Sample records for extra-cellular polymeric substances

  1. Techno-economic evaluation of simultaneous production of extra-cellular polymeric substance (EPS) and lipids by Cloacibacterium normanense NK6 using crude glycerol and sludge as substrate.

    PubMed

    Ram, S K; Kumar, L R; Tyagi, R D; Drogui, P

    2018-05-01

    This study used the technical, economic analysis tool, SuperPro designer in evaluating a novel technology for simultaneous production of extracellular polymeric substance (EPS) and biodiesel using crude glycerol and secondary sludge. As renewable energy sources are depleting, the process utilizes municipal sewage sludge for production of EPS and biodiesel along with crude glycerol, which is a waste byproduct of biodiesel industry providing an alternate way for disposal of municipal sludge and crude glycerol. Newly isolated Cloacibacterium normanense NK6 is used as micro-organism in the study as it is capable of producing high EPS concentration, using activated sludge and crude glycerol as the sole carbon source. The technology has many environmental and economic advantages like the simultaneous production of two major products: EPS and lipids. Sensitivity analysis of the process revealed that biomass lipid content is a most significant factor where unit cost production of biodiesel was highly sensitive to lipid content during bioreaction. B7 biodiesel unit production cost can be lowered from $1 to $0.6 if the lipid content of the biomass is improved by various process parameter modifications.

  2. Microbially induced selective flotation of sphalerite from galena using mineral-adapted strains of Bacillus megaterium.

    PubMed

    Vasanthakumar, B; Ravishankar, H; Subramanian, S

    2013-12-01

    The selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using cells and extracellular secretions of Bacillus megaterium after adaptation to the chosen minerals. The extracellular secretions obtained after thermolysis of bacterial cells adapted to sphalerite yield the highest flotation recovery of sphalerite with a selectivity index value of 24.5, in comparison to the other cellular and extra-cellular bio-reagents studied. The protein profile for the unadapted and mineral-adapted cells has been found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances (EPS). The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of B. megaterium have been quantified. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface charge of the bacterial cells as well as the minerals under study has been confirmed using various enzymatic treatments of the bacterial cells. It has been demonstrated that the induction of additional molecular weight protein fractions as well as the higher amount of extracellular proteins and phosphate secreted after adaptation to sphalerite vis-à-vis galena are contributory factors for the selective separation of sphalerite from galena. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Transient inter-cellular polymeric linker.

    PubMed

    Ong, Siew-Min; He, Lijuan; Thuy Linh, Nguyen Thi; Tee, Yee-Han; Arooz, Talha; Tang, Guping; Tan, Choon-Hong; Yu, Hanry

    2007-09-01

    Three-dimensional (3D) tissue-engineered constructs with bio-mimicry cell-cell and cell-matrix interactions are useful in regenerative medicine. In cell-dense and matrix-poor tissues of the internal organs, cells support one another via cell-cell interactions, supplemented by small amount of the extra-cellular matrices (ECM) secreted by the cells. Here we connect HepG2 cells directly but transiently with inter-cellular polymeric linker to facilitate cell-cell interaction and aggregation. The linker consists of a non-toxic low molecular-weight polyethyleneimine (PEI) backbone conjugated with multiple hydrazide groups that can aggregate cells within 30 min by reacting with the aldehyde handles on the chemically modified cell-surface glycoproteins. The cells in the cellular aggregates proliferated; and maintained the cortical actin distribution of the 3D cell morphology while non-aggregated cells died over 7 days of suspension culture. The aggregates lost distinguishable cell-cell boundaries within 3 days; and the ECM fibers became visible around cells from day 3 onwards while the inter-cellular polymeric linker disappeared from the cell surfaces over time. The transient inter-cellular polymeric linker can be useful for forming 3D cellular and tissue constructs without bulk biomaterials or extensive network of engineered ECM for various applications.

  4. Microscale Confinement features in microfluidic devices can affect biofilm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not onlymore » as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.« less

  5. Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis

    PubMed Central

    Hielscher, Abigail; Ellis, Kim; Qiu, Connie; Porterfield, Josh; Gerecht, Sharon

    2016-01-01

    The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis. PMID:26811931

  6. Effect of chemical and biological surfactants on activated sludge of MBR system: microscopic analysis and foam test.

    PubMed

    Capodici, Marco; Di Bella, Gaetano; Nicosia, Salvatore; Torregrossa, Michele

    2015-02-01

    A bench-scale MBR unit was operated, under stressing condition, with the aim of stimulating the onset of foaming in the activated sludge. Possible synergies between synthetic surfactants in the wastewater and biological surfactants (Extra-Cellular Polymeric Substances, EPSs) were investigated by changing C/N ratio. The growth of filamentous bacteria was also discussed. The MBR unit provided satisfactory overall carbon removal overall efficiencies: in particular, synthetic surfactants were removed with efficiency higher than 90% and 95% for non-ionic and ionic surfactants, respectively. Lab investigation suggested also the importance to reduce synthetic surfactants presence entering into mixed liquor: otherwise, their presence can significantly worsen the natural foaming caused by biological surfactants (EPSs) produced by bacteria. Finally, a new analytic method based on "ink test" has been proposed as a useful tool to achieve a valuation of EPSs bound fraction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biomass viability: An experimental study and the development of an empirical mathematical model for submerged membrane bioreactor.

    PubMed

    Zuthi, M F R; Ngo, H H; Guo, W S; Nghiem, L D; Hai, F I; Xia, S Q; Zhang, Z Q; Li, J X

    2015-08-01

    This study investigates the influence of key biomass parameters on specific oxygen uptake rate (SOUR) in a sponge submerged membrane bioreactor (SSMBR) to develop mathematical models of biomass viability. Extra-cellular polymeric substances (EPS) were considered as a lumped parameter of bound EPS (bEPS) and soluble microbial products (SMP). Statistical analyses of experimental results indicate that the bEPS, SMP, mixed liquor suspended solids and volatile suspended solids (MLSS and MLVSS) have functional relationships with SOUR and their relative influence on SOUR was in the order of EPS>bEPS>SMP>MLVSS/MLSS. Based on correlations among biomass parameters and SOUR, two independent empirical models of biomass viability were developed. The models were validated using results of the SSMBR. However, further validation of the models for different operating conditions is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Model development and parameter estimation for a hybrid submerged membrane bioreactor treating Ametryn.

    PubMed

    Navaratna, Dimuth; Shu, Li; Baskaran, Kanagaratnam; Jegatheesan, Veeriah

    2012-06-01

    A lab-scale membrane bioreactor (MBR) was used to remove Ametryn from synthetic wastewater. It was found that concentrations of MLSS and extra-cellular polymeric substances (EPS) in MBR mixed liquor fluctuated (production and decay) differently for about 40 days (transition period) after the introduction of Ametryn. During the subsequent operations with higher organic loading rates, it was also found that a low net biomass yield (higher death rate) and a higher rate of fouling of membrane (a very high rate during the first 48 h) due to increased levels of bound EPS (eEPS) in MBR mixed liquor. A mathematical model was developed to estimate the kinetic parameters before and after the introduction of Ametryn. This model will be useful in simulating the performance of a MBR treating Ametryn in terms of flux, rate of fouling (in terms of transmembrane pressure and membrane resistance) as well as treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces

    PubMed Central

    Kabaso, Doron; Shlomovitz, Roie; Schloen, Kathrin; Stradal, Theresia; Gov, Nir S.

    2011-01-01

    The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. PMID:21573201

  10. Adhesion and formation of microbial biofilms in complex microfluidic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh

    2012-01-01

    Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles inmore » the device created regions of low and high flow in the same device. At higher flow rates, a nonuniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities.« less

  11. Effect of sonically induced deflocculation on the efficiency of ozone mediated partial sludge disintegration for improved production of biogas.

    PubMed

    Sowmya Packyam, G; Kavitha, S; Adish Kumar, S; Kaliappan, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-09-01

    In this study, ultrasonication was used for sludge deflocculation, followed by cell disintegration using ozone. The effect of this phase separated sono-ozone pretreatment is evaluated based on extra polymeric substances release, deoxyribonucleic acid (DNA) in the medium, solubilization of intra cellular components and suspended solids (SS) reduction. Ultrasonically induced deflocculation was optimized at an energy dosage of 76.4(log 1.88)kJ/kg TS. During cell disintegration (ozone dosage 0.0011 mgO3/mgSS), chemical oxygen demand solubilization (COD) and SS reduction of sonic mediated ozone pretreated sludge were 25.4% and 17.8% comparatively higher than ozone pretreated sludge, respectively. Further, biogas production potential of control (raw), flocculated (ozone pretreated), and deflocculated (sonic mediated ozone pretreated) sludges were observed to be 0.202, 0.535 and 0.637 L/(gVS), respectively. Thus, the phase separated pretreatment at lower ultrasonic specific energy and low dose ozone proved to enhance the anaerobic biodegradability efficiently. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.

    PubMed

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun; Chen, Baodong

    2016-10-05

    Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses.

    PubMed

    García-Pérez, Teresa; Aizpuru, Aitor; Arriaga, Sonia

    2013-11-15

    A formaldehyde airstream was treated in a biofilter for an extended period of time. During the first 133 days, the reactor was operated without ozone, whereas over the following 82 days ozone was intermittently implemented. The maximum stable elimination capacity obtained without ozone was around 57 g m(-3) h(-1). A greater load could not be treated under these conditions, and no significant formaldehyde removal was maintained for inlet loads greater than 65 g m(-3) h(-1); the activity of microorganisms was then inhibited by the presence of acidic byproducts, and the media acidified (pH<4). The implementation of ozone pulses allowed a stable elimination capacity to be obtained, even at greater loads (74 g m(-3) h(-1)). The effect of ozone on the extra cellular polymeric substances detachment from the biofilm could not be confirmed due to the too low biofilter biomass content. Thus, the results suggest that ozone acted as an in situ pH regulator, preventing acidic byproducts accumulation, and allowing the treatment of high loads of formaldehyde. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Living target of Ce(III) action on horseradish cells: proteins on/in cell membrane.

    PubMed

    Yang, Guangmei; Sun, Zhaoguo; Lv, Xiaofen; Deng, Yunyun; Zhou, Qing; Huang, Xiaohua

    2012-12-01

    Positive and negative effects of rare earth elements (REEs) in life have been reported in many papers, but the cellular mechanisms have not been answered, especially the action sites of REEs on plasma membrane are unknown. Proteins on/in the plasma membrane perform main functions of the plasma membrane. Cerium (Ce) is the richest REEs in crust. Thus, the interaction between Ce(III) and the proteins on/in the plasma membrane, the morphology of protoplast, and the contents of nutrient elements in protoplast of horseradish were investigated using the optimized combination of the fluorescence microscopy, fluorescence spectroscopy, circular dichroism, scanning electron microscopy, and X-ray energy dispersive spectroscopy. It was found that Ce(III) at the low concentrations (10, 30 μM) could interact with proteins on/in the plasma membrane of horseradish, leading to the improvement in the structure of membrane proteins and the plasma membrane, which accelerated the intra-/extra-cellular substance exchange and further promoted the development of cells. When horseradish was treated with Ce(III) at the high concentrations (60, 80 μM), Ce(III) also could interact with the proteins on/in the plasma membrane of horseradish, leading to the destruction in the structure of membrane proteins and the plasma membrane. These effects decelerated the intra-/extra-cellular substance exchange and further inhibited the development of cells. Thus, the interaction between Ce(III) and proteins on/in the plasma membrane in plants was an important reason of the positive and negative effects of Ce(III) on plants. The results would provide some references for understanding the cellular effect mechanisms of REEs on plants.

  15. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    PubMed

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  16. Effect of various light curing times on the elution of composite components.

    PubMed

    Högg, Christof; Maier, Moritz; Dettinger-Maier, Katherina; He, Xiuli; Rothmund, Lena; Kehe, Kai; Hickel, Reinhard; Reichl, Franz-Xaver

    2016-11-01

    Polymerization of resin-based composites (RBCs) is incomplete. The aim of the present study was to determine whether a longer curing time than recommended by the manufacturer influences the amount of released composite components of RBCs. The composites Clearfil AP-X and els extra low shrinkage were polymerized for six different curing times: 4, 10, 20, 40, 100, and 200 s. Light curing time recommended by the manufacturer for both composites is 20 s. Subsequently, samples were eluted in methanol and water for 1, 3, and 7 days and analyzed by gas chromatography/mass spectrometry (GC/MS). For Clearfil AP-X ethylene glycol dimethacrylate (EGDMA), diethylene glycol dimethacrylate (DEGDMA), triethylene glycol dimethacrylate (TEGDMA), 2-hydroxy-4-methoxybenzophenone (HMBP), camphorquinone (CQ) and 2,6-di-tert-butyl-4-methylphenol (BHT) were detected in methanol. In the aqueous eluate, only TEGDMA was detected. In els extra low shrinkage, HMBP, BHT, and CQ were detected in methanol. Increasing the curing time compared to recommendation of the manufacturer reduces the release of most composite components. This could result in less exposure to human due to these substances. Methacrylates are classified as potential allergens. An increasing number of dentists and patients show allergic reaction to methacrylates. Therefore, a reduced elution of composite components is an advantage.

  17. Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Chiu, Meng-Hsuen; Khan, Zafir A.; Garcia, Santiago G.; Le, Andre D.; Kagiri, Agnes; Ramos, Javier; Tsai, Shih-Ming; Drobenaire, Hunter W.; Santschi, Peter H.; Quigg, Antonietta; Chin, Wei-Chun

    2017-12-01

    Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species ( Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae ( Dunaliella tertiolecta) for their extracellular polymeric substances (EPS) release under model ENP treatments: 25 nm titanium dioxide (TiO2), 10-20 nm silicon dioxide (SiO2), and 15-30 nm cerium dioxide (CeO2). We found SiO2 ENPs can significantly stimulate EPS release from these algae (200-800%), while TiO2 ENP exposure induced the lowest release. Furthermore, the increase of intracellular Ca2+ concentration can be triggered by ENPs, suggesting that the EPS release process is mediated through Ca2+ signal pathways. With better understanding of the cellular mechanism mediated ENP-induced EPS release, potential preventative and safety measures can be developed to mitigate negative impact on the marine ecosystem.

  18. An improved polymeric sponge replication method for biomedical porous titanium scaffolds.

    PubMed

    Wang, Chunli; Chen, Hongjie; Zhu, Xiangdong; Xiao, Zhanwen; Zhang, Kai; Zhang, Xingdong

    2017-01-01

    Biomedical porous titanium (Ti) scaffolds were fabricated by an improved polymeric sponge replication method. The unique formulations and distinct processing techniques, i.e. a mixture of water and ethanol as solvent, multiple coatings with different viscosities of the Ti slurries and centrifugation for removing the extra slurries were used in the present study. The optimized porous Ti scaffolds had uniform porous structure and completely interconnected macropores (~365.1μm). In addition, two different sizes of micropores (~45.4 and ~6.2μm) were also formed in the skeleton of the scaffold. The addition of ethanol to the Ti slurry increased the compressive strength of the scaffold by improving the compactness of the skeleton. A compressive strength of 83.6±4.0MPa was achieved for a porous Ti scaffold with a porosity of 66.4±1.8%. Our cellular study also revealed that the scaffolds could support the growth and proliferation of mesenchymal stem cells (MSCs). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system

    PubMed Central

    de Oliveira Martins, Paula Salles; de Almeida, Narcisa Furtado; Leite, Selma Gomes Ferreira

    2008-01-01

    The application of a bacterial extracellular polymeric substance (EPS) in the bioremediation of heavy metals (Cd, Zn and Cu) by a microbial consortium in a hydrocarbon co-contaminated aqueous system was studied. At the low concentrations used in this work (1.00 ppm of each metal), it was not observed an inhibitory effect on the cellular growing. In the other hand, the application of the EPS lead to a lower concentration of the free heavy metals in solution, once a great part of them is adsorbed in the polymeric matrix (87.12% of Cd; 19.82% of Zn; and 37.64% of Cu), when compared to what is adsorbed or internalized by biomass (5.35% of Cd; 47.35% of Zn; and 24.93% of Cu). It was noted an increase of 24% in the consumption of ethylbenzene, among the gasoline components that were quantified, in the small interval of time evaluated (30 hours). Our results suggest that, if the experiments were conducted in a larger interval of time, it would possibly be noted a higher effect in the degradation of gasoline compounds. Still, considering the low concentrations that were evaluated, it is possible that a real system could be bioremediated by natural attenuation process, demonstrated by the low effect of those levels of contaminants and co-contaminants over the naturally present microbial consortium. PMID:24031307

  20. Enhancing aerobic digestion potential of municipal waste-activated sludge through removal of extracellular polymeric substance.

    PubMed

    Merrylin, J; Kaliappan, S; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh

    2014-01-01

    A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18% in sludge treated with citric acid and 10% in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3%. Solubilization was 10.9% in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2%, and that of the raw sludge, which was just 4.8%. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4% whereas that in the control reactor was 15.3%. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method.

  1. [Monitoring of extra- and intra-cellular compartment through total body impedance (author's transl)].

    PubMed

    Raggueneau, J L; Gambini, D; Levante, A; Riche, F; de Vernejoul, P; Echter, E

    1979-01-01

    To evaluate the extra-cellular space, we measure the impedance (or resistance) of the extra-cellular electrolyte compartment with an alternating current at a fixed frequency of 5 kHz that can't pass through the cellular membrane. Total water is measured by the impedance to a current of 1 MHz which is conducted by extra and intra cellular hydro-electrolytic space. There is a good correlation between electrical impedance measurements and distribution of isotopic markers. The extra-cellular compartment was evaluated by diffusion of D.T.P.A. marked with 99mTc or with 111In and the total water by the diffusion of Antipyrin marked with 1,311 or 1,231. The findings indicate that there is not a significant difference between the results of the size of extra-cellular water measured by electrical impedance and D.T.P.A. diffusion (r = 0.75). Comparable results have been obtained in the determination of total water by electrical impedance measure and diffusion of Antipyrin (r = 0.90). We have also studied by method of electric impedance:--The state of hydratation in head injured patients and after pituitary surgery.--The lean body mass and hydro-electrolyte compartments in pregnancy. Electrical impedance measure seems to be a simple and reliable method to assess the hydric state of patients.

  2. Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton.

    PubMed

    Chiu, Meng-Hsuen; Khan, Zafir A; Garcia, Santiago G; Le, Andre D; Kagiri, Agnes; Ramos, Javier; Tsai, Shih-Ming; Drobenaire, Hunter W; Santschi, Peter H; Quigg, Antonietta; Chin, Wei-Chun

    2017-12-13

    Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species (Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae (Dunaliella tertiolecta) for their extracellular polymeric substances (EPS) release under model ENP treatments: 25 nm titanium dioxide (TiO 2 ), 10-20 nm silicon dioxide (SiO 2 ), and 15-30 nm cerium dioxide (CeO 2 ). We found SiO 2 ENPs can significantly stimulate EPS release from these algae (200-800%), while TiO 2 ENP exposure induced the lowest release. Furthermore, the increase of intracellular Ca 2+ concentration can be triggered by ENPs, suggesting that the EPS release process is mediated through Ca 2+ signal pathways. With better understanding of the cellular mechanism mediated ENP-induced EPS release, potential preventative and safety measures can be developed to mitigate negative impact on the marine ecosystem.

  3. Sorption of carbamazepine, 17α-ethinylestradiol, iopromide and trimethoprim to biomass involves interactions with exocellular polymeric substances.

