a systemic injection of atomoxetine (1.0 mg kg−1; Experiment 2). A stimulus extinguished as part of a compound elicited less responding than a stimulus receiving equal extinction alone regardless of whether animals were tested in the training or extinction context; however, reliable renewal was not observed in this paradigm. Importantly, atomoxetine enhanced extinction relative to controls even in the presence of a reliable renewal effect. Thus, extinction of alcohol-seeking behavior can be improved by extinguishing multiple alcohol-predictive stimuli or enhancing noradrenaline neurotransmission during extinction training. Importantly, both methods improve extinction even when the context is changed between extinction training and test, and thus could be utilized to enhance the outcome of extinction-based treatments for alcohol-use disorders. PMID:26327688

  8. 46 CFR 181.410 - Fixed gas fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... less than 170 cubic meters (6000 cubic feet), release of an extinguishing agent into a space must... unoccupied space of less than 170 cubic meters (6,000 cubic feet) may have the storage cylinders located... between 16,550 and 19,300 kPa (2,400 and 2,800 psi) must be installed in the distribution manifold to...

  9. 75 FR 20516 - Special Conditions: Cirrus Design Corporation, Model SF50; Fire Extinguishing for Upper Aft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ...; Special Conditions No. 23-245-SC] Special Conditions: Cirrus Design Corporation, Model SF50; Fire... protect such installed engines from fires, were not envisioned in the development of the part 23 normal... condition for the fire extinguishing system for the engine on the model SF50 is required. Regulations...

  10. Reliability study of an emerging fire suppression system

    DOE PAGES

    Miller, David A.; Rossati, Lyric M.; Fritz, Nathan K.; ...

    2015-11-01

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Plutonium gloveboxes are known to present harsh environmental conditions for polymer materials, these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. The primary component of interest in self-contained fire extinguishers is the nylon 6-6 machined tube that comprises the main body of the system.Thermo-mechanical modeling and characterization of nylon 6-6 for use in plutonium glovebox applications has been carried out. Data has been generated regarding property degradation leading to poor, or reduced, engineering performancemore » of nylon 6-6 components. In this study, nylon 6-6 tensile specimens conforming to the casing of self-contained fire extinguisher systems have been exposed to hydrochloric, nitric, and sulfuric acids. This information was used to predict the performance of a load bearing engineering component comprised of nylon 6-6 and designed to operate in a consistent manner over a specified time period. The study provides a fundamental understanding of the engineering performance of the fire suppression system and the effects of environmental degradation due to acid exposure on engineering performance. Data generated help identify the limitations of self-contained fire extinguishers. No critical areas of concern for plutonium glovebox applications of nylon 6-6 have been identified when considering exposure to mineral acid.« less

  11. Reliability study of an emerging fire suppression system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David A.; Rossati, Lyric M.; Fritz, Nathan K.

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Plutonium gloveboxes are known to present harsh environmental conditions for polymer materials, these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. The primary component of interest in self-contained fire extinguishers is the nylon 6-6 machined tube that comprises the main body of the system.Thermo-mechanical modeling and characterization of nylon 6-6 for use in plutonium glovebox applications has been carried out. Data has been generated regarding property degradation leading to poor, or reduced, engineering performancemore » of nylon 6-6 components. In this study, nylon 6-6 tensile specimens conforming to the casing of self-contained fire extinguisher systems have been exposed to hydrochloric, nitric, and sulfuric acids. This information was used to predict the performance of a load bearing engineering component comprised of nylon 6-6 and designed to operate in a consistent manner over a specified time period. The study provides a fundamental understanding of the engineering performance of the fire suppression system and the effects of environmental degradation due to acid exposure on engineering performance. Data generated help identify the limitations of self-contained fire extinguishers. No critical areas of concern for plutonium glovebox applications of nylon 6-6 have been identified when considering exposure to mineral acid.« less

  12. 76 FR 31798 - Airworthiness Directives; L'Hotellier Portable Halon 1211 Fire Extinguishers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Airworthiness Directives; L'Hotellier Portable Halon 1211 Fire Extinguishers AGENCY: Federal Aviation... directive (AD) for the specified fire extinguishers. This action requires replacing each unairworthy portable fire extinguisher with an airworthy portable fire extinguisher. This amendment is prompted by an...

  13. 14 CFR 29.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing agents. 29.1197 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1197 Fire extinguishing agents. (a) Fire extinguishing agents must— (1) Be capable of extinguishing flames emanating from...

  14. 78 FR 19090 - Airworthiness Directives; Embraer S.A. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ...We are adopting a new airworthiness directive (AD) for certain Embraer S.A. Model ERJ 170 and ERJ 190 airplanes. This AD was prompted by a report that high rate discharge (HRD) bottle explosive cartridges of a cargo compartment fire extinguisher system were swapped between the forward and aft cargo compartments. Additional investigation also revealed the possibility of swapping between the electrical connectors of the HRD and low rate discharge (LRD) bottles, and a rotated installation of the HRD bottle. Improper assembly of the fire extinguishing bottle might cause the extinguishing agent to be discharged toward the unselected cargo compartment rather than toward the cargo compartment with fire. This AD requires an inspection of the HRD bottle for correct installation and to determine if the pressure switch is in the correct position, and re-installation if necessary; an inspection of the HRD and LRD bottle discharge heads to determine the part number, and replacement if necessary; and, for certain airplanes, an inspection to identify the HRD and LRD bottle electrical connectors, and relocation if necessary. We are issuing this AD to prevent the inability of the fire extinguishing system to suppress fire.

