Sudhakaran, R; Haribabu, P; Kumar, S Rajesh; Sarathi, M; Ahmed, V P Ishaq; Babu, V Sarath; Venkatesan, C; Hameedl, A S Sahul
2008-04-01
Five different species of aquatic insects were collected from nursery ponds containing the freshwater prawn Macrobrachium rosenbergii infected with Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV). The insects were screened as potential natural carriers of MrNV and XSV. RT-PCR (reverse transcription polymerase chain reaction) analysis gave positive results for MrNV and XSV in Belostoma sp., Aesohna sp., Cybister sp. and Notonecta sp., and negative results for Nepa sp. An Aedes albopictus mosquito cell line (C6/36) was used for infectivity assays, with viral inoculum prepared from the aquatic insects, since C6/36 cells have recently been shown to be susceptible to infection with MrNV and XSV. The C6/36 cells were harvested 4 d post-challenge for examination by electron microscopy. This revealed aggregation of viral particles throughout the cytoplasm for cells challenged with inocula from all the insect species except Nepa sp. Our results indicate that several aquatic insect species may present a risk for MrNV and XSV transmission to M. rosenbergii.
Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B
2016-01-01
HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.
Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?
Wildy, P; Gell, P G; Rhodes, J; Newton, A
1982-01-01
Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus. PMID:6286497
Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?
Wildy, P; Gell, P G; Rhodes, J; Newton, A
1982-07-01
Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus.
2008-02-01
with atypical head anthropometry . A limited number of current users have anecdotally cited the TPL® as causing hot spots. Hot spots are defined as...6) is available in sizes: extra-extra-small (XXS), extra- small (XS), small(S), medium (M), large (L), and extra-large ( XL ). Each helmet is made up...head anthropometries than the small HGU-56/P. This is accomplished by 6 thickening the polystyrene energy-absorbing liners (EALs) in the XS and XXS
Where Have All These New Microbes Come From?
ERIC Educational Resources Information Center
Sobieski, Rodney J.
1984-01-01
Describes research activities and recent findings on disease-causing viruses, fungi, and bacteria. Includes a list of contemporary viruses and what they cause and lists of extra-classroom microbiology activities and student projects. (BC)
Tapia, Felipe; Vogel, Thomas; Genzel, Yvonne; Behrendt, Ilona; Hirschel, Mark; Gangemi, J David; Reichl, Udo
2014-02-12
Hollow fiber bioreactors (HFBRs) have been widely described as capable of supporting the production of highly concentrated monoclonal antibodies and recombinant proteins. Only recently HFBRs have been proposed as new single-use platforms for production of high-titer influenza A virus. These bioreactors contain multiple hollow fiber capillary tubes that separate the bioreactor in an intra- and an extra-capillary space. Cells are usually cultured in the extra-capillary space and can grow to a very high cell concentration. This work describes the evaluation of the single-use hollow fiber bioreactor PRIMER HF (Biovest International Inc., USA) for production of influenza A virus. The process was setup, characterized and optimized by running a total of 15 cultivations. The HFBRs were seeded with either adherent or suspension MDCK cells, and infected with influenza virus A/PR/8/34 (H1N1), and the pandemic strain A/Mexico/4108/2009 (H1N1). High HA titers and TCID₅₀ of up to 3.87 log₁₀(HA units/100 μL) and 1.8 × 10(10)virions/mL, respectively, were obtained for A/PR/8/34 influenza strain. Influenza virus was collected by performing multiple harvests of the extra-capillary space during a virus production time of up to 12 days. Cell-specific virus yields between 2,000 and 8,000 virions/cell were estimated for adherent MDCK cells, and between 11,000 and 19,000 virions/cell for suspension MDCK.SUS2 cells. These results do not only coincide with the cell-specific virus yields obtained with cultivations in stirred tank bioreactors and other high cell density systems, but also demonstrate that HFBRs are promising and competitive single-use platforms that can be considered for commercial production of influenza virus. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hepatitis C virus infection in nephrology patients.
Rostaing, Lionel; Izopet, Jacques; Kamar, Nassim
2013-10-01
Hepatitis C virus (HCV) infection leads to chronic liver disease, but also to extra-hepatic manifestations. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Herein, we provide an overview of renal diseases related to HCV and their therapies, as well as the treatment options available for HCV (+)/RNA (+) dialysis patients. We will not mention, however, HCV infection-related complications in the post-kidney transplantation setting. Extra-hepatic manifestations of HCV infection include mixed cryoglobulinemia, lymphoproliferative disorders, and renal disease. HCV infection has been reported in association with distinct histological patterns of glomerulonephritis in native kidneys.
Hepatitis C virus infection in nephrology patients
Rostaing, Lionel; Izopet, Jacques; Kamar, Nassim
2013-01-01
Context: Hepatitis C virus (HCV) infection leads to chronic liver disease, but also to extra-hepatic manifestations. Evidence Acquisitions: Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Results: Herein, we provide an overview of renal diseases related to HCV and their therapies, as well as the treatment options available for HCV (+)/RNA (+) dialysis patients. We will not mention, however, HCV infection-related complications in the post-kidney transplantation setting. Conclusions: Extra-hepatic manifestations of HCV infection include mixed cryoglobulinemia, lymphoproliferative disorders, and renal disease. HCV infection has been reported in association with distinct histological patterns of glomerulonephritis in native kidneys. PMID:24475454
Effect of bioparticle size on dispersion and retention in monolithic and perfusive beds
Trilisky, Egor I.; Lenhoff, Abraham M.
2010-01-01
Single-component pulse response studies were used to compare the retention and transport behavior of small molecules, proteins, and a virus on commercially available monolithic and perfusive ion-exchangers. Temporal distortion and extra-column effects were corrected for using a simple algorithm based on the method of moments. It was found that temporal distortion is inversely related to the number of theoretical plates. With increasing bioparticle size, retention increased and the transition from a non-eluting to a non-adsorbing state with increasing ionic strength became more abrupt. Both of these observations are qualitatively explained by calculations of particle-surface electrostatic attractive energy. Calculations also show that, for sufficiently large bioparticles, such as viruses or cells, hydrodynamic drag can promote elution. Under non-adsorbing conditions, plate height increased only weakly with flow rate and the skew remained unchanged. With increasing retention, plate height increased dramatically for proteins. Plate height was scaled by permeability rather than bead diameter to enable comparison among different stationary phases. PMID:20951383
Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release
Svirskaitė, Julija; Oksanen, Hanna M.; Daugelavičius, Rimantas; Bamford, Dennis H.
2016-01-01
The slow rate of adsorption and non-synchronous release of some archaeal viruses have hindered more thorough analyses of the mechanisms of archaeal virus release. To address this deficit, we utilized four viruses that infect Haloarcula hispanica that represent the four virion morphotypes currently known for halophilic euryarchaeal viruses: (1) icosahedral internal membrane-containing SH1; (2) icosahedral tailed HHTV-1; (3) spindle-shaped His1; and (4) pleomorphic His2. To discern the events occurring as the progeny viruses exit, we monitored culture turbidity, as well as viable cell and progeny virus counts of infected and uninfected cultures. In addition to these traditional metrics, we measured three parameters associated with membrane integrity: the binding of the lipophilic anion phenyldicarbaundecaborane, oxygen consumption, and both intra- and extra-cellular ATP levels. PMID:26927156
Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs
De Vleeschauwer, Annebel; Atanasova, Kalina; Van Borm, Steven; van den Berg, Thierry; Rasmussen, Thomas Bruun; Uttenthal, Åse; Van Reeth, Kristien
2009-01-01
Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals. PMID:19684857
van de Sandt, Carolien E; Pronk, Mark R; van Baalen, Carel A; Fouchier, Ron A M; Rimmelzwaan, Guus F
2018-06-01
Influenza virus-specific CD8 + T lymphocytes (CTLs) contribute to clearance of influenza virus infections and reduce disease severity. Variation at amino acid residues located in or outside CTL epitopes has been shown to affect viral recognition by virus-specific CTLs. In the present study, we investigated the effect of naturally occurring variation at residues outside the conserved immunodominant and HLA*0201-restricted M1 58-66 epitope, located in the influenza virus M1 protein, on the extent of virus replication in the presence of CTLs specific for the epitope. To this end, we used isogenic viruses with an M1 gene segment derived from either an avian or a human influenza virus, HLA-transgenic human epithelial cells, human T cell clones specific for the M1 58-66 epitope or a control epitope, and a novel, purposely developed in vitro system to coculture influenza virus-infected cells with T cells. We found that the M gene segment of a human influenza A/H3N2 virus afforded the virus the capacity to replicate better in the presence of M1 58-66 -specific CTLs than the M gene segment of avian viruses. These findings are in concordance with previously observed differential CTL activation, caused by variation at extra-epitopic residues, and may reflect an immune adaptation strategy of human influenza viruses that allows them to cope with potent CTL immunity to the M1 58-66 epitope in HLA-A*0201-positive individuals, resulting in increased virus replication and shedding and possibly increasing disease severity. IMPORTANCE Influenza viruses are among the leading causes of acute respiratory tract infections. CD8 + T lymphocytes display a high degree of cross-reactivity with influenza A viruses of various subtypes and are considered an important correlate of protection. Unraveling viral immune evasion strategies and identifying signs of immune adaptation are important for defining the role of CD8 + T lymphocytes in affording protection more accurately. Improving our insight into the interaction between influenza viruses and virus-specific CD8 + T lymphocyte immunity may help to advance our understanding of influenza virus epidemiology, aid in risk assessment of potentially pandemic influenza virus strains, and benefit the design of vaccines that induce more broadly protective immunity. Copyright © 2018 American Society for Microbiology.
Zong, Li; Qin, Yanli; Jia, Haodi; Ye, Lei; Wang, Yongxiang; Zhang, Jiming; Wands, Jack R; Tong, Shuping; Li, Jisu
2017-05-01
Hepatitis B virus (HBV) transcribes two subsets of 3.5-kb RNAs: precore RNA for hepatitis B e antigen (HBeAg) expression, and pregenomic RNA for core and P protein translation as well as genome replication. HBeAg expression could be prevented by mutations in the precore region, while an upstream open reading frame (uORF) has been proposed as a negative regulator of core protein translation. We employed replication competent HBV DNA constructs and transient transfection experiments in Huh7 cells to verify the uORF effect and to explore the alternative function of precore RNA. Optimized Kozak sequence for the uORF or extra ATG codons as present in some HBV genotypes reduced core protein expression. G1896A nonsense mutation promoted more efficient core protein expression than mutated precore ATG, while a +1 frameshift mutation was ineffective. In conclusion, various HBeAg-negative precore mutations and mutations affecting uORF differentially regulate core protein expression and genome replication. Copyright © 2017 Elsevier Inc. All rights reserved.
Inflation from periodic extra dimensions
NASA Astrophysics Data System (ADS)
Higaki, Tetsutaro; Tatsuta, Yoshiyuki
2017-07-01
We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.
Inflation from periodic extra dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higaki, Tetsutaro; Tatsuta, Yoshiyuki, E-mail: thigaki@rk.phys.keio.ac.jp, E-mail: y_tatsuta@akane.waseda.jp
We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, andmore » then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.« less
Actualizing Flexible National Security Space Systems
2011-01-01
single launch vehicle is a decision unique to small satellites that adds an extra dimension to the launch risk calculation. While bundling...following a launch failure. The ability to bundle multiple payloads on a single launch vehicle is a decision unique to small satellites that adds an extra ... dimension to the launch risk calculation. While bundling multiple small satellites on a single launch vehicle spreads the initial launch cost across
Archaeal viruses--novel, diverse and enigmatic.
Peng, Xu; Garrett, Roger A; She, QunXin
2012-05-01
Recent research has revealed a remarkable diversity of viruses in archaeal-rich environments where spindles, spheres, filaments and rods are common, together with other exceptional morphotypes never recorded previously. Moreover, their double-stranded DNA genomes carry very few genes exhibiting homology to those of bacterial and eukaryal viruses. Studies on viral life cycles are still at a preliminary stage but important insights are being gained especially from microarray analyses of viral transcripts for a few model virus-host systems. Recently, evidence has been presented for some exceptional archaeal-specific mechanisms for extra-cellular morphological development of virions and for their cellular extrusion. Here we summarise some of the recent developments in this rapidly developing and exciting research area.
Xing, Yawei; Yang, Junwen; Lian, Guanghui; Chen, Shuijiao; Chen, Linlin; Li, Fujun
2017-05-01
Chronic active Epstein-Barr virus infection (CAEBV) associated with hemophagocytic syndrome (HPS) and extra-nodal natural killer (NK)/T-cell lymphoma (ENKL) is a rare life-threatening disorder. This disease is easily misdiagnosed because of its varied presentations. An 18-year-old girl was admitted to our hospital with a history of edema in the lower limbs and intermittent fever lasting for more than 1 month. At admission, she had severe liver injury of unknown etiology. Laboratory test results revealed pancytopenia, hyperferritinemia, hypertriglyceridemia, and hypofibrinogenemia. Results of serologic tests for EBV were positive. Results of a skin biopsy indicated EBV-positive NK/T-cell lymphoma, and bone marrow aspiration revealed focal hemophagocytosis and atypical lymphoid cells. On the basis of these findings, we diagnosed the case as extra-nodal NK/T-cell lymphoma-associated HPS (natural killer/T-cell lymphoma-associated hemophagocytic syndrome), which is commonly induced by CAEBV. Treatment consisted of general management of hepatitis, supplemented with albumin and empirical antibiotic therapy. The patient died from massive gastrointestinal hemorrhage a week after she was discharged from the hospital. ENKL and HPS present with varied features and are generally fatal; therefore, clinicians should proceed with caution in suspected cases. HPS should be considered when the patient presents with fever, hepatosplenomegaly, pancytopenia, and liver failure. When HPS is suspected, clinicians should determine the underlying cause, such as severe infection, including infection with viruses such as EBV; genetic predisposition; or underlying malignancies, especially lymphoma because of its strong association with HPS.
Jones, Roger A C
2004-03-01
Virus diseases cause serious losses in yield and quality of cultivated plants worldwide. These losses and the resulting financial damage can be limited by controlling epidemics using measures that minimise virus infection sources or suppress virus spread. For each combination of virus, cultivated plant and production system, there is an 'economic threshold' above which the financial damage is sufficient to justify using such measures. However, individual measures used alone may bring only small benefits and they may become ineffective, especially over the long term. When diverse control measures that act in different ways are combined and used together, their effects are complementary resulting in far more effective overall control. Such experiences have led to the development of integrated management concepts for virus diseases that combine available host resistance, cultural, chemical and biological control measures. Selecting the ideal mix of measures for each pathosystem and production situation requires detailed knowledge of the epidemiology of the causal virus and the mode of action of each individual control measure so that diverse responses can be devised to meet the unique features of each of the different scenarios considered. The strategies developed must be robust and necessitate minimal extra expense, labour demands and disruption to standard practices. Examples of how epidemiological information can be used to develop effective integrated disease management (IDM) strategies for diverse situations are described. They involve circumstances where virus transmission from plant-to-plant occurs in four different ways: by contact, non-persistently or persistently by insect vectors, and by root-infecting fungi. The examples are: Subterranean clover mottle virus (SCMoV) (contact-transmitted) and Bean yellow mosaic virus (BYMV) (non-persistently aphid-transmitted) in annually self-regenerating clover pasture; three seed-borne viruses (all non-persistently aphid-transmitted) plots of pasture legume improvement programmes; Tomato spotted wilt virus (TSWV) (persistently thrips-transmitted) in vegetables in seedling nurseries, protected cropping or field systems; and lettuce big-vein disease (fungus-transmitted) in lettuce in seedling nursery, hydroponic, infested field or uninfested field situations. By describing the kinds of approaches required, this article is intended to help future research and extension programmes devise integrated disease management strategies that not only function effectively to diminish the losses caused by economically important plant virus diseases but also fulfill the requirement of being environmentally and socially responsible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canfora, Fabrizio; Willison, Steven; Giacomini, Alex
2009-08-15
It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effectmore » opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.« less
Modelling relationships between match events and match outcome in elite football.
Liu, Hongyou; Hopkins, Will G; Gómez, Miguel-Angel
2016-08-01
Identifying match events that are related to match outcome is an important task in football match analysis. Here we have used generalised mixed linear modelling to determine relationships of 16 football match events and 1 contextual variable (game location: home/away) with the match outcome. Statistics of 320 close matches (goal difference ≤ 2) of season 2012-2013 in the Spanish First Division Professional Football League were analysed. Relationships were evaluated with magnitude-based inferences and were expressed as extra matches won or lost per 10 close matches for an increase of two within-team or between-team standard deviations (SD) of the match event (representing effects of changes in team values from match to match and of differences between average team values, respectively). There was a moderate positive within-team effect from shots on target (3.4 extra wins per 10 matches; 99% confidence limits ±1.0), and a small positive within-team effect from total shots (1.7 extra wins; ±1.0). Effects of most other match events were related to ball possession, which had a small negative within-team effect (1.2 extra losses; ±1.0) but a small positive between-team effect (1.7 extra wins; ±1.4). Game location showed a small positive within-team effect (1.9 extra wins; ±0.9). In analyses of nine combinations of team and opposition end-of-season rank (classified as high, medium, low), almost all between-team effects were unclear, while within-team effects varied depending on the strength of team and opposition. Some of these findings will be useful to coaches and performance analysts when planning training sessions and match tactics.
NASA Astrophysics Data System (ADS)
Furbo, S.
1980-12-01
The extra water principle, a heat of fusion storage method, is described. The extra water principle uses an inorganic, incongruently melting salt hydrate as a reliable and stable storage medium in an inexpensive way. Different heat storages using the extra water principle are described. The advantages of using a heat fusion storage unit based on Na2S2O(3).5H2O and the extra water principle instead of a traditional hot water tank in small solar heating systems for domestic hot water supply are shown. In small solar heating systems the heat fusion storage supplies all the wanted hot water in the summer during longer periods than an ordinary hot water storage. It is concluded that the heat of fusion storage is favourable in domestic hot water supply systems with an auxiliary energy source which during the summer have a large energy consumption compared with the energy demands for the hot water supply.
Xing, Yawei; Yang, Junwen; Lian, Guanghui; Chen, Shuijiao; Chen, Linlin; Li, Fujun
2017-01-01
Abstract Rationale: Chronic active Epstein–Barr virus infection (CAEBV) associated with hemophagocytic syndrome (HPS) and extra-nodal natural killer (NK)/T-cell lymphoma (ENKL) is a rare life-threatening disorder. This disease is easily misdiagnosed because of its varied presentations. Patient concerns: An 18-year-old girl was admitted to our hospital with a history of edema in the lower limbs and intermittent fever lasting for more than 1 month. At admission, she had severe liver injury of unknown etiology. Laboratory test results revealed pancytopenia, hyperferritinemia, hypertriglyceridemia, and hypofibrinogenemia. Results of serologic tests for EBV were positive. Results of a skin biopsy indicated EBV-positive NK/T-cell lymphoma, and bone marrow aspiration revealed focal hemophagocytosis and atypical lymphoid cells. Diagnosis: On the basis of these findings, we diagnosed the case as extra-nodal NK/T-cell lymphoma-associated HPS (natural killer/T-cell lymphoma-associated hemophagocytic syndrome), which is commonly induced by CAEBV. Interventions: Treatment consisted of general management of hepatitis, supplemented with albumin and empirical antibiotic therapy. Outcomes: The patient died from massive gastrointestinal hemorrhage a week after she was discharged from the hospital. Lessons: ENKL and HPS present with varied features and are generally fatal; therefore, clinicians should proceed with caution in suspected cases. HPS should be considered when the patient presents with fever, hepatosplenomegaly, pancytopenia, and liver failure. When HPS is suspected, clinicians should determine the underlying cause, such as severe infection, including infection with viruses such as EBV; genetic predisposition; or underlying malignancies, especially lymphoma because of its strong association with HPS. PMID:28489771
... Down syndrome is a condition in which a person has an extra chromosome. What is Down Syndrome? Down syndrome is a condition in which a person has an extra chromosome. Chromosomes are small “packages” ...
Fiorino, Sirio; Bacchi-Reggiani, Letizia; de Biase, Dario; Fornelli, Adele; Masetti, Michele; Tura, Andrea; Grizzi, Fabio; Zanello, Matteo; Mastrangelo, Laura; Lombardi, Raffaele; Acquaviva, Giorgia; di Tommaso, Luca; Bondi, Arrigo; Visani, Michela; Sabbatani, Sergio; Pontoriero, Laura; Fabbri, Carlo; Cuppini, Andrea; Pession, Annalisa; Jovine, Elio
2015-01-01
AIM: To summarize the current knowledge about the potential relationship between hepatitis C virus (HCV) infection and the risk of several extra-liver cancers. METHODS: We performed a systematic review of the literature, according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) Statement. We extracted the pertinent articles, published in MEDLINE and the Cochrane Library, using the following search terms: neoplasm/cancer/malignancy/tumor/carcinoma/adeno-carcinoma and non-Hodgkin lymphomas, kidney/renal-, cholangio-, pancreatic-, thyroid-, breast-,oral-, skin-, prostate-, lung-, colon-, stomach-, haematologic. Case series, case-series with control-group, case-control, cohort-studies as well as meta-analyses, written in English were collected. Some of the main characteristics of retrieved trials, which were designed to investigate the prevalence of HCV infection in each type of the above-mentioned human malignancies were summarised. A main table was defined and included a short description in the text for each of these tumours, whether at least five studies about a specific neoplasm, meeting inclusion criteria, were available in literature. According to these criteria, we created the following sections and the corresponding tables and we indicated the number of included or excluded articles, as well as of meta-analyses and reviews: (1) HCV and haematopoietic malignancies; (2) HCV and cholangiocarcinoma; (3) HCV and pancreatic cancer; (4) HCV and breast cancer; (5) HCV and kidney cancer; (6) HCV and skin or oral cancer; and (7) HCV and thyroid cancer. RESULTS: According to available data, a clear correlation between regions of HCV prevalence and risk of extra-liver cancers has emerged only for a very small group of types and histological subtypes of malignancies. In particular, HCV infection has been associated with: (1) a higher incidence of some B-cell Non-Hodgkin-Lymphoma types, in countries, where an elevated prevalence of this pathogen is detectable, accounting to a percentage of about 10%; (2) an increased risk of intra-hepatic cholangiocarcinoma; and (3) a correlation between HCV prevalence and pancreatic cancer (PAC) incidence. CONCLUSION: To date no definitive conclusions may be obtained from the analysis of relationship between HCV and extra-hepatic cancers. Further studies, recruiting an adequate number of patients are required to confirm or deny this association. PMID:26668515
Inhomogeneous compact extra dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronnikov, K.A.; Budaev, R.I.; Grobov, A.V.
We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure fmore » ( R ) gravity.« less
Sanchez, A; Trappier, S G; Mahy, B W; Peters, C J; Nichol, S T
1996-01-01
In late 1994 and early 1995, Ebola (EBO) virus dramatically reemerged in Africa, causing human disease in the Ivory Coast and Zaire. Analysis of the entire glycoprotein genes of these viruses and those of other EBO virus subtypes has shown that the virion glycoprotein (130 kDa) is encoded in two reading frames, which are linked by transcriptional editing. This editing results in the addition of an extra nontemplated adenosine within a run of seven adenosines near the middle of the coding region. The primary gene product is a smaller (50-70 kDa), nonstructural, secreted glycoprotein, which is produced in large amounts and has an unknown function. Phylogenetic analysis indicates that EBO virus subtypes are genetically diverse and that the recent Ivory Coast isolate represents a new (fourth) subtype of EBO virus. In contrast, the EBO virus isolate from the 1995 outbreak in Kikwit, Zaire, is virtually identical to the virus that caused a similar epidemic in Yambuku, Zaire, almost 20 years earlier. This genetic stability may indicate that EBO viruses have coevolved with their natural reservoirs and do not change appreciably in the wild. Images Fig. 2 Fig. 3 PMID:8622982
Bingham, John; Payne, Jean; Harper, Jennifer; Frazer, Leah; Eastwood, Sarah; Wilson, Susanne; Lowther, Sue; Lunt, Ross; Warner, Simone; Carr, Mary; Hall, Roy A; Durr, Peter A
2014-06-01
West Nile virus (WNV; family Flaviviridae; genus Flavivirus) group members are an important cause of viral meningoencephalitis in some areas of the world. They exhibit marked variation in pathogenicity, with some viral lineages (such as those from North America) causing high prevalence of severe neurological disease, whilst others (such as Australian Kunjin virus) rarely cause disease. The aim of this study was to characterize WNV disease in a mouse model and to elucidate the pathogenetic features that distinguish disease variation. Tenfold dilutions of five WNV strains (New York 1999, MRM16 and three horse isolates of WNV-Kunjin: Boort and two isolates from the 2011 Australian outbreak) were inoculated into mice by the intraperitoneal route. All isolates induced meningoencephalitis in different proportions of infected mice. WNVNY99 was the most pathogenic, the three horse isolates were of intermediate pathogenicity and WNVKUNV-MRM16 was the least, causing mostly asymptomatic disease with seroconversion. Infectivity, but not pathogenicity, was related to challenge dose. Using cluster analysis of the recorded clinical signs, histopathological lesions and antigen distribution scores, the cases could be classified into groups corresponding to disease severity. Metrics that were important in determining pathotype included neurological signs (paralysis and seizures), meningoencephalitis, brain antigen scores and replication in extra-neural tissues. Whereas all mice infected with WNVNY99 had extra-neural antigen, those infected with the WNV-Kunjin viruses only occasionally had antigen outside the nervous system. We conclude that the mouse model could be a useful tool for the assessment of pathotype for WNVs. © 2014 CSIRO.
Cho, Ki-hyun; Kim, Jeongmi; Yoo, Hyun-ah; Kim, Dae-hee; Park, Seung-yong; Song, Chang-seon; Choi, In-soo; Lee, Joong-bok
2014-12-01
Simple methods for measuring the levels of serum antibody against canine distemper virus (CDV) would assist in the effective vaccination of dogs. To develop an enzyme-linked immunosorbent assay (ELISA) specific for CDV, we expressed hydrophilic extra-viral domain (HEVD) protein of the A75/17-CDV H gene in a pET 28a plasmid-based Escherichia (E.) coli vector system. Expression was confirmed by dot and Western blotting. We proposed that detection of E. coli-expressed H protein might be conformation- dependent because intensities of the reactions observed with these two methods varied. The H gene HEVD protein was further purified and used as an antigen for an ELISA. Samples from dogs with undetectable to high anti-CDV antibody titers were analyzed using this HEVD-specific ELISA and a commercial CDV antibody detection kit (ImmunoComb). Levels of HEVD antigenicity measured with the assays and immunochromatography correlated. These data indicated that the HEDV protein may be used as antigen to develop techniques for detecting antibodies against CDV.
... Hodgkin lymphoma Lung cancer - non-small cell Lung cancer - small cell Mastectomy Patient Instructions Drinking water safely during cancer treatment Dry mouth during cancer treatment Eating extra ...
Probing large extra dimensions with IceCube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmaili, Arman; Peres, O.L.G.; Tabrizi, Zahra, E-mail: arman@ipm.ir, E-mail: orlando@ifi.unicamp.br, E-mail: tabrizi.physics@ipm.ir
2014-12-01
In models with Large Extra Dimensions the smallness of neutrino masses can be naturally explained by introducing gauge singlet fermions which propagate in the bulk. The Kaluza-Klein modes of these fermions appear as towers of sterile neutrino states on the brane. We study the phenomenological consequences of this picture for the high energy atmospheric neutrinos. For this purpose we construct a detailed equivalence between a model with large extra dimensions and a (3+n) scenario consisting of three active and n extra sterile neutrino states, which provides a clear intuitive understanding of Kaluza-Klein modes. Finally, we analyze the collected data ofmore » high energy atmospheric neutrinos by IceCube experiment and obtain bounds on the radius of extra dimensions.« less
Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway
Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.
2015-01-01
ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can selectively activate IRF3 for the purpose of identifying drug-like molecules that can be developed for the treatment of viral infections. Here, we report the discovery of a hydroxyquinoline family of small molecules that can activate IRF3 to promote cellular antiviral responses. These molecules can prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses, including West Nile virus, dengue virus, hepatitis C virus, influenza A virus, respiratory syncytial virus, Nipah virus, Lassa virus, and Ebola virus. Our study thus identifies a class of small molecules with a novel mechanism to enhance host immune responses for antiviral activity against a variety of RNA viruses that pose a significant health care burden and/or that are known to cause infections with high case fatality rates. PMID:26676770
Polio programme: let us declare victory and move on.
Vashisht, Neetu; Puliyel, Jacob
2012-01-01
It was hoped that following polio eradication, immunisation could be stopped. However the synthesis of polio virus in 2002, made eradication impossible. It is argued that getting poor countries to expend their scarce resources on an impossible dream over the last 10 years was unethical. Furthermore, while India has been polio-free for a year, there has been a huge increase in non-polio acute flaccid paralysis (NPAFP). In 2011, there were an extra 47,500 new cases of NPAFP. Clinically indistinguishable from polio paralysis but twice as deadly, the incidence of NPAFP was directly proportional to doses of oral polio received. Though this data was collected within the polio surveillance system, it was not investigated. The principle of primum-non-nocere was violated. The authors suggest that the huge bill of US$ 8 billion spent on the programme, is a small sum to pay if the world learns to be wary of such vertical programmes in the future.
USDA-ARS?s Scientific Manuscript database
Small Ruminant Lentiviruses (SRLV), which include the Maedi-Visna virus, also known as ovine progressive pneumonia virus (OPPV), and caprine arthritis and encephalitis virus (CAEV), are of global economic importance to sheep and goat producers, respectively. These viruses belong to the genus Lentivi...
Hearn, Henry J.; Seliokas, Zenonas V.; Andersen, Arthur A.
1969-01-01
A minority of stable large-plaque virus increased proportionally in stored unstable attenuated (9t) Venezuelan equine encephalomyelitis virus populations. L-cell-grown progeny (9t2) of stored 9t showed large amounts of large-plaque virus and increased virulence. Small-plaque virus inhibited large-plaque virus but not the reverse. Serial passage of small-plaque virus from 9t2 yielded a strain (20t) that was more attenuated than 9t. PMID:5823235
RUNX1T1 Amplification Induces Small Cell Cancer
and it is believed that the second, more differentiated component has transformed into a small cell cancer. Similarly, extra-pulmonary small cell...tumors have primary tumors that arise outside the lung, such as in the prostate or GI tract, and transform into a small cell cancer. So in reality the
Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A
2015-02-27
Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy. Copyright © 2015, American Association for the Advancement of Science.
Heritability of female extra-pair paternity rate in song sparrows (Melospiza melodia)
Reid, Jane M.; Arcese, Peter; Sardell, Rebecca J.; Keller, Lukas F.
2011-01-01
The forces driving the evolution of extra-pair reproduction in socially monogamous animals remain widely debated and unresolved. One key hypothesis is that female extra-pair reproduction evolves through indirect genetic benefits, reflecting increased additive genetic value of extra-pair offspring. Such evolution requires that a female's propensity to produce offspring that are sired by an extra-pair male is heritable. However, additive genetic variance and heritability in female extra-pair paternity (EPP) rate have not been quantified, precluding accurate estimation of the force of indirect selection. Sixteen years of comprehensive paternity and pedigree data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) showed significant additive genetic variance and heritability in the proportion of a female's offspring that was sired by an extra-pair male, constituting major components of the genetic architecture required for extra-pair reproduction to evolve through indirect additive genetic benefits. However, estimated heritabilities were moderately small (0.12 and 0.18 on the observed and underlying latent scales, respectively). The force of selection on extra-pair reproduction through indirect additive genetic benefits may consequently be relatively weak. However, the additive genetic variance and non-zero heritability observed in female EPP rate allow for multiple further genetic mechanisms to drive and constrain mating system evolution. PMID:20980302
Replication of Syngrapha falcifera Multiple-Nuclear Polyhedrosis Virus-D in Different Insect Cells
NASA Astrophysics Data System (ADS)
Khalid Nessr Alhag, Sadeq; Xin, Peng Jian
Six insect cell lines were tested for susceptibility to Syngrapha falcifera multiple nucleocapsid nucleopolyhedrovirus-D (SfaMNPV-D) infection by use of a typical endpoint assay procedure. Cell lines from Trichoplusia ni (Tn5B1-4), (L105-clone), Spodoptera litura (SL-ZSU-1), Spodoptera frugiperda (IPLB-SF-21), Pieris rapaeb (Pr-E-HNU9) and Helicoverpa zea (BCIRL-HZ-AM1) in 96-well tissue culture plates were infected with dilutions of extra cellular virus suspensions of (SfaMNPV-D). Each cell/virus combination was incubated at temperatures 27°C and wells were scored for positive infection at 2 to 4 day intervals. The resulting data were analyzed by Reed and Muench method, providing virus titers for each combination of virus, cell line. The results were categorized by accuracy and by rapidity of maximum titer. Virus titer of Tn5B-4 was higher than other cell lines TCID50 8.7x108, the lowest level detected in infected was in (Pr-E-HNU9) cells TCID50 2.4x108. No Virions or polyhedral inclusion bodies were detected in infected SL-ZSU-1 cells.
De Vilmorin, Philippe; Slocum, Ashley; Jaber, Tareq; Schaefer, Oliver; Ruppach, Horst; Genest, Paul
2015-01-01
This article describes a four virus panel validation of EMD Millipore's (Bedford, MA) small virus-retentive filter, Viresolve® Pro, using TrueSpike(TM) viruses for a Biogen Idec process intermediate. The study was performed at Charles River Labs in King of Prussia, PA. Greater than 900 L/m(2) filter throughput was achieved with the approximately 8 g/L monoclonal antibody feed. No viruses were detected in any filtrate samples. All virus log reduction values were between ≥3.66 and ≥5.60. The use of TrueSpike(TM) at Charles River Labs allowed Biogen Idec to achieve a more representative scaled-down model and potentially reduce the cost of its virus filtration step and the overall cost of goods. The body of data presented here is an example of the benefits of following the guidance from the PDA Technical Report 47, The Preparation of Virus Spikes Used for Viral Clearance Studies. The safety of biopharmaceuticals is assured through the use of multiple steps in the purification process that are capable of virus clearance, including filtration with virus-retentive filters. The amount of virus present at the downstream stages in the process is expected to be and is typically low. The viral clearance capability of the filtration step is assessed in a validation study. The study utilizes a small version of the larger manufacturing size filter, and a large, known amount of virus is added to the feed prior to filtration. Viral assay before and after filtration allows the virus log reduction value to be quantified. The representativeness of the small-scale model is supported by comparing large-scale filter performance to small-scale filter performance. The large-scale and small-scale filtration runs are performed using the same operating conditions. If the filter performance at both scales is comparable, it supports the applicability of the virus log reduction value obtained with the small-scale filter to the large-scale manufacturing process. However, the virus preparation used to spike the feed material often contains impurities that contribute adversely to virus filter performance in the small-scale model. The added impurities from the virus spike, which are not present at manufacturing scale, compromise the scale-down model and put into question the direct applicability of the virus clearance results. Another consequence of decreased filter performance due to virus spike impurities is the unnecessary over-sizing of the manufacturing system to match the low filter capacity observed in the scale-down model. This article describes how improvements in mammalian virus spike purity ensure the validity of the log reduction value obtained with the scale-down model and support economically optimized filter usage. © PDA, Inc. 2015.
Hamilton, Sara B; Daniels, Deirdre E; Sosna, William A; Jeppesen, Eric R; Owells, Julie M; Halpern, Micah D; McCurdy, Kimberly S; Rayner, Jonathan O; Lednicky, John A
2010-01-28
Embryonated chicken eggs (ECE) are sometimes used for the primary isolation or passage of influenza viruses, other viruses, and certain bacteria. For small-scale experiments with pathogens that must be studied in biosafety level three (BSL3) facilities, inoculated ECE are sometimes manipulated and maintained in small egg incubators within a biosafety cabinet (BSC). To simplify the clean up and decontamination of an egg incubator in case of egg breakage, we explored whether ethylene breather bags could be used to encase ECE inoculated with pathogens. This concept was tested by determining embryo survival and examining virus yields in bagged ECE. Virus yields acceptable for many applications were attained when influenza-, alpha-, flavi-, canine distemper-, and mousepox viruses were propagated in ECE sealed within ethylene breather bags. For many small-scale applications, ethylene breather bags can be used to encase ECE inoculated with various viruses.
Modeling the Effects of Morphine on Simian Immunodeficiency Virus Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaidya, Naveen K.; Ribeiro, Ruy M.; Perelson, Alan S.
Complications of HIV-1 infection in individuals who utilize drugs of abuse is a significant problem, because these drugs have been associated with higher virus replication and accelerated disease progression as well as severe neuropathogenesis. To gain further insight it is important to quantify the effects of drugs of abuse on HIV-1 infection dynamics. Here, we develop a mathematical model that incorporates experimentally observed effects of morphine on inducing HIV-1 co-receptor expression. For comparison we also considered viral dynamic models with cytolytic or noncytolytic effector cell responses. Based on the small sample size Akaike information criterion, these models were inferior tomore » the new model based on changes in co-receptor expression. The model with morphine affecting co-receptor expression agrees well with the experimental data from simian immunodeficiency virus infections in morphine-addicted macaques. Our results show that morphine promotes a target cell subpopulation switch from a lower level of susceptibility to a state that is about 2-orders of magnitude higher in susceptibility to SIV infection. As a result, the proportion of target cells with higher susceptibility remains extremely high in morphine conditioning. Such a morphine-induced population switch not only has adverse effects on the replication rate, but also results in a higher steady state viral load and larger CD4 count drops. Moreover, morphine conditioning may pose extra obstacles to controlling viral load during antiretroviral therapy, such as pre-exposure prophylaxis and post infection treatments. In conclusion, this study provides, for the first time, a viral dynamics model, viral dynamics parameters, and related analytical and simulation results for SIV dynamics under drugs of abuse.« less
Modeling the Effects of Morphine on Simian Immunodeficiency Virus Dynamics
Vaidya, Naveen K.; Ribeiro, Ruy M.; Perelson, Alan S.; ...
2016-09-26
Complications of HIV-1 infection in individuals who utilize drugs of abuse is a significant problem, because these drugs have been associated with higher virus replication and accelerated disease progression as well as severe neuropathogenesis. To gain further insight it is important to quantify the effects of drugs of abuse on HIV-1 infection dynamics. Here, we develop a mathematical model that incorporates experimentally observed effects of morphine on inducing HIV-1 co-receptor expression. For comparison we also considered viral dynamic models with cytolytic or noncytolytic effector cell responses. Based on the small sample size Akaike information criterion, these models were inferior tomore » the new model based on changes in co-receptor expression. The model with morphine affecting co-receptor expression agrees well with the experimental data from simian immunodeficiency virus infections in morphine-addicted macaques. Our results show that morphine promotes a target cell subpopulation switch from a lower level of susceptibility to a state that is about 2-orders of magnitude higher in susceptibility to SIV infection. As a result, the proportion of target cells with higher susceptibility remains extremely high in morphine conditioning. Such a morphine-induced population switch not only has adverse effects on the replication rate, but also results in a higher steady state viral load and larger CD4 count drops. Moreover, morphine conditioning may pose extra obstacles to controlling viral load during antiretroviral therapy, such as pre-exposure prophylaxis and post infection treatments. In conclusion, this study provides, for the first time, a viral dynamics model, viral dynamics parameters, and related analytical and simulation results for SIV dynamics under drugs of abuse.« less
Elshabrawy, Hatem A.; Fan, Jilao; Haddad, Christine S.; Ratia, Kiira; Broder, Christopher C.; Caffrey, Michael
2014-01-01
ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. IMPORTANCE We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug. PMID:24501399
Elshabrawy, Hatem A; Fan, Jilao; Haddad, Christine S; Ratia, Kiira; Broder, Christopher C; Caffrey, Michael; Prabhakar, Bellur S
2014-04-01
Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.
Clockwork graviton contributions to muon g -2
NASA Astrophysics Data System (ADS)
Hong, Deog Ki; Kim, Du Hwan; Shin, Chang Sub
2018-02-01
The clockwork mechanism for gravity introduces a tower of massive graviton modes, clockwork gravitons, with a very compressed mass spectrum, whose interaction strengths are much stronger than those of massless gravitons. In this work, we compute the lowest order contributions of the clockwork gravitons to the anomalous magnetic moment, g -2 , of muon in the context of an extra dimensional model with a five-dimensional Planck mass, M5. We find that the total contributions are rather insensitive to the detailed model parameters and are determined mostly by the value of M5. To account for the current muon g -2 anomaly, M5 should be around 0.2 TeV, and the size of the extra dimension has to be quite large, l5≳10-7 m . For M5≳1 TeV , the clockwork graviton contributions are too small to explain the current muon g -2 anomaly. We also compare the clockwork graviton contributions with other extra dimensional models such as Randall-Sundrum models or large extra dimensional models. We find that the leading contributions in the small curvature limit are universal, but the cutoff-independent subleading contributions vary for different background geometries and the clockwork geometry gives the smallest subleading contributions.
Survival of porcine reproductive and respiratory syndrome virus in houseflies.
Otake, Satoshi; Dee, Scott A; Moon, Roger D; Rossow, Kurt D; Trincado, Carlos; Farnham, MacDonald; Pijoan, Carlos
2003-07-01
The objectives of the study were to determine the duration of porcine reproductive and respiratory syndrome virus (PRRSV) survival in houseflies (Musca domestica Linnaeus) following feeding on an infected pig, and to determine whether the virus was present on the exterior surface or within the internal viscera of the fly. A total of 210 laboratory-colonized houseflies were allowed to feed to repletion on a pig, experimentally infected with PRRSV on day 7 postinoculation, and then maintained alive under laboratory conditions (27 degrees C). Two subsets (A and B) of 30 flies were collected at each of the following sampling points; 0, 6, and 12 hours post feeding (pf). Subset A contained an extra group of 30 flies collected at 24 hours pf due to the availability of extra flies. Flies in subset A were processed as whole fly homogenates, while the exterior surface washes and digestive organs were collected from flies in subset B. Whole fly homogenates, collected at 0, 6, and 12 hours pf, were positive by both polymerase chain reaction (PCR) and swine bioassay. Digestive organs, collected at 0 and 12 hours pf, were positive by PCR and swine bioassay. The PRRSV RNA was detected by PCR from the exterior surface wash of subset B flies collected at 0, 6, and 12 hours pf; however, only the subset collected at 0 hour pf was swine bioassay-positive. This study indicates that infectious PRRSV can survive within the intestinal tract of houseflies for up to 12 hours following feeding on an infected pig, but only for a short period on the exterior surface of the flies.
Experimental encephalomyocarditis virus infection in small laboratory rodents.
Doi, K
2011-01-01
Encephalomyocarditis virus (EMCV) is a cardiovirus that belongs to the family Picornaviridae. EMCV is an important cause of acute myocarditis in piglets and of fetal death or abortion in pregnant sows. Small rodents, especially rats, have been suspected to be reservoir hosts or carriers. This virus also induces type 1 diabetes mellitus, encephalomyelitis, myocarditis, orchitis and/or sialodacryoadenitis in small laboratory rodents. This paper reviews the pathology and pathogenesis of experimental infection with EMCV in small laboratory rodents. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zhang, Jiayao; Zhao, Shuqi; Zheng, Hong; Gao, Ge; Wei, Liping; Li, Yi
2011-01-01
RNA silencing, mediated by small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs), is a potent antiviral or antibacterial mechanism, besides regulating normal cellular gene expression critical for development and physiology. To gain insights into host small RNA metabolism under infections by different viruses, we used Solexa/Illumina deep sequencing to characterize the small RNA profiles of rice plants infected by two distinct viruses, Rice dwarf virus (RDV, dsRNA virus) and Rice stripe virus (RSV, a negative sense and ambisense RNA virus), respectively, as compared with those from non-infected plants. Our analyses showed that RSV infection enhanced the accumulation of some rice miRNA*s, but not their corresponding miRNAs, as well as accumulation of phased siRNAs from a particular precursor. Furthermore, RSV infection also induced the expression of novel miRNAs in a phased pattern from several conserved miRNA precursors. In comparison, no such changes in host small RNA expression was observed in RDV-infected rice plants. Significantly RSV infection elevated the expression levels of selective OsDCLs and OsAGOs, whereas RDV infection only affected the expression of certain OsRDRs. Our results provide a comparative analysis, via deep sequencing, of changes in the small RNA profiles and in the genes of RNA silencing machinery induced by different viruses in a natural and economically important crop host plant. They uncover new mechanisms and complexity of virus-host interactions that may have important implications for further studies on the evolution of cellular small RNA biogenesis that impact pathogen infection, pathogenesis, as well as organismal development. PMID:21901091
Effect of clearance on cartilage tribology in hip hemi-arthroplasty.
Lizhang, Jia; Taylor, Simon D; Jin, Zhongmin; Fisher, John; Williams, Sophie
2013-12-01
Hemi-arthroplasty of the hip (an artificial femoral head articulating against the natural acetabulum) is used to treat fractured necks of femur; however, there is evidence that articulation causes erosion of the cartilage, resulting in pain for the patient. Parameters that may influence this cartilage erosion include head material and roughness, clearance between the head and acetabulum and activity levels of the patient. This study has assessed the effect of clearance of hemi-arthroplasty articulations on the contact stress, friction and cartilage deformation in an in vitro tribological simulation of the hemi-arthroplasty joint that applied dynamic loads and motion. It has been demonstrated that peak contact stress increased from 5.6 to 10.6 MPa as radial clearance increased from small (<0.6 mm) to extra-large (>1.8 mm). In all samples, friction factor increased with time and was significantly less with extra-large clearances compared to small (<0.6 mm), medium (0.6-1.2 mm) and large (1.2-1.8 mm) clearances. The cartilage deformation observed was significantly greater in acetabulum samples paired to give small or extra-large clearances compared to those with medium or large clearances.
Immortalized sheep microglia are permissive to a diverse range of ruminant viruses.
USDA-ARS?s Scientific Manuscript database
Small ruminants are important agricultural species worldwide; however, diagnostics and research of small ruminant infectious diseases typically rely on cattle-based reagents. One example of this is the lack of small ruminant-derived cell lines to diagnose and study small ruminant viruses. Furtherm...
Bi, Yaqi; Tugume, Arthur K.; Valkonen, Jari P. T.
2012-01-01
Background Arctium species (Asteraceae) are distributed worldwide and are used as food and rich sources of secondary metabolites for the pharmaceutical industry, e.g., against avian influenza virus. RNA silencing is an antiviral defense mechanism that detects and destroys virus-derived double-stranded RNA, resulting in accumulation of virus-derived small RNAs (21–24 nucleotides) that can be used for generic detection of viruses by small-RNA deep sequencing (SRDS). Methodology/Principal Findings SRDS was used to detect viruses in the biennial wild plant species Arctium tomentosum (woolly burdock; family Asteraceae) displaying virus-like symptoms of vein yellowing and leaf mosaic in southern Finland. Assembly of the small-RNA reads resulted in contigs homologous to Alstroemeria virus X (AlsVX), a positive/single-stranded RNA virus of genus Potexvirus (family Alphaflexiviridae), or related to negative/single-stranded RNA viruses of the genus Emaravirus. The coat protein gene of AlsVX was 81% and 89% identical to the two AlsVX isolates from Japan and Norway, respectively. The deduced, partial nucleocapsid protein amino acid sequence of the emara-like virus was only 78% or less identical to reported emaraviruses and showed no variability among the virus isolates characterized. This virus—tentatively named as Woolly burdock yellow vein virus—was exclusively associated with yellow vein and leaf mosaic symptoms in woolly burdock, whereas AlsVX was detected in only one of the 52 plants tested. Conclusions/Significance These results provide novel information about natural virus infections in Acrtium species and reveal woolly burdock as the first natural host of AlsVX besides Alstroemeria (family Alstroemeriaceae). Results also revealed a new virus related to the recently emerged Emaravirus genus and demonstrated applicability of SRDS to detect negative-strand RNA viruses. SRDS potentiates virus surveys of wild plants, a research area underrepresented in plant virology, and helps reveal natural reservoirs of viruses that cause yield losses in cultivated plants. PMID:22912734
Redinbaugh, M G; Hogenhout, S A
2005-01-01
This chapter provides an overview of plant rhabdovirus structure and taxonomy, genome structure, protein function, and insect and plant infection. It is focused on recent research and unique aspects of rhabdovirus biology. Plant rhabdoviruses are transmitted by aphid, leafhopper or planthopper vectors, and the viruses replicate in both their insect and plant hosts. The two plant rhabdovirus genera, Nucleorhabdovirus and Cytorhabdovirus, can be distinguished on the basis of their intracellular site of morphogenesis in plant cells. All plant rhabdoviruses carry analogs of the five core genes: the nucleocapsid (N), phosphoprotein (P), matrix (M), glycoprotein (G) and large or polymerase (L). However, compared to vesiculoviruses that are composed of the five core genes, all plant rhabdoviruses encode more than these five genes, at least one of which is inserted between the P and M genes in the rhabdoviral genome. Interestingly, while these extra genes are not similar among plant rhabdoviruses, two encode proteins with similarity to the 30K superfamily of plant virus movement proteins. Analysis of nucleorhabdoviral protein sequences revealed nuclear localization signals for the N, P, M and L proteins, consistent with virus replication and morphogenesis of these viruses in the nucleus. Plant and insect factors that limit virus infection and transmission are discussed.
Anisotropic modulus stabilisation: strings at LHC scales with micron-sized extra dimensions
NASA Astrophysics Data System (ADS)
Cicoli, M.; Burgess, C. P.; Quevedo, F.
2011-10-01
We construct flux-stabilised Type IIB string compactifications whose extra dimensions have very different sizes, and use these to describe several types of vacua with a TeV string scale. Because we can access regimes where two dimensions are hierarchically larger than the other four, we find examples where two dimensions are micron-sized while the other four are at the weak scale in addition to more standard examples with all six extra dimensions equally large. Besides providing ultraviolet completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several generic ways: ( i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); ( ii) small cycles in the more complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger; ( iii) a rich spectrum of string and KK states at TeV scales; and ( iv) an equally rich spectrum of very light moduli exist having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved in these models because the extra-dimensional volume is naturally stabilised at exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3 or T 4-fibration over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are likely to be present on K3 or T 4-fibered Calabi-Yau compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and briefly discuss some of their astrophysical, cosmological and phenomenological implications.
USDA-ARS?s Scientific Manuscript database
Small ruminant lentiviruses include members that infect sheep (ovine lentivirus [OvLV]; also known as ovine progressive pneumonia virus/maedi-visna virus) and goats (caprine arthritis encephalitis virus [CAEV]). Breed differences in seroprevalence and proviral concentration of OvLV had suggested a s...
Czotter, Nikoletta; Molnar, Janos; Szabó, Emese; Demian, Emese; Kontra, Levente; Baksa, Ivett; Szittya, Gyorgy; Kocsis, Laszlo; Deak, Tamas; Bisztray, Gyorgy; Tusnady, Gabor E.; Burgyan, Jozsef; Varallyay, Eva
2018-01-01
As virus diseases cannot be controlled by traditional plant protection methods, the risk of their spread have to be minimized on vegetatively propagated plants, such as grapevine. Metagenomic approaches used for virus diagnostics offer a unique opportunity to reveal the presence of all viral pathogens in the investigated plant, which is why their application can reduce the risk of using infected material for a new plantation. Here we used a special branch, deep sequencing of virus-derived small RNAs, of this high-throughput method for virus diagnostics, and determined viromes of vineyards in Hungary. With NGS of virus-derived small RNAs we could detect not only the viruses tested routinely, but also new ones, which had never been described in Hungary before. Virus presence did not correlate with the age of the plantation, moreover phylogenetic analysis of the identified virus isolates suggests that infections are mostly caused by the use of infected propagating material. Our results, validated by other molecular methods, raised further questions to be answered before this method can be introduced as a routine, reliable test for grapevine virus diagnostics. PMID:25741336
Discovery and small RNA profile of Pecan mosaic-associated virus, a novel potyvirus of pecan trees.
Su, Xiu; Fu, Shuai; Qian, Yajuan; Zhang, Liqin; Xu, Yi; Zhou, Xueping
2016-05-26
A novel potyvirus was discovered in pecan (Carya illinoensis) showing leaf mosaic symptom through the use of deep sequencing of small RNAs. The complete genome of this virus was determined to comprise of 9,310 nucleotides (nt), and shared 24.0% to 58.9% nucleotide similarities with that of other Potyviridae viruses. The genome was deduced to encode a single open reading frame (polyprotein) on the plus strand. Phylogenetic analysis based on the whole genome sequence and coat protein amino acid sequence showed that this virus is most closely related to Lettuce mosaic virus. Using electron microscopy, the typical Potyvirus filamentous particles were identified in infected pecan leaves with mosaic symptoms. Our results clearly show that this virus is a new member of the genus Potyvirus in the family Potyviridae. The virus is tentatively named Pecan mosaic-associated virus (PMaV). Additionally, profiling of the PMaV-derived small RNA (PMaV-sRNA) showed that the most abundant PMaV-sRNAs were 21-nt in length. There are several hotspots for small RNA production along the PMaV genome; two 21-nt PMaV-sRNAs starting at 811 nt and 610 nt of the minus-strand genome were highly repeated.
Discovery and small RNA profile of Pecan mosaic-associated virus, a novel potyvirus of pecan trees
Su, Xiu; Fu, Shuai; Qian, Yajuan; Zhang, Liqin; Xu, Yi; Zhou, Xueping
2016-01-01
A novel potyvirus was discovered in pecan (Carya illinoensis) showing leaf mosaic symptom through the use of deep sequencing of small RNAs. The complete genome of this virus was determined to comprise of 9,310 nucleotides (nt), and shared 24.0% to 58.9% nucleotide similarities with that of other Potyviridae viruses. The genome was deduced to encode a single open reading frame (polyprotein) on the plus strand. Phylogenetic analysis based on the whole genome sequence and coat protein amino acid sequence showed that this virus is most closely related to Lettuce mosaic virus. Using electron microscopy, the typical Potyvirus filamentous particles were identified in infected pecan leaves with mosaic symptoms. Our results clearly show that this virus is a new member of the genus Potyvirus in the family Potyviridae. The virus is tentatively named Pecan mosaic-associated virus (PMaV). Additionally, profiling of the PMaV-derived small RNA (PMaV-sRNA) showed that the most abundant PMaV-sRNAs were 21-nt in length. There are several hotspots for small RNA production along the PMaV genome; two 21-nt PMaV-sRNAs starting at 811 nt and 610 nt of the minus-strand genome were highly repeated. PMID:27226228
Extra-corporeal blood access, sensing, and radiation methods and apparatuses
NASA Technical Reports Server (NTRS)
Castle, Kent D. (Inventor)
1993-01-01
The described invention is related to extra-corporeal blood access and radiation methods and apparatuses and, in particular, to subjecting flowing blood to energy in variety of forms, including radiation, electromagnetic force fields or atomic particles. It is directed to methods and apparatuses for accessing flowing blood and for subjecting the blood to electrical conductive, electrostatic or electromagnetic fields or for radiating the blood with some type of radiation, e.g., radio waves, ultrasonic or audio waves, microwaves, IR rays, visible light, UV radiation, x-rays, alpha, beta or gamma rays. An apparatus is employed which includes one or more access ports or windows for radiating blood and/or for sensing/analyzing blood. This invention is useful for killing viruses and bacteria in blood, monitoring blood for medical purposes, genetic modification of blood, and analyzing and/or treating blood components.