    PubMed

    Khunjar, Wendell O; Love, Nancy G

    2011-02-01

    The sorption of carbamazepine (CBZ), iopromide (IOP), trimethoprim (TMP) and 17α-ethinylestradiol (EE2) was evaluated using four biomass types (pure ammonia oxidizing bacterial culture, two heterotrophic enrichment cultures with varying levels of oxygenase activity, and a full-scale nitrifying activated sludge (NAS) culture). CBZ and IOP did not sorb to the four biomass types. EE2 did not sorb to the pure culture but sorbed significantly to the heterotrophic cultures and NAS. TMP sorbed to the heterotrophic cultures and NAS, and was not evaluated for the pure culture. Three floc characteristics (hydrophobicity, median particle size, organic matter content) correlated moderately well with the EE2 organic matter sorption coefficient (KOM,EE2). Zeta potential did not correlate well with KOM,EE2 but did with KOM,TMP, indicating that TMP sorption is more influenced by electrostatic factors than EE2. Once divalent cation-linked exocellular polymeric substances (EPS) were removed from flocs, EE2 and TMP sorption to the non-EPS (cellular) fraction decreased by approximately 50%. The correlation between KOM,EE2 for the non-EPS cellular fraction deteriorated while the correlation between KOM,TMP improved. EE2 seemed to sorb more strongly to EPS protein whereas TMP sorbed equally to polysaccharide and protein EPS. Attempts to develop predictive models were not successful. Pharmaceuticals that sorbed to biomass samples underwent biodegradation whereas those that did not sorb were not biodegraded, suggesting a relationship between sorption and pharmaceutical biotransformation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Delivery Device and Method for Forming the Same

    NASA Technical Reports Server (NTRS)

    Liu, Xiaohua (Inventor); Ma, Peter X. (Inventor); McCauley, Laurie (Inventor)

    2014-01-01

    A delivery device includes a hollow container, and a plurality of biodegradable and/or erodible polymeric layers established in the container. A layer including a predetermined substance is established between each of the plurality of polymeric layers, whereby degradation of the polymeric layer and release of the predetermined substance occur intermittently. Methods for forming the device are also disclosed herein.

  5. Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.

    PubMed

    Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C

    2007-06-01

    Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.

  6. Astringency is a trigeminal sensation that involves the activation of G protein-coupled signaling by phenolic compounds.

    PubMed

    Schöbel, Nicole; Radtke, Debbie; Kyereme, Jessica; Wollmann, Nadine; Cichy, Annika; Obst, Katja; Kallweit, Kerstin; Kletke, Olaf; Minovi, Amir; Dazert, Stefan; Wetzel, Christian H; Vogt-Eisele, Angela; Gisselmann, Günter; Ley, Jakob P; Bartoshuk, Linda M; Spehr, Jennifer; Hofmann, Thomas; Hatt, Hanns

    2014-07-01

    Astringency is an everyday sensory experience best described as a dry mouthfeel typically elicited by phenol-rich alimentary products like tea and wine. The neural correlates and cellular mechanisms of astringency perception are still not well understood. We explored taste and astringency perception in human subjects to study the contribution of the taste as well as of the trigeminal sensory system to astringency perception. Subjects with either a lesion or lidocaine anesthesia of the Chorda tympani taste nerve showed no impairment of astringency perception. Only anesthesia of both the lingual taste and trigeminal innervation by inferior alveolar nerve block led to a loss of astringency perception. In an in vitro model of trigeminal ganglion neurons of mice, we studied the cellular mechanisms of astringency perception. Primary mouse trigeminal ganglion neurons showed robust responses to 8 out of 19 monomeric phenolic astringent compounds and 8 polymeric red wine polyphenols in Ca(2+) imaging experiments. The activating substances shared one or several galloyl moieties, whereas substances lacking the moiety did not or only weakly stimulate responses. The responses depended on Ca(2+) influx and voltage-gated Ca(2+) channels, but not on transient receptor potential channels. Responses to the phenolic compound epigallocatechin gallate as well as to a polymeric red wine polyphenol were inhibited by the Gαs inactivator suramin, the adenylate cyclase inhibitor SQ, and the cyclic nucleotide-gated channel inhibitor l-cis-diltiazem and displayed sensitivity to blockers of Ca(2+)-activated Cl(-) channels. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Effect of wet oxidation on the fingerprints of polymeric substances from an activated sludge.

    PubMed

    Urrea, José Luis; Collado, Sergio; Oulego, Paula; Díaz, Mario

    2016-11-15

    Thermal pre-treatments of activated sludge involve the release of a high amount of polymeric substances into the bulk medium. The molecular size of these polymers will largely define the subsequent biological treatment of the liquid effluent generated. In this work, the effects of wet oxidation treatment (WO) on the fingerprints of the polymeric substances which compose the activated sludge, were analysed. For a better understanding of these transformations, the sludge was separated into its main fractions: soluble microbial products (SMP), loosely bound extracellular polymeric substances (LB-EPS), tightly bound extracellular polymeric substances (TB-EPS) and naked cells, and then each one was subjected to WO separately (190 °C and 65 bar), determining the fingerprints evolution by size exclusion technique. Results revealed a fast degradation of larger molecules (over 500 kDa) during the first minutes of treatment (40 min). WO also increases the absorptive properties of proteins (especially for 30 kDa), which is possibly due to the hydroxylation of phenylalanine amino acids in their structure. WO of naked cells involved the formation of molecules between 23 and 190 kDa, which are related to the release of cytoplasmic polymers, and more hydrophobic polymers, probably from the cell membrane. The results allowed to establish a relationship between the location of polymeric material and its facility to become oxidised; thus, the more internal the polymeric material in the cell, the easier its oxidation. When working directly with the raw sludge, hydrolysis mechanisms played a key role during the starting period. Once a high degree of solubilisation was reached, the molecules were rapidly oxidised into other compounds with refractory characteristics. The final effluent after WO showed almost 90% of low molecular weight solubilised substances (0-35 kDa). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product (PMN...

  9. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product (PMN...

  10. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    PubMed

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  11. Interaction between a recombinant prion protein and organo-mineral complexes as evidenced by CPMAS 13C-NMR

    NASA Astrophysics Data System (ADS)

    Russo, F.; Scotti, R.; Gianfreda, L.; Conte, P.; Rao, M. A.

    2009-04-01

    Prion proteins (PrP) are the main responsible for Transmissible Spongiform Encephalopathies (TSE). The TSE etiological agent is a misfolded form of the normal cellular prion protein. The amyloidal aggregates accumulated in the brain of infected animals and mainly composed of PrPSc exhibit resistance to protease attack and many conventional inactivating procedures. The prion protein diseases cause an environmental issue because the environment and in particular the soil compartment can be contaminated and then become a potential reservoir and diffuser of TSEs infectivity as a consequence of (i) accidental dispersion from storage plants of meat and bone meal, (ii) incorporation of contaminated material in fertilizers, (iii) possible natural contamination of pasture soils by grazing herds, and (v) burial of carcasses. The environmental problem can be even more relevant because very low amounts of PrPSc are able to propagate the disease. Several studies evidenced that infectious prion protein remains active in soils for years. Contaminated soils result, thus, a possible critical route of TSE transmission in wild animals. Soil can also protect prion protein toward degradation processes due to the presence of humic substances and inorganic components such as clays. Mineral and organic colloids and the more common association between clay minerals and humic substances can contribute to the adsorption/entrapment of molecules and macromolecules. The polymerization of organic monomeric humic precursors occurring in soil in the presence of oxidative enzymes or manganese and iron oxides, is considered one of the most important processes contributing to the formation of humic substances. The process is very fast and produces a population of polymeric products of different molecular structures, sizes, shapes and complexity. Other molecules and possibly biomacromolecules such as proteins may be involved. The aim of the present work was to study by CPMAS 13C-NMR the interactions between a non pathogenic ovine recombinant prion protein and a model soil system represented by a manganese oxide in the form of birnessite (δ-MnO2), coated with a polymerized catechol. To better understand the effect of the polymerization process, PrP was added to the birnessite-cathecol system either before or after the polymerization processes. The NMR spectra of the prion protein interacting directly with birnessite revealed disappearance of the signals due to the paramagnetic nature of manganese oxide or abiotic degradation. Conversely, the signal pattern of the protein re-appeared as it is mixed to the soil-like system either during or after the catechol polymerization process. Results suggested that the possible interactions of the prion protein on soil systems can be mediated by natural organic matter. However, deeper studies on more complex real soil systems are needed to definitely confirm such hypothesis.

  12. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering.

    PubMed

    Izadifar, Mohammad; Haddadi, Azita; Chen, Xiongbiao; Kelly, Michael E

    2015-01-09

    Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.

  13. A Review of the Environmental Degradation, Ecotoxicity, and Bioaccumulation Potential of the Low Molecular Weight Polyether Polyol Substances.

    PubMed

    Schupp, Thomas; Austin, Tom; Eadsforth, Charles V; Bossuyt, Bart; Shen, Summer M; West, Robert J

    "Polyalkylene glycol" is the name given to a broad class of synthetic organic chemicals which are produced by polymerization of one or more alkylene oxide (epoxide) monomers, such as ethylene oxide (EO) and propylene oxide (PO), with various initiator substances which possess amine or alcohol groups. A generalization of this polymerization reaction is illustrated in Fig. 1.

  14. The Effects Of Physical And Biological Cohesion On Bedforms

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Schindler, R.; Baas, J.; Hope, J. A.; Malarkey, J.; Paterson, D. M.; Peakall, J.; Manning, A. J.; Ye, L.; Aspden, R.; Alan, D.; Bass, S. J.

    2014-12-01

    Most coastal sediments consist of complex mixtures of cohesionless sands, physically-cohesive clays and extra cellular polymeric substances (EPS) that impart biological cohesion. Yet, our ability to predict bedform dimensions in these substrates is reliant on predictions based exclusively on cohesionless sand. We present findings from the COHBED project - which explicitly examines how bedform dynamics are modified by natural cohesion. Our experimental results show that for ripples, height and length are inversely proportional to initial clay content and bedforms take longer to appear, with no ripples when clay content exceeds 18%. When clay is replaced by EPS the development time and time of first appearance of ripples both increase by two orders of magnitude, with no bedforms above 0.125% EPS. For dunes, height and length are also inversely proportional to initial substrate clay content, resulting in a transition from dunes to ripples normally associated with velocity decreases. Addition of low EPS concentrations into the substrate results in yet smaller bedforms at the same clay contents and at high EPS concentrations, biological cohesion supersedes all electrostatic bonding, and bedform size is no longer related to mud content. The contrast in physical and biological cohesion effects on bedform development result from the disparity between inter-particle electrostatic bonding of clay particles and EPS grain coating and strands that physically link sediments together, which effects winnowing rates as bedforms evolve. These findings have wide ranging implications for bedform predictions in both modern and ancient environments. Coupling of biological and morphological processes not only requires an understanding of how bedform dimensions influence biota and habitat, but also how benthic species can modify bedform dimensions. Consideration of both aspects provides a means in which fluid dynamics, sediment transport and ecosystem energetics can be linked to yield improved predictions of morphological and habitat adjustment.

  15. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching

    PubMed Central

    Gehrke, Tilman; Telegdi, Judit; Thierry, Dominique; Sand, Wolfgang

    1998-01-01

    Leaching bacteria such as Thiobacillus ferrooxidans attach to pyrite or sulfur by means of extracellular polymeric substances (EPS) (lipopolysaccharides). The primary attachment to pyrite at pH 2 is mediated by exopolymer-complexed iron(III) ions in an electrochemical interaction with the negatively charged pyrite surface. EPS from sulfur cells possess increased hydrophobic properties and do not attach to pyrite, indicating adaptability to the substrate or substratum. PMID:9647862

  16. Innovative cellular distance structures from polymeric and metallic threads

    NASA Astrophysics Data System (ADS)

    Wieczorek, F.; Trümper, W.; Cherif, C.

    2017-10-01

    Knitting allows a high individual adaptability of the geometry and properties of flat-knitted spacer fabrics. This offers advantages for the specific adjustment of the mechanical properties of innovative composites based on highly viscous matrix systems such as bone cement, elastomer or foam and cellular reinforcing structures made from e. g. polymeric monofilaments or metallic wires. The prerequisite is the availability of binding solutions for highly productive production of functional, cellular, self-stabilized spacer flat knitted fabrics as supporting and functionalized structures.

  17. Disrupting the biofilm matrix improves wound healing outcomes.

    PubMed

    Wolcott, R

    2015-08-01

    The most unyielding molecular component of biofilm communities is the matrix structure that it can create around the individual microbes that constitute the biofilm. The type of polymeric substances (polymeric sugars, bacterial proteins, bacterial DNA and even co-opted host substances) are dependent on the microbial species present within the biofilm. The extracellular polymeric substances that make up the matrix give the wound biofilm incredible colony defences against host immunity, host healing and wound care treatments. This polymeric slime layer, which is secreted by bacteria, encases the population of microbes, creating a physical barrier that limits the ingress of treatment agents to the bacteria. The aim of this study was to determine if degrading the wound biofilm matrix would improve wound healing outcomes and if so, if there was a synergy between treating agents that disrupted biofilm defenses with Next Science Wound Gel (wound gel) and cidal agents (topical antibiotics). A three-armed randomised controlled trial was designed to determine if standard of care (SOC) was superior to SOC plus wound gel (SOC + gel) and wound gel alone. The wound gel used in this study contains components that directly attack the biofilm extracellular polymeric substance. The gel was applied directly to the wound bed on a Monday-Wednesday-Friday interval, either alone or with SOC topical antibiotics. Using a surrogate endpoint of 50% reduction in wound volume, the results showed that SOC healed at 53%, wound gel healed at 80%, while SOC plus wound gel showed 93% of wounds being successfully treated. By directly targeting the wound biofilm matrix, wound healing outcomes are improved.

  18. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge.

    PubMed

    Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh

    2015-06-01

    In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of dissimilatory Fe(III) reducers on bio-reduction and nickel-cobalt recovery from Sukinda chromite-overburden.

    PubMed

    Esther, Jacintha; Panda, Sandeep; Behera, Sunil K; Sukla, Lala B; Pradhan, Nilotpala; Mishra, Barada K

    2013-10-01

    The effect of an adapted dissimilatory iron reducing bacterial consortium (DIRB) towards bio-reduction of Sukinda chromite overburden (COB) with enhanced recovery of nickel and cobalt is being reported for the first time. The remarkable ability of DIRB to utilize Fe(III) as terminal electron acceptor reducing it to Fe(II) proved beneficial for treatment of COB as compared to previous reports for nickel leaching. XRD studies showed goethite as the major iron-bearing phase in COB. Under facultative anaerobic conditions, goethite was reduced to hematite and magnetite with the exposure of nickel oxide. FESEM studies showed DIRB to be associated with COB through biofilm formation with secondary mineral precipitates of magnetite deposited as tiny globular clusters on the extra polymeric substances. The morphological and mineralogical changes in COB, post DIRB application, yielded a maximum of 68.5% nickel and 80.98% cobalt in 10 days using 8M H2SO4. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Determination of main components in the extracellular polymeric substances extracted from activated sludge using a spectral probing method.

    PubMed

    Shen, Rong; Sheng, Guo-Ping; Yu, Han-Qing

    2012-06-01

    In this study, a spectral probing method was applied to determine the content of the main components, i.e., proteins, polysaccharides and humic substances, in the extracellular polymeric substances (EPS) extracted from activated sludge. The measurement results were consistent with those obtained from the conventional methods, such as the anthrone for polysaccharide determination, the modified Lowry method for protein and humic substance determination. The recoveries for the determination of proteins, humic substances and polysaccharides in the EPS extracted from six sludge samples using standard additional method were between 92.4 and 108.9%, 84.8 and 108.9%, 75.1 and 117.2%, respectively. These results indicate that the propose method has a good accuracy and precision, and can be used as an effective approach to determine the main components in sludge EPS. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Polymeric nanocomposites loaded with fluoridated hydroxyapatite Ln3+ (Ln = Eu or Tb)/iron oxide for magnetic targeted cellular imaging

    PubMed Central

    Pan, Jie; Liu, Wei-Jiao; Hua, Chao; Wang, Li-Li; Wan, Dong; Gong, Jun-Bo

    2015-01-01

    Objective To fabricate polymeric nanocomposites with excellent photoluminescence, magnetic properties, and stability in aqueous solutions, in order to improve specificity and sensitivity of cellular imaging under a magnetic field. Methods Fluoridated Ln3+-doped HAP (Ln3+-HAP) NPs and iron oxides (IOs) can be encapsulated with biocompatible polymers via a modified solvent exaction/evaporation technique to prepare polymeric nanocomposites with fluoridated Ln3+-HAP/iron oxide. The nanocomposites were characterized for surface morphology, fluorescence spectra, magnetic properties and in vitro cytotoxicity. Magnetic targeted cellular imaging of such nanocomposites was also evaluated with confocal laser scanning microscope using A549 cells with or without magnetic field. Results The fabricated nanocomposites showed good stability and excellent luminescent properties, as well as low in vitro cytotoxicity, indicating that the nanocomposites are suitable for biological applications. Nanocomposites under magnetic field achieved much higher cellular uptake via an energy-dependent pathway than those without magnetic field. Conclusion The nanocomposites fabricated in this study will be a promising tool for magnetic targeted cellular imaging with improved specificity and enhanced selection. PMID:26487962

  2. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB

    PubMed Central

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-01-01

    The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family. PMID:24550504

  3. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB.

    PubMed

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-03-04

    The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family.

  4. 40 CFR 721.8965 - 1H-Pyrole-2, 5-dione, 1-(2,4,6-tribromophenyl)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dewatering step during polymerization of acrylonitrile/butadiene/styrene), and (g)(5). (iii) Industrial... apply to releases of the PMN substance during the dewatering step of the polymerization reactions from...

  5. Artificial Informational Polymers and Nanomaterials from Ring-Opening Metathesis Polymerization

    NASA Astrophysics Data System (ADS)

    James, Carrie Rae

    Inspired by naturally occurring polymers (DNA, polypeptides, polysaccharides, etc.) that can self-assemble on the nanoscale into complex, information-rich architectures, we have synthesized nucleic acid based polymers using ROMP. These polymers were synthesized using a graft-through strategy, whereby nucleic acids bearing a strained cyclic olefin were directly polymerized. This is the first example of the graft-through polymerization of nucleic acids. Our approach takes advantage of non-charged peptide nucleic acids (PNAs) as elements to incorporate into ROMP polymer backbones. PNA is a synthetic nucleic acid analogue known for its increased affinity and specificity for complementary DNA or RNA. To accomplish the graft-through polymerization of PNA, we conjugated PNA to strained cyclic olefins using solid phase peptide conjugation chemistry. These PNA monomers were then directly polymerized into homo and block copolymers forming brushes, or comb-like arrangements, of information. Block copolymer amphiphiles of these materials, where the PNA brush served as the hydrophilic portion, were capable of self-assembly into spherical nanoparticles (PNA NPs). These PNA NPs were then studied with respect to their ability to hybridize complementary DNA sequences, as well as their ability to undergo cellular internalization. PNA NPs consisting of densely packed brushes of nucleic acids possessed increased thermal stability when mixed with their complementary DNA sequence, indicating a greater DNA binding affinity over their unpolymerized PNA counterparts. In addition, by arranging the PNA into dense brushes at the surface of the nanoparticle, Cy5.5 labeled PNA NPs were able to undergo cellular internalization into HeLa cells without the need for an additional cellular delivery device. Importantly, cellular internalization of PNA has remained a significant challenge in the literature due to the neutrally charged amino-ethyl glycine backbone of PNA. Therefore, this represents a novel way of facilitating cellular uptake of PNA. This materials strategy represents the first direct polymerization of nucleic acids, and presents a novel method for arranging biological information on the nanoscale at high density in order to confer novel attributes.

  6. Structure modification and extracellular polymeric substances conversion during sewage sludge biodrying process.

    PubMed

    Cai, Lu; Krafft, Thomas; Chen, Tong-Bin; Gao, Ding; Wang, Li

    2016-09-01

    Biodrying, an economical and energy-saving biomass waste treatment, removes water from waste using the biological heat generated by organic matter degradation. Technical limitations associated with dewatering complicate the biodrying of sewage sludge. This study investigated the sludge alteration associated with its water removal, focusing on sludge form, extracellular polymeric substances, and free water release. An auto-feedback control technology was used for the biodrying; a scanning electron microscope was used to record the morphological change; three-dimensional excitation-emission matrix fluorescence spectroscopy was used to analyze extracellular polymeric substances (EPS) variation, and time domain reflectometry was used to assess the free water release. Over the 20-day biodrying, there was a 62% water removal rate during the first thermophilic phase. Biodrying created a hollow and stratified sludge structure. Aromatic proteins and soluble microbial byproducts in the EPS were significantly degraded. The thermophilic phase was the phase resulting in the greatest free water release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Hepatitis B surface antigen and polymerized albumin binding activity in sheep serum.