  15. Preventing Return of Fear in an Animal Model of Anxiety: Additive Effects of Massive Extinction and Extinction in Multiple Contexts

    PubMed Central

    Laborda, Mario A.; Miller, Ralph R.

    2013-01-01

    Fear conditioning and experimental extinction have been presented as models of anxiety disorders and exposure therapy, respectively. Moreover, the return of fear serves as a model of relapse after exposure therapy. Here we present two experiments, with rats as subjects in a lick suppression preparation, in which we assessed the additive effects of two different treatments to attenuate the return of fear. First, we evaluated whether two phenomena known to generate return of fear (i.e., spontaneous recovery and renewal) summate to produce a stronger reappearance of extinguished fear. At test, rats evaluated outside the extinction context following a long delay after extinction (i.e., a delayed context shift) exhibited greater return of extinguished fear than rats evaluated outside the extinction context alone, but return of extinguished fear following a delayed context shift did not significantly differ from the return of fear elicited in rats tested following a long delay after extinction alone. Additionally, extinction in multiple contexts and a massive extinction treatment each attenuated the strong return of fear produced by a delayed context shift. Moreover, the conjoint action of these treatments was significantly more successful in preventing the reappearance of extinguished fear, suggesting that extensive cue exposure administered in several different therapeutic settings has the potential to reduce relapse after therapy for anxiety disorders, more than either manipulation alone. PMID:23611075

  16. 14 CFR 25.851 - Fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishers. 25.851 Section 25.851... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.851 Fire extinguishers. (a) Hand fire extinguishers. (1) The following minimum number of hand fire extinguishers must be...

  17. 14 CFR 29.851 - Fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishers. 29.851 Section 29.851... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.851 Fire extinguishers. (a) Hand fire extinguishers. For hand fire extinguishers the following apply: (1) Each hand fire...

  18. Yohimbine reinstates extinguished 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats with prior exposure to chronic yohimbine

    PubMed Central

    Ball, Kevin T.; Jarsocrak, Hanna; Hyacinthe, Johanna; Lambert, Justina; Lockowitz, James; Schrock, Jordan

    2015-01-01

    Although exposure to acute stress has been shown to reinstate extinguished responding for a wide variety of drugs, no studies have investigated stress-induced reinstatement in animals with a history of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) self-administration. Thus, rats were trained to press a lever for MDMA (0.50 mg/kg/infusion) in daily sessions, and lever pressing was subsequently extinguished in the absence of MDMA and conditioned cues (light and tone). We then tested the ability of acute yohimbine (2.0 mg/kg), a pharmacological stressor, to reinstate lever-pressing under extinction conditions. Additionally, to model chronic stress, some rats were injected daily with yohimbine (5.0 mg/kg × 10 days) prior to reinstatement tests. To assess dopaminergic involvement, chronic yohimbine injections were combined with injections of SCH-23390 (0.0 or 10.0 μg/kg), a dopamine D1-like receptor antagonist. In a separate experiment, rats with a history of food self-administration were treated and tested in the same way. Results showed that acute yohimbine injections reinstated extinguished MDMA and food seeking, but only in rats with a history of chronic yohimbine exposure. Co-administration of SCH-23390 with chronic yohimbine injections prevented the potentiation of subsequent food seeking, but not MDMA seeking. These results suggest that abstinent MDMA users who also are exposed to chronic stress may be at increased risk for future relapse, and also that the effects of chronic stress on relapse may be mediated by different mechanisms depending on one’s drug use history. PMID:26241170

  19. 46 CFR 71.25-20 - Fire-detecting and extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Fire-detecting and extinguishing equipment. 71.25-20... INSPECTION AND CERTIFICATION Annual Inspection § 71.25-20 Fire-detecting and extinguishing equipment. (a) At... detecting and extinguishing equipment: (1) All hand portable fire extinguishers and semiportable fire...

  20. Development of a Standard Test Scenario to Evaluate the Effectiveness of Portable Fire Extinguishers on Lithium-ion Battery Fires

    NASA Technical Reports Server (NTRS)

    Juarez, Alfredo; Harper, Susan A.; Hirsch, David B.; Carriere, Thierry

    2013-01-01

    Many sources of fuel are present aboard current spacecraft, with one especially hazardous source of stored energy: lithium ion batteries. Lithium ion batteries are a very hazardous form of fuel due to their self-sustaining combustion once ignited, for example, by an external heat source. Batteries can become extremely energetic fire sources due to their high density electrochemical energy content that may, under duress, be violently converted to thermal energy and fire in the form of a thermal runaway. Currently, lithium ion batteries are the preferred types of batteries aboard international spacecraft and therefore are routinely installed, collectively forming a potentially devastating fire threat to a spacecraft and its crew. Currently NASA is developing a fine water mist portable fire extinguisher for future use on international spacecraft. As its development ensues, a need for the standard evaluation of various types of fire extinguishers against this potential threat is required to provide an unbiased means of comparing between fire extinguisher technologies and ranking them based on performance.