[Herpes simplex virus infections, an update for the practitioner].
Meylan, Pascal
2011-04-27
The herpesviruses HSV-1 and -2 classically infect the oral and genital area respectively. They descend from a common ancestor but have evolved separately since several million years, getting each adapted to these areas. Thus, while both can infect either site, HSV-1 reactivates often orally, while HSV-2 does so in the genital area. The followings facts are stressed, because we think they are new, or worth attention regarding HSV epidemiology (plateauing of the HSV-2 epidemic in the US, growing share of HSV-1 as a genital herpes agent), clinical expression (extra-oral and extra-genital lesions, severity of gingivostomatitis), diagnosis (confusing herpes and zoster in the trigeminal and sacral areas) and treatment (relative worth of suppressive and episodic treatments of genital herpes, as well as shortening of these latter, and treatment of gingivostomatitis and herpes labialis).
A novel small animal model to study the replication of simian foamy virus in vivo.
Blochmann, Rico; Curths, Christoph; Coulibaly, Cheick; Cichutek, Klaus; Kurth, Reinhard; Norley, Stephen; Bannert, Norbert; Fiebig, Uwe
2014-01-05
Preclinical evaluation in a small animal model would help the development of gene therapies and vaccines based on foamy virus vectors. The establishment of persistent, non-pathogenic infection with the prototype foamy virus in mice and rabbits has been described previously. To extend this spectrum of available animal models, hamsters were inoculated with infectious cell supernatant or bioballistically with a foamy virus plasmid. In addition, a novel foamy virus from a rhesus macaque was isolated and characterised genetically. Hamsters and mice were infected with this new SFVmac isolate to evaluate whether hamsters are also susceptible to infection. Both hamsters and mice developed humoral responses to either virus subtype. Virus integration and replication in different animal tissues were analysed by PCR and co-cultivation. The results strongly indicate establishment of a persistent infection in hamsters. These studies provide a further small animal model for studying FV-based vectors in addition to the established models. © 2013 Elsevier Inc. All rights reserved.
Scott, Jaclyn C.; Brackney, Doug E.; Campbell, Corey L.; Bondu-Hawkins, Virginie; Hjelle, Brian; Ebel, Greg D.; Olson, Ken E.; Blair, Carol D.
2010-01-01
The exogenous RNA interference (RNAi) pathway is an important antiviral defense against arboviruses in mosquitoes, and virus-specific small interfering (si)RNAs are key components of this pathway. Understanding the biogenesis of siRNAs in mosquitoes could have important ramifications in using RNAi to control arbovirus transmission. Using deep sequencing technology, we characterized dengue virus type 2 (DENV2)-specific small RNAs produced during infection of Aedes aegypti mosquitoes and A. aegypti Aag2 cell cultures and compared them to those produced in the C6/36 Aedes albopictus cell line. We show that the size and mixed polarity of virus-specific small RNAs from DENV-infected A. aegypti cells indicate that they are products of Dicer-2 (Dcr2) cleavage of long dsRNA, whereas C6/36 cells generate DENV2-specific small RNAs that are longer and predominantly positive polarity, suggesting that they originate from a different small RNA pathway. Examination of virus-specific small RNAs after infection of the two mosquito cell lines with the insect-only flavivirus cell fusing agent virus (CFAV) corroborated these findings. An in vitro assay also showed that Aag2 A. aegypti cells are capable of siRNA production, while C6/36 A. albopictus cells exhibit inefficient Dcr2 cleavage of long dsRNA. Defective expression or function of Dcr2, the key initiator of the RNAi pathway, might explain the comparatively robust growth of arthropod-borne viruses in the C6/36 cell line, which has been used frequently as a surrogate for studying molecular interactions between arboviruses and cells of their mosquito hosts. PMID:21049014
Old foes, new understandings: nuclear entry of small non-enveloped DNA viruses.
Fay, Nikta; Panté, Nelly
2015-06-01
The nuclear import of viral genomes is an important step of the infectious cycle for viruses that replicate in the nucleus of their host cells. Although most viruses use the cellular nuclear import machinery or some components of this machinery, others have developed sophisticated ways to reach the nucleus. Some of these have been known for some time; however, recent studies have changed our understanding of how some non-enveloped DNA viruses access the nucleus. For example, parvoviruses enter the nucleus through small disruptions of the nuclear membranes and nuclear lamina, and adenovirus tugs at the nuclear pore complex, using kinesin-1, to disassemble their capsids and deliver viral proteins and genomes into the nucleus. Here we review recent findings of the nuclear import strategies of three small non-enveloped DNA viruses, including adenovirus, parvovirus, and the polyomavirus simian virus 40. Copyright © 2015 Elsevier B.V. All rights reserved.
Foo, Wen-Chi; Huang, Qin; Sebastian, Siby; Hutchinson, Charles B; Burchette, Jim; Wang, Endi
2010-12-01
A small fraction of patients with chronic lymphocytic leukemia/small lymphocytic lymphoma develop Epstein-Barr virus-positive B-cell lymphoproliferative disorders. These Epstein-Barr virus-B-cell lymphoproliferative disorders are thought to be related to immune suppression induced by fludarabine/other chemotherapeutic regimens. As in other immunodeficiency-associated lymphoproliferative disorders, these disorders demonstrate a heterogeneous histological spectrum that ranges from polymorphic to monomorphic to classical Hodgkin lymphoma-like lesions. We report a case of concurrent classical Hodgkin lymphoma and plasmablastic lymphoma in a patient with chronic lymphocytic leukemia/small lymphocytic lymphoma treated with fludarabine. Both classical Hodgkin lymphoma and plasmablastic lymphoma were positive for Epstein-Barr virus-encoded RNA, whereas classical Hodgkin lymphoma was also positive for Epstein-Barr virus- latent membrane protein 1, suggesting a different viral latency. Immunoglobulin gene rearrangement studies demonstrated distinct clones in the plasmablastic lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma. These findings suggest biclonal secondary lymphomas associated with iatrogenic immunodeficiency. Epstein-Barr virus-B-cell lymphoproliferative disorders in the setting of chronic lymphocytic leukemia/small lymphocytic lymphoma, in particular those arising after chemotherapy, should be separated from true Richter's transformation, and be categorized as (iatrogenic) immunodeficiency-associated lymphoproliferative disorder. Copyright © 2010 Elsevier Inc. All rights reserved.
Immortalized sheep microglial cells are permissive to a diverse range of ruminant viruses
USDA-ARS?s Scientific Manuscript database
Sheep and goats (small ruminants) are economically important livestock animals in many parts of the world. Infectious diseases, including many viral diseases, are significant problems to efficient production of small ruminants. Unfortunately, reagents tailored to small ruminant viruses are lacking ...
Large-Scale Screening and Identification of Novel Ebola Virus and Marburg Virus Entry Inhibitors.
Anantpadma, Manu; Kouznetsova, Jennifer; Wang, Hang; Huang, Ruili; Kolokoltsov, Andrey; Guha, Rajarshi; Lindstrom, Aaron R; Shtanko, Olena; Simeonov, Anton; Maloney, David J; Maury, Wendy; LaCount, Douglas J; Jadhav, Ajit; Davey, Robert A
2016-08-01
Filoviruses are highly infectious, and no FDA-approved drug therapy for filovirus infection is available. Most work to find a treatment has involved only a few strains of Ebola virus and testing of relatively small drug libraries or compounds that have shown efficacy against other virus types. Here we report the findings of a high-throughput screening of 319,855 small molecules from the Molecular Libraries Small Molecule Repository library for their activities against Marburg virus and Ebola virus. Nine of the most potent, novel compounds that blocked infection by both viruses were analyzed in detail for their mechanisms of action. The compounds inhibited known key steps in the Ebola virus infection mechanism by blocking either cell surface attachment, macropinocytosis-mediated uptake, or endosomal trafficking. To date, very few specific inhibitors of macropinocytosis have been reported. The 2 novel macropinocytosis inhibitors are more potent inhibitors of Ebola virus infection and less toxic than ethylisopropylamiloride, one commonly accepted macropinocytosis inhibitor. Each compound blocked infection of primary human macrophages, indicating their potential to be developed as new antifiloviral therapies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Survival of porcine reproductive and respiratory syndrome virus in houseflies
Otake, Satoshi; Dee, Scott A.; Moon, Roger D.; Rossow, Kurt D.; Trincado, Carlos; Farnham, MacDonald; Pijoan, Carlos
2003-01-01
The objectives of the study were to determine the duration of porcine reproductive and respiratory syndrome virus (PRRSV) survival in houseflies (Musca domestica Linnaeus) following feeding on an infected pig, and to determine whether the virus was present on the exterior surface or within the internal viscera of the fly. A total of 210 laboratory-colonized houseflies were allowed to feed to repletion on a pig, experimentally infected with PRRSV on day 7 postinoculation, and then maintained alive under laboratory conditions (27°C). Two subsets (A and B) of 30 flies were collected at each of the following sampling points; 0, 6, and 12 hours post feeding (pf). Subset A contained an extra group of 30 flies collected at 24 hours pf due to the availability of extra flies. Flies in subset A were processed as whole fly homogenates, while the exterior surface washes and digestive organs were collected from flies in subset B. Whole fly homogenates, collected at 0, 6, and 12 hours pf, were positive by both polymerase chain reaction (PCR) and swine bioassay. Digestive organs, collected at 0 and 12 hours pf, were positive by PCR and swine bioassay. The PRRSV RNA was detected by PCR from the exterior surface wash of subset B flies collected at 0, 6, and 12 hours pf; however, only the subset collected at 0 hour pf was swine bioassay-positive. This study indicates that infectious PRRSV can survive within the intestinal tract of houseflies for up to 12 hours following feeding on an infected pig, but only for a short period on the exterior surface of the flies. PMID:12889726
El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R
2017-02-01
Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.
Injuries to the colon from blast effect of penetrating extra-peritoneal thoraco-abdominal trauma.
Sharma, Om P; Oswanski, Michael F; White, Patrick W
2004-03-01
Although rare, blast injury to the intestine can result from penetrating thoraco-abdominal extra-peritoneal gunshot (and shotgun) wounds despite the absence of injury to the diaphragm or to the peritoneum. Injuries of the spleen, small intestine and the mesentery by this mechanism have been previously reported in the world literature. This paper reports the first two cases of non-penetrating ballistic trauma to the colon.
Essaidi-Laziosi, Manel; Shevtsova, Anastasia; Gerlier, Denis; Roux, Laurent
2013-01-01
Enveloped viruses contain glycoproteins protruding from the viral membrane. These proteins play a crucial role in the extra-cellular steps of the virus life cycle, namely attachment to and entry into cells. Their role during the intracellular late phase of virus multiplication has been less appreciated, overlooked by the documented central organizer role of the matrix M protein. Sendai virus, a member of the Paramyxoviridae family, expresses two trans-membrane proteins on its surface, HN and F. In previous work, we have shown that suppression of F in the context of an infection, results in about 70% reduction of virus particle production, a reduction similar to that observed upon suppression of the matrix M protein. Moreover, a TYTLE motif present in F cytoplasmic tail has been proposed essential for virus particle production. In the present work, using original alternate conditional siRNA suppression systems, we generated a double F gene recombinant Sendai virus expressing wt-F and a nonviable mutated TYTLE/5A F protein (F5A). Suppression of the wild type F gene expression in cells infected with this virus allowed the analysis of F5A properties in the context of the infection. Coupling confocal imaging analysis to biochemical characterization, we found that F5A i) was not expressed at the cell surface but restricted to the endoplasmic reticulum, ii) was still capable of interaction with M and iii) had profound effect on M and HN cellular distribution. On the basis of these data, we propose a model for SeV particle formation based on an M/F complex that would serve as nucleation site for virus particle assembly at the cell surface. PMID:24339863
Structural characterization of ribosome recruitment and translocation by type IV IRES.
Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S
2016-05-09
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts tvhe otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation.
No implication of Simian virus 40 in pathogenesis of malignant pleural mesothelioma in Slovenia.
Hmeljak, Julija; Kern, Izidor; Cör, Andrej
2010-01-01
Malignant mesothelioma is predominantly caused by asbestos exposure, although the association of Simian virus 40 in its pathogenesis is currently still under debate. Simian virus 40, a DNA rhesus monkey virus with oncogenic properties, accidentally contaminated early batches of polio vaccine in the 1960s. In the 1990s, viral sequences and proteins were discovered in several human tumors, which triggered research to find a link between Simian virus 40 and human cancers, especially malignant mesothelioma. The aim of our study was to establish an effective laboratory procedure for Simian virus 40 detection and to investigate the presence of Simian virus 40 DNA and small t antigen in mesothelioma samples from Slovenian patients. Paraffin-embedded malignant pleural mesothelioma specimens from 103 Slovenian patients were collected and used for total DNA isolation and real-time polymerase chain reaction for Simian virus 40 small t and large T DNA analysis. Special attention was devoted to primer design, good laboratory practice and polymerase chain reaction contamination prevention. Polymerase chain reaction products were sequenced and BLAST aligned. One 5 microm thick paraffin section from each patient's tissue block was stained with hematoxylin and eosin for histological typing and one for immunohistochemical detection of Simian virus 40 small t antigen using a monoclonal antibody against Simian virus 40 (Pab280). SV40-expressing Wi-38 cells were used as positive control in both PCR and immunohistochemistry. In real-time polymerase chain reaction analyses, only 4 samples gave products with primer pairs amplifying small t antigen and were inconsistent and poorly reproducible. BLAST alignment showed no homology with any deposited SV40 sequences. No immunopositive staining for SV40 small t antigen was found in any of the samples. We found no evidence of SV40 presence in tissue samples from 103 Slovenian patients with malignant pleural mesothelioma. Asbestos exposure remains the main risk factor for malignant pleural mesothelioma in Slovenia.
The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster
Webster, Claire L.; Waldron, Fergal M.; Robertson, Shaun; Crowson, Daisy; Ferrari, Giada; Quintana, Juan F.; Brouqui, Jean-Michel; Bayne, Elizabeth H.; Longdon, Ben; Buck, Amy H.; Lazzaro, Brian P.; Akorli, Jewelna; Haddrill, Penelope R.; Obbard, Darren J.
2015-01-01
Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont—which is known to be protective against virus infections in Drosophila—we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host–virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research. PMID:26172158
Presence of entomobirnaviruses in Chinese mosquitoes in the absence of Dengue virus co-infection.
Huang, Yong; Mi, Zhiqiang; Zhuang, Lu; Ma, Maijuan; An, Xiaoping; Liu, Wei; Cao, Wuchun; Tong, Yigang
2013-03-01
Birnaviruses, including the genus Entomobirnavirus, are socio-economically important viruses. Currently, only Drosophila X virus has been formally assigned to the genus Entomobirnavirus, but two more viruses were recently isolated, Espirito Santo virus (ESV) and Culex Y virus. The host mosquito has been reported to carry many viruses, but seldom entomobirnaviruses. To discover potential pathogens in mosquitoes, we exploited small-RNAs high-throughput sequencing of three mosquito species caught in South China. A virus that genetically likes entomobirnavirus, Mosquito X virus (MXV), was identified from Anopheles sinensis and was 97% identical to ESV, which co-infects with Dengue virus (DENV). However, the absence of DENV in the A. sinensis suggested the independence of MXV infection from dengue co-infection. Our discovery complements prior research on entomobirnaviruses and proved that MXV may be widespread in mosquitoes on different continents. This work also highlights the applying of high-throughput sequencing of small RNAs to survey viruses carried by insect vectors.
A stable RNA virus-based vector for citrus trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe
Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter.more » These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees.« less
Olszewski, John; Winona, Linda; Oshima, Kevin H
2005-04-01
The use of ultrafiltration as a concentration method to recover viruses from environmental waters was investigated. Two ultrafiltration systems (hollow fiber and tangential flow) in a large- (100 L) and small-scale (2 L) configuration were able to recover greater than 50% of multiple viruses (bacteriophage PP7 and T1 and poliovirus type 2) from varying water turbidities (10-157 nephelometric turbidity units (NTU)) simultaneously. Mean recoveries (n = 3) in ground and surface water by the large-scale hollow fiber ultrafiltration system (100 L) were comparable to recoveries observed in the small-scale system (2 L). Recovery of seeded viruses in highly turbid waters from small-scale tangential flow (2 L) (screen and open channel) and hollow fiber ultrafilters (2 L) (small pilot) were greater than 70%. Clogging occurred in the hollow fiber pencil module and when particulate concentrations exceeded 1.6 g/L and 5.5 g/L (dry mass) in the screen and open channel filters, respectively. The small pilot module was able to filter all concentrates without clogging. The small pilot hollow fiber ultrafilter was used to test recovery of seeded viruses from surface waters from different geographical regions in 10-L volumes. Recoveries >70% were observed from all locations.
[The detection of the influenza virus in the small intestine in diarrhea in piglets].
Slobodeniuk, V K; Mel'nikova, L A; Kvashnina, G A; Semenchenko, O G; Trofimova, M G; Tatarchuk, A T; Raĭkova, N L
1990-01-01
Electron microscopy used for examinations of small intestine suspensions of piglets in the prenatal and postnatal periods allowed influenza virions to be identified in virus population. An attempt was made to preserve the discovered population in alternating animal--cell culture--animal passages. Serological examinations of the swine herd confirmed the circulation of influenza viruses in the herd.
ICTV virus taxonomy profile: dicistroviridae
USDA-ARS?s Scientific Manuscript database
Dicistroviridae is a family of small non-enveloped viruses with RNA genomes of approximately 8-10 kilobases in length. All members infect arthropod hosts with some having devastating economic consequences, such as Acute bee paralysis virus, Kashmir bee virus, and Israeli acute paralysis virus towar...
Water immersion during labor and birth: is there an extra cost for hospitals?
Poder, Thomas G
2017-06-01
Water immersion during labor and birth is growing in popularity, and many hospitals are now considering offering this service to laboring women. Some advantages of water immersion are demonstrated, but others remain uncertain, and particularly, few studies have examined the financial impact of such a device on hospitals. This study simulated what could be the extra cost of water immersion for hospitals. Clinical outcomes were drawn from the results of systematic reviews already published, and cost units were those used in the Quebec health network. A decision tree was used with microsimulations of representative laboring women. Sensitivity analyses were performed as regards analgesic use and labor duration. Microsimulations indicated an extra cost between $166.41 and $274.76 (2014 Canadian dollars) for each laboring woman as regards the scenario considered. The average extra cost was $221.12 (95% confidence interval, 219.97-222.28). While water immersion allows better clinical outcomes, implementation and other costs are higher than the savings generated, which leads to a small extra cost to allow women to potentially have more relaxation and less pain. © 2016 John Wiley & Sons, Ltd.
Dwivedi, Amarprakash P
2013-04-01
Polydactyly is a most common congenital hand defects in which the hand has one or more extra fingers, commonly seen postaxial, that is, on the small finger side. It is usually treated by surgically removing the extra finger typically, when the child is between 1 and 2 years old. Prognosis after removal of extra digit is good if it occurs in isolation though not devoid of complications like scar formation, stiffness, instability, and late deformity which may need additional reconstructive surgery to recover full function and improve the hand's appearance. I have used "Ksharsutra," an Ayurvedic-medicated thread coated with herbal alkaline drugs having simultaneous cutting and healing property, to remove extra finger in a child, whose parents were not willing to undergo surgery and asked for alternative treatment. "Ksahrsutra ligation" showed excellent result in postaxial polydactyly. The extra finger started necrosing within 24 hours and sloughed out in just 9 days with minimal scar formation. After observing the prognosis, I believe that more cases should be done to establish and promote this unique parasurgical procedure, "Ksharsutra" in the management of polydactyly.
Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing.
Xu, Chenxi; Sun, Xuepeng; Taylor, Angela; Jiao, Chen; Xu, Yimin; Cai, Xiaofeng; Wang, Xiaoli; Ge, Chenhui; Pan, Guanghui; Wang, Quanxi; Fei, Zhangjun; Wang, Quanhua
2017-06-01
Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases. IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in tomato production. We identified dozens of viruses present in tomato, including both well-documented and completely new viruses. Some newly emerged viruses in tomato were found to spread fast, and therefore, prompt attention is needed to control them. Moreover, we show that the virus genomes exhibit considerable degree of polymorphisms and recombination, and the virus-derived small interfering RNA (vsiRNA) sequences indicate distinct vsiRNA biogenesis mechanisms for different viruses. The Chinese tomato virome that we developed provides valuable information to facilitate the management of tomato viral diseases. Copyright © 2017 American Society for Microbiology.
Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing
Xu, Chenxi; Taylor, Angela; Jiao, Chen; Xu, Yimin; Cai, Xiaofeng; Wang, Xiaoli; Ge, Chenhui; Pan, Guanghui; Wang, Quanxi
2017-01-01
ABSTRACT Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus. Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases. IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in tomato production. We identified dozens of viruses present in tomato, including both well-documented and completely new viruses. Some newly emerged viruses in tomato were found to spread fast, and therefore, prompt attention is needed to control them. Moreover, we show that the virus genomes exhibit considerable degree of polymorphisms and recombination, and the virus-derived small interfering RNA (vsiRNA) sequences indicate distinct vsiRNA biogenesis mechanisms for different viruses. The Chinese tomato virome that we developed provides valuable information to facilitate the management of tomato viral diseases. PMID:28331089
uPy: a ubiquitous CG Python API with biological-modeling applications.
Autin, Ludovic; Johnson, Graham; Hake, Johan; Olson, Arthur; Sanner, Michel
2012-01-01
The uPy Python extension module provides a uniform abstraction of the APIs of several 3D computer graphics programs (called hosts), including Blender, Maya, Cinema 4D, and DejaVu. A plug-in written with uPy can run in all uPy-supported hosts. Using uPy, researchers have created complex plug-ins for molecular and cellular modeling and visualization. uPy can simplify programming for many types of projects (not solely science applications) intended for multihost distribution. It's available at http://upy.scripps.edu. The first featured Web extra is a video that shows interactive analysis of a calcium dynamics simulation. YouTube URL: http://youtu.be/wvs-nWE6ypo. The second featured Web extra is a video that shows rotation of the HIV virus. YouTube URL: http://youtu.be/vEOybMaRoKc.
NASA Astrophysics Data System (ADS)
Komatsu, Nobuyoshi
2017-11-01
A power-law corrected entropy based on a quantum entanglement is considered to be a viable black-hole entropy. In this study, as an alternative to Bekenstein-Hawking entropy, a power-law corrected entropy is applied to Padmanabhan's holographic equipartition law to thermodynamically examine an extra driving term in the cosmological equations for a flat Friedmann-Robertson-Walker universe at late times. Deviations from the Bekenstein-Hawking entropy generate an extra driving term (proportional to the α th power of the Hubble parameter, where α is a dimensionless constant for the power-law correction) in the acceleration equation, which can be derived from the holographic equipartition law. Interestingly, the value of the extra driving term in the present model is constrained by the second law of thermodynamics. From the thermodynamic constraint, the order of the driving term is found to be consistent with the order of the cosmological constant measured by observations. In addition, the driving term tends to be constantlike when α is small, i.e., when the deviation from the Bekenstein-Hawking entropy is small.
JPRS Report, China: 1988 Work Reports From Provinces in Northeast Region.
1989-05-16
periodicals and data, such as HUIKAN [THE JOURNAL OF PEOPLE’S CONGRESS]; JILIN RENDA GONGZUO [THE WORK OF JILIN’S PEO- PLE’S CONGRESSES]; RENDA XINXI...control over the macroeconomy, which caused loss of control over extra -budgetary capital con- struction. A total of 106 small projects which...On the basis of conducting an overall screening of the investment in fixed assets, we should strengthen the management of extra -budgetary funds, and
The small non-coding RNA response to virus infection in the Leishmania vector Lutzomyia longipalpis.
Ferreira, Flávia Viana; Aguiar, Eric Roberto Guimarães Rocha; Olmo, Roenick Proveti; de Oliveira, Karla Pollyanna Vieira; Silva, Emanuele Guimarães; Sant'Anna, Maurício Roberto Viana; Gontijo, Nelder de Figueiredo; Kroon, Erna Geessien; Imler, Jean Luc; Marques, João Trindade
2018-06-01
Sandflies are well known vectors for Leishmania but also transmit a number of arthropod-borne viruses (arboviruses). Few studies have addressed the interaction between sandflies and arboviruses. RNA interference (RNAi) mechanisms utilize small non-coding RNAs to regulate different aspects of host-pathogen interactions. The small interfering RNA (siRNA) pathway is a broad antiviral mechanism in insects. In addition, at least in mosquitoes, another RNAi mechanism mediated by PIWI interacting RNAs (piRNAs) is activated by viral infection. Finally, endogenous microRNAs (miRNA) may also regulate host immune responses. Here, we analyzed the small non-coding RNA response to Vesicular stomatitis virus (VSV) infection in the sandfly Lutzoymia longipalpis. We detected abundant production of virus-derived siRNAs after VSV infection in adult sandflies. However, there was no production of virus-derived piRNAs and only mild changes in the expression of vector miRNAs in response to infection. We also observed abundant production of virus-derived siRNAs against two other viruses in Lutzomyia Lulo cells. Together, our results suggest that the siRNA but not the piRNA pathway mediates an antiviral response in sandflies. In agreement with this hypothesis, pre-treatment of cells with dsRNA against VSV was able to inhibit viral replication while knock-down of the central siRNA component, Argonaute-2, led to increased virus levels. Our work begins to elucidate the role of RNAi mechanisms in the interaction between L. longipalpis and viruses and should also open the way for studies with other sandfly-borne pathogens.
BAsE-Seq: a method for obtaining long viral haplotypes from short sequence reads.
Hong, Lewis Z; Hong, Shuzhen; Wong, Han Teng; Aw, Pauline P K; Cheng, Yan; Wilm, Andreas; de Sessions, Paola F; Lim, Seng Gee; Nagarajan, Niranjan; Hibberd, Martin L; Quake, Stephen R; Burkholder, William F
2014-01-01
We present a method for obtaining long haplotypes, of over 3 kb in length, using a short-read sequencer, Barcode-directed Assembly for Extra-long Sequences (BAsE-Seq). BAsE-Seq relies on transposing a template-specific barcode onto random segments of the template molecule and assembling the barcoded short reads into complete haplotypes. We applied BAsE-Seq on mixed clones of hepatitis B virus and accurately identified haplotypes occurring at frequencies greater than or equal to 0.4%, with >99.9% specificity. Applying BAsE-Seq to a clinical sample, we obtained over 9,000 viral haplotypes, which provided an unprecedented view of hepatitis B virus population structure during chronic infection. BAsE-Seq is readily applicable for monitoring quasispecies evolution in viral diseases.
Miesen, Pascal; Ivens, Alasdair; Buck, Amy H; van Rij, Ronald P
2016-02-01
In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.
Miesen, Pascal; Ivens, Alasdair; Buck, Amy H.; van Rij, Ronald P.
2016-01-01
In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species. PMID:26914027
Validity of a traffic air pollutant dispersion model to assess exposure to fine particles.
Kostrzewa, Aude; Reungoat, Patrice; Raherison, Chantal
2009-08-01
Fine particles (PM(2.5)) are an important component of air pollution. Epidemiological studies have shown health effects due to ambient air particles, particularly allergies in children. Since the main difficulty is to determine exposure to such pollution, traffic air pollutant (TAP) dispersions models have been developed to improve the estimation of individual exposure levels. One such model, the ExTra index, has been validated for nitrogen oxide concentrations but not for other pollutants. The purpose of this study was to assess the validity of the ExTra index to assess PM(2.5) exposure. We compared PM(2.5) concentrations calculated by the ExTra index to reference measures (passive samplers situated under the covered part of the playground), in 15 schools in Bordeaux, in 2000. First, we collected the input data required by the ExTra index: background and local pollution depending on traffic, meteorology and topography. Second, the ExTra index was calculated for each school. Statistical analysis consisted of a graphic description; then, we calculated an intraclass correlation coefficient. Concentrations calculated with the ExTra index and the reference method were similar. The ExTra index underestimated exposure by 2.2 microg m(-3) on average compared to the reference method. The intraclass correlation coefficient was 0.85 and its 95% confidence interval was [0.62; 0.95]. The results suggest that the ExTra index provides an assessment of PM(2.5) exposure similar to that of the reference method. Although caution is required in interpreting these results owing to the small number of sites, the ExTra index could be a useful epidemiological tool for reconstructing individual exposure, an important challenge in epidemiology.
Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer.
McMullen, Angus J; Tang, Jay X; Stein, Derek
2017-11-28
We report measurements and analyses of nanopore translocations by fd and M13, two related strains of filamentous virus that are identical except for their charge densities. The standard continuum theory of electrokinetics greatly overestimates the translocation speed and the conductance associated with counterions for both viruses. Furthermore, fd and M13 behave differently from one another, even translocating in opposite directions under certain conditions. This cannot be explained by Manning-condensed counterions or a number of other proposed models. Instead, we argue that these anomalous findings are consequences of the breakdown of the validity of continuum hydrodynamics at the scale of a few molecular layers. Next to a polyelectrolyte, there exists an extra-viscous, sub-nanometer-thin boundary layer that has a giant influence on the transport characteristics. We show that a stagnant boundary layer captures the essential hydrodynamics and extends the validity of the electrokinetic theory beyond the continuum limit. A stagnant layer with a thickness of about half a nanometer consistently improves predictions of the ionic current change induced by virus translocations and of the translocation velocity for both fd and M13 over a wide range of nanopore dimensions and salt concentrations.
The weak force and SETH: The search for Extra-Terrestrial Homochirality
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDermott, A.J.
We propose that a search for extra-terrestrial life can be approached as a Search for Extra-Terrestrial Homochirality{emdash}SETH. Homochirality is probably a pre-condition for life, so a chiral influence may be required to get life started. We explain how the weak force mediated by the {ital Z}{sup 0} boson gives rise to a small parity-violating energy difference (PVED) between enantiomers, and discuss how the resulting small excess of the more stable enantiomer may be amplified to homochirality. Titan and comets are good places to test for emerging pre-biotic homochirality, while on Mars there may be traces of homochirality as a relicmore » of extinct life. Our calculations of the PVED show that the natural L-amino acids are indeed more stable than their enantiomers, as are several key D-sugars and right-hand helical DNA. Thiosubstituted DNA analogues show particularly large PVEDs. L-quartz is also more stable than D-quartz, and we believe that further crystal counts should be carried out to establish whether reported excesses of L quartz are real. Finding extra-terrestrial molecules of the same hand as on Earth would lend support to the universal chiral influence of the weak force. We describe a novel miniaturized space polarimeter, called the SETH Cigar, which we hope to use to detect optical rotation on other planets. Moving parts are avoided by replacing the normal rotating polarizer by multiple fixed polarizers at different angles as in the eye of the bee. Even if we do not find the same hand as on Earth, finding extra-terrestrial optical rotation would be of enormous importance as it would still be the homochiral signature of life. {copyright} {ital 1996 American Institute of Physics.}« less
The weak force and SETH: The search for Extra-Terrestrial Homochirality
NASA Astrophysics Data System (ADS)
MacDermott, Alexandra J.
1996-07-01
We propose that a search for extra-terrestrial life can be approached as a Search for Extra-Terrestrial Homochirality-SETH. Homochirality is probably a pre-condition for life, so a chiral influence may be required to get life started. We explain how the weak force mediated by the Z0 boson gives rise to a small parity-violating energy difference (PVED) between enantiomers, and discuss how the resulting small excess of the more stable enantiomer may be amplified to homochirality. Titan and comets are good places to test for emerging pre-biotic homochirality, while on Mars there may be traces of homochirality as a relic of extinct life. Our calculations of the PVED show that the natural L-amino acids are indeed more stable than their enantiomers, as are several key D-sugars and right-hand helical DNA. Thiosubstituted DNA analogues show particularly large PVEDs. L-quartz is also more stable than D-quartz, and we believe that further crystal counts should be carried out to establish whether reported excesses of L quartz are real. Finding extra-terrestrial molecules of the same hand as on Earth would lend support to the universal chiral influence of the weak force. We describe a novel miniaturized space polarimeter, called the SETH Cigar, which we hope to use to detect optical rotation on other planets. Moving parts are avoided by replacing the normal rotating polarizer by multiple fixed polarizers at different angles as in the eye of the bee. Even if we do not find the same hand as on Earth, finding extra-terrestrial optical rotation would be of enormous importance as it would still be the homochiral signature of life.
Small Animal Models for Evaluating Filovirus Countermeasures.
Banadyga, Logan; Wong, Gary; Qiu, Xiangguo
2018-05-11
The development of novel therapeutics and vaccines to treat or prevent disease caused by filoviruses, such as Ebola and Marburg viruses, depends on the availability of animal models that faithfully recapitulate clinical hallmarks of disease as it is observed in humans. In particular, small animal models (such as mice and guinea pigs) are historically and frequently used for the primary evaluation of antiviral countermeasures, prior to testing in nonhuman primates, which represent the gold-standard filovirus animal model. In the past several years, however, the filovirus field has witnessed the continued refinement of the mouse and guinea pig models of disease, as well as the introduction of the hamster and ferret models. We now have small animal models for most human-pathogenic filoviruses, many of which are susceptible to wild type virus and demonstrate key features of disease, including robust virus replication, coagulopathy, and immune system dysfunction. Although none of these small animal model systems perfectly recapitulates Ebola virus disease or Marburg virus disease on its own, collectively they offer a nearly complete set of tools in which to carry out the preclinical development of novel antiviral drugs.
Gamma Rays from the Galactic Bulge and Large Extra Dimensions
NASA Astrophysics Data System (ADS)
Cassé, Michel; Paul, Jacques; Bertone, Gianfranco; Sigl, Günter
2004-03-01
An intriguing feature of extra dimensions is the possible production of Kaluza Klein gravitons by nucleon-nucleon bremsstrahlung, in the course of core collapse of massive stars, with gravitons then being trapped around the newly born neutron stars and decaying into two gamma rays, making neutron stars gamma-ray sources. We strengthen the limits on the radius of compactification of extra dimensions for a small number n of them, or alternatively the fundamental scale of quantum gravity, considering the gamma-ray emission of the whole population of neutron stars sitting in the Galactic bulge, instead of the closest member of this category. For n=1 the constraint on the compactification radius is R<400 μm.
Analysis of the origin of the extra chromosome in trisomy 8 in 4 cases of spontaneous abortions.
Nicolaidis, P; von Beust, G; Bugge, M; Karadima, G; Vassilopoulos, D; Brøndum-Nielsen, K; Petersen, M B
1998-01-01
To determine the origin of the extra chromosome in trisomy 8 in spontaneous abortions. We analyzed 4 cases of nonmosaic trisomy 8 in 1st-trimester spontaneous abortions and their parents with DNA polymorphism analysis using microsatellite DNA markers. In 3 cases the extra chromosome was maternal in origin and in 1 case paternal in origin. In 2 of the cases the nondisjunction had occurred in maternal meiosis, while the other 2 cases were consistent with a postzygotic (mitotic) origin of the additional chromosome. Although a small number of cases studied, these results suggest differences from the common autosomal trisomies 21, 18, 16, and 13 where the vast majority of cases are due to errors in maternal meiosis.
Harvey, David J.; Crispin, Max; Bonomelli, Camille; Scrivens, Jim H.
2016-01-01
Graphical abstract Many samples of complex mixtures of N-glycans released from small amounts of material, such as glycoproteins from viruses, present problems for mass spectrometric analysis because of the presence of contaminating material that is difficult to remove by conventional methods without involving sample loss. This paper describes the use of ion mobility for extraction of glycan profiles from such samples and for obtaining clean CID spectra when targeted m/z values capture additional ions from those of the target compound. N-Glycans were released enzymatically from within SDS-PAGE gels, from the representative glycoprotein, gp120 of the human immunodeficiency virus, and examined by direct infusion electrospray in negative mode followed by ion mobility with a Waters Synapt G2 mass spectrometer. Clean profiles of singly, doubly and triply charged N-glycans were obtained from samples in cases where the raw electrospray spectra displayed only a few glycan ions as the result of low sample concentration or the presence of contamination. Ion mobility also enabled uncontaminated CID spectra to be obtained from glycans when their molecular ions displayed coincidence with ions from fragments or multiply charged ions with similar m/z values. This technique proved to be invaluable for removing extraneous ions from many CID spectra. The presence of such ions often produces spectra that are difficult to interpret. Most CID spectra, even those from abundant glycan constituents, benefited from such clean-up showing that the extra dimension provided by ion mobility was invaluable for studies of this type. PMID:26204966
A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans
Colpitts, Che C.
2014-01-01
ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID:24789779
Identification of Novel 5,6-Dimethoxyindan-1-one Derivatives as Antiviral Agents.
Patil, Siddappa A; Patil, Vikrant; Patil, Renukadevi; Beaman, Kenneth; Patil, Shivaputra A
2017-01-01
Discovery of novel antiviral agents is essential because viral infection continues to threaten human life globally. Various heterocyclic small molecules have been developed as antiviral agents. The 5,6-dimethoxyindan-1-on nucleus is of considerable interest as this ring is the key constituent in a range of bioactive compounds, both naturally occurring and synthetic, and often of considerable complexity. The main purpose of this research was to discover and develop small molecule heterocycles as broad-spectrum of antiviral agents. A focused small set of 5,6-dimethoxyindan-1-one analogs (6-8) along with a thiopene derivative (9) was screened for selected viruses (Vaccinia virus - VACA, Human papillomavirus - HPV, Zika virus - ZIKV, Dengue virus - DENV, Measles virus - MV, Poliovirus 3 - PV, Rift Valley fever virus - RVFV, Tacaribe virus - TCRV, Venezuelan equine encephalitis virus - VEEV, Herpes simplex virus 1 -HSV-1 and Human cytomegalovirus - HCMV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. These molecules demonstrated moderate to excellent antiviral activity towards variety of viruses. The 5,6-dimethoxyindan-1-one analog (7) demonstrated high efficacy towards vaccinia virus (EC50: <0.05 µM) and was nearly 232 times more potent than the standard drug Cidofovir (EC50: 11.59 µM) in primary assay whereas it demonstrated moderate activity (EC50: >30.00 µM) in secondary plaque reduction assay. The thiophene analog (9) has shown very good viral inhibition towards several viruses such as Human papillomavirus, Measles virus, Rift Valley fever virus, Tacaribe virus and Herpes simplex virus 1. Our research identified a novel 5,6-dimethoxyindan-1-one analog (compound 7), as a potent antiviral agent for vaccinia virus, and heterocyclic chalcone analog (compound 9) as a broad spectrum antiviral agent. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Black holes radiate mainly on the brane.
Emparan, R; Horowitz, G T; Myers, R C
2000-07-17
We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.
The extra-atmospheric mass of small meteoroids of the Prairie and Canada bolide camera networks
NASA Astrophysics Data System (ADS)
Popelenskaya, N. V.; Stulov, V. P.
2008-04-01
The existing methods for determining the extra-atmospheric mass of meteor bodies from observations of their movement in the atmosphere allow a certain arbitrariness. Active attempts to overcome the discrepancy between the results of calculations based on different approaches often lead to physically incorrect conclusions. A way out is to laboriously accumulate the estimates and computation results and to consistently remove ambiguities. To correctly interpret the observed brightness of a meteor, one should use contemporary methods and the results of physical studies of the emitting gas. In the present work, the extra-atmospheric masses of small meteoroids of the Prairie and Canada bolide camera networks were calculated from the observed braking. It turned out that, in many cases, the conditions of movement of meteor bodies in the atmosphere corresponded to a free molecular airflow about a body. The so-called dynamic mass of the bodies was estimated from the real densities of the meteoroid material, which corresponded to monolithic water ice and stone, and for the proper values of the product of the drag coefficient and shape factor. When producing the trial function for the body trajectories in the "velocity-altitude" variables, we did not allow for fragmentation explicitly, since it is less probable for small meteoroids than for large ones. As before, our estimates differ substantially from the photometric masses published in the corresponding tables.
2014-04-25
IgG secretion. 2.3 Designing of Synthetic peptide The immunogenic peptides against the foot and mouth disease virus ( FMDV ) were designed and...synthesized based on viral protein 1 of type O FMDV . The amino acid sequence for pFMDV is NGSSKYGDTSTNNVRGDLQVLAQKAERTLC. An extra cysteine was added...peptides were synthesized based on the amino acid sequence of the VP1 coat protein of the FMDV (table 1). The peptide pFMDVD (19 amino acids in length
2005-01-01
PRINCIPAL INVESTIGATOR: Calvin J. Kuo, M.D., Ph.D. CONTRACTING ORGANIZATION : Stanford University Stanford, California 94305-5401 REPORT DATE: January...cloned in between the I-Scel site and the T’. This extra DNA fragment is used as a stuffer DNA in order to increase the size of the viral genome up to...regularly increasing sizes above the 2 fragments specific for the virus left and right ends can only be explained by the phenomenon known as ’postreplicative
The Effect of Extra Small Group Session during PBL Implementation on Student's Achievement
ERIC Educational Resources Information Center
Khalil, Mahmoud Salah; Al Rukban, Mohammad Othman
2010-01-01
Problem based learning (PBL) started to spread in health professions in Saudi Arabia at the beginning of this century. There are several challenges facing its implementation such as defects on interpersonal communications and self-directed learning. These challenges would affect students' performance in small group discussions and their…
The development of small cities has been adopted as the main strategy to make full use of extra labor in the rural areas of China. The ecological and economic consequences of this development will affect over 100 million people and change the organization of agricultural systems ...
2017-03-24
NUT Midline Carcinoma; Triple Negative Breast Cancer; Non-small Cell Lung Cancer With Rearranged ALK Gene/Fusion Protein or KRAS Mutation; Castrate-resistant Prostate Cancer (CRPC); Pancreatic Ductal Adenocarcinoma
Bilkova, Eva; Forstova, Jitka; Abrahamyan, Levon
2014-01-01
To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection. PMID:25055856
Davidson, S K; Hunt, L A
1983-03-01
We have previously demonstrated the presence of unusual small asparaginyl-oligosaccharides [(Man)3GlcNAc2-ASN] in the mature glycoproteins of Sindbis virus released from both wild-type and lectin-resistant Chinese hamster ovary cells, but the mechanism of synthesis of these structures was not determined. Gel filtration and endo-beta-N-acetylglucosaminidase analyses of Pronase-digested glycopeptides from [3H]mannose-labelled Sindbis virus released at different times after infection of a phytohaemagglutinin-resistant line of Chinese hamster ovary cells demonstrated that these small asparaginyl-oligosaccharides were present in similar relative amounts in virus released throughout the virus infection, rather than arising primarily at late times when cytopathic effects were maximal. Similar analyses of pulse-labelled, cell-associated viral glycopeptides suggested that these small oligosaccharides on mature virus glycoprotein resulted from the normal alpha 1,2-mannosidase processing of truncated precursor oligosaccharides (containing five rather than nine mannoses), rather than from aberrant processing or degradation of the full-size precursor oligosaccharides or normal intermediates.
VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs
USDA-ARS?s Scientific Manuscript database
Accurate detection of viruses in plants and animals is critical for agriculture production and human health. Deep sequencing and assembly of virus-derived siRNAs has proven to be a highly efficient approach for virus discovery. However, to date no computational tools specifically designed for both k...
Gubala, Aneta; Walsh, Susan; McAllister, Jane; Weir, Richard; Davis, Steven; Melville, Lorna; Mitchell, Ian; Bulach, Dieter; Gauci, Penny; Skvortsov, Alex; Boyle, David
2017-01-01
Viruses of the family Rhabdoviridae infect a broad range of hosts from a variety of ecological and geographical niches, including vertebrates, arthropods, and plants. The arthropod-transmitted members of this family display considerable genetic diversity and remarkable genomic flexibility that enable coding for various accessory proteins in different locations of the genome. Here, we describe the genome of Holmes Jungle virus, isolated from Culex annulirostris mosquitoes collected in northern Australia, and make detailed comparisons with the closely related Ord River and Wongabel viruses, with a focus on identifying very small open reading frames (smORFs) in their genomes. This is the first systematic prediction of smORFs in rhabdoviruses, emphasising the intricacy of the rhabdovirus genome and the knowledge gaps. We speculate that these smORFs may be of importance to the life cycle of the virus in the arthropod vector.
Development of a Simple Method for Concentrating Enteroviruses from Oysters
Sobsey, Mark D.; Wallis, Craig; Melnick, Joseph L.
1975-01-01
The development of a simple method for concentrating enteroviruses from oysters is described. In this method viruses in homogenized oyster tissues are efficiently adsorbed to oyster solids at pH 5.5 and low salt concentration. After low-speed centrifugation, the supernatant is discarded and viruses are eluted from the sedimented oyster solids by resuspending them in pH 3.5 glycine-buffered saline. The solids are then removed by low-speed centrifugation, and the virus-containing supernatant is filtered through a 0.2-μm porosity filter to remove bacteria and other small particulates without removing viruses. The virus-containing filtrate is then concentrated to a volume of a few milliliters by ultrafiltration, and the concentrate obtained is inoculated directly into cell cultures for virus assay. When tested with pools of oysters experimentally contaminated with small amounts of different enteroviruses, virus recovery efficiency averaged 63%. PMID:234154
Development of a simple method for concentrating enteroviruses from oysters.
Sobsey, M D; Wallis, C; Melnick, J L
1975-01-01
The development of a simple method for concentrating enteroviruses from oysters is described. In this method viruses in homogenized oyster tissues are efficiently absorbed to oyster solids at pH 5.5 and low salt concentration. After low-speed centrifugation, the supernatant is discarded and viruses are eluted from the sedimented oyster solids by resuspending them in pH 3.5 glycine-buffered saline. The solids are then removed by low-speed centrifugation, and the virus-containing supernatant is filtered through a 0.2-micronm porosity filter to remove bacteria and other small particulates without removing viruses. The virus-containing filtrate is then concentrated to a volume of a few milliliters by ultrafiltration, and the concentrate obtained is inoculated directly into cell cultures for virus assay. When tested with pools of oysters experimentally contaminated with small amounts of different enteroviruses, virus recovery efficiency averaged 63%.
ERIC Educational Resources Information Center
Ginja, Tamirat Gibon
2016-01-01
Technical and Vocational Education & skills Training (TVET) and Micro & Small Enterprises (MSEs) are so significant sectors in socio-economic development journey of a country. This Article was aimed at investigating empirically the challenges that Micro and Small Enterprises facing and the extent of business development services provided…
Investigation of Molecular Mechanism of JC virus Viroporin Activity.
Suzuki, Tadaki
2015-01-01
Viroporins are small and hydrophobic viral proteins that form pores on host cell membranes, and their expression can increase the permeability of cellular membranes and the production of progeny virus particles. JC virus (JCV) is the causative agent of progressive multifocal leukoenchephalopathy (PML). We demonstrate that JCV Agno, which is the small and hydrophobic protein, andincreases the plasma membrane permeability and virion release, acts as a viroporin. We also demonstrate that an interaction of Agno with a host cellular protein regulates the viroporin activity of Agno. These findings indicate a new paradigm in virus-host interactions regulating viroporin activity and viral replication.
Therapeutic Efficacy of the Small Molecule GS-5734 against Ebola virus in Rhesus Monkeys
2016-03-02
distribution to sanctuary sites for viral 46 replication including testes, eye , and brain. In a rhesus monkey model of EVD, once daily 47...including respiratory syncytial virus (RSV), Junin virus (JUNV), Lassa fever virus 121 (LASV) and Middle East respiratory syndrome virus (MERS), with...yellow fever virus, dengue virus type 2), parainfluenza type 3, and severe 124 acute respiratory syndrome (SARS) associated coronavirus but little or
Serologic Evidence for Influenza C and D Virus among Ruminants and Camelids, Africa, 1991-2015.
Salem, Elias; Cook, Elizabeth A J; Lbacha, Hicham Ait; Oliva, Justine; Awoume, Félix; Aplogan, Gilbert L; Hymann, Emmanuel Couacy; Muloi, Dishon; Deem, Sharon L; Alali, Said; Zouagui, Zaid; Fèvre, Eric M; Meyer, Gilles; Ducatez, Mariette F
2017-09-01
Influenza D virus has been identified in America, Europe, and Asia. We detected influenza D virus antibodies in cattle and small ruminants from North (Morocco) and West (Togo and Benin) Africa. Dromedary camels in Kenya harbored influenza C or D virus antibodies, indicating a potential new host for these viruses.
Cowan, D
2001-01-01
Trying to gain a measure of control over their working lives, some physicians are abandoning large group practices for smaller groups. Large groups enjoy whole teams of people performing vital business tasks. Small practices rely on one or two key physicians and managers to tackle everything from customer service to marketing, medical records to human resources. Learn valuable tips for thriving in a small environment and using that extra control to achieve job satisfaction.
Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs
Bogerd, Hal P.; Skalsky, Rebecca L.; Kennedy, Edward M.; Furuse, Yuki; Whisnant, Adam W.; Flores, Omar; Schultz, Kimberly L. W.; Putnam, Nicole; Barrows, Nicholas J.; Sherry, Barbara; Scholle, Frank; Garcia-Blanco, Mariano A.; Griffin, Diane E.
2014-01-01
ABSTRACT The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. IMPORTANCE Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines. PMID:24807715
[Application of paramunity inducers in small animal practice].
Proksch, A L; Hartmann, K
2016-01-01
Paramunity inducers have been used to treat small animals for decades. Paramunity inducers are based on attenuated and inactivated poxviruses (avipox virus and parapox virus). Their applications include both therapeutic and prophylactic use in various diseases. Despite their wide and variable use, only a very small number of placebo-controlled studies has been published. Positive effects in preventing kitten mortality and in treating feline stomatitis have been reported, however, no statistically significant effect of their therapeutic use in canine parvovirus infection, feline leukemia infection virus infection or canine papillomavirus infection could be demonstrated. For these infectious diseases, paramunity inducers do not appear to be effective.
Military Hearing Conservation Workshop Director Handbook,
1983-11-01
r HaigCnerainDrctrHnbo (b*T scp -asgnetsorrspniblt.s -:.--3 .’..................................................................an. HSHB-OB November...Approved Hearing Protective Devices and Related Equipment. a. Nonstandard. (NOT APPROVED). (I) Fingers (bi-digital earplugs). - - (2) Palms . (3...a) Single-flange (5-10 percent have different sizes between ears): () extra small (white) - 5 percent (ii) small (green) - 25 percent . oil . 5-26 9
... RV) is an unusual complication of longstanding, severe rheumatoid arthritis. The active vasculitis associated with rheumatoid disease occurs ... a manifestation of “extra-articular” (beyond the joint)rheumatoid arthritis and involves the small and medium-sized arteries ...
Structural characterization of ribosome recruitment and translocation by type IV IRES
Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S
2016-01-01
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI: http://dx.doi.org/10.7554/eLife.13567.001 PMID:27159451
Advances in the study of transmissible respiratory tumours in small ruminants.
Monot, M; Archer, F; Gomes, M; Mornex, J-F; Leroux, C
2015-12-14
Sheep and goats are widely infected by oncogenic retroviruses, namely Jaagsiekte Sheep RetroVirus (JSRV) and Enzootic Nasal Tumour Virus (ENTV). Under field conditions, these viruses induce transformation of differentiated epithelial cells in the lungs for Jaagsiekte Sheep RetroVirus or the nasal cavities for Enzootic Nasal Tumour Virus. As in other vertebrates, a family of endogenous retroviruses named endogenous Jaagsiekte Sheep RetroVirus (enJSRV) and closely related to exogenous Jaagsiekte Sheep RetroVirus is present in domestic and wild small ruminants. Interestingly, Jaagsiekte Sheep RetroVirus and Enzootic Nasal Tumour Virus are able to promote cell transformation, leading to cancer through their envelope glycoproteins. In vitro, it has been demonstrated that the envelope is able to deregulate some of the important signaling pathways that control cell proliferation. The role of the retroviral envelope in cell transformation has attracted considerable attention in the past years, but it appears to be highly dependent of the nature and origin of the cells used. Aside from its health impact in animals, it has been reported for many years that the Jaagsiekte Sheep RetroVirus-induced lung cancer is analogous to a rare, peculiar form of lung adenocarcinoma in humans, namely lepidic pulmonary adenocarcinoma. The implication of a retrovirus related to Jaagsiekte Sheep RetroVirus is still controversial and under investigation, but the identification of an infectious agent associated with the development of lepidic pulmonary adenocarcinomas might help us to understand cancer development. This review explores the mechanisms of induction of respiratory cancers in small ruminants and the possible link between retrovirus and lepidic pulmonary adenocarcinomas in humans. Copyright © 2015. Published by Elsevier B.V.
Cunha, Burke A; Gian, John
Hospitalized adults with fever and "pneumonia" can be a difficult diagnostic challenge particularly when the clinical findings may be due to different infectious diseases. We recently had an elderly female who presented with fever, fatigue and dry cough with elevated serum transaminases and lung infiltrates. The diagnosis of Epstein-Barr virus (EBV) infectious mononucleosis (IM) was made based on a positive Monospot test, elevated EBV VCA IgM titer, and highly elevated EBV viral load. Her chest infiltrates were not accompanied by hilar adenopathy which may occur with EBV IM. Her dry cough persisted and she developed abdominal pain. Legionnaire's disease was considered because she had extra-pulmonary findings characteristic of Legionnaire's disease, e.g., relative bradycardia, abdominal pain, hyponatremia, hypophosphatemia, elevated ferritin levels, microscopic hematuria. Legionella titers were negative, but Legionella (serogroup 1) urinary antigen was positive. We present a diagnostic dilemma in an elderly female with both Legionnaire's disease and Epstein-Barr virus infectious mononucleosis with pulmonary involvement. Copyright © 2016 Elsevier Inc. All rights reserved.