    PubMed Central

    Franklin, S G; Millman, I; Blumberg, B S

    1984-01-01

    Sera from sheep and other domestic animals contain a substance that gives a strongly positive test for antibody to hepatitis B virus surface antigen by the accepted radioimmunoassay procedure. We have purified this substance from sheep serum to near homogeneity by ion-exchange, affinity, and molecular exclusion chromatography and have identified it to be an IgM. We present evidence that this sheep IgM is an antibody to polymerized sheep albumin. This antibody may arise due to infection by hepatitis B virus, hepatitis B virus-like viruses, or other pathological agents and may react with hepatitis B virus surface antigen by combining with polymerized albumin bound to the hepatitis B virus receptor for this polymer. Images PMID:6582511

  8. Does selection for short sleep duration explain human vulnerability to Alzheimer’s disease?

    PubMed Central

    Nesse, Randolph M; Finch, Caleb E; Nunn, Charles L

    2017-01-01

    Abstract Compared with other primates, humans sleep less and have a much higher prevalence of Alzheimer ’s disease (AD) pathology. This article reviews evidence relevant to the hypothesis that natural selection for shorter sleep time in humans has compromised the efficacy of physiological mechanisms that protect against AD during sleep. In particular, the glymphatic system drains interstitial fluid from the brain, removing extra-cellular amyloid beta (eAβ) twice as fast during sleep. In addition, melatonin—a peptide hormone that increases markedly during sleep—is an effective antioxidant that inhibits the polymerization of soluble eAβ into insoluble amyloid fibrils that are associated with AD. Sleep deprivation increases plaque formation and AD, which itself disrupts sleep, potentially creating a positive feedback cycle. These and other physiological benefits of sleep may be compromised by short sleep durations. Our hypothesis highlights possible long-term side effects of medications that reduce sleep, and may lead to potential new strategies for preventing and treating AD. PMID:28096295

  9. The competing effects of microbially derived polymeric and low molecular-weight substances on the dispersibility of CeO2 nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, Yuriko; Ochiai, Asumi; Kawamoto, Keisuke

    To understand the competing effects of the components in extracellular substances (ES), polymeric substances (PS) and low-molecular-weight small substances (SS) <1 kDa derived from microorganisms, on the colloidal stability of cerium dioxide nanoparticles (CeNPs), we investigated their adsorption to sparingly soluble CeNPs at room temperature at pH 6.0. The ES was extracted from the fungus S. cerevisiae. The polypeptides and phosphates in all components preferentially adsorbed onto the CeNPs. The zeta potentials of ES + CeNPs, PS + CeNPs, and SS + CeNPs overlapped on the plot of PS itself, indicating the surface charge of the polymeric substances controls themore » zeta potentials. The sizes of the CeNP aggregates, 100–1300 nm, were constrained by the zeta potentials. The steric barrier derived from the polymers, even in SS, enhanced the CeNP dispersibility at pH 1.5–10. Consequently, the PS and SS had similar effects on modifying the CeNP surfaces. The adsorption of ES, which contains PS + SS, can suppress the aggregation of CeNPs over a wider pH range than that for PS only. The present study addresses the non-negligible effects of small-sized molecules derived from microbial activity on the migration of CeNP in aquatic environments, especially where bacterial consortia prevail.« less

  10. Impact of Microbial Growth on Subsurface Perfluoroalkyl Acid Transport

    NASA Astrophysics Data System (ADS)

    Weathers, T. S.; Higgins, C. P.; Sharp, J.

    2014-12-01

    The fate and transport of poly and perfluoroalkyl substances (PFASs) in the presence of active microbial communities has not been widely investigated. These emerging contaminants are commonly utilized in aqueous film-forming foams (AFFF) and have often been detected in groundwater. This study explores the transport of a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in microbially active settings. Single point organic carbon normalized sorption coefficients derived by exposing inactive cellular material to PFASs result in more than an order of magnitude increase in sorption compared to soil organic carbon sorption coefficients found in literature. For example, the sorption coefficients for PFOS are 4.05±0.07 L/kg and 2.80±0.08 L/kg for cellular organic carbon and soil organic carbon respectively. This increase in sorption, coupled with enhanced extracellular polymeric substance production observed during growth of a common hydrocarbon degrading soil microbe exposed to source-level concentrations of PFASs (10 mg/L of 11 analytes, 110 mg/L total) may result in PFAS retardation in situ. To address the upscaling of this phenomenon, flow-through columns packed with low-organic carbon sediment and biostimulated with 10 mg/L glucose were exposed to PFAS concentrations from 15 μg/L to 10 mg/L of each 11 analytes. Breakthrough and tailing of each analyte was measured and modeled with Hydrus-1D to explore sorption coefficients over time for microbially active columns.

  11. Melt-processed polymeric cellular dosage forms for immediate drug release.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2015-12-28

    The present immediate-release solid dosage forms, such as the oral tablets and capsules, comprise granular matrices. While effective in releasing the drug rapidly, they are fraught with difficulties inherent in processing particulate matter. By contrast, liquid-based processes would be far more predictable; but the standard cast microstructures are unsuited for immediate-release because they resist fluid percolation and penetration. In this article, we introduce cellular dosage forms that can be readily prepared from polymeric melts by incorporating the nucleation, growth, and coalescence of microscopic gas bubbles in a molding process. We show that the cell topology and formulation of such cellular structures can be engineered to reduce the length-scale of the mass-transfer step, which determines the time of drug release, from as large as the dosage form itself to as small as the thickness of the cell wall. This allows the cellular dosage forms to achieve drug release rates over an order of magnitude faster compared with those of cast matrices, spanning the entire spectrum of immediate-release and beyond. The melt-processed polymeric cellular dosage forms enable predictive design of immediate-release solid dosage forms by tailoring microstructures, and could be manufactured efficiently in a single step.

  12. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure.

    PubMed

    Adav, Sunil S; Lee, Duu-Jong

    2008-06-15

    Extracellular polymeric substances (EPS) were extracted from aerobic granules of compact interior structure using seven extraction methods. Ultrasound followed by the chemical reagents formamide and NaOH outperformed other methods in extracting EPS from aerobic granules of compact interior. The collected EPS revealed no contamination by intracellular substances and consisted mainly of proteins, polysaccharides, humic substances and lipids. The quantity of extracted proteins exhibited a weak correlation with quantity of extracted carbohydrates but no correlation with quantity of extracted humic substances. The total polysaccharides/total proteins (PN/PS) ratios for sludge flocs were approximately 0.9 regardless of extraction method. Protein content was significantly enriched in the granules, producing a PN/PS ratio of 3.4-6.2. This experimental result correlated with observations using excitation-emission matrix (EEM) and confocal laser scanning microscope technique. However, detailed study disproved the use of EEM results as a quantitative index of extracted EPS from sludge flocs or from granules.

  13. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema

    PubMed Central

    Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446

  14. Biofilm characteristics and evaluation of the sanitation procedures of thermophilic Aeribacillus pallidus E334 biofilms.

    PubMed

    Kilic, Tugba; Karaca, Basar; Ozel, Beste Piril; Ozcan, Birgul; Cokmus, Cumhur; Coleri Cihan, Arzu

    2017-04-01

    The ability of Aeribacillus pallidus E334 to produce pellicle and form a biofilm was studied. Optimal biofilm formation occurred at 60 °C, pH 7.5 and 1.5% NaCl. Extra polymeric substances (EPS) were composed of proteins and eDNA (21.4 kb). E334 formed biofilm on many surfaces, but mostly preferred polypropylene and glass. Using CLSM analysis, the network-like structure of the EPS was observed. The A. pallidus biofilm had a novel eDNA content. DNaseI susceptibility (86.8% removal) of eDNA revealed its importance in mature biofilms, but the purified eDNA was resistant to DNaseI, probably due to its extended folding outside the matrix. Among 15 cleaning agents, biofilms could be removed with alkaline protease and sodium dodecyl sulphate (SDS). The removal of cells from polypropylene and biomass on glass was achieved with combined SDS/alkaline protease treatment. Strong A. pallidus biofilms could cause risks for industrial processes and abiotic surfaces must be taken into consideration in terms of sanitation procedures.

  15. Extracellular DNA in single- and multiple-species unsaturated biofilms.

    PubMed

    Steinberger, R E; Holden, P A

    2005-09-01

    The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.

  16. The changes of proteins and polysaccharides in extracellular polymeric substance for Spirogyra fluviatilis under different salinity

    NASA Astrophysics Data System (ADS)

    Lee, Yichao; Chang, Shuiping

    2017-05-01

    Spirogyra is a genus of widely distributed, large green fresh water algae. This study discovered that changes in salinity can induce Spirogyra fluviatilis to produce amounts of extracellular polymeric substance (EPS) when controlling other environmental conditions. If culturing S. fluviatilis with salinity greater than a 3.0‰ medium for 4 hours, the secretion EPS will be changed. And the level of polysaccharides and proteins, the primary components of EPS, is slightly increased in accordance with the increase in the salinity. But the proteins to polysaccharides ratio changes are not significantly

  17. The effect of environmental pH on polymeric transfection efficiency.

    PubMed

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2012-02-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6-7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1-2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Fractional, biodegradable and spectral characteristics of extracted and fractionated sludge extracellular polymeric substances.

    PubMed

    Wei, Liang-Liang; Wang, Kun; Zhao, Qing-Liang; Jiang, Jun-Qiu; Kong, Xiang-Juan; Lee, Duu-Jong

    2012-09-15

    Correlation between fractional, biodegradable and spectral characteristics of sludge extracellular polymeric substances (EPS) by different protocols has not been well established. This work extracted sludge EPS using alkaline extractants (NH₄OH and formaldehyde + NaOH) and physical protocols (ultrasonication, heating at 80 °C or cation exchange resin (CER)) and then fractionated the extracts using XAD-8/XAD-4 resins. The alkaline extractants yielded more sludge EPS than the physical protocols. However, the physical protocols extracted principally the hydrophilic components which were readily biodegradable by microorganisms. The alkaline extractants dissolved additional humic-like substances from sludge solids which were refractory in nature. Different extraction protocols preferably extracted EPS with distinct fractional, biodegradable and spectral characteristics which could be applied in specific usages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Calcification and Silicification: Fossilization Potential of Cyanobacteria from Stromatolites of Niuafo‘ou's Caldera Lakes (Tonga) and Implications for the Early Fossil Record

    PubMed Central

    Kazmierczak, Józef; Łukomska-Kowalczyk, Maja; Kempe, Stephan

    2012-01-01

    Abstract Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo‘ou Island (Vai Lahi and Vai Si‘i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo‘ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains. Key Words: Stromatolites—Cyanobacteria—Calcification—Silicification—Niuafo‘ou (Tonga)—Archean. Astrobiology 12, 535–548. PMID:22794297

  20. TEGDMA and UDMA monomers released from composite dental material polymerized with diode and halogen lamps.

    PubMed

    Wacławczyk, Agnieszka; Postek-Stefańska, Lidia; Pietraszewska, Daria; Birkner, Ewa; Zalejska-Fiolka, Jolanta; Wysoczańska-Jankowicz, Iwona

    2018-03-20

    More than 35 substances released from composite fillings have been identified. Among these, basic monomers and the so-called co-monomers are most often reported. The substances released from polymer-based materials demonstrate allergenic, cytotoxic, genotoxic, mutagenic, embryotoxic, teratogenic, and estrogenic properties. The aim of this study was to measure the amounts of triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers released from composite dental fillings to citrate-phosphate buffer with the pH of 4, 6, 8 after 24 h and 6 months from the polymerization. Ten samples for each polymerization method had been made from the composite material (Filtek Supreme XT, 3M ESPE, St. Paul, USA), which underwent polymerization using the following lamps: halogen lamp (Translux CL, Heraeus Kulzer, Hanau, Germany) (sample H) and diode lamp (Elipar Freelight 2, 3M ESPE), with soft start function (group DS) and without that function (group DWS). It has been demonstrated that the type of light-curing units has a significant impact on the amount of TEGDMA and UDMA released. The amount of UDMA and TEGDMA monomers released from composite fillings differed significantly depending on the source of polymerization applied, as well as the pH of the solution and sample storage time. Elution of the monomers from composite material polymerized using halogen lamp was significantly greater as compared to curing with diode lamps.

  1. Changes in characteristics of soluble microbial products and extracellular polymeric substances in membrane bioreactor coupled with worm reactor: relation to membrane fouling.

    PubMed

    Tian, Yu; Li, Zhipeng; Lu, Yaobin

    2012-10-01

    The study focused on the membrane fouling mitigation observed in a membrane bioreactor (MBR) coupled with worm reactor system. During the operation time of 100 days, the transmembrane pressure (TMP) in the combined system was maintained less than 5 kPa, while the final TMP in the Control-MBR increased to 30 kPa. The changes in properties of soluble microbial products (SMP) and extracellular polymeric substances (EPS) after worm predation were investigated by means of various analytical techniques. It was found that due to the worm predation, the reduced amount of EPS was far more than the increased amount of SMP leading to a significant decrease of protein-like substances which were dominant in the membrane foulants. Except for the content decrease, worm predation destroyed the functional groups of simple aromatic proteins and tryptophan protein-like substances in EPS, making them have lower tendency attaching to the membrane in the combined system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain's "operating system": how NAA metabolism supports meaningful intercellular frequency-encoded communications.

    PubMed

    Baslow, Morris H

    2010-11-01

    N-acetylaspartate (NAA), an acetylated derivative of L-aspartate (Asp), and N-acetylaspartylglutamate (NAAG), a derivative of NAA and L-glutamate (Glu), are synthesized by neurons in brain. However, neurons cannot catabolize either of these substances, and so their metabolism requires the participation of two other cell types. Neurons release both NAA and NAAG to extra-cellular fluid (ECF) upon stimulation, where astrocytes, the target cells for NAAG, hydrolyze it releasing NAA back into ECF, and oligodendrocytes, the target cells for NAA, hydrolyze it releasing Asp to ECF for recycling to neurons. This sequence is unique as it is the only known amino acid metabolic cycle in brain that requires three cell types for its completion. The results of this cycling are two-fold. First, neuronal metabolic water is transported to ECF for its removal from brain. Second, the rate of neuronal activity is coupled with focal hyperemia, providing stimulated neurons with the energy required for transmission of meaningful frequency-encoded messages. In this paper, it is proposed that the tri-cellular metabolism of NAA functions as the "operating system" of the brain, and is essential for normal cognitive and motor activities. Evidence in support of this hypothesis is provided by the outcomes of two human inborn errors in NAA metabolism.

  3. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    PubMed

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Camptothecin prodrug nanomicelle based on a boronate ester-linked diblock copolymer as the carrier of doxorubicin with enhanced cellular uptake.

    PubMed

    Gao, Ya; Xiao, Yi; Liu, Shiyuan; Yu, Jiahui

    2018-02-01

    A novel pH-sensitive polymeric prodrug of camptothecin (CPT) by polymerizing γ-camptothecin-glutamate N-carboxyanhydride (Glu (CPT)-NCA) on boronate ester-linked poly (ethyleneglycol) (PEG) directly via the amine-initiated ring open polymerization (ROP) has been developed. The resulting amphiphilic prodrug (mPEG-BC-PGluCPT) could self-assemble into nanoparticles and encapsulate doxorubicin (Dox) simultaneously in aqueous solution for dual-drug delivery. The formation of polymeric prodrug micelles (mPEG-BC@PGluCPT) was confirmed by the measurements of critical aggregation concentration (CAC), particle size, and morphology observations. The mPEG-BC@PGluCPT micelles were colloidally stable in solutions for two weeks. Polymeric prodrug micelles mPEG-BC@PGluCPT and Dox-loaded micelles mPEG-BC@PGluCPT⋅Dox showed sustained drug release profiles over 48 h. As expected, drug release was accelerated by the decreasement of pH value from 7.4 to 6.0, which demonstrated pH-dependent manner of drug release. Additionally, it was found that cellular uptake of mPEG-BC@PGluCPT⋅Dox micelles on HepG2 cells was higher than that on HL-7702 cells, especially in culture medium at pH 6.0. The enhanced cellular uptake of mPEG-BC@PGluCPT⋅Dox micelles under acidic condition on HepG2 cells resulted in the higher cytotoxicity of mPEG-BC@PGluCPT⋅Dox micelles at acidic pH than that at pH 7.4.

  5. Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms.

    PubMed

    Ziemba, Christopher; Shabtai, Yael; Piatkovsky, Maria; Herzberg, Moshe

    2016-01-01

    Cellulose effects on Vibrio fischeri biofilm morphology were tested for the wild-type and two of its isogenic mutants that either exhibit increased cellulose production or do not produce cellulose at all. Confocal laser scanning microscopy imaging of each biofilm revealed that total sessile volume increases with cellulose expression, but the size of colonies formed with cellulose was smaller, creating a more diffuse biofilm. These morphological differences were not attributed to variations in bacterial deposition, extracellular polymeric substances affinity to the surface or bacterial growth. A positive correlation was found between cellulose expression, Young's (elastic) modulus of the biofilm analyzed with atomic force microscope and shear modulus of the related extracellular polymeric substances layers analyzed with quartz crystal microbalance with dissipation monitoring. Cellulose production also correlated positively with concentrations of extracellular DNA. A significant negative correlation was observed between cellulose expression and rates of diffusion through the extracellular polymeric substances. The difference observed in biofilm morphology is suggested as a combined result of cellulose and likely extracellular DNA (i) increasing biofilm Young's modulus, making shear removal more difficult, and (ii) decreased diffusion rate of nutrients and wastes into and out of the biofilm, which effectively limits colony size.

  6. Patent application for a process for production of effective catalysts for polymerization of unsaturated compounds (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibing, G.

    Organic compounds which contain one or more double carbon bonds per molecule frequently display the ability of polymerizing with each other and with other compounds. It is mainly compounds containing peroxide that serve as catalysts for such operations. Examples of recommended substances are hydrogen peroxide, ozone, perbenzoic acid, benzoin peroxide, peroxide-containing ethers, persulfates, etc. It was found that a catalyst of much greater effectiveness in the polymerization of unsaturated compounds can be obtained from one of the previously-known catalysts if the hydrocarbons are processed with lateral-chain substances (e.g., toluene, xylene, ethyl benzene, propyl benzene, diethyl benzene, etc.) in boiling heatmore » with damp air. In this process there develops a small measure of peroxide of previously unknown make-up, which possess outstanding catalytic effectiveness. For production of the catalyst, the aromatics are heated by return-flow cooler and conducted for several hours through an air stream which has been saturated with steam. Oxidation can be undertaken with other substances also; for example, oxygen, ozone, or compounds which give off oxygen. Activation with air, however, is the simplest way and yields the most effective catalyst. Examples of the process are provided.« less

  7. F18 FDG positron emission tomography revelation of primary testicular lymphoma with concurrent multiple extra nodal involvement

    PubMed Central

    Vamsy, Mohana; Dattatreya, PS; Parakh, Megha; Dayal, Monal; Rao, VVS Prabhakar

    2013-01-01

    Primary testicular lymphoma (PTL) a relatively rare disease of non-Hodgkin's lymphomas occurring with a lesser incidence of 1-2% has a propensity to occur at later ages above 50 years. PTL spreads to extra nodal sites due to deficiency of extra cellular adhesion molecules. We present detection of multiple sites of extra nodal involvement of PTL by F-18 positron emission tomography/computed tomography study aiding early detection of the dissemination thus aiding in staging and management. PMID:24019676

  8. Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy

    PubMed Central

    Pelling, Andrew E.; Li, Yinuo; Shi, Wenyuan; Gimzewski, James K.