  1. Study of the technology of heat pipe on prevention wildfire of coal gangue hill

    NASA Astrophysics Data System (ADS)

    Deng, Jun; Li, Bei; Ding, Ximei; Ma, Li

    2017-04-01

    Self-ignitable coal gangue hill (CGH) is one kind of special combustion system, which has the characteristics of low self-ignite point, large heat storage, and easy reignition. The currently industrial fire extinguishing methods, such as inhibiting tendency of coal self-ignition, loessial overburden, and cement grouting, had unsatisfied effects for dispersing the heat out in time. Correspondingly, the CGH will lead reignition more frequently with the passage of time. The high underground temperature of CGH threatens the process of ecological and vegetation construction. Therefore, the elimination of high temperature is a vital issue to be solved urgently for habitat restoration. To achieve the ultimately ecological management goal of self-ignitable CGH - extinguishing the fire completely and never reignited, it is crucial to break the heat accumulation. Heat-pipe (HP) has a character of high efficient heat transfer capacity for eliminating the continuously high temperature in CGH. An experimental system was designed to test the heat transfer performance of HP for preventing and extinguishing the spontaneous combustion of coal gangue. Based on the heat transfer theory, the resistance network of the coal-HP heat removal system was analyzed for studying the cooling effect of HP. The experimental results show that the HP can accelerate the heat release in coal gangue pile. The coal temperature could be controlled at 59.6 ˚ C with HP in 7 h and the highest cooling value is 39.4 % with HP in 150 h, which can effectively cool the temperatures of high temperature zones. As a powerful heat transfer components, as soon as HPs were inserted into the CGH with a reasonable distance, it can completely play a vital role in inhibiting the coal self-ignition process.

  2. Acoustic Flame Suppression Mechanics in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Beisner, Eryn; Wiggins, Nathanial David; Yue, Kwok-Bun; Rosales, Miguel; Penny, Jeremy; Lockridge, Jarrett; Page, Ryan; Smith, Alexander; Guerrero, Leslie

    2015-06-01

    The following paper deals with acoustic flame suppression mechanics in a microgravity environment with measurements taken from an Arduino-based sensor system and validation of the technique. A Zippo lighter is ignited in microgravity and then displaced from the base of the flame and suppressed using surface interactions with single tone acoustic waves to extinguished the flame. The analysis of data collected shows that the acoustic flame suppression measurementtechniques are effective to finding qualitative differences in extinguishing in microgravity and normal gravity. Further, the results suggest that the suppression may be more effective in a microgravity environment than in a normal (1g) environment and may be a viable method of extinguishing fires during space flight.

  3. Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.

    2007-01-01

    Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.

  4. Reinstatement of an extinguished fear conditioned response in infant rats.

    PubMed

    Revillo, Damian A; Trebucq, Gastón; Paglini, Maria G; Arias, Carlos

    2016-01-01

    Although it is currently accepted that the extinction effect reflects new context-dependent learning, this is not so clear during infancy, because some studies did not find recovery of the extinguished conditioned response (CR) in rodents during this ontogenetic stage. However, recent studies have shown the return of an extinguished CR in infant rats. The present study analyzes the possibility of recovering an extinguished CR with a reinstatement procedure in a fear conditioning paradigm, on PD17 (Experiments 1-4) and on PD24 (Experiment 5), while exploring the role of the olfactory content of the context upon the reinstatement effect during the preweanling period. Preweanling rats expressed a previously extinguished CR after a single experience with an unsignaled US. Furthermore, this result was only found when subjects were trained and tested in contexts that included an explicit odor, but not in standard experimental cages. Finally, Experiment 5 demonstrated the reinstatement effect on PD24 in a standard context. These results support the notion that extinction during infancy has the same characteristics as those described for extinction that occurs in adulthood. Instead of postulating a different mechanism for extinction during infancy, we propose that it may be more accurate to view the problem in terms of the variables that may differentially modulate the extinction effect according to the stages of ontogeny. © 2015 Revillo et al.; Published by Cold Spring Harbor Laboratory Press.

  5. 46 CFR 108.496 - Semiportable fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... extinguisher required by Table 108.495(a), except a wheeled size V extinguisher provided for a helicopter... rolling out of control under heavy sea conditions: (1) Each size V extinguisher required for a helicopter...

  6. 46 CFR 108.496 - Semiportable fire extinguishers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... extinguisher required by Table 108.495(a), except a wheeled size V extinguisher provided for a helicopter... rolling out of control under heavy sea conditions: (1) Each size V extinguisher required for a helicopter...

  7. 46 CFR 108.496 - Semiportable fire extinguishers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... extinguisher required by Table 108.495(a), except a wheeled size V extinguisher provided for a helicopter... rolling out of control under heavy sea conditions: (1) Each size V extinguisher required for a helicopter...