2006-11-14
Spectroscopic Data- Observations Longslit spectra of SNLS SN candidates were taken at the Gemini telescopes with the Gemini Multi-Object Spectrograph [ GMOS ...typical i’ magnitudes ranged from 21.8 to 24.5), and required exposure times of 1 to 2 hours over two to four exposures. The GMOS R400 grating (400 lines...extra 360 seconds. The extra overhead time is often minimised by choosing a small nod distance, or by employing the Electronic N&S mode. The GMOS
... have a bleeding disorder or take blood-thinning medicine, let your provider know so they are extra careful to decrease bleeding. If you have heart disease, there is a small risk that you could feel lightheaded or faint.
All about Carbohydrate Counting
... barley, bulgur, couscous, • fruit (canned, dried, grits, kasha, pasta, and fresh, and frozen) and rice fruit juice • ... ½ cup banana: 1 extra small (4 ounces) pasta or rice (cooked): ⅓ cup bread: 1 slice ( ...
Chang, Ranran; Lu, Hao; Li, Man; Zhang, Shuangling; Xiong, Liu; Sun, Qingjie
2018-04-15
Nisin is applied broadly in the food industry as an antimicrobial peptide. The objective of this study is to prepare nisin nanoparticles using free nisin by a facile nanoprecipitation technique and to investigate their antimicrobial activity after high-temperature processing. Transmission electron microscopic images showed that the size of extra-small nisin nanoparticles with different initial concentrations of nisin (0.1%, 0.3% and 0.5%) was 5, 10 and 15 nm, respectively. The nisin nanoparticles were stable at pH 5.0 with the smallest size. Moreover, nisin nanoparticles exhibited a higher antimicrobial activity than free nisin at a concentration below 2.0 mg/ml after autoclave treatment. These results suggested that nisin nanoparticles could serve as a potential food preservative. Copyright © 2017 Elsevier Ltd. All rights reserved.
Protein Interactions during the Flavivirus and Hepacivirus Life Cycle*
Bruening, Janina; Weigel, Bettina; Pietschmann, Thomas
2017-01-01
Protein–protein interactions govern biological functions in cells, in the extracellular milieu, and at the border between cells and extracellular space. Viruses are small intracellular parasites and thus rely on protein interactions to produce progeny inside host cells and to spread from cell to cell. Usage of host proteins by viruses can have severe consequences e.g. apoptosis, metabolic disequilibria, or altered cell proliferation and mobility. Understanding protein interactions during virus infection can thus educate us on viral infection and pathogenesis mechanisms. Moreover, it has led to important clinical translations, including the development of new therapeutic and vaccination strategies. Here, we will discuss protein interactions of members of the Flaviviridae family, which are small enveloped RNA viruses. Dengue virus, Zika virus and hepatitis C virus belong to the most prominent human pathogenic Flaviviridae. With a genome of roughly ten kilobases encoding only ten viral proteins, Flaviviridae display intricate mechanisms to engage the host cell machinery for their purpose. In this review, we will highlight how dengue virus, hepatitis C virus, Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus, yellow fever virus, and Zika virus proteins engage host proteins and how this knowledge helps elucidate Flaviviridae infection. We will specifically address the protein composition of the virus particle as well as the protein interactions during virus entry, replication, particle assembly, and release from the host cell. Finally, we will give a perspective on future challenges in Flaviviridae interaction proteomics and why we believe these challenges should be met. PMID:28077444
NASA Astrophysics Data System (ADS)
Sareen, Sanjay; Gupta, Sunil Kumar; Sood, Sandeep K.
2017-10-01
Zika virus is a mosquito-borne disease that spreads very quickly in different parts of the world. In this article, we proposed a system to prevent and control the spread of Zika virus disease using integration of Fog computing, cloud computing, mobile phones and the Internet of things (IoT)-based sensor devices. Fog computing is used as an intermediary layer between the cloud and end users to reduce the latency time and extra communication cost that is usually found high in cloud-based systems. A fuzzy k-nearest neighbour is used to diagnose the possibly infected users, and Google map web service is used to provide the geographic positioning system (GPS)-based risk assessment to prevent the outbreak. It is used to represent each Zika virus (ZikaV)-infected user, mosquito-dense sites and breeding sites on the Google map that help the government healthcare authorities to control such risk-prone areas effectively and efficiently. The proposed system is deployed on Amazon EC2 cloud to evaluate its performance and accuracy using data set for 2 million users. Our system provides high accuracy of 94.5% for initial diagnosis of different users according to their symptoms and appropriate GPS-based risk assessment.
Tatineni, Satyanarayana; Riethoven, Jean-Jack M.; Graybosch, Robert A.; French, Roy; Mitra, Amitava
2014-01-01
Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous and virus-derived small interfering RNAs (vsiRNAs) were examined in susceptible (‘Arapahoe’) and temperature-sensitive resistant (‘Mace’) wheat cultivars at 18°C and 27°C. Single and double infections in wheat caused a shift in the profile of endogenous small RNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Massive amounts of 21 and 22 nt vsiRNAs accumulated in singly and doubly infected Arapahoe at both temperatures and in Mace at 27°C but not 18°C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27°C, although some regions served as hot-spots, spawning an excessive number of vsiRNAs. The vsiRNA peaks were conserved among cultivars, suggesting that the Dicer-like enzymes in susceptible and resistant cultivars similarly accessed the genomic RNAs of WSMV or TriMV. Accumulation of large amounts of vsiRNAs in doubly infected plants suggests that the silencing suppressor proteins encoded by TriMV and WSMV do not prevent the formation of vsiRNAs; thus, the synergistic effect observed is independent from RNA-silencing mediated vsiRNA biogenesis. The high-resolution map of endogenous and vsiRNAs from WSMV- and/or TriMV-infected wheat cultivars may form a foundation for understanding the virus-host interactions, the effect of synergistic interactions on host defense, and virus resistance mechanisms in wheat. PMID:25365307
Tatineni, Satyanarayana; Riethoven, Jean-Jack M; Graybosch, Robert A; French, Roy; Mitra, Amitava
2014-01-01
Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous and virus-derived small interfering RNAs (vsiRNAs) were examined in susceptible ('Arapahoe') and temperature-sensitive resistant ('Mace') wheat cultivars at 18°C and 27°C. Single and double infections in wheat caused a shift in the profile of endogenous small RNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Massive amounts of 21 and 22 nt vsiRNAs accumulated in singly and doubly infected Arapahoe at both temperatures and in Mace at 27°C but not 18°C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27°C, although some regions served as hot-spots, spawning an excessive number of vsiRNAs. The vsiRNA peaks were conserved among cultivars, suggesting that the Dicer-like enzymes in susceptible and resistant cultivars similarly accessed the genomic RNAs of WSMV or TriMV. Accumulation of large amounts of vsiRNAs in doubly infected plants suggests that the silencing suppressor proteins encoded by TriMV and WSMV do not prevent the formation of vsiRNAs; thus, the synergistic effect observed is independent from RNA-silencing mediated vsiRNA biogenesis. The high-resolution map of endogenous and vsiRNAs from WSMV- and/or TriMV-infected wheat cultivars may form a foundation for understanding the virus-host interactions, the effect of synergistic interactions on host defense, and virus resistance mechanisms in wheat.
Gubala, Aneta; Walsh, Susan; McAllister, Jane; Weir, Richard; Davis, Steven; Melville, Lorna; Mitchell, Ian; Bulach, Dieter; Gauci, Penny; Skvortsov, Alex; Boyle, David
2017-01-01
Viruses of the family Rhabdoviridae infect a broad range of hosts from a variety of ecological and geographical niches, including vertebrates, arthropods, and plants. The arthropod-transmitted members of this family display considerable genetic diversity and remarkable genomic flexibility that enable coding for various accessory proteins in different locations of the genome. Here, we describe the genome of Holmes Jungle virus, isolated from Culex annulirostris mosquitoes collected in northern Australia, and make detailed comparisons with the closely related Ord River and Wongabel viruses, with a focus on identifying very small open reading frames (smORFs) in their genomes. This is the first systematic prediction of smORFs in rhabdoviruses, emphasising the intricacy of the rhabdovirus genome and the knowledge gaps. We speculate that these smORFs may be of importance to the life cycle of the virus in the arthropod vector. PMID:28747815
Characterization of Influenza Virus Pseudotyped with Ebolavirus Glycoprotein.
Xiao, Julie Huiyuan; Rijal, Pramila; Schimanski, Lisa; Tharkeshwar, Arun Kumar; Wright, Edward; Annaert, Wim; Townsend, Alain
2018-02-15
We have produced a new Ebola virus pseudotype, E-S-FLU, that can be handled in biosafety level 1/2 containment for laboratory analysis. The E-S-FLU virus is a single-cycle influenza virus coated with Ebolavirus glycoprotein, and it encodes enhanced green fluorescence protein as a reporter that replaces the influenza virus hemagglutinin. MDCK-SIAT1 cells were transduced to express Ebolavirus glycoprotein as a stable transmembrane protein for E-S-FLU virus production. Infection of cells with the E-S-FLU virus was dependent on the Niemann-Pick C1 protein, which is the well-characterized receptor for Ebola virus entry at the late endosome/lysosome membrane. The E-S-FLU virus was neutralized specifically by an anti-Ebolavirus glycoprotein antibody and a variety of small drug molecules that are known to inhibit the entry of wild-type Ebola virus. To demonstrate the application of this new Ebola virus pseudotype, we show that a single laboratory batch was sufficient to screen a library (LOPAC 1280 ; Sigma) of 1,280 pharmacologically active compounds for inhibition of virus entry. A total of 215 compounds inhibited E-S-FLU virus infection, while only 22 inhibited the control H5-S-FLU virus coated in H5 hemagglutinin. These inhibitory compounds have very dispersed targets and mechanisms of action, e.g., calcium channel blockers, estrogen receptor antagonists, antihistamines, serotonin uptake inhibitors, etc., and this correlates with inhibitor screening results obtained with other pseudotypes or wild-type Ebola virus in the literature. The E-S-FLU virus is a new tool for Ebola virus cell entry studies and is easily applied to high-throughput screening assays for small-molecule inhibitors or antibodies. IMPORTANCE Ebola virus is in the Filoviridae family and is a biosafety level 4 pathogen. There are no FDA-approved therapeutics for Ebola virus. These characteristics warrant the development of surrogates for Ebola virus that can be handled in more convenient laboratory containment to study the biology of the virus and screen for inhibitors. Here we characterized a new surrogate, named E-S-FLU virus, that is based on a disabled influenza virus core coated with the Ebola virus surface protein but does not contain any genetic information from the Ebola virus itself. We show that E-S-FLU virus uses the same cell entry pathway as wild-type Ebola virus. As an example of the ease of use of E-S-FLU virus in biosafety level 1/2 containment, we showed that a single production batch could provide enough surrogate virus to screen a standard small-molecule library of 1,280 candidates for inhibitors of viral entry. © Crown copyright 2018.
Characterization of Influenza Virus Pseudotyped with Ebolavirus Glycoprotein
Xiao, Julie Huiyuan; Rijal, Pramila; Schimanski, Lisa; Tharkeshwar, Arun Kumar; Wright, Edward; Annaert, Wim
2017-01-01
ABSTRACT We have produced a new Ebola virus pseudotype, E-S-FLU, that can be handled in biosafety level 1/2 containment for laboratory analysis. The E-S-FLU virus is a single-cycle influenza virus coated with Ebolavirus glycoprotein, and it encodes enhanced green fluorescence protein as a reporter that replaces the influenza virus hemagglutinin. MDCK-SIAT1 cells were transduced to express Ebolavirus glycoprotein as a stable transmembrane protein for E-S-FLU virus production. Infection of cells with the E-S-FLU virus was dependent on the Niemann-Pick C1 protein, which is the well-characterized receptor for Ebola virus entry at the late endosome/lysosome membrane. The E-S-FLU virus was neutralized specifically by an anti-Ebolavirus glycoprotein antibody and a variety of small drug molecules that are known to inhibit the entry of wild-type Ebola virus. To demonstrate the application of this new Ebola virus pseudotype, we show that a single laboratory batch was sufficient to screen a library (LOPAC1280; Sigma) of 1,280 pharmacologically active compounds for inhibition of virus entry. A total of 215 compounds inhibited E-S-FLU virus infection, while only 22 inhibited the control H5-S-FLU virus coated in H5 hemagglutinin. These inhibitory compounds have very dispersed targets and mechanisms of action, e.g., calcium channel blockers, estrogen receptor antagonists, antihistamines, serotonin uptake inhibitors, etc., and this correlates with inhibitor screening results obtained with other pseudotypes or wild-type Ebola virus in the literature. The E-S-FLU virus is a new tool for Ebola virus cell entry studies and is easily applied to high-throughput screening assays for small-molecule inhibitors or antibodies. IMPORTANCE Ebola virus is in the Filoviridae family and is a biosafety level 4 pathogen. There are no FDA-approved therapeutics for Ebola virus. These characteristics warrant the development of surrogates for Ebola virus that can be handled in more convenient laboratory containment to study the biology of the virus and screen for inhibitors. Here we characterized a new surrogate, named E-S-FLU virus, that is based on a disabled influenza virus core coated with the Ebola virus surface protein but does not contain any genetic information from the Ebola virus itself. We show that E-S-FLU virus uses the same cell entry pathway as wild-type Ebola virus. As an example of the ease of use of E-S-FLU virus in biosafety level 1/2 containment, we showed that a single production batch could provide enough surrogate virus to screen a standard small-molecule library of 1,280 candidates for inhibitors of viral entry. PMID:29212933
Uner, Aysegul; Akyurek, Nalan; Saglam, Arzu; Abdullazade, Samir; Uzum, Nuket; Onder, Sevgen; Barista, Ibrahim; Benekli, Mustafa
2011-04-01
Accumulated evidence has shown the importance of Epstein-Barr virus in the pathogenesis of various lymphomas. This study aimed to determine the prevalence of Epstein-Barr virus expression and its effect on survival amongst diffuse large B-cell lymphoma (DLBCL) cases from two large tertiary care centres in Turkey with a particular interest in identifying cases of 'Epstein-Barr virus-positive DLBCL of the elderly'. Diffuse large B-cell lymphoma cases diagnosed between 1999 and 2009 were retrieved and 340 cases were used to construct tissue microarrays. The presence of Epstein-Barr virus small ribonucleic acids was examined by in situ hybridization using Epstein-Barr virus (EBV)-encoded small RNA (EBER) oligonucleotides. A total of 18 cases (5.3%) showed Epstein-Barr virus expression. Twelve cases were classified as Epstein-Barr virus-positive DLBCL of the elderly. Epstein-Barr virus-positive DLBCL cases showed a significantly inferior overall survival as compared with Epstein-Barr virus-negative cases (p < 0.001). In our study group Epstein-Barr virus expression is not prevalent in DLBCLs. Epstein-Barr virus-positive DLBCL of the elderly is also rare in the Turkish population. The presence of Epstein-Barr virus, however, is associated with poor prognosis. © 2011 The Authors. APMIS © 2011 APMIS.
Post-exposure treatments for Ebola and Marburg virus infections.
Cross, Robert W; Mire, Chad E; Feldmann, Heinz; Geisbert, Thomas W
2018-06-01
The filoviruses - Ebola virus and Marburg virus - cause lethal haemorrhagic fever in humans and non-human primates (NHPs). Filoviruses present a global health threat both as naturally acquired diseases and as potential agents of bioterrorism. In the recent 2013-2016 outbreak of Ebola virus, the most promising therapies for post-exposure use with demonstrated efficacy in the gold-standard NHP models of filovirus disease were unable to show statistically significant protection in patients infected with Ebola virus. This Review briefly discusses these failures and what has been learned from these experiences, and summarizes the current status of post-exposure medical countermeasures in development, including antibodies, small interfering RNA and small molecules. We outline how our current knowledge could be applied to the identification of novel interventions and ways to use interventions more effectively.
Research on computer virus database management system
NASA Astrophysics Data System (ADS)
Qi, Guoquan
2011-12-01
The growing proliferation of computer viruses becomes the lethal threat and research focus of the security of network information. While new virus is emerging, the number of viruses is growing, virus classification increasing complex. Virus naming because of agencies' capture time differences can not be unified. Although each agency has its own virus database, the communication between each other lacks, or virus information is incomplete, or a small number of sample information. This paper introduces the current construction status of the virus database at home and abroad, analyzes how to standardize and complete description of virus characteristics, and then gives the information integrity, storage security and manageable computer virus database design scheme.
Liu, Fang-zhou; Shi, Han; Shi, Yu-jing; Liu, Ying; Jin, Ya-hong; Gao, Ying-jie; Guo, Shan-shan; Cui, Xiao-lan
2010-03-01
It is to investigate the effect of two kinds of Houttuynia Cordata Injection on preventing and treating H1N1 influenza virus infection in mice. Pneumonia model was set up by intranasal infection of the normal and immunocompromised mice with influenza virus FM1 and PR8. The two injections were administered before and after the administration of virus, separately, and the lung index was observed. The results showed that the two preparations have obvious therapeutic effect on normal mice infected with influenza virus FM1 and PR8. And to FM1, the new injection's effect is better at small dosage. The results also showed that the two preparations have obvious prophylactic effect on immunodepressed mice infected with influenza virus FM1 and PR8. And to PR8, the old injection's effect is better at small dosage. Houttuynia Cordata Injection can improve the mice pneumonia caused by influenza virus H1N1 and decrease the lung index markedly. It has a remarkable preventive and therapeutic effect on H1N1 influenza virus in mice.
USDA-ARS?s Scientific Manuscript database
Serological diagnostic testing of sheep and goats using enzyme immunosorbent assays (ELISAs) is the most common method of determining small ruminant lentivirus (SRLV) infection. A caprine arthritis-encephalitis virus (CAEV)/maedi-visna virus (MVV) indirect (i) ELISA, which utilizes MVV EV1 capsid a...
Photoacoustics of disperse systems: Below cavitation threshold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerev, Sergey; Ovchinnikov, Oleg
2012-05-24
The paper considers photoacoustic (PA) conversion while irradiating suspensions in extra-small volume probes with laser pulses having small fluence values. Only linear and nonlinear thermooptical laser sound generation regimes were observed. Thus, good repeatability of acoustic signal parameters informative about probe content was achieved. The experiment conducted has shown how one can avoid the decrease of particles detection sensitivity for the thermooptical mode.
ERIC Educational Resources Information Center
Bergee, Martin J.; Westfall, Claude R.
2005-01-01
This is the third study in a line of inquiry whose purpose has been to develop a theoretical model of selected extra musical variables' influence on solo and small-ensemble festival ratings. Authors of the second of these (Bergee & McWhirter, 2005) had used binomial logistic regression as the basis for their model-formulation strategy. Their…
"Smaller Schools Are Good"...It Depends!
ERIC Educational Resources Information Center
Hill, Franklin
2001-01-01
Analyzes three high school sizes: 400-student "Private" school (small), 1,600-student school (medium), and 3,000-plus-student school (extra large). Uses four factors in comparative analysis: Equity, anonymity, program quality, and cost efficiency. (PKP)
Update on imaging of Peutz-Jeghers syndrome
Tomas, Catherine; Soyer, Philippe; Dohan, Anthony; Dray, Xavier; Boudiaf, Mourad; Hoeffel, Christine
2014-01-01
Peutz-Jeghers syndrome (PJS) is a rare, autosomal dominant disease linked to a mutation of the STK 11 gene and is characterized by the development of benign hamartomatous polyps in the gastrointestinal tract in association with a hyperpigmentation on the lips and oral mucosa. Patients affected by PJS have an increased risk of developing gastrointestinal and extra-digestive cancer. Malignancy most commonly occurs in the small-bowel. Extra-intestinal malignancies are mostly breast cancer and gynecological tumors or, to a lesser extent, pancreatic cancer. These polyps are also at risk of acute gastrointestinal bleeding, intussusception and bowel obstruction. Recent guidelines recommend regular small-bowel surveillance to reduce these risks associated with PJS. Small-bowel surveillance allows for the detection of large polyps and the further referral of selected PJS patients for endoscopic enteroscopy or surgery. Video capsule endoscopy, double balloon pushed enteroscopy, multidetector computed tomography and magnetic resonance enteroclysis or enterography, all of which are relatively new techniques, have an important role in the management of patients suffering from PJS. This review illustrates the pathological, clinical and imaging features of small-bowel abnormalities as well as the role and performance of the most recent imaging modalities for the detection and follow-up of PJS patients. PMID:25152588
Macrae, J C; Smith, J S; Dewey, P J; Brewer, A C; Brown, D S; Walker, A
1985-07-01
Three experiments were conducted with sheep given spring-harvested dried grass (SHG) and autumn-harvested dried grass (AHG). The first was a calorimetric trial to determine the metabolizable energy (ME) content of each grass and the efficiency with which sheep utilize their extra ME intakes above the maintenance level of intake. The second examined the relative amounts of extra non-ammonia-nitrogen (NAN) and individual amino acids absorbed from the small intestine per unit extra ME intake as the level of feeding was raised from energy equilibrium (M) to approximately 1.5 M. The third was a further calorimetric trial to investigate the effect of an abomasal infusion of 30 g casein/d on the efficiency of utilization of AHG. The ME content of the SHG (11.8 MJ/kg dry matter (DM] was higher than that of AHG (10.0 MJ/kg DM). The efficiency of utilization of ME for productive purposes (i.e. above the M level of intake; kf) was higher when given SHG (kf 0.54 between M and 2 M) than when given AHG (kf 0.43 between M and 2 M). As the level of intake of each grass was raised from M to 1.5 M there was a greater increment in the amounts of NAN (P less than 0.001) and the total amino acid (P less than 0.05) absorbed from the small intestines when sheep were given the SHG (NAN absorption, SHG 5.4 g/d, AHG 1.5 g/d, SED 0.54; total amino acid absorption SHG 31.5 g/d, AHG 14.3 g/d, SED 5.24). Infusion of 30 g casein/d per abomasum of sheep given AHG at M and 1.5 M levels of intake increased (P less than 0.05) the efficiency of utilization of the herbage from kf 0.45 to kf 0.57. Consideration is given to the possibility that the higher efficiency of utilization of ME in sheep given SHG may be related to the amounts of extra glucogenic amino acids absorbed from the small intestine which provide extra reducing equivalents (NADPH) and glycerol phosphate necessary for the conversion of acetate into fatty acids.
Deviations from Newton's law in supersymmetric large extra dimensions
NASA Astrophysics Data System (ADS)
Callin, P.; Burgess, C. P.
2006-09-01
Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case.
Strategies for Choosing Descent Flight-Path Angles for Small Jets
NASA Technical Reports Server (NTRS)
Wu, Minghong Gilbert; Green, Steven M.
2012-01-01
Three candidate strategies for choosing the descent flight path angle (FPA) for small jets are proposed, analyzed, and compared for fuel efficiency under arrival metering conditions. The strategies vary in operational complexity from a universally fixed FPA, or FPA function that varies with descent speed for improved fuel efficiency, to the minimum-fuel FPA computed for each flight based on winds, route, and speed profile. Methodologies for selecting the parameter for the first two strategies are described. The differences in fuel burn are analyzed over a year s worth of arrival traffic and atmospheric conditions recorded for the Dallas/Fort Worth (DFW) Airport during 2011. The results show that the universally fixed FPA strategy (same FPA for all flights, all year) burns on average 26 lbs more fuel per flight as compared to the minimum-fuel solution. This FPA is adapted to the arrival gate (direction of entry to the terminal) and various timespans (season, month and day) to improve fuel efficiency. Compared to a typical FPA of approximately 3 degrees the adapted FPAs vary significantly, up to 1.3 from one arrival gate to another or up to 1.4 from one day to another. Adapting the universally fixed FPA strategy to the arrival gate or to each day reduces the extra fuel burn relative to the minimum-fuel solution by 27% and 34%, respectively. The adaptations to gate and time combined shows up to 57% reduction of the extra fuel burn. The second strategy, an FPA function, contributes a 17% reduction in the 26 lbs of extra fuel burn over the universally fixed FPA strategy. Compared to the corresponding adaptations of the universally fixed FPA, adaptations of the FPA function reduce the extra fuel burn anywhere from 15-23% depending on the extent of adaptation. The combined effect of the FPA function strategy with both directional and temporal adaptation recovers 67% of the extra fuel relative to the minimum-fuel solution.
Influenza in long-term care facilities.
Lansbury, Louise E; Brown, Caroline S; Nguyen-Van-Tam, Jonathan S
2017-09-01
Long-term care facility environments and the vulnerability of their residents provide a setting conducive to the rapid spread of influenza virus and other respiratory pathogens. Infections may be introduced by staff, visitors or new or transferred residents, and outbreaks of influenza in such settings can have devastating consequences for individuals, as well as placing extra strain on health services. As the population ages over the coming decades, increased provision of such facilities seems likely. The need for robust infection prevention and control practices will therefore remain of paramount importance if the impact of outbreaks is to be minimised. In this review, we discuss the nature of the problem of influenza in long-term care facilities, and approaches to preventive and control measures, including vaccination of residents and staff, and the use of antiviral drugs for treatment and prophylaxis, based on currently available evidence. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,
da Silveira, Roberta; Vágula, Julianna Matias; de Lima Figueiredo, Ingrid; Claus, Thiago; Galuch, Marilia Bellanda; Santos Junior, Oscar Oliveira; Visentainer, Jesui Vergilio
2017-12-01
Fast and innovative methodology to monitors the addition of soybean oil in extra virgin olive oil was developed employing ESI-MS with ionization operating in positive mode. A certified extra virgin olive oil and refined soybean oil samples were analyzed by direct infusion, the identification of a natural lipid marker present only in soybean oil (m/z 886.68 [TAG+NH 4 ] + ) was possible. The certified extra virgin olive oil was purposely adulterated with soybean oil in different levels (1, 5, 10, 20, 50, 70, 90%) being possible to observe that the new methodology is able to detect even small fraud concentration, such as 1% (v/v). Additionally, commercial samples were analyzed and were observed the addition of soybean oil as a common fraud in this segment. This powerful analytical method proposed could be applied as routine analysis by control organization, as well as food industries, considering its pronounced advantages; simplicity, rapidity, elevated detectability and minor amounts of sample and solvent consumed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Identification and Characterization of a Novel Broad-Spectrum Virus Entry Inhibitor
Chou, Yi-ying; Cuevas, Christian; Carocci, Margot; Stubbs, Sarah H.; Ma, Minghe; Cureton, David K.; Evesson, Frances; He, Kangmin; Yang, Priscilla L.; Whelan, Sean P.
2016-01-01
ABSTRACT Virus entry into cells is a multistep process that often requires the subversion of subcellular machineries. A more complete understanding of these steps is necessary to develop new antiviral strategies. While studying the potential role of the actin network and one of its master regulators, the small GTPase Cdc42, during Junin virus (JUNV) entry, we serendipitously uncovered the small molecule ZCL278, reported to inhibit Cdc42 function as an entry inhibitor for JUNV and for vesicular stomatitis virus, lymphocytic choriomeningitis virus, and dengue virus but not for the nonenveloped poliovirus. Although ZCL278 did not interfere with JUNV attachment to the cell surface or virus particle internalization into host cells, it prevented the release of JUNV ribonucleoprotein cores into the cytosol and decreased pH-mediated viral fusion with host membranes. We also identified SVG-A astroglial cell-derived cells to be highly permissive for JUNV infection and generated new cell lines expressing fluorescently tagged Rab5c or Rab7a or lacking Cdc42 using clustered regularly interspaced short palindromic repeat (CRISPR)-caspase 9 (Cas9) gene-editing strategies. Aided by these tools, we uncovered that perturbations in the actin cytoskeleton or Cdc42 activity minimally affect JUNV entry, suggesting that the inhibitory effect of ZCL278 is not mediated by ZCL278 interfering with the activity of Cdc42. Instead, ZCL278 appears to redistribute viral particles from endosomal to lysosomal compartments. ZCL278 also inhibited JUNV replication in a mouse model, and no toxicity was detected. Together, our data suggest the unexpected antiviral activity of ZCL278 and highlight its potential for use in the development of valuable new tools to study the intracellular trafficking of pathogens. IMPORTANCE The Junin virus is responsible for outbreaks of Argentine hemorrhagic fever in South America, where 5 million people are at risk. Limited options are currently available to treat infections by Junin virus or other viruses of the Arenaviridae, making the identification of additional tools, including small-molecule inhibitors, of great importance. How Junin virus enters cells is not yet fully understood. Here we describe new cell culture models in which the cells are susceptible to Junin virus infection and to which we applied CRISPR-Cas9 genome engineering strategies to help characterize early steps during virus entry. We also uncovered ZCL278 to be a new antiviral small molecule that potently inhibits the cellular entry of the Junin virus and other enveloped viruses. Moreover, we show that ZCL278 also functions in vivo, thereby preventing Junin virus replication in a mouse model, opening the possibility for the discovery of ZCL278 derivatives of therapeutic potential. PMID:26912630
Sensitivity of Small RNA-Based Detection of Plant Viruses.
Santala, Johanna; Valkonen, Jari P T
2018-01-01
Plants recognize unrelated viruses by the antiviral defense system called RNA interference (RNAi). RNAi processes double-stranded viral RNA into small RNAs (sRNAs) of 21-24 nucleotides, the reassembly of which into longer strands in silico allows virus identification by comparison with the sequences available in databases. The aim of this study was to compare the virus detection sensitivity of sRNA-based virus diagnosis with the established virus species-specific polymerase chain reaction (PCR) approach. Viruses propagated in tobacco plants included three engineered, infectious clones of Potato virus A (PVA), each carrying a different marker gene, and an infectious clone of Potato virus Y (PVY). Total RNA (containing sRNA) was isolated and subjected to reverse-transcription real-time PCR (RT-RT-PCR) and sRNA deep-sequencing at different concentrations. RNA extracted from various crop plants was included in the reactions to normalize RNA concentrations. Targeted detection of selected viruses showed a similar threshold for the sRNA and reverse-transcription quantitative PCR (RT-qPCR) analyses. The detection limit for PVY and PVA by RT-qPCR in this study was 3 and 1.5 fg of viral RNA, respectively, in 50 ng of total RNA per PCR reaction. When knowledge was available about the viruses likely present in the samples, sRNA-based virus detection was 10 times more sensitive than RT-RT-PCR. The advantage of sRNA analysis is the detection of all tested viruses without the need for virus-specific primers or probes.
Matsumura, Emilyn E; Nerva, Luca; Nigg, Jared C; Falk, Bryce W; Nouri, Shahideh
2016-09-08
A novel flavi-like virus tentatively named Diaphorina citri flavi-like virus (DcFLV) was identified in field populations of Diaphorina citri through small RNA and transcriptome sequencing followed by reverse transcription (RT)-PCR. We report here the complete nucleotide sequence and genome organization of DcFLV, the largest flavi-like virus identified to date. Copyright © 2016 Matsumura et al.
Protein Interactions during the Flavivirus and Hepacivirus Life Cycle.
Gerold, Gisa; Bruening, Janina; Weigel, Bettina; Pietschmann, Thomas
2017-04-01
Protein-protein interactions govern biological functions in cells, in the extracellular milieu, and at the border between cells and extracellular space. Viruses are small intracellular parasites and thus rely on protein interactions to produce progeny inside host cells and to spread from cell to cell. Usage of host proteins by viruses can have severe consequences e.g. apoptosis, metabolic disequilibria, or altered cell proliferation and mobility. Understanding protein interactions during virus infection can thus educate us on viral infection and pathogenesis mechanisms. Moreover, it has led to important clinical translations, including the development of new therapeutic and vaccination strategies. Here, we will discuss protein interactions of members of the Flaviviridae family, which are small enveloped RNA viruses. Dengue virus, Zika virus and hepatitis C virus belong to the most prominent human pathogenic Flaviviridae With a genome of roughly ten kilobases encoding only ten viral proteins, Flaviviridae display intricate mechanisms to engage the host cell machinery for their purpose. In this review, we will highlight how dengue virus, hepatitis C virus, Japanese encephalitis virus, tick-borne encephalitis virus, West Nile virus, yellow fever virus, and Zika virus proteins engage host proteins and how this knowledge helps elucidate Flaviviridae infection. We will specifically address the protein composition of the virus particle as well as the protein interactions during virus entry, replication, particle assembly, and release from the host cell. Finally, we will give a perspective on future challenges in Flaviviridae interaction proteomics and why we believe these challenges should be met. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Natural reservoirs for homologs of hepatitis C virus
Pfaender, Stephanie; Brown, Richard JP; Pietschmann, Thomas; Steinmann, Eike
2014-01-01
Hepatitis C virus is considered a major public health problem, infecting 2%–3% of the human population. Hepatitis C virus infection causes acute and chronic liver disease, including chronic hepatitis, cirrhosis and hepatocellular carcinoma. In fact, hepatitis C virus infection is the most frequent indication for liver transplantation and a vaccine is not available. Hepatitis C virus displays a narrow host species tropism, naturally infecting only humans, although chimpanzees are also susceptible to experimental infection. To date, there is no evidence for an animal reservoir of viruses closely related to hepatitis C virus which may have crossed the species barrier to cause disease in humans and resulted in the current pandemic. In fact, due to this restricted host range, a robust immunocompetent small animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control and prophylactic vaccine development. Recently, several studies discovered new viruses related to hepatitis C virus, belonging to the hepaci- and pegivirus genera, in small wild mammals (rodents and bats) and domesticated animals which live in close contact with humans (dogs and horses). Genetic and biological characterization of these newly discovered hepatitis C virus-like viruses infecting different mammals will contribute to our understanding of the origins of hepatitis C virus in humans and enhance our ability to study pathogenesis and immune responses using tractable animal models. In this review article, we start with an introduction on the genetic diversity of hepatitis C virus and then focus on the newly discovered viruses closely related to hepatitis C virus. Finally, we discuss possible theories about the origin of this important viral human pathogen. PMID:26038514
Lima, Hildenêr Nogueira; Botosso, Viviane Fongaro; Oliveira, Danielle Bruna Leal; Campos, Angélica Cristine de Almeida; Leal, Andrea Lima; Silva, Tereza Souza; Bosso, Patrícia Alves Ramos; Moraes, Claudia Trigo Pedroso; Filho, Claudionor Gomes da Silva; Vieira, Sandra Elisabete; Gilio, Alfredo Elias; Stewien, Klaus Eberhard; Durigon, Edison Luiz
2012-01-01
Human respiratory syncytial virus (HRSV) strains were isolated from nasopharyngeal aspirates collected from 965 children between 2004 and 2005, yielding 424 positive samples. We sequenced the small hydrophobic protein (SH) gene of 117 strains and compared them with other viruses identified worldwide. Phylogenetic analysis showed a low genetic variability among the isolates but allowed us to classify the viruses into different genotypes for both groups, HRSVA and HRSVB. It is also shown that the novel BA-like genotype was well segregated from the others, indicating that the mutations are not limited to the G gene. Copyright © 2011 Elsevier B.V. All rights reserved.
Silva, Tatiane F; Romanel, Elisson A C; Andrade, Roberto R S; Farinelli, Laurent; Østerås, Magne; Deluen, Cécile; Corrêa, Régis L; Schrago, Carlos E G; Vaslin, Maite F S
2011-08-24
In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.
Near-Complete Genome Sequence of a Novel Single-Stranded RNA Virus Discovered in Indoor Air
2018-01-01
ABSTRACT Viral metagenomic analysis of heating, ventilation, and air conditioning (HVAC) filters recovered the near-complete genome sequence of a novel virus, named HVAC-associated RNA virus 1 (HVAC-RV1). The HVAC-RV1 genome is most similar to those of picorna-like viruses identified in arthropods but encodes a small domain observed only in negative-sense single-stranded RNA viruses. PMID:29567746
Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.
1985-07-01
small percentage of engorging mosquitoes became infected. To determine if Fc receptors might be a determinate of virus infection of midgut cells, blood...somehow alter glycoprotein conformation rendering the virus less capable of interacting with midgut cell receptors , 2) virus in cells might be protected...virus preparations are known to be much less efficient than a viresic host in mediating midgut infection. The artificial meal must be several logs
Demographic mechanisms of inbreeding adjustment through extra-pair reproduction.
Reid, Jane M; Duthie, A Bradley; Wolak, Matthew E; Arcese, Peter
2015-07-01
One hypothesis explaining extra-pair reproduction is that socially monogamous females mate with extra-pair males to adjust the coefficient of inbreeding (f) of extra-pair offspring (EPO) relative to that of within-pair offspring (WPO) they would produce with their socially paired male. Such adjustment of offspring f requires non-random extra-pair reproduction with respect to relatedness, which is in turn often assumed to require some mechanism of explicit pre-copulatory or post-copulatory kin discrimination. We propose three demographic processes that could potentially cause mean f to differ between individual females' EPO and WPO given random extra-pair reproduction with available males without necessarily requiring explicit kin discrimination. Specifically, such a difference could arise if social pairings formed non-randomly with respect to relatedness or persisted non-randomly with respect to relatedness, or if the distribution of relatedness between females and their sets of potential mates changed during the period through which social pairings persisted. We used comprehensive pedigree and pairing data from free-living song sparrows (Melospiza melodia) to quantify these three processes and hence investigate how individual females could adjust mean offspring f through instantaneously random extra-pair reproduction. Female song sparrows tended to form social pairings with unrelated or distantly related males slightly less frequently than expected given random pairing within the defined set of available males. Furthermore, social pairings between more closely related mates tended to be more likely to persist across years than social pairings between less closely related mates. However, these effects were small and the mean relatedness between females and their sets of potential extra-pair males did not change substantially across the years through which social pairings persisted. Our framework and analyses illustrate how demographic and social structuring within populations might allow females to adjust mean f of offspring through random extra-pair reproduction without necessarily requiring explicit kin discrimination, implying that adjustment of offspring f might be an inevitable consequence of extra-pair reproduction. New theoretical and empirical studies are required to explore the general magnitude of such effects and quantify the degree to which they could facilitate or constrain long-term evolution of extra-pair reproduction. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
[Auto-dialysis: an 11-year experience of a hemodialysis center in France].
Montagnac, R; Schillinger, F
1996-03-30
Report 11 years of experience with self-managed hemodialysis in patients medically apt for extra-hospital dialysis and living close enough to small outpatient hemodialysis units to become totally self-sufficient. Among the 276 patients with chronic renal failure managed at the hemodialysis center at the Troyes hospital during the 11-year study period from 1984 through 1994, self-managed hemodialysis at small outpatient units was initiated in 127 (46%). None of these 127 patients required medical assistance or specific care during dialysis sessions. At initial hospital admission, only 60/127 (47%) were totally self-sufficient: 52 (41%) were later graft recipients; and 21 (16.5%) had to return to the hospital for a medical or surgical condition incompatible with extra-hospital care but all of these 21 patients remained self-sufficient. Extra-hospital hemodialysis in units close to the patients residence offers patients a better quality of life, even when medical assistance is required. All patients who require hemodialysis can thus be treated at lower cost without compromising quality of treatment. Perfect self-sufficiency may not be a goal in itself, but self-managed hemodialysis can be a very useful technique for patients without major medical problems. Continuing contact with the organizing hemodialysis center guarantees the safety of the system.
Medically important arboviruses of the United States and Canada.
Calisher, C H
1994-01-01
Of more than 500 arboviruses recognized worldwide, 5 were first isolated in Canada and 58 were first isolated in the United States. Six of these viruses are human pathogens: western equine encephalitis (WEE) and eastern equine encephalitis (EEE) viruses (family Togaviridae, genus Alphavirus), St. Louis encephalitis (SLE) and Powassan (POW) viruses (Flaviviridae, Flavivirus), LaCrosse (LAC) virus (Bunyaviridae, Bunyavirus), and Colorado tick fever (CTF) virus (Reoviridae, Coltivirus). Their scientific histories, geographic distributions, virology, epidemiology, vectors, vertebrate hosts, transmission, pathogenesis, clinical and differential diagnoses, control, treatment, and laboratory diagnosis are reviewed. In addition, mention is made of the Venezuelan equine encephalitis (VEE) complex viruses (family Togaviridae, genus Alphavirus), which periodically cause human and equine disease in North America. WEE, EEE, and SLE viruses are transmitted by mosquitoes between birds; POW and CTF viruses, between wild mammals by ticks; LAC virus, between small mammals by mosquitoes; and VEE viruses, between small or large mammals by mosquitoes. Human infections are tangential to the natural cycle. Such infections range from rare to focal but are relatively frequent where they occur. Epidemics of WEE, EEE, VEE, and SLE viruses have been recorded at periodic intervals, but prevalence of infections with LAC and CTF viruses typically are constant, related to the degree of exposure to infected vectors. Infections with POW virus appear to be rare. Adequate diagnostic tools are available, but treatment is mainly supportive, and greater efforts at educating the public and the medical community are suggested if infections are to be prevented. PMID:8118792
A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations
Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Beekman, Madeleine; Ashe, Alyson
2017-01-01
ABSTRACT Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa. This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales. Collapsing Varroa-infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa-resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator. PMID:28515299
A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations.
Remnant, Emily J; Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Holmes, Edward C; Beekman, Madeleine; Ashe, Alyson
2017-08-15
Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees ( Apis mellifera ) has changed dramatically since the emergence of the parasitic mite Varroa destructor , which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales Collapsing Varroa -infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa- resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator. Copyright © 2017 Remnant et al.
ICTV virus taxonomy profile: iflaviridae
USDA-ARS?s Scientific Manuscript database
Iflaviridae is a family of small non-enveloped viruses with RNA genomes of approximately 9-11 kilobases in length. All members infect arthropod hosts with the majority infecting insects. Beneficial and pest insects serve as hosts and infections can be symptomless (Nilaparvata lugens honeydew virus 1...
USDA-ARS?s Scientific Manuscript database
Small ruminant lentivirus (SRLV), also called ovine progressive pneumonia virus or maedi-visna, is present in 24% of U.S. sheep. Like human immunodeficiency virus, SRLV is a macrophage-tropic lentivirus that causes lifelong infection. The production impacts from SRLV are due to a range of disease sy...
Using small RNA deep sequencing data to detect siRNA duplexes induced by plant viruses
USDA-ARS?s Scientific Manuscript database
Small interfering RNA (siRNA) duplexes are produced in plants during virus infection, which are short (usually 21 to 24-base pair) double-stranded RNAs (dsRNAs) with several overhanging nucleotides on the 5' end and 3' end. The investigation of the siRNA duplexes is useful to better understand the R...
Ogen-Odoi, A; Miller, B R; Happ, C M; Maupin, G O; Burkot, T R
1999-03-01
Small wild vertebrates were trapped during an investigation into possible vertebrate reservoirs of o'nyong-nyong (ONN) fever virus in Uganda in 1997. Antibody neutralization test results and virus isolation attempts were negative for ONN virus, confirming the work of earlier investigators, who also failed to find evidence for a nonhuman ONN virus reservoir. In the course of these ONN virus studies, Thogoto virus was isolated from one of eight banded mongooses (Mongos mungo). This is the first isolation of Thogoto virus from a wild vertebrate. Neutralizing antibodies to Thogoto virus were also found in two of the other mongooses.
Allain, J-P; Anokwa, M; Casbard, A; Owusu-Ofori, S; Dennis-Antwi, J
2004-11-01
Ghana is one of the countries of sub-Saharan Africa where the human immunodeficiency virus (HIV) prevalence in blood donors ranges between 1 and 4%. Considering the social importance of religion and the very high level of religious practice observed in Ghana, the hypothesis that these factors may play a role in containing HIV was tested. Consenting HIV-infected candidate blood donors, and two age- and gender-matched seronegative control donors, were asked to complete a questionnaire regarding their religious and sexual behaviour. Multivariable conditional logistic regression was used. Irrespective of their HIV status or religion, 95% of the respondents believed that extra-marital sex was a sin, and 79% of those tempted to have an extra-marital affair considered that their religious beliefs helped them to abstain. In the multivariable models, having a formal role in church activities was associated with reduced odds of HIV [odds ratio (OR) = 0.41; 95% confidence interval (CI): 0.21-0.80]. Worshipping at the same location for more than 20 years was associated with a reduced risk (OR = 0.30; 95% CI: 0.08-1.10). In addition to other factors limiting HIV spread, such as male circumcision, relatively high level of education and an absence of armed conflicts in Ghana, the use of condoms conferred a reduced risk. An active role in religion, and reporting a lengthy duration of worship at the same place was beneficial. Collecting blood at places of worship with a strict behavioural code and from donors practicing in the community of their birth might improve blood safety.
Acosta, D; Affolder, T; Akimoto, H; Albrow, M G; Ambrose, D; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bolla, G; Bonushkin, Y; Bortoletto, D; Boudreau, J; Brandl, A; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M-T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Clark, A G; Coca, M; Colijn, A P; Connolly, A; Convery, M; Conway, J; Cordelli, M; Cranshaw, J; Culbertson, R; Dagenhart, D; D'Auria, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; Derwent, P F; Devlin, T; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, T; Dunietz, I; Eddy, N; Einsweiler, K; Engels, E; Erbacher, R; Errede, D; Errede, S; Fan, Q; Fang, H-C; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Flores-Castillo, L R; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Frisch, H J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Gerstein, E; Giannetti, P; Giolo, K; Giordani, M; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldstein, J; Gomez, G; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Grim, G; Grosso-Pilcher, C; Guenther, M; Guillian, G; Guimaraes da Costa, J; Haas, R M; Haber, C; Hahn, S R; Hall, C; Handa, T; Handler, R; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hill, C; Hocker, A; Hoffman, K D; Hollebeek, R; Holloway, L; Huffman, B T; Hughes, R; Huston, J; Huth, J; Ikeda, H; Incandela, J; Introzzi, G; Ivanov, A; Iwai, J; Iwata, Y; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karagoz Unel, M; Karr, K; Kartal, S; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kovacs, E; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Le, Y; Lee, K; Lee, S W; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, T; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N S; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Manca, G; Mariotti, M; Martignon, G; Martin, M; Martin, A; Martin, V; Matthews, J A J; Mazzanti, P; McFarland, K S; McIntyre, P; Menguzzato, M; Menzione, A; Merkel, P; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Miyazaki, Y; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Napora, R; Nelson, C; Nelson, T; Neu, C; Neuberger, D; Newman-Holmes, C; Ngan, C-Y P; Nigmanov, T; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Onyisi, P U E; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Pescara, L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Pratt, T; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rademacker, J; Rakitine, A; Ratnikov, F; Reher, D; Reichold, A; Renton, P; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Roy, A; Ruiz, A; Safonov, A; St Denis, R; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sato, H; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M; Sidoti, A; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Spezziga, M; Sphicas, P; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P; Tanaka, M; Tannenbaum, B; Tecchio, M; Tesarek, R J; Teng, P K; Terashi, K; Tether, S; Thompson, A S; Thomson, E; Thurman-Keup, R; Tipton, P; Tkaczyk, S; Toback, D; Tollefson, K; Tollestrup, A; Tonelli, D; Tonnesmann, M; Toyoda, H; Trischuk, W; de Troconiz, J F; Tseng, J; Tsybychev, D; Turini, N; Ukegawa, F; Vaiciulis, T; Valls, J; Vataga, E; Vejcik, S; Velev, G; Veramendi, G; Vidal, R; Vila, I; Vilar, R; Volobouev, I; von der Mey, M; Vucinic, D; Wagner, R G; Wagner, R L; Wagner, W; Wallace, N B; Wan, Z; Wang, C; Wang, M J; Wang, S M; Ward, B; Waschke, S; Watanabe, T; Waters, D; Watts, T; Weber, M; Wenzel, H; Wester, W C; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Wolinski, S; Worm, S; Wu, X; Wyss, J; Yang, U K; Yao, W; Yeh, G P; Yeh, P; Yi, K; Yoh, J; Yosef, C; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanetti, A; Zetti, F; Zucchelli, S
2002-12-31
The exclusive gammaE(T) signal has a small standard model cross section and is thus a channel sensitive to new physics. This signature is predicted by models with a superlight gravitino or with large extra spatial dimensions. We search for such signals at the Collider Detector at Fermilab, using 87 pb(-1) of data at square root [s]=1.8 TeV, and extract 95% C.L. limits on these processes. A limit of 221 GeV is set on the scale |F|(1/2) in supersymmetric models. For 4, 6, and 8 extra dimensions, model-dependent limits on the fundamental mass scale M(D) of 0.55, 0.58, and 0.60 TeV, respectively, are found. We also specify a "pseudo-model-independent" method of comparing the results to theoretical predictions.
Brane-world motion in compact dimensions
NASA Astrophysics Data System (ADS)
Greene, Brian; Levin, Janna; Parikh, Maulik
2011-08-01
The topology of extra dimensions can break global Lorentz invariance, singling out a globally preferred frame even in flat spacetime. Through experiments that probe global topology, an observer can determine her state of motion with respect to the preferred frame. This scenario is realized if we live on a brane universe moving through a flat space with compact extra dimensions. We identify three experimental effects due to the motion of our universe that one could potentially detect using gravitational probes. One of these relates to the peculiar properties of the twin paradox in multiply-connected spacetimes. Another relies on the fact that the Kaluza-Klein modes of any bulk field are sensitive to boundary conditions. A third concerns the modification to the Newtonian potential on a moving brane. Remarkably, we find that even small extra dimensions are detectable by brane observers if the brane is moving sufficiently fast. Communicated by P R L V Moniz
Serological evidence for the presence of influenza D virus in small ruminants.
Quast, Megan; Sreenivasan, Chithra; Sexton, Gabriel; Nedland, Hunter; Singrey, Aaron; Fawcett, Linda; Miller, Grant; Lauer, Dale; Voss, Shauna; Pollock, Stacy; Cunha, Cristina W; Christopher-Hennings, Jane; Nelson, Eric; Li, Feng
2015-11-18
Influenza D virus (FLUDV) was isolated from diseased pigs with respiratory disease symptoms in 2011, and since then the new virus has also been spread to cattle. Little is known about the susceptibility of other agricultural animals and poultry to FLUDV. This study was designed to determine if other farm animals such as goats, sheep, chickens, and turkey are possible hosts to this newly emerging influenza virus. 648 goat and sheep serum samples and 250 chicken and turkey serum samples were collected from 141 small ruminant and 25 poultry farms from different geographical locations in the United States and Canada. Serum samples were examined using the hemagglutination inhibition (HI) assay and the sheep and goat samples were further analyzed using the serum neutralization assay. Results of this study showed FLUDV antibodies were detected in 13.5% (17/126) of the sampled sheep farms, and 5.2% (29/557) of tested sheep serum samples were positive for FLUDV antibodies. For the goat results, the FLUDV antibodies were detected in 13.3% (2/15) of the sampled farms, and 8.8% (8/91) of the tested goat serum samples were positive for FLUDV antibodies. Furthermore, all tested poultry serum samples were negative for FLUDV antibodies. Our data demonstrated that sheep and goat are susceptible to FLUDV virus and multiple states in U.S. have this virus infection already in these two species. This new finding highlights a need for future surveillance of FLUDV virus in small ruminants toward better understanding both the origin and natural reservoir of this new virus. Copyright © 2015 Elsevier B.V. All rights reserved.
Schirtzinger, Erin E; Andrade, Christy C; Devitt, Nicholas; Ramaraj, Thiruvarangan; Jacobi, Jennifer L; Schilkey, Faye; Hanley, Kathryn A
2015-02-01
RNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines. Copyright © 2014 Elsevier Inc. All rights reserved.
Bonar, Micha M.; Tilton, John C.
2017-01-01
Detection of viruses by flow cytometry is complicated by their small size. Here, we characterized the ability of a standard (FACSAria II) and a sub-micron flow cytometer (A50 Micro) to resolve HIV-1 viruses. The A50 was superior at resolving small particles but did not reliably distinguish HIV-1, extracellular vesicles, and laser noise by light scatter properties alone. However, single fluorescent HIV-1 particles could readily be detected by both cytometers. Fluorescent particles were sorted and retained infectivity, permitting further exploration of the functional consequences of HIV-1 heterogeneity. Finally, flow cytometry had a limit of detection of 80 viruses/ml, nearly equal to PCR assays. These studies demonstrate the power of flow cytometry to detect and sort viral particles and provide a critical toolkit to validate methods to label wild-type HIV-1; quantitatively assess integrity and aggregation of viruses and virus-based therapeutics; and efficiently screen drugs inhibiting viral assembly and release. PMID:28235684
Bonar, Michał M; Tilton, John C
2017-05-01
Detection of viruses by flow cytometry is complicated by their small size. Here, we characterized the ability of a standard (FACSAria II) and a sub-micron flow cytometer (A50 Micro) to resolve HIV-1 viruses. The A50 was superior at resolving small particles but did not reliably distinguish HIV-1, extracellular vesicles, and laser noise by light scatter properties alone. However, single fluorescent HIV-1 particles could readily be detected by both cytometers. Fluorescent particles were sorted and retained infectivity, permitting further exploration of the functional consequences of HIV-1 heterogeneity. Finally, flow cytometry had a limit of detection of 80 viruses/ml, nearly equal to PCR assays. These studies demonstrate the power of flow cytometry to detect and sort viral particles and provide a critical toolkit to validate methods to label wild-type HIV-1; quantitatively assess integrity and aggregation of viruses and virus-based therapeutics; and efficiently screen drugs inhibiting viral assembly and release. Copyright © 2017 Elsevier Inc. All rights reserved.
Nour, Adel M.; Li, Yue; Wolenski, Joseph; Modis, Yorgo
2013-01-01
Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion. PMID:24039574
Evolutionary origins of hepatitis A virus in small mammals.
Drexler, Jan Felix; Corman, Victor M; Lukashev, Alexander N; van den Brand, Judith M A; Gmyl, Anatoly P; Brünink, Sebastian; Rasche, Andrea; Seggewiβ, Nicole; Feng, Hui; Leijten, Lonneke M; Vallo, Peter; Kuiken, Thijs; Dotzauer, Andreas; Ulrich, Rainer G; Lemon, Stanley M; Drosten, Christian
2015-12-08
Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3D(pol) sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses.
Evolutionary origins of hepatitis A virus in small mammals
Drexler, Jan Felix; Corman, Victor M.; Lukashev, Alexander N.; van den Brand, Judith M. A.; Gmyl, Anatoly P.; Brünink, Sebastian; Rasche, Andrea; Seggewiβ, Nicole; Feng, Hui; Leijten, Lonneke M.; Vallo, Peter; Kuiken, Thijs; Dotzauer, Andreas; Ulrich, Rainer G.; Lemon, Stanley M.; Drosten, Christian
2015-01-01
Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3Dpol sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses. PMID:26575627
Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R
2014-01-23
During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.