    2005-01-01

    Multicellular microbial communities are the predominant form of existence for microorganisms in nature. As one of the most primitive social organisms, Myxococcus xanthus has been an ideal model bacterium for studying intercellular interaction and multicellular organization. Through previous genetic and EM studies, various extracellular appendages and matrix components have been found to be involved in the social behavior of M. xanthus, but none of them was directly visualized and analyzed under native conditions. Here, we used atomic force microscopy (AFM) imaging and in vivo force spectroscopy to characterize these cellular structures under native conditions. AFM imaging revealed morphological details on the extracellular ultrastructures at an unprecedented resolution, and in vivo force spectroscopy of live cells in fluid allowed us to nanomechanically characterize extracellular polymeric substances. The findings provide the basis for AFM as a useful tool for investigating microbial-surface ultrastructures and nanomechanical properties under native conditions. PMID:15840722

  9. Intra- and Extra-cellular Proteome Analyses of Steroid-Producer Mycobacteria.

    PubMed

    Barreiro, Carlos; Morales, Alejandro; Vázquez-Iglesias, Inés; Sola-Landa, Alberto

    2017-01-01

    The importance of the pathogenic mycobacteria has mainly focused the omic analyses on different aspects of their clinical significance. In contrast, those industrially relevant mycobacteria have received less attention, even though the steroids market sales in 2011, in example, were estimated in $8 billion.The extra-cellular proteome, due to its relevance in the sterols processing and uptake; as well as the intra-cellular proteome, because of its role in steroids bioconversion, are the core of the present chapter. As a proof of concept, the obtaining methods for both sub-proteomes of Mycobacterium neoaurum NRRL B-3805, a relevant industrial strain involved in steroids production, have been developed. Thus, procedures and relevant key points of these proteomes analyses are fully described.

  10. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization

    NASA Astrophysics Data System (ADS)

    Niu, Jia; Lunn, David J.; Pusuluri, Anusha; Yoo, Justin I.; O'Malley, Michelle A.; Mitragotri, Samir; Soh, H. Tom; Hawker, Craig J.

    2017-06-01

    The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn < 1.3) could be obtained at room temperature in 5 minutes. This polymerization strategy enables chain growth to be initiated directly from chain-transfer agents anchored on the surface of live cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes.

  11. Passive Avoidance Training and Recall are Associated With Increased Glutamate Levels in the Intermediate Medial Hyperstriatum Ventrale of the Day-Old Chick

    PubMed Central

    Daisley, Jonathan N.; Gruss, Michael; Rose, Steven P. R.; Braun, Katharina

    1998-01-01

    In the young chick, the intermediate medial hyperstriatum ventrale is involved in learning paradigms, including imprinting and passive avoidance learning. Biochemical changes in the intermediate medial hyperstriatum ventrale following learning include an up-regulation of amino-acid transmitter levels and receptor activity. To follow the changes of extracellular amino acid levels during passive avoidance training, we used an in vivo microdialysis technique. Probes were implanted in chicks before training the animals, either on a methyl- anthranylate-or water-coated bead. One hour later, recall was tested in both groups by presenting a similar bead. An increase of extra-cellular glutamate levels accompanied training and testing in both groups; during training, glutamate release was higher in methylanthranylate- trained than in water-trained chicks. When compared with the methylanthranylate-trained chicks during testing, the water-trained chicks showed enhanced extra-cellular glutamate levels. No other amino acid examined showed significant changes. After testing, the chicks were anesthetized and release- stimulated with an infusion of 50 mM potassium. Extra-cellular glutamate and taurine levels were significantly increased in both methylanthranylate-and water-trained chicks. The presentation of methylanthranylate as an. olfactory stimulus significantly enhanced glutamate levels, especially in methylanthranylate-trained chicks. The results suggest that such changes in extra-cellular glutamate levels in the intermediate medial hyperstriatum ventrale accompany pecking at either the water- or the methylanthranylate-bead. The taste of the aversant may be responsible for the greater increases found in methylanthranylate-trained birds. PMID:9920682

  12. A family affair: A Ral-exocyst-centered network links Ras, Rac, Rho signaling to control cell migration.

    PubMed

    Zago, Giulia; Biondini, Marco; Camonis, Jacques; Parrini, Maria Carla

    2017-05-12

    Cell migration is central to many developmental, physiologic and pathological processes, including cancer progression. The Ral GTPases (RalA and RalB) which act down-stream the Ras oncogenes, are key players in the coordination between membrane trafficking and actin polymerization. A major direct effector of Ral, the exocyst complex, works in polarized exocytosis and is at the center of multiple protein-protein interactions that support cell migration by promoting protrusion formation, front-rear polarization, and extra-cellular matrix degradation. In this review we describe the recent advancements in deciphering the molecular mechanisms underlying this role of Ral via exocyst on cell migration. Among others, we will discuss the recently identified cross-talk between Ral and Rac1 pathways: exocyst binds to a negative regulator (the RacGAP SH3BP1) and to the major effector (the Wave Regulatory Complex, WRC) of Rac1, the master regulator of protrusions. Next challenge will be to better characterize the dynamics in space and in time of these molecular interplays, to better understand the pleiotropic functions of Ral in both normal and cancer cells.

  13. Does selection for short sleep duration explain human vulnerability to Alzheimer's disease?

    PubMed

    Nesse, Randolph M; Finch, Caleb E; Nunn, Charles L

    2017-01-16

    Compared with other primates, humans sleep less and have a much higher prevalence of Alzheimer 's disease (AD) pathology. This article reviews evidence relevant to the hypothesis that natural selection for shorter sleep time in humans has compromised the efficacy of physiological mechanisms that protect against AD during sleep. In particular, the glymphatic system drains interstitial fluid from the brain, removing extra-cellular amyloid beta (eAβ) twice as fast during sleep. In addition, melatonin - a peptide hormone that increases markedly during sleep - is an effective antioxidant that inhibits the polymerization of soluble eAβ into insoluble amyloid fibrils that are associated with AD. Sleep deprivation increases plaque formation and AD, which itself disrupts sleep, potentially creating a positive feedback cycle. These and other physiological benefits of sleep may be compromised by short sleep durations. Our hypothesis highlights possible long-term side effects of medications that reduce sleep, and may lead to potential new strategies for preventing and treating AD. © The Author(s) 2017. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  14. RNA sequencing supports distinct reactive oxygen species-mediated pathways of apoptosis by high and low size mass fractions of Bay leaf (Lauris nobilis) in HT-29 cells.

    PubMed

    Rodd, Annabelle L; Ververis, Katherine; Sayakkarage, Dheeshana; Khan, Abdul W; Rafehi, Haloom; Ziemann, Mark; Loveridge, Shanon J; Lazarus, Ross; Kerr, Caroline; Lockett, Trevor; El-Osta, Assam; Karagiannis, Tom C; Bennett, Louise E

    2015-08-01

    Anti-proliferative and pro-apoptotic effects of Bay leaf (Laurus nobilis) in mammalian cancer and HT-29 adenocarcinoma cells have been previously attributed to effects of polyphenolic and essential oil chemical species. Recently, we demonstrated differentiated growth-regulating effects of high (HFBL) versus low molecular mass (LFBL) aqueous fractions of bay leaf and now confirm by comparative effects on gene expression, that HFBL and LFBL suppress HT-29 growth by distinct mechanisms. Induction of intra-cellular lesions including DNA strand breakage by extra-cellular HFBL, invoked the hypothesis that iron-mediated reactive oxygen species with capacity to penetrate cell membrane, were responsible for HFBL-mediated effects, supported by equivalent effects of HFBL in combination with γ radiation. Activities of HFBL and LFBL were interpreted to reflect differentiated responses to iron-mediated reactive oxygen species (ROS), occurring either outside or inside cells. In the presence of LFBL, apoptotic death was relatively delayed compared with HFBL. ROS production by LFBL mediated p53-dependent apoptosis and recovery was suppressed by promoting G1/S phase arrest and failure of cellular tight junctions. In comparison, intra-cellular anti-oxidant protection exerted by LFBL was absent for extra-cellular HFBL (likely polysaccharide-rich), which potentiated more rapid apoptosis by producing DNA double strand breaks. Differentiated effects on expression of genes regulating ROS defense and chromatic condensation by LFBL versus HFBL, were observed. The results support ferrous iron in cell culture systems and potentially in vivo, can invoke different extra-cellular versus intra-cellular ROS-mediated chemistries, that may be regulated by exogenous, including dietary species.

  15. Measurement and Analysis of in vitro Actin Polymerization

    PubMed Central

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when and where actin polymerization occurs. Introducing a pyrene fluorophore allows detection of filament formation by an increase in pyrene fluorescence. This method has been used for many years and continues to be broadly used, owing to its simplicity and flexibility. Here we describe how to perform and analyze these in vitro actin polymerization assays, with an emphasis on extracting useful descriptive parameters from kinetic data. PMID:23868594

  16. Hong Kong children's posited "vulnerability" to social influence on substance abuse.

    PubMed

    Cheung, Chau-Kiu; Tse, John Wing-Ling

    2008-01-01

    A survey of 2,051 pupils between Grade 4 and Grade 7 in 2003 showed that social influence or encouragement to substance use was a significant determinant of substance use risk, controlling for prior substance use and other backgrounds. Contextual stress or unhappiness among parents, classmates, and other people around operated jointly with social influence to promote substance use risk. This finding accords with a dovetail model about the extra influence due to the joining of force and receptivity to the force. Further research is necessary to corroborate the present findings obtained from a place and a time.

  17. Cellular cation transport studied by 6/7Li and 23Na NMR in a porous Mo132 Keplerate type nano-capsule as model system.

    PubMed

    Rehder, Dieter; Haupt, Erhard T K; Müller, Achim

    2008-01-01

    Li+ ions can interplay with other cations intrinsically present in the intra- and extra-cellular space (i.e. Na+, K+, Mg2+ and Ca2+) have therapeutic effects (e.g. in the treatment of bipolar disorder) or toxic effects (at higher doses), likely because Li+ interferes with the intra-/extra-cellular concentration gradients of the mentioned physiologically relevant cations. The cellular transmembrane transport can be modelled by molybdenum-oxide-based Keplerates, i.e. nano-sized porous capsules containing 132 Mo centres, monitored through 6/7Li as well as 23Na NMR spectroscopy. The effects on the transport of Li+ cations through the 'ion channels' of these model cells, caused by variations in water amount, temperature, and by the addition of organic cationic 'plugs' and the shift reagent [Dy(PPP)2](7-) are reported. In the investigated solvent systems, water acts as a transport mediator for Li+. Likewise, the counter-transport (Li+/Na+, Li+/K+, Li+/Cs+ and Li+/Ca2+) has been investigated by 7Li NMR and, in the case of Li+/Na+ exchange, by 23Na NMR, and it has been shown that most (in the case of Na+ and K+, all (Ca2+) or almost none (Cs+) of the Li cations is extruded from the internal sites of the artificial cell to the extra-cellular medium, while Na+, K+ and Ca2+ are partially incorporated.

  18. Coloristic and antimicrobial behaviour of polymeric substrates using bioactive substances

    NASA Astrophysics Data System (ADS)

    Coman, D.; Vrînceanu, N.; Oancea, S.; Rîmbu, C.

    2016-08-01

    A major concern in reducing microbial contamination of healthcare and hygiene products motivated us to seek viable alternatives in order to create such barriers. The antimicrobial and anti-oxidant effects of natural extracts are well-known, their application onto polymeric supports is still challenging in terms of investigation. To our knowledge, the method of natural dyeing of different polymeric substrates using bioactive substances derived from black currant and green walnut shells, in conjunction with biomordants, and their long term effects have not been very consistently reported. The main objective of the study is based on the comparative study of different polymeric fibrous substrates dyed by means of laboratory scaled classic methodology with extracts from black currant fruits and green walnut shells, with the assistance of conventional and biomordants (copper sulphate, citric and tannic acids). The assistance of biomordant in the dyeing process seems to conduct to improved synergetic colouring and antibacterial performances. The main results demonstrated that the extract of green walnut shells reinforced by the biomordants solutions expressed the best antimicrobial behaviour. The present research is a milestone in the identification of potential technological alternatives applied in dyeing of synthetic and natural textile supports, quantified and controlled by antimicrobial response correlated with colorimetric features.

  19. Exosomal and Non-Exosomal Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence

    PubMed Central

    Sohel, Md. Mahmodul Hasan; Hoelker, Michael; Noferesti, Sina Seifi; Salilew-Wondim, Dessie; Tholen, Ernst; Looft, Christian; Rings, Franca; Uddin, Muhammad Jasim; Spencer, Thomas E.; Schellander, Karl; Tesfaye, Dawit

    2013-01-01

    Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment. PMID:24223816

  20. Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times.

    PubMed

    Yu, Dawei; Chen, Yutao; Wei, Yuansong; Wang, Jianxing; Wang, Yawei; Li, Kun

    2017-04-01

    Membrane fouling, including foulants and factors, was investigated during hydraulic retention time (HRT) optimization of a membrane bioreactor (MBR) that treated wastewater from the production of antibiotics. The results showed that HRT played an important role in membrane fouling. Trans-membrane pressure (TMP), membrane flux, and resistance were stable at -6 kPa, 76 L m -2  h -1  bar -1 , and 4.5 × 10 12  m -1 when HRT was at 60, 48, and 36 h, respectively. Using Fourier transform infrared spectroscopy, foulants were identified as carbohydrates and proteins, which correlated with effluent organic matter and effluent chemical oxygen demand (COD) compounds. Therefore, membrane fouling trends would benefit from low supernatant COD (378 mg L -1 ) and a low membrane removal rate (26 %) at a HRT of 36 h. Serious membrane fouling at 72 and 24 h was related to soluble microbial products and extracellular polymeric substances in mixed liquor, respectively. Based on the TMP decrease and flux recovery after physical and chemical cleaning, irremovable fouling aggravation was related to extracellular polymeric substances' increase and soluble microbial products' decrease. According to changes in the specific oxygen uptake rate (SOUR) and mixed liquor suspended solids (MLSSs) during HRT optimization in this study, antibiotic production wastewater largely inhibited MLSS growth, which only increased from 4.5 to 5.0 g L -1 when HRT was decreased from 72 to 24 h, but did not limit sludge activity. The results of a principal component analysis highlighted both proteins and carbohydrates in extracellular polymeric substances as the primary foulants. Membrane fouling associated with the first principal component was positively related to extracellular polymeric substances and negatively related to soluble microbial products. Principal component 2 was primarily related to proteins in the influent. Additional membrane fouling factors included biomass characteristics, operational conditions, and feed characteristics.

  1. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    PubMed

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  2. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  3. Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function.

    PubMed

    Fleshner, M; Johnson, J D

    2005-08-01

    Exposure to acute physical and/or psychological stressors induces a cascade of physiological changes collectively termed the stress response. The stress response is demonstrable at the behavioural, neural, endocrine and cellular levels. Stimulation of the stress response functions to improve an organism's chance of survival during acute stressor challenge. The current review focuses on one ubiquitous cellular stress response, up-regulation of heat shock protein 72 (Hsp72). Although a great deal is known about the function of intra-cellular Hsp72 during exposure to acute stressors, little is understood about the potential function of endogenous extra-cellular Hsp72 (eHsp72). The current review will develop the hypothesis that eHsp72 release may be a previously unrecognized feature of the acute stress response and may function as an endogenous 'danger signal' for the immune system. Specifically, it is proposed that exposure to physical or psychological acute stressors stimulate the release of endogenous eHsp72 into the blood via an alpha1-adrenergic receptor-mediated mechanism and that elevated eHsp72 functions to facilitate innate immunity in the presence of bacterial challenge.

  4. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1980-08-01

    projected composite systems are elastomeric-shelled, liquid-filled * microcapsules . Experiments continued on the interfacial polymerization process with...filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules achieved. Needs identified are...consists of liquid-filled, elastomeric-shelled microcapsules held together to form a deformable mass; this is to simulate the semi-liquid cellular structure

  5. Raman spectroscopy investigation and improved knowledge on industrial cation-exchange membranes involved in electrodialysis process

    NASA Astrophysics Data System (ADS)

    Chaouki, M.; Huguet, P.; Bribes, J.-L.

    1996-06-01

    Raman spectra of three specific, industrial, cation-exchange membranes (CEMs) have shown the existence of an extra vibrational band. The relative intensity of this band is different in each membrane spectrum recorded. Chlorosulfonation of polymeric ethylenetrifluoroethylene (ETFE) film grafted with polystyrene chains is used to obtain these CEMs involved in the electrodialysis process. A Raman study of the above reaction has been undertaken and has shown that non-sulfonated polystyrene rings give rise to this extra vibrational band. Different behavior of CEMs synthesized under similar conditions can be explained by a variable amount of non-sulfonated polystyrene rings contained in these materials.

  6. Body Fluids Monitor

    NASA Technical Reports Server (NTRS)

    Siconolfi, Steven F. (Inventor)

    2000-01-01

    Method and apparatus are described for determining volumes of body fluids in a subject using bioelectrical response spectroscopy. The human body is represented using an electrical circuit. Intra-cellular water is represented by a resistor in series with a capacitor; extra-cellular water is represented by a resistor in series with two parallel inductors. The parallel inductors represent the resistance due to vascular fluids. An alternating, low amperage, multifrequency signal is applied to determine a subject's impedance and resistance. From these data, statistical regression is used to determine a 1% impedance where the subject's impedance changes by no more than 1% over a 25 kHz interval. Circuit component, of the human body circuit are determined based on the 1% impedance. Equations for calculating total body water, extra-cellular water, total blood volume, and plasma volume are developed based on the circuit components.

  7. Determination of the mechanical properties of solid and cellular polymeric dosage forms by diametral compression.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2016-07-25

    At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. Copyright © 2016. Published by Elsevier B.V.

  8. Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level

    PubMed Central

    Esteban-Fernández de Ávila, B.; Yáñez-Sedeño, P.

    2017-01-01

    A perspective review of recent strategies involving the use of nano/microvehicles to address the key challenges associated with delivery and (bio)sensing at the cellular level is presented. The main types and characteristics of the different nano/microvehicles used for these cellular applications are discussed, including fabrication pathways, propulsion (catalytic, magnetic, acoustic or biological) and navigation strategies, and relevant parameters affecting their propulsion performance and sensing and delivery capabilities. Thereafter, selected applications are critically discussed. An emphasis is made on enhancing the extra- and intra-cellular biosensing capabilities, fast cell internalization, rapid inter- or intra-cellular movement, efficient payload delivery and targeted on-demand controlled release in order to greatly improve the monitoring and modulation of cellular processes. A critical discussion of selected breakthrough applications illustrates how these smart multifunctional nano/microdevices operate as nano/microcarriers and sensors at the intra- and extra-cellular levels. These advances allow both the real-time biosensing of relevant targets and processes even at a single cell level, and the delivery of different cargoes (drugs, functional proteins, oligonucleotides and cells) for therapeutics, gene silencing/transfection and assisted fertilization, while overcoming challenges faced by current affinity biosensors and delivery vehicles. Key challenges for the future and the envisioned opportunities and future perspectives of this remarkably exciting field are discussed. PMID:29147499

  9. Defective Autophagy, Mitochondrial Clearance and Lipophagy in Niemann-Pick Type B Lymphocytes

    PubMed Central

    Salucci, Sara; Luchetti, Francesca; Falcieri, Elisabetta; Di Sario, Gianna; Palma, Fulvio; Papa, Stefano

    2016-01-01

    Niemann-Pick disease type A (NP-A) and type B (NP-B) are lysosomal storage diseases (LSDs) caused by sphingomyelin accumulation in lysosomes relying on reduced or absent acid sphingomyelinase. A considerable body of evidence suggests that lysosomal storage in many LSD impairs autophagy, resulting in the accumulation of poly-ubiquitinated proteins and dysfunctional mitochondria, ultimately leading to cell death. Here we test this hypothesis in a cellular model of Niemann-Pick disease type B, in which autophagy has never been studied. The basal autophagic pathway was first examined in order to evaluate its functionality using several autophagy-modulating substances such as rapamycin and nocodazole. We found that human NP-B B lymphocytes display considerable alteration in their autophagic vacuole accumulation and mitochondrial fragmentation, as well as mitophagy induction (for damaged mitochondria clearance). Furthermore, lipid traceability of intra and extra-cellular environments shows lipid accumulation in NP-B B lymphocytes and also reveals their peculiar trafficking/management, culminating in lipid microparticle extrusion (by lysosomal exocytosis mechanisms) or lipophagy. All of these features point to the presence of a deep autophagy/mitophagy alteration revealing autophagic stress and defective mitochondrial clearance. Hence, rapamycin might be used to regulate autophagy/mitophagy (at least in part) and to contribute to the clearance of lysosomal aberrant lipid storage. PMID:27798705

  10. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates.