  8. 46 CFR 108.496 - Semiportable fire extinguishers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... extinguisher required by Table 108.495(a), except a wheeled size V extinguisher provided for a helicopter... rolling out of control under heavy sea conditions: (1) Each size V extinguisher required for a helicopter...

  9. 46 CFR 108.496 - Semiportable fire extinguishers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... extinguisher required by Table 108.495(a), except a wheeled size V extinguisher provided for a helicopter... rolling out of control under heavy sea conditions: (1) Each size V extinguisher required for a helicopter...

  10. Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Margle, Janice M. (Editor)

    1987-01-01

    Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.

  11. Cannabinoid facilitation of fear extinction memory recall in humans

    PubMed Central

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  12. Yohimbine reinstates extinguished 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats with prior exposure to chronic yohimbine.

    PubMed

    Ball, Kevin T; Jarsocrak, Hanna; Hyacinthe, Johanna; Lambert, Justina; Lockowitz, James; Schrock, Jordan

    2015-11-01

    Although exposure to acute stress has been shown to reinstate extinguished responding for a wide variety of drugs, no studies have investigated stress-induced reinstatement in animals with a history of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) self-administration. Thus, rats were trained to press a lever for MDMA (0.50 mg/kg/infusion) in daily sessions, and lever pressing was subsequently extinguished in the absence of MDMA and conditioned cues (light and tone). We then tested the ability of acute yohimbine (2.0 mg/kg), a pharmacological stressor, to reinstate lever-pressing under extinction conditions. Additionally, to model chronic stress, some rats were injected daily with yohimbine (5.0 mg/kg × 10 days) prior to reinstatement tests. To assess dopaminergic involvement, chronic yohimbine injections were combined with injections of SCH-23390 (0.0 or 10.0 μg/kg), a dopamine D1-like receptor antagonist. In a separate experiment, rats with a history of food self-administration were treated and tested in the same way. Results showed that acute yohimbine injections reinstated extinguished MDMA and food seeking, but only in rats with a history of chronic yohimbine exposure. Co-administration of SCH-23390 with chronic yohimbine injections prevented the potentiation of subsequent food seeking, but not MDMA seeking. These results suggest that abstinent MDMA users who also are exposed to chronic stress may be at increased risk for future relapse, and also that the effects of chronic stress on relapse may be mediated by different mechanisms depending on one's drug use history. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Extinction and Return of Fear of Public Speaking.

    PubMed

    Laborda, Mario A; Schofield, Casey A; Johnson, Emily M; Schubert, Jessica R; George-Denn, Daniel; Coles, Meredith E; Miller, Ralph R

    2016-11-01

    Prior studies indicate extinguished fear often partially returns when participants are later tested outside the extinction context. Cues carried from the extinction context to the test context sometimes reduce return of fear, but it is unclear whether such extinction cues (ECs) reduce return of fear of public speaking. Here we assessed return of fear of public speaking, and whether either of two types of ECs can attenuate it. Participants gave speeches of increasing difficulty during an exposure practice session and were tested 2 days later in a different context. Testing occurred in the presence of physical ECs, after mentally rehearsing the exposure session, or without either reminder. Practice reduced fear of public speaking, but fear partially returned at test. Neither physical nor mental ECs reduced partial return of fear of public speaking. The return of extinguished fear of public speaking, although small, was reliable, but not appreciably sensitive to presence of ECs. © The Author(s) 2016.

  14. 14 CFR 29.1199 - Extinguishing agent containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Extinguishing agent containers. 29.1199....1199 Extinguishing agent containers. (a) Each extinguishing agent container must have a pressure relief to prevent bursting of the container by excessive internal pressures. (b) The discharge end of each...

  15. 49 CFR 173.309 - Fire extinguishers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Fire extinguishers. 173.309 Section 173.309... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.309 Fire extinguishers. (a) Specification 3A... 178.61 of this subchapter) cylinders are authorized for manufacture and use as fire extinguishers...

  16. 49 CFR 173.309 - Fire extinguishers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Fire extinguishers. 173.309 Section 173.309... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.309 Fire extinguishers. (a) Specification 3A... 178.61 of this subchapter) cylinders are authorized for manufacture and use as fire extinguishers...

  17. New Agents for the Extinguishment of Magnesium Fires.

    DTIC Science & Technology

    1978-04-01

    34 23 July 1942. German Patent 724,795. 8. Beythien, R., Wienhaus, H., and von Zehman, H., "Extinguish- ing Magnesium and Other Light Metal Fires ," 12...34Trimethoxyboroxine--An Extinguishing Agent for Metal Fires ," ACS Advances in Chemistry, No. 23, American Chemical Society, Washington, D.C. pp 158...13. Miyashima, Z., "Fire Extinguishing Agent," 7 October 1958. Japanese Patent 8,946. 14. Jenkner, H., "Extinguishing Metal Fires ," 12 September

  18. 46 CFR 2.75-25 - Portable fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Portable fire extinguishers. 2.75-25 Section 2.75-25... Personnel § 2.75-25 Portable fire extinguishers. (a) The portable fire extinguishers listed and labeled as..., inclusive. (b) The procedures for manufacturers to follow and the requirements governing portable fire...