International Network for Comparison of HIV Neutralization Assays: The NeutNet Report II
Heyndrickx, Leo; Heath, Alan; Sheik-Khalil, Enas; Alcami, Jose; Bongertz, Vera; Jansson, Marianne; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Ramaswamy, Meghna; Sattentau, Quentin; Tolazzi, Monica; Schuitemaker, Hanneke; Willems, Betty; Wrin, Terri; Fenyö, Eva Maria; Scarlatti, Gabriella
2012-01-01
Background Neutralizing antibodies provide markers for vaccine-induced protective immunity in many viral infections. By analogy, HIV-1 neutralizing antibodies induced by immunization may well predict vaccine effectiveness. Assessment of neutralizing antibodies is therefore of primary importance, but is hampered by the fact that we do not know which assay(s) can provide measures of protective immunity. An international collaboration (NeutNet) involving 18 different laboratories previously compared different assays using monoclonal antibodies (mAbs) and soluble CD4 (Phase I study). Methods In the present study (Phase II), polyclonal reagents were evaluated by 13 laboratories. Each laboratory evaluated nine plasmas against an 8 virus panel representing different genetic subtypes and phenotypes. TriMab, a mixture of three mAbs, was used as a positive control allowing comparison of the results with Phase I in a total of nine different assays. The assays used either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (Virus Infectivity Assays, VIA), or Env (gp160)-pseudotyped viruses (pseudoviruses, PSV) produced in HEK293T cells from molecular clones or from uncloned virus. Target cells included PBMC and genetically engineered cell lines in either single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs including extra- or intra-cellular p24 antigen detection, luciferase, beta-galactosidase or green fluorescent protein (GFP) reporter gene expression. Findings Using TriMab, results of Phase I and Phase II were generally in agreement for six of the eight viruses tested and confirmed that the PSV assay is more sensitive than PBMC (p = 0.014). Comparisons with the polyclonal reagents showed that sensitivities were dependent on both virus and plasma. Conclusions Here we further demonstrate clear differences in assay sensitivities that were dependent on both the neutralizing reagent and the virus. Consistent with the Phase I study, we recommend parallel use of PSV and VIA for vaccine evaluation. PMID:22590544
International network for comparison of HIV neutralization assays: the NeutNet report II.
Heyndrickx, Leo; Heath, Alan; Sheik-Khalil, Enas; Alcami, Jose; Bongertz, Vera; Jansson, Marianne; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Ramaswamy, Meghna; Sattentau, Quentin; Tolazzi, Monica; Schuitemaker, Hanneke; Willems, Betty; Wrin, Terri; Fenyö, Eva Maria; Scarlatti, Gabriella
2012-01-01
Neutralizing antibodies provide markers for vaccine-induced protective immunity in many viral infections. By analogy, HIV-1 neutralizing antibodies induced by immunization may well predict vaccine effectiveness. Assessment of neutralizing antibodies is therefore of primary importance, but is hampered by the fact that we do not know which assay(s) can provide measures of protective immunity. An international collaboration (NeutNet) involving 18 different laboratories previously compared different assays using monoclonal antibodies (mAbs) and soluble CD4 (Phase I study). In the present study (Phase II), polyclonal reagents were evaluated by 13 laboratories. Each laboratory evaluated nine plasmas against an 8 virus panel representing different genetic subtypes and phenotypes. TriMab, a mixture of three mAbs, was used as a positive control allowing comparison of the results with Phase I in a total of nine different assays. The assays used either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (Virus Infectivity Assays, VIA), or Env (gp160)-pseudotyped viruses (pseudoviruses, PSV) produced in HEK293T cells from molecular clones or from uncloned virus. Target cells included PBMC and genetically engineered cell lines in either single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs including extra- or intra-cellular p24 antigen detection, luciferase, beta-galactosidase or green fluorescent protein (GFP) reporter gene expression. Using TriMab, results of Phase I and Phase II were generally in agreement for six of the eight viruses tested and confirmed that the PSV assay is more sensitive than PBMC (p = 0.014). Comparisons with the polyclonal reagents showed that sensitivities were dependent on both virus and plasma. Here we further demonstrate clear differences in assay sensitivities that were dependent on both the neutralizing reagent and the virus. Consistent with the Phase I study, we recommend parallel use of PSV and VIA for vaccine evaluation.
Boson, Bertrand; Granio, Ophélia; Bartenschlager, Ralf; Cosset, François-Loïc
2011-01-01
Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly. PMID:21814513
Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian; Wei, Taiyun
2016-01-15
Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an incompetent vector, the small brown planthopper (SBPH). Here, we show that silencing of the core component Dicer-2 of the small interfering RNA (siRNA) pathway increases viral titers in the midgut epithelium past the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) for viral dissemination into the midgut muscles and then into the salivary glands, allowing the SBPH to become a competent vector of SRBSDV. This result is the first evidence that the siRNA antiviral pathway has a direct role in the control of viral dissemination from the midgut epithelium and that it affects the competence of the virus's vector. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian
2015-01-01
ABSTRACT Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 109 copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an incompetent vector, the small brown planthopper (SBPH). Here, we show that silencing of the core component Dicer-2 of the small interfering RNA (siRNA) pathway increases viral titers in the midgut epithelium past the threshold (1.99 × 109 copies of the SRBSDV P10 gene/μg of midgut RNA) for viral dissemination into the midgut muscles and then into the salivary glands, allowing the SBPH to become a competent vector of SRBSDV. This result is the first evidence that the siRNA antiviral pathway has a direct role in the control of viral dissemination from the midgut epithelium and that it affects the competence of the virus's vector. PMID:26537672
Immortalized sheep microglial cells are permissive to a diverse range of ruminant viruses.
Stanton, James B; Swanson, Beryl; Orozco, Edith; Muñoz-Gutiérrez, Juan F; Evermann, James F; Ridpath, Julia F
2017-12-01
Ruminants, including sheep and goats (small ruminants), are key agricultural animals in many parts of the world. Infectious diseases, including many viral diseases, are significant problems to efficient production of ruminants. Unfortunately, reagents tailored to viruses of ruminants, and especially small ruminants, are lacking compared to other animals more typically used for biomedical research. The purpose of this study was to determine the permissibility of a stably immortalized, sheep microglial cell line to viruses that are reported to infect ruminants: bovine viral diarrhea virus (BVDV), bovine herpesvirus 1 (BoHV-1), small ruminant lentiviruses (SRLV), and bovine respiratory syncytial virus (BRSV). Sublines A and H of previously isolated, immortalized, and characterized (CD14-positive) ovine microglial cells were used. Bovine turbinate cells and goat synovial membrane cells were used for comparison. Cytopathic changes were used to confirm infection of individual wells, which were then counted and used to calculate the 50% tissue culture infectious dose. Uninoculated cells served as negative controls and confirmed that the cells were not previously infected with these viruses using polymerase chain reaction (PCR). Inoculation of the two microglial cell sublines with laboratory and field isolates of BVDV, BoHV-1, and BRSV resulted in viral infection in a manner similar to bovine turbinate cells. Immortalized microglia cells are also permissive to SRLV, similar to goat synovial membrane cells. These immortalized sheep microglial cells provide a new tool for the study of ruminant viruses in ruminant microglial cell line.
Identification of novel anelloviruses with broad diversity in UK rodents
Nishiyama, Shoko; Dutia, Bernadette M.; Stewart, James P.; Meredith, Anna L.; Shaw, Darren J.; Simmonds, Peter
2014-01-01
Anelloviruses are a family of small circular ssDNA viruses with a vast genetic diversity. Human infections with the prototype anellovirus, torque teno virus (TTV), are ubiquitous and related viruses have been described in a number of other mammalian hosts. Despite over 15 years of investigation, there is still little known about the pathogenesis and possible disease associations of anellovirus infections, arising in part due to the lack of a robust cell culture system for viral replication or tractable small-animal model. We report the identification of diverse anelloviruses in several species of wild rodents. The viruses are highly prevalent in wood mice (Apodemus sylvaticus) and field voles (Microtus agrestis), detectable at a low frequency in bank voles (Myodes glareolus), but absent from house mice (Mus musculus). The viruses identified have a genomic organization consistent with other anelloviruses, but form two clear phylogenetic groups that are as distinct from each other as from defined genera. PMID:24744300
Development of Potential Small Molecule Therapeutics for Treatment of Ebola Virus.
Schafer, Adam Michael; Cheng, Han; Lee, Charles; Du, Ruikun; Han, Julianna; Perez, Jasmine; Peet, Norton; Manicassamy, Balaji; Rong, Lijun
2017-10-10
Ebola virus has caused 26 outbreaks in 10 different countries since its identification in 1976, making it one of the deadliest emerging viral pathogens. The most recent outbreak in West Africa from 2014-16 was the deadliest yet and culminated in 11,310 deaths out of 28,616 confirmed cases. Currently there are no FDA-approved therapeutics or vaccines to treat Ebola virus infections. The slow development of effective vaccines combined with the severity of past outbreaks emphasizes the need to accelerate research into understanding the virus lifecycle and the development of therapeutics for post exposure treatment. Here we present a summary of the major findings on the Ebola virus replication cycle and the therapeutic approaches explored to treat this devastating disease. The major focus of this review is on small molecule inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cheng, Han; Schafer, Adam; Soloveva, Veronica; Gharaibeh, Dima; Kenny, Tara; Retterer, Cary; Zamani, Rouzbeh; Bavari, Sina; Peet, Norton P; Rong, Lijun
2017-09-01
Filoviruses, consisting of Ebola virus, Marburg virus and Cuevavirus, cause severe hemorrhagic fevers in humans with high mortality rates up to 90%. Currently, there is no approved vaccine or therapy available for the prevention and treatment of filovirus infection in humans. The recent 2013-2015 West African Ebola epidemic underscores the urgency to develop antiviral therapeutics against these infectious diseases. Our previous study showed that GPCR antagonists, particularly histamine receptor antagonists (antihistamines) inhibit Ebola and Marburg virus entry. In this study, we screened a library of 1220 small molecules with predicted antihistamine activity, identified multiple compounds with potent inhibitory activity against entry of both Ebola and Marburg viruses in human cancer cell lines, and confirmed their anti-Ebola activity in human primary cells. These small molecules target a late-stage of Ebola virus entry. Further structure-activity relationship studies around one compound (cp19) reveal the importance of the coumarin fused ring structure, especially the hydrophobic substituents at positions 3 and/or 4, for its antiviral activity, and this identified scaffold represents a favorable starting point for the rapid development of anti-filovirus therapeutic agents. Copyright © 2017 Elsevier B.V. All rights reserved.
Genetic testing for TMEM154 mutations associated with lentivirus susceptibility in sheep
USDA-ARS?s Scientific Manuscript database
In sheep, small ruminant lentiviruses cause an incurable, progressive, lymphoproliferative disease that affect millions of animals worldwide. Known as ovine progressive pneumonia virus (OPPV) in the U.S., and Visna/Maedi virus (VMV) elsewhere, these viruses reduce an animal’s health, productivity, ...
Morgan, Katy E; Forbes, Andrew B; Keogh, Ruth H; Jairath, Vipul; Kahan, Brennan C
2017-01-30
In cluster randomised cross-over (CRXO) trials, clusters receive multiple treatments in a randomised sequence over time. In such trials, there is usual correlation between patients in the same cluster. In addition, within a cluster, patients in the same period may be more similar to each other than to patients in other periods. We demonstrate that it is necessary to account for these correlations in the analysis to obtain correct Type I error rates. We then use simulation to compare different methods of analysing a binary outcome from a two-period CRXO design. Our simulations demonstrated that hierarchical models without random effects for period-within-cluster, which do not account for any extra within-period correlation, performed poorly with greatly inflated Type I errors in many scenarios. In scenarios where extra within-period correlation was present, a hierarchical model with random effects for cluster and period-within-cluster only had correct Type I errors when there were large numbers of clusters; with small numbers of clusters, the error rate was inflated. We also found that generalised estimating equations did not give correct error rates in any scenarios considered. An unweighted cluster-level summary regression performed best overall, maintaining an error rate close to 5% for all scenarios, although it lost power when extra within-period correlation was present, especially for small numbers of clusters. Results from our simulation study show that it is important to model both levels of clustering in CRXO trials, and that any extra within-period correlation should be accounted for. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
siRNA Screen Identifies Trafficking Host Factors that Modulate Alphavirus Infection
2016-05-20
Wang JL, Zhang JL, Chen W, Xu XF, Gao N, et al. (2010) Roles of small GTPase Rac1 in 893 the regulation of actin cytoskeleton during dengue virus...small GTPase Rac1 in 893 the regulation of actin cytoskeleton during dengue virus infection. PLoS Negl Trop Dis 4. 894 44. Schelhaas M, Shah B, Holzer M
R.A. Lautenschlager; J.D. Podgwaite
1977-01-01
The white-footed mouse, Peromyscus leucopus Rafinesque, and the short-tailed shrew, Blarina brevicauda Say, 2 small mammal predators of the gypsy moth, have demonstrated the ability to pass significant amounts of infectious nuclear polyhedrosis virus (NPV) through their alimentary tracts. Ninety-five percent of the gypsy moth...
USDA-ARS?s Scientific Manuscript database
It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs ...
Huang, Stephen S. H.; Almansa, Raquel; Leon, Alberto; Xu, Luoling; Bartoszko, Jessica; Kelvin, David J.; Kelvin, Alyson A.
2015-01-01
Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1β upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus infection in the mother-infant dyad initiate immunological and oncogenic signaling cascades within the mammary gland. These findings suggest the mammary gland may have a greater role in infection and immunity than previously thought. PMID:26448646
Paquette, Stéphane G; Banner, David; Huang, Stephen S H; Almansa, Raquel; Leon, Alberto; Xu, Luoling; Bartoszko, Jessica; Kelvin, David J; Kelvin, Alyson A
2015-10-01
Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1β upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus infection in the mother-infant dyad initiate immunological and oncogenic signaling cascades within the mammary gland. These findings suggest the mammary gland may have a greater role in infection and immunity than previously thought.
Ophthalmological implications of the chronic infections with the hepatitis C Virus.
Anisia-Iuliana, Alexa; Alina, Cantermir; Elena, Ciuntu Roxana; Dorin, Chiseliţă
2015-01-01
Objectives. Report of a clinical case reuniting the dry eye syndrome in a severe form, the Mooren's ulcer and necrotizing anterior scleritis with inflammation, with bilateral affectation in the context of chronic infection with the hepatitis C virus. Methods. A female patient aged 66 diagnosed with chronic hepatitis with HCV, with ophthalmological antecedents of Mooren's ulcer and severe form of dry eye syndrome in both eyes, comes to the emergency unit with hypopyon corneal ulcer in the right eye, shortly afterwards developing necrotizing anterior scleritis with inflammation. The patient is administered treatment for chronic hepatitis C, following which the ARN-HCV viremia decreases without ocular exacerbations. When the viremia level increases again, two lesions indicating necrotizing anterior scleritis are observed in the left eye. The evolution is favourable with topical and systemic treatment with corticosteroids. Complicated cataract is surgically treated in the right eye and vitreous humour is collected during surgery. Results. Visual acuity increases in the right eye after the surgery, while antibodies-HCV are identified in the vitreous humour. Conclusions. Chronic infection with hepatitis C virus displays multiple extra-hepatic manifestations and the ophthalmological ones require a multidisciplinary approach from both the chronic diseases practitioner and the ophthalmologist.
Ophthalmological implications of the chronic infections with the hepatitis C Virus
Anisia-Iuliana, Alexa; Alina, Cantermir; Elena, Ciuntu Roxana; Dorin, Chiseliţă
2015-01-01
Objectives. Report of a clinical case reuniting the dry eye syndrome in a severe form, the Mooren’s ulcer and necrotizing anterior scleritis with inflammation, with bilateral affectation in the context of chronic infection with the hepatitis C virus. Methods. A female patient aged 66 diagnosed with chronic hepatitis with HCV, with ophthalmological antecedents of Mooren’s ulcer and severe form of dry eye syndrome in both eyes, comes to the emergency unit with hypopyon corneal ulcer in the right eye, shortly afterwards developing necrotizing anterior scleritis with inflammation. The patient is administered treatment for chronic hepatitis C, following which the ARN-HCV viremia decreases without ocular exacerbations. When the viremia level increases again, two lesions indicating necrotizing anterior scleritis are observed in the left eye. The evolution is favourable with topical and systemic treatment with corticosteroids. Complicated cataract is surgically treated in the right eye and vitreous humour is collected during surgery. Results. Visual acuity increases in the right eye after the surgery, while antibodies-HCV are identified in the vitreous humour. Conclusions. Chronic infection with hepatitis C virus displays multiple extra-hepatic manifestations and the ophthalmological ones require a multidisciplinary approach from both the chronic diseases practitioner and the ophthalmologist. PMID:29450318
Coenzyme Q plays opposing roles on bacteria/fungi and viruses in Drosophila innate immunity.
Cheng, W; Song, C; Anjum, K M; Chen, M; Li, D; Zhou, H; Wang, W; Chen, J
2011-08-01
Coenzyme Q (CoQ or ubiquinone) is a lipid-soluble component of virtually all types of cell membranes and has been shown to play multiple metabolic functions. Several clinical diseases including encephalomyopathy, cerebellar ataxia and isolated myopathy were shown to be associated with CoQ deficiency. However, the role of CoQ in immunity has not been defined. In the present study, we showed that flies defective in CoQ biosynthetic gene coq2 were more susceptible to bacterial and fungal infections, while were more resistant to viruses. We found that Drosophila contained both CoQ9 and CoQ10, and food supplement of CoQ10 could partially rescue the impaired immune functions of coq2 mutants. Surprisingly, wild-type flies fed CoQ10 became more susceptible to viral infection, which suggested that extra caution should be taken when using CoQ10 as a food supplement. We further showed that CoQ was essential for normal induction of anti-microbial peptides and amplification of viruses. Our work determined CoQ content in Drosophila and described its function in immunity for the first time. © 2011 Blackwell Publishing Ltd.
Requirement of cholesterol in the viral envelope for dengue virus infection.
Carro, Ana C; Damonte, Elsa B
2013-06-01
The role of cholesterol in the virus envelope or in the cellular membranes for dengue virus (DENV) infection was examined by depletion with methyl-beta-cyclodextrin (MCD) or nystatin. Pretreatment of virions with MCD or nystatin significantly reduced virus infectivity in a dose-dependent manner. By contrast, pre-treatment of diverse human cell lines with MCD or nystatin did not affect DENV infection. The four DENV serotypes were similarly inactivated by cholesterol-extracting drugs and infectivity was partially rescued when virion suspensions were treated with MCD in the presence of bovine serum. The addition of serum or exogenous water-soluble cholesterol after MCD treatment did not produce a reversion of MCD inactivating effect. Furthermore, virion treatment with extra cholesterol exerted also a virucidal effect. Binding and uptake of cholesterol-deficient DENV into the host cell were not impaired, whereas the next step of fusion between virion envelope and endosome membrane leading to virion uncoating and release of nucleocapsids to the cytoplasm appeared to be prevented, as determined by the retention of capsid protein in cells infected with MCD inactivated-DENV virions. Thereafter, the infection was almost completely inhibited, given the failure of viral RNA synthesis and viral protein expression in cells infected with MCD-treated virions. These data suggest that envelope cholesterol is a critical factor in the fusion process for DENV entry. Copyright © 2013 Elsevier B.V. All rights reserved.
Epidemiology of hepatitis E virus in Iran
Taherkhani, Reza; Farshadpour, Fatemeh
2016-01-01
Iran is known as an endemic country for hepatitis E virus (HEV) infection, while there are variations in the epidemiology of HEV infection throughout the country. The available epidemiological studies in different regions of Iran show HEV seroprevalence of 1.1%-14.2% among general population, 4.5% -14.3% among blood donors, 6.1%-22.8% among injecting drug users, 6.3%-28.3% among hemodialysis patients, 1.6%-11.3% among patients infected with other hepatitis viruses, 27.5% among patients with chronic liver disease, 30.8% among kidney transplant recipient patients, and 10%-16.4% among human immunodeficiency virus-infected patients. These variations reflect differences in the status of public health and hygiene, risk factors, and routes of transmission in different regions and groups. Therefore, it is necessary to review the epidemiology of HEV infection to determine the most prevalent risk factors and routes of transmission, and to evaluate the effectiveness of preventive strategies employed in the public health services of the country. Moreover, the other epidemiological aspects of HEV, including the genotypic pattern, extra hepatic manifestations, and incidence of chronic infection need to be investigated among Iranian population to expand the current knowledge on the epidemiology of HEV and to clarify the real burden of HEV infection. Therefore, this review was performed to provide a general overview regarding the epidemiology of HEV in Iran. PMID:27298557
Aoyagi, Tomoya; Takahashi, Masahiko; Higuchi, Masaya; Oie, Masayasu; Tanaka, Yuetsu; Kiyono, Tohru; Aoyagi, Yutaka; Fujii, Masahiro
2010-04-01
Several tumor viruses, such as human T-cell leukemia virus (HTLV), human papilloma virus (HPV), human adenovirus, have high-oncogenic and low-oncogenic subtypes, and such subtype-specific oncogenesis is associated with the PDZ-domain binding motif (PBM) in their transforming proteins. HTLV-1, the causative agent of adult T-cell leukemia, encodes Tax1 with PBM as a transforming protein. The Tax1 PBM was substituted with those from other oncoviruses, and the transforming activity was examined. Tax1 mutants with PBM from either HPV-16 E6 or adenovirus type 9 E4ORF1 are fully active in the transformation of a mouse T-cell line from interleukin-2-dependent growth into independent growth. Interestingly, one such Tax1 PBM mutant had an extra amino acid insertion derived from E6 between PBM and the rest of Tax1, thus suggesting that the amino acid sequences of the peptides between PBM and the rest of Tax1 and the numbers only slightly affect the function of PBM in the transformation. Tax1 and Tax1 PBM mutants interacted with tumor suppressors Dlg1 and Scribble with PDZ-domains. Unlike E6, Tax1 PBM mutants as well as Tax1 did not or minimally induced the degradations of Dlg1 and Scribble, but instead induced their subcellular translocation from the detergent-soluble fraction into the insoluble fraction, thus suggesting that the inactivation mechanism of these tumor suppressor proteins is distinct. The present results suggest that PBMs of high-risk oncoviruses have a common function(s) required for these three tumor viruses to transform cells, which is likely associated with the subtype-specific oncogenesis of these tumor viruses.
Van Hoeven, Neal; Belser, Jessica A; Szretter, Kristy J; Zeng, Hui; Staeheli, Peter; Swayne, David E; Katz, Jacqueline M; Tumpey, Terrence M
2009-04-01
Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the increasing genetic diversity among these viruses and continued outbreaks in avian species underscore the need for more effective measures for the control and prevention of human H5N1 virus infection. Additional small animal models with which therapeutic approaches against virulent influenza viruses can be evaluated are needed. In this study, we used the guinea pig model to evaluate the relative virulence of selected avian and human influenza A viruses. We demonstrate that guinea pigs can be infected with avian and human influenza viruses, resulting in high titers of virus shedding in nasal washes for up to 5 days postinoculation (p.i.) and in lung tissue of inoculated animals. However, other physiologic indicators typically associated with virulent influenza virus strains were absent in this species. We evaluated the ability of intranasal treatment with human alpha interferon (alpha-IFN) to reduce lung and nasal wash titers in guinea pigs challenged with the reconstructed 1918 pandemic H1N1 virus or a contemporary H5N1 virus. IFN treatment initiated 1 day prior to challenge significantly reduced or prevented infection of guinea pigs by both viruses, as measured by virus titer determination and seroconversion. The expression of the antiviral Mx protein in lung tissue correlated with the reduction of virus titers. We propose that the guinea pig may serve as a useful small animal model for testing the efficacy of antiviral compounds and that alpha-IFN treatment may be a useful antiviral strategy against highly virulent strains with pandemic potential.
3'-terminal sequence of a small round structured virus (SRSV) in Japan.
Utagawa, E T; Takeda, N; Inouye, S; Kasuga, K; Yamazaki, S
1994-01-01
We determined the nucleotide sequence of about 1,000 bases from the 3'-terminus of a small round structured virus (SRSV), which caused a gastroenteritis outbreak in Chiba Prefecture, Japan, in 1987. The sequence was compared with the corresponding sequence region of Norwalk virus; it consisted of a part of the open reading frame 2 (ORF2), whole ORF3, and 3'-noncoding region (NCR). The 624-base-long ORF3 had sequence homology of 68% with the corresponding region of Norwalk virus. (The amino acid sequence homology was 74%.) The 94-base-long NCR had 65% homology with Norwalk virus. We then selected two consensus-sequence portions in the above sequence between Chiba and Norwalk viruses for primers in the reverse transcriptase-polymerase chain reaction (RT-PCR). Using this primer set, we detected 669-bp bands in agarose gel electrophoresis of RT-PCR products from feces containing Chiba or Norwalk viruses. Furthermore, in Southern hybridization with Chiba probes which were labeled with digoxigenin-dUTP in PCR, the bands of the two viruses were clearly stained under a low stringency condition. Since both Chiba and Norwalk viruses were detected by the above primer set although they are geographically and chronologically different viruses, our primer-pair may be useful for detection of a broad range of SRSVs which cause gastroenteritis in different areas.
Characterization of ovine Nectin-4, a novel peste des petits ruminants virus (PPRV) receptor
USDA-ARS?s Scientific Manuscript database
Small ruminants infected with peste des petits ruminants virus (PPRV) exhibit lesions typical of epithelial infection and necrosis. However, the only established host receptor for this virus is the immune cell marker signalling lymphocyte activation molecule (SLAM). We have confirmed that the ovine ...
Castelló, María José; Carrasco, Jose Luis; Navarrete-Gómez, Marisa; Daniel, Jacques; Granot, David; Vera, Pablo
2011-01-01
DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis. PMID:22021419
Mannepalli, Supriya; Mitchell-Samon, Levonne; Guzman, Nilmarie; Relan, Manish; McCarter, Yvette S
2010-02-23
The incidence of tuberculosis is increasing in the United States. Extra-pulmonary involvement is more common in patients with HIV/AIDS. The diagnosis of Tuberculosis osteomyelitis requires a high degree of suspicion for accurate and timely diagnosis.We present a case of a 49 year old Caucasian male with HIV/AIDS who presented with a four-month history of soft tissue swelling in the left proximal thigh unresponsive to various broad spectrum antibiotics who was eventually diagnosed with Mycobacterium tuberculosis osteomyelitis of the left proximal femur.
Roles of small RNAs in the immune defense mechanisms of crustaceans.
He, Yaodong; Ju, Chenyu; Zhang, Xiaobo
2015-12-01
Small RNAs, 21-24 nucleotides in length, are non-coding RNAs found in most multicellular organisms, as well as in some viruses. There are three main types of small RNAs including microRNA (miRNA), small-interfering RNA (siRNA), and piwi-interacting RNA (piRNA). Small RNAs play key roles in the genetic regulation of eukaryotes; at least 50% of all eukaryote genes are the targets of small RNAs. In recent years, studies have shown that some unique small RNAs are involved in the immune response of crustaceans, leading to lower or higher immune responses to infections and diseases. SiRNAs could be used as therapy for virus infection. In this review, we provide an overview of the diverse roles of small RNAs in the immune defense mechanisms of crustaceans. Copyright © 2015 Elsevier Ltd. All rights reserved.
MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.
Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel
2011-02-15
At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.
Next-Generation Sequencing and Genome Editing in Plant Virology
Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina
2016-01-01
Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology. PMID:27617007
Antiviral Activities of Honey, Royal Jelly, and Acyclovir Against HSV-1.
Hashemipour, Maryam Alsadat; Tavakolineghad, Zahra; Arabzadeh, Sayed Ali Mohammad; Iranmanesh, Zahra; Nassab, Sayed Amir Hossein Gandjalikhan
2014-02-01
Herpes simplex virus type 1 (HSV-1) belongs to the Herpesviridae family and genus simplex virus. This virus is usually acquired during childhood and is transmitted through direct mucocutaneous contact or droplet infection from infected secretions. The aim of the present study was to compare antiviral effects of honey, royal jelly, and acyclovir on herpes simplex virus-1 in an extra-somatic environment. Vero cells were cultured in the Dulbecco's Modified Eagle's Medium (DMEM) along with 10% fetal bovine serum (FBS) in 12-welled microplates. Various dilutions of honey, royal jelly, and acyclovir (5, 10, 50, 100, 2500, 500, and 800 μg/mL) were added to the Vero cells along with a 100-virus concentration of TCID50. The plaque assay technique was used to evaluate the antiviral activities. The results showed that honey, royal jelly, and acyclovir have the highest inhibitory effects on HSV-1 at concentrations of 500, 250, and 100 μg/mL, respectively. In addition, honey, royal jelly, and acyclovir decreased the viral load from 70 795 to 43.3, 30, and 0 PFU/mL at a concentration of 100 μg/mL, respectively. The results of the present study showed that honey and royal jelly, which are natural products with no reports about their deleterious effect at least in laboratory conditions, can be considered alternatives to acyclovir in the treatment of herpetic lesions. However, it should be pointed out that further studies are necessary to substantiate their efficacy because hard evidence on their effectiveness is not available at present.
Review: Occult hepatitis C virus infection: still remains a controversy.
Vidimliski, Pavlina Dzekova; Nikolov, Igor; Geshkovska, Nadica Matevska; Dimovski, Aleksandar; Rostaing, Lionel; Sikole, Aleksandar
2014-09-01
Occult hepatitis C virus (HCV) infection is characterized by the presence of HCV RNA in the liver cells or peripheral blood mononuclear cells of the patients whose serum samples test negative for HCV RNA, with or without presence of HCV antibodies. The present study reviews the existing literature on the persistence of occult hepatitis C virus infection, with description of the clinical characteristics and methods for identification of occult hepatitis C. Occult hepatitis C virus infection was detected in patients with abnormal results of liver function tests of unknown origin, with HCV antibodies and HCV RNA negativity in serum, and also in patients with spontaneous or treatment-induced recovery from hepatitis C. The viral replication in the liver cells and/or peripheral blood mononuclear cells was present in all clinical presentations of occult hepatitis C. The peripheral blood mononuclear cells represent an extra-hepatic site of HCV replication. The reason why HCV RNA was not detectable in the serum of patients with occult hepatitis C, could be the low number of circulating viral particles not detectable by the diagnostic tests with low sensitivity. It is uncertain whether occult hepatitis C is a different clinical entity or just a form of chronic hepatitis C virus infection. Data accumulated over the last decade demonstrated that an effective approach to the diagnosis of HCV infection would be the implementation of more sensitive HCV RNA diagnostic assays, and also, examination of the presence of viral particles in the cells of the immune system. © 2014 Wiley Periodicals, Inc.
High-Throughput Dissection of AAV-Host Interactions: The Fast and the Curious.
Herrmann, Anne-Kathrin; Grimm, Dirk
2018-05-18
Over fifty years after its initial description, Adeno-associated virus (AAV) remains a most exciting but also most elusive study object in basic or applied virology. On the one hand, its simple structure not only facilitates investigations into virus biology, but combined with the availability of numerous natural AAV variants with distinct infection efficiency and specificity also makes AAV a preferred substrate for engineering of gene delivery vectors. On the other hand, it is striking to witness a recent flurry of reports that highlight and partially close persistent gaps in our understanding of AAV virus and vector biology. This is all the more perplexing considering that recombinant AAVs have already been used in >160 clinical trials and recently been commercialized as gene therapeutics. Here, we discuss a reason for these advances in AAV research, namely, the advent and application of powerful high-throughput technology for dissection of AAV-host interactions and optimization of AAV gene therapy vectors. As relevant examples, we focus on the discovery of (i) a "new" cellular AAV receptor, AAVR, (ii) host restriction factors for AAV entry, and (iii) AAV capsid determinants that mediate trafficking through the blood-brain barrier. While (i)/(ii) are prototypes of extra- or intracellular AAV host factors that were identified via high-throughput screenings, (iii) exemplifies the power of molecular evolution to investigate the virus itself. In the future, we anticipate that these and other key technologies will continue to accelerate the dissection of AAV biology and will yield a wealth of new designer viruses for clinical use. Copyright © 2018. Published by Elsevier Ltd.
2011-01-01
Background In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Results Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. Conclusions This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases. PMID:21864377
Viral metagenomic analysis of feces of wild small carnivores
2014-01-01
Background Recent studies have clearly demonstrated the enormous virus diversity that exists among wild animals. This exemplifies the required expansion of our knowledge of the virus diversity present in wildlife, as well as the potential transmission of these viruses to domestic animals or humans. Methods In the present study we evaluated the viral diversity of fecal samples (n = 42) collected from 10 different species of wild small carnivores inhabiting the northern part of Spain using random PCR in combination with next-generation sequencing. Samples were collected from American mink (Neovison vison), European mink (Mustela lutreola), European polecat (Mustela putorius), European pine marten (Martes martes), stone marten (Martes foina), Eurasian otter (Lutra lutra) and Eurasian badger (Meles meles) of the family of Mustelidae; common genet (Genetta genetta) of the family of Viverridae; red fox (Vulpes vulpes) of the family of Canidae and European wild cat (Felis silvestris) of the family of Felidae. Results A number of sequences of possible novel viruses or virus variants were detected, including a theilovirus, phleboviruses, an amdovirus, a kobuvirus and picobirnaviruses. Conclusions Using random PCR in combination with next generation sequencing, sequences of various novel viruses or virus variants were detected in fecal samples collected from Spanish carnivores. Detected novel viruses highlight the viral diversity that is present in fecal material of wild carnivores. PMID:24886057
Papillomavirus E7 Oncoproteins Share Functions with Polyomavirus Small T Antigens
White, Elizabeth A.; Kramer, Rebecca E.; Hwang, Justin H.; Pores Fernando, Arun T.; Naetar, Nana; Hahn, William C.; Roberts, Thomas M.; Schaffhausen, Brian S.; Livingston, David M.
2014-01-01
ABSTRACT Many of the small DNA tumor viruses encode transforming proteins that function by targeting critical cellular pathways involved in cell proliferation and survival. In this study, we have examined whether some of the functions of the polyomavirus small T antigens (ST) are shared by the E6 and E7 oncoproteins of two oncogenic papillomaviruses. Using three different assays, we have found that E7 can provide some simian virus 40 (SV40) or murine polyomavirus (PyV) ST functions. Both human papillomavirus 16 (HPV16) and bovine papillomavirus (BPV1) E7 proteins are capable of partially substituting for SV40 ST in a transformation assay that also includes SV40 large T antigen, the catalytic subunit of cellular telomerase, and oncogenic Ras. Like SV40 ST, HPV16 E7 has the ability to override a quiescence block induced by mitogen deprivation. Like PyV ST, it also has the ability to inhibit myoblast differentiation. At least two of these activities are dependent upon the interaction of HPV16 E7 with retinoblastoma protein family members. For small T antigens, interaction with PP2A is needed for each of these functions. Even though there is no strong evidence that E6 or E7 share the ability of small T to interact with PP2A, E7 provides these functions related to cellular transformation. IMPORTANCE DNA tumor viruses have provided major insights into how cancers develop. Some viruses, like the human papillomaviruses, can cause cancer directly. Both the papillomaviruses and the polyomaviruses have served as tools for understanding pathways that are often perturbed in cancer. Here, we have compared the functions of transforming proteins from several DNA tumor viruses, including two papillomaviruses and two polyomaviruses. We tested the papillomavirus E6 and E7 oncoproteins in three functional assays and found that E7 can provide some or all of the functions of the SV40 small T antigen, another well-characterized oncoprotein, in two of these assays. In a third assay, papillomavirus E7 has the same effect as the murine polyomavirus small T protein. In summary, we report several new functions for the papillomavirus E7 proteins, which will contribute new insights into the roles of viruses in cancer and the cellular pathways they perturb in carcinogenesis. PMID:25540383
USDA-ARS?s Scientific Manuscript database
In Ecuador, tamarillo (Solanum betaceum) represents an important cash crop for hundreds of small farmers. In 2013, leaves from tamarillo plants showing severe virus-like symptoms (mosaic, mottling and leaf deformation) were collected from old orchards in Pichincha and Tungurahua. Double-stranded RN...
USDA-ARS?s Scientific Manuscript database
Hymenopteran viruses may provide insights into colony collapse disorder in honey bees and other insect species. Three novel small RNA viruses were discovered during the genomics effort for the beneficial parasitoid of flies in the genus Nasonia (Hymenoptera). Genomics provides a great deal of inform...
Plum pox virus (PPV) genome expression in genetically engineered RNAi plants
USDA-ARS?s Scientific Manuscript database
An important approach to controlling sharka disease caused by Plum pox virus (PPV) is the development of PPV resistant plants using small interfering RNAs (siRNA) technology. In order to evaluate siRNA induced gene silencing, we studied, based on knowledge of the PPV genome sequence, virus genome t...
Baráth, Dániel; Jaksa-Czotter, Nikoletta; Molnár, János; Varga, Tünde; Balássy, Júlia; Szabó, Luca Krisztina; Kirilla, Zoltán; Tusnády, Gábor E; Preininger, Éva; Várallyay, Éva
2018-06-11
Fruit trees, such as apricot trees, are constantly exposed to the attack of viruses. As they are propagated in a vegetative way, this risk is present not only in the field, where they remain for decades, but also during their propagation. Metagenomic diagnostic methods, based on next generation sequencing (NGS), offer unique possibilities to reveal all the present pathogens in the investigated sample. Using NGS of small RNAs, a special field of these techniques, we tested leaf samples of different varieties of apricot originating from an isolator house or open field stock nursery. As a result, we identified Cherry virus A (CVA) and little cherry virus 1 (LChV-1) for the first time in Hungary. The NGS results were validated by RT-PCR and also by Northern blot in the case of CVA. Cloned and Sanger sequenced viral-specific PCR products enabled us to investigate their phylogenetic relationships. However, since these pathogens have not been described in our country before, their role in symptom development and modification during co-infection with other viruses requires further investigation.
Jiwaji, Meesbah; Short, James Roswell; Dorrington, Rosemary Ann
2016-10-01
Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus (PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.
Halstead, S B; Marchette, N J; Diwan, A R; Palumbo, N E; Putvatana, R
1984-07-01
Uncloned dengue (DEN) 4 (H-241) which had been passaged 15, 30 and 50 times in primary dog kidney (PDK) cells were subjected to two successive terminal dilution procedures. In the first (3Cl), virus was diluted in 10-fold steps in 10 replicate tubes. An infected tube from a dilution row with three or fewer virus-infected tubes was selected for two further passages. In the second (TD3), virus was triple terminal diluted using 2-fold dilution steps and selecting one positive tube out of 10. Both procedures selected virus population which differed from antecedents. Plaque size of PDK 15 was medium, PDK 30, small and PDK 50, pin-point. PDK 19-3Cl were medium and 56-3Cl, 24-TD3, 35-TD3 and 61-TD3 were all small. All cloned virus replication was completely shut-off at 38.5 degrees C; PDK 15 and 30 continued to replicate at this temperature. Uncloned viruses showed a graduated decrease in monkey virulence with PDK passage; cloned viruses were either avirulent for monkeys (19-3Cl, 56-31Cl, 24-TD3 and 35-TD3) or produced revertant large plaque parental-type viremia (35-3Cl and 61-TD3). Those cloned viruses which exhibited temperature sensitivity, reduced monkey virulence and stability after monkey passage may be suitable as vaccine candidates for evaluation in human beings.
Zhao, Richard Yuqi
2017-01-01
Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230
Dual wavelength imaging allows analysis of membrane fusion of influenza virus inside cells.
Sakai, Tatsuya; Ohuchi, Masanobu; Imai, Masaki; Mizuno, Takafumi; Kawasaki, Kazunori; Kuroda, Kazumichi; Yamashina, Shohei
2006-02-01
Influenza virus hemagglutinin (HA) is a determinant of virus infectivity. Therefore, it is important to determine whether HA of a new influenza virus, which can potentially cause pandemics, is functional against human cells. The novel imaging technique reported here allows rapid analysis of HA function by visualizing viral fusion inside cells. This imaging was designed to detect fusion changing the spectrum of the fluorescence-labeled virus. Using this imaging, we detected the fusion between a virus and a very small endosome that could not be detected previously, indicating that the imaging allows highly sensitive detection of viral fusion.
An overview of computer viruses in a research environment
NASA Technical Reports Server (NTRS)
Bishop, Matt
1991-01-01
The threat of attack by computer viruses is in reality a very small part of a much more general threat, specifically threats aimed at subverting computer security. Here, computer viruses are examined as a malicious logic in a research and development environment. A relation is drawn between the viruses and various models of security and integrity. Current research techniques aimed at controlling the threats posed to computer systems by threatening viruses in particular and malicious logic in general are examined. Finally, a brief examination of the vulnerabilities of research and development systems that malicious logic and computer viruses may exploit is undertaken.
Tijssen, Peter; Pénzes, Judit J; Yu, Qian; Pham, Hanh T; Bergoin, Max
2016-10-01
A wide spectrum of invertebrates is susceptible to various single-stranded DNA viruses. Their relative simplicity of replication and dependence on actively dividing cells makes them highly pathogenic for many invertebrates (Hexapoda, Decapoda, etc.). We present their taxonomical classification and describe the evolutionary relationships between various groups of invertebrate-infecting viruses, their high degree of recombination, and their relationship to viruses infecting mammals or other vertebrates. They share characteristics of the viruses within the various families, including structure of the virus particle, genome properties, and gene expression strategy. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.
1995-02-01
The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.
Blaschke, A P; Derx, J; Zessner, M; Kirnbauer, R; Kavka, G; Strelec, H; Farnleitner, A H; Pang, L
2016-12-15
Contamination of groundwater by pathogenic viruses from small biological wastewater treatment system discharges in remote areas is a major concern. To protect drinking water wells against virus contamination, safe setback distances are required between wastewater disposal fields and water supply wells. In this study, setback distances are calculated for alluvial sand and gravel aquifers for different vadose zone and aquifer thicknesses and horizontal groundwater gradients. This study applies to individual households and small settlements (1-20 persons) in decentralized locations without access to receiving surface waters but with the legal obligation of biological wastewater treatment. The calculations are based on Monte Carlo simulations using an analytical model that couples vertical unsaturated and horizontal saturated flow with virus transport. Hydraulic conductivities and water retention curves were selected from reported distribution functions depending on the type of subsurface media. The enteric virus concentration in effluent discharge was calculated based on reported ranges of enteric virus concentration in faeces, virus infectivity, suspension factor, and virus reduction by mechanical-biological wastewater treatment. To meet the risk target of <10 -4 infections/person/year, a 12 log 10 reduction was required, using a linear dose-response relationship for the total amount of enteric viruses, at very low exposure concentrations. The results of this study suggest that the horizontal setback distances vary widely ranging 39 to 144m in sand aquifers, 66-289m in gravel aquifers and 1-2.5km in coarse gravel aquifers. It also varies for the same aquifers, depending on the thickness of the vadose zones and the groundwater gradient. For vulnerable fast-flow alluvial aquifers like coarse gravels, the calculated setback distances were too large to achieve practically. Therefore, for this category of aquifer, a high level of treatment is recommended before the effluent is discharged to the ground surface. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Prevalence of newly isolated, cytopathic small round virus (Aichi strain) in Japan.
Yamashita, T; Sakae, K; Ishihara, Y; Isomura, S; Utagawa, E
1993-01-01
Cytopathic small round virus (Aichi strain), isolated from a patient with oyster-associated gastroenteritis, showed no reaction in the polymerase chain reaction method for enteroviruses or in the enzyme-linked immunosorbent assay (ELISA) for the five serotypes of astroviruses. Our ELISA was sensitive in detecting the Aichi strain antigen in stool samples, but there was no reaction in this ELISA with any non-Aichi strains of enteric viruses, with such origins as enterovirus, rotavirus, Norwalk virus, calicivirus, or astrovirus. In the ELISA, 13 of 47 stool samples from adult patients in five of nine oyster-associated gastroenteritis outbreaks were positive, but only 1 of 397 pediatric stool samples in Aichi Prefecture was positive. The prevalence rate for Aichi strain antibody was found to be 7.2% for persons aged 7 months to 4 years. The prevalence rate for antibody to Aichi strain increased with age, to about 80% in persons 35 years old. On the basis of the results of the present study, it was hypothesized that Aichi strain could be a new type of small round virus that mainly produces diarrhea in patients in the 15- to 34-year-old age group, 50 to 76% of whom possess neutralizing antibody. Images PMID:8263178
Ortmann, Steffen; Vos, Ad; Kretzschmar, Antje; Walther, Nomusa; Kaiser, Christiane; Freuling, Conrad; Lojkic, Ivana; Müller, Thomas
2018-03-13
Oral vaccination of the small Indian mongoose against rabies has been suggested as a potential tool to eliminate mongoose-mediated rabies on several Caribbean islands. A recently developed oral rabies virus vaccine strain, SPBN GASGAS, has already been shown to be efficacious in this reservoir species. Since, all available oral rabies vaccines are based on replication-competent viruses and vaccine baits are distributed unsupervised in the environment, enhanced safety standards for such vaccine types are required. The results of safety studies, including overdose, repeated doses, dissemination and different routes of administration, in the target species are presented. It was shown that the construct was apathogenic, irrespective of dose and route of administration. Even when it was inoculated directly in the brain, it did not induce rabies infection. Furthermore, the vaccine strain did not spread within the target species after direct oral instillation beyond the site of entry. The vaccine strain SPBN GASGAS meets the safety requirements for live rabies virus vaccines in this target species, the small Indian mongoose.
Gamma ray-induced small plaque mutants of western equine encephalitis virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simizu, B.; Yamazaki, S.; Suzuki, K.
1973-12-01
Small plaque mutants of Western equine encephalitis virus were obtained from the surviving fractions of wild-type virus which was irradiated with gamma rays. The frequency with which small plaque mutants appeared in the surviving fraction increased with the radiation dose. These mutants were not more resistant to radiation than wild-type virus. The growth rate of a mutant, S127, was lower than that of wild-type. Clonally purified mutant virions presented two peaks in a velocity sedimentation profile; peak 1 corresponded to the peak of wild type and peak 2 moved faster than peak 1. Virions of both peaks were infectious andmore » consistently formed small plaques in chicken embryo cells. Virions reisolated from either peak and grown in chicken embryo cells also revealed two peaks in sedimentation analysis. In the electron microscope examination peak 2 proved to consist of giant form particles, each of which contained more than one nucleoid surrounded with a common envelope. Despite this remarkable morphological difference, densities of the wild-type and S127 mutant virions were similar in cesium chloride gradients. The RNAs and proteins of mutant virions could not be distinguished from those of wild types on the basis of size or change. (auth)« less
Effect of Common Visual Dysfunctions on Reading.
ERIC Educational Resources Information Center
McPartland, Brian P.
1985-01-01
Six common visual dysfunctions are briefly explained and their relationships to reading noted: (1) ametropia, refractive error; (2) inaccurate saccades, the small jumping eye movements used in reading; (3) inefficient binocularity/fusion; (4) insufficient convergence/divergence; (5) heterophoria, imbalance in extra-ocular muscles; and (6)…
Analysis of the Salivary Gland Transcriptome of Frankliniella occidentalis
Stafford-Banks, Candice A.; Rotenberg, Dorith; Johnson, Brian R.; Whitfield, Anna E.; Ullman, Diane E.
2014-01-01
Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E−6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit. PMID:24736614
Analysis of the salivary gland transcriptome of Frankliniella occidentalis.
Stafford-Banks, Candice A; Rotenberg, Dorith; Johnson, Brian R; Whitfield, Anna E; Ullman, Diane E
2014-01-01
Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit.
Baseler, L; de Wit, E; Scott, D P; Munster, V J; Feldmann, H
2015-01-01
Nipah virus is a paramyxovirus in the genus Henipavirus, which has caused outbreaks in humans in Malaysia, India, Singapore, and Bangladesh. Whereas the human cases in Malaysia were characterized mainly by neurological symptoms and a case fatality rate of ∼40%, cases in Bangladesh also exhibited respiratory disease and had a case fatality rate of ∼70%. Here, we compared the histopathologic changes in the respiratory tract of Syrian hamsters, a well-established small animal disease model for Nipah virus, inoculated oronasally with Nipah virus isolates from human cases in Malaysia and Bangladesh. The Nipah virus isolate from Bangladesh caused slightly more severe rhinitis and bronchointerstitial pneumonia 2 days after inoculation in Syrian hamsters. By day 4, differences in lesion severity could no longer be detected. Immunohistochemistry demonstrated Nipah virus antigen in the nasal cavity and pulmonary lesions; the amount of Nipah virus antigen present correlated with lesion severity. Immunohistochemistry indicated that both Nipah virus isolates exhibited endotheliotropism in small- and medium-caliber arteries and arterioles, but not in veins, in the lung. This correlated with the location of ephrin B2, the main receptor for Nipah virus, in the vasculature. In conclusion, Nipah virus isolates from outbreaks in Malaysia and Bangladesh caused a similar type and severity of respiratory tract lesions in Syrian hamsters, suggesting that the differences in human disease reported in the outbreaks in Malaysia and Bangladesh are unlikely to have been caused by intrinsic differences in these 2 virus isolates. © The Author(s) 2014.
Control of antiviral immunity by pattern recognition and the microbiome
Pang, Iris K.; Iwasaki, Akiko
2013-01-01
Summary Human skin and mucosal surfaces are in constant contact with resident and invasive microbes. Recognition of microbial products by receptors of the innate immune system triggers rapid innate defense and transduces signals necessary for initiating and maintaining the adaptive immune responses. Microbial sensing by innate pattern recognition receptors is not restricted to pathogens. Rather, proper development, function, and maintenance of innate and adaptive immunity rely on continuous recognition of products derived from the microorganisms indigenous to the internal and external surfaces of mammalian host. Tonic immune activation by the resident microbiota governs host susceptibility to intestinal and extra-intestinal infections including those caused by viruses. This review highlights recent developments in innate viral recognition leading to adaptive immunity, and discusses potential link between viruses, microbiota and the host immune system. Further, we discuss the possible roles of microbiome in chronic viral infection and pathogenesis of autoimmune disease, and speculate on the benefit for probiotic therapies against such diseases. PMID:22168422
Can The Periods of Some Extra-Solar Planetary Systems be Quantized?
NASA Astrophysics Data System (ADS)
El Fady Morcos, Abd
A simple formula was derived before by Morcos (2013 ), to relate the quantum numbers of planetary systems and their periods. This formula is applicable perfectly for the solar system planets, and some extra-solar planets , of stars of approximately the same masses like the Sun. This formula has been used to estimate the periods of some extra-solar planet of known quantum numbers. The used quantum numbers were calculated previously by other authors. A comparison between the observed and estimated periods, from the given formula has been done. The differences between the observed and calculated periods for the extra-solar systems have been calculated and tabulated. It is found that there is an error of the range of 10% The same formula has been also used to find the quantum numbers, of some known periods, exo-planet. Keywords: Quantization; Periods; Extra-Planetary; Extra-Solar Planet REFERENCES [1] Agnese, A. G. and Festa, R. “Discretization on the Cosmic Scale Inspirred from the Old Quantum Mechanics,” 1998. http://arxiv.org/abs/astro-ph/9807186 [2] Agnese, A. G. and Festa, R. “Discretizing ups-Andro- medae Planetary System,” 1999. http://arxiv.org/abs/astro-ph/9910534. [3] Barnothy, J. M. “The Stability of the Solar Systemand of Small Stellar Systems,” Proceedings of the IAU Sympo-sium 62, Warsaw, 5-8 September 1973, pp. 23-31. [4] Morcos, A.B. , “Confrontation between Quantized Periods of Some Extra-Solar Planetary Systems and Observations”, International Journal of Astronomy and Astrophysics, 2013, 3, 28-32. [5] Nottale, L. “Fractal Space-Time and Microphysics, To-wards a Theory of Scale Relativity,” World Scientific, London, 1994. [6] Nottale , L., “Scale-Relativity and Quantization of Extra- Solar Planetary Systems,” Astronomy & Astrophysics, Vol. 315, 1996, pp. L9-L12 [7] Nottale, L., Schumacher, G. and Gay, J. “Scale-Relativity and Quantization of the Solar Systems,” Astronomy & Astrophysics letters, Vol. 322, 1997, pp. 1018-10 [8]Nottale, L. “Scale-Relativity and Quantization of Exo- planet Orbital Semi-Major Axes,” Astronomy & Astro- physics, Vol. 361, 2000, pp. 379-387.
Saastamoinen, Marjo; Ikonen, Suvi; Wong, Swee C; Lehtonen, Rainer; Hanski, Ilkka
2013-05-01
1. In insects, the length of larval development time typically influences adult body size and individual fitness, and hence development time can be expected to respond in an adaptive manner to variation in environmental conditions. In the wild, larval growth may be influenced by individual condition, which can be affected by population-level parameters such as population density and abundance and quality of resources. 2. We sampled larvae of the Glanville fritillary butterfly (Melitaea cinxia) from 514 local populations across a large metapopulation before the winter diapause and reared the larvae in common garden conditions after diapause. Here, we report that small post-diapause larvae prolonged their development via an extra larval instar, apparently to compensate for their 'bad start' after diapause. The number of instars was additionally a plastic response to environmental conditions, as the frequency of the extra instar increased under cooler thermal conditions. 3. The benefit of the extra instar is clear, as it allows individuals to develop into larger adults, but the cost is delayed adult eclosion, which is likely to select against the extra instar especially in males, in which early eclosion is critical for mating success. In support of this, the frequency of the extra instar was significantly lower in males (7%) than in females (42%). 4. Polymorphisms in three genes, serpin-1, vitellin-degrading protease precursor and phosphoglucose isomerase, which are known to influence development in insects, were associated with the occurrence of the extra instar. 5. At the level of local populations, the frequency of the extra instar was higher in newly established populations than that in old local ones, possibly reflecting maternal effects, as new populations are often established by females with heavy investment in dispersal. The frequency of the extra instar in turn correlated with the change in population size over 1 year and the risk of local extinction in the natural metapopulation of the Glanville fritillary. 6. Our results highlight the importance of the physiological condition of individuals in shaping subsequent life-history events and even population dynamics. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Nelson, Danielle D.; Duprau, Jennifer L.; Wolff, Peregrine L.; Evermann, James F.