    PubMed

    Wang, Bin-Bin; Liu, Xue-Ting; Chen, Jian-Meng; Peng, Dang-Cong; He, Feng

    2018-02-01

    Characteristics of extracellular polymeric substances (EPS) in activated sludge strongly depend on wastewater substrates. Proteinaceous substrates (ProS) present in heterogeneous polymeric form are intrinsic and important parts of wastewater substrates for microorganisms in activated sludge systems. However, correlations between ProS and characteristics of EPS are scarce. This study systematically explored the impacts of monomeric (Mono-), low polymeric (LoP-) and high polymeric (HiP-) ProS on compositions and functional groups of EPS in activated sludge. The results showed that the change of polymerization degree of ProS significantly altered the composition of EPS. Compared to EPS Mono-ProS , the proportion of proteins in EPS LoP-ProS and EPS HiP-ProS increased by 12.8% and 27.7%, respectively, while that of polysaccharides decreased by 22.9% and 63.6%, respectively. Moreover, the proportion of humic compounds in EPS LoP-ProS and EPS HiP-ProS were ∼6 and ∼16-fold higher than that in EPS Mono-ProS , respectively. The accumulation of humic compounds in EPS increased the unsaturation degree of EPS molecules, and thereby reduced the energy requirement for electrons transition of amide bonds and aromatic groups. Size exclusion chromatography (SEC) analyses detected more molecular clusters in EPS HiP-ProS , indicating more complex composition of EPS in HiP-ProS fed activated sludge. Spectroscopic characterization revealed the dominance of hydrocarbon, protein, polysaccharide and aromatic associated bonds in all three EPS. Nevertheless, with the increase of polymerization degree of ProS, the protein associated bonds (such as CONH, CO, NC, NH) increased, while the polysaccharide associated bonds (such as COC, COH, OCOH) decreased. This paper paves a path to understand the role of ProS in affecting the production and characteristics of EPS in biological wastewater treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of solids retention time on membrane fouling: characterization of extracellular polymeric substances and soluble microbial products.

    PubMed

    Duan, Liang; Tian, Zhiyong; Song, Yonghui; Jiang, Wei; Tian, Yuan; Li, Shan

    2015-01-01

    The objective of this study was to investigate the influence of solids retention time (SRT) on membrane fouling and the characteristics of biomacromolecules. Four identical laboratory-scale membrane bioreactors (MBRs) were operated with SRTs for 10, 20, 40 and 80 days. The results indicated that membrane fouling occurred faster and more readily under short SRTs. Fouling resistance was the primary source of filtration resistance. The modified fouling index (MFI) results suggested that the more ready fouling at short SRTs could be attributed to higher concentrations of soluble microbial products (SMP). Fourier transform infrared (FTIR) spectra indicated that the SRT had a weak influence on the functional groups of the total extracellular polymeric substances (TEPS) and SMP. However, the MBR under a short SRT had more low-molecular-weight (MW) compounds (<1 kDa) and fewer high-MW compounds (>100 kDa). Aromatic protein and tryptophan protein-like substances were the dominant groups in the TEPS and SMP, respectively.

  12. The effect of solids retention times on the characterization of extracellular polymeric substances and soluble microbial products in a submerged membrane bioreactor.

    PubMed

    Duan, Liang; Song, Yonghui; Yu, Huibin; Xia, Siqing; Hermanowicz, Slawomir W

    2014-07-01

    In this study, the effect of solids retention times (SRTs) on extracellular polymeric substances (EPS) and soluble microbial products (SMPs) were investigated in a membrane bioreactor (MBR) at SRTs of 10, 5 and 3 days. The results showed that more carbohydrates and proteins were accumulated at short SRT, which can due to the higher biomass activity in the reactor. The molecular weight (MW) distribution analysis suggested that macromolecules (MW>30 kDa) and small molecules (MW<1 kDa) were the dominant fraction of EPS and SMP, respectively. The reactor at shorter SRT had more small molecules and less macromolecules of carbohydrates. The MW distribution of total organic carbon (TOC) suggested that other organic moieties were exuded by microbes into the solution. The shorter SRT had more undefined microbial by-product-like substances and different O − H bonds in hydroxyl functional groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms.

    PubMed

    Desmond, Peter; Best, James P; Morgenroth, Eberhard; Derlon, Nicolas

    2018-04-01

    The effect of extracellular polymeric substances (EPS) on the meso-scale physical structure and hydraulic resistance of membrane biofilms during gravity driven membrane (GDM) filtration was investigated. Biofilms were developed on the surface of ultrafiltration membranes during dead-end filtration at ultra-low pressure (70 mbar). Biofilm EPS composition (total protein, polysaccharide and eDNA) was manipulated by growing biofilms under contrasting nutrient conditions. Nutrient conditions consisted of (i) a nutrient enriched condition with a nutrient ratio of 100:30:10 (C: N: P), (ii) a phosphorus limitation (C: N: P ratio: 100:30:0), and (iii) a nitrogen limitation (C: N: P ratio: 100:0:10). The structure of the biofilm was characterised at meso-scale using Optical Coherence Tomography (OCT). Biofilm composition was analysed with respect to total organic carbon, total cellular mass and extracellular concentrations of proteins, polysaccharides, and eDNA. 2D-confocal Raman mapping was used to characterise the functional group composition and micro-scale distribution of the biofilms EPS. Our study reveals that the composition of the EPS matrix can determine the meso-scale physical structure of membrane biofilms and in turn its hydraulic resistance. Biofilms grown under P limiting conditions were characterised by dense and homogeneous physical structures with high concentrations of polysaccharides and eDNA. Biofilm grown under nutrient enriched or N limiting conditions were characterised by heterogeneous physical structures with lower concentrations of polysaccharides and eDNA. For P limiting biofilms, 2D-confocal Raman microscopy revealed a homogeneous spatial distribution of anionic functional groups in homogeneous biofilm structures with higher polysaccharide and eDNA concentrations. This study links EPS composition, physical structure and hydraulic resistance of membrane biofilms, with practical relevance for the hydraulic performances of GDM ultrafiltration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The role of EPS concentration in MBR foaming: analysis of a submerged pilot plant.

    PubMed

    Di Bella, Gaetano; Torregrossa, Michele; Viviani, Gaspare

    2011-01-01

    Foaming in Membrane BioReactor (MBR) is a frequently discussed topic. Some authors reported that the phenomenon is due to filamentous organisms, like at Conventional Activated Sludge (CAS) plants. However, in recent years, other authors reported that the Extra-cellular Polymer Substances (EPSs) concentration is an important factor for controlling foam as well. Nevertheless, even if a number of MBR plants are affected by foaming, presently there are no suitable methods to evaluate the phenomenon. To facilitate the study of this controversial phenomenon in an MBR system, certain foam tests proposed in the past for CASPs were investigated. The results of the tests were able to adequately measure quantity, stability and quality of the foam. In particular, the Scum Index increased proportionally with the EPS concentration and mixed liquor viscosity; Foam Power was mainly correlated with the protein concentration of in the EPS; Foam Rating was also correlated with the EPS concentration. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. The Role of Non-Targeted Effects as Mediators in the Biological Effects of Proton Irradiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Dicello, John F.

    2006-01-01

    In recent years, the hypothesis that non-DNA targets are primary initiators and mediators of the biological effects of ionizing radiation, such as proton beams and heavy ions, has gained much interest. These phenomena have been denoted as non-targeted or bystander effects to distinguish them from the more traditionally studied model that focuses on direct damage to DNA causing chromosomal rearrangements and mutations as causative of most biological endpoints such as cell killing, tissue damage, and cancer. We review cellular and extra-cellular structures and signal transduction pathways that have been implemented in these recent studies. Non-targeted effects of interest include oxidative damage to the cytoplasm and mitochondria, disruption of the extra-cellular matrix, and modification of cytokine signaling including TGF-beta, and gap junction communication. We present an introduction to these targets and pathways, and contrast there role with DNA damage pathways.

  16. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2017-01-01

    Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs ( ˜ 1.5 % of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57 % of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or growth of new cells. Indeed, even within living cells, highly polymeric cell compounds are constantly replaced and renewed. This is especially important for assessing C fluxes in soil and the contribution of C from microbial residues to soil organic matter.

  17. Cooperative polymerization of α-helices induced by macromolecular architecture

    NASA Astrophysics Data System (ADS)

    Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun

    2017-07-01

    Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.

  18. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  19. FORMATION BY IRRADIATION OF AN EXPANDED, CELLULAR, POLYMERIC BODY

    DOEpatents

    Charlesby, A.; Ross, M.

    1958-12-01

    The treatment of polymeric esters of methacrylic acid having a softening polnt above 40 icient laborato C to form an expanded cellular mass with a smooth skin is discussed. The disclosed method comprises the steps of subjecting the body at a temperature below the softenpoint to a dose of at least 5 x lO/sup 6/ roentgen of gamma radiation from cobalt-60 source until its average molecular weight is reduced to a value within the range of 3 x lO/sup 5/ to 10/sup 4/, and heating at a temperature within the range of 0 to lO icient laborato C above its softening point to effect expansion.

  20. Oxidation of lignin and cellulose, humification and coalification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volborth, A.

    1976-06-09

    Oxygen plays an important role in the first stages of the decomposition of organic substances derived from plant material. The decomposition and reformation of such organic matter as cellulose and lignin leads, through-humification and a sequence of metamorphic processes, to the formation of coal. Initially, oxidation reactions cause the formation of dark-colored humic acids, later under more anaerobic conditions, pressure and higher temperatures, polymerization occurs as the sediment becomes buried. Under these conditions phenolic compounds are more stable, also during the processes of decomposition phenolic substances are more resistant to microorganisms, and thus seem to accumulate. The humification process maymore » be considered as the first step in coalification. It starts by rapid decomposition of the cellulose and by enzymatic degradation of the lignin of the rotting plant substance to form C/sub 6/-C/sub 3/ or C/sub 6/-C/sub 1/ compounds. These lose methoxyl groups and carboxyl groups and can form hydroquinones which may polymerize and combine, forming humic acids. Degradation may proceed also to aliphatic compounds. Most of the reactions seem to lead to benzoquinones which dimerize and polymerize further, causing an increase in aromatization with age, and under more anaerobic conditions later during coalification. When conditions become anaerobic, melanoidin and glucosamin compounds form and nitrogen fixation occurs. This explains the presence of about 1 to 3.5 percent nitrogen in humic acid concentrates, lignin, lignite, subbituminous and bituminous coal. The fixation of nitrogen also results in further reduction of carbon in humic substance during the later stages of humification. Further coalification of buried humified strata of decomposed organic material causes reduction as the methoxyl and oxygen group content decreases, and CO and CO/sub 2/ gases and H/sub 2/O evolve and gradual dehydration occurs.« less

  1. Do biological-based strategies hold promise to biofouling control in MBRs?

    PubMed

    Malaeb, Lilian; Le-Clech, Pierre; Vrouwenvelder, Johannes S; Ayoub, George M; Saikaly, Pascal E

    2013-10-01

    Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of implications as well as knowledge gaps, warranting future targeted research. Systematic and representative microbiological studies, complementary utilization of molecular and biofilm characterization tools, standardized experimental methods and validation of successful biological-based antifouling strategies for MBR applications are needed. Specifically, in addition, linking these studies to relevant operational conditions in MBRs is an essential step to ultimately develop a better understanding and more effective and directed control strategy for biofouling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Outlines on nanotechnologies applied to bladder tissue engineering.

    PubMed

    Alberti, C

    2012-01-01

    Tissue engineering technologies are more and more expanding as consequence of recent developments in the field of biomaterial science and nanotechnology research. An important issue in designing scaffold materials is that of recreating the ECM (extra-cellular matrix) functional features - particularly ECM-derived complex molecule signalling - to mimic its capability of directing cell-growth and neotissue morphogenesis. In this way the nanotechnology may offer intriguing chances, biomaterial nanoscale-based scaffold geometry behaving as nanomechanotransducer complex interacting with different cell nanosize proteins, especially with those of cell surface mechanoreceptors. To fabricate 3D-scaffold complex architectures, endowed with controlled geometry and functional properties, bottom-up approaches, based on molecular self-assembling of small building polymer units, are used, sometimes functionalizing them by incorporation of bioactive peptide sequences such as RDG (arginine - glycine - aspartic acid, a cell-integrin binding domain of fibronectin), whereas the top-down approaches are useful to fabricate micro/nanoscale structures, such as a microvasculature within an existing complex bioarchitecture. Synthetic polymer-based nanofibers, produced by electrospinning process, may be used to create fibrous scaffolds that can facilitate, given their nanostructured geometry and surface roughness, cell adhesion and growth. Also bladder tissue engineering may benefit by nanotechnology advances to achieve a better reliability of the bladder engineered tissue. Particularly, bladder smooth muscle cell adhesion to nanostructured polymeric surfaces is significantly enhanced in comparison with that to conventional biomaterials. Moreover nanostructured surfaces of bladder engineered tissue show a decreased calcium stone production. In a bladder tumor animal model, the dispersion of carbon nanofibers in a polymeric scaffold-based tissue engineered replacement neobladder, appears to inhibit a carcinogenic relapse in bladder prosthetic material. Facing the future, a full success of bladder tissue engineering will mainly depend on the progress of both biomaterial nanotechnologies and stem cell biology research.

  3. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation.

    PubMed

    Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir

    2015-02-10

    Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Tension modulates actin filament polymerization mediated by formin and profilin

    PubMed Central

    Courtemanche, Naomi; Lee, Ja Yil; Pollard, Thomas D.; Greene, Eric C.

    2013-01-01

    Formins promote processive elongation of actin filaments for cytokinetic contractile rings and other cellular structures. In vivo, these structures are exposed to tension, but the effect of tension on these processes was unknown. Here we used single-molecule imaging to investigate the effects of tension on actin polymerization mediated by yeast formin Bni1p. Small forces on the filaments dramatically slowed formin-mediated polymerization in the absence of profilin, but resulted in faster polymerization in the presence of profilin. We propose that force shifts the conformational equilibrium of the end of a filament associated with formin homology 2 domains toward the closed state that precludes polymerization, but that profilin–actin associated with formin homology 1 domains reverses this effect. Thus, physical forces strongly influence actin assembly by formin Bni1p. PMID:23716666

  5. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances.

    PubMed

    Al Ashhab, Ashraf; Sweity, Amer; Bayramoglu, Bihter; Herzberg, Moshe; Gillor, Osnat

    2017-05-01

    Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.

  6. Fluorescent component and complexation mechanism of extracellular polymeric substances during dye wastewater biotreatment by anaerobic granular sludge

    NASA Astrophysics Data System (ADS)

    Li, Na; Wei, Dong; Sun, Qunqun; Han, Xiao; Du, Bin; Wei, Qin

    2018-02-01

    In this study, methylene blue (MB) wastewater was biotreated by anaerobic granular sludge (AnGS), and the fluorescent components of extracellular polymeric substances (EPS) and complexation mechanism were evaluated. Based on the experimental data, the sorption of MB by both live and inactivated AnGS followed the pseudo-second-order model, and the adsorption isotherm conformed well to the Langmuir model. It was shown that the difference in the sorption of live and inactivated AnGS was not significant, indicating that the sorption is mainly a physical-chemical process and metabolically mediated diffusion is negligible. The interaction between EPS and MB was proved by three-dimensional excitation-emission matrix (3D-EEM) and synchronous fluorescence spectra. 3D-EEM indicated that protein (PN)-like substances were the main peaks of EPS, and gradually quenched with increase of MB concentrations. According to synchronous fluorescence spectra, the main fluorescence quenching was caused by PN-like and humic-like fractions, and belonged to the static type of quenching. FTIR spectra demonstrated that hydroxyl and amino groups played a major role in MB sorption.

  7. Effect of hydraulic retention time on deterioration/restarting of sludge anaerobic digestion: Extracellular polymeric substances and microbial response.

    PubMed

    Wei, Liangliang; An, Xiaoyan; Wang, Sheng; Xue, Chonghua; Jiang, Junqiu; Zhao, Qingliang; Kabutey, Felix Tetteh; Wang, Kun

    2017-11-01

    In this study, the transformation of the sludge-related extracellular polymeric substances (EPS) during mesophilic anaerobic digestion was characterized to assess the effect of hydraulic retention time (HRT) on reactor deterioration/restarting. Experimental HRT variations from 20 to 15 and 10d was implemented for deterioration, and from 10 to 20d for restarting. Long-term digestion at the lowest HRT (10d) resulted in significant accumulation of hydrolyzed hydrophobic materials and volatile fatty acids in the supernatants. Moreover, less efficient hydrolysis of sludge EPS, especially of proteins related substances which contributed to the deterioration of digester. Aceticlastic species of Methanosaetaceae decreased from 36.3% to 27.6% with decreasing HRT (20-10d), while hydrogenotrophic methanogens (Methanomicrobiales and Methanobacteriales) increased from 30.4% to 38.3%. Proteins and soluble microbial byproducts related fluorophores in feed sludge for the anaerobic digester changed insignificantly at high HRT, whereas the fluorescent intensity of fulvic acid-like components declined sharply once the digestion deteriorated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process.

    PubMed

    Sheng, Guo-Ping; Yu, Han-Qing

    2007-02-01

    In this study, the formation of extracellular polymeric substances (EPS) and surface characteristics of an acidogenic sludge in anaerobic H(2)-producing process was investigated. Results show that carbohydrates, proteins, and humic substances were the dominant components in bound EPS (BEPS), while in soluble EPS (SEPS), carbohydrates were the main component. The total content of BEPS initially increased but then kept almost unchanged during fermentation from 25 to 35 h; after that, it slightly decreased. The total content of SEPS increased to 172.5 +/- 0.05 mg C g(-1) volatile suspended solid with the time that increased to 23.5 h, and then rapidly decreased until 43 h; thereafter, it kept almost unchanged. The SEPS had good correlations with the specific H(2) production rate, substrate degradation rate, and specific aqueous products formation rate, but the BEPS seemed to have no such correlations with these specific rates. Results also confirm that part of EPS could be utilized by the H(2)-producing sludge. As the substrate was in short supply, the EPS would be hydrolyzed to sever as carbon and energy source.

  9. Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1.

    PubMed

    Yang, Jixian; Wei, Wei; Pi, Shanshan; Ma, Fang; Li, Ang; Wu, Dan; Xing, Jie

    2015-11-01

    The adsorption of Cu(2+) and Zn(2+) by extracellular polymeric substances (EPS) extracted from Klebsiella sp. J1 and competitive adsorption mechanism were investigated. Equilibrium adsorption capacities of Cu(2+) (1.77mMg(-1)) on Klebsiella sp. J1 EPS were higher than those of Zn(2+) (1.36mMg(-1)) in single systems. The competitive Langmuir and Langmuir-Freundlich isotherm models were proven to be effective in describing the experimental data of binary component system. The three dimensional sorption surfaces of binary component system demonstrated that the presence of Cu(2+) more significantly decreased the sorption of Zn(2+), but the sorption of Cu(2+) was not disturbed by the presence of Zn(2+). FTIR and EEM results revealed the adsorption sites of Cu(2+) entirely overlapped with those of Zn(2+). Cu(2+) and Zn(2+) showed competitive adsorption in binary systems, and Cu(2+) was preferentially adsorbed because of the stronger complexation ability of the protein-like substances in Klebsiella sp. J1 EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor.