  19. 49 CFR 393.95 - Emergency equipment on all power units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...

  20. 49 CFR 393.95 - Emergency equipment on all power units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...

  1. 49 CFR 393.95 - Emergency equipment on all power units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...

  2. 30 CFR 36.31 - Fire extinguisher.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fire extinguisher. 36.31 Section 36.31 Mineral... Construction and Design Requirements § 36.31 Fire extinguisher. Each unit of mobile diesel-powered transportation equipment shall be fitted with a fire extinguisher carried in a location easily accessible to the...

  3. 14 CFR 23.851 - Fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishers. 23.851 Section 23.851... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Fire Protection § 23.851 Fire extinguishers. (a) There must be at least one hand fire extinguisher for use in the...

  4. 49 CFR 173.309 - Fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Fire extinguishers. 173.309 Section 173.309... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.309 Fire extinguishers. (a) Fire... § 174.24 or to part 177 of this subchapter except § 177.817. (1) Each fire extinguisher must have...

  5. 49 CFR 180.213 - Requalification markings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...

  6. 49 CFR 180.213 - Requalification markings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...

  7. 49 CFR 180.213 - Requalification markings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...

  8. 49 CFR 180.213 - Requalification markings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...

  9. Extinction and renewal of cue-elicited reward-seeking.

    PubMed

    Bezzina, Louise; Lee, Jessica C; Lovibond, Peter F; Colagiuri, Ben

    2016-12-01

    Reward cues can contribute to overconsumption of food and drugs and can relapse. The failure of exposure therapies to reduce overconsumption and relapse is generally attributed to the context-specificity of extinction. However, no previous study has examined whether cue-elicited reward-seeking (as opposed to cue-reactivity) is sensitive to context renewal. We tested this possibility in 160 healthy volunteers using a Pavlovian-instrumental transfer (PIT) design involving voluntary responding for a high value natural reward (chocolate). One reward cue underwent Pavlovian extinction in the same (Group AAA) or different context (Group ABA) to all other phases. This cue was compared with a second non-extinguished reward cue and an unpaired control cue. There was a significant overall PIT effect with both reward cues eliciting reward-seeking on test relative to the unpaired cue. Pavlovian extinction substantially reduced this effect, with the extinguished reward cue eliciting less reward-seeking than the non-extinguished reward cue. Most interestingly, extinction of cue-elicited reward-seeking was sensitive to renewal, with extinction less effective for reducing PIT when conducted in a different context. These findings have important implications for extinction-based interventions for reducing maladaptive reward-seeking in practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 30 CFR 57.4600 - Extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., cutting, soldering, thawing, or bending— (1) With an electric arc or with an open flame where an... extinguisher or other extinguisher with at least a 2-A:10-B:C rating shall be at the worksite. (2) With an open... equivalent fire extinguishing equipment for the class of fire hazard present shall be at the worksite. (b...

  11. 30 CFR 56.4600 - Extinguishing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., soldering, thawing, or bending— (1) With an electric arc or with an open flame where an electrically... extinguisher or other extinguisher with at least a 2-A:10-B:C rating shall be at the worksite. (2) With an open... equivalent fire extinguishing equipment for the class of fire hazard present shall be at the worksite. (b...

  12. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Test Procedure F Appendix F to Part 23...—Test Procedure Acceptable test procedure for self-extinguishing materials for showing compliance with... as sandwich panels, may not be separated for a test. The specimen thickness must be no thicker than...

  13. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure carbon dioxide fire extinguishing systems. (b) Low pressure systems, that is, those in which the carbon dioxide...

  14. Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure

    NASA Astrophysics Data System (ADS)

    Karunakaran, S.; Majid, D. L.; Mohd Tawil, M. L.

    2016-10-01

    This study investigates the flammability properties of kenaf fiber reinforced acrylonitrile butadiene styrene (ABS) with nanoclays composites. Natural fiber is one of the potential materials to be used with thermoplastic as a composite due to its attractive properties such as lightweight and strong. In this paper, flammability properties of this material are evaluated through Underwriters Laboratory 94 Horizontal Burning (UL94 HB), which has been conducted for both controlled and uncontrolled conditions, smoke density and limiting oxygen index tests (LOI). These flammability tests are in compliance with the Federal Aviation Regulation (FAR) requirement. The results from UL94 HB and smoke density tests show that the presence of nanoclays with effective composition of kenaf fiber reinforced ABS has enhanced the burning characteristics of the material by hindering propagation of flame spread over the surface of the material through char formation. Consequently, this decreases the burning rate and produces low amount of smoke during burning. On contrary, through LOI test, this material requires less oxygen to burn when exposed to fire, which hinders the enhancement of burning characteristics. This is due to burning mechanism exhibited by nanoclays that catalyzes barrier formation and flame propagation rate over the surface of the biocomposite material. Overall, these experimental results suggest that this biocomposite material is capable of self-extinguishing and possesses effective fire extinction. The observed novel synergism from the result obtained is promising to be implemented in secondary structures of aircraft with significant benefits such as cost-effective, lightweight and biodegradable self-extinguishing biocomposite.