2016-01-01
Bovine viral diarrhea virus (BVDV) is a pestivirus best known for causing a variety of disease syndromes in cattle, including gastrointestinal disease, reproductive insufficiency, immunosuppression, mucosal disease, and hemorrhagic syndrome. The virus can be spread by transiently infected individuals and by persistently infected animals that may be asymptomatic while shedding large amounts of virus throughout their lifetime. BVDV has been reported in over 40 domestic and free-ranging species, and persistent infection has been described in eight of those species: white-tailed deer, mule deer, eland, mousedeer, mountain goats, alpacas, sheep, and domestic swine. This paper reviews the various aspects of BVDV transmission, disease syndromes, diagnosis, control, and prevention, as well as examines BVDV infection in domestic and wild small ruminants and camelids including mountain goats (Oreamnos americanus). PMID:26779126
Fung, Elisabeth; Hill, Kelly; Hogendoorn, Katja; Glatz, Richard V; Napier, Kathryn R; Bellgard, Matthew I; Barrero, Roberto A
2018-02-01
Bee pollination is critical for improving productivity of one third of all plants or plant products consumed by humans. The health of honey bees is in decline in many countries worldwide, and RNA viruses together with other biological, environmental and anthropogenic factors have been identified as the main causes. The rapid genetic variation of viruses represents a challenge for diagnosis. Thus, application of deep sequencing methods for detection and analysis of viruses has increased over the last years. In this study, we leverage from the innate Dicer-2 mediated antiviral response against viruses to reconstruct complete viral genomes using virus-derived small interfering RNAs (vsiRNAs). Symptomatic A. mellifera larvae collected from hives free of Colony Collapse Disorder (CCD) and the parasitic Varroa mite (Varroa destructor) were used to generate more than 107 million small RNA reads. We show that de novo assembly of insect viral sequences is less fragmented using only 22 nt long vsiRNAs rather than a combination of 21-22 nt small RNAs. Our results show that A. mellifera larvae activate the RNAi immune response in the presence of Sacbrood virus (SBV). We assembled three SBV genomes from three individual larvae from different hives in a single apiary, with 1-2% nucleotide sequence variability among them. We found 3-4% variability between SBV genomes generated in this study and earlier published Australian variants suggesting the presence of different SBV quasispecies within the country. Copyright © 2018. Published by Elsevier Inc.
Upper limits to submillimetre-range forces from extra space-time dimensions.
Long, Joshua C; Chan, Hilton W; Churnside, Allison B; Gulbis, Eric A; Varney, Michael C M; Price, John C
2003-02-27
String theory is the most promising approach to the long-sought unified description of the four forces of nature and the elementary particles, but direct evidence supporting it is lacking. The theory requires six extra spatial dimensions beyond the three that we observe; it is usually supposed that these extra dimensions are curled up into small spaces. This 'compactification' induces 'moduli' fields, which describe the size and shape of the compact dimensions at each point in space-time. These moduli fields generate forces with strengths comparable to gravity, which according to some recent predictions might be detected on length scales of about 100 microm. Here we report a search for gravitational-strength forces using planar oscillators separated by a gap of 108 micro m. No new forces are observed, ruling out a substantial portion of the previously allowed parameter space for the strange and gluon moduli forces, and setting a new upper limit on the range of the string dilaton and radion forces.
2003-01-01
Immunodeficiency Virus Type-1 (HIV-1) Envelope Genes beyond brief excerpts is with permission of the copyright owner, and will save and hold harmless the...VEE) REPLICON SYSTEM, EXPRESSING HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 (HIV-1) ENVELOPE GENES 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...release, distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is the lentivirus responsible for the
USDA-ARS?s Scientific Manuscript database
Complete genome sequence of a double-stranded RNA (dsRNA) virus, southern tomato virus (STV), on tomatoes in China, was elucidated using small RNAs deep sequencing. The identified STV_CN12 shares 99% sequence identity to other isolates from Mexico, France, Spain, and U.S. This is the first report ...
Association between Psychopathic Disorder and Serum Antibody to Herpes Simplex Virus (Type 1)
Cleobury, J. F.; Skinner, G. R. B.; Thouless, M. E.; Wildy, P.
1971-01-01
The sera of a small of patients has been examined for herpes simplex virus antibody. Three clinically-defined groups of patients were compared: (a) aggressive psychopaths, (b) psychiatric controls, and (c) general hospital patients. The first group had an unusually high average kinetic neutralization constant against type 1 herpes simplex virus. PMID:5543996
Association between psychopathic disorder and serum antibody to herpes simplex virus (type 1).
Cleobury, J F; Skinner, G R; Thouless, M E; Wildy, P
1971-02-20
The sera of a small of patients has been examined for herpes simplex virus antibody. Three clinically-defined groups of patients were compared: (a) aggressive psychopaths, (b) psychiatric controls, and (c) general hospital patients. The first group had an unusually high average kinetic neutralization constant against type 1 herpes simplex virus.
How to collect and process large polyhedral viruses of insects
W. D. Rollinson; F. B. Lewis
1962-01-01
Polyhedral viruses have proved highly effective and very practical for control of certain pine sawflies; and a method of collecting and processing the small polyhedra (5 microns or less) characteristic of sawflies has been described. There is experimental evidence that the virus diseases of many Lepidopterous insects can be used similarly for direct control. The...
Meseda, Clement A.; Campbell, Joseph; Kumar, Arunima; Garcia, Alonzo D.; Merchlinsky, Michael; Weir, Jerry P.
2013-01-01
Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model. PMID:23785523
Raw Sewage Harbors Diverse Viral Populations
Cantalupo, Paul G.; Calgua, Byron; Zhao, Guoyan; Hundesa, Ayalkibet; Wier, Adam D.; Katz, Josh P.; Grabe, Michael; Hendrix, Roger W.; Girones, Rosina; Wang, David; Pipas, James M.
2011-01-01
ABSTRACT At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity. Importance At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that the viral universe is far more vast and diverse than previously suspected. PMID:21972239
Syrian Hamster as an Animal Model for the Study of Human Influenza Virus Infection.
Iwatsuki-Horimoto, Kiyoko; Nakajima, Noriko; Ichiko, Yurie; Sakai-Tagawa, Yuko; Noda, Takeshi; Hasegawa, Hideki; Kawaoka, Yoshihiro
2018-02-15
Ferrets and mice are frequently used as animal models for influenza research. However, ferrets are demanding in terms of housing space and handling, whereas mice are not naturally susceptible to infection with human influenza A or B viruses. Therefore, prior adaptation of human viruses is required for their use in mice. In addition, there are no mouse-adapted variants of the recent H3N2 viruses, because these viruses do not replicate well in mice. In this study, we investigated the susceptibility of Syrian hamsters to influenza viruses with a view to using the hamster model as an alternative to the mouse model. We found that hamsters are sensitive to influenza viruses, including the recent H3N2 viruses, without adaptation. Although the hamsters did not show weight loss or clinical signs of H3N2 virus infection, we observed pathogenic effects in the respiratory tracts of the infected animals. All of the H3N2 viruses tested replicated in the respiratory organs of the hamsters, and some of them were detected in the nasal washes of infected animals. Moreover, a 2009 pandemic (pdm09) virus and a seasonal H1N1 virus, as well as one of the two H3N2 viruses, but not a type B virus, were transmissible by the airborne route in these hamsters. Hamsters thus have the potential to be a small-animal model for the study of influenza virus infection, including studies of the pathogenicity of H3N2 viruses and other strains, as well as for use in H1N1 virus transmission studies. IMPORTANCE We found that Syrian hamsters are susceptible to human influenza viruses, including the recent H3N2 viruses, without adaptation. We also found that a pdm09 virus and a seasonal H1N1 virus, as well as one of the H3N2 viruses, but not a type B virus tested, are transmitted by the airborne route in these hamsters. Syrian hamsters thus have the potential to be used as a small-animal model for the study of human influenza viruses. Copyright © 2018 American Society for Microbiology.
Archaeal Viruses from High-Temperature Environments.
Munson-McGee, Jacob H; Snyder, Jamie C; Young, Mark J
2018-02-27
Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.
Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A; Miska, Eric A
2013-08-01
Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.
Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A.; Miska, Eric A.
2013-01-01
Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms. PMID:23811144
Small molecules targeting viral RNA.
Hermann, Thomas
2016-11-01
Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug-like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug-like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA-binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect-borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726-743. doi: 10.1002/wrna.1373 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Human papillomavirus molecular biology.
Harden, Mallory E; Munger, Karl
Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.
Emerging strategies for RNA interference (RNAi) applications in insects.
Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W
2015-01-01
RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.
Near-Complete Genome Sequence of a Novel Single-Stranded RNA Virus Discovered in Indoor Air.
Rosario, Karyna; Fierer, Noah; Breitbart, Mya
2018-03-22
Viral metagenomic analysis of heating, ventilation, and air conditioning (HVAC) filters recovered the near-complete genome sequence of a novel virus, named HVAC-associated R NA v irus 1 (HVAC-RV1). The HVAC-RV1 genome is most similar to those of picorna-like viruses identified in arthropods but encodes a small domain observed only in negative-sense single-stranded RNA viruses. Copyright © 2018 Rosario et al.
Evidence for the presence of bluetongue virus in Kosovo between 2001 and 2004.
Osmani, A; Murati, B; Kabashi, Q; Goga, I; Berisha, B; Wilsmore, A J; Hamblin, C
2006-03-25
In 2001, clinical cases of bluetongue were observed in Kosovo, and in that year and in 2003 and 2004, serum samples were collected from cattle and small ruminants and tested for antibodies to bluetongue virus. The results provide evidence that bluetongue virus was not present in Kosovo before the summer of 2001, but that the virus circulated subclinically among the cattle and sheep populations of Kosovo in 2002, 2003 and 2004.
2010-01-01
Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1) virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1) through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1). The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1) is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation. PMID:20843329
Wishaupt, Jérôme O; Ploeg, Tjeerd van der; Smeets, Leo C; Groot, Ronald de; Versteegh, Florens G A; Hartwig, Nico G
2017-05-01
The relation between viral load and disease severity in childhood acute respiratory tract infections (ARI) is not fully understood. To assess the clinical relevance of the relation between viral load, determined by cycle threshold (CT) value of real-time reverse transcription-polymerase chain reaction assays and disease severity in children with single- and multiple viral ARI. 582 children with ARI were prospectively followed and tested for 15 viruses. Correlations were calculated between CT values and clinical parameters. In single viral ARI, statistically significant correlations were found between viral loads of Respiratory Syncytial Virus (RSV) and hospitalization and between viral loads of Human Coronavirus (HCoV) and a disease severity score. In multiple-viral ARI, statistically significant correlations between viral load and clinical parameters were found. In RSV-Rhinovirus (RV) multiple infections, a low viral load of RV was correlated with a high length of hospital stay and a high duration of extra oxygen use. The mean CT value for RV, HCoV and Parainfluenza virus was significantly lower in single- versus multiple infections. Although correlations between CT values and clinical parameters in patients with single and multiple viral infection were found, the clinical importance of these findings is limited because individual differences in host-, viral and laboratory factors complicate the interpretation of statistically significant findings. In multiple infections, viral load cannot be used to differentiate between disease causing virus and innocent bystanders. Copyright © 2017 Elsevier B.V. All rights reserved.
Gao, Fei; Qu, Zehui; Li, Liwei; Yu, Lingxue; Jiang, Yifeng; Zhou, Yanjun; Yang, Shen; Zheng, Hao; Huang, Qinfeng; Tong, Wu; Tong, Guangzhi
2016-08-01
Porcine reproductive and respiratory syndrome virus (PRRSV) has a condensed single-stranded positive-sense RNA genome that contains several overlapping regions. The transcription regulatory sequence (TRS) is the important cis-acting element participating in PRRSV discontinuous transcription process. Based on reverse genetic system of type 2 highly pathogenic PRRSV cell-passage attenuated strain pHuN4-F112, firefly luciferase or Renilla luciferase genes were inserted between ORF1b and ORF2. An extra TRS6 was embedded behind the foreign luciferase genes. pA-Fluc and pA-Rluc were constructed and successfully rescued in MARC-145 cells. The phenotypical characteristics of the progeny virus were indistinguishable from those of vHuN4-F112 and were genetically stable for at least 25 cell passages. Mutant virus-infected cells were lysed at different time points to assess luciferase activities and measure foreign gene expression levels. The results showed identical variations in the luciferase activities of the recombinants in MARC-145 cells, indicating that they were suitable for monitoring viral propagation in PRRSV-permissive cell cultures. They were also used to infect pulmonary alveolar macrophages, which yielded similar variations in luciferase activities. Therefore, vA-Fluc and vA-Rluc present powerful new tools to monitor PRRSV propagation in both passaged and target cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
2017-10-01
at the site of the VML. Prior small and large animal studies in our laboratory have demonstrated that minced muscle autograft (MMA), by virtue of...minced and placed intramuscularly at the site of the VML. Prior small and large animal studies in our laboratory have demonstrated that minced muscle...significant delay in the project initiation. First, a large animal study at the ISR indicated some concerns with the extra cellular matrix allograft that
Park, Sahnggi; Kim, Kap-Joong; Lee, Jong-Moo; Kim, In-Gyoo; Kim, Gyungock
2009-07-06
It is shown that the resonant frequencies and the transmission spectra of ring resonators can be adjusted by depositing or etching the cladding nitride layer on the ring waveguide without introducing an extra loss or extra variations of channel spacing. The cladding nitride layer increases the minimum width of the gap in the coupling region to larger than 150nm which makes it possible to consider photolithography instead of E-beam lithography for the typical design rule of ring filters. KOH silicon etching can also adjust not only the resonance frequencies but also coupling coefficients with a small sacrifice of guiding loss.
Unusual RNA plant virus integration in the soybean genome leads to the production of small RNAs.
da Fonseca, Guilherme Cordenonsi; de Oliveira, Luiz Felipe Valter; de Morais, Guilherme Loss; Abdelnor, Ricardo Vilela; Nepomuceno, Alexandre Lima; Waterhouse, Peter M; Farinelli, Laurent; Margis, Rogerio
2016-05-01
Horizontal gene transfer (HGT) is known to be a major force in genome evolution. The acquisition of genes from viruses by eukaryotic genomes is a well-studied example of HGT, including rare cases of non-retroviral RNA virus integration. The present study describes the integration of cucumber mosaic virus RNA-1 into soybean genome. After an initial metatranscriptomic analysis of small RNAs derived from soybean, the de novo assembly resulted a 3029-nt contig homologous to RNA-1. The integration of this sequence in the soybean genome was confirmed by DNA deep sequencing. The locus where the integration occurred harbors the full RNA-1 sequence followed by the partial sequence of an endogenous mRNA and another sequence of RNA-1 as an inverted repeat and allowing the formation of a hairpin structure. This region recombined into a retrotransposon located inside an exon of a soybean gene. The nucleotide similarity of the integrated sequence compared to other Cucumber mosaic virus sequences indicates that the integration event occurred recently. We described a rare event of non-retroviral RNA virus integration in soybean that leads to the production of a double-stranded RNA in a similar fashion to virus resistance RNAi plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Update on Powassan virus: emergence of a North American tick-borne flavivirus.
Ebel, Gregory D
2010-01-01
Powassan virus (POW) (Flaviviridae: Flavivirus) is the cause of rare but severe neuroinvasive disease in North America and Russia. The virus is transmitted among small- and medium-sized mammals by ixodid ticks. Human infections occur via spillover from the main transmission cycle(s). Since the late 1990s, the incidence of human disease seems to be increasing. In addition, POW constitutes a genetically diverse group of virus genotypes, including Deer tick virus, that are maintained in distinct enzootic transmission cycles. This review highlights recent research into POW, focusing on virus genetics and ecology and human disease. Important directions for future research are also discussed.
Francy, Donna S.; Bushon, Rebecca N.; Stopar, Julie; Luzano, Emma J.; Fout, G. Shay
2004-01-01
A study of small public ground-water-supply wells that produce water from discontinuous sand and gravel aquifers was done from July 1999 through July 2001 in southeastern Michigan. Samples were collected to determine the occurrence of viral pathogens and microbiological indicators of fecal contamination (indicators), determine whether indicators are adequate predictors of the presence of enteric viruses, and determine the factors that affect the presence of enteric viruses. Small systems are those that serve less than 3,300 people. Samples were analyzed for specific enteric viruses by reverse transcriptase-polymerase chain reaction (RT-PCR), for culturable viruses by cell culture, and for the indicators total coliforms, Escherichia coli (E. coli), enterococci, and F-specific and somatic coliphage. Ancillary environmental and water-quality data were collected or compiled. A total of 169 regular samples and 32 replicate pairs were collected from 38 wells. Replicate pairs were samples collected at the same well on the same date. One well was sampled 6 times, 30 wells were sampled five times, 6 wells were sampled twice, and 1 well was sampled once. By use of RT-PCR, enterovirus was found in four wells (10.5 percent) and hepatitis A virus (HAV) in five wells (13.2 percent). In two of these wells, investigators found both enterovirus and HAV, but on different sampling dates. Culturable viruses were found one time in two wells (5.9 percent), and neither of these wells was positive for viruses by use of RT-PCR on any sampling date. If results for all viruses are combined, 9 of the 38 small public-supply wells were positive for enteric viruses (23.7 percent) by either cell culture or RT-PCR. One or more indicators were found in 18 of 38 wells. Total coliforms, E. coli, enterococci, and F-specific and somatic coliphage were found in 34.2, 10.5, 15.8, 5.9, and 5.9 percent, respectively, of the wells tested. In only 3 out of 18 wells were samples positive for an indicator on more than one date at the same well. The co-occurrence of enteric viruses and any indicator was 55.6 percent; five out of the nine virus-positive wells were also found to be positive for an indicator. Two wells with detections of viruses had a detection of total coliforms, one well had a detection of E. coli, one of enterococci, and one of F-specific coliphage. On a per sample basis, of 11 samples that were positive for enteric viruses, indicator bacteria co-occurred in only 2 samples, and coliphage were not present in any. More virus-positive samples were found at sites served by septic systems than those served by sewerlines. Sampling condition (ground water or a mixture of tank and ground water), distance to septic system, type of and distance to nearest surface-water body, well characteristics, or land use were not related to the presence of viruses or indicators. Among continuous water-quality variables, statistically significant relations were found between total coliforms and dissolved organic carbon and between total coliforms and iron. There was a statistically significant relation between chloride concentrations >20 mg/L and detections of total coliforms. Presence of nitrate and nitrite was related to the presence of other indicators (E. coli, enterococci, and F-specific and somatic coliphage) or enteric viruses, but not to total coliforms. The data indicated that chloride-to-bromide (C1:Br) ratios may be useful as a screening tool for total coliforms and enteric viruses but not for E. coli, enterococci, and F-specific and somatic coliphage. This study provides evidence for fecal contamination of ground water from small public-supply wells, at least on an intermittent basis. Collecting data on multiple lines of evidence would be needed to reliably predict the presence of enteric viruses and protect public health. Future data collection toward this end could include repeat sampling several times a year for different indicators, measuring dissolv
Lestremau, François; Wu, Di; Szücs, Roman
2010-07-23
The present study focuses on the evaluation of 1.0 mm i.d. (internal diameter) columns on a commercial Ultra-High Pressure system. These systems have been developed specifically to operate columns with small volumes, typically 2.1 mm i.d., by reducing extra-column volume dispersion. The use of columns with smaller i.d. results in a reduced solvent consumption and required sample volume. The evaluation of the columns was carried out with samples containing neutral and pharmaceutical compounds. In isocratic mode, the extra-column volume produced additional band broadening leading to poor performances compared to equivalent 2.1 mm i.d. columns. By increasing the length of the column, the influence of the extra-column bandspreading could be reduced and 75,000 plates were obtained when four columns were coupled. In gradient mode, the effect of the extra-column contribution on efficiency was limited and about 80% of the performance of the 2.1 mm i.d. columns was obtained. Optimum conditions in gradient mode were further investigated by changing flow rate, gradient time and column length. A different approach of the calculation of peak capacity was also considered for the comparison of the influence of these different parameters. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Deep sequencing reveals a novel closterovirus associated with wild rose leaf rosette disease.
He, Yan; Yang, Zuokun; Hong, Ni; Wang, Guoping; Ning, Guogui; Xu, Wenxing
2015-06-01
A bizarre virus-like symptom of a leaf rosette formed by dense small leaves on branches of wild roses (Rosa multiflora Thunb.), designated as 'wild rose leaf rosette disease' (WRLRD), was observed in China. To investigate the presumed causal virus, a wild rose sample affected by WRLRD was subjected to deep sequencing of small interfering RNAs (siRNAs) for a complete survey of the infecting viruses and viroids. The assembly of siRNAs led to the reconstruction of the complete genomes of three known viruses, namely Apple stem grooving virus (ASGV), Blackberry chlorotic ringspot virus (BCRV) and Prunus necrotic ringspot virus (PNRSV), and of a novel virus provisionally named 'rose leaf rosette-associated virus' (RLRaV). Phylogenetic analysis clearly placed RLRaV alongside members of the genus Closterovirus, family Closteroviridae. Genome organization of RLRaV RNA (17,653 nucleotides) showed 13 open reading frames (ORFs), except ORF1 and the quintuple gene block, most of which showed no significant similarities with known viral proteins, but, instead, had detectable identities to fungal or bacterial proteins. Additional novel molecular features indicated that RLRaV seems to be the most complex virus among the known genus members. To our knowledge, this is the first report of WRLRD and its associated closterovirus, as well as two ilarviruses and one capilovirus, infecting wild roses. Our findings present novel information about the closterovirus and the aetiology of this rose disease which should facilitate its control. More importantly, the novel features of RLRaV help to clarify the molecular and evolutionary features of the closterovirus. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Ornelas-Eusebio, Erika; Obregón-Ascencio, Alejandro; Chávez-Maya, Fernando; García-Espinosa, Gary
2015-03-01
Wild waterfowl and their habitats are the main reservoirs of influenza A virus (IAV) mainly during the breeding season and prior to migration. This study describes the molecular characterization of an IAV isolated from 240 water samples of a small wetland during non-breeding season of migratory wild ducks in the State of Mexico, Mexico. The results showed that the virus belongs to the H4N2 subtype and each of its eight segments of the viral genome has similarity to IAV isolated from ducks in North America. This study suggests that IAV can be isolated from small wetland during non-breeding season of migrating waterfowl.
Herbert, Kristina M.; Nag, Anita
2016-01-01
Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage. PMID:27271653
Hunt, G J; Tabachnick, W J
1996-05-01
Equipment and procedures are described for biosafety level 3 (BL-3) containment work with small, zoophilic arthropods. BL-3 classified pathogens always must be manipulated in biological safety cabinets. Procedures, including physical barriers and handling methods, that prevent the escape of potentially virus-infected insects are discussed, and the use of a monitoring system for insect security is explained. The inability to recover escaped minute, flying insects poses a major difference from similar work with larger insects, such as mosquitoes. Methods were developed for the safe and secure handling of Culicoides variipennis sonorensis Wirth & Jones infected with exotic bluetongue viruses during BL-3 containment.
Immunization against Small Ruminant Lentiviruses
Reina, Ramsés; de Andrés, Damián; Amorena, Beatriz
2013-01-01
Multisystemic disease caused by Small Ruminant Lentiviruses (SRLV) in sheep and goats leads to production losses, to the detriment of animal health and welfare. This, together with the lack of treatments, has triggered interest in exploring different strategies of immunization to control the widely spread SRLV infection and, also, to provide a useful model for HIV vaccines. These strategies involve inactivated whole virus, subunit vaccines, DNA encoding viral proteins in the presence or absence of plasmids encoding immunological adjuvants and naturally or artificially attenuated viruses. In this review, we revisit, comprehensively, the immunization strategies against SRLV and analyze this double edged tool individually, as it may contribute to either controlling or enhancing virus replication and/or disease. PMID:23917352
Schreurs, Annabel; Stålberg, Erik V; Punga, Anna Rostedt
2008-04-01
Subacute sclerosing panencephalitis (SSPE) is a rare chronic, progressive encephalitis that affects primarily children and young adults, caused by a persistent infection of immune-resistant measles virus. Diagnostic hallmarks include widespread cortical dysfunction on EEG, myoclonus, white matter abnormalities on neuroradiological examination and the presence of IgG anti-measles antibodies in the cerebrospinal fluid. We present the first case of SSPE with signs of peripheral nerve hyperexcitability, observed as extra discharges following the compound motor action potential at motor nerve stimulation. In addition we demonstrate the importance of SSPE in the differential diagnosis of adult patients with psychiatric and neurological symptoms.
Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.
Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang
2014-10-01
MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.
Sidwell, R W; Huffman, J H; Bailey, K W; Wong, M H; Nimrod, A; Panet, A
1996-01-01
The oxygen free-radical scavenger recombinant human manganese superoxide dismutase (MnSOD) was studied for its effects on influenza virus infections in mice when used alone and in combination with ribavirin. Mice challenged with influenza A/NWS/33 (H1N1) virus were treated parenterally in doses of 25, 50, and 100 mg/kg of body weight per day every 8 h for 5 days beginning at 48 h post-virus exposure. An increase in mean day to death, lessened decline in arterial oxygen saturation, and reduced lung consolidation and lung virus titers occurred in the treated animals. To determine the influence of viral challenge, experiments were run in which mice were infected with a 100 or 75% lethal dose of virus and were treated intravenously once daily for 5 days beginning 96 h after virus exposure. Weak inhibition of the mortality rate was seen in mice receiving the high viral challenge, whereas significant inhibition occurred in the animals infected with the lower viral challenge, indicating that MnSOD effects are virus dose dependent. To determine if treatment with small-particle aerosol would render an antiviral effect, infected mice were treated by this route for 1 h daily for 5 days beginning 72 h after virus exposure. A dose-responsive disease inhibition was seen. An infection induced by influenza B/Hong Kong/5/72 virus in mice was mildly inhibited by intravenous MnSOD treatment as seen by increased mean day to death, lessened arterial oxygen saturation decline, and lowered lung consolidation. MnSOD was well tolerated in all experiments. A combination of MnSOD and ribavirin, each administered with small-particle aerosol, resulted in a generally mild improvement of the disease induced by the influenza A virus compared with use of either material alone. PMID:8913477
USDA-ARS?s Scientific Manuscript database
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and young children. A small percentage of these individuals develop severe and even fatal disease. To better understand the pathogenesis of severe disease and develop therapies unique to the less-developed infan...
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV), a highly cell-associated lymphotropic alphaherpesvirus, is the causative agent of a neoplastic disease in domestic chickens, called Marek’s disease (MD). In the unique long region of the MDV genome, open reading frames UL39 and UL40 encode the large and small subunits o...
Barrero, Roberto A; Napier, Kathryn R; Cunnington, James; Liefting, Lia; Keenan, Sandi; Frampton, Rebekah A; Szabo, Tamas; Bulman, Simon; Hunter, Adam; Ward, Lisa; Whattam, Mark; Bellgard, Matthew I
2017-01-11
Detection and preventing entry of exotic viruses and viroids at the border is critical for protecting plant industries trade worldwide. Existing post entry quarantine screening protocols rely on time-consuming biological indicators and/or molecular assays that require knowledge of infecting viral pathogens. Plants have developed the ability to recognise and respond to viral infections through Dicer-like enzymes that cleave viral sequences into specific small RNA products. Many studies reported the use of a broad range of small RNAs encompassing the product sizes of several Dicer enzymes involved in distinct biological pathways. Here we optimise the assembly of viral sequences by using specific small RNA subsets. We sequenced the small RNA fractions of 21 plants held at quarantine glasshouse facilities in Australia and New Zealand. Benchmarking of several de novo assembler tools yielded SPAdes using a kmer of 19 to produce the best assembly outcomes. We also found that de novo assembly using 21-25 nt small RNAs can result in chimeric assemblies of viral sequences and plant host sequences. Such non-specific assemblies can be resolved by using 21-22 nt or 24 nt small RNAs subsets. Among the 21 selected samples, we identified contigs with sequence similarity to 18 viruses and 3 viroids in 13 samples. Most of the viruses were assembled using only 21-22 nt long virus-derived siRNAs (viRNAs), except for one Citrus endogenous pararetrovirus that was more efficiently assembled using 24 nt long viRNAs. All three viroids found in this study were fully assembled using either 21-22 nt or 24 nt viRNAs. Optimised analysis workflows were customised within the Yabi web-based analytical environment. We present a fully automated viral surveillance and diagnosis web-based bioinformatics toolkit that provides a flexible, user-friendly, robust and scalable interface for the discovery and diagnosis of viral pathogens. We have implemented an automated viral surveillance and diagnosis (VSD) bioinformatics toolkit that produces improved viruses and viroid sequence assemblies. The VSD toolkit provides several optimised and reusable workflows applicable to distinct viral pathogens. We envisage that this resource will facilitate the surveillance and diagnosis viral pathogens in plants, insects and invertebrates.
Fooks, A R; Johnson, N; Müller, T; Vos, A; Mansfield, K; Hicks, D; Nunez, A; Freuling, C; Neubert, L; Kaipf, I; Denzinger, A; Franka, R; Rupprecht, C E
2009-08-01
Two common bat lyssavirus species have been identified in many European countries: European bat lyssavirus type-1 and -2 (EBLV-1 and EBLV-2). Only limited knowledge on the susceptibility of the natural EBLV-hosts, insectivorous bats, to lyssavirus infection is available. Our study was undertaken to evaluate the susceptibility and pathology associated with an EBLV-1 infection in Eptesicus fuscus following different routes of virus inoculation including intracranial (n = 6), intramuscular (n = 14), oral (n = 7) and intranasal (n = 7). Blood and saliva samples were collected from all bats on a monthly basis. Four bats inoculated intracranially developed rabies with a mean of 11 days to death, whilst seven bats inoculated intramuscularly developed rabies, with an extended incubation period prior to death. We did not observe any mortality in the oral (p.o.) or intranasal (i.n.) groups and both groups had detectable levels of virus neutralizing antibodies (data not shown). Virus shedding was demonstrated in the saliva by virus isolation and the detection of viral RNA in ill bats, particularly immediately prior to the development of disease. In addition, the presence of virus and viral RNA was detected in the thyroid gland in bats challenged experimentally with EBLV-1, which exceeded that detected in all other extra-neural tissue. The significance of detecting EBLV-1 in the thyroid gland of rabid bats is not well understood. We speculate that the infection of the thyroid gland may cause subacute thyroiditis, a transient form of thyroiditis causing hyperthyroidism, resulting in changes in adrenocortical activity that could lead to hormonal dysfunction, thereby distinguishing the clinical presentation of rabies in the rabid host.
Jean, Christian; Fragnet-Trapp, Laetitia; Rémy, Sylvie; Chabanne-Vautherot, Danièle; Montillet, Guillaume; Fuet, Aurélie; Denesvre, Caroline; Pain, Bertrand
2017-01-01
Marek’s disease virus is the etiological agent of a major lymphoproliferative disorder in poultry and the prototype of the Mardivirus genus. Primary avian somatic cells are currently used for virus replication and vaccine production, but they are largely refractory to any genetic modification compatible with the preservation of intact viral susceptibility. We explored the concept of induction of viral replication permissiveness in an established pluripotent chicken embryonic stem cell-line (cES) in order to derive a new fully susceptible cell-line. Chicken ES cells were not permissive for Mardivirus infection, but as soon as differentiation was triggered, replication of Marek’s disease virus was detected. From a panel of cyto-differentiating agents, hexamethylene bis (acetamide) (HMBA) was found to be the most efficient regarding the induction of permissiveness. These initial findings prompted us to analyse the effect of HMBA on gene expression, to derive a new mesenchymal cell line, the so-called ESCDL-1, and monitor its susceptibility for Mardivirus replication. All Mardiviruses tested so far replicated equally well on primary embryonic skin cells and on ESCDL-1, and the latter showed no variation related to its passage number in its permissiveness for virus infection. Viral morphogenesis studies confirmed efficient multiplication with, as in other in vitro models, no extra-cellular virus production. We could show that ESCDL-1 can be transfected to express a transgene and subsequently cloned without any loss in permissiveness. Consequently, ESCDL-1 was genetically modified to complement viral gene deletions thus yielding stable trans-complementing cell lines. We herein claim that derivation of stable differentiated cell-lines from cES cell lines might be an alternative solution to the cultivation of primary cells for virology studies. PMID:28406989
ERIC Educational Resources Information Center
Schulte, Peter
2003-01-01
Describes one German university's efforts over 10 years to institutionalize relationships with small- and mid-sized industry and local enterprises, thereby increasing extra-budgetary funding for applied research projects. These joint efforts offer students the opportunity to acquire both theoretical knowledge and practical training during their…
THE SURVIVAL OF YELLOW FEVER VIRUS IN CULTURES
Lewis, Paul A.
1930-01-01
1. The virus of yellow fever has been found to survive in artificial culture media for at least 12 days at a temperature of 35°C. No visible growth has been present and no reproduction of the virus has been demonstrated. 2. Infections have been obtained in rhesus monkeys with two strains of virus in quantities as small as 0.00001 cc. of infectious blood, and with one strain in an amount probably as minute as 0.000001 cc. PMID:19869744
Crystal Structure of the Nipah Virus Phosphoprotein Tetramerization Domain
Bruhn, Jessica F.; Barnett, Katherine C.; Bibby, Jaclyn; Thomas, Jens M. H.; Keegan, Ronan M.; Rigden, Daniel J.; Bornholdt, Zachary A.
2014-01-01
The Nipah virus phosphoprotein (P) is multimeric and tethers the viral polymerase to the nucleocapsid. We present the crystal structure of the multimerization domain of Nipah virus P: a long, parallel, tetrameric, coiled coil with a small, α-helical cap structure. Across the paramyxoviruses, these domains share little sequence identity yet are similar in length and structural organization, suggesting a common requirement for scaffolding or spatial organization of the functions of P in the virus life cycle. PMID:24155387
Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase I Awards. 1985.
1985-01-01
AND MECHANICAL EROSION. THIS CAN CAUSE CAT - ASTROPHIC FAILURE OR STABILITY AND ACCURACY PROBLEMS OF REENTRY VEHICLES. THE TPS MUST BE ABLE TO PROTECT...RESPIRATORY, INFLUENZA AND ENCEPHALITIS VIRUSES . MCR TECHNOLOGY CORP SDIO $ 0 237 E DELAWARE PL - #10A CHICAGO, IL 60611 DR CHARLES K RHODES TITLE: SMALL RUGGED...MICROGENESYS INC ARMY $ 0 400 FRONTAGE RD W HAVEN, CT 06516 DR MARK A COCHRAN TITLE: BACULOVIRUS RECOMBINANTS THAT EXPRESS HEPATITIS B VIRUS SURFACE
Light and electron microscope study of the neurotropism of Powassan virus strain P-40.
Isachkova, L M; Shestopalova, N M; Frolova, M P; Reingold, V N
1979-01-01
Brains of adult white mice inoculated with the P-40 strain of Powassan virus isolated in Primorsky Krai (U.S.S.R) from ticks were studied by light and electron microscopy. Accumulations of virus particles were found in neurons and their dendrites and axons, in glial cells, and in intercellular spaces. In the nerve cells, most prevalent were changes of the type of chromatolysis and formation of small vacuoles, associated with the alteration of the endoplasmic reticulum induced by virus morphogenesis. In virus-affected cells, multilayer dense membranes were found.
Corbetta, Davide; Imeri, Federico; Gatti, Roberto
2015-07-01
In people after stroke, does virtual reality based rehabilitation (VRBR) improve walking speed, balance and mobility more than the same duration of standard rehabilitation? In people after stroke, does adding extra VRBR to standard rehabilitation improve the effects on gait, balance and mobility? Systematic review with meta-analysis of randomised trials. Adults with a clinical diagnosis of stroke. Eligible trials had to include one these comparisons: VRBR replacing some or all of standard rehabilitation or VRBR used as extra rehabilitation time added to a standard rehabilitation regimen. Walking speed, balance, mobility and adverse events. In total, 15 trials involving 341 participants were included. When VRBR replaced some or all of the standard rehabilitation, there were statistically significant benefits in walking speed (MD 0.15 m/s, 95% CI 0.10 to 0.19), balance (MD 2.1 points on the Berg Balance Scale, 95% CI 1.8 to 2.5) and mobility (MD 2.3 seconds on the Timed Up and Go test, 95% CI 1.2 to 3.4). When VRBR was added to standard rehabilitation, mobility showed a significant benefit (0.7 seconds on the Timed Up and Go test, 95% CI 0.4 to 1.1), but insufficient evidence was found to comment about walking speed (one trial) and balance (high heterogeneity). Substituting some or all of a standard rehabilitation regimen with VRBR elicits greater benefits in walking speed, balance and mobility in people with stroke. Although the benefits are small, the extra cost of applying virtual reality to standard rehabilitation is also small, especially when spread over many patients in a clinic. Adding extra VRBR time to standard rehabilitation also has some benefits; further research is needed to determine if these benefits are clinically worthwhile. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guu, Tom S.Y.; Liu, Zheng; Ye, Qiaozhen
Hepatitis E virus (HEV), a small, non-enveloped RNA virus in the family Hepeviridae, is associated with endemic and epidemic acute viral hepatitis in developing countries. Our 3.5-{angstrom} structure of a HEV-like particle (VLP) shows that each capsid protein contains 3 linear domains that form distinct structural elements: S, the continuous capsid; P1, 3-fold protrusions; and P2, 2-fold spikes. The S domain adopts a jelly-roll fold commonly observed in small RNA viruses. The P1 and P2 domains both adopt {beta}-barrel folds. Each domain possesses a potential polysaccharide-binding site that may function in cell-receptor binding. Sugar binding to P1 at the capsidmore » protein interface may lead to capsid disassembly and cell entry. Structural modeling indicates that native T = 3 capsid contains flat dimers, with less curvature than those of T = 1 VLP. Our findings significantly advance the understanding of HEV molecular biology and have application to the development of vaccines and antiviral medications.« less
2016-01-01
Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time. PMID:27959951
Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodzik, R.; Bandurska, K.; Deka, D.
2005-12-16
Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles weremore » efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP.« less
Eichmeier, Aleš; Komínková, Marcela; Komínek, Petr; Baránek, Miroslav
2016-01-01
Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time.
USDA-ARS?s Scientific Manuscript database
Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the geographic expansion, and continued outbreaks in humans and avian species underscore the need for more effective influenza vaccines and antivirals. Additional small anim...
Bala, Jamilu Abubakar; Balakrishnan, Krishnan Nair; Abdullah, Ashwaq Ahmed; Mohamed, Ramlan; Haron, Abd Wahid; Jesse, Faez Firdaus Abdullah; Noordin, Mustapha M; Mohd-Azmi, Mohd Lila
2018-04-28
Orf disease is known to be enzootic among small ruminants in Asia, Africa, and some other parts of the world. The disease caused by orf virus is highly contagious among small ruminant species. Unfortunately, it has been neglected for decades because of the general belief that it only causes a self-limiting disease. On the other hand, in the past it has been reported to cause huge cumulative financial losses in livestock farming. Orf disease is characterized by localized proliferative and persistent skin nodule lesions that can be classified into three forms: generalized, labial and mammary or genitals. It can manifest as benign or malignant types. The later type of orf can remain persistent, often fatal and usually causes a serious outbreak among small ruminant population. Morbidity and mortality rates of orf are higher especially in newly infected kids and lambs. Application of antibiotics together with antipyretic and/or analgesic is highly recommended as a supportive disease management strategy for prevention of subsequent secondary microbial invasion. The presence of various exotic orf virus strains of different origin has been reported in many countries mostly due to poorly controlled cross-border virus transmission. There have been several efforts to develop orf virus vaccines and it was with variable success. The use of conventional vaccines to control orf is a debatable topic due to the concern of short term immunity development. Following re-infection in previously vaccinated animals, it is uncommon to observe the farms involved to experience rapid virus spread and disease outbreak. Meanwhile, cases of zoonosis from infected animals to animal handler are not uncommon. Despite failures to contain the spread of orf virus by the use of conventional vaccines, vaccination of animals with live orf virus is still considered as one of the best choice. The review herein described pertinent issues with regard to the development and use of potential effective vaccines as a control measure against orf virus infection. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Na; Yan, Yunhuan; Zhang, Angke; Gao, Jiming; Zhang, Chong; Wang, Xue; Hou, Gaopeng; Zhang, Gaiping; Jia, Jinbu; Zhou, En-Min; Xiao, Shuqi
2016-12-13
Many viruses encode microRNAs (miRNAs) that are small non-coding single-stranded RNAs which play critical roles in virus-host interactions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically impactful viruses in the swine industry. The present study sought to determine whether PRRSV encodes miRNAs that could regulate PRRSV replication. Four viral small RNAs (vsRNAs) were mapped to the stem-loop structures in the ORF1a, ORF1b and GP2a regions of the PRRSV genome by bioinformatics prediction and experimental verification. Of these, the structures with the lowest minimum free energy (MFE) values predicted for PRRSV-vsRNA1 corresponded to typical stem-loop, hairpin structures. Inhibition of PRRSV-vsRNA1 function led to significant increases in viral replication. Transfection with PRRSV-vsRNA1 mimics significantly inhibited PRRSV replication in primary porcine alveolar macrophages (PAMs). The time-dependent increase in the abundance of PRRSV-vsRNA1 mirrored the gradual upregulation of PRRSV RNA expression. Knockdown of proteins associated with cellular miRNA biogenesis demonstrated that Drosha and Argonaute (Ago2) are involved in PRRSV-vsRNA1 biogenesis. Moreover, PRRSV-vsRNA1 bound specifically to the nonstructural protein 2 (NSP2)-coding sequence of PRRSV genome RNA. Collectively, the results reveal that PRRSV encodes a functional PRRSV-vsRNA1 which auto-regulates PRRSV replication by directly targeting and suppressing viral NSP2 gene expression. These findings not only provide new insights into the mechanism of the pathogenesis of PRRSV, but also explore a potential avenue for controlling PRRSV infection using viral small RNAs.
The study of virus structure and function: a personal history
NASA Astrophysics Data System (ADS)
Rossmann, Michael G.
2014-09-01
I describe my gradually evolving role as a scientist from my birth in Frankfurt (Germany) to my education in the UK, my post-doc years and my experiences as an independent investigator at Purdue University1. I discuss the significance of my post-doctoral work in Minnesota where I had my first encounter with an electronic computer and subsequently in Cambridge where I participated in the first structure determination of proteins. After six years back in England my family moved to Indiana (USA) where my home remains to this day. At Purdue University I first studied the structure of enzymes and in the process I discovered the organization and slow evolution of protein domains, each with a specific function. With this success I started what had been on my mind already for a long time, namely the structural analysis of viruses. Initially we studied plant viruses but then switched to small RNA animal viruses, discovering that some plant and animal RNA viruses have closely similar structures and therefore presumably had a common evolutionary origin. Next I became interested in somewhat larger viruses that had lipid membrane envelopes. In turn that has led to the study of very large dsDNA viruses as big as small bacteria as well as studies of bacterial viruses that require complex molecular motors for different parts of their life cycle. While developing crystallographic techniques for the study of viruses it has become progressively more apparent that electron microscopy is an important new tool that is likely to eclipse x-ray crystallography in the next decade.
The Fecal Virome of Pigs on a High-Density Farm ▿ †
Shan, Tongling; Li, Linlin; Simmonds, Peter; Wang, Chunlin; Moeser, Adam; Delwart, Eric
2011-01-01
Swine are an important source of proteins worldwide but are subject to frequent viral outbreaks and numerous infections capable of infecting humans. Modern farming conditions may also increase viral transmission and potential zoonotic spread. We describe here the metagenomics-derived virome in the feces of 24 healthy and 12 diarrheic piglets on a high-density farm. An average of 4.2 different mammalian viruses were shed by healthy piglets, reflecting a high level of asymptomatic infections. Diarrheic pigs shed an average of 5.4 different mammalian viruses. Ninety-nine percent of the viral sequences were related to the RNA virus families Picornaviridae, Astroviridae, Coronaviridae, and Caliciviridae, while 1% were related to the small DNA virus families Circoviridae, and Parvoviridae. Porcine RNA viruses identified, in order of decreasing number of sequence reads, consisted of kobuviruses, astroviruses, enteroviruses, sapoviruses, sapeloviruses, coronaviruses, bocaviruses, and teschoviruses. The near-full genomes of multiple novel species of porcine astroviruses and bocaviruses were generated and phylogenetically analyzed. Multiple small circular DNA genomes encoding replicase proteins plus two highly divergent members of the Picornavirales order were also characterized. The possible origin of these viral genomes from pig-infecting protozoans and nematodes, based on closest sequence similarities, is discussed. In summary, an unbiased survey of viruses in the feces of intensely farmed animals revealed frequent coinfections with a highly diverse set of viruses providing favorable conditions for viral recombination. Viral surveys of animals can readily document the circulation of known and new viruses, facilitating the detection of emerging viruses and prospective evaluation of their pathogenic and zoonotic potentials. PMID:21900163
Mueller, Niklaus H; Pattabiraman, Nagarajan; Ansarah-Sobrinho, Camilo; Viswanathan, Prasanth; Pierson, Theodore C; Padmanabhan, R
2008-09-01
West Nile virus and dengue virus are mosquito-borne flaviviruses that cause a large number of human infections each year. No vaccines or chemotherapeutics are currently available. These viruses encode a serine protease that is essential for polyprotein processing, a required step in the viral replication cycle. In this study, a high-throughput screening assay for the West Nile virus protease was employed to screen approximately 32,000 small-molecule compounds for identification of inhibitors. Lead inhibitor compounds with three distinct core chemical structures (1 to 3) were identified. In a secondary screening of selected compounds, two compounds, belonging to the 8-hydroxyquinoline family (compounds A and B) and containing core structure 1, were identified as potent inhibitors of the West Nile virus protease, with K(i) values of 3.2 +/- 0.3 microM and 3.4 +/- 0.6 microM, respectively. These compounds inhibited the dengue virus type 2 protease with K(i) values of 28.6 +/- 5.1 microM and 30.2 +/- 8.6 microM, respectively, showing some selectivity in the inhibition of these viral proteases. However, the compounds show no inhibition of cellular serine proteases, trypsin, or factor Xa. Kinetic analysis and molecular docking of compound B onto the known crystal structure of the West Nile virus protease indicate that the inhibitor binds in the substrate-binding cleft. Furthermore, compound B was capable of inhibiting West Nile virus RNA replication in cultured Vero cells (50% effective concentration, 1.4 +/- 0.4 microM; selectivity index, 100), presumably by inhibition of polyprotein processing.
Brekke, Patricia; Ewen, John G; Clucas, Gemma; Santure, Anna W
2015-01-01
Floating males are usually thought of as nonbreeders. However, some floating individuals are able to reproduce through extra-pair copulations. Floater reproductive success can impact breeders’ sex ratio, reproductive variance, multiple paternity and inbreeding, particularly in small populations. Changes in reproductive variance alter the rate of genetic drift and loss of genetic diversity. Therefore, genetic management of threatened species requires an understanding of floater reproduction and determinants of floating behaviour to effectively conserve species. Here, we used a pedigreed, free-living population of the endangered New Zealand hihi (Notiomystis cincta) to assess variance in male reproductive success and test the genetic (inbreeding and heritability) and conditional (age and size) factors that influence floater behaviour and reproduction. Floater reproduction is common in this species. However, floater individuals have lower reproductive success and variance in reproductive success than territorial males (total and extra-pair fledglings), so their relative impact on the population's reproductive performance is low. Whether an individual becomes a floater, and if so then how successful they are, is determined mainly by individual age (young and old) and to lesser extents male size (small) and inbreeding level (inbred). Floating males have a small, but important role in population reproduction and persistence of threatened populations. PMID:26366197
Archaeal Viruses: Diversity, Replication, and Structure.
Dellas, Nikki; Snyder, Jamie C; Bolduc, Benjamin; Young, Mark J
2014-11-01
The Archaea-and their viruses-remain the most enigmatic of life's three domains. Once thought to inhabit only extreme environments, archaea are now known to inhabit diverse environments. Even though the first archaeal virus was described over 40 years ago, only 117 archaeal viruses have been discovered to date. Despite this small number, these viruses have painted a portrait of enormous morphological and genetic diversity. For example, research centered around the various steps of the archaeal virus life cycle has led to the discovery of unique mechanisms employed by archaeal viruses during replication, maturation, and virion release. In many instances, archaeal virus proteins display very low levels of sequence homology to other proteins listed in the public database, and therefore, structural characterization of these proteins has played an integral role in functional assignment. These structural studies have not only provided insights into structure-function relationships but have also identified links between viruses across all three domains of life.
Targeted entry of enveloped viruses: measles and herpes simplex virus I.
Navaratnarajah, Chanakha K; Miest, Tanner S; Carfi, Andrea; Cattaneo, Roberto
2012-02-01
We compare the receptor-based mechanisms that a small RNA virus and a larger DNA virus have evolved to drive the fusion of viral and cellular membranes. Both systems rely on tight control over triggering the concerted refolding of a trimeric fusion protein. While measles virus entry depends on a receptor-binding protein and a fusion protein only, the herpes simplex virus (HSV) is more complex and requires four viral proteins. Nevertheless, in both viruses a receptor-binding protein is required for triggering the membrane fusion process. Moreover, specificity domains can be appended to these receptor-binding proteins to target virus entry to cells expressing a designated receptor. We discuss how principles established with measles and HSV can be applied to targeting other enveloped viruses, and alternatively how retargeted envelopes can be fitted on foreign capsids. Copyright © 2011 Elsevier B.V. All rights reserved.
Liang, Yuying; Lan, Shuiyun; Ly, Hinh
2009-09-01
Arenaviruses are enveloped single-strand RNA viruses that mostly have natural hosts in rodents. Upon infection of humans, several arenaviruses can cause severe hemorrhagic fever diseases, including Lassa fever that is endemic in West Africa. The virulence mechanism of these deadly arenaviruses can be studied in a safe and economical small animal model-guinea pigs infected by a nonpathogenic arenavirus Pichinde virus (PICV), a virulent strain of which can cause similar disease syndromes in guinea pigs as arenaviral hemorrhagic fevers in humans. We have recently developed molecular clones for both the virulent and avirulent strains of PICV. Using the available reverse genetics tools, we are characterizing the molecular determinants of virulent arenavirus infections in vivo.
Diagnosis and treatment of paediatric tuberculosis: An insight review.
Mandal, Nityananda; Anand, Parveen Kumar; Gautam, Subhash; Das, Shritam; Hussain, Tahziba
2017-08-01
Tuberculosis (TB) is a major public health problem, invading all age groups world-wide. It is an opportunistic infection affecting the individuals alone or with co-infections. Childhood TB is a neglected aspect and a significant health problem in epidemic areas. It constitutes more than 20% of TB incidence. Pediatric TB exists in the shadow of adult TB. The clinicians concentrate on pulmonary manifestation of TB, whereas it is a major problem in both pulmonary and extra-pulmonary infections. The rate of infection with this disease is mostly associated with poverty, social disruption and human immunodeficiency virus (HIV) infection. The diagnosis of extra-pulmonary TB (EPTB) is more difficult than pulmonary TB (PTB). Delayed diagnosis and executive treatment contribute to increase in the mortality rate in endemic areas. This article provides the evidence-based simple and safe screening method, indicating rapid, highly sensitive and specific diagnostic tests for pulmonary and EPTB in children. The most important aspect of treatment is the correct course of anti-tubercular drugs. This review serves the purpose of quick reference for microbiologists, epidemiologists, academicians, students and researchers. It provides guidance regarding early diagnosis and treatment accuracy of pediatric TB.
Gray, Steven J; Foti, Stacey B; Schwartz, Joel W; Bachaboina, Lavanya; Taylor-Blake, Bonnie; Coleman, Jennifer; Ehlers, Michael D; Zylka, Mark J; McCown, Thomas J; Samulski, R Jude
2011-09-01
With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken β-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.
Pauling, Linus
1977-01-01
A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed. PMID:16592470
Pauling, L
1977-12-01
A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed.
Cosmology favoring extra radiation and sub-eV mass sterile neutrinos as an option.
Hamann, Jan; Hannestad, Steen; Raffelt, Georg G; Tamborra, Irene; Wong, Yvonne Y Y
2010-10-29
Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{s} and effective number N{s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if m{s} is in the sub-eV range.
Detecting the emergence of novel, zoonotic viruses pathogenic to humans.
Rosenberg, Ronald
2015-03-01
RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2-3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations.
Transmission of Influenza B Viruses in the Guinea Pig
Pica, Natalie; Chou, Yi-Ying; Bouvier, Nicole M.
2012-01-01
Epidemic influenza is typically caused by infection with viruses of the A and B types and can result in substantial morbidity and mortality during a given season. Here we demonstrate that influenza B viruses can replicate in the upper respiratory tract of the guinea pig and that viruses of the two main lineages can be transmitted with 100% efficiency between inoculated and naïve animals in both contact and noncontact models. Our results also indicate that, like in the case for influenza A virus, transmission of influenza B viruses is enhanced at colder temperatures, providing an explanation for the seasonality of influenza epidemics in temperate climates. We therefore present, for the first time, a small animal model with which to study the underlying mechanisms of influenza B virus transmission. PMID:22301149
Correlates of Sexual Abuse among Boys in Treatment for Chemical Dependency.
ERIC Educational Resources Information Center
Harrison, Patricia Ann; And Others
1990-01-01
Examined data from 1,227 boys in adolescent chemical dependency treatment centers to determine prevalence of history of child sexual abuse. Found only small proportion (6.6%) disclosed history of intra- or extra-familial sexual abuse. Abuse victims could be distinguished from counterparts by more serious psychopathology, behavior problems, and…
Fluorescence microscopy for measuring fibril angles in pine tracheids
Ralph O. Marts
1955-01-01
Observation and measurement of fibril angles in increment cores or similar small samples from living pine trees was facilitated by the use of fluorescence microscopy. Although some autofluorescence was present, brighter images could be obtained by staining the specimens with a 0.1% aqueous solution of a fluorochrome (Calcozine flavine TG extra concentrated, Calcozine...
Re-Organizing Earth Observation Data Storage to Support Temporal Analysis of Big Data
NASA Technical Reports Server (NTRS)
Lynnes, Christopher
2017-01-01
The Earth Observing System Data and Information System archives many datasets that are critical to understanding long-term variations in Earth science properties. Thus, some of these are large, multi-decadal datasets. Yet the challenge in long time series analysis comes less from the sheer volume than the data organization, which is typically one (or a small number of) time steps per file. The overhead of opening and inventorying complex, API-driven data formats such as Hierarchical Data Format introduces a small latency at each time step, which nonetheless adds up for datasets with O(10^6) single-timestep files. Several approaches to reorganizing the data can mitigate this overhead by an order of magnitude: pre-aggregating data along the time axis (time-chunking); storing the data in a highly distributed file system; or storing data in distributed columnar databases. Storing a second copy of the data incurs extra costs, so some selection criteria must be employed, which would be driven by expected or actual usage by the end user community, balanced against the extra cost.