    PubMed

    Wang, Zichao; Gao, Mengchun; Wang, Zhe; She, Zonglian; Chang, Qingbo; Sun, Changqing; Zhang, Jian; Ren, Yun; Yang, Ning

    2013-11-01

    The effect of salinity on extracellular polymeric substances (EPS) of activated sludge was investigated in an anoxic-aerobic sequencing batch reactor (SBR). The contents of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were positively correlated with the salinity. The polysaccharide (PS) and protein (PN) contents in both LB-EPS and TB-EPS increased with the increase of salinity. With the increase of salinity from 0.5% to 6%, the PN/PS ratios in LB-EPS and TB-EPS decreased from 4.8 to 0.9 and from 2.9 to 1.4, respectively. The four fluorescence peaks in both LB-EPS and TB-EPS identified by three-dimensional excitation-emission matrix fluorescence spectroscopy are attributed to PN-like substances and humic acid-like substances. The Fourier transform infrared spectra of the LB-EPS and TB-EPS appeared to be very similar, but the differences across the spectra were apparent in terms of the relative intensity of some bands with the increase of salinity. The sludge volume index showed a linear correlation with LB-EPS (R(2)=0.9479) and TB-EPS (R(2)=0.9355) at different salinities, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Influence of extracellular polymeric substances (EPS) treated by combined ultrasound pretreatment and chemical re-flocculation on water treatment sludge settling performance.

    PubMed

    Chen, Wei; Gao, Xiaohong; Xu, Hang; Cai, Yan; Cui, Jianfeng

    2017-03-01

    Extracellular polymeric substances (EPS) are high molecular weight polymers and play a significant role in floc stability, floc size, bioflocculation and sludge settleability. The destruction and reconstruction of EPS improve the performance of solid-water separation processes. In this study, the influence of combined ultrasound pretreatment and chemical re-flocculation on the spatial distribution and composition of EPS was examined. Settleability efficiency demonstrated that the optimal operating condition was an ultrasound pretreatment time of 15 min at pH 6. Sludge particles were greatly disintegrated and the protein-like substances were converted into smaller molecules after ultrasound treatment, and pH had important effects on solubilization and degradation of protein-like substances. The flocs of sludge water after addition of polyacrylamide were larger in size and denser in structure than those resulting from addition of polyaluminium chloride. However, polyaluminium chloride had a better capacity for degrading EPS, especially at a dosage of 1.2 g/g total suspended solids. The results of this research show that the combination of ultrasonication and chemical re-flocculation is effective in treating sludge water from a drinking water treatment plant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Tunable hole injection of solution-processed polymeric carbon nitride towards efficient organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Zheng, Qinghong; Tang, Zhenyu; Li, Wanshu; Zhang, Yan; Xu, Kai; Xue, Xiaogang; Xu, Jiwen; Wang, Hua; Wei, Bin

    2018-02-01

    Polymeric carbon nitride (CNxHy) has been facilely synthesized from dicyandiamide and functions as a solution-processed hole injection layer in organic light-emitting diodes (OLEDs). The measurements using X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and impedance spectroscopy elucidate that CNxHy exhibits superior film morphology and extra electric properties such as tailored work function and tunable hole injection. The luminous efficiency of CNxHy-based OLED is found to improve by 76.6% in comparison to the counterpart using favorite solution-processed poly(ethylene dioxythiophene):poly(styrene sulfonate) as the hole injection layer. Our results also pave a way for broadening carbon nitride applications in organic electronics using the solution process.

  13. Polymeric nanocarriers for transport modulation across the pulmonary epithelium: dendrimers, polymeric nanoparticles, and their nanoblends.

    PubMed

    Bharatwaj, Balaji; Dimovski, Radovan; Conti, Denise S; da Rocha, Sandro R P

    2014-05-01

    The purpose of this study was to (a) Determine the cellular transport and uptake of amine-terminated generation 3 (G3) poly(amido amine) (PAMAM) dendrimers across an in vitro model of the pulmonary epithelium, and the ability to modulate their transport by forming nanoblends of the dendrimers with biodegradable solid polymeric nanoparticles (NPs) and (b) to formulate dendrimer nanocarriers in portable oral inhalation devices and evaluate their aerosol characteristics. To that end, fluorescein isothiocyanate (FITC)-labeled G3 PAMAM dendrimer nanocarriers (DNCs) were synthesized, and also encapsulated within poly lactide-co-glycolide nanoparticles (NPs). Transport and uptake of both DNCs encapsulated within NPs (nanoblends) and unencapsulated DNCs were tracked across polarized monolayers of airway epithelial cells, Calu-3. DNCs were also formulated as core-shell microparticles in pressurized metered-dose inhalers (pMDIs) and their aerodynamic properties evaluated by Andersen cascade impaction. The apparent permeability of DNCs across the airway epithelial model was similar to that of a paracellular marker of comparable molar mass--order of 10(-7) cm s(-1). The transport and cellular internalization of the DNCs can be modulated by formulating them as nanoblends. The transport of the DNCs across the lung epithelium was completely suppressed within the time of the experiment (5 h) when formulated as blends. The encapsulation also prevents saturation of the cellular internalization profile. Nanoblending may be a potential strategy to modulate the rate of transport and cellular uptake of DNCs, and thus be used as a design strategy to achieve enhanced local or systemic drug delivery.

  14. Cellular Delivery of Nanoparticles Revealed with Combined Optical and Isotopic Nanoscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proetto, Maria T.; Anderton, Christopher R.; Hu, Dehong

    Synthetic drug-carrying nanomaterials offer great potential as targeted cellular delivery vehicles. Typically, their size, morphology, surface chemistry and stability are optimized in order to control their effect on drug release kinetics, cellular uptake pathways, efficiency and site of action. However, methods to track the carriers and their cargo independently at the micro- and nanoscale have been severely underutilized preventing the correlation between structure and function. Here we show that by using combined optical and isotopic nanoscopy we can track the uptake in cancer cells and subsequent drug release of a Pt(II)-loaded anticancer nanoparticle (NP) system. We found that by directlymore » polymerizing an oxaliplatin analogue containing a norbornyl moiety amenable to polymerization via ring opening metathesis polymerization (ROMP) we could generate amphiphiles in one pot. Spontaneous self-assembly of the drug-containing polymers in aqueous solution led to well-defined NPs in a reproducible manner. Our results demonstrate that the covalently loaded NPs are equipotent with free oxaliplatin and are taken up intact via endocytic pathways before release of the cytotoxic cargo. This was confirmed by super resolution fluorescence structured illumination microscopy (SIM) and nanoscale secondary ion mass spectrometry (NanoSIMS). We anticipate that this type of multimodal cellular tracking of NP and drug will bridge the knowledge gap between particle structure and performance for the vast array of currently generalizable systems in the literature. Furthermore, the use of covalently loaded NP drug systems should allow development of more stable, reproducible and site specific nanodelivery agents.« less

  15. Cross-Disciplinary Perspectives on Money Management by Addicts

    PubMed Central

    Rosen, Marc I.

    2012-01-01

    How addicts manage their funds can be understood from studies of the neurobiology of impulsive spending, contingency management, self-reported expenditures, behavioral economics and anthropology. To show how these differing perspectives can provide theoretical explanations for observed behavior, they were applied to the question of when extra “windfall” funds are spent on substances of abuse. The treatment implications of Behavioral Economic and related approaches include targeting behavioral mechanisms of substance use with money management-based interventions, configuration of reinforcers other than substance use, and therapeutically framing the choice between abstinence and alcohol use. PMID:22211461

  16. Polymeric Flexible Immunosensor Based on Piezoresistive Micro-Cantilever with PEDOT/PSS Conductive Layer.

    PubMed

    Zhao, Rui; Sun, Ying

    2018-02-03

    In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10 -7 nm -1 , respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances.

  17. Polymeric Flexible Immunosensor Based on Piezoresistive Micro-Cantilever with PEDOT/PSS Conductive Layer

    PubMed Central

    Sun, Ying

    2018-01-01

    In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10−7 nm−1, respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances. PMID:29401669

  18. Effect of copper and lead on two consortia of phototrophic microorganisms and their capacity to sequester metals.

    PubMed

    Burgos, A; Maldonado, J; De Los Rios, A; Solé, A; Esteve, I

    2013-09-15

    The roles of consortia of phototrophic microorganisms have been investigated in this paper to determine their potential role to tolerate or resist metals and to capture them from polluted cultures. With this purpose, two consortia of microorganisms: on one hand, Geitlerinema sp. DE2011 (Ge) and Scenedesmus sp. DE2009 (Sc) (both identified in this paper by molecular biology methods) isolated from Ebro Delta microbial mats, and on the other, Spirulina sp. PCC 6313 (Sp) and Chroococcus sp. PCC 9106 (Ch), from Pasteur culture collection were polluted with copper and lead. In order to analyze the ability of these consortia to tolerate and capture metals, copper and lead were selected, because both have been detected in Ebro Delta microbial mats. The tolerance-resistance to copper and lead for both consortia was determined in vivo and at cellular level by Confocal Laser Scanning Microscopy (CLSM-λscan function). The results obtained demonstrate that both consortia are highly tolerant-resistant to lead and that the limits between the copper concentration having cytotoxic effect and that having an essential effect are very close in these microorganisms. The capacity of both consortia to capture extra- and intracellular copper and lead was determined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) respectively, coupled to an Energy Dispersive X-ray detector (EDX). The results showed that all the microorganisms assayed were able to capture copper extracellularly in the extrapolymeric substances, and lead extra- and intracellularly in polyphosphate inclusions. Moreover, the studied micro-organisms did not exert any inhibitory effect on each other's metal binding capacity. From the results obtained in this paper, it can be concluded that consortia of phototrophic microorganisms could play a very important role in biorepairing sediments polluted by metals, as a result of their ability to tolerate or resist high concentrations of metals and to bioaccumulate them, extra- and intracellulary. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles.

    PubMed

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-10-01

    To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.

  20. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  1. Anisotropy of human muscle via non invasive impedance measurements. Frequency dependence of the impedance changes during isometric contractions

    NASA Astrophysics Data System (ADS)

    Kashuri, Hektor

    In this thesis we present non invasive muscle impedance measurements using rotatable probes extending the work done by Aaron et al. (1997) by measuring not only the real part of the impedance but the imaginary part as well. The results reveal orientations of underlying muscle fibers via minima in resistance and reactance versus angle curves, suggesting this method as potentially useful for studying muscle properties in clinical and physiological research. Calculations of the current distribution for a slab of material with anisotropic conductivity show that the current distribution depends strongly on the separation of two current electrodes and as well as on its conducting anisotropy. Forearm muscle impedance measurements at 50 kHz done by Shiffman et al. (2003) had shown that both resistance (R) and reactance (X) increase during isometric contraction. We have extended these measurements in the 3 to 100 kHz range and we found that resistance (R) and reactance (X) both increase and their changes increased or decreased at frequency dependent rates. Analysis based on circuit models of changes in R and X during the short contraction pulses showed that the extra cellular fluid resistance increased by 3.9 +/- 1.4 %, while the capacitance increased by 5.6 +/- 2 %. For long contraction pulses at very low frequencies: (1) there was practically no change in R during contraction, which implies that these changes are due to cellular membrane or intracellular effects with the extra cellular water component not participating, and (2) in post contraction stage there were no morphological changes which means that drifts in R can only be due to physiological changes. Following Shiffman et al. (2003) we measured impedance changes of R and X during a triangular shaped pulse of force generated via isometric forearm muscle contraction at 50 kHz. We measured these changes in 3-100 kHz frequency range for a stair case pulse of forces and the results showed that they are frequency dependent. Analysis based on circuit models suggest that the increase of isometric forearm muscle contraction is accompanied with both extra and intra cellular effects. The decrease following it is accompanied with changes in the extra cellular components and with intracellular elements remaining at the values they have at the maximum contraction force.

  2. Polyhydroxyalkanoate recovery and effect of in situ extracellular polymeric substances removal from aerobic granules.

    PubMed

    Gobi, K; Vadivelu, V M

    2015-01-01

    Polyhydroxyalkanoate (PHA) recovery from aerobic granules was investigated using four cell digestion agents, namely, sodium hypochlorite, sodium hydroxide, acetone and sodium chloride. Simultaneously, the removal of extracellular polymeric substances (EPS) and its effect on PHA yield were investigated. The highest PHA recovery yield was obtained using sodium hypochlorite, accounting for 89% cell dry weight (CDW). The highest PHA was recovered after the sodium hypochlorite completely removed the EPS from the aerobic granules. The average molecular weight (Mw) of the PHA recovered using sodium hypochlorite was 5.31 × 10(5)g/mol with only 1.8% molecular weight degradation. The energy and duration analysis for PHA recovery revealed that the sodium hypochlorite method required the least amount of energy and time at 0.0561 MJ/g PHA and 26 h, respectively. The PHA that was recovered was a P3(HB-co-HV) co-polymer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA.

    PubMed

    Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J

    2013-12-01

    In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The Implication of Substance P in the Development of Tendinopathy: A Case Control Study

    PubMed Central

    Han, Soo-Hong; Choi, Wonchul; Song, Jiye; Kim, Jaehee; Lee, Seungyong; Choi, Youngrak; Byun, Seong-Eun; Ahn, Taekeun; Ahn, Heejung; Ding, Catherine; Baik, Lloyd; Ward, Spencer; Ting, Kang; Lee, Soonchul

    2017-01-01

    It was reported that substance P had beneficial effects in the healing of acute tendon injury. However, the relationship between substance P and degenerative tendinopathy development remains unclear. The purpose of this study was to determine the role of substance P in the pathogenesis of tendinopathy. Healthy and tendinopathy tendon were harvested from human and tenocytes were cultured individually. The expression levels of genes associated with tendinopathy were compared. Next, substance P was exogenously administered to the healthy tenocyte and the effect was evaluated. The results showed that tendinopathy tenocytes had higher levels of COL3A1, MMP1, COX2, SCX, ACTA2, and substance P gene expression compared to healthy tenocytes. Next, substance P treatment on the healthy tenocyte displayed similar changes to that of the tendinopathy tenocytes. These differences between the two groups were also determined by Western blot. Additionally, cells with substance P had the tendinopathy change morphologically although cellular proliferation was significantly higher compared to that of the control group. In conclusion, substance P enhanced cellular proliferation, but concomitantly increased immature collagen (type 3 collagen). Substance P plays a crucial role in tendinopathy development and could be a future therapeutic target for treatment. PMID:28598390

  5. The Implication of Substance P in the Development of Tendinopathy: A Case Control Study.

    PubMed

    Han, Soo-Hong; Choi, Wonchul; Song, Jiye; Kim, Jaehee; Lee, Seungyong; Choi, Youngrak; Byun, Seong-Eun; Ahn, Taekeun; Ahn, Heejung; Ding, Catherine; Baik, Lloyd; Ward, Spencer; Ting, Kang; Lee, Soonchul

    2017-06-09

    It was reported that substance P had beneficial effects in the healing of acute tendon injury. However, the relationship between substance P and degenerative tendinopathy development remains unclear. The purpose of this study was to determine the role of substance P in the pathogenesis of tendinopathy. Healthy and tendinopathy tendon were harvested from human and tenocytes were cultured individually. The expression levels of genes associated with tendinopathy were compared. Next, substance P was exogenously administered to the healthy tenocyte and the effect was evaluated. The results showed that tendinopathy tenocytes had higher levels of COL3A1 , MMP1 , COX2 , SCX , ACTA2 , and substance P gene expression compared to healthy tenocytes. Next, substance P treatment on the healthy tenocyte displayed similar changes to that of the tendinopathy tenocytes. These differences between the two groups were also determined by Western blot. Additionally, cells with substance P had the tendinopathy change morphologically although cellular proliferation was significantly higher compared to that of the control group. In conclusion, substance P enhanced cellular proliferation, but concomitantly increased immature collagen (type 3 collagen). Substance P plays a crucial role in tendinopathy development and could be a future therapeutic target for treatment.

  6. Technology Transfer of Biopolymer Soil Amendment for Rapid Revegetation and Erosion Control at Fort A. P. Hill, Virginia

    DTIC Science & Technology

    2016-05-01

    consisting of a polysaccharide polymeric material, a natural product of plant/soil rhyzobial microbial activity, was demonstrated to enhance site...critical concern of the modern Army and the Army engineer. A unique soil additive consisting of a polysaccharide polymeric material, a natural product of... polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydrate Research 204: 103- 107. Kochian, L.V. 1995. Cellular mechanisms of

  7. Influence of mechanical and chemical polishing in the solubility of acrylic resins polymerized by microwave irradiation and conventional water bath.

    PubMed

    Machado, Cristiane; Rizzatti-Barbosa, Célia M; Gabriotti, Morgana N; Joia, Fábio A; Ribeiro, Margarete C; Sousa, Rodrigo L S

    2004-07-01

    The aim of this work was to evaluate the solubility of acrylic resin activated by microwave irradiation (MI) or water bath (WB), when submitted to chemical (CP) or mechanical (MP) polishing. Forty acrylic resin samples were made and processed either by water bath (74 +/- 1 degrees C, 9 h) or microwave irradiation (500 W, 3 min). After deflasking, the samples were finished with aluminum oxide sandpapers in decreasing granulations till reaching similar dimensions. The samples were divided into four groups according to the association between kind of polymerization and polishing: A (WB + CP), B (WB + MP), C (MI + CP) and D (MI + MP). Solubility test was performed for each group and percentile solubility was calculated. Data were statistically analyzed using variance analysis and Kruskal-Wallis. The average of percentile solubility (%) was obtained: A = 0.07, B = 0.02, C = 0.04, D = -0.14, however, no significant difference was found between types of polishing in the samples polymerized by water bath (A and B). When processed by microwave irradiation (C and D), there was significant difference between the applied methods of polishing, so that mechanical polishing lead to a lower solubility. Solubility is a property of acrylic resins, representing not reacted substances releasing that could promote tissular reactions in prosthesis users. The association between polymerization by microwave irradiation and mechanical polishing showed less residual substances releasing for heat-cured acrylic resins, reducing the probability of developing tissular reactions.

  8. Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

    PubMed

    Wang, Sheng; Zhang, Lei; Dong, Chunhong; Su, Lin; Wang, Hanjie; Chang, Jin

    2015-01-01

    A smart pH-responsive photodynamic therapy system based on upconversion nanoparticle loaded PEG coated polymeric lipid vesicles (RB-UPPLVs) was designed and prepared. These RB-UPPLVs which are promising agents for deep cancer photodynamic therapy applications can achieve enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

  9. Removal of radioactive contaminants by polymeric microspheres.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2016-11-01

    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.

  10. Biophysical characterization of hydrogel-core, lipid-shell nanoparticles (nanolipogels) for HIV chemoprophylaxis

    NASA Astrophysics Data System (ADS)

    Mahadevan, Reena

    Nanoparticles are emerging as versatile vehicles for drug delivery, providing targeting, protection, and controlled-release capabilities to encapsulated cargo. Polymeric nanoparticles made from poly(lactide-co-glycolide) (PLGA) are biodegradable, exhibit tunable drug release, and have encapsulated a wide variety of biological agents. However, PLGA nanoparticles are relatively inefficient at encapsulating small-molecule hydrophilic drugs. Liposomes encapsulate greater amounts of hydrophilic agents and demonstrate good cellular affinity; however, they lack controlled-release functionality. Hydrogel-core lipid-shell nanoparticles, or nanolipogels, combine the controlled-release capability of polymeric nanocarriers with the hydrophilic and cellular affinity of liposomes into a single drug delivery vehicle. This study establishes a facile, reproducible synthetic protocol for nanolipogels and evaluates hydrogel swelling as a mechanism for release of the small hydrophilic antiretroviral azidothymidine from nanolipogels.