  15. Fire extinguishment and inhibition in spacecraft environments

    NASA Technical Reports Server (NTRS)

    Deris, John

    1987-01-01

    It was concluded that it is essential that NASA develop a comprehensive approach to fire extinguishment and inerting in spacecraft environments. Electronic equipment might be easily protected through use of an onboard inert gas generating system. The use of Halon 1301 presents serious technological challenges for agent cleanup and removal of the toxic and corrosive products of combustion. Nitrogen pressurization, while effective, probably presents a serious weight penality. The use of liquid water sprays appears to be the most effective approach to general purpose spacecraft fire protection.

  16. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-01-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  17. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-05-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  18. Synthesis and characterization of carbon microsphere for extinguishing sodium fire

    NASA Astrophysics Data System (ADS)

    Snehalatha, V.; Ponraju, D.; Nashine, B. K.; Chellapandi, P.

    2013-06-01

    In Sodium cooled Fast breeder Reactors (SFRs), accidental leakage of liquid sodium leads to sodium fire. Carbon microsphere is a promising and novel extinguishant for sodium fire since it possesses high thermal conductivity, chemical inertness and excellent flow characteristics. Low density Carbon microsphere (CMS) with high thermal stability was successfully synthesized from functionalized styrene divinyl benzene copolymer by carbonization under inert atmosphere. Protocol for stepwise carbonization was developed by optimizing heating rate and time of heating. The synthesized CMS was characterized by Densimeter, Scanning Electron Microscope (SEM), Fourier Transfer Infra-Red spectroscopy (FTIR), Thermogravimetry (TG), X-ray Diffraction (XRD) and RAMAN spectroscopy. CMS thus obtained was spherical in shape having diameters ranging between 60 to 80μm with narrow size distribution. The smooth surface of CMS ensures its free flow characteristics. The yield of carbonization process was about 38%. The performance of CMS was tested on small scale sodium. This paper describes the development of carbon microsphere for extinguishing sodium fire and its characteristics.

  19. Fire safety practices in the Shuttle and the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1993-01-01

    The Shuttle reinforces its policy of fire-preventive measures with onboard smoke detectors and Halon 1301 fire extinguishers. The forthcoming Space Station Freedom will have expanded fire protection with photoelectric smoke detectors, radiation flame detectors, and both fixed and portable carbon dioxide fire extinguishers. Many design and operational issues remain to be resolved for Freedom. In particular, the fire-suppression designs must consider the problems of gas leakage in toxic concentrations, alternative systems for single-failure redundancy, and commonality with the corresponding systems of the Freedom international partners. While physical and engineering requirements remain the primary driving forces for spacecraft fire-safety technology, there are, nevertheless, needs and opportunities for the application of microgravity combustion knowledge to improve and optimize the fire-protective systems.

  20. Automatic fire-extinguishing system for inhabited pressurized compartments of manned spacecraft

    NASA Astrophysics Data System (ADS)

    Bolodian, Ivan; Melikhov, Anatoliy; Tanklevskiy, Leonid

    2017-06-01

    There is an innovational fire-extinguishing technology implemented via equipage of inhabited pressurized modules of the space station "Mir" and compartments of the Russian segment of International space station by automatic fire extinguishing systems in an orbital flight. Fire-safety in inhabited pressurized compartments of spacecraft (further - InPC SC) became one of the most dangerous factors during an orbital flight after a number of fire-hazardous situations occurred in different countries during preparation and execution of spaceflights [1,2]. High fire-risk in InPC of manned SC is determined by the following specific peculiarities of a arrangement and usage conditions of these items: - atmosphere of inhabited compartments is considerably enriched with oxygen - up to 25-40%; - there are many structural non-metal materials (here and after - materials) in order to lower the weight of InPC SC, most part of these materials is combustible under a given concentration of oxygen (here and after - Cox) in the atmosphere of InPC SC; - ventilation flow (here and after - Vvf) under normal operation of ventilation means in InPC SC considerably increases a possibility of fast fire-spread in InPC. - inhabited pressurized compartments of SC are filled with electrical equipment, which elements during failures even in low-current circuits became fire sources in oxygen-rich atmosphere; - indoor spaces of inhabited pressurized compartments of SC, as a rule, have complicated figuration with isolated for usage of local fire extinguishing zones with elements of electrical devices.

  1. Ecotoxicity of waste water from industrial fires fighting

    NASA Astrophysics Data System (ADS)

    Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.

    2012-04-01

    As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.

  2. EXTINGUISHMENT OF ALKALI METAL FIRES

    DTIC Science & Technology

    low O2 partial pressures on alkali metal fires Extinguishment of alkali metal fires using in organic salt mixtures Extinguishment of alkali metal ... fires using inorganic salt foams Alkali metal jet stream ignition at various pressure conditions Bibliography

  3. 46 CFR 31.10-18 - Firefighting equipment: General-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 12 months, the tests and inspections of all hand portable fire extinguishers, semiportable fire... (d) of this section. The owner, master, or person in charge shall keep records of such tests and... inspected, and the name(s) of the person(s) and/or company conducting the tests and inspections. Such...