Re-organizing Earth Observation Data Storage to Support Temporal Analysis of Big Data
NASA Astrophysics Data System (ADS)
Lynnes, C.
2017-12-01
The Earth Observing System Data and Information System archives many datasets that are critical to understanding long-term variations in Earth science properties. Thus, some of these are large, multi-decadal datasets. Yet the challenge in long time series analysis comes less from the sheer volume than the data organization, which is typically one (or a small number of) time steps per file. The overhead of opening and inventorying complex, API-driven data formats such as Hierarchical Data Format introduces a small latency at each time step, which nonetheless adds up for datasets with O(10^6) single-timestep files. Several approaches to reorganizing the data can mitigate this overhead by an order of magnitude: pre-aggregating data along the time axis (time-chunking); storing the data in a highly distributed file system; or storing data in distributed columnar databases. Storing a second copy of the data incurs extra costs, so some selection criteria must be employed, which would be driven by expected or actual usage by the end user community, balanced against the extra cost.
Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo
2016-10-15
Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is crucial to evaluating vaccines and therapies and potentially understanding transmission. To address this, we demonstrated that ferrets are susceptible models to BDBV infection as well as to Ebola virus infection and that no virus adaptation is required. Moreover, these animals develop a disease that is similar to that seen in humans and nonhuman primates. We believe that this will improve the ability to study BDBV and provide a platform to test vaccines and therapeutics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P.
2016-01-01
ABSTRACT Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales. To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. IMPORTANCE The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is crucial to evaluating vaccines and therapies and potentially understanding transmission. To address this, we demonstrated that ferrets are susceptible models to BDBV infection as well as to Ebola virus infection and that no virus adaptation is required. Moreover, these animals develop a disease that is similar to that seen in humans and nonhuman primates. We believe that this will improve the ability to study BDBV and provide a platform to test vaccines and therapeutics. PMID:27489269
Serial femtosecond X-ray diffraction of enveloped virus microcrystals
Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; ...
2015-08-20
Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.
USDA-ARS?s Scientific Manuscript database
There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a surrogate for humans in influenza pathogenicity a...
USDA-ARS?s Scientific Manuscript database
Squash mosaic virus (SqMV), a seed-borne virus belonging to the genus Commovirus in the family Comoviridae, could cause a serious yield loss on cucurbit crops worldwide. SqMV has a bipartite single-stranded ribonucleic acid (RNA) genome (RNA-1 and RNA-2) encapsidated separately with two capsid prote...
Tromme, Isabelle; Devleesschauwer, Brecht; Beutels, Philippe; Richez, Pauline; Praet, Nicolas; Sacré, Laurine; Marot, Liliane; Van Eeckhout, Pascal; Theate, Ivan; Baurain, Jean-François; Lambert, Julien; Legrand, Catherine; Thomas, Luc; Speybroeck, Niko
2014-01-01
Dermoscopy is a technique which improves melanoma detection. Optical dermoscopy uses a handheld optical device to observe the skin lesions without recording the images. Sequential digital dermoscopy imaging (SDDI) allows storage of the pictures and their comparison over time. Few studies have compared optical dermoscopy and SDDI from an economic perspective. The present observational study focused on patients with one-to-three atypical melanocytic lesions, i.e. lesions considered as suspicious by optical dermoscopy. It aimed to calculate the "extra-costs" related to the process of melanoma detection. These extra-costs were defined as the costs of excision and pathology of benign lesions and/or the costs of follow-up by SDDI. The objective was to compare these extra-costs when using optical dermoscopy exclusively versus optical dermoscopy with selective use of SDDI. In a first group of patients, dermatologists were adequately trained in optical dermoscopy but worked without access to SDDI. They excised all suspicious lesions to rule out melanoma. In a second group, the dermatologists were trained in optical and digital dermoscopy. They had the opportunity of choosing between immediate excision or follow-up by SDDI (with delayed excision if significant change was observed). The comparison of extra-costs in both groups was made possible by a decision tree model and by the division of the extra-costs by the number of melanomas diagnosed in each group. Belgian official tariffs and charges were used. The extra-costs in the first and in the second group were respectively €1,613 and €1,052 per melanoma excised. The difference was statistically significant. Using the Belgian official tariffs and charges, we demonstrated that the selective use of SDDI for patients with one-to-three atypical melanocytic lesions resulted in a significant cost reduction.
Tromme, Isabelle; Devleesschauwer, Brecht; Beutels, Philippe; Richez, Pauline; Praet, Nicolas; Sacré, Laurine; Marot, Liliane; Van Eeckhout, Pascal; Theate, Ivan; Baurain, Jean-François; Lambert, Julien; Legrand, Catherine; Thomas, Luc; Speybroeck, Niko
2014-01-01
Background Dermoscopy is a technique which improves melanoma detection. Optical dermoscopy uses a handheld optical device to observe the skin lesions without recording the images. Sequential digital dermoscopy imaging (SDDI) allows storage of the pictures and their comparison over time. Few studies have compared optical dermoscopy and SDDI from an economic perspective. Objective The present observational study focused on patients with one-to-three atypical melanocytic lesions, i.e. lesions considered as suspicious by optical dermoscopy. It aimed to calculate the “extra-costs” related to the process of melanoma detection. These extra-costs were defined as the costs of excision and pathology of benign lesions and/or the costs of follow-up by SDDI. The objective was to compare these extra-costs when using optical dermoscopy exclusively versus optical dermoscopy with selective use of SDDI. Methods In a first group of patients, dermatologists were adequately trained in optical dermoscopy but worked without access to SDDI. They excised all suspicious lesions to rule out melanoma. In a second group, the dermatologists were trained in optical and digital dermoscopy. They had the opportunity of choosing between immediate excision or follow-up by SDDI (with delayed excision if significant change was observed). The comparison of extra-costs in both groups was made possible by a decision tree model and by the division of the extra-costs by the number of melanomas diagnosed in each group. Belgian official tariffs and charges were used. Results The extra-costs in the first and in the second group were respectively €1,613 and €1,052 per melanoma excised. The difference was statistically significant. Conclusions Using the Belgian official tariffs and charges, we demonstrated that the selective use of SDDI for patients with one-to-three atypical melanocytic lesions resulted in a significant cost reduction. PMID:25313898
Use of Disposable Micro Tissue Culture Plates for Antiviral and Interferon Induction Studies
Sidwell, Robert W.; Huffman, John H.
1971-01-01
A reproducible test system requiring small amounts of test compound was developed for evaluating antiviral and interferon-inducing activity. In the antiviral experiments, KB cells were grown in disposable polystyrene microplates covered with a standard domestic plastic wrap. Viruses used in the system were types 1 and 2 herpes simplex virus, vaccinia virus, type 3 adenovirus, myxoma virus, pseudorabies virus, type 3 parainfluenza virus, types 1A and 13 rhinovirus, vesicular stomatitis virus, coxsackievirus B, and type 2 poliovirus. Inhibition of viral cytopathogenic effect was the primary criterion of evaluation of antiviral activity. Reduction in cell and supernatant fluid virus titers was used as a secondary means of evaluation. The microplate system was adaptable for determining prophylactic, therapeutic, and inactivating effects against viruses. Mouse L-929 cells were used for the interferon induction studies, with vesicular stomatitis virus utilized as the indicator of interferon activity. Known active compounds evaluated in this microplate system had activity similar to that seen in macro in vitro systems. PMID:4332040
Metagenomic Analysis of the Ferret Fecal Viral Flora
Smits, Saskia L.; Raj, V. Stalin; Oduber, Minoushka D.; Schapendonk, Claudia M. E.; Bodewes, Rogier; Provacia, Lisette; Stittelaar, Koert J.; Osterhaus, Albert D. M. E.; Haagmans, Bart L.
2013-01-01
Ferrets are widely used as a small animal model for a number of viral infections, including influenza A virus and SARS coronavirus. To further analyze the microbiological status of ferrets, their fecal viral flora was studied using a metagenomics approach. Novel viruses from the families Picorna-, Papilloma-, and Anelloviridae as well as known viruses from the families Astro-, Corona-, Parvo-, and Hepeviridae were identified in different ferret cohorts. Ferret kobu- and hepatitis E virus were mainly present in human household ferrets, whereas coronaviruses were found both in household as well as farm ferrets. Our studies illuminate the viral diversity found in ferrets and provide tools to prescreen for newly identified viruses that potentially could influence disease outcome of experimental virus infections in ferrets. PMID:23977082
Understanding the spreading patterns of mobile phone viruses.
Wang, Pu; González, Marta C; Hidalgo, César A; Barabási, Albert-László
2009-05-22
We modeled the mobility of mobile phone users in order to study the fundamental spreading patterns that characterize a mobile virus outbreak. We find that although Bluetooth viruses can reach all susceptible handsets with time, they spread slowly because of human mobility, offering ample opportunities to deploy antiviral software. In contrast, viruses using multimedia messaging services could infect all users in hours, but currently a phase transition on the underlying call graph limits them to only a small fraction of the susceptible users. These results explain the lack of a major mobile virus breakout so far and predict that once a mobile operating system's market share reaches the phase transition point, viruses will pose a serious threat to mobile communications.
Development of a broad-spectrum antiviral with activity against Ebola virus.
Aman, M Javad; Kinch, Michael S; Warfield, Kelly; Warren, Travis; Yunus, Abdul; Enterlein, Sven; Stavale, Eric; Wang, Peifang; Chang, Shaojing; Tang, Qingsong; Porter, Kevin; Goldblatt, Michael; Bavari, Sina
2009-09-01
We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.
Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.
Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi
2018-02-01
The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.
Mercredi, Morgan; Vincent, Trevor J; Bidinosti, Christopher P; Martin, Melanie
2017-02-01
Current magnetic resonance imaging (MRI) axon diameter measurements rely on the pulsed gradient spin-echo sequence, which is unable to provide diffusion times short enough to measure small axon diameters. This study combines the AxCaliber axon diameter fitting method with data generated from Monte Carlo simulations of oscillating gradient spin-echo sequences (OGSE) to infer micron-sized axon diameters, in order to determine the feasibility of using MRI to infer smaller axon diameters in brain tissue. Monte Carlo computer simulation data were synthesized from tissue geometries of cylinders of different diameters using a range of gradient frequencies in the cosine OGSE sequence . Data were fitted to the AxCaliber method modified to allow the new pulse sequence. Intra- and extra-axonal water were studied separately and together. The simulations revealed the extra-axonal model to be problematic. Rather than change the model, we found that restricting the range of gradient frequencies such that the measured apparent diffusion coefficient was constant over that range resulted in more accurate fitted diameters. Thus a careful selection of frequency ranges is needed for the AxCaliber method to correctly model extra-axonal water, or adaptations to the method are needed. This restriction helped reduce the necessary gradient strengths for measurements that could be performed with parameters feasible for a Bruker BG6 gradient set. For these experiments, the simulations inferred diameters as small as 0.5 μm on square-packed and randomly packed cylinders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise ratio (SNR), with smaller diameters more affected by noise, although all diameter distributions were distinguishable from one another for all SNRs tested. The results of this study indicate the feasibility of using MRI with OGSE on preclinical scanners to infer small axon diameters.
Mimivirus: leading the way in the discovery of giant viruses of amoebae.
Colson, Philippe; La Scola, Bernard; Levasseur, Anthony; Caetano-Anollés, Gustavo; Raoult, Didier
2017-04-01
The accidental discovery of the giant virus of amoeba - Acanthamoeba polyphaga mimivirus (APMV; more commonly known as mimivirus) - in 2003 changed the field of virology. Viruses were previously defined by their submicroscopic size, which probably prevented the search for giant viruses, which are visible by light microscopy. Extended studies of giant viruses of amoebae revealed that they have genetic, proteomic and structural complexities that were not thought to exist among viruses and that are comparable to those of bacteria, archaea and small eukaryotes. The giant virus particles contain mRNA and more than 100 proteins, they have gene repertoires that are broader than those of other viruses and, notably, some encode translation components. The infection cycles of giant viruses of amoebae involve virus entry by amoebal phagocytosis and replication in viral factories. In addition, mimiviruses are infected by virophages, defend against them through the mimivirus virophage resistance element (MIMIVIRE) system and have a unique mobilome. Overall, giant viruses of amoebae, including mimiviruses, marseilleviruses, pandoraviruses, pithoviruses, faustoviruses and molliviruses, challenge the definition and classification of viruses, and have increasingly been detected in humans.
Billeter, M A; Naim, H Y; Udem, S A
2009-01-01
An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.
Smith, Jessica L; Stein, David A; Shum, David; Fischer, Matthew A; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A; Früh, Klaus; Hirsch, Alec J
2014-05-01
Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds-dihydrodibenzothiepines (DHBTs), identified through high-throughput screening-with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same cellular pathways, may have therapeutic potential for the treatment of dengue virus infections.
Bradley, Michael P; Nagamine, Claude M
2017-01-01
Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian–Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model–based Zika virus research that has been performed to date. PMID:28662753
Bradley, Michael P; Nagamine, Claude M
2017-06-01
Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian-Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model-based Zika virus research that has been performed to date.
Vaccination of small Asian mongoose (Herpestes javanicus) against rabies.
Blanton, Jesse D; Meadows, Anastasia; Murphy, Staci M; Manangan, Jamie; Hanlon, Cathleen A; Faber, Marie-Luise; Dietzschold, Bernhard; Rupprecht, Charles E
2006-07-01
Oral vaccination of free-ranging wildlife is a promising technique in rabies control. The small Asian mongoose (Herpestes javanicus) is an important reservoir of rabies on several Caribbean islands, but no vaccines have been evaluated for this species. Captive mongooses were used to test the safety and efficacy of the commercially licensed vaccinia-rabies glycoprotein (V-RG) recombinant vaccine and a newly developed genetically engineered oral rabies virus vaccine (SPBNGA-S). In one study using V-RG, no vaccinated animals developed detectable rabies virus-neutralizing antibodies, and all but one died after experimental challenge with rabies virus. In contrast, all animals given SPBNGA-S demonstrated seroconversion within 7 to 14 days after vaccination and survived rabies virus challenge. On the basis of these preliminary results indicating the greater efficacy of SPBNGA-S vs. V-RG vaccine, additional investigations will be necessary to determine the optimal dose and duration of vaccination, as well as incorporation of the SPBNGA-S vaccine into edible bait.
Yamaguchi, Koushi; Sugiyama, Takahiro; Kato, Shinji; Kondo, Yoichi; Ageyama, Naohide; Kanekiyo, Masaru; Iwata, Misao; Koyanagi, Yoshio; Yamamoto, Naoki; Honda, Mitsuo
2008-08-01
In this study, we found that the electric potential derived from the redox reaction of ultraviolet (UV)-illuminated CD4-conjugated titanium dioxide (TiO2) inactivated a wide range of high-titered primary HIV-1 isolates, regardless of virus co-receptor usage or genetic clade. In vitro incubation of HIV-1 isolates with CD4-conjugated TiO2 (CD4-TiO2) followed by UV illumination led to inhibition of viral infectivity in both H9 cells and peripheral blood mononuclear cells as well as to the complete inactivation of plasma virions from HIV-1-infected individuals. Treatment with a newly established extra-corporeal circulation system with the photocatalyst in rhesus macaques completely inactivated plasma virus in the system and effectively reduced the infectious plasma viral load. Furthermore, plasma viremia and infectious viral loads were controlled following a second therapeutic photocatalyst treatment during primary SIV(mac239) infection of macaques. Our findings suggest that this therapeutic immunophysical strategy may help control human immunodeficiency viral infection in vivo.
Long, Tianyun; Lu, Rui
2017-01-01
Northern blot analysis has been widely used as a tool for detection and characterization of specific RNA molecules. When coupled with radioactive probe northern blot allows for robust detection and characterization of small RNA molecules of trace amount. Here, we describe the detection and size characterization of virus-derived small interfering RNAs (vsiRNAs) in C. elegans using nonradioactive DNA oligo probes in northern blotting. Our protocol allows for the detection and characterization of not only primary vsiRNAs but also secondary vsiRNAs, a class of single-stranded vsiRNAs that has distinct migration pattern, and can be easily adapted to the detection of vsiRNAs in other organisms.
Howe, J G; Shu, M D
1988-08-01
Genes for the Epstein-Barr virus-encoded RNAs (EBERs), two low-molecular-weight RNAs encoded by the human gammaherpesvirus Epstein-Barr virus (EBV), hybridize to two small RNAs in a baboon cell line that contains a similar virus, herpesvirus papio (HVP). The genes for the HVP RNAs (HVP-1 and HVP-2) are located together in the small unique region at the left end of the viral genome and are transcribed by RNA polymerase III in a rightward direction, similar to the EBERs. There is significant similarity between EBER1 and HVP-1 RNA, except for an insert of 22 nucleotides which increases the length of HVP-1 RNA to 190 nucleotides. There is less similarity between the sequences of EBER2 and HVP-2 RNA, but both have a length of about 170 nucleotides. The predicted secondary structure of each HVP RNA is remarkably similar to that of the respective EBER, implying that the secondary structures are important for function. Upstream from the initiation sites of all four RNA genes are several highly conserved sequences which may function in the regulation of transcription. The HVP RNAs, together with the EBERs, are highly abundant in transformed cells and are efficiently bound by the cellular La protein.
Vega, Juan F.; Vicente-Alique, Ernesto; Núñez-Ramírez, Rafael; Wang, Yang; Martínez-Salazar, Javier
2016-01-01
The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development. PMID:26885635
Kurath, Gael; Jolley, C J.; Thompson, Tarin M.; Thompson, D.; Whitesel, A.T.; Gutenberger, S.; Winton, James R.
2013-01-01
Pacific Lampreys Entosphenus tridentatus have experienced severe population declines in recent years and efforts to develop captive rearing programs are under consideration. However, there is limited knowledge of their life history, ecology, and potential to harbor or transmit pathogens that may cause infectious disease. As a measure of the possible risks associated with introducing wild lampreys into existing fish culture facilities, larval lampreys (ammocoetes) were tested for susceptibility to infection and mortality caused by experimental exposures to the fish rhabdovirus pathogens: infectious hematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV). Two IHNV isolates, representing the U and M genogroups, and one VHSV isolate from the IVa genotype were each delivered to groups of ammocoetes by immersion at moderate and high viral doses, and by intraperitoneal injection. Ammocoetes were then held in triplicate tanks with no substrate or sediment. During 41 d of observation postchallenge there was low or no mortality in all groups, and no virus was detected in the small number of fish that died. Ammocoetes sampled for incidence of infection at 6 and 12 d after immersion challenges also had no detectable virus, and no virus was detected in surviving fish from any group. A small number of ammocoetes sampled 6 d after the injection challenge had detectable virus, but at levels below the original quantity of virus injected. Overall there was no evidence of infection, replication, or persistence of any of the viruses in any of the treatment groups. Our results suggest that Pacific Lampreys are highly unlikely to serve as hosts that maintain or transmit these viruses.
de Andrade, Roberto R S; Vaslin, Maite F S
2014-03-07
Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.
2014-01-01
Background Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. Methods In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. Results The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. Conclusions SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. Availability and implementation SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/. PMID:24607237
Blouin, Arnaud G; Chooi, Kar Mun; Warren, Ben; Napier, Kathryn R; Barrero, Roberto A; MacDiarmid, Robin M
2018-05-01
A novel virus, with characteristics of viruses classified within the genus Vitivirus, was identified from a sample of Vitis vinifera cv. Chardonnay in New Zealand. The virus was detected with high throughput sequencing (small RNA and total RNA) and its sequence was confirmed by Sanger sequencing. Its genome is 7507 nt long (excluding the polyA tail) with an organisation similar to that described for other classifiable members of the genus Vitivirus. The closest relative of the virus is grapevine virus E (GVE) with 65% aa identity in ORF1 (65% nt identity) and 63% aa identity in the coat protein (66% nt identity). The relationship with GVE was confirmed with phylogenetic analysis, showing the new virus branching with GVE, Agave tequilina leaf virus and grapevine virus G (GVG). A limited survey revealed the presence of this virus in multiple plants from the same location where the newly described GVG was discovered, and in most cases both viruses were detected as co-infections. The genetic characteristics of this virus suggest it represents an isolate of a new species within the genus Vitivirus and following the current nomenclature, we propose the name "Grapevine virus I".
Inhibition of the Metabolic Degradation of Filtered Albumin Is a Major Determinant of Albuminuria
Vuchkova, Julijana; Comper, Wayne D.
2015-01-01
Inhibition of the degradation of filtered albumin has been proposed as a widespread, benign form of albuminuria. There have however been recent reports that radiolabeled albumin fragments in urine are not exclusively generated by the kidney and that in albuminuric states albumin fragment excretion is not inhibited. In order to resolve this controversy we have examined the fate of various radiolabeled low molecular weight protein degradation products (LMWDPs) introduced into the circulation in rats. The influence of puromycin aminonucleoside nephrosis on the processing and excretion of LMWDPs is also examined. The status and destinies of radiolabeled LMWDPs in the circulation are complex. A major finding is that LMWDPs are rapidly eliminated from the circulation (>97% in 2 h) but only small quantities (<4%) are excreted in urine. Small (<4%) but significant amounts of LMWDPs may have prolonged elimination (>24 h) due to binding to high molecular weight components in the circulation. If LMWDPs of albumin seen in the urine are produced by extra renal degradation it would require the degradation to far exceed the known catabolic rate of albumin. Alternatively, if an estimate of the role of extra renal degradation is made from the limit of detection of LMWDPs in plasma, then extra renal degradation would only contribute <1% of the total excretion of LMWDPs of albumin. We confirm that the degradation process for albumin is specifically associated with filtered albumin and this is inhibited in albuminuric states. This inhibition is also the primary determinant of the massive change in intact albuminuria in nephrotic states. PMID:26010895
Macrocyclic lactones in the treatment and control of parasitism in small companion animals.
Nolan, Thomas J; Lok, James B
2012-05-01
Macrocyclic lactones (MLs) have many anti-parasitic applications in small companion animal medicine. They were first developed as chemoprophylactics against heartworm (Dirofilaria immitis) infection to be applied monthly for retroactive killing of third- and fourth-stage larvae. ML-containing products formulated for oral (ivermectin, milbemycin oxime), topical (selamectin, moxidectin) or injectable sustained release (moxidectin, ivermectin) are approved for heartworm prevention in dogs or cats. Clearance of microfilariae and gradual or "soft" killing of adult heartworms constitute increasingly prevalent extra-label uses of MLs against D. immitis. Some commercial ML formulations contain sufficient levels of active ingredient (milbemycin oxime, selamectin, moxidectin) to support additional label claims against gastrointestinal nematode parasites such as hookworms (Ancylostoma spp.) and ascarid round worms (Toxocara spp. and Toxascaris leonina). Beyond these approved applications, safe, extra-label uses of MLs against nematodes parasitizing the urinary tract, such as Capillaria spp., and parasites of the tissues, such as Dipetalonema reconditum, Dirofilaria repens, Thelazia spp. and Spirocerca lupi, in dogs and cats as well as exotic pets have been reported. MLs as a group have intrinsic insecticidal and acaricidal activity, and topical or otic formulations of certain compounds (selamectin, moxidectin, milbemycin oxime or ivermectin) are approved for treatment and control of fleas, certain ixodid ticks, sarcoptiform and demodectic mange mites and psoroptiform ear mites. Extra-label applications of MLs against ectoparasites include notoedric mange mites, dermanyssids such as Ornythonussus bacoti, numerous species of fur mite (e.g. Cheyletiella spp. and Lynxacarus) and trombiculids ("chiggers") in cats, dogs and nontraditional or exotic pets.
A spatial genetic structure and effects of relatedness on mate choice in a wild bird population.
Foerster, K; Valcu, M; Johnsen, A; Kempenaers, B
2006-12-01
Inbreeding depression, as commonly found in natural populations, should favour the evolution of inbreeding avoidance mechanisms. If natal dispersal, the first and probably most effective mechanism, does not lead to a complete separation of males and females from a common origin, a small-scale genetic population structure may result and other mechanisms to avoid inbreeding may exist. We studied the genetic population structure and individual mating patterns in blue tits (Parus caeruleus). The population showed a local genetic structure in two out of four years: genetic relatedness between individuals (estimated from microsatellite markers) decreased with distance. This pattern was mainly caused by immigrants to the study area; these, if paired with fellow immigrants, were more related than expected by chance. Since blue tits did not avoid inbreeding with their social partner, we examined if individuals preferred less related partners at later stages of the mate choice process. We found no evidence that females or males avoided inbreeding through extra-pair copulations or through mate desertion and postbreeding dispersal. Although the small-scale genetic population structure suggests that blue tits could use a simple rule of thumb to select less related mates, females did not generally prefer more distantly breeding extra-pair partners. However, the proportion of young fathered by an extra-pair male in mixed paternity broods depended on the genetic relatedness with the female. This suggests that there is a fertilization bias towards less related copulation partners and that blue tits are able to reduce the costs of inbreeding through a postcopulatory process.
Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein
Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.
2015-01-01
ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can easily generate mutants resistant to practically any compounds targeting viral proteins. An alternative approach is to target stable cellular factors recruited for the virus-specific functions. In the present study, we analyzed the factors permitting and restricting the establishment of the resistance of poliovirus, a small (+)RNA virus, to brefeldin A (BFA), a drug targeting a cellular component of the viral replication complex. We found that the emergence and replication potential of resistant mutants is cell type dependent and that BFA resistance reduces virus fitness. Our data provide a rational approach to the development of antiviral therapeutics targeting host factors. PMID:25653442
NASA Astrophysics Data System (ADS)
Wang, Yan; Jiang, Daqing; Alsaedi, Ahmed; Hayat, Tasawar
2018-07-01
A stochastic HIV viral model with both logistic target cell growth and nonlinear immune response function is formulated to investigate the effect of white noise on each population. The existence of the global solution is verified. By employing a novel combination of Lyapunov functions, we obtain the existence of the unique stationary distribution for small white noises. We also derive the extinction of the virus for large white noises. Numerical simulations are performed to highlight the effect of white noises on model dynamic behaviour under the realistic parameters. It is found that the small intensities of white noises can keep the irregular blips of HIV virus and CTL immune response, while the larger ones force the virus infection and immune response to lose efficacy.
Mechanistic failure mode investigation and resolution of parvovirus retentive filters.
LaCasse, Daniel; Lute, Scott; Fiadeiro, Marcus; Basha, Jonida; Stork, Matthew; Brorson, Kurt; Godavarti, Ranga; Gallo, Chris
2016-07-08
Virus retentive filters are a key product safety measure for biopharmaceuticals. A simplistic perception is that they function solely based on a size-based particle removal mechanism of mechanical sieving and retention of particles based on their hydrodynamic size. Recent observations have revealed a more nuanced picture, indicating that changes in viral particle retention can result from process pressure and/or flow interruptions. In this study, a mechanistic investigation was performed to help identify a potential mechanism leading to the reported reduced particle retention in small virus filters. Permeate flow rate or permeate driving force were varied and analyzed for their impact on particle retention in three commercially available small virus retentive filters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:959-970, 2016. © 2016 American Institute of Chemical Engineers.
Transport and fate of viruses in sediment and stormwater from a Managed Aquifer Recharge site
NASA Astrophysics Data System (ADS)
Sasidharan, Salini; Bradford, Scott A.; Šimůnek, Jiří; Torkzaban, Saeed; Vanderzalm, Joanne
2017-12-01
Enteric viruses are one of the major concerns in water reclamation and reuse at Managed Aquifer Recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and ΦX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column experiments were conducted using SW, stormwater in equilibrium with the aquifer sediment (EQ-SW), and two pore-water velocities (1 and 5 m day-1) to encompass expected behavior at the MAR site. The aquifer sediment removed >92.3% of these viruses under all of the considered MAR conditions. However, much greater virus removal (4.6 logs) occurred at the lower pore-water velocity and in EQ-SW that had a higher ionic strength and Ca2+ concentration. Virus removal was greatest for MS2, followed by PRD1, and then ΦX174 for a given physicochemical condition. The vast majority of the attached viruses were irreversibly attached or inactivated on the solid phase, and injection of Milli-Q water or beef extract at pH = 10 only mobilized a small fraction of attached viruses (<0.64%). Virus breakthrough curves (BTCs) were successfully simulated using an advective-dispersive model that accounted for rates of attachment (katt), detachment (kdet), irreversible attachment or solid phase inactivation (μs), and blocking. Existing MAR guidelines only consider the removal of viruses via liquid phase inactivation (μl). However, our results indicated that katt > μs > kdet > μl, and katt was several orders of magnitude greater than μl. Therefore, current microbial risk assessment methods in the MAR guideline may be overly conservative in some instances. Interestingly, virus BTCs exhibited blocking behavior and the calculated solid surface area that contributed to the attachment was very small. Additional research is therefore warranted to study the potential influence of blocking on virus transport and potential implications for MAR guidelines.
Ahn, Jeonghyun; Ko, Ara; Jun, Eun Jung; Won, Minah; Kim, Yoo Kyum; Ju, Eun-Seon
2012-01-01
Antiviral therapeutics are currently unavailable for treatment of coxsackievirus B3, which can cause life-threatening myocarditis. A modified small interfering RNA (siRNA) containing 5′-triphosphate, 3p-siRNA, was shown to induce RNA interference and interferon activation. We aimed to develop a potent antiviral treatment using CVB3-specific 3p-siRNA and to understand its underlying mechanisms. Virus-specific 3p-siRNA was superior to both conventional virus-specific siRNA with an empty hydroxyl group at the 5′ end (OH-siRNA) and nonspecific 3p-siRNA in decreasing viral replication and subsequent cytotoxicity. A single administration of 3p-siRNA dramatically attenuated virus-associated pathological symptoms in mice with no signs of toxicity, and their body weights eventually reached the normal range. Myocardial inflammation and fibrosis were rare, and virus production was greatly reduced. A nonspecific 3p-siRNA showed relatively less protective effect under identical conditions, and a virus-specific OH-siRNA showed no protective effects. We confirmed that virus-specific 3p-siRNA simultaneously activated target-specific gene silencing and type I interferon signaling. We provide a clear proof of concept that coxsackievirus B3-specific 3p-siRNA has 2 distinct modes of action, which significantly enhance antiviral activities with minimal organ damage. This is the first direct demonstration of improved antiviral effects with an immunostimulatory virus-specific siRNA in coxsackievirus myocarditis, and this method could be applied to many virus-related diseases. PMID:22508300
THE INFLUENCE PRODUCED BY HIGH GAMMA-RAY DOSES ON SOME PROPERTIES OF THE VIRUSES (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bektemirov, T.A.
1961-10-01
The effects produced by gamma rays on infectious, hemagglutinating, and antigenic properties common to the viruses of sneall-pox vaccine and those of infiuenze (grippe) and poliomyelitis were studied. All the viruses were grown on a monostratal culture of a renal epithelium taken from semians. Complete suppression of the vital activity appeared with a dose of 15 x 10/sup 5/ gm for the virus of influenza, 20 x 10/sup 5/ for the virus of small-pox, and 40 x 10/ sup 5/ for that of poliomyelitis. Hemagglutinins of the infiuenza and smallpox viruses became fulIy destroyed at a dose of 30 xmore » 10/sup 5/ gm. The irradiation caused the antigenic properties of the viruses under study to decline. (auth)« less
Smith, Margaret G.; Blattner, Russell J.; Heys, Florence M.
1947-01-01
Transmission of the virus of St. Louis encephalitis to normal chickens by the bite of infected mites (Dermanyssus gallinae) has been demonstrated. Both experimentally infected and naturally infected mites were shown to be capable of transferring the virus of St. Louis encephalitis to chickens by bite. Virus is present in the blood of such chickens in small amounts, so that demonstration of viremia was possible only by utilizing chorioallantoic passage in hens' eggs. However, there is sufficient virus present in the blood for uninfected chicken mites to acquire the virus by feeding on chickens in which viremia has resulted from previous bite of infected mites. Thus it has been shown that the arachnid vector Dermanyssus gallinae is capable of transmitting the virus of St. Louis encephalitis to normal chickens by bite and that such chickens can serve as a source of virus for uninfected mites. PMID:19871673
A universal mammalian vaccine cell line substrate.
Murray, Jackelyn; Todd, Kyle V; Bakre, Abhijeet; Orr-Burks, Nichole; Jones, Les; Wu, Weilin; Tripp, Ralph A
2017-01-01
Using genome-wide small interfering RNA (siRNA) screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD) enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences) across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205) showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.
Duthie, F R; Nairn, E R; Milne, A W; McTaggart, V; Topping, D
2004-01-01
Aims: To assess possible time benefits of specimen dissection by biomedical scientists (BMSs) and the quality of specimen handling by BMSs, in a department where BMSs trim those specimens requiring simple descriptions, from which standard blocks are taken. Methods: Specimen handling by BMSs and consultant pathologists was compared. Time taken for each specimen trimmed was recorded prospectively. To determine specimen handling quality, adherence to dissection standard operating procedures (SOPs) was assessed by recording retrospectively whether or not each action in the SOP had been performed. Information on subsequently required extra levels or blocks was recorded. Results: Analysis of data from 672 specimens trimmed by consultants showed that any given action in the SOPs was performed on average on 60.2% of applicable/assessable specimens; for 660 similar specimens trimmed by BMSs, each action was performed on average on 80.1% of specimens. Of the specimens where data on extra blocks were recorded, extra blocks were required in 3% of those trimmed by pathologists and in 4% of those trimmed by BMSs. Extra levels were required in 12% of those trimmed by pathologists and in 16% of those trimmed by BMSs. BMS trimming saves 16 hours of consultant time each month. The difference between pathologists and BMSs in time for each specimen trimmed is negligible. Conclusions: The advantages of increased adherence to trimming SOPs and saving consultant time outweigh the relatively small number of extra blocks and levels required when BMSs trim. There is no reduction in quality of dissection. PMID:14693831
A Tracer Bolus Method for Investigating Glutamine Kinetics in Humans
Mori, Maiko; Smedberg, Marie; Klaude, Maria; Tjäder, Inga; Norberg, Åke; Rooyackers, Olav; Wernerman, Jan
2014-01-01
Glutamine transport between tissues is important for the outcome of critically ill patients. Investigation of glutamine kinetics is, therefore, necessary to understand glutamine metabolism in these patients in order to improve future intervention studies. Endogenous glutamine production can be measured by continuous infusion of a glutamine tracer, which necessitates a minimum measurement time period. In order to reduce this problem, we used and validated a tracer bolus injection method. Furthermore, this method was used to measure the glutamine production in healthy volunteers in the post-absorptive state, with extra alanine and with glutamine supplementation and parenteral nutrition. Healthy volunteers received a bolus injection of [1-13C] glutamine, and blood was collected from the radial artery to measure tracer enrichment over 90 minutes. Endogenous rate of appearance (endoRa) of glutamine was calculated from the enrichment decay curve and corrected for the extra glutamine supplementation. The glutamine endoRa of healthy volunteers was 6.1±0.9 µmol/kg/min in the post-absorptive state, 6.9±1.0 µmol/kg/min with extra alanyl-glutamine (p = 0.29 versus control), 6.1±0.4 µmol/kg/min with extra alanine only (p = 0.32 versus control), and 7.5±0.9 µmol/kg/min with extra alanyl-glutamine and parenteral nutrition (p = 0.049 versus control). In conclusion, a tracer bolus injection method to measure glutamine endoRa showed good reproducibility and small variation at baseline as well as during parenteral nutrition. Additionally, we showed that parenteral nutrition including alanyl-glutamine increased glutamine endoRa in healthy volunteers, which was not attributable to the alanine part of the dipeptide. PMID:24810895
NASA Astrophysics Data System (ADS)
Stilwell, Abby R.
The wheat curl mite (WCM), Aceria tosichella Keifer, transmits three viruses to winter wheat: wheat streak mosaic virus, High Plains virus, and Triticum mosaic virus. This virus complex causes yellowing of the foliage and stunting of plants. WCMs disperse by wind, and an increased understanding of mite movement and subsequent virus spread is necessary in determining the risk of serious virus infections in winter wheat. These risk parameters will help growers make better decisions regarding WCM management. The objectives of this study were to evaluate the capabilities of remote sensing to identify virus infected plants and to establish the potential of using remote sensing to track virus spread and consequently, mite movement. Although the WCM is small and very hard to track, the viruses it vectors produce symptoms that can be detected with remote sensing. Field plots of simulated volunteer wheat were established between 2006 and 2009, infested with WCMs, and spread mites and virus into adjacent winter wheat. The virus gradients created by WCM movement allowed for the measurement of mite movement potential with both proximal and aerial remote sensing instruments. The ability to detect WCM-vectored viruses with remote sensing was investigated by comparing vegetation indices calculated from proximal remote sensing data to ground truth data obtained in the field. Of the ten vegetation indices tested, the red edge position (REP) index had the best relationship with ground truth data. The spatial spread of virus from WCM source plots was modeled with cokriging. Virus symptoms predicted by cokriging occurred in an oval pattern displaced to the southeast. Data from the spatial spread in small plots of this study were used to estimate the potential sphere of influence for volunteer wheat fields. The impact of thrips on WCM populations was investigated by a series of greenhouse, field, and observational studies. WCM populations in winter wheat increased more slowly when thrips populations were higher, both in the field and in the greenhouse. Two species of thrips, Thrips tabaci Lindeman and Frankliniella occidentalis (Pergande) were observed to feed directly on WCMs. The collective results from this study identify thrips as a regulating factor for WCM populations.
Majer, Eszter; Navarro, José-Antonio; Daròs, José-Antonio
2015-09-01
Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shrivastava, Shubham; Lole, Kavita S; Tripathy, Anuradha S; Shaligram, Umesh S; Arankalle, Vidya A
2009-11-05
To reduce extra injections, cost and ensure better coverage, use of combination vaccines is preferable. An attempt was made to evaluate the encapsulation of hepatitis E virus neutralizing epitope (NE) region and hepatitis B virus surface antigen (HBsAg) in liposomes as DNAs, proteins and DNA+protein. Mice groups were immunized with different liposome-encapsulated formulations and monitored for anti-HEV and anti-HBs titres, IgG subtypes, antigen-specific lymphocyte proliferation and cytokine levels. The protective levels of anti-HBs and in vitro virus-binding capacity of anti-HEV antibodies were assessed. Liposome-encapsulated DNA either singly or in combination did not elicit antibody response. Anti-HEV and anti-HBs IgG titres of individual component of protein alone (Lipo-E-P/Lipo-B-P) or DNA+protein formulations (Lipo-E-DP/Lipo-B-DP) were comparable to respective titres in combination vaccine of protein (Lipo-BE-P) and DNA+protein formulations (Lipo-BE-DP). IgG1 levels were significantly higher in Lipo-BE-P group whereas, equivalent levels of IgG1 and IgG2a were observed in Lipo-BE-DP group against both components of the vaccine. Combination vaccine group showed mixed Th1/Th2 cytokine profile. Liposome entrapped NE and HBsAg in protein and DNA+protein formats induce excellent immune response to both the components and need to be evaluated in higher animals.
Molecular Variability Among Isolates of Prunus Necrotic Ringspot Virus from Different Prunus spp.
Aparicio, F; Myrta, A; Di Terlizzi, B; Pallás, V
1999-11-01
ABSTRACT Viral sequences amplified by polymerase chain reaction from 25 isolates of Prunus necrotic ringspot virus (PNRSV), varying in the symptomatology they cause in six different Prunus spp., were analyzed for restriction fragment polymorphisms. Most of the isolates could be discriminated by using a combination of three different restriction enzymes. The nucleotide sequences of the RNA 4 of 15 of these isolates were determined. Sequence comparisons and phylogenetic analyses of the RNA 4 and coat proteins (CPs) revealed that all of the isolates clustered into three different groups, represented by three previously sequenced PNRSV isolates: PV32, PE5, and PV96. The PE5-type group was characterized by a 5' untranslated region that was clearly different from that of the other two groups. The PV32-type group was characterized by an extra hexanucleotide consisting of a duplication of the six immediately preceding nucleotides. Although most of the variability was observed in the first third of the CP, the amino acid residues in this region, which were previously thought to be functionally important in the replication cycle of the virus, were strictly conserved. No clear correlation with the type of symptom or host specificity could be observed. The validity of this grouping was confirmed when other isolates recently characterized by other authors were included in these analyses.
MEASURE OCCURRENCE AND EXPOSURE TO WATERBORNE HUMAN VIRUSES
Waterborne outbreaks of virus origin occur at frequencies which require action on the part of the Agency. Yet outbreaks may represent a small fraction of the waterborne disease burden in the U.S. Several recent studies suggest that about 20% of the surface and ground source wat...
RNA interference-mediated intrinsic antiviral immunity in invertebrates.
Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul
2013-01-01
In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.
Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein.
Allison, A B; Palacios, G; Travassos da Rosa, A; Popov, V L; Lu, L; Xiao, S Y; DeToy, K; Briese, T; Lipkin, W I; Keel, M K; Stallknecht, D E; Bishop, G R; Tesh, R B
2011-01-01
The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic (SH) protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase protein indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. Copyright © 2010 Elsevier B.V. All rights reserved.
Buggele, William A.; Krause, Katherine E.; Horvath, Curt M.
2013-01-01
The mammalian antiviral response relies on the alteration of cellular gene expression, to induce the production of antiviral effectors and regulate their activities. Recent research has indicated that virus infections can induce the accumulation of cellular microRNA (miRNA) species that influence the stability of host mRNAs and their protein products. To determine the potential for miRNA regulation of cellular responses to influenza A virus infection, small RNA profiling was carried out using next generation sequencing. Comparison of miRNA expression profiles in uninfected human A549 cells to cells infected with influenza A virus strains A/Udorn/72 and A/WSN/33, revealed virus-induced changes in miRNA abundance. Gene expression analysis identified mRNA targets for a cohort of highly inducible miRNAs linked to diverse cellular functions. Experiments demonstrate that the histone deacetylase, HDAC1, can be regulated by influenza-inducible miR-449b, resulting in altered mRNA and protein levels. Expression of miR-449b enhances virus and poly(I:C) activation of the IFNβ promoter, a process known to be negatively regulated by HDAC1. These findings demonstrate miRNA induction by influenza A virus infection and elucidate an example of miRNA control of antiviral gene expression in human cells, defining a role for miR-449b in regulation of HDAC1 and antiviral cytokine signaling. PMID:24086750
Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein
Allison, A. B.; Palacios, G.; Rosa, A. Travassos da; Popov, V. L.; Lu, L.; Xiao, S. Y.; DeToy, K.; Briese, T.; Lipkin, W. Ian; Keel, M. K.; Stallknecht, D. E.; Bishop, G. R.; Tesh, R. B.
2010-01-01
The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase proteins indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. PMID:20863863
Unraveling the Web of Viroinformatics: Computational Tools and Databases in Virus Research
Priyadarshini, Pragya; Vrati, Sudhanshu
2014-01-01
The beginning of the second century of research in the field of virology (the first virus was discovered in 1898) was marked by its amalgamation with bioinformatics, resulting in the birth of a new domain—viroinformatics. The availability of more than 100 Web servers and databases embracing all or specific viruses (for example, dengue virus, influenza virus, hepatitis virus, human immunodeficiency virus [HIV], hemorrhagic fever virus [HFV], human papillomavirus [HPV], West Nile virus, etc.) as well as distinct applications (comparative/diversity analysis, viral recombination, small interfering RNA [siRNA]/short hairpin RNA [shRNA]/microRNA [miRNA] studies, RNA folding, protein-protein interaction, structural analysis, and phylotyping and genotyping) will definitely aid the development of effective drugs and vaccines. However, information about their access and utility is not available at any single source or on any single platform. Therefore, a compendium of various computational tools and resources dedicated specifically to virology is presented in this article. PMID:25428870
Unraveling the web of viroinformatics: computational tools and databases in virus research.
Sharma, Deepak; Priyadarshini, Pragya; Vrati, Sudhanshu
2015-02-01
The beginning of the second century of research in the field of virology (the first virus was discovered in 1898) was marked by its amalgamation with bioinformatics, resulting in the birth of a new domain--viroinformatics. The availability of more than 100 Web servers and databases embracing all or specific viruses (for example, dengue virus, influenza virus, hepatitis virus, human immunodeficiency virus [HIV], hemorrhagic fever virus [HFV], human papillomavirus [HPV], West Nile virus, etc.) as well as distinct applications (comparative/diversity analysis, viral recombination, small interfering RNA [siRNA]/short hairpin RNA [shRNA]/microRNA [miRNA] studies, RNA folding, protein-protein interaction, structural analysis, and phylotyping and genotyping) will definitely aid the development of effective drugs and vaccines. However, information about their access and utility is not available at any single source or on any single platform. Therefore, a compendium of various computational tools and resources dedicated specifically to virology is presented in this article. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Zhu, Shaomei; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre
2016-01-01
ABSTRACT A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. IMPORTANCE HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model for HCV infection, but ethical considerations have restricted their utility in biomedical research. GB virus B (GBV-B) is a flavivirus related to HCV. It can infect common marmosets, a New World small primate, and induces viral hepatitis similar to HCV infection in humans. To minimize differences between GBV-B and HCV, we generated HCV NS2 to -4A/GBV-B chimeric viruses and established a chimera-infected marmoset model. HCV NS2 to -4A chimera-infected marmosets provide a small-animal model for evaluating novel antiviral drugs targeting HCV NS3-NS4A protease and T-cell-based HCV vaccines. PMID:27384651
Zhu, Shaomei; Li, Tingting; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre; Li, Chengyao
2016-09-15
A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model for HCV infection, but ethical considerations have restricted their utility in biomedical research. GB virus B (GBV-B) is a flavivirus related to HCV. It can infect common marmosets, a New World small primate, and induces viral hepatitis similar to HCV infection in humans. To minimize differences between GBV-B and HCV, we generated HCV NS2 to -4A/GBV-B chimeric viruses and established a chimera-infected marmoset model. HCV NS2 to -4A chimera-infected marmosets provide a small-animal model for evaluating novel antiviral drugs targeting HCV NS3-NS4A protease and T-cell-based HCV vaccines. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
ICTV Virus Taxonomy Profile: Hepeviridae.
Purdy, Michael A; Harrison, Tim J; Jameel, S; Meng, X-J; Okamoto, H; Van der Poel, W H M; Smith, Donald B; Ictv Report Consortium
2017-11-01
The family Hepeviridae includes enterically transmitted small non-enveloped positive-sense RNA viruses. It includes the genera Piscihepevirus, whose members infect fish, and Orthohepevirus, whose members infect mammals and birds. Members of the genus Orthohepevirus include hepatitis E virus, which is responsible for self-limiting acute hepatitis in humans and several mammalian species; the infection may become chronic in immunocompromised individuals. Extrahepatic manifestations of Guillain-Barré syndrome, neuralgic amyotrophy, glomerulonephritis and pancreatitis have been described in humans. Avian hepatitis E virus causes hepatitis-splenomegaly syndrome in chickens. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Hepeviridae, which is available at www.ictv.global/report/hepeviridae.
The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus.
Abergel, Chantal; Legendre, Matthieu; Claverie, Jean-Michel
2015-11-01
More than a century ago, the term 'virus' was introduced to describe infectious agents that are invisible by light microscopy and capable of passing through sterilizing filters. In addition to their extremely small size, most viruses have minimal genomes and gene contents, and rely almost entirely on host cell-encoded functions to multiply. Unexpectedly, four different families of eukaryotic 'giant viruses' have been discovered over the past 10 years with genome sizes, gene contents and particle dimensions overlapping with that of cellular microbes. Their ongoing analyses are challenging accepted ideas about the diversity, evolution and origin of DNA viruses. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Crowther, R A; Berriman, J A; Curran, W L; Allan, G M; Todd, D
2003-12-01
Circoviruses are small, nonenveloped icosahedral animal viruses characterized by circular single-stranded DNA genomes. Their genomes are the smallest possessed by animal viruses. Infections with circoviruses, which can lead to economically important diseases, frequently result in virus-induced damage to lymphoid tissue and immunosuppression. Within the family Circoviridae, different genera are distinguished by differences in genomic organization. Thus, Chicken anemia virus is in the genus Gyrovirus, while porcine circoviruses and Beak and feather disease virus belong to the genus CIRCOVIRUS: Little is known about the structures of circoviruses. Accordingly, we investigated the structures of these three viruses with a view to determining whether they are related. Three-dimensional maps computed from electron micrographs showed that all three viruses have a T=1 organization with capsids formed from 60 subunits. Porcine circovirus type 2 and beak and feather disease virus show similar capsid structures with flat pentameric morphological units, whereas chicken anemia virus has stikingly different protruding pentagonal trumpet-shaped units. It thus appears that the structures of viruses in the same genus are related but that those of viruses in different genera are unrelated.
ERIC Educational Resources Information Center
Shah, Nirvi
2010-01-01
Across a giant swath of desert and mountain terrain southeast of Tucson, one yellow school bus has been carrying an extra passenger since last fall. Along with dozens of students, the bus rolls through the Vail School District's most far-flung portions equipped with a wireless router. It delivers the Internet to students for as many as three hours…
Sharing the Pain: Cutting Faculty Salaries across the Board
ERIC Educational Resources Information Center
June, Audrey Williams
2009-01-01
Greensboro College has many of the intimate hallmarks of a small, private, liberal-arts college. Professors give their cellphone numbers to students and routinely provide extra help to those who need it. Classes at the North Carolina institution average 14 people. One of the students featured on the college Web site is a biology major who plays on…
Evaluating the Impact of an Environmental Education Programme: An Empirical Study in Mexico
ERIC Educational Resources Information Center
Ruiz-Mallen, Isabel; Barraza, Laura; Bodenhorn, Barbara; Reyes-Garcia, Victoria
2009-01-01
This study draws on information from 11 in-depth interviews, two focus groups and 72 written questionnaires to evaluate an extra-curricular environmental education programme on forestry designed for preparatory school students from a small rural community in Mexico. Specifically, the study assessed the impact of the programme on the ecological…
An Investigation into University Extra-Curricular Enterprise Support Provision
ERIC Educational Resources Information Center
Preedy, Sarah; Jones, Paul
2015-01-01
Purpose: The employment market means students need to be equipped with wide-ranging enterprising skills and experience. With small- and medium-sized enterprises crucial to the health of the UK economy providing graduates with the skills to start-up their own business is also of increasing pertinence. The purpose of this paper is to analyse…
ERIC Educational Resources Information Center
Rennie, Hamish G.
2010-01-01
The experience in developing a student-led academic journal, the Lincoln Planning Review, to provide experiential learning that links undergraduates in a small professional planning programme directly to research publication is described. A combination of circumstances, including an impending review of the programme by the external professional…
Aristotle University Astronomical Station at Mt. Holomon
NASA Astrophysics Data System (ADS)
Avdellidou, C.; Ioannidis, P.; Kouroubatzakis, K.; Nitsos, A.; Vakoulis, J.; Seiradakis, J. H.
2012-01-01
The Aristotle University Astronomical Station was established seven years ago in order to fulfill the educational needs of its students. Astronomical observations are undertaken using three fully equipped small telescopes. Some interesting results are presented below, including the study of asteroids and flare stars, the detection of optical emission from supernovae remnants and follow up observations in extra solar planets.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... evaluated the effects of these ITAs on post- irradiation conditions. The additional heat from the Co-60 decay is insignificant when compared to the total heat from a normal refueling discharge. The small amount of extra heat added by the cobalt isotope rods poses no additional risk of spent fuel pool (SFP...
Itaya virus, a Novel Orthobunyavirus Associated with Human Febrile Illness, Peru.
Hontz, Robert D; Guevara, Carolina; Halsey, Eric S; Silvas, Jesus; Santiago, Felix W; Widen, Steven G; Wood, Thomas G; Casanova, Wilma; Vasilakis, Nikos; Watts, Douglas M; Kochel, Tadeusz J; Ebihara, Hideki; Aguilar, Patricia V
2015-05-01
Our genetic analyses of uncharacterized bunyaviruses isolated in Peru identified a possible reassortant virus containing small and large gene segment sequences closely related to the Caraparu virus and a medium gene segment sequence potentially derived from an unidentified group C orthobunyavirus. Neutralization tests confirmed serologic distinction among the newly identified virus and the prototype and Caraparu strains. This virus, named Itaya, was isolated in 1999 and 2006 from febrile patients in the cities of Iquitos and Yurimaguas in Peru. The geographic distance between the 2 cases suggests that the Itaya virus could be widely distributed throughout the Amazon basin in northeastern Peru. Identification of a new Orthobunyavirus species that causes febrile disease in humans reinforces the need to expand viral disease surveillance in tropical regions of South America.
Itaya virus, a Novel Orthobunyavirus Associated with Human Febrile Illness, Peru
Hontz, Robert D.; Guevara, Carolina; Halsey, Eric S.; Silvas, Jesus; Santiago, Felix W.; Widen, Steven G.; Wood, Thomas G.; Casanova, Wilma; Vasilakis, Nikos; Watts, Douglas M.; Kochel, Tadeusz J.; Ebihara, Hideki
2015-01-01
Our genetic analyses of uncharacterized bunyaviruses isolated in Peru identified a possible reassortant virus containing small and large gene segment sequences closely related to the Caraparu virus and a medium gene segment sequence potentially derived from an unidentified group C orthobunyavirus. Neutralization tests confirmed serologic distinction among the newly identified virus and the prototype and Caraparu strains. This virus, named Itaya, was isolated in 1999 and 2006 from febrile patients in the cities of Iquitos and Yurimaguas in Peru. The geographic distance between the 2 cases suggests that the Itaya virus could be widely distributed throughout the Amazon basin in northeastern Peru. Identification of a new Orthobunyavirus species that causes febrile disease in humans reinforces the need to expand viral disease surveillance in tropical regions of South America. PMID:25898901
Navarro, Juan-Carlos; Giambalvo, Dileyvic; Hernandez, Rosa; Auguste, Albert J.; Tesh, Robert B.; Weaver, Scott C.; Montañez, Humberto; Liria, Jonathan; Lima, Anderson; da Rosa, Jorge Fernando Soares Travassos; da Silva, Sandro P.; Vasconcelos, Janaina M.; Oliveira, Rodrigo; Vianez, João L. S. G.; Nunes, Marcio R. T.