  11. Chemical and sensory differences between high price and low price extra virgin olive oils.

    PubMed

    Fiorini, Dennis; Boarelli, Maria Chiara; Conti, Paolo; Alfei, Barbara; Caprioli, Giovanni; Ricciutelli, Massimo; Sagratini, Gianni; Fedeli, Donatella; Gabbianelli, Rosita; Pacetti, Deborah

    2018-03-01

    The aim of the study was to identify new potential chemical markers of extra virgin olive oil (EVOO) quality by using a multicomponent analysis approach. Sixty-six EVOOs were purchased from the Italian market and classified according to their price as low price EVOOs (LEVOOs) and high price EVOOs (HEVOOs) costing 3.60-5.90euro/L and 7.49-29.80euro/L respectively. Sensory and chemical parameters strictly related to olive oil quality have been investigated, like volatile substances, polar phenolic substances, antioxidant activity, fatty acid composition, and α-tocopherol. Significant differences in terms of chemical composition and sensory features have been highlighted between the two EVOOs classes investigated, proving a generally lower level of quality of LEVOOs, clearly showed also by means of principal component analysis. Among the most interesting outcomes, R ratio (free tyrosol and hydroxytyrosol over total free and bound forms), measuring the extent of secoiridoids hydrolysis, resulted to be significantly higher in LEVOOs than in HEVOOs. Other key differences were found in the volatile substances composition, in the stearic acid percentage and in p-coumaric acid content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization of extracellular polymeric substances in biofilms under long-term exposure to ciprofloxacin antibiotic using fluorescence excitation-emission matrix and parallel factor analysis.

    PubMed

    Gu, Chaochao; Gao, Pin; Yang, Fan; An, Dongxuan; Munir, Mariya; Jia, Hanzhong; Xue, Gang; Ma, Chunyan

    2017-05-01

    The presence of antibiotic residues in the environment has been regarded as an emerging concern due to their potential adverse environmental consequences such as antibiotic resistance. However, the interaction between antibiotics and extracellular polymeric substances (EPSs) of biofilms in wastewater treatment systems is not entirely clear. In this study, the effect of ciprofloxacin (CIP) antibiotic on biofilm EPS matrix was investigated and characterized using fluorescence excitation-emission matrix (EEM) and parallel factor (PARAFAC) analysis. Physicochemical analysis showed that the proteins were the major EPS fraction, and their contents increased gradually with an increase in CIP concentration (0-300 μg/L). Based on the characterization of biofilm tightly bound EPS (TB-EPS) by EEM, three fluorescent components were identified by PARAFAC analysis. Component C1 was associated with protein-like substances, and components C2 and C3 belonged to humic-like substances. Component C1 exhibited an increasing trend as the CIP addition increased. Pearson's correlation results showed that CIP correlated significantly with the protein contents and component C1, while strong correlations were also found among UV 254 , dissolved organic carbon, humic acids, and component C3. A combined use of EEM-PARAFAC analysis and chemical measurements was demonstrated as a favorable approach for the characterization of variations in biofilm EPS in the presence of CIP antibiotic.

  13. Acute Responses of Microorganisms from Membrane Bioreactors in the Presence of NaOCl: Protective Mechanisms of Extracellular Polymeric Substances.

    PubMed

    Han, Xiaomeng; Wang, Zhiwei; Chen, Mei; Zhang, Xingran; Tang, Chuyang Y; Wu, Zhichao

    2017-03-21

    Extracellular polymeric substances (EPS) are key foulants in membrane bioreactors (MBRs). However, their positive functions of protecting microorganisms from environmental stresses, e.g., during in situ hypochlorite chemical cleaning of membranes, have not been adequately elucidated. In this work, we investigated the response of microorganisms in an MBR to various dosages of NaOCl, with a particular emphasis on the mechanistic roles of EPS. Results showed that functional groups in EPS such as the hydroxyl and amino groups were attacked by NaOCl, causing the oxidation of polysaccharides, denaturation of amino acids, damage to protein secondary structure, and transformation of tryptophan protein-like substances to condensed aromatic ring substances. The presence of EPS alleviated the negative impacts on catalase and superoxide dismutase, which in turn reduced the concentration of reactive oxygen species (ROS) in microbial cells. The direct extracellular reaction and the mitigated intracellular oxidative responses facilitated the maintenance of microbial metabolism, as indicated by the quantity of adenosine triphosphate and the activity of dehydrogenase. The reaction with NaOCl also led to the changes of cell integrity and adhesion properties of EPS, which promoted the release of organic matter into bulk solution. Our results systematically demonstrate the protective roles of EPS and the underlying mechanisms in resisting the environmental stress caused by NaOCl, which provides important implications for in situ chemical cleaning in MBRs.

  14. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization.

    PubMed

    Shen, Jia; Ma, Hailin; Zhang, Tiancheng; Liu, Hui; Yu, Linghua; Li, Guosheng; Li, Huishuang; Hu, Meichun

    2017-01-01

    The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata) on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC) cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol's inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol's efficacy in vivo. Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Application of 1H and 23Na magic angle spinning NMR spectroscopy to define the HRBC up-taking of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Paleari, Lino; Biondi, Luca; Linati, Laura; De Miranda, Mario; Ghelli, Stefano

    2003-09-01

    The up-take of Gd(III) complexes of BOPTA, DTPA, DOTA, EDTP, HPDO3A, and DOTP in HRBC has been evaluated by measuring the lanthanide induced shift (LIS) produced by the corresponding dysprosium complexes (DC) on the MAS-NMR resonances of water protons and free sodium ions. These complexes are important in their use as MRI contrast agents (MRI-CA) in diagnostics. 1H and 23Na MAS-NMR spectra of HRBC suspension, collected at 9.395 T, show only one signal due to extra- and intra-cellular water (or sodium). In MAS spectra, the presence of DC in a cellular compartment produces the LIS of only the nuclei (water proton or sodium) in that cellular compartment and this LIS can be related to the DC concentrations (by the experimental curves of LIS vs. DC concentrations) collected in the physiological solution. To obtain correct results about LIS, the use of MAS technique is mandatory, because it guarantees the only the nuclei staying in the same cellular compartment where the LC is present show the LIS. In all the cases considered, the addition of the DC to HRBC (100% hematocrit) produced a shift of only the extra-cellular water (or sodium) signal and the gradient of concentration ( GC) between extra- and intra-cellular compartments resulted greater than 100:1, when calculated by means of sodium signals. These high values of GC are direct proofs that none of the tested dysprosium complexes crosses the HRBC membrane. Since the DC are iso-structural to the gadolinium complexes the corresponding gadolinium ones (MRI-CA) do not cross the HRBC membrane and, consequently, they are not up-taken in HRBC. The GC values calculated by means of water proton signals resulted much lower than those obtained by sodium signals. This proves that the choice of the isotope is a crucial step in order to use this method in the best way. In fact, GC value depends on the lowest detectable LIS which, in turn, depends on the nature of the LC (lanthanide complex) and the observed isotopes.

  16. On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation.

    PubMed

    Lorite, Gabriela S; de Souza, Alessandra A; Neubauer, Daniel; Mizaikoff, Boris; Kranz, Christine; Cotta, Mônica A

    2013-02-01

    The structural integrity and protection of bacterial biofilms are intrinsically associated with a matrix of extracellular polymeric substances (EPS) produced by the bacteria cells. However, the role of these substances during biofilm adhesion to a surface remains largely unclear. In this study, the influence of EPS on Xylella fastidiosa biofilm formation was investigated. This bacterium is associated with economically important plant diseases; it presents a slow growth rate and thus allows us to pinpoint more precisely the early stages of cell-surface adhesion. Scanning electron microscopy and atomic force microscopy show evidence of EPS production in such early stages and around individual bacteria cells attached to the substrate surface even a few hours after inoculation. In addition, EPS formation was investigated via attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR). To this end, X. fastidiosa cells were inoculated within an ATR liquid cell assembly. IR-ATR spectra clearly reveal EPS formation already during the early stages of X. fastidiosa biofilm formation, thereby providing supporting evidence for the hypothesis of the relevance of the EPS contribution to the adhesion process. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Studies on the cellular localization of spinal cord substance P receptors.

    PubMed

    Helke, C J; Charlton, C G; Wiley, R G

    1986-10-01

    Substance P-immunoreactivity and specific substance P binding sites are present in the spinal cord. Receptor autoradiography showed the discrete localization of substance P binding sites in both sensory and motor regions of the spinal cord and functional studies suggested an important role for substance P receptor activation in autonomic outflow, nociception, respiration and somatic motor function. In the current studies, we investigated the cellular localization of substance P binding sites in rat spinal cord using light microscopic autoradiography combined with several lesioning techniques. Unilateral injections of the suicide transport agent, ricin, into the superior cervical ganglion reduced substance P binding and cholinesterase-stained preganglionic sympathetic neurons in the intermediolateral cell column. However, unilateral electrolytic lesions of ventral medullary substance P neurons which project to the intermediolateral cell column did not alter the density of substance P binding in the intermediolateral cell column. Likewise, 6-hydroxydopamine and 5,7-dihydroxytryptamine, which destroy noradrenergic and serotonergic nerve terminals, did not reduce the substance P binding in the intermediolateral cell column. It appears, therefore, that the substance P binding sites are located postsynaptically on preganglionic sympathetic neurons rather than presynaptically on substance P-immunoreactive processes (i.e. as autoreceptors) or on monoamine nerve terminals. Unilateral injections of ricin into the phrenic nerve resulted in the unilateral destruction of phrenic motor neurons in the cervical spinal cord and caused a marked reduction in the substance P binding in the nucleus. Likewise, sciatic nerve injections of ricin caused a loss of associated motor neurons in the lateral portion of the ventral horn of the lumbar spinal cord and a reduction in the substance P binding. Sciatic nerve injections of ricin also destroyed afferent nerves of the associated dorsal root ganglia and increased the density of substance P binding in the dorsal horn. Capsaicin, which destroys small diameter primary sensory neurons, similarly increased the substance P binding in the dorsal horn. These studies show that the cellular localization of substance P binding sites can be determined by analysis of changes in substance P binding to discrete regions of spinal cord after selective lesions of specific groups of neurons. The data show the presence of substance P binding sites on preganglionic sympathetic neurons in the intermediolateral cell column and on somatic motor neurons in the ventral horn, including the phrenic motor nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES

    PubMed Central

    Avery, Oswald T.; MacLeod, Colin M.; McCarty, Maclyn

    1944-01-01

    1. From Type III pneumococci a biologically active fraction has been isolated in highly purified form which in exceedingly minute amounts is capable under appropriate cultural conditions of inducing the transformation of unencapsulated R variants of Pneumococcus Type II into fully encapsulated cells of the same specific type as that of the heat-killed microorganisms from which the inducing material was recovered. 2. Methods for the isolation and purification of the active transforming material are described. 3. The data obtained by chemical, enzymatic, and serological analyses together with the results of preliminary studies by electrophoresis, ultracentrifugation, and ultraviolet spectroscopy indicate that, within the limits of the methods, the active fraction contains no demonstrable protein, unbound lipid, or serologically reactive polysaccharide and consists principally, if not solely, of a highly polymerized, viscous form of desoxyribonucleic acid. 4. Evidence is presented that the chemically induced alterations in cellular structure and function are predictable, type-specific, and transmissible in series. The various hypotheses that have been advanced concerning the nature of these changes are reviewed. PMID:19871359

  19. The role of hydrodynamic stress on the phenotypic characteristics of single and binary biofilms of Pseudomonas fluorescens.

    PubMed

    Simões, M; Pereira, M O; Vieira, M J

    2007-01-01

    This study investigates the phenotype of turbulent (Re = 5,200) and laminar (Re = 2,000) flow-generated Pseudomonas fluorescens biofilms. Three P. fluorescens strains, the type strain ATCC 13525 and two strains isolated from an industrial processing plant, D3-348 and D3-350, were used throughout this study. The isolated strains were used to form single and binary biofilms. The biofilm physiology (metabolic activity, cellular density, mass, extracellular polymeric substances, structural characteristics and outer membrane proteins [OMP] expression) was compared. The results indicate that, for every situation, turbulent flow-generated biofilms were more active (p < 0.05), had more mass per cm(2) (p < 0.05), a higher cellular density (p < 0.05), distinct morphology, similar matrix proteins (p > 0.1) and identical (isolated strains -single and binary biofilms) and higher (type strain) matrix polysaccharides contents (p < 0.05) than laminar flow-generated biofilms. Flow-generated biofilms formed by the type strain revealed a considerably higher cellular density and amount of matrix polysaccharides than single and binary biofilms formed by the isolated strains (p < 0.05). Similar OMP expression was detected for the several single strains and for the binary situation, not dependent on the hydrodynamic conditions. Binary biofilms revealed an equal coexistence of the isolated strains with apparent neutral interactions. In summary, the biofilms formed by the type strain represent, apparently, the worst situation in a context of control. The results obtained clearly illustrate the importance of considering strain variation and hydrodynamics in biofilm development, and complement previous studies which have focused on physical aspects of structural and density differences.

  20. Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy.

    PubMed

    Zhuang, Weihua; Xu, Yangyang; Li, Gaocan; Hu, Jun; Ma, Boxuan; Yu, Tao; Su, Xin; Wang, Yunbing

    2018-05-21

    Intelligent polymeric micelles for antitumor drug delivery and tumor bioimaging have drawn a broad attention because of their reduced systemic toxicity, enhanced efficacy of drugs, and potential application of tumor diagnosis. Herein, we developed a multifunctional polymeric micelle system based on a pH and redox dual-responsive mPEG-P(TPE- co-AEMA) copolymer for stimuli-triggered drug release and aggregation-induced emission (AIE) active imaging. These mPEG-P(TPE- co-AEMA)-based micelles showed excellent biocompatibility and emission property, exhibiting great potential application for cellular imaging. Furthermore, the antitumor drug doxorubicin (DOX) could be encapsulated during self-assembly process with high loading efficiency, and a DOX-loaded micelle system with a size of 68.2 nm and narrow size distribution could be obtained. DOX-loaded micelles demonstrated great tumor suppression ability in vitro, and the dual-responsive triggered intracellular drug release could be further traced. Moreover, DOX-loaded micelles could efficiently accumulate at the tumor site because of enhanced permeability and retention effect and long circulation of micelles. Compared with free DOX, DOX-loaded micelles exhibited better antitumor effect and significantly reduced adverse effects. Given the efficient accumulation targeting to tumor tissue, dual-responsive drug release, and excellent AIE property, this polymeric micelle would be a potential candidate for cancer therapy and diagnosis.

  1. Production methodologies of polymeric and hydrogel particles for drug delivery applications.

    PubMed

    Lima, Ana Catarina; Sher, Praveen; Mano, João F

    2012-02-01

    Polymeric particles are ideal vehicles for controlled delivery applications due to their ability to encapsulate a variety of substances, namely low- and high-molecular mass therapeutics, antigens or DNA. Micro and nano scale spherical materials have been developed as carriers for therapies, using appropriated methodologies, in order to achieve a prolonged and controlled drug administration. This paper reviews the methodologies used for the production of polymeric micro/nanoparticles. Emulsions, phase separation, spray drying, ionic gelation, polyelectrolyte complexation and supercritical fluids precipitation are all widely used processes for polymeric micro/nanoencapsulation. This paper also discusses the recent developments and patents reported in this field. Other less conventional methodologies are also described, such as the use of superhydrophobic substrates to produce hydrogel and polymeric particulate biomaterials. Polymeric drug delivery systems have gained increased importance due to the need for improving the efficiency and versatility of existing therapies. This allows the development of innovative concepts that could create more efficient systems, which in turn may address many healthcare needs worldwide. The existing methods to produce polymeric release systems have some critical drawbacks, which compromise the efficiency of these techniques. Improvements and development of new methodologies could be achieved by using multidisciplinary approaches and tools taken from other subjects, including nanotechnologies, biomimetics, tissue engineering, polymer science or microfluidics.

  2. Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh—Rose neuron model

    NASA Astrophysics Data System (ADS)

    Jia, Bing

    2014-03-01

    A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.

  3. Large-scale filament formation inhibits the activity of CTP synthetase

    PubMed Central

    Barry, Rachael M; Bitbol, Anne-Florence; Lorestani, Alexander; Charles, Emeric J; Habrian, Chris H; Hansen, Jesse M; Li, Hsin-Jung; Baldwin, Enoch P; Wingreen, Ned S; Kollman, Justin M; Gitai, Zemer

    2014-01-01

    CTP Synthetase (CtpS) is a universally conserved and essential metabolic enzyme. While many enzymes form small oligomers, CtpS forms large-scale filamentous structures of unknown function in prokaryotes and eukaryotes. By simultaneously monitoring CtpS polymerization and enzymatic activity, we show that polymerization inhibits activity, and CtpS's product, CTP, induces assembly. To understand how assembly inhibits activity, we used electron microscopy to define the structure of CtpS polymers. This structure suggests that polymerization sterically hinders a conformational change necessary for CtpS activity. Structure-guided mutagenesis and mathematical modeling further indicate that coupling activity to polymerization promotes cooperative catalytic regulation. This previously uncharacterized regulatory mechanism is important for cellular function since a mutant that disrupts CtpS polymerization disrupts E. coli growth and metabolic regulation without reducing CTP levels. We propose that regulation by large-scale polymerization enables ultrasensitive control of enzymatic activity while storing an enzyme subpopulation in a conformationally restricted form that is readily activatable. DOI: http://dx.doi.org/10.7554/eLife.03638.001 PMID:25030911

  4. Information content and cross-talk in biological signal transduction: An information theory study

    NASA Astrophysics Data System (ADS)

    Prasad, Ashok; Lyons, Samanthe

    2014-03-01

    Biological cells respond to chemical cues provided by extra-cellular chemical signals, but many of these chemical signals and the pathways they activate interfere and overlap with one another. How well cells can distinguish between interfering extra-cellular signals is thus an important question in cellular signal transduction. Here we use information theory with stochastic simulations of networks to address the question of what happens to total information content when signals interfere. We find that both total information transmitted by the biological pathway, as well as its theoretical capacity to discriminate between overlapping signals, are relatively insensitive to cross-talk between the extracellular signals, until significantly high levels of cross-talk have been reached. This robustness of information content against cross-talk requires that the average amplitude of the signals are large. We predict that smaller systems, as exemplified by simple phosphorylation relays (two-component systems) in bacteria, should be significantly much less robust against cross-talk. Our results suggest that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content, while smaller bacterial systems cannot.

  5. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Pereira, Sara B.; Mota, Rita; Vieira, Cristina P.; Vieira, Jorge; Tamagnini, Paula

    2015-10-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cyanobacteria was performed. Our results demonstrated that most strains harbor genes encoding proteins related to the three main pathways: Wzy-, ABC transporter-, and Synthase-dependent, but often not the complete set defining one pathway. Multiple gene copies are mainly correlated to larger genomes, and the strains with reduced genomes (e.g. the clade of marine unicellular Synechococcus and Prochlorococcus), seem to have lost most of the EPS-related genes. Overall, the distribution of the different genes/proteins within the cyanobacteria phylum raises the hypothesis that cyanobacterial EPS production may not strictly follow one of the pathways previously characterized. Moreover, for the proteins involved in EPS polymerization, amino acid patterns were defined and validated constituting a novel and robust tool to identify proteins with similar functions and giving a first insight to which polymer biosynthesis they are related to.