  4. EXTINGUISHMENT OF ALKALI METAL FIRES

    DTIC Science & Technology

    Contents: Effect of inert gas nket and ow O2 partial pressures on alkali metal fires Extinguishment of small scale fires Extinguishment of alkali... metal fires using inorganic salt foam Alkali metal jet stream ignition at various pressure conditions

  5. Highly Effective, Low Toxicity, Low Environmental Impact Total Flooding Fire Suppressants

    NASA Technical Reports Server (NTRS)

    Glass, S. M.; Dhooge, P. M.; Nimitz, J. S.

    2001-01-01

    Halon 1301 (CF3Br) has been used for decades as the primary fire suppression agent for areas where powder agents cannot be used because of concerns for sensitive equipment. Halon 1301 is an excellent extinguishing agent, effective at about 3% in air and quite non-toxic. It has an effective exposure limit much greater than its extinguishing concentration, so it can be used in normally occupied areas. The ability of a chemical to destroy stratospheric ozone is its ozone-depletion potential (ODP). ODP is the amount of ozone destroyed per pound of a chemical, relative to the standard CFC-11 with an ODP = 1.0. Because halons have been implicated in stratospheric ozone depletion, their production was stopped at the end of 1995 under the provisions of the Montreal Protocol plus later amendments. In the US, the Clean Air Act Amendments of 1990, Presidential directives, and DoD Directive 6050.9 implemented this phaseout. These regulations and penalties have provided strong incentives for US businesses to decrease CFC use. The Omnibus Budget Reconciliation Act of 1989 mandates high Federal taxes on CFCs and halons, designed to price them out of the market. The taxes also capture for the government the windfall profits that would otherwise go to producers as scarcity drives up prices. Several replacements have been developed for Halon 1301. One is carbon dioxide, which has been used as a firefighting agent for many years. However, a high concentration of carbon dioxide is necessary to inert fuels. The effective concentration for inerting with carbon dioxide is approximately 29%, which is above the concentration lethal to humans. HFC-227ea is being used extensively to replace Halon 1301 systems in nominally occupied areas and some normally unoccupied areas. However, since the effective concentration of HFC-227ea is about three to four times that of Halon 1301 the extinguishing systems have to be larger and new extinguishing systems have to be installed. HFC-125 is also being sold as an extinguishing agent (Nimitz). It has problems similar to HFC-227ea, with a greater concentration needed for effectiveness and the need to use a larger system. This is a particularly onerous penalty in aircraft and spacecraft, where weight and space are extremely important, and substitution is often impossible in existing aircraft due to space limitations.

  6. Detailed Results from the Flame Extinguishment Experiment (FLEX) March 2009 to December 2011

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Ferkul, Paul V.; Bryg, Victoria M.; Nayagam, M. Vedha; Hicks, Michael C.; Williams, Forman A.; Dryer, Frederick L.; Shaw, Benjamin D.; Choi, Mun Y.; Avedisian, C. Thomas

    2015-01-01

    The Flame Extinguishment Experiment (FLEX) program is a continuing set of experiments on droplet combustion, performed employing the Multi-User Droplet Combustion Apparatus (MDCA), inside the chamber of the Combustion Integrated Rack (CIR), which is located in the Destiny module of the International Space Station (ISS). This report describes the experimental hardware, the diagnostic equipment, the experimental procedures, and the methods of data analysis for FLEX. It also presents the results of the first 284 tests performed. The intent is not to interpret the experimental results but rather to make them available to the entire scientific community for possible future interpretations.

  7. Development of a Minimum Performance Standard for Hand-Held Fire Extinguishers as a Replacement for Halon 1211 on Civilian Transport Category Aircraft

    NASA Astrophysics Data System (ADS)

    Webster, Harry

    2002-08-01

    One or more Halon 1211 hand-held fire extinguishers are specified in Federal Aviation Regulation (FAR) Part 25.851 as a requirement on transport category aircraft with 31 or more seats. Halon 1211 has been linked to the destruction of the ozone layer and production of new Halon 1211 has been halted per the Montreal Protocol in 1993. The phase out of Halon 1211, as the hand-held firefighting agent of choice, for civilian transport category aircraft has necessitated the development of a Minimum Performance Standard (MPS) to evaluate replacement agents. The purpose of the MPS is to insure that there is no reduction in safety, both in terms of effectiveness in fighting onboard fires and toxicity to the passengers and crew. The MPS specifies two new tests that replacement agents must pass in addition to requiring national certifications such as provided by Underwriters Laboratories. The first test evaluates the "flooding" characteristics of the agent against a hidden in-flight fire. This test determines the ability of a streaming agent to function as a flooding agent. The second test evaluates the performance of the agent in fighting a terrorist fire scenario and the associated toxicity hazard. This test measures the agent's ability to extinguish a triple-seat fire in an aircraft cabin under in-flight conditions and the toxicity characteristics of both the neat agent and the products of decomposition. This MPS will insure that the replacement agents will meet or exceed the performance of Halon 1211 both in fighting fires and maintaining a safe breathing environment in aircraft cabins.