2016-01-01
Oropouche virus (OROV), genus Orthobunyavirus, family Bunyaviridae, is an important cause of human illness in tropical South America. Herein, we report the isolation, complete genome sequence, genetic characterization, and phylogenetic analysis of an OROV species reassortant, Madre de Dios virus (MDDV), obtained from a sick monkey (Cebus olivaceus Schomburgk) collected in a forest near Atapirire, a small rural village located in Anzoategui State, Venezuela. MDDV is one of a growing number of naturally occurring OROV species reassortants isolated in South America and was known previously only from southern Peru. PMID:27215299
Viral subversion of host functions for picornavirus translation and RNA replication
Chase, Amanda J; Semler, Bert L
2012-01-01
Picornavirus infections lead to symptoms that can have serious health and economic implications. The viruses in this family (Picornaviridae) have a small genomic RNA and must rely on host proteins for efficient viral gene expression and RNA replication. To ensure their effectiveness as pathogens, picornaviruses have evolved to utilize and/or alter host proteins for the benefit of the virus life cycle. This review discusses the host proteins that are subverted during infection to aid in virus replication. It will also describe proteins and functions that are altered during infection for the benefit of the virus. PMID:23293659
Introduction: Nipah virus--discovery and origin.
Chua, Kaw Bing
2012-01-01
Until the Nipah outbreak in Malaysia in 1999, knowledge of human infections with the henipaviruses was limited to the small number of cases associated with the emergence of Hendra virus in Australia in 1994. The Nipah outbreak in Malaysia alerted the global public health community to the severe pathogenic potential and widespread distribution of these unique paramyxoviruses. This chapter briefly describes the initial discovery of Nipah virus and the challenges encountered during the initial identification and characterisation of the aetiological agent responsible for the outbreak of febrile encephalitis. The initial attempts to isolate Nipah virus from the bat reservoir host are also described.
A Student's Guide to Giant Viruses Infecting Small Eukaryotes: From Acanthamoeba to Zooxanthellae.
Wilhelm, Steven W; Bird, Jordan T; Bonifer, Kyle S; Calfee, Benjamin C; Chen, Tian; Coy, Samantha R; Gainer, P Jackson; Gann, Eric R; Heatherly, Huston T; Lee, Jasper; Liang, Xiaolong; Liu, Jiang; Armes, April C; Moniruzzaman, Mohammad; Rice, J Hunter; Stough, Joshua M A; Tams, Robert N; Williams, Evan P; LeCleir, Gary R
2017-03-17
The discovery of infectious particles that challenge conventional thoughts concerning "what is a virus" has led to the evolution a new field of study in the past decade. Here, we review knowledge and information concerning "giant viruses", with a focus not only on some of the best studied systems, but also provide an effort to illuminate systems yet to be better resolved. We conclude by demonstrating that there is an abundance of new host-virus systems that fall into this "giant" category, demonstrating that this field of inquiry presents great opportunities for future research.
Cosmology Favoring Extra Radiation and Sub-eV Mass Sterile Neutrinos as an Option
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.
2010-10-29
Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{sub s} and effective number N{sub s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, ifmore » m{sub s} is in the sub-eV range.« less
Infants with Congenital Zika Virus Infection: A New Challenge for Early Intervention Professionals
ERIC Educational Resources Information Center
Porter, Sallie; Mimm, Nancy
2017-01-01
Zika virus infection-associated microcephaly has generated public health and media concern. Unsettling images emerging from Brazil of infants with abnormally small heads have raised concern among women of childbearing age, international travelers, government officials, and health care professionals. The World Health Organization declared the most…
Identification of a novel circular DNA virus in pig feces
USDA-ARS?s Scientific Manuscript database
Metagenomic analysis of fecal samples collected from a swine with diarrhea detected sequences encoding a replicase (Rep) protein typically found in small circular Rep-encoding ssDNA (CRESS-DNA) viruses. The complete 3,062 nucleotide genome was generated and found to encode two bi-directionally trans...
Shimoni, A; Rimon, U; Hertz, M; Yerushalmi, R; Amitai, M; Portnoy, O; Guranda, L; Nagler, A; Apter, S
2012-01-01
Objective To determine the role of abdominal CT in assessment of severity and prognosis of patients with acute gastrointestinal (GI) graft-vs-host disease (GVHD). Methods During 2000–2004, 41 patients with a clinical diagnosis of acute GI-GVHD were evaluated. CTs were examined for intestinal and extra-intestinal abnormalities, and correlated with clinical staging and outcome. Results 20 patients had GVHD clinical Stage I–II and 21 had Stage III–IV. 39 (95%) had abnormal CT appearances. The most consistent finding was bowel wall thickening: small (n=14, 34%) or large (n=5, 12%) bowel, or both (n=20, 49%). Other manifestations included bowel dilatation (n=7, 17%), mucosal enhancement (n=6, 15%) and gastric wall thickening (n=9, 38%). Extra-intestinal findings included mesenteric stranding (n=25, 61%), ascites (n=17, 41%), biliary abnormalities (n=12, 29%) and urinary excretion of orally administered gastrografin (n=12, 44%). Diffuse small-bowel thickening and any involvement of the large bowel were associated with severe clinical presentation. Diffuse small-bowel disease correlated with poor prognosis. 8 of 21 patients responded to therapy, compared with 15 of 20 patients with other patterns (p=0.02), and the cumulative incidence of GVHD-related death was 62% and 24%, respectively (p=0.01). Overall survival was not significantly different between patients with diffuse small-bowel disease and patients with other patterns (p=0.31). Colonic disease correlated with severity of GVHD (p=0.04), but not with response to therapy or prognosis (p=0.45). Conclusion GVHD often presented with abdominal CT abnormalities. Diffuse small-bowel disease was associated with poor therapeutic response. CT may play a role in supporting clinical diagnosis of GI GVHD and determining prognosis. PMID:22128129
Genetic studies of cell fusion induced by herpes simplex virus type 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, G.S.; Person, S.; Keller, P.M.
1980-07-01
Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was amore » significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.« less
Maguire, Alison J.; Green, Jon; Brown, David W. G.; Desselberger, Ulrich; Gray, James J.
1999-01-01
During the winter season from November 1996 to May 1997, 550 fecal specimens were submitted from 94 outbreaks of gastroenteritis occurring in East Anglia, United Kingdom. These specimens were tested for the presence of small round-structured viruses (SRSVs) by electron microscopy, reverse transcriptase PCR, or both methods. SRSVs were shown to be associated with 64 of 94 (68%) of these outbreaks, of which 16 (25%) outbreaks occurred at a single location (Southend) within the region. Twenty-four specimens from 13 of the 16 SRSV-positive outbreaks occurring in Southend were available for genomic analysis, in which divergence within the RNA polymerase region of the SRSV genome was investigated. A further 27 specimens from 17 other SRSV-associated outbreaks, occurring at different locations within East Anglia but at the same time as those at Southend, were also studied. Fifty of the total of 51 (98%) specimens studied were shown to belong to genogroup II, and within this genogroup, 49 of 50 (98%) specimens were shown to be Grimsby-like viruses, with only one Mexico-like strain. Furthermore, phylogenetic analysis of the Grimsby-like viruses indicated clusterings according to the geographical location of the outbreak. One specimen contained a virus belonging to genogroup I, and this had the greatest sequence identity (83%) with Southampton virus. PMID:9854068
Assessment of Inhibition of Ebola Virus Progeny Production by Antiviral Compounds.
Falzarano, Darryl
2017-01-01
Assessment of small molecule compounds against filoviruses, such as Ebola virus, has identified numerous compounds that appear to have antiviral activity and should presumably be further investigated in animal efficacy trials. However, despite the many compounds that are purported to have good antiviral activity in in vitro studies, there are few instances where any efficacy has been reported in nonhuman primate models. Many of the high-throughput screening assays use reporter systems that only recapitulate a portion of the virus life cycle, while other assays only assess antiviral activity at relatively early time points. Moreover, many assays do not assess virus progeny production. A more in-depth evaluation of small numbers of test compounds is useful to economize resources and to generate higher quality antiviral hits. Assessing virus progeny production as late as 5 days post-infection allows for the elimination of compounds that have initial antiviral effects that are not sustained or where the virus rapidly develops resistance. While this eliminates many potential lead compounds that may be worthy of further structure-activity relationship (SAR) development, it also quickly excludes compounds that in their current form are unlikely to be effective in animal models. In addition, the inclusion of multiple assays that assess both cell viability and cell cytotoxicity, via different mechanisms, provides a more thorough assessment to exclude compounds that are not direct-acting antivirals.
[Research Progress on Antiviral Activity of Interferon-induced Transmembrane Proteins].
Chen, Yongkun; Zhu, Wenfei; Shu, Yuelong
2016-03-01
Interferon-induced Transmembrane Proteins (IFITMs) were identified through small interference RNA (siRNA) screening method in 1980s. The antiviral properties of the IFITMs were firstly discovered in 1996. Recently, its antiviral effect and mechanism have become a research hotspot. Many studies have shown that IFITM can inhibit the replication of multiple pathogenic viruses, including influenza A virus (IAV), Human Immunodeficiency Virus (HIV-1), hepatitis C virus (HCV), Ebola virus (EBOV), West Nile virus and so on. IFITMs inhibit the replication of virus in the early stage of the viral life cycle, which occurred before the release of viral genomes into the cytosol. Recent studies indicate that IFITM proteins could block viral replication by mediate viral membrane fusion. However, the mechanism is still under investigation. Here we review the discovery and characterization of the IFITM proteins, elucidate their antiviral activities and the potential mechanisms.
Prescott, Joseph; DeBuysscher, Blair L; Feldmann, Friederike; Gardner, Donald J; Haddock, Elaine; Martellaro, Cynthia; Scott, Dana; Feldmann, Heinz
2015-06-04
Nipah virus is a zoonotic paramyxovirus that causes severe respiratory and/or encephalitic disease in humans, often resulting in death. It is transmitted from pteropus fruit bats, which serve as the natural reservoir of the virus, and outbreaks occur on an almost annual basis in Bangladesh or India. Outbreaks are small and sporadic, and several cases of human-to-human transmission have been documented as an important feature of the epidemiology of Nipah virus disease. There are no approved countermeasures to combat infection and medical intervention is supportive. We recently generated a recombinant replication-competent vesicular stomatitis virus-based vaccine that encodes a Nipah virus glycoprotein as an antigen and is highly efficacious in the hamster model of Nipah virus disease. Herein, we show that this vaccine protects African green monkeys, a well-characterized model of Nipah virus disease, from disease one month after a single intramuscular administration of the vaccine. Vaccination resulted in a rapid and strong virus-specific immune response which inhibited virus shedding and replication. This vaccine platform provides a rapid means to afford protection from Nipah virus in an outbreak situation. Published by Elsevier Ltd.
Prescott, Joseph; DeBuysscher, Blair L.; Feldmann, Friederike; Gardner, Donald J.; Haddock, Elaine; Martellaro, Cynthia; Scott, Dana; Feldmann, Heinz
2015-01-01
Nipah virus is a zoonotic paramyxovirus that causes severe respiratory and/or encephalitic disease in humans, often resulting in death. It is transmitted from pteropus fruit bats, which serve as the natural reservoir of the virus, and outbreaks occur on an almost annual basis in Bangladesh or India. Outbreaks are small and sporadic, and several cases of human-to-human transmission have been documented as an important feature of the epidemiology of Nipah virus disease. There are no approved countermeasures to combat infection and medical intervention is supportive. We recently generated a recombinant replication-competent vesicular stomatitis virus-based vaccine that encodes a Nipah virus glycoprotein as an antigen and is highly efficacious in the hamster model of Nipah virus disease. Herein, we show that this vaccine protects African green monkeys, a well-characterized model of Nipah virus disease, from disease one month after a single intramuscular administration of the vaccine. Vaccination resulted in a rapid and strong virus-specific immune response which inhibited virus shedding and replication. This vaccine platform provides a rapid means to afford protection from Nipah virus in an outbreak situation. PMID:25865472
Establishing a small animal model for evaluating protective immunity against mumps virus.
Pickar, Adrian; Xu, Pei; Elson, Andrew; Zengel, James; Sauder, Christian; Rubin, Steve; He, Biao
2017-01-01
Although mumps vaccines have been used for several decades, protective immune correlates have not been defined. Recently, mumps outbreaks have occurred in vaccinated populations. To better understand the causes of the outbreaks and to develop means to control outbreaks in mumps vaccine immunized populations, defining protective immune correlates will be critical. Unfortunately, no small animal model for assessing mumps immunity exists. In this study, we evaluated use of type I interferon (IFN) alpha/beta receptor knockout mice (IFN-α/βR-/-) for such a model. We found these mice to be susceptible to mumps virus administered intranasally and intracranially. Passive transfer of purified IgG from immunized mice protected naïve mice from mumps virus infection, confirming the role of antibody in protection and demonstrating the potential for this model to evaluate mumps immunity.
Yang, Yongbo; Wu, Chengxiang; Wu, Jianguo; Nerurkar, Vivek R; Yanagihara, Richard; Lu, Yuanan
2008-05-01
West Nile virus (WNV) has been responsible for the largest outbreaks of arboviral encephalitis in U.S. history. No specific drug is currently available for the effective treatment of WNV infection. To exploit RNA interference as a potential therapeutic approach, a Moloney murine leukemia virus-based retrovirus vector was used to effectively deliver WNV-specific small interfering RNA (siRNA) into human neuroblastoma HTB-11 cells. Viral plaque assays demonstrated that transduced cells were significantly refractory to WNV replication, as compared to untransduced control cells (P < 0.05), which correlated with the reduced expression of target viral genes and respective viral proteins. Therefore, retrovirus-mediated delivery of siRNA for gene silencing can be used to study the specific functions of viral genes associated with replication and may have potential therapeutic applications.
Progress of small molecular inhibitors in the development of anti-influenza virus agents
Wu, Xiaoai; Wu, Xiuli; Sun, Qizheng; Zhang, Chunhui; Yang, Shengyong; Li, Lin; Jia, Zhiyun
2017-01-01
The influenza pandemic is a major threat to human health, and highly aggressive strains such as H1N1, H5N1 and H7N9 have emphasized the need for therapeutic strategies to combat these pathogens. Influenza anti-viral agents, especially active small molecular inhibitors play important roles in controlling pandemics while vaccines are developed. Currently, only a few drugs, which function as influenza neuraminidase (NA) inhibitors and M2 ion channel protein inhibitors, are approved in clinical. However, the acquired resistance against current anti-influenza drugs and the emerging mutations of influenza virus itself remain the major challenging unmet medical needs for influenza treatment. It is highly desirable to identify novel anti-influenza agents. This paper reviews the progress of small molecular inhibitors act as antiviral agents, which include hemagglutinin (HA) inhibitors, RNA-dependent RNA polymerase (RdRp) inhibitors, NA inhibitors and M2 ion channel protein inhibitors etc. Moreover, we also summarize new, recently reported potential targets and discuss strategies for the development of new anti-influenza virus drugs. PMID:28382157
Efficacy of a "small-changes" workplace weight loss initiative on weight and productivity outcomes.
Zinn, Caryn; Schofield, Grant M; Hopkins, Will G
2012-10-01
The effect of weight reduction on workplace productivity is unknown. We have investigated a "small-changes" workplace weight loss intervention on weight and productivity outcomes. Overweight/obese employees at two New Zealand worksites (n = 102) received the 12-week intervention. One site received an extra 9-month weight-maintenance component. Magnitudes of effects on weight and productivity were assessed via standardization. Both groups reduced weight at 12 weeks and maintained lost weight at 12 months. There were small possible improvements in productivity at one worksite and trivial reductions at the other by 12 weeks, with little subsequent change during maintenance in either group. At an individual level, weight change was associated with at most only small improvements or small reductions in productivity. Workplace weight loss initiatives may need to be more intensive or multidimensional to enhance productivity.
Structure and Formation of Elliptical and Spheroidal Galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf
2009-05-01
New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT <= -21.66 have cuspy cores—"missing light"—at small radii. Cores are well known and naturally scoured by binary black holes (BHs) formed in dissipationless ("dry") mergers. All 17 ellipticals with -21.54 <= MVT <= -15.53 do not have cores. We find a new distinct component in these galaxies: all coreless ellipticals in our sample have extra light at the center above the inward extrapolation of the outer Sérsic profile. In large ellipticals, the excess light is spatially resolved and resembles the central components predicted in numerical simulations of mergers of galaxies that contain gas. In the simulations, the gas dissipates, falls toward the center, undergoes a starburst, and builds a compact stellar component that, as in our observations, is distinct from the Sérsic-function main body of the elliptical. But ellipticals with extra light also contain supermassive BHs. We suggest that the starburst has swamped core scouring by binary BHs. That is, we interpret extra light components as a signature of formation in dissipative ("wet") mergers. Besides extra light, we find three new aspects to the ("E-E") dichotomy into two types of elliptical galaxies. Core galaxies are known to be slowly rotating, to have relatively anisotropic velocity distributions, and to have boxy isophotes. We show that they have Sérsic indices n > 4 uncorrelated with MVT . They also are α-element enhanced, implying short star-formation timescales. And their stellar populations have a variety of ages but mostly are very old. Extra light ellipticals generally rotate rapidly, are more isotropic than core Es, and have disky isophotes. We show that they have n sime 3 ± 1 almost uncorrelated with MVT and younger and less α-enhanced stellar populations. These are new clues to galaxy formation. We suggest that extra light ellipticals got their low Sérsic indices by forming in relatively few binary mergers, whereas giant ellipticals have n > 4 because they formed in larger numbers of mergers of more galaxies at once plus later heating during hierarchical clustering. We confirm that core Es contain X-ray-emitting gas whereas extra light Es generally do not. This leads us to suggest why the E-E dichotomy arose. If energy feedback from active galactic nuclei (AGNs) requires a "working surface" of hot gas, then this is present in core galaxies but absent in extra light galaxies. We suggest that AGN energy feedback is a strong function of galaxy mass: it is weak enough in small Es not to prevent merger starbursts but strong enough in giant Es and their progenitors to make dry mergers dry and to protect old stellar populations from late star formation. Finally, we verify that there is a strong dichotomy between elliptical and spheroidal galaxies. Their properties are consistent with our understanding of their different formation processes: mergers for ellipticals and conversion of late-type galaxies into spheroidals by environmental effects and by energy feedback from supernovae. In an appendix, we develop machinery to get realistic error estimates for Sérsic parameters even when they are strongly coupled. And we discuss photometric dynamic ranges necessary to get robust results from Sérsic fits. Based in part on observations obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
Zika virus: history of a newly emerging arbovirus.
Wikan, Nitwara; Smith, Duncan R
2016-07-01
Zika virus was originally identified in a sentinel rhesus monkey in the Zika Forest of Uganda in 1947. The virus is a member of the family Flaviviridae, genus Flavivirus, and is transmitted to humans by Aedes species mosquitoes. The first report of Zika virus outside Africa and Asia was in 2007 when the virus was associated with a small outbreak in Yap State, part of the Federated States of Micronesia. Since then, Zika virus infections have been reported around the world, including in southeast Asia; French Polynesia and other islands in the Pacific Ocean; and parts of South, Central, and North America. Symptomatic infection in human beings normally results in a mild and self-limiting febrile disease, although recent reports have suggested a possible association with more serious sequelae such as Guillain-Barré syndrome, and microcephaly in newborn infants of mothers infected with Zika virus during pregnancy. In this Review, we summarise the history of Zika virus from its first detection to its current worldwide distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Viral video: Live imaging of virus-host encounters
NASA Astrophysics Data System (ADS)
Son, Kwangmin; Guasto, Jeffrey S.; Cubillos-Ruiz, Andres; Chisholm, Sallie W.; Sullivan, Matthew B.; Stocker, Roman
2014-11-01
Viruses are non-motile infectious agents that rely on Brownian motion to encounter and subsequently adsorb to their hosts. Paradoxically, the viral adsorption rate is often reported to be larger than the theoretical limit imposed by the virus-host encounter rate, highlighting a major gap in the experimental quantification of virus-host interactions. Here we present the first direct quantification of the viral adsorption rate, obtained using live imaging of individual host cells and viruses for thousands of encounter events. The host-virus pair consisted of Prochlorococcus MED4, a 800 nm small non-motile bacterium that dominates photosynthesis in the oceans, and its virus PHM-2, a myovirus that has a 80 nm icosahedral capsid and a 200 nm long rigid tail. We simultaneously imaged hosts and viruses moving by Brownian motion using two-channel epifluorescent microscopy in a microfluidic device. This detailed quantification of viral transport yielded a 20-fold smaller adsorption efficiency than previously reported, indicating the need for a major revision in infection models for marine and likely other ecosystems.
Quantification of Protozoa and Viruses from Small Water Volumes
Bonilla, J. Alfredo; Bonilla, Tonya D.; Abdelzaher, Amir M.; Scott, Troy M.; Lukasik, Jerzy; Solo-Gabriele, Helena M.; Palmer, Carol J.
2015-01-01
Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The goals of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation—IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels. PMID:26114244
Quantification of Protozoa and Viruses from Small Water Volumes.
Bonilla, J Alfredo; Bonilla, Tonya D; Abdelzaher, Amir M; Scott, Troy M; Lukasik, Jerzy; Solo-Gabriele, Helena M; Palmer, Carol J
2015-06-24
Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The aims of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation-IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels.
Howe, J G; Shu, M D
1988-01-01
Genes for the Epstein-Barr virus-encoded RNAs (EBERs), two low-molecular-weight RNAs encoded by the human gammaherpesvirus Epstein-Barr virus (EBV), hybridize to two small RNAs in a baboon cell line that contains a similar virus, herpesvirus papio (HVP). The genes for the HVP RNAs (HVP-1 and HVP-2) are located together in the small unique region at the left end of the viral genome and are transcribed by RNA polymerase III in a rightward direction, similar to the EBERs. There is significant similarity between EBER1 and HVP-1 RNA, except for an insert of 22 nucleotides which increases the length of HVP-1 RNA to 190 nucleotides. There is less similarity between the sequences of EBER2 and HVP-2 RNA, but both have a length of about 170 nucleotides. The predicted secondary structure of each HVP RNA is remarkably similar to that of the respective EBER, implying that the secondary structures are important for function. Upstream from the initiation sites of all four RNA genes are several highly conserved sequences which may function in the regulation of transcription. The HVP RNAs, together with the EBERs, are highly abundant in transformed cells and are efficiently bound by the cellular La protein. Images PMID:2839701
Watterson, Daniel; Robinson, Jodie; Chappell, Keith J.; Butler, Mark S.; Edwards, David J.; Fry, Scott R.; Bermingham, Imogen M.; Cooper, Matthew A.; Young, Paul R.
2016-01-01
Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324
A non-classical phase diagram for virus-bacterial co-evolution mediated by CRISPR
NASA Astrophysics Data System (ADS)
Han, Pu; Deem, Michael
CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. Due to the cost of CRISPR, bacteria can lose the acquired immunity. We will show an intriguing phase diagram of the virus extinction probability, which when the rate of losing the acquired immunity is small, is more complex than that of the classic predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape the recognition by CRISPR, and this co-evolution leads to a non-trivial phase structure that cannot be explained by the classical predator-prey model.
NASA Astrophysics Data System (ADS)
Ning, Jun; Nagata, Kotaro; Ainai, Akira; Hasegawa, Hideki; Kano, Hiroshi
2013-08-01
We report on a method to determine subtype of influenza viruses by using surface plasmons localized in microscopic region on a flat metal surface. In this method, refractive index variation arisen from interactions between viruses and their monoclonal antibodies is measured. The developed sensor shows stability of refractive index in the order of 10-4 against sample exchange. In our experiment, A/H1N1 viruses are distinguished from A/H3N2 viruses by using monoclonal antibodies immobilized on the metal surface. Since the measurement probe has the volume of ˜6 al, the method has potential to handle multiple subtypes in the measurement of a sample with ultra small volume.
Genetic and Functional Diversification of Small RNA Pathways in Plants
Gustafson, Adam M; Kasschau, Kristin D; Lellis, Andrew D; Zilberman, Daniel; Jacobsen, Steven E
2004-01-01
Multicellular eukaryotes produce small RNA molecules (approximately 21–24 nucleotides) of two general types, microRNA (miRNA) and short interfering RNA (siRNA). They collectively function as sequence-specific guides to silence or regulate genes, transposons, and viruses and to modify chromatin and genome structure. Formation or activity of small RNAs requires factors belonging to gene families that encode DICER (or DICER-LIKE [DCL]) and ARGONAUTE proteins and, in the case of some siRNAs, RNA-dependent RNA polymerase (RDR) proteins. Unlike many animals, plants encode multiple DCL and RDR proteins. Using a series of insertion mutants of Arabidopsis thaliana, unique functions for three DCL proteins in miRNA (DCL1), endogenous siRNA (DCL3), and viral siRNA (DCL2) biogenesis were identified. One RDR protein (RDR2) was required for all endogenous siRNAs analyzed. The loss of endogenous siRNA in dcl3 and rdr2 mutants was associated with loss of heterochromatic marks and increased transcript accumulation at some loci. Defects in siRNA-generation activity in response to turnip crinkle virus in dcl2 mutant plants correlated with increased virus susceptibility. We conclude that proliferation and diversification of DCL and RDR genes during evolution of plants contributed to specialization of small RNA-directed pathways for development, chromatin structure, and defense. PMID:15024409
Bulk axions, brane back-reaction and fluxes
NASA Astrophysics Data System (ADS)
Burgess, C. P.; van Nierop, L.
2011-02-01
Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs) whose shift symmetry is explicitly broken only by physics localized on branes. Reliable calculation of their low-energy potential is often difficult because it requires an understanding of the dynamics that stabilizes the geometry of the extra dimensions. Rugby ball solutions provide simple examples of extra-dimensional configurations for which two compact extra dimensions are stabilized in the presence of only positive-tension brane sources. The effects of brane back-reaction can be computed explicitly for these systems, allowing the calculation of the shape of the low-energy pGB potential, V 4 D ( φ), as a function of the perturbing brane properties, as well as the response of both the extra dimensional and on-brane geometries to this stabilization. If the φ-dependence is a small part of the total brane tension a very general analysis is possible, permitting an exploration of how the system responds to frustration when the two branes disagree on what the proper scalar vacuum should be. We show how the low-energy potential is given by the sum of brane tensions (in agreement with common lore) when only the brane tensions couple to φ. We also show how a direct brane coupling to the flux stabilizing the extra dimensions corrects this result in a way that does not simply amount to the contribution of the flux to the brane tensions. The mass of the low-energy pseudo-Goldstone mode is of order m a ˜ ( μ/ F)2 m KK (where μ is the energy scale associated with the brane symmetry breaking and F < M p is the extra-dimensional axion decay constant). In principle this can be larger or smaller than the Kaluza-Klein scale, m KK, but when it is larger axion properties cannot be computed purely within a 4D approximation (as they usually are). We briefly describe several potential applications, including a brane realization of `natural inflation,' and a dynamical mechanism for suppressing the couplings of the pGB to matter localized on the branes. Since the scalar can be light enough to be relevant to precision tests of gravity (in a technically natural way) this mechanism can be relevant to evading phenomenological bounds.
Angel, Annette; Angel, Bennet; Joshi, Vinod
2016-03-01
Transovarial transmission of dengue virus has been studied in 33 districts of Rajasthan, India. Small proportion (1.09%) of breeding containers positive for the virus and their elimination has been demonstrated as a possible intervention method of disease control. Dengue virus was isolated from individual mosquitoes employing Indirect Fluorescence Antibody Test and Reverse Transcriptase Polymerase Chain Reaction. Out of 1,30,525 containers examined only 1432(1.09%) showed transovarially transmitted virus activity. Elimination of larvae from all the 1432 virus positive containers resulted in substantial control over prospective transmission of dengue. The study highlights rarity of transovarial transmission under natural conditions and sensitizes whether elimination of vertically infected foci could be used as a new intervention method. Copyright © 2015 Elsevier B.V. All rights reserved.
2005-07-01
Viruses and Cell Cycle Control, July 2004, University of Wisconsin, Madison (NCI Travel Award to attend ($750)). "* Norman G. Nagl, Jr., Xiaomei Wang...DNA Tumor Viruses and Cell Cycle Control, July 2002, University of Wisconsin, Madison "* Norman G. Nagl, Jr., Xiaomei Wang, Deborah Wilsker, Michael...Presented at the 2001 Meeting on Small DNA Tumor Viruses and Cell Cycle Control, Cambridge University, Cambridge, UK (NCI Travel Award to attend the 2001
Chiu, Mei-Wui; Shih, Hsiu-Ming; Yang, Tsung-Han; Yang, Yun-Liang
2007-05-01
Dengue viruses are mosquito-borne flaviviruses and may cause the life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its envelope protein is responsible mainly for the virus attachment and entry to host cells. To identify the human cellular proteins interacting with the envelope protein of dengue virus serotype 2 inside host cells, we have performed a screening with the yeast-two-hybrid-based "Functional Yeast Array". Interestingly, the small ubiquitin-like modifier-1 conjugating enzyme 9 protein, modulating cellular processes such as those regulating signal transduction and cell growth, was one of the candidates interacting with the dengue virus envelope protein. With co-precipitation assay, we have demonstrated that it indeed could interact directly with the Ubc9 protein. Site-directed mutagenesis has demonstrated that Ubc9 might interact with the E protein via amino acid residues K51 and K241. Furthermore, immunofluorescence microscopy has shown that the DV2E-EGFP proteins tended to progress toward the nuclear membrane and co-localized with Flag-Ubc9 proteins around the nuclear membrane in the cytoplasmic side, and DV2E-EGFP also shifted the distribution of Flag-Ubc9 from evenly in the nucleus toward concentrating around the nuclear membrane in the nucleic side. In addition, over-expression of Ubc9 could reduce the plaque formation of the dengue virus in mammalian cells. This is the first report that DV envelope proteins can interact with the protein of sumoylation system and Ubc9 may involve in the host defense system to prevent virus propagation.
Complete genome sequence of a tomato infecting tomato mottle mosaic virus in New York
USDA-ARS?s Scientific Manuscript database
Complete genome sequence of an emerging isolate of tomato mottle mosaic virus (ToMMV) infecting experimental nicotianan benthamiana plants in up-state New York was obtained using small RNA deep sequencing. ToMMV_NY-13 shared 99% sequence identity to ToMMV isolates from Mexico and Florida. Broader d...
USDA-ARS?s Scientific Manuscript database
Small ruminant lentiviruses (SRLV) adversely affect production and well-being of sheep and goats throughout much of the world. The SRLVs, including ovine progressive pneumonia virus (OPPV) in North America, cause lifetime infections and management procedures to eradicate or reduce disease prevalenc...
R. E. Webb; M. Shapiro; J. D. Podgwaite; D. D. Cohen; R. L. Ridgway
1991-01-01
The "Abington" isolate of the nuclear polyhedrosis virus (NPV) of the gypsy moth (Lymantria dispar L.) was compared with a formulation of Gypchek against a natural gypsy moth population in the Swallow Falls State Forest in Garrett County, MD.
USDA-ARS?s Scientific Manuscript database
The genus Hibiscus (family Malvaceae) includes about 250 species that vary from annual to perennial herbs, and shrubs to small trees that are native to tropical, sub-tropical and temperate climates. A study in 2010-2011 examined viruses associated with symptoms observed on hibiscus plants in Italy....
Gustafson, L; Remmenga, M; Sandoval Del Valle, O; Ibarra, R; Antognoli, M; Gallardo, A; Rosenfeld, C; Doddis, J; Enriquez Sais, R; Bell, E; Lara Fica, M
2016-03-01
Area management, the coordination of production and biosecurity practices across neighboring farms, is an important disease control strategy in aquaculture. Area management in aquaculture escalated in prominence in response to outbreaks of infectious salmon anemia (ISA) internationally. Successes in disease control have been attributed to the separation achieved through area-level synchronized stocking, fallowing, movement restrictions, and fomite or pest control. Area management, however, is costly; often demanding extra biosecurity, lengthy or inconveniently timed fallows, and localization of equipment, personnel, and services. Yet, this higher-order organizational structure has received limited epidemiologic attention. Chile's National Fisheries and Aquaculture Service instigated area management practices in response to the 2007 emergence of ISA virus (ISAV). Longitudinal data simultaneously collected allowed retrospective evaluation of the impact of component tenets on virus control. Spatiotemporal analyses identified hydrographic linkages, shared ports, and fish transfers from areas with recent occurrence of ISAV as the strongest predictors of virus spread between areas, though specifics varied by ISAV type (here categorized as HPR0 for the non-virulent genotypes, and HPRv otherwise). Hydrographic linkages were most predictive in the period before implementation of enhanced biosecurity and fallowing regulations, suggesting that viral load can impact spread dynamics. HPR0 arose late in the study period, so few HPRv events were available by which to explore the hypothesis of HPR0 as progenitor of outbreaks. However, spatiotemporal patterns in HPRv occurrence were predictive of subsequent patterns in HPR0 detection, suggesting a parallel, or dependent, means of spread. Better data precision, breadth and consistency, common challenges for retrospective studies, could improve model fit; and, for HPR0, specification of diagnostic test accuracy would improve interpretation. Published by Elsevier B.V.
Internal initiation of influenza virus replication of viral RNA and complementary RNA in vitro.
Zhang, Shijian; Wang, Jinlan; Wang, Qiang; Toyoda, Tetsuya
2010-12-24
Influenza virus transcription is a prototype of primer-dependent initiation. Its replication mechanism is thought to be primer-independent. The internal initiation and realignment model for influenza virus genome replication has been recently proposed (Deng, T., Vreede, F. T., and Brownlee, G. G. (2006) J. Virol. 80, 2337-2348). We obtained new results, which led us to propose a novel model for the initiation of viral RNA (vRNA) replication. In our study, we analyzed the initiation mechanisms of influenza virus vRNA and complementary RNA (cRNA) synthesis in vitro, using purified RNA polymerase (RdRp) and 84-nt model RNA templates. We found that, for vRNA → cRNA →, RdRp initiated replication from the second nucleotide of the 3'-end. Therefore, host RNA-specific ribonucleotidyltransferases are required to add one nucleotide (purine residues are preferred) to the 3'-end of vRNA to make the complete copy of vRNA. This hypothesis was experimentally proven using poly(A) polymerase. For cRNA → vRNA, the dinucleotide primer AG was synthesized from UC (fourth and fifth from the 3'-end) by RdRp pausing at the sixth U of UUU and realigning at the 3'-end of cRNA template; then RdRp was able to read through the entire template RNA. The RdRp initiation complex was not stable until it had read through the UUU of cRNA and the UUUU of vRNA at their respective 3'-ends. This was because primers overlapping with the first U of the clusters did not initiate transcription efficiently, and the initiation product of v84+G (the v84 template with an extra G at its 3'-end), AGC, realigned to the 3'-end.
Planar cell polarity: fashioning solutions.
Lawrence, Peter A
2011-01-01
Scientists like to consider themselves as especially objective, but, however hard we try we cannot be very different from everyone else. Like them we helplessly absorb our knowledge, our perspectives, our valuation of whether something is exciting or boring from those around us. In this "extra view" I reflect on fashion, illustrating by a small discovery of ours, and discussing why it was not made before.
Net energy output from harvesting small-diameter trees using a mechanized system
Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot
2008-01-01
What amount of extra energy can be generated after subtracting the total energy consumed to produce the biomass energy? Knowing the ratio between energy output and input is a valid question when highly mechanized systems that consume fossil fuels are used to harvest and transport forest biomass for energy. We estimated the net energy generated from mechanical fuel...
EVA Training and Development Facilities
NASA Technical Reports Server (NTRS)
Cupples, Scott
2016-01-01
Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.
Mukherjee, Satarupa; Roy, Prithwish; Mitra, Souvik; Samanta, Moumita; Chatterjee, Sukanta
2013-01-01
Objective The neonatal mortality rate (NMR) continues to remain quite high, one important cause being preterm deliveries. The main obstacle in the pathway towards decreasing NMR is identification of babies in need of extra care. To analyze the utility of newborn foot length as a proxy measure for birth weight and gestational age. Methods A cross-sectional study done in a hospital of eastern India with 351 babies during 4 months. Right foot length of each recorded using a plastic, stiff ruler. Findings 48.1% babies were preterm, 51.8% low birth weight (LBW) and 33.3% very low birth weight (VLBW). Foot length less than 7.75 cm has 92.3% sensitivity and 86.3% specificity for identification of preterm neonates. For identification of LBW babies (<2500 gm) a foot length less than 7.85cm has 100% sensitivity and 95.3% specificity. Foot length less than 6.85 cm has 100% sensitivity and 94.9% specifity for identification of VLBW babies (<1500 gm). Conclusion Foot length may be used in the identification of LBW and preterm babies who are in need of extra care. PMID:24800008
Bertocci, Iacopo; Arenas, Francisco; Cacabelos, Eva; Martins, Gustavo M; Seabra, Maria I; Álvaro, Nuno V; Fernandes, Joana N; Gaião, Raquel; Mamede, Nuno; Mulas, Martina; Neto, Ana I
2017-01-30
Differences in the structure and functioning of intensively urbanized vs. less human-affected systems are reported, but such evidence is available for a much larger extent in terrestrial than in marine systems. We examined the hypotheses that (i) urbanization was associated to different patterns of variation of intertidal assemblages between urban and extra-urban environments; (ii) such patterns were consistent across mainland and insular systems, spatial scales from 10scm to 100skm, and a three months period. Several trends emerged: (i) a more homogeneous distribution of most algal groups in the urban compared to the extra-urban condition and the opposite pattern of most invertebrates; (ii) smaller/larger variances of most organisms where these were, respectively, less/more abundant; (iii) largest variability of most response variables at small scale; (iv) no facilitation of invasive species by urbanization and larger cover of canopy-forming algae in the insular extra-urban condition. Present findings confirm the acknowledged notion that future management strategies will require to include representative assemblages and their relevant scales of variation associated to urbanization gradients on both the mainland and the islands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dofetilide in Overdose: A Case Series from Poison Center Data.
Hieger, M A; Maskell, K F; Moss, M J; Powell, S W; Cumpston, K L
2017-07-01
Dofetilide is a class III antiarrhythmic used for treating atrial dysrhythmias. Though its adverse effects are well described in routine use, very little is known about dofetilide toxicity in overdose. This is a retrospective case series of consecutive patients reported to our poison center after dofetilide overdose. Twenty-seven cases were included. Seventeen patients were treated at a healthcare facility, and of these, eight were admitted. Twenty-one patients took one extra capsule, four took someone else's medication, one took three extra capsules, and one had a large intentional overdose. Ten patients had co-ingestants reported, including three QT-prolonging agents. No one required cardioversion, defibrillation, CPR, or overdrive pacing. The patient who reported taking 90 times his usual dose in suicide attempt was the only patient to have significant clinical effects. He experienced an 8-beat run of non-sustained ventricular tachycardia, frequent multifocal PVCs, and ventricular bigeminy. He received magnesium sulfate and potassium chloride supplementation. In this series, unintentional small overdoses did not result in significant clinical effects and were often managed successfully at home, despite the fact that information showing a single capsule can cause torsades. This study is limited by its small sample size, retrospective design, and reliance on incomplete information.
Fermion masses and mixing in general warped extra dimensional models
NASA Astrophysics Data System (ADS)
Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel
2015-06-01
We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.
Heimesaat, Markus M; Dunay, Ildiko R; Schulze, Silvia; Fischer, André; Grundmann, Ursula; Alutis, Marie; Kühl, Anja A; Tamas, Andrea; Toth, Gabor; Dunay, Miklos P; Göbel, Ulf B; Reglodi, Dora; Bereswill, Stefan
2014-01-01
The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) plays pivotal roles in immunity and inflammation. So far, potential immune-modulatory properties of PACAP have not been investigated in experimental ileitis. Mice were perorally infected with Toxoplasma (T.) gondii to induce acute ileitis (day 0) and treated daily with synthetic PACAP38 from day 1 to 6 post infection (p.i.; prophylaxis) or from day 4 to 6 p.i. (therapy). Whereas placebo-treated control mice suffered from acute ileitis at day 7 p.i. and succumbed to infection, intestinal immunopathology was ameliorated following PACAP prophylaxis. PACAP-treated mice exhibited increased abundance of small intestinal FOXP3+ cells, but lower numbers of ileal T lymphocytes, neutrophils, monocytes and macrophages, which was accompanied by less ileal expression of pro-inflammatory cytokines such as IL-23p19, IL-22, IFN-γ, and MCP-1. Furthermore, PACAP-treated mice displayed higher anti-inflammatory IL-4 concentrations in mesenteric lymph nodes and liver and higher systemic anti-inflammatory IL-10 levels in spleen and serum as compared to control animals at day 7 p.i. Remarkably, PACAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments as indicated by reduced pro-inflammatory mediator levels in spleen (TNF-α, nitric oxide) and liver (TNF-α, IFN-γ, MCP-1, IL-6) and less severe histopathological sequelae in lungs and kidneys following prophylactic PACAP treatment. Strikingly, PACAP prolonged survival of T. gondii infected mice in a time-of-treatment dependent manner. Synthetic PACAP ameliorates acute small intestinal inflammation and extra-intestinal sequelae by down-regulating Th1-type immunopathology, reducing oxidative stress and up-regulating anti-inflammatory cytokine responses. These findings provide novel potential treatment options of inflammatory bowel diseases.
Scichilone, Nicola; Spatafora, Mario; Battaglia, Salvatore; Arrigo, Rita; Benfante, Alida; Bellia, Vincenzo
2013-01-01
The mainstay of management in asthma is inhalation therapy at the target site, with direct delivery of the aerosolized drug into the airways to treat inflammation and relieve obstruction. Abundant evidence is available to support the concept that inflammatory and functional changes at the level of the most peripheral airways strongly contribute to the complexity and heterogeneous manifestations of asthma. It is now largely accepted that there is a wide range of clinical phenotypes of the disease, characterized primarily by small airways involvement. Thus, an appropriate diagnostic algorithm cannot exclude biological and functional assessment of the peripheral airways. Similarly, achievement of optimal control of the disease and appropriate management of specific phenotypes of asthma should be based on drugs (and delivery options) able to distribute uniformly along the bronchial tree and to reach the most peripheral airways. Products developed with the Modulite® technology platform have been demonstrated to meet these aims. Recent real-life studies have shown clearly that extra-fine fixed-combination inhaled therapy provides better asthma control than non-extra-fine formulations, thus translating the activity of the drugs into greater effectiveness in clinical practice. We suggest that in patients with incomplete asthma control despite good lung function, involvement of the peripheral airways should always be suspected. When this is the case, treatments targeting both the large and small airways should be used to improve asthma control. Above all, it is emphasized that patient adherence with prescribed medications can contribute to clinical success, and clinicians should always be aware of the role played by patients themselves in determining the success or failure of treatment. PMID:23378776
NON-FATAL INFECTION OF MICE FOLLOWING INTRACEREBRAL INOCULATION OF YELLOW FEVER VIRUS
Fox, John P.
1943-01-01
Observations have been reported which indicate that mice inoculated intracerebrally with active yellow fever virus may develop an infection which is not only non-fatal but may also be completely inapparent. The most extensive observations were made on mice which showed signs of infection but were still alive 22 days after inoculation with virus of one or another of several 17D substrains. In such cases, the infection usually progressed no further and partial or complete recovery often ensued. Agents other than yellow fever virus were excluded as a significant cause of such nonfatal infections by the failure of repeated attempts to isolate other infective agents, by the demonstration of antibodies against yellow fever virus in the sera of the mice, and by the demonstration of a high degree of resistance on the part of such surviving mice to reinoculation with large doses of neurotropic yellow fever virus. Completely inapparent infections with 17D virus were also shown to occur. Studies of apparently normal survivors of 17D virus titrations revealed a small but significant number of animals resistant to intracerebral challenge with neurotropic yellow fever virus. Further, pooled sera from such mice were shown to contain specific protective antibodies. The occurrence of non-fatal infections with 17D virus was found related to virus dose and substrain. Small doses of virus provoked a significantly higher proportion of non-fatal infections than large doses; while different 17D substrains, tested over equivalent ranges of virus dose, varied greatly with respect to the proportion of infections which did not terminate with death. In the case of two substrains (17DD low and 17D3), non-fatal infections (as demonstrated by resistance to intracerebral challenge with neurotropic virus) were sufficiently frequent to cause an increase, when included in the computation of the infective titers, of 25 per cent above the figures based on deaths alone. The demonstration of non-fatal infections, thus, may be important to the accuracy of quantitative determinations of infectivity. Limited observations with virus of the French neurotropic and the pantropic Asibi strains revealed that non-fatal infections do occur, but only rarely. Somewhat more extensive observations with unmodified virus of strains isolated from Brazilian cases of jungle yellow fever, in contrast, revealed an occurrence of non-fatal infections much greater than that observed with the most productive 17D substrains. With these jungle strains, the demonstration of non-fatal infections proved indispensable to any measure of the level of infectivity of virus preparations. The demonstration of the proportional occurrence in mice of non-fatal infections with yellow fever virus provides an additional means by which different virus strains and substrains may be characterized. PMID:19871300
A highly sensitive and versatile virus titration assay in the 96-well microplate format.
Borisevich, V; Nistler, R; Hudman, D; Yamshchikov, G; Seregin, A; Yamshchikov, V
2008-02-01
This report describes a fast, reproducible, inexpensive and convenient assay system for virus titration in the 96-well format. The micromethod substantially increases assay throughput and improves the data reproducibility. A highly simplified variant of virus quantification is based on immunohistochemical detection of virus amplification foci obtained without use of agarose or semisolid overlays. It can be incorporated into several types of routine virological assays successfully replacing the laborious and time-consuming conventional methods based on plaque formation under semisolid overlays. The method does not depend on the development of CPE and can be accommodated to assay viruses with substantial differences in growth properties. The use of enhanced immunohistochemical detection enabled a five- to six-fold reduction of the total assay time. The micromethod was specifically developed to take advantage of multichannel pipettor use to simplify handling of a large number of samples. The method performs well with an inexpensive low-power binocular, thus offering a routine assay system usable outside of specialized laboratory setting, such as for testing of clinical or field samples. When used in focus reduction-neutralization tests (FRNT), the method accommodates very small volumes of immune serum, which is often a decisive factor in experiments involving small rodent models.
The Hepatitis B Virus Ribonuclease H as a Drug Target
Tavis, John E.; Lomonosova, Elena
2015-01-01
Chronic hepatitis B virus (HBV) infection is a leading cause of hepatitis, liver failure, and hepatocellular carcinoma. An outstanding vaccine is available; however the number of infections remains high. Current anti-HBV treatments with interferon α and nucleos(t)ide analogs clear the infection in only a small minority of patients, and either induce serious side-effects or are of very long duration. HBV is a small, enveloped DNA virus that replicates by reverse transcription via an RNA intermediate. The HBV ribonuclease H (RNaseH) is essential for viral replication, but it has not been exploited as a drug target. Recent low-throughput screening of compound classes with anti-Human Immunodeficiency Virus RNaseH activity led to identification of HBV RNaseH inhibitors in three different chemical families that block HBV replication. These inhibitors are promising candidates for development into new anti-HBV drugs. The RNaseH inhibitors may help improve treatment efficacy enough to clear the virus from the liver when used in combination with existing anti-HBV drugs and/or with other novel inhibitors under development. This article forms part of a symposium in Antiviral Research on “An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B.” PMID:25862291
Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadam, Rameshwar U.; Wilson, Ian A.
The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ~16 Åmore » from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.« less
Small-Molecule Effectors of Hepatitis B Virus Capsid Assembly Give Insight into Virus Life Cycle▿
Bourne, Christina; Lee, Sejin; Venkataiah, Bollu; Lee, Angela; Korba, Brent; Finn, M. G.; Zlotnick, Adam
2008-01-01
The relationship between the physical chemistry and biology of self-assembly is poorly understood, but it will be critical to quantitatively understand infection and for the design of antivirals that target virus genesis. Here we take advantage of heteroaryldihydropyrimidines (HAPs), which affect hepatitis B virus (HBV) assembly, to gain insight and correlate in vitro assembly with HBV replication in culture. Based on a low-resolution crystal structure of a capsid-HAP complex, a closely related series of HAPs were designed and synthesized. These differentially strengthen the association between neighboring capsid proteins, alter the kinetics of assembly, and give rise to aberrant structures incompatible with a functional capsid. The chemical nature of the HAP variants correlated well with the structure of the HAP binding pocket. The thermodynamics and kinetics of in vitro assembly had strong and predictable effects on product morphology. However, only the kinetics of in vitro assembly had a strong correlation with inhibition of HBV replication in HepG2.2.15 cells; there was at best a weak correlation between assembly thermodynamics and replication. The correlation between assembly kinetics and virus suppression implies a competition between successful assembly and misassembly, small molecule induced or otherwise. This is a predictive and testable model for the mechanism of action of assembly effectors. PMID:18684823
MS-2 and poliovirus transport in porous media: Hydrophobic effects and chemical perturbations
NASA Astrophysics Data System (ADS)
Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.
1993-04-01
In a series of pH 7 continuous-flow column experiments, removal of the bacteriophage MS-2 by attachment to silica beads had a strong, systematic dependence on the amount of hydrophobic surface present on the beads. With no hydrophobic surface, removal of phage at pH 5 was much greater than at pH 7. Release of attached phage at both pH values did occur, but was slow; breakthrough curves exhibited tailing. Poliovirus attached to silica beads at pH 5.5 much more than at pH 7.0, and attachment was also slowly reversible. Time scales for phage and poliovinis attachment were of the order of hours. The sticking efficiency factor (α), reflecting microscaie physicochemical influences on virus attachment, was in the range of 0.0007-0.02. Phage release was small but measurable under steady state conditions. Release was enhanced by lowering ionic strength and by introducing beef extract, a high-ionic-strength protein solution. Results show that viruses experience reversible attachment/detachment (sometimes termed sorption), that large chemical perturbations are needed to induce rapid virus detachment, and that viruses should be quite mobile in sandy porous media. Even small amounts of hydrophobic organic material in the porous media (≥0.001%) can retard virus transport.
Evaluation of Taterapox Virus in Small Animals.
Parker, Scott; Crump, Ryan; Hartzler, Hollyce; Buller, R Mark
2017-08-01
Taterapox virus (TATV), which was isolated from an African gerbil ( Tatera kempi ) in 1975, is the most closely related virus to variola; however, only the original report has examined its virology. We have evaluated the tropism of TATV in vivo in small animals. We found that TATV does not infect Graphiurus kelleni , a species of African dormouse, but does induce seroconversion in the Mongolian gerbil ( Meriones unguiculatus ) and in mice; however, in wild-type mice and gerbils, the virus produces an unapparent infection. Following intranasal and footpad inoculations with 1 × 10⁶ plaque forming units (PFU) of TATV, immunocompromised stat1 -/- mice showed signs of disease but did not die; however, SCID mice were susceptible to intranasal and footpad infections with 100% mortality observed by Day 35 and Day 54, respectively. We show that death is unlikely to be a result of the virus mutating to have increased virulence and that SCID mice are capable of transmitting TATV to C57BL/6 and C57BL/6 stat1 -/- animals; however, transmission did not occur from TATV inoculated wild-type or stat1 -/- mice. Comparisons with ectromelia (the etiological agent of mousepox) suggest that TATV behaves differently both at the site of inoculation and in the immune response that it triggers.
Timing Is Everything: Coordinated Control of Host Shutoff by Influenza A Virus NS1 and PA-X Proteins
Khaperskyy, Denys A.
2015-01-01
Like all viruses, influenza viruses (IAVs) use host translation machinery to decode viral mRNAs. IAVs ensure efficient translation of viral mRNAs through host shutoff, a process whereby viral proteins limit the accumulation of host proteins through subversion of their biogenesis. Despite its small genome, the virus deploys multiple host shutoff mechanisms at different stages of infection, thereby ensuring successful replication while limiting the communication of host antiviral responses. In this Gem, we review recent data on IAV host shutoff proteins, frame the outstanding questions in the field, and propose a temporally coordinated model of IAV host shutoff. PMID:25878098
Navarro, Juan-Carlos; Giambalvo, Dileyvic; Hernandez, Rosa; Auguste, Albert J; Tesh, Robert B; Weaver, Scott C; Montañez, Humberto; Liria, Jonathan; Lima, Anderson; Travassos da Rosa, Jorge Fernando Soares; da Silva, Sandro P; Vasconcelos, Janaina M; Oliveira, Rodrigo; Vianez, João L S G; Nunes, Marcio R T
2016-08-03
Oropouche virus (OROV), genus Orthobunyavirus, family Bunyaviridae, is an important cause of human illness in tropical South America. Herein, we report the isolation, complete genome sequence, genetic characterization, and phylogenetic analysis of an OROV species reassortant, Madre de Dios virus (MDDV), obtained from a sick monkey (Cebus olivaceus Schomburgk) collected in a forest near Atapirire, a small rural village located in Anzoategui State, Venezuela. MDDV is one of a growing number of naturally occurring OROV species reassortants isolated in South America and was known previously only from southern Peru. © The American Society of Tropical Medicine and Hygiene.
Palù, Giorgio; Loregian, Arianna
2013-09-01
Protein-protein interactions (PPIs) play a key role in many biological processes, including virus replication in the host cell. Since most of the PPIs are functionally essential, a possible strategy to inhibit virus replication is based on the disruption of viral protein complexes by peptides or small molecules that interfere with subunit interactions. In particular, an attractive target for antiviral drugs is the binding between the subunits of essential viral enzymes. This review describes the development of new antiviral compounds that inhibit herpesvirus and influenza virus replication by blocking interactions between subunit proteins of their polymerase complexes. Copyright © 2013 Elsevier B.V. All rights reserved.
Ma, Dejun; Zhang, Jie; Zhang, Changyu; Men, Yuwen; Sun, Hongyan; Li, Lu-Yuan; Yi, Long; Xi, Zhen
2018-05-09
A new bench-stable reagent with double diazonium sites was designed and synthesized for protein crosslinking. Based on the highly efficient diazonium-Tyr coupling reaction, a direct mixture of the reagent and tobacco mosaic virus led to the formation of a new hydrogel, which could be degraded by chemicals and could be used to encapsulate small molecules for sustained release. Because plant viruses exhibit many chemical characteristics like protein labelling and nucleic acid packaging, the virus-based hydrogel will have large chemical space for further functionalization. Besides, this dual-diazonium reagent should be a generally useful crosslinker for chemical biology and biomaterials.
Chromatographic removal combined with heat, acid and chaotropic inactivation of four model viruses.