  8. Cassidy conducts BASS Experiment Test Operations

    NASA Image and Video Library

    2013-04-05

    ISS035-E-015081 (5 April 2013) --- Astronaut Chris Cassidy, Expedition 35 flight engineer, conducts a session of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, Cassidy conducted a run of the experiment, which examined the burning and extinction characteristics of a wide variety of fuel samples in microgravity and will guide strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.

  9. 46 CFR 147.7 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) ABYC H-25-81, Portable Fuel Systems and Portable Containers for Flammable Liquids, (May 12, 1981..., telephone 617-770-3000, www.nfpa.org. (1) NFPA 2001, Standard on Clean Agent Fire Extinguishing Systems...

  10. Fire suppression in human-crew spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Dietrich, Daniel L.

    1991-01-01

    Fire extinguishment agents range from water and foam in early-design spacecraft (Halon 1301 in the present Shuttle) to carbon dioxide proposed for the Space Station Freedom. The major challenge to spacecraft fire extinguishment design and operations is from the micro-gravity environment, which minimizes natural convection and profoundly influences combustion and extinguishing agent effectiveness, dispersal, and post-fire cleanup. Discussed here are extinguishment in microgravity, fire-suppression problems anticipated in future spacecraft, and research needs and opportunities.

  11. 14 CFR 121.269 - Extinguishing agent container compartment temperature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... temperature. 121.269 Section 121.269 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....269 Extinguishing agent container compartment temperature. Precautions must be taken to insure that the extinguishing agent containers are installed in places where reasonable temperatures can be...

  12. 14 CFR 121.269 - Extinguishing agent container compartment temperature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... temperature. 121.269 Section 121.269 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....269 Extinguishing agent container compartment temperature. Precautions must be taken to insure that the extinguishing agent containers are installed in places where reasonable temperatures can be...

  13. 14 CFR 121.269 - Extinguishing agent container compartment temperature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... temperature. 121.269 Section 121.269 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....269 Extinguishing agent container compartment temperature. Precautions must be taken to insure that the extinguishing agent containers are installed in places where reasonable temperatures can be...

  14. 14 CFR 121.269 - Extinguishing agent container compartment temperature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... temperature. 121.269 Section 121.269 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....269 Extinguishing agent container compartment temperature. Precautions must be taken to insure that the extinguishing agent containers are installed in places where reasonable temperatures can be...

  15. 14 CFR 121.269 - Extinguishing agent container compartment temperature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... temperature. 121.269 Section 121.269 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....269 Extinguishing agent container compartment temperature. Precautions must be taken to insure that the extinguishing agent containers are installed in places where reasonable temperatures can be...

  16. Putting Out Fires.

    ERIC Educational Resources Information Center

    Dondero, Tom

    1998-01-01

    Examines school fire-prevention and emergency-response systems. Advises how administrators can help to protect lives and property, and select the detection and alarm systems that can provide the best protection. Discusses types of extinguishing systems to consider. Provides advice for stopping arson, (GR)

  17. Development of a Midscale Test for Flame Resistant Protection

    DTIC Science & Technology

    2016-08-01

    Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin, which provides both radiant and convective heat...TEST METHODS FIRE RESISTANT MATERIALS TORCHES SIMULATION TEST EQUIPMENT FLAME RESISTANT CLOTHING PERFORMANCE(ENGINEERING... fabric during a fire , and even after the fire has been extinguished. The best known full scale transmitted heat flux test is the "ASTM F1930

  18. A study on gaseous extinguishing agent sensing with a simple measurement method

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Lu, Song; Yuan, Wei; Qian, Hanjie

    2018-03-01

    As research on the concentration distribution for evaluating the effectiveness of a gas fire extinguisher system is quite important, the proper sensing technology is necessary. Here, a simple method used for measuring the concentration of agent is introduced, and the manufacture of the sensing part is described clearly. The sensing unit is composed of a pressure reducing structure and pressure sensor element. The detection was achieved by sensing the change of pressure difference caused by gas flow. In order to verify the theory and characterize the sensing performance, two types of fire extinguishing agents, bromotrifluoromethane (CBrF3) and heptafluoropropane (C3HF7), were used in the experiments. The results showed a high sensitivity from 0 to 100%, good repeatability and fast response/recovery time. Furthermore, the effect of operating temperature, humidity and geometric structure on the response were investigated. Measurements showed, for CBrF3, that the temperature had a linear impact on the response and the influence of humidity in the sensor was negligible. Through the analysis of the geometry parameter, it was found that the sensing performance could be greatly improved through adjusting the geometry structure. This technique provides a low-cost and highly reliable sensor for the detection of gaseous extinguishing agent that can be easily fabricated.

  19. 14 CFR 125.167 - Extinguishing agent container compartment temperature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... temperature. 125.167 Section 125.167 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Requirements § 125.167 Extinguishing agent container compartment temperature. Precautions must be taken to ensure that the extinguishing agent containers are installed in places where reasonable temperatures can...

  20. 14 CFR 125.167 - Extinguishing agent container compartment temperature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... temperature. 125.167 Section 125.167 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Requirements § 125.167 Extinguishing agent container compartment temperature. Precautions must be taken to ensure that the extinguishing agent containers are installed in places where reasonable temperatures can...

Top