Valdés, R; Ibarra, Neysi; Ruibal, I; Beldarraín, A; Noa, E; Herrera, N; Alemán, R; Padilla, S; Garcia, J; Pérez, M; Morales, R; Chong, E; Reyes, B; Quiñones, Y; Agraz, A; Herrera, L
2002-07-03
The virus removal of protein A affinity chromatography, inactivation capacity, acid pH and a combination of high temperature with a chaotropic agent was determined in this work. The model viruses studied were sendaivirus, human immunodeficency virus (HIV-IIIb), human poliovirus type-II, human herpesvirus I and canine parvovirus. The protein A affinity chromatography showed a maximum reduction factor of 8 logs in the case of viruses larger than 120 nm size, while for small viruses (18-30 nm) the maximum reduction factor was about 5 logs. Non viral inactivation was observed during the monoclonal antibody elution step. Low pH treatment showed a maximum inactivation factor of 7.1 logs for enveloped viruses. However, a weak inactivation factor (3.4 logs) was obtained for DNA nonenveloped viruses. The combination of high temperature with 3 M KSCN showed a high inactivation factor for all of the viruses studied. The total clearance factor was 23.1, 15.1, 13.6, 20.0 and 16.0 logs for sendaivirus, HIV-IIIb, human poliovirus type-II, human herpesvirus I and canine parvovirus, respectively.
Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.
Warren, Travis K; Jordan, Robert; Lo, Michael K; Ray, Adrian S; Mackman, Richard L; Soloveva, Veronica; Siegel, Dustin; Perron, Michel; Bannister, Roy; Hui, Hon C; Larson, Nate; Strickley, Robert; Wells, Jay; Stuthman, Kelly S; Van Tongeren, Sean A; Garza, Nicole L; Donnelly, Ginger; Shurtleff, Amy C; Retterer, Cary J; Gharaibeh, Dima; Zamani, Rouzbeh; Kenny, Tara; Eaton, Brett P; Grimes, Elizabeth; Welch, Lisa S; Gomba, Laura; Wilhelmsen, Catherine L; Nichols, Donald K; Nuss, Jonathan E; Nagle, Elyse R; Kugelman, Jeffrey R; Palacios, Gustavo; Doerffler, Edward; Neville, Sean; Carra, Ernest; Clarke, Michael O; Zhang, Lijun; Lew, Willard; Ross, Bruce; Wang, Queenie; Chun, Kwon; Wolfe, Lydia; Babusis, Darius; Park, Yeojin; Stray, Kirsten M; Trancheva, Iva; Feng, Joy Y; Barauskas, Ona; Xu, Yili; Wong, Pamela; Braun, Molly R; Flint, Mike; McMullan, Laura K; Chen, Shan-Shan; Fearns, Rachel; Swaminathan, Swami; Mayers, Douglas L; Spiropoulou, Christina F; Lee, William A; Nichol, Stuart T; Cihlar, Tomas; Bavari, Sina
2016-03-17
The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.
Noncongenital central nervous system infections in children: radiology review.
Acosta, Jorge Humberto Davila; Rantes, Claudia Isabel Lazarte; Arbelaez, Andres; Restrepo, Feliza; Castillo, Mauricio
2014-06-01
Infections of the central nervous system (CNS) are a very common worldwide health problem in childhood with significant morbidity and mortality. In children, viruses are the most common cause of CNS infections, followed by bacterial etiology, and less frequent due to mycosis and other causes. Noncomplicated meningitis is easier to recognize clinically; however, complications of meningitis such as abscesses, infarcts, venous thrombosis, or extra-axial empyemas are difficult to recognize clinically, and imaging plays a very important role on this setting. In addition, it is important to keep in mind that infectious process adjacent to the CNS such as mastoiditis can develop by contiguity in an infectious process within the CNS. We display the most common causes of meningitis and their complications.
Quantitative nanoparticle tracking: applications to nanomedicine.
Huang, Feiran; Dempsey, Christopher; Chona, Daniela; Suh, Junghae
2011-06-01
Particle tracking is an invaluable technique to extract quantitative and qualitative information regarding the transport of nanomaterials through complex biological environments. This technique can be used to probe the dynamic behavior of nanoparticles as they interact with and navigate through intra- and extra-cellular barriers. In this article, we focus on the recent developments in the application of particle-tracking technology to nanomedicine, including the study of synthetic and virus-based materials designed for gene and drug delivery. Specifically, we cover research where mean square displacements of nanomaterial transport were explicitly determined in order to quantitatively assess the transport of nanoparticles through biological environments. Particle-tracking experiments can provide important insights that may help guide the design of more intelligent and effective diagnostic and therapeutic nanoparticles.
Mucosal Immunity and acute viral gastroenteritis
Rose, Markus A
2014-01-01
Acute gastroenteritis is a major killer of the very young worldwide. Rotavirus is the most common intestinal virus, causing acute gastroenteritis and extra-intestinal complications especially in young and chronically ill subjects. As early as 1991, the WHO recommended as high priority the development of a vaccine against rotavirus, the major pathogen causing enteric infections. Since the introduction of rotavirus vaccines for infant immunization programmes in different parts of the world in 2006, vaccination against rotavirus has resulted in substantial declines in severe gastroenteritis. The oral rotavirus vaccines RotaTeq® and Rotarix® are excellent examples for their unique features and principles of mucosal immunization. We elaborate on rotavirus immunity and the success of rotavirus vaccination and aspects also beyond infants’ acute gastroenteritis. PMID:25424826
A network model for the propagation of Hepatitis C with HIV co-infection
NASA Astrophysics Data System (ADS)
Nucit, Arnaud; Randon-Furling, Julien
2017-05-01
We define and examine a model of epidemic propagation for a virus such as Hepatitis C (with HIV co-infection) on a network of networks, namely the network of French urban areas. One network level is that of the individual interactions inside each urban area. The second level is that of the areas themselves, linked by individuals travelling between these areas and potentially helping the epidemic spread from one city to another. We choose to encode the second level of the network as extra, special nodes in the first level. We observe that such an encoding leads to sensible results in terms of the extent and speed of propagation of an epidemic, depending on its source point.
THE FEATURES OF THE COURSE OF CERTAIN VIRUS INFECTIONS AGAINST A BACKGROUND OF RADIATION AFFLICTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remezov, P.I.
1960-01-01
Since the combination of radiation sickness with virus infections complicates diagnosis of the etiology of the infectious process, the course of various infections (lymphocytic choriomeningitis, acute multiple encephalomyelitis influenza, tick-borne encephalitis, etc.) was studied in white mice subjected to a single daily 500, 400, 300, 200, 100, 50, or 10 r dose (or 0.33 r twice weekly) of x-radiation for more than 6 months. Six hours before or 6 hours, 7, 21, and 90 days after irradiation the mice were infected cerebrally, per nos, per os, or subcutaneously with virus in a dose of LD/sub 50/ or more. A studymore » was also made of the course of virus infection as affected by a combination of unfavorable factors, such as irradiation plus chilling and exhaustion. After infection, the clinical symptoms and virological characteristics of the disease were studied. The resultant data are of practical value in diagnosing virus infections complicated by the action of ionizing radiation on the body. A detailed description of the results is given. It was found that ionizing radiation greatly altered the clinical and virological picture of virus infections. Even comparatively small doses (300, 200, 100 r, and less) reduced the mice's resistance to many viruses. The course of the virus infection in an irradiated animal depended both on the radiation dose and the time that had elapsed between irradiation and infection. The greatest drop in the animals' resistance to virus was noted during maximum development of their reaction to radiation. Within 3 to 3.5 months after irradiation their resistance returns to normal. Chronic irradiation, even in such small doses as 10 r, also reduced resistance to viruses. In this case the degree of the drop in resistance was directly proportional to the total radiation dose. Prolonged irradiation of mice twice weekly in doses of 0.33 r revealed no deviations in the clinical or virologn-cal characteristics of the virus infections, but the mortality rate was always higher than in non-irradiated animals. (OTS)« less
CASIMIR Effect in a Supersymmetry-Breaking Brane-World as Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, P
2004-09-29
A new model for the origin of dark energy is proposed based on the Casimir effect in a supersymmetry-breaking brane-world. Supersymmetry is assumed to be preserved in the bulk while broken on a 3-brane. Due to the boundary conditions imposed on the compactified extra dimensions, there is an effective Casimir energy induced on the brane. The net Casimir energy contributed from the graviton and the gravitino modes as a result of supersymmetry-breaking on the brane is identified as the observed dark energy, which in our construction is a cosmological constant. We show that the smallness of the cosmological constant, whichmore » results from the huge contrast in the extra-dimensional volumes between that associated with the 3-brane and that of the bulk, is attainable under very relaxed condition.« less
[Management of patients with simple cervical distortions].
Foletti, G; Regli, F
1995-11-11
Common distortion of the cervical spine without evidence of neurological or osteoligamentary damage is a frequent consequence of indirect head and neck trauma. The mechanism of the injury (called "whiplash", "coup de lapin", or "Schleudertrauma") does not imply direct trauma to the head or neck. In the acute phase, common distortion of the cervical spine requires treatment. Rapid management may avoid or considerably reduce the chronic pain syndrome with the characteristic chronic tension-like headache. The chronic pain and the numerous associated functional disorders are not well understood: certain factors favour central and peripheral dysfunction and others emphasize the importance of extra-trauma phenomena. In our opinion, extra-trauma phenomena would explain the invalidating nature of pain in a small number of patients. Management of these chronic patients requires a multidisciplinary approach aimed at helping the patient overcome the inconveniences of this condition.
Ahmed-Belkacem, Abdelhakim; Colliandre, Lionel; Ahnou, Nazim; Nevers, Quentin; Gelin, Muriel; Bessin, Yannick; Brillet, Rozenn; Cala, Olivier; Douguet, Dominique; Bourguet, William; Krimm, Isabelle; Pawlotsky, Jean-Michel; Guichou, Jean- François
2016-01-01
Cyclophilins are peptidyl-prolyl cis/trans isomerases (PPIase) that catalyse the interconversion of the peptide bond at proline residues. Several cyclophilins play a pivotal role in the life cycle of a number of viruses. The existing cyclophilin inhibitors, all derived from cyclosporine A or sanglifehrin A, have disadvantages, including their size, potential for side effects unrelated to cyclophilin inhibition and drug–drug interactions, unclear antiviral spectrum and manufacturing issues. Here we use a fragment-based drug discovery approach using nucleic magnetic resonance, X-ray crystallography and structure-based compound optimization to generate a new family of non-peptidic, small-molecule cyclophilin inhibitors with potent in vitro PPIase inhibitory activity and antiviral activity against hepatitis C virus, human immunodeficiency virus and coronaviruses. This family of compounds has the potential for broad-spectrum, high-barrier-to-resistance treatment of viral infections. PMID:27652979
Rolland, Morgane; Chauvineau, Cécile; Valas, Stephen; Mamoun, Robert Z; Perrin, Gérard
2004-06-15
Primary goat synovial membrane (GSM) cells are widely used to study small ruminant lentiviruses (SRLV), i.e. maedi visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV), but their limited life-span of 15-20 passages in vitro is problematic. Here, we report that ectopic expression of the catalytic subunit of human telomerase (hTERT) was sufficient to immortalize primary GSM cells. Cultures of hTERT-transfected GSM cells have been passaged for 2 years without showing any phenotypic difference from the original primary GSM cells. The hTERT-transfected cells continued to grow beyond a population doubling number of 250, while no net telomere lengthening was observed for these cells. Moreover, the immortalized GSM cells were susceptible to infection by both CAEV and MVV and were able to propagate theses viruses. Such cell line provides a useful source of standard and robust cells for both research and veterinary purposes.
Salmanizadeh, Sharareh; Bouzari, Majid; Talebi, Ardeshir
2012-02-01
Torque teno midi virus and small anellovirus (TTMDV/SAV) are members of the genus Gammatorquevirus within the family Anelloviridae. Cervical cancer is the second most prevalent cancer after breast cancer. The aim of this study was to determine the frequency of infection by these viruses in cervicitis and cervical tumors of women from Isfahan, Iran. Formalin-fixed, paraffin-embedded tissue samples from cervical cancers (n = 42) and cervicitis cases (n = 79) were subjected to nested PCR to identify TTMDV/SAV viral sequences. Of the 42 tumor cases, 22, 18 and 2 were diagnosed as adenocarcinoma, cervical intraepithelial neoplasia and squamous cell carcinoma, respectively. In total, 23 (55%) of the tumor samples were positive for TTMDV/SAV. Of the 79 cervicitis cases, 38 (48%) were also positive for TTMDV/SAV. This is the first report of TTMDV/SAV in cervicitis and cervical tumors of women.
Hayashi, Y; Ando, T; Utagawa, E; Sekine, S; Okada, S; Yabuuchi, K; Miki, T; Ohashi, M
1989-08-01
Small, round-structured virus (SRSV) was detected in a stool specimen of a patient during an acute gastroenteritis outbreak in Tokyo and was tentatively named SRSV-9. SRSV-9 was purified by sucrose velocity gradient centrifugation after CsCl density gradient centrifugation. The buoyant density of SRSV-9 appeared to be 1.36 g/ml in CsCl. A Western blot (immunoblot) assay using the biotin-avidin system revealed that SRSV-9 was antigenically related to the Hawaii agent but distinct from the Norwalk agent and contained a single major structural protein with a molecular size of 63.0 +/- 0.6 kilodaltons. The prevalence of SRSV-9 infection in Tokyo was surveyed by the Western blot antibody assay by using a crude virus preparation as the antigen. Seroconversion was observed in 56.5% of the patients involved in the outbreaks from which SRSV was detected by electron microscopy.
The Expanding Family of Virophages.
Bekliz, Meriem; Colson, Philippe; La Scola, Bernard
2016-11-23
Virophages replicate with giant viruses in the same eukaryotic cells. They are a major component of the specific mobilome of mimiviruses. Since their discovery in 2008, five other representatives have been isolated, 18 new genomes have been described, two of which being nearly completely sequenced, and they have been classified in a new viral family, Lavidaviridae . Virophages are small viruses with approximately 35-74 nm large icosahedral capsids and 17-29 kbp large double-stranded DNA genomes with 16-34 genes, among which a very small set is shared with giant viruses. Virophages have been isolated or detected in various locations and in a broad range of habitats worldwide, including the deep ocean and inland. Humans, therefore, could be commonly exposed to virophages, although currently limited evidence exists of their presence in humans based on serology and metagenomics. The distribution of virophages, the consequences of their infection and the interactions with their giant viral hosts within eukaryotic cells deserve further research.
Houston, Derek D.; Azeem, Shahan; Lundy, Coady W.; Sato, Yuko; Guo, Baoqing; Blanchong, Julie A.; Gauger, Phillip C.; Marks, David R.
2017-01-01
Background Avian influenza virus (AIV) infections occur naturally in wild bird populations and can cross the wildlife-domestic animal interface, often with devastating impacts on commercial poultry. Migratory waterfowl and shorebirds are natural AIV reservoirs and can carry the virus along migratory pathways, often without exhibiting clinical signs. However, these species rarely inhabit poultry farms, so transmission into domestic birds likely occurs through other means. In many cases, human activities are thought to spread the virus into domestic populations. Consequently, biosecurity measures have been implemented to limit human-facilitated outbreaks. The 2015 avian influenza outbreak in the United States, which occurred among poultry operations with strict biosecurity controls, suggests that alternative routes of virus infiltration may exist, including bridge hosts: wild animals that transfer virus from areas of high waterfowl and shorebird densities. Methods Here, we examined small, wild birds (songbirds, woodpeckers, etc.) and mammals in Iowa, one of the regions hit hardest by the 2015 avian influenza epizootic, to determine whether these animals carry AIV. To assess whether influenza A virus was present in other species in Iowa during our sampling period, we also present results from surveillance of waterfowl by the Iowa Department of Natural Resources and Unites Stated Department of Agriculture. Results Capturing animals at wetlands and near poultry facilities, we swabbed 449 individuals, internally and externally, for the presence of influenza A virus and no samples tested positive by qPCR. Similarly, serology from 402 animals showed no antibodies against influenza A. Although several species were captured at both wetland and poultry sites, the overall community structure of wild species differed significantly between these types of sites. In contrast, 83 out of 527 sampled waterfowl tested positive for influenza A via qPCR. Discussion These results suggest that even though influenza A viruses were present on the Iowa landscape at the time of our sampling, small, wild birds and rodents were unlikely to be frequent bridge hosts. PMID:29255648
Nordenstedt, Noora; Marcenaro, Delfia; Chilagane, Daudi; Mwaipopo, Beatrice; Rajamäki, Minna-Liisa; Nchimbi-Msolla, Susan; Njau, Paul J R; Mbanzibwa, Deusdedith R; Valkonen, Jari P T
2017-01-01
Common bean (Phaseolus vulgaris) is an annual grain legume that was domesticated in Mesoamerica (Central America) and the Andes. It is currently grown widely also on other continents including Africa. We surveyed seedborne viruses in new common bean varieties introduced to Nicaragua (Central America) and in landraces and improved varieties grown in Tanzania (eastern Africa). Bean seeds, harvested from Nicaragua and Tanzania, were grown in insect-controlled greenhouse or screenhouse, respectively, to obtain leaf material for virus testing. Equal amounts of total RNA from different samples were pooled (30-36 samples per pool), and small RNAs were deep-sequenced (Illumina). Assembly of the reads (21-24 nt) to contiguous sequences and searches for homologous viral sequences in databases revealed Phaseolus vulgaris endornavirus 1 (PvEV-1) and PvEV-2 in the bean varieties in Nicaragua and Tanzania. These viruses are not known to cause symptoms in common bean and are considered non-pathogenic. The small-RNA reads from each pool of samples were mapped to the previously characterized complete PvEV-1 and PvEV-2 sequences (genome lengths ca. 14 kb and 15 kb, respectively). Coverage of the viral genomes was 87.9-99.9%, depending on the pool. Coverage per nucleotide ranged from 5 to 471, confirming virus identification. PvEV-1 and PvEV-2 are known to occur in Phaseolus spp. in Central America, but there is little previous information about their occurrence in Nicaragua, and no information about occurrence in Africa. Aside from Cowpea mild mosaic virus detected in bean plants grown from been seeds harvested from one region in Tanzania, no other pathogenic seedborne viruses were detected. The low incidence of infections caused by pathogenic viruses transmitted via bean seeds may be attributable to new, virus-resistant CB varieties released by breeding programs in Nicaragua and Tanzania.
Rajeswaran, Rajendran; Seguin, Jonathan; Chabannes, Matthieu; Duroy, Pierre-Olivier; Laboureau, Nathalie; Farinelli, Laurent; Iskra-Caruana, Marie-Line
2014-01-01
ABSTRACT Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5′-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5′ portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. IMPORTANCE We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants. PMID:25056897
Rajeswaran, Rajendran; Seguin, Jonathan; Chabannes, Matthieu; Duroy, Pierre-Olivier; Laboureau, Nathalie; Farinelli, Laurent; Iskra-Caruana, Marie-Line; Pooggin, Mikhail M
2014-10-01
Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5'-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5' portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Li, Dongqi; He, Chuanchun; Xia, Yaoxiong; Du, Yaxi; Zhang, Jing
2018-04-23
Pembrolizumab has significantly improved outcomes in patients with advanced non-small cell lung cancer. Combining programmed death-1 inhibitor with stereotactic body radiotherapy showed a slight toxicity and good benefits in recent clinical trials. However, patients infected with human immunodeficiency virus were excluded from most trials because it was assumed that their anti-tumor immunity was compromised compared with immunocompetent patients. In June 2016, a 52-year-old Chinese man presented with human immunodeficiency virus and lung adenocarcinoma (T1bN3M1b). From November 2016 to December 2016, systemic chemotherapy and palliative radiotherapy for bone metastasis of femoral neck were carried out, but the tumor progressed. In January 2017, after immunochemistry detection of programmed death-1 and programmed death-ligand 1 expression (both > 50%), pembrolizumab was started. Three weeks after pembrolizumab, we combined stereotactic body radiotherapy for the primary lung tumor. He received no comfort and his CD4 lymphocyte count was stable. Human immunodeficiency virus-ribonucleic acid remained below the limits of detection. In March 2017, after three cycles of pembrolizumab and 5 weeks of stereotactic body radiotherapy therapy, he suddenly presented with palpitations. Emergency computed tomography scanning showed massive pericardial effusion and interstitial pneumonia. So we interrupted the pembrolizumab use and initiated treatment with prednisolone 1 mg/kg; however, the tumor progressed. Then, his CD4 lymphocyte count declined. Finally he died in June 2017 due to dyscrasia. Pembrolizumab combined with SBRT therapy for patients with human immunodeficiency virus infection and non-small cell lung cancer may lead to serious immune-related adverse events and more clinical trials are needed.
Two pore channels control Ebolavirus host cell entry and are drug targets for disease treatment
Sakurai, Yasuteru; Kolokoltsov, Andrey A.; Chen, Cheng-Chang; Tidwell, Michael W.; Bauta, William E.; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A.
2015-01-01
Ebolavirus causes sporadic outbreaks of lethal hemorrhagic fever in humans with no currently approved therapy. Cells take up Ebolavirus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebolavirus entry into host cells requires the endosomal calcium channels called two pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs or small molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule we tested, inhibited infection of human macrophages, the primary target of Ebolavirus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebolavirus infection and may be effective targets for antiviral therapy. PMID:25722412
Furuse, Yuki; Matsuzaki, Yoko; Nishimura, Hidekazu; Oshitani, Hitoshi
2016-11-26
Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1) multiple lineages have been circulating globally; (2) there have been weak and infrequent selective bottlenecks; (3) the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4) there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics.
Furuse, Yuki; Matsuzaki, Yoko; Nishimura, Hidekazu; Oshitani, Hitoshi
2016-01-01
Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1) multiple lineages have been circulating globally; (2) there have been weak and infrequent selective bottlenecks; (3) the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4) there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics. PMID:27898037
Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto
2005-06-01
Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses.
Zhou, Xianfeng; Kataoka, Michiyo; Liu, Zheng; Takeda, Naokazu; Wakita, Takaji; Li, Tian-Cheng
2015-12-02
Dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus, has been identified in dromedary camels in Dubai, United Arab Emirates. The antigenicity, pathogenicity and epidemiology of this virus have been unclear. Here we first used a recombinant baculovirus expression system to express the 13 and 111 N-terminus amino-acid-truncated DcHEV ORF2 protein in insect Tn5 cells, and we obtained two types of virus-like particles (VLPs) with densities of 1.300 g/cm(3) and 1.285 g/cm(3), respectively. The small VLPs (Dc4sVLPs) were estimated to be 24 nm in diameter, and were assembled by a protein with the molecular mass 53 kDa. The large VLPs (Dc3nVLPs and Dc4nVLPs) were 35 nm in diameter, and were assembled by a 64-kDa protein. An antigenic analysis demonstrated that DcHEV was cross-reactive with G1, G3-G6, ferret and rat HEVs, and DcHEV showed a stronger cross-reactivity to G1 G3-G6 HEV than it did to rat and ferret HEV. In addition, the antibody against DcHEV-LPs neutralized G1 and G3 HEV in a cell culture system, suggesting that the serotypes of these HEVs are identical. We also found that the amino acid residue Met-358 affects the small DcHEV-LPs assembly. Copyright © 2015 Elsevier B.V. All rights reserved.
RNA interference targets arbovirus replication in Culicoides cells.
Schnettler, Esther; Ratinier, Maxime; Watson, Mick; Shaw, Andrew E; McFarlane, Melanie; Varela, Mariana; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain
2013-03-01
Arboviruses are transmitted to vertebrate hosts by biting arthropod vectors such as mosquitoes, ticks, and midges. These viruses replicate in both arthropods and vertebrates and are thus exposed to different antiviral responses in these organisms. RNA interference (RNAi) is a sequence-specific RNA degradation mechanism that has been shown to play a major role in the antiviral response against arboviruses in mosquitoes. Culicoides midges are important vectors of arboviruses, known to transmit pathogens of humans and livestock such as bluetongue virus (BTV) (Reoviridae), Oropouche virus (Bunyaviridae), and likely the recently discovered Schmallenberg virus (Bunyaviridae). In this study, we investigated whether Culicoides cells possess an antiviral RNAi response and whether this is effective against arboviruses, including those with double-stranded RNA (dsRNA) genomes, such as BTV. Using reporter gene-based assays, we established the presence of a functional RNAi response in Culicoides sonorensis-derived KC cells which is effective in inhibiting BTV infection. Sequencing of small RNAs from KC and Aedes aegypti-derived Aag2 cells infected with BTV or the unrelated Schmallenberg virus resulted in the production of virus-derived small interfering RNAs (viRNAs) of 21 nucleotides, similar to the viRNAs produced during arbovirus infections of mosquitoes. In addition, viRNA profiles strongly suggest that the BTV dsRNA genome is accessible to a Dicer-type nuclease. Thus, we show for the first time that midge cells target arbovirus replication by mounting an antiviral RNAi response mainly resembling that of other insect vectors of arboviruses.
Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto
2005-01-01
Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses. PMID:15890917
Fugong virus, a novel hantavirus harbored by the small oriental vole (Eothenomys eleusis) in China.
Ge, Xing-Yi; Yang, Wei-Hong; Pan, Hong; Zhou, Ji-Hua; Han, Xi; Zhu, Guang-Jian; Desmond, James S; Daszak, Peter; Shi, Zheng-Li; Zhang, Yun-Zhi
2016-02-16
Rodents are natural reservoirs of hantaviruses, which cause two disease types: hemorrhagic fever with renal syndrome in Eurasia and hantavirus pulmonary syndrome in North America. Hantaviruses related human cases have been observed throughout Asia, Europe, Africa, and North America. To date, 23 distinct species of hantaviruses, hosted by reservoir, have been identified. However, the diversity and number of hantaviruses are likely underestimated in China, and hantavirus species that cause disease in many regions, including Yunnan province, are unknown. In August 2012, we collected tissue samples from 189 captured animals, including 15 species belonging to 10 genera, 5 families, and 4 orders in Fugong county, Yunnan province, China. Seven species were positive for hantavirus: Eothenomys eleusis (42/94), Apodemus peninsulae (3/25), Niviventer eha (3/27), Cryptotis montivaga (2/8), Anourosorex squamipes (1/1), Sorex araneus (1/1), and Mustela sibirica (1/2). We characterized one full-length genomic sequence of the virus (named fugong virus, FUGV) from a small oriental vole (Eothenomys eleusis). The full-length sequences of the small, medium, and large segments of FUGV were 1813, 3630, and 6531 nt, respectively. FUGV was most closely related to hantavirus LX309, a previously reported species detected in the red-backed vole in Luxi county, Yunnan province, China. However, the amino acid sequences of nucleocapsid (N), glycoprotein (G), and large protein (L) were highly divergent from those of Hantavirus LX309, with amino acid differences of 11.2, 15.3, and 12.7 %, respectively. In phylogenetic trees, FUGV clustered in the lineage corresponding to hantaviruses carried by rodents in the subfamily Arvicolinae. High prevalence of hantavirus infection in small mammals was found in Fugong county, Yunnan province, China. A novel hantavirus species FUGV was identified from the small oriental vole. This virus is phylogenetic clustering with another hantavirus LX309, but shows highly genomic divergence.
Identification of novel target sites and an inhibitor of the dengue virus E protein.
Yennamalli, Ragothaman; Subbarao, Naidu; Kampmann, Thorsten; McGeary, Ross P; Young, Paul R; Kobe, Bostjan
2009-06-01
Dengue and related flaviviruses represent a significant global health threat. The envelope glycoprotein E mediates virus attachment to a host cell and the subsequent fusion of viral and host cell membranes. The fusion process is driven by conformational changes in the E protein and is an essential step in the virus life cycle. In this study, we analyzed the pre-fusion and post-fusion structures of the dengue virus E protein to identify potential novel sites that could bind small molecules, which could interfere with the conformational transitions that mediate the fusion process. We used an in silico virtual screening approach combining three different docking algorithms (DOCK, GOLD and FlexX) to identify compounds that are likely to bind to these sites. Seven structurally diverse molecules were selected to test experimentally for inhibition of dengue virus propagation. The best compound showed an IC(50) in the micromolar range against dengue virus type 2.
Identification of novel target sites and an inhibitor of the dengue virus E protein
NASA Astrophysics Data System (ADS)
Yennamalli, Ragothaman; Subbarao, Naidu; Kampmann, Thorsten; McGeary, Ross P.; Young, Paul R.; Kobe, Bostjan
2009-06-01
Dengue and related flaviviruses represent a significant global health threat. The envelope glycoprotein E mediates virus attachment to a host cell and the subsequent fusion of viral and host cell membranes. The fusion process is driven by conformational changes in the E protein and is an essential step in the virus life cycle. In this study, we analyzed the pre-fusion and post-fusion structures of the dengue virus E protein to identify potential novel sites that could bind small molecules, which could interfere with the conformational transitions that mediate the fusion process. We used an in silico virtual screening approach combining three different docking algorithms (DOCK, GOLD and FlexX) to identify compounds that are likely to bind to these sites. Seven structurally diverse molecules were selected to test experimentally for inhibition of dengue virus propagation. The best compound showed an IC50 in the micromolar range against dengue virus type 2.
Martens, I; Nilsson, S A; Linder, S; Magnusson, G
1989-01-01
The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions. Images PMID:2704075
Martens, I; Nilsson, S A; Linder, S; Magnusson, G
1989-05-01
The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions.
Santman-Berends, I M G A; Mars, M H; Van Duijn, L; Van den Broek, K W H; Van Schaik, G
2017-10-01
Many countries have implemented control programmes aiming to eradicate Bovine Viral Diarrhoea Virus (BVDV). After obtaining the free status, a risk of re-introduction of the virus through import may remain. Therefore the risk of introduction of BVDV through cattle imports in the Netherlands was quantified and the effectiveness of subsequent intervention measures was assessed. Data, literature and expert opinion were used to estimate values for input parameters to feed a stochastic simulation model. The probability that BVDV was imported was differentiated into persistently infected (PI) cattle, trojan cows that transmitted the virus vertically resulting in a PI foetus (TR) and transient infected cattle (TI). The import risk was stratified to beef, dairy, small scale, suckler, trade, veal and young stock herds. The intervention scenarios that were evaluated consisted of virus testing, a combination of virus testing and antibody testing in pregnant cows, abolishment of imports from high risk countries (i.e. countries with a BVDV prevalence >15%) and a combination of import restrictions and testing prior to import. Each year, 334 (5th and 95th percentile: 65-902) Dutch cattle herds were estimated to be infected with BVDV through import. Veal herds account for most infections associated with import (87%), whereas in the other herd types, only 9 beef, 6 dairy, 2 small scale, 16 suckler, 10 trade and 2 young stock herds are infected through imports per year. Import of PI cattle is the most important risk for introduction in veal herds, while import of TR cows is the main source of BVDV introduction in dairy, small scale and suckler herds. With the intervention scenarios, the number of BVDV infected herds in the Netherlands could be reduced to 81 and 58 herds per year when respectively virus testing or a combination of virus and antibody testing was applied or to 108 herds when import from high risk countries was abolished. With the scenario in which both import from high risk countries was abolished combined with virus and antibody testing, the number of BVDV infected herds could be reduced to 17 herds per year. The risk assessment showed that BVDV is regularly imported in the Netherlands. The import risk can effectively be reduced by implementing diagnostic testing prior to import and only import cattle with a favourable result, eventually combined with certain trade restrictions. Copyright © 2017. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
The genus Hibiscus (family Malvaceae) includes more than 250 species that vary from annual to perennial herbs, and shrubs to small trees that are native to tropical, sub-tropical and temperate climates. A study in 2010-2011 examined viruses associated with symptoms observed on hibiscus plants in It...
Presence of hantavirus in small mammals of the Ouachita Mountains
Roger W. Perry; Ronald E. Thill; Philip A. Tappe; M. Anthony Melchiors
1997-01-01
In 1993, an outbreak of human hantavirus pulmonary syndrome (HPS) occurred in the southwestern United States causing severe pulmonary dysfunction and death among most of those infected. Shortly after the outbreak, the causative agent was identified as the Sin Nombre virus (SNV), a virus of the genus Hantavirus. Several hantaviruses have since been identified in North...
Illusions of Immortality: The Confrontation of Adolescence and AIDS.
ERIC Educational Resources Information Center
New York State Dept. of Health, Albany.
Acquired Immune Deficiency Syndrome (AIDS) is a potent and a present danger for teenagers, casting a dark shadow over their lives now and in the future. A small, but significant, number of teenagers will develop Human Immune Virus (HIV)-related illness before they turn 20; a far greater number will become infected with the virus during…
USDA-ARS?s Scientific Manuscript database
The complete genome sequence of a Southern tomato virus (STV) isolate on tomato plants in a seed production field in Bangladesh was obtained for the first time using next generation sequencing. The identified isolate STV_BD-13 shares high degree of sequence identity (99%) with several known STV isol...
Complete genome sequence of a novel genotype of squash mosaic virus
USDA-ARS?s Scientific Manuscript database
Complete genome sequence of a novel genotype of Squash mosaic virus (SqMV) infecting squash plants in Spain was obtained using deep sequencing of small ribonucleic acids and assembly. The low nucleotide sequence identities, with 87-88% on RNA1 and 84-86% on RNA2 to known SqMV isolates, suggest a new...
How to collect and process small polyhedral viruses of insects
Franklin B. Lewis
1960-01-01
The past few years have seen increased interest in and use of microbial agents for the control of destructive forest insects. One of the most successful applications of this control method has been the use of the polyhedral virus disease of the European pine sawfly, Neodiprion sertifer (Geoff.). Control of this insect by its specific pathogen has...
Peste des Petits Ruminants Virus in Vulnerable Wild Small Ruminants, Iran, 2014-2016.
Marashi, Mahmoud; Masoudi, Siamak; Moghadam, Majid Kharazian; Modirrousta, Hossein; Marashi, Mahyar; Parvizifar, Masoumeh; Dargi, Majid; Saljooghian, Mahyar; Homan, Farbod; Hoffmann, Bernd; Schulz, Claudia; Starick, Elke; Beer, Martin; Fereidouni, Sasan
2017-04-01
In 2014-2016, >1,000 wild goats and sheep in 4 northern and central provinces of Iran died from peste des petits ruminants virus (PPRV) infection. Partial nucleoprotein sequencing of PPRV from 3 animals showed a close relationship to lineage 4 strains from China. Control measures are needed to preserve vulnerable ruminant populations.
Lymantria dispar iflavirus 1 (LdIV1), a new model to study iflaviral persistence in lepidopterans
USDA-ARS?s Scientific Manuscript database
The cell line IPLB-LD-652Y derived from the gypsy moth (Lymantria dispar, Linn.) is routinely used to study insect virus-host interactions. Here we report the full genome sequence and biological characteristics of a small RNA virus, designated Lymantria dispar iflavirus 1 (LdIV1), that was discovere...
The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation.
Longatti, Andrea
2015-12-17
Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing.
Novel Functional Genomics Approaches: A Promising Future in the Combat Against Plant Viruses.
Fondong, Vincent N; Nagalakshmi, Ugrappa; Dinesh-Kumar, Savithramma P
2016-10-01
Advances in functional genomics and genome editing approaches have provided new opportunities and potential to accelerate plant virus control efforts through modification of host and viral genomes in a precise and predictable manner. Here, we discuss application of RNA-based technologies, including artificial micro RNA, transacting small interfering RNA, and Cas9 (clustered regularly interspaced short palindromic repeat-associated protein 9), which are currently being successfully deployed in generating virus-resistant plants. We further discuss the reverse genetics approach, targeting induced local lesions in genomes (TILLING) and its variant, known as EcoTILLING, that are used in the identification of plant virus recessive resistance gene alleles. In addition to describing specific applications of these technologies in plant virus control, this review discusses their advantages and limitations.
Identification of a novel vitivirus from grapevines in New Zealand.
Blouin, Arnaud G; Keenan, Sandi; Napier, Kathryn R; Barrero, Roberto A; MacDiarmid, Robin M
2018-01-01
We report a sequence of a novel vitivirus from Vitis vinifera obtained using two high-throughput sequencing (HTS) strategies on RNA. The initial discovery from small-RNA sequencing was confirmed by HTS of the total RNA and Sanger sequencing. The new virus has a genome structure similar to the one reported for other vitiviruses, with five open reading frames (ORFs) coding for the conserved domains described for members of that genus. Phylogenetic analysis of the complete genome sequence confirmed its affiliation to the genus Vitivirus, with the closest described viruses being grapevine virus E (GVE) and Agave tequilana leaf virus (ATLV). However, the virus we report is distinct and shares only 51% amino acid sequence identity with GVE in the replicase polyprotein and 66.8% amino acid sequence identity with ATLV in the coat protein. This is well below the threshold determined by the ICTV for species demarcation, and we propose that this virus represents a new species. It is provisionally named "grapevine virus G".
Virus-Based Nanoparticles as Versatile Nanomachines
Koudelka, Kristopher J.; Pitek, Andrzej S.; Manchester, Marianne; Steinmetz, Nicole F.
2016-01-01
Nanoscale engineering is revolutionizing the way we prevent, detect, and treat diseases. Viruses have played a special role in these developments because they can function as prefabricated nanoscaffolds that have unique properties and are easily modified. The interiors of virus particles can encapsulate and protect sensitive compounds, while the exteriors can be altered to display large and small molecules in precisely defined arrays. These properties of viruses, along with their innate biocompatibility, have led to their development as actively targeted drug delivery systems that expand on and improve current pharmaceutical options. Viruses are naturally immunogenic, and antigens displayed on their surface have been used to create vaccines against pathogens and to break self-tolerance to initiate an immune response to dysfunctional proteins. Densely and specifically aligned imaging agents on viruses have allowed for high-resolution and noninvasive visualization tools to detect and treat diseases earlier than previously possible. These and future applications of viruses have created an exciting new field within the disciplines of both nanotechnology and medicine. PMID:26958921
Role of Terrestrial Wild Birds in Ecology of Influenza A Virus (H5N1)
Boon, Adrianus C.M.; Sandbulte, Matthew R.; Seiler, Patrick; Webby, Richard J.; Songserm, Thaweesak; Guan, Yi
2007-01-01
House sparrows, European starlings, and Carneux pigeons were inoculated with 4 influenza A (H5N1) viruses isolated from different avian species. We monitored viral replication, death after infection, and transmission to uninfected contact birds of the same species. Sparrows were susceptible to severe infection; 66%–100% of birds died within 4–7 days. High levels of virus were detected from oropharyngeal and cloacal swabs and in organs of deceased sparrows. Inoculation of starlings caused no deaths, despite high levels of virus shedding evident in oropharyngeal swabs. Least susceptible were pigeons, which had no deaths and very low levels of virus in oropharyngeal and cloacal swabs. Transmission to contact birds did not occur frequently: only A/common magpie/Hong Kong/645/2006 virus was shown to transmit to 1 starling. In summary, recent influenza (H5N1) viruses are pathogenic for small terrestrial bird species but the rate of intraspecies transmission in these hosts is very low. PMID:18217557
Retro-2 and its dihydroquinazolinone derivatives inhibit filovirus infection.
Shtanko, Olena; Sakurai, Yasuteru; Reyes, Ann N; Noël, Romain; Cintrat, Jean-Christophe; Gillet, Daniel; Barbier, Julien; Davey, Robert A
2018-01-01
Members of the family Filoviridae cause severe, often fatal disease in humans, for which there are no approved vaccines and only a few experimental drugs tested in animal models. Retro-2, a small molecule that inhibits retrograde trafficking of bacterial and plant toxins inside host cells, has been demonstrated to be effective against a range of bacterial and virus pathogens, both in vitro and in animal models. Here, we demonstrated that Retro-2 and its derivatives, Retro-2.1 and compound 25, blocked infection by Ebola virus and Marburg virus in vitro. We show that the derivatives were more potent inhibitors of infection as compared to the parent compound. Pseudotyped virus assays indicated that the compounds affected virus entry into cells while virus particle localization to Niemann-Pick C1-positive compartments showed that they acted at a late step in virus entry. Our work demonstrates a potential for Retro-type drugs to be developed into anti-filoviral therapeutics. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Non-enveloped virus reduction with quaternized chitosan nanofibers containing graphene.
Bai, Bingyu; Mi, Xue; Xiang, Xu; Heiden, Patricia A; Heldt, Caryn L
2013-10-18
Membranes are an accepted technology for water purification. Membrane filtration can remove pathogens, including bacteria and viruses, by size. For small viruses that can have a diameter <25nm, removal by size leads to large membrane areas, high transmembrane pressures, low water flux, and frequent changing of membranes. In this work, we discovered that electrospun nanofibers made of chitosan and functionalized with a quaternary amine (HTCC) have the ability to adsorb a model non-enveloped virus, porcine parvovirus (PPV). To improve the virus removal of HTCC, we added graphene. Graphene both enhanced the ability to form nanofibers with HTCC and improved the virus removal. The hydrophobicity of graphene and the high charge of the HTCC create a system that can bind 95% of PPV. The HTCC/graphene nanofibers could be incorporated into microfiltration membranes and remove virus by adsorption. This would create a low pressure system that is more likely to benefit areas in need of fresh water. Copyright © 2013 Elsevier Ltd. All rights reserved.
Westover, Jonna B; Sefing, Eric J; Bailey, Kevin W; Van Wettere, Arnaud J; Jung, Kie-Hoon; Dagley, Ashley; Wandersee, Luci; Downs, Brittney; Smee, Donald F; Furuta, Yousuke; Bray, Mike; Gowen, Brian B
2016-02-01
Favipiravir is approved in Japan to treat novel or re-emerging influenza viruses, and is active against a broad spectrum of RNA viruses, including Ebola. Ribavirin is the only other licensed drug with activity against multiple RNA viruses. Recent studies show that ribavirin and favipiravir act synergistically to inhibit bunyavirus infections in cultured cells and laboratory mice, likely due to their different mechanisms of action. Convalescent immune globulin is the only approved treatment for Argentine hemorrhagic fever caused by the rodent-borne Junin arenavirus. We previously reported that favipiravir is highly effective in a number of small animal models of Argentine hemorrhagic fever. We now report that addition of low dose of ribavirin synergistically potentiates the activity of favipiravir against Junin virus infection of guinea pigs and another arenavirus, Pichinde virus infection of hamsters. This suggests that the efficacy of favipiravir against hemorrhagic fever viruses can be further enhanced through the addition of low-dose ribavirin. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen
Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression,more » and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.« less
Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007.
Luby, Stephen P; Hossain, M Jahangir; Gurley, Emily S; Ahmed, Be Nazir; Banu, Shakila; Khan, Salah Uddin; Homaira, Nusrat; Rota, Paul A; Rollin, Pierre E; Comer, James A; Kenah, Eben; Ksiazek, Thomas G; Rahman, Mahmudur
2009-08-01
Human Nipah outbreaks recur in a specific region and time of year in Bangladesh. Fruit bats are the reservoir host for Nipah virus. We identified 23 introductions of Nipah virus into human populations in central and northwestern Bangladesh from 2001 through 2007. Ten introductions affected multiple persons (median 10). Illness onset occurred from December through May but not every year. We identified 122 cases of human Nipah infection. The mean age of case-patients was 27 years; 87 (71%) died. In 62 (51%) Nipah virus-infected patients, illness developed 5-15 days after close contact with another Nipah case-patient. Nine (7%) Nipah case-patients transmitted virus to others. Nipah case-patients who had difficulty breathing were more likely than those without respiratory difficulty to transmit Nipah (12% vs. 0%, p = 0.03). Although a small minority of infected patients transmit Nipah virus, more than half of identified cases result from person-to-person transmission. Interventions to prevent virus transmission from bats to humans and from person to person are needed.
Chang, Jinhong; Warren, Travis K; Zhao, Xuesen; Gill, Tina; Guo, Fang; Wang, Lijuan; Comunale, Mary Ann; Du, Yanming; Alonzi, Dominic S; Yu, Wenquan; Ye, Hong; Liu, Fei; Guo, Ju-Tao; Mehta, Anand; Cuconati, Andrea; Butters, Terry D; Bavari, Sina; Xu, Xiaodong; Block, Timothy M
2013-06-01
Host cellular endoplasmic reticulum α-glucosidases I and II are essential for the maturation of viral glycosylated envelope proteins that use the calnexin mediated folding pathway. Inhibition of these glycan processing enzymes leads to the misfolding and degradation of these viral glycoproteins and subsequent reduction in virion secretion. We previously reported that, CM-10-18, an imino sugar α-glucosidase inhibitor, efficiently protected the lethality of dengue virus infection of mice. In the current study, through an extensive structure-activity relationship study, we have identified three CM-10-18 derivatives that demonstrated superior in vitro antiviral activity against representative viruses from four viral families causing hemorrhagic fever. Moreover, the three novel imino sugars significantly reduced the mortality of two of the most pathogenic hemorrhagic fever viruses, Marburg virus and Ebola virus, in mice. Our study thus proves the concept that imino sugars are promising drug candidates for the management of viral hemorrhagic fever caused by variety of viruses. Copyright © 2013 Elsevier B.V. All rights reserved.
Population Dynamics of Viral Inactivation
NASA Astrophysics Data System (ADS)
Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex
We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaruratanasirikul, S.; Jinorose, U.
The authors report on an infant with double trisomy 48,XXX,+18. She presented with manifestation of trisomy 18: prominent occiput, microphthalmia, small mouth, micrognathia, malformed ears, congenital heart defect, overlapping fingers, talipes equinovarus, and rockerbottom feet. An extra palmar crease was present only on the right hand. This patient was alive at 12 months. The clinical manifestations are compared with those of 10 previously reported cases. 13 refs., 3 figs., 1 tab.
Bakhvalova, Valentina N; Chicherina, Galina S; Potapova, Olga F; Panov, Victor V; Glupov, Victor V; Potapov, Mikhail A; Seligman, Stephen J; Morozova, Olga V
2016-08-01
The persistence of tick-borne encephalitis virus (TBEV) in nature is maintained by numerous species of reservoir hosts, multiple transmissions between vertebrates and invertebrates, and the virus adaptation to its hosts. Our Aim: was to compare TBEV isolates from ticks and small wild mammals to estimate their roles in the circulation of the viral subtypes. TBEV isolates from two species of ixodid ticks, four species of rodents, and one species of shrews in the Novosibirsk region, South-Western Siberia, Russia, were analyzed using bioassay, hemagglutination, hemagglutination inhibition, neutralization tests, ELISA, reverse transcription with real-time PCR, and phylogenetic analysis. TBEV RNA and/or protein E were found in 70.9% ± 3.0% of mammals and in 3.8% ± 0.4% of ticks. The TBEV infection rate, main subtypes, and neurovirulence were similar between ixodid tick species. However, the proportions of the virus that were pathogenic for laboratory mice and of the Far-Eastern (FE) subtype, as well as the viral loads with the Siberian and the European subtypes for the TBEV in Ixodes pavlovskyi Pomerantsev, 1946 were higher than in Ixodes persulcatus (P. Schulze, 1930). Percentages of infected Myodes rutilus, Sicista betulina, and Sorex araneus exceeded those of Apodemus agrarius and Myodes rufocanus. Larvae and nymphs of ticks were found mainly on rodents, especially on Myodes rufocanus and S. betulina. The proportion of TBEV-mixed infections with different subtypes in the infected ticks (55.9% ± 6.5%) was higher than in small mammals (36.1% ± 4.0%) (p < 0.01). Molecular typing revealed mono- or mixed infection with three main subtypes of TBEV in ticks and small mammals. The Siberian subtype was more common in ixodid ticks, and the FE subtype was more common in small mammals (p < 0.001). TBEV isolates of the European subtype were rare. TBEV infection among different species of small mammals did not correlate with their infestation rate with ticks in the Novosibirsk region, Russia.
Modification of homogeneous and isotropic turbulence by solid particles
NASA Astrophysics Data System (ADS)
Hwang, Wontae
2005-12-01
Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135 showed that the absence of particle potential energy loss and particle wakes caused greater levels of turbulence attenuation since there was no additional production due to mean particle motion. The relatively stationary dispersion of particles acted like a series of screens which produced forces opposing turbulent motions.
Determinants of host species range in plant viruses.
Moury, Benoît; Fabre, Frédéric; Hébrard, Eugénie; Froissart, Rémy
2017-04-01
Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.
Characterization of Nora Virus Structural Proteins via Western Blot Analysis.
Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A
2016-01-01
Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses.
Characterization of Nora Virus Structural Proteins via Western Blot Analysis
Ericson, Brad L.; Carlson, Darby J.
2016-01-01
Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753
Removal of viruses from sewage, effluents, and waters
Berg, Gerald
1973-01-01
Because large variations occur in the concentrations of viruses that enter treatment plants from season to season and from place to place, and even during a 24-hour period, field studies on the removal of viruses by treatment processes require temporal coordination of sampling. Quantitative methods for concentrating viruses must be developed to measure accurately the efficiency of virus removal by treatment processes in field situations. Extended settling, and storage of sewage and raw waters, reduce virus levels and deserve further study. Oxidation ponds must be reevaluated with regard to temporal matching of influent and effluent samples and with special care to prevent short-circuiting. Conventional and modified activated sludge plants must be reassessed with temporal matching of samples. Coagulation of viruses with metal ions requires field evaluation, and virus removal by filtration through sand and other media, under constant salt and organic loadings, needs both laboratory and field evaluation. A comparative study of water disinfectants related to specific conditions is needed. The toxicity, carcinogenicity, and teratogenicity of products resulting from disinfection must also be assessed. Other matters for investigation are: methods for quantitatively detecting viruses adsorbed on solids, the virus-removal capability of soils, better virus indicators, virus concentration in shellfish, the frequency of infection in man brought about by swallowing small numbers of viruses in water, the epidemiology of virus infection in man by the water route, the effect of viruses of nonhuman origin on man, and the occurrence of tumour-inducing agents in water. PMID:4547291
Eichler, Robert; Strecker, Thomas; Kolesnikova, Larissa; ter Meulen, Jan; Weissenhorn, Winfried; Becker, Stephan; Klenk, Hans Dieter; Garten, Wolfgang; Lenz, Oliver
2004-03-15
Lassa virus is the causative agent of a hemorrhagic fever endemic in west Africa. The RNA genome of Lassa virus encodes the glycoprotein precursor GP-C, a nucleoprotein (NP), the viral polymerase L and a small protein Z (11 kDa). Here, we analyze the role of Z protein for virus maturation. We have recently shown that expression of Z protein in the absence of other viral proteins is sufficient for the release of enveloped Z-containing particles. In this study, we examined particles secreted into the supernatant of a stably Z protein-expressing CHO cell line by electron microscopy. The observed Z-induced virus-like particles did not significantly differ in their morphology and size from Lassa virus particles. Mutation of two proline-rich domains within Z which are known to drastically reduce the release of virus-like particles, had no effect on the cellular localization of the protein nor on its membrane-association. Furthermore, we present evidence that Z interacts with the NP. We assume that Z recruits NP to cellular membranes where virus assembly takes place. We conclude from our data that Lassa virus Z protein plays an essential role in Lassa virus maturation.
Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli
2014-01-01
We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification. PMID:27119092
Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.
Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P
2014-11-01
Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Matrix Proteins of Nipah and Hendra Viruses Interact with Beta Subunits of AP-3 Complexes
Sun, Weina; McCrory, Thomas S.; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell
2014-01-01
ABSTRACT Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. IMPORTANCE Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections. PMID:25210190
Forterre, Patrick
2017-08-15
The curiosity-driven discovery of giant DNA viruses infecting amoebas has triggered an intense debate about the origin, nature, and definition of viruses. This discovery was delayed by the current paradigm confusing viruses with small virions. Several new definitions and concepts have been proposed either to reconcile the unique features of giant viruses with previous paradigms or to propose a completely new vision of the living world. I briefly review here how several other lines of research in virology converged during the last 2 decades with the discovery of giant viruses to change our traditional perception of the viral world. This story emphasizes the power of multidisciplinary curiosity-driven research, from the hospital to the field and the laboratory. Notably, some philosophers have now also joined biologists in their quest to make sense of the abundance and diversity of viruses and related capsidless mobile elements in the biosphere. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
World Reference Center for Arboviruses.
1980-01-01
antigenic relationships among viruses some--Congo, Dugbe, Ganjam , Hazara and NSD--currently placed in the family Bunyaviridae, subdivision "Bunyavirus...to these 5 antigenic groups, except for a small crossing repeatedly observed between antisera for Ganjam virus and a strain of CCHF virus, C-3010...8 4 0 0 0 0 0 Hazara 32 64 0 0 0 ? 0 0 NSD NSD Ganjam 4 2 16 Dugbe 16 2 128 0 0 ? 4 0 DGK Abu Hammad 0 0 0 256 64 und 0 Abu Minah 0 0 0 64 256 DGK 2
Romanel, Elisson; Silva, Tatiane F; Corrêa, Régis L; Farinelli, Laurent; Hawkins, Jennifer S; Schrago, Carlos E G; Vaslin, Maite F S
2012-11-01
Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.
Genomic sequence of mandarin fish rhabdovirus with an unusual small non-transcriptional ORF.
Tao, Jian-Jun; Zhou, Guang-Zhou; Gui, Jian-Fang; Zhang, Qi-Ya
2008-03-01
The complete genome of mandarin fish Siniperca chuatsi rhabdovirus (SCRV) was cloned and sequenced. It comprises 11,545 nucleotides and contains five genes encoding the nucleoprotein N, the phosphoprotein P, the matrix protein M, the glycoprotein G, and the RNA-dependent RNA polymerase protein L. At the 3' and 5' termini of SCRV genome, leader and trailer sequences show inverse complementarity. The N, P, M and G proteins share the highest sequence identities (ranging from 14.8 to 41.5%) with the respective proteins of rhabdovirus 903/87, the L protein has the highest identity with those of vesiculoviruses, especially with Chandipura virus (44.7%). Phylogenetic analysis of L proteins showed that SCRV clustered with spring vireamia of carp virus (SVCV) and was most closely related to viruses in the genus Vesiculovirus. In addition, an overlapping open reading frame (ORF) predicted to encode a protein similar to vesicular stomatitis virus C protein is present within the P gene of SCRV. Furthermore, an unoverlapping small ORF downstream of M ORF within M gene is predicted (tentatively called orf4). Therefore, the genomic organization of SCRV can be proposed as 3' leader-N-P/C-M-(orf4)-G-L-trailer 5'. Orf4 transcription or translation products could not be detected by northern or Western blot, respectively, though one similar mRNA band to M mRNA was found. This is the first report on one small unoverlapping ORF in M gene of a fish rhabdovirus.