  6. Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration

    PubMed Central

    Ayala-Caminero, Radamés; Pinzón-Herrera, Luis; Martinez, Carol A. Rivera; Almodovar, Jorge

    2018-01-01

    Understanding peripheral nerve repair requires the evaluation of 3D structures that serve as platforms for 3D cell culture. Multiple platforms for 3D cell culture have been developed, mimicking peripheral nerve growth and function, in order to study tissue repair or diseases. To recreate an appropriate 3D environment for peripheral nerve cells, key factors are to be considered including: selection of cells, polymeric biomaterials to be used, and fabrication techniques to shape and form the 3D scaffolds for cellular culture. This review focuses on polymeric 3D platforms used for the development of 3D peripheral nerve cell cultures. PMID:29515936

  7. Bioactive Polymeric Composites for Tooth Mineral Regeneration: Physicochemical and Cellular Aspects

    PubMed Central

    Skrtic, Drago; Antonucci, Joseph M.

    2011-01-01

    Our studies of amorphous calcium phosphate (ACP)-based dental materials are focused on the design of bioactive, non-degradable, biocompatible, polymeric composites derived from acrylic monomer systems and ACP by photochemical or chemically activated polymerization. Their intended uses include remineralizing bases/liners, orthodontic adhesives and/or endodontic sealers. The bioactivity of these materials originates from the propensity of ACP, once exposed to oral fluids, to release Ca and PO4 ions (building blocks of tooth and bone mineral) in a sustained manner while spontaneously converting to thermodynamically stable apatite. As a result of ACP's bioactivity, local Ca- and PO4-enriched environments are created with supersaturation conditions favorable for the regeneration of tooth mineral lost to decay or wear. Besides its applicative purpose, our research also seeks to expand the fundamental knowledge base of structure-composition-property relationships existing in these complex systems and identify the mechanisms that govern filler/polymer and composite/tooth interfacial phenomena. In addition to an extensive physicochemical evaluation, we also assess the leachability of the unreacted monomers and in vitro cellular responses to these types of dental materials. The systematic physicochemical and cellular assessments presented in this study typically provide model materials suitable for further animal and/or clinical testing. In addition to their potential dental clinical value, these studies suggest the future development of calcium phosphate-based biomaterials based on composite materials derived from biodegradable polymers and ACP, and designed primarily for general bone tissue regeneration. PMID:22102967

  8. Characterization of polymeric solutions as injectable vehicles for hydroxyapatite microspheres.

    PubMed

    Oliveira, Serafim M; Almeida, Isabel F; Costa, Paulo C; Barrias, Cristina C; Ferreira, M Rosa Pena; Bahia, M Fernanda; Barbosa, Mário A

    2010-06-01

    A polymeric solution and a reinforcement phase can work as an injectable material to fill up bone defects. However, the properties of the solution should be suitable to enable the transport of that extra phase. Additionally, the use of biocompatible materials is a requirement for tissue regeneration. Thus, we intended to optimize a biocompatible polymeric solution able to carry hydroxyapatite microspheres into bone defects using an orthopedic injectable device. To achieve that goal, polymers usually regarded as biocompatible were selected, namely sodium carboxymethylcellulose, hydroxypropylmethylcellulose, and Na-alginate (ALG). The rheological properties of the polymeric solutions at different concentrations were assessed by viscosimetry before and after moist heat sterilization. In order to correlate rheological properties with injectability, solutions were tested using an orthopedic device applied for minimal invasive surgeries. Among the three polymers, ALG solutions presented the most suitable properties for our goal and a non-sterile ALG 6% solution was successfully used to perform preliminary injection tests of hydroxyapatite microspheres. Sterile ALG 7.25% solution was found to closely match non-sterile ALG 6% properties and it was selected as the optimal vehicle. Finally, sterile ALG 7.25% physical stability was studied at different temperatures over a 3-month period. It was observed that its rheological properties presented minor changes when stored at 25 degrees C or at 4 degrees C.

  9. The mammary cellular hierarchy and breast cancer.

    PubMed

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  10. Microporous polymeric 3D scaffolds templated by the layer-by-layer self-assembly.

    PubMed

    Paulraj, Thomas; Feoktistova, Natalia; Velk, Natalia; Uhlig, Katja; Duschl, Claus; Volodkin, Dmitry

    2014-08-01

    Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio-molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer-by-layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio-molecules using external triggers such as IR-light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Two-step impression/ injection, an alternative putty/ wash impression technique: case report.

    PubMed

    Caputi, S; Murmura, G; Sinjari, B; Varvara, G

    2012-01-01

    We here describe a new technique for making a definitive impression that we refer to as the two-step impression/injection technique. This technique initially follows the classical one-step putty/ light-body impression technique with the polymerization of the putty and the light-body compound. This is then followed by the second step: injection of extra-light-body compound into the preparation through a hole in the metal stock tray. The aim of this additional step is to control the wash bulk and minimize the changes that can produce unfavorable impression results. This new two-step impression/injection technique allows displacement of soft tissues, such as the tongue, during the first seating of the putty and wash materials, while in the second step, the extra-light-body compound records all of the finer details without being compressed.

  12. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    PubMed

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  13. Eutectic phase in water-ice: a self-assembled environment conducive to metal-catalyzed non-enzymatic RNA polymerization.

    PubMed

    Monnard, Pierre-Alain; Ziock, Hans

    2008-08-01

    Information and catalytic polymers play an essential role in contemporary cellular life, and their emergence must have been crucial during the complex processes that led to the assembly of the first living systems. Polymerization reactions producing these molecules would have had to occur in aqueous medium, which is known to disfavor such reactions. Thus, it was proposed early on that these polymerizations had to be supported by particular environments, such as mineral surfaces and eutectic phases in water-ice, which would have led to the concentration of the monomers out of the bulk aqueous medium and their condensation. This review presents the work conducted to understand how the eutectic phases in water-ice might have promoted RNA polymerization, thereby presumably contributing to the emergence of the ancient information and catalytic system envisioned by the 'RNA-World' hypothesis.

  14. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  15. Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Jordan, Jacqueline; Fraga, Denise N.

    2007-01-01

    A process has been developed for the rapid tissue engineering of multicellular-tissue-equivalent assemblies by the controlled enzymatic degradation of polymeric beads in a low-fluid-shear bioreactor. In this process, the porous polymeric beads serve as temporary scaffolds to support the assemblies of cells in a tissuelike 3D configuration during the critical initial growth phases of attachment of anchorage-dependent cells, aggregation of the cells, and formation of a 3D extracellular matrix. Once the cells are assembled into a 3D array and enmeshed in a structural supportive 3D extracellular matrix (ECM), the polymeric scaffolds can be degraded in the low-fluid-shear environment of the NASA-designed bioreactor. The natural 3D tissuelike assembly, devoid of any artificial support structure, is maintained in the low-shear bioreactor environment by the newly formed natural cellular/ECM. The elimination of the artificial scaffold allows normal tissue structure and function.

  16. Purification and partial characterization of PfHRP-II protein of Plasmodium falciparum.

    PubMed

    Ghimire, Prakash; Samantaray, J C; Mirdha, B R; Patra, A K; Panda, A K

    2003-12-01

    The human malarial parasite Plasmodium falciparum secretes various intra-and extra-cellular proteins during its asexual life cycle in human RBC. Histidine rich protein-II (HRP-II) is one of the most prominent proteins, found to be secreted by P. falciparum throughout the asexual cycle with the peak during mature schizont stage of the parasite development in human IRBC. The high histidine content (35% of the total amino acids in protein) of this protein suggested the potential to bind divalent metal ions. We have demonstrated by metal chelate chromatography, an extraordinary capacity of HRP-II to bind nickel ions (Ni++) and employed this characteristic to purify the extra-cellular HRP-II protein secreted by P. falciparum from culture supernatant. The identity of the purified protein was verified by the relative molecular weight on SDS-PAGE, by reacting with polyclonal antibodies directed against it using Western blot technique.

  17. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymerized copolymer of ethyl acrylate, methyl methacrylate, and methacrylic acid applied in emulsion form to... of the polymer and in the preparation and application of the emulsion may include substances named in... amount required as a preservative in emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde...

  18. Interaction of Nanoparticles with Biofilms

    EPA Science Inventory

    In this work we have studied the interaction and adsorption of engineered nanoparticles such as TiO2, ZnO, CeO2 , and carbon nanotubes with biofilms. Biofilm is an extracellular polymeric substance coating comprised of living material and it is an aggregation of bacteria, algae, ...

  19. 21 CFR 178.3740 - Plasticizers in polymeric substances.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND... type of food and under the conditions of time and temperature characterizing the conditions of its... that contain more than 8 percent of alcohol) at temperatures not to exceed room temperature. The...

  20. 21 CFR 178.3740 - Plasticizers in polymeric substances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND... type of food and under the conditions of time and temperature characterizing the conditions of its... that contain more than 8 percent of alcohol) at temperatures not to exceed room temperature. The...

  1. 21 CFR 178.3740 - Plasticizers in polymeric substances.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND... type of food and under the conditions of time and temperature characterizing the conditions of its... that contain more than 8 percent of alcohol) at temperatures not to exceed room temperature. The...

  2. 21 CFR 178.3740 - Plasticizers in polymeric substances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND... type of food and under the conditions of time and temperature characterizing the conditions of its... that contain more than 8 percent of alcohol) at temperatures not to exceed room temperature. The...

  3. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    PubMed

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry.

    PubMed

    Yan, Peng; Xia, Jia-Shuai; Chen, You-Peng; Liu, Zhi-Ping; Guo, Jin-Song; Shen, Yu; Zhang, Cheng-Cheng; Wang, Jing

    2017-05-01

    Extracellular polymeric substances (EPS) play a crucial role in heavy metal bio-adsorption using activated sludge, but the interaction mechanism between heavy metals and EPS remains unclear. Isothermal titration calorimetry was employed to illuminate the mechanism in this study. The results indicate that binding between heavy metals and EPS is spontaneous and driven mainly by enthalpy change. Extracellular proteins in EPS are major participants in the binding process. Environmental conditions have significant impact on the adsorption performance. Divalent and trivalent cations severely impeded the binding of heavy metal ions to EPS. Electrostatic interaction mainly attributed to competition between divalent cations and heavy metal ions; trivalent cations directly competed with heavy metal ions for EPS binding sites. Trivalent cations were more competitive than divalent cations for heavy metal ion binding because they formed complexing bonds. This study facilitates a better understanding about the interaction between heavy metals and EPS in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    PubMed

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    PubMed

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation. Copyright © 2015. Published by Elsevier Ltd.

  8. Characterization of extracellular polymeric substances in the biofilms of typical bacteria by the sulfur K-edge XANES spectroscopy.

    PubMed

    Lin, Huirong; Ye, Chengsong; Lv, Lu; Zheng, Clark Renjun; Zhang, Shenghua; Zheng, Lei; Zhao, Yidong; Yu, Xin

    2014-08-01

    A combined approach of physicochemical extraction and sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to characterize the extracellular polymeric substances (EPS) of typical bacterial biofilms in this study. Physicochemical analysis showed variation of the contents of DNA, polysaccharide and protein in different fractions of EPS in different mediums. The sulfur K-edge XANES analysis yielded a variety of spectra. Spectral fitting of the XANES spectra utilizing a large set of model compounds showed that there was more reduced sulfur in both LB-EPS (loosely bound EPS) and TB-EPS (tightly bound EPS) of all the biofilms in LB medium than in R2A medium. More oxidized sulfur was identified in LB-EPS than that in TB-EPS, suggesting different niches and physiological heterogeneity in the biofilms. Our results suggested that the sulfur K-edge XANES can be a useful tool to analyze the sulfur speciation in EPS of biofilms. Copyright © 2014. Published by Elsevier B.V.

  9. Membrane fouling related to microbial community and extracellular polymeric substances at different temperatures.

    PubMed

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2013-09-01

    An anoxic-aerobic membrane bioreactor was established to investigate the role of microorganisms and microbial metabolites in membrane fouling at different temperatures. The results showed that the membrane fouling cycle at 303, 293, and 283 K were 30, 29, and 5.5 days, respectively. Polysaccharides dominated the extracellular polymeric substances (EPS) and soluble microbial products (SMP) at 303 and 293 K, instead, proteins was the predominant composition of metabolites at 283 K. The correlation coefficient (r(2)) was calculated to identify the relationship between temperature (T), filtration resistance (R) and compositions of EPS and SMP. In biocake, the EPS polysaccharides (EPSc) was the most correlative factor to temperature (T) and filtration resistance (R); in mixed liquor, the ratio of SMP polysaccharides to proteins (SMPc/p) was the most correlative factor. The microbial community structure and the dominant species was the major reason causing the change of EPS and SMP composition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    PubMed

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (<1 kDa) and lower percentage of large molecular size (>100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Fabrication of core-shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye.

    PubMed

    Beyki, Mostafa Hossein; Bayat, Mehrnoosh; Shemirani, Farzaneh

    2016-10-01

    Ionic liquids are considered to be a class of environmentally friendly compounds as combination of them with bioresource polymeric substances such as; cellulose, constitute emerging coating materials. Biosorption by polymeric ionic liquids exhibits an attractive green way that involves low cost and irrespective of toxicity. As a result, a novel polymeric ionic liquid has been developed by the reaction of one step synthesized Fe3O4-cellulose nanohybrid, epichlorohydrin and 1-methylimidazole and employed as a green sorbent for efficient biosorption of Congo red dye. Effective parameters on dye removing as well as their interactions were determined with response surface methodology (RSM). Congo red adsorption showed fast equilibrium time (11min) with maximum uptake of 131mgg(-1). Isotherm study revealed that Langmuir adsorption model can better describe dye adsorption behavior. Regeneration of the sorbent was performed with a mixture of methanol-acetone-NaOH (3.0molL(-1)) solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of C/N ratio on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor treating saline wastewater.

    PubMed

    Wang, Zichao; Gao, Mengchun; Xin, Yanjun; Ma, Dong; She, Zonglian; Wang, Zhe; Sun, Changqing; Ren, Yun

    2014-01-01

    The effect of C/N ratio on extracellular polymeric substances (EPS) of activated sludge was investigated in an anoxic-aerobic sequencing batch reactor (SBR) treating saline wastewater. The protein (PN) and protein/polysaccharide (PN/PS) ratio in the loosely bound EPS (LB-EPS) increased with the decrease of C/N ratio, whereas the PS in the LB-EPS decreased. The PS, PN and PN/PS ratio in the tightly bound EPS (TB-EPS) were independent of C/N ratio. Two fluorescence peaks in the LB-EPS and TB-EPS were identified at excitation/emission (Ex/Em) wavelengths of 275-280/335-340 nm and 220-225/330-340 nm by three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, respectively. These peaks in LB-EPS and TB-EPS were, respectively, associated with tryptophan protein-like substances and aromatic protein-like substances. The tryptophan protein-like fluorescence peaks in LB-EPS showed blue shift along the Ex axis and red shift along the Em axis with the decrease of C/N ratio. Fourier transform infrared spectra suggested that the variation of C/N ratio had more distinct effect on the functional groups of protein in the LB-EPS than those in the TB-EPS. The sludge volume index value decreased with the increase of LB-EPS, but there was no correlation between SVI and TB-EPS.

  13. Extracellular polymeric substances facilitate the biosorption of phenanthrene on cyanobacteria Microcystis aeruginosa.

    PubMed

    Bai, Leilei; Xu, Huacheng; Wang, Changhui; Deng, Jiancai; Jiang, Helong

    2016-11-01

    Phytoplankton-derived extracellular polymeric substances (EPS) are of vital importance for the biogeochemical cycles of hydrophobic organic pollutants in lake ecosystems. In this study, roles of loosely-bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) in biosorption of phenanthrene (PHE) on a typical cyanobacteria Microcystis aeruginosa were investigated. The results showed that the biosorption of PHE on M. aeruginosa cell varied lasted 24 h, while the binding of PHE to LB-EPS and TB-EPS reached equilibrium within less than 2 h. The equilibrium biosorption capacities of M. aeruginosa cell, LB-EPS and TB-EPS were 6.78, 12.31, and 9.47 μg mg(-1), respectively, indicating that the binding of PHE to EPS was a considerable process involved in biosorption. Fluorescence quenching titration revealed that increasing temperature induced more binding sites in EPS for PHE and the binding process was driven by electrostatic force and hydrophobic interactions. Interestingly, dynamic and static quenching processes occurred simultaneously for the binding of PHE to protein-like substances in EPS, whereas the binding of PHE to humic-like substances belonged to static quenching. The relatively higher contents of proteins in LB-EPS produced a stronger binding capacity of PHE. Overall, the interactions between hydrophobic organic pollutants and cyanobacterial EPS are favorable to the bioaccumulation of hydrophobic organic pollutants in cyanobacteria and facilitate the regulatory function of cyanobacterial biomass as a biological pump. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Substance P receptor desensitization requires receptor activation but not phospholipase C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiya, Hiroshi; Putney, J.W. Jr.

    1988-08-01

    Previous studies have shown that exposure of parotid acinar cells to substance P at 37{degree}C results in activation of phospholipase C, formation of ({sup 3}H)inositol 1,4,5-trisphosphate (IP{sub 3}), and persistent desensitization of the substance P response. In cells treated with antimycin in medium containing glucose, ATP was decreased to {approximately}20% of control values, IP{sub 3} formation was completely inhibited, but desensitization was unaffected. When cells were treated with antimycin in the absence of glucose, cellular ATP was decreased to {approximately}5% of control values, and both IP{sub 3} formation and desensitization were blocked. A series of substance P-related peptides increased themore » formation of ({sup 3}H)IP{sub 3} and induced desensitization of the substance P response with a similar rank order of potencies. The substance P antagonist, (D-Pro{sup 2}, D-Try{sup 7,9})-substance P, inhibited substance P-induced IP{sub 3} formation and desensitization but did not induce desensitization. These results suggest that the desensitization of substance P-induced IP{sub 3} formation requires agonist activation of a P-type substance P receptor, and that one or more cellular ATP-dependent processes are required for this reaction. However, activation of phospholipase C and the generation of inositol phosphates does not seem to be a prerequisite for desensitization.« less

  15. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover

    PubMed Central

    Swaney, Danielle L; Rodríguez-Mias, Ricard A; Villén, Judit

    2015-01-01

    Ubiquitylation is an essential post-translational modification that regulates numerous cellular processes, most notably protein degradation. Ubiquitin can itself be phosphorylated at nearly every serine, threonine, and tyrosine residue. However, the effect of this modification on ubiquitin function is largely unknown. Here, we characterized the effects of phosphorylation of yeast ubiquitin at serine 65 in vivo and in vitro. We find this post-translational modification to be regulated under oxidative stress, occurring concomitantly with the restructuring of the ubiquitin landscape into a highly polymeric state. Phosphomimetic mutation of S65 recapitulates the oxidative stress phenotype, causing a dramatic accumulation of ubiquitylated proteins and a proteome-wide reduction of protein turnover rates. Importantly, this mutation impacts ubiquitin chain disassembly, chain linkage distribution, ubiquitin interactions, and substrate targeting. These results demonstrate that phosphorylation is an additional mode of ubiquitin regulation with broad implications in cellular physiology. PMID:26142280

  16. Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactant-Free RAFT Emulsion Polymerization.

    PubMed

    Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Kim, Byung; Hartlieb, Matthias; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien

    2017-10-01

    The authors report the preparation of a novel range of functional polyacrylamide stabilized polystyrene nanoparticles, obtained by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization, their fluorescent tagging, cellular uptake, and biodistribution. The authors show the versatility of the RAFT emulsion process for the design of functional nanoparticles of well-defined size that can be used as drug delivery vectors. Functionalization with a fluorescent tag offers a useful visualization tool for tracing, localization, and clearance studies of these carriers in biological models. The studies are carried out by labeling the sterically stabilized latex particles chemically with rhodamine B. The fluorescent particles are incubated in a healthy human renal proximal tubular cell line model, and intravenously injected into a mouse model. Cellular localization and biodistribution of these particles on the biological models are explored. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    PubMed

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Different Resistance to UV-B Radiation of Extracellular Polymeric Substances of Two Cyanobacteria from Contrasting Habitats

    PubMed Central

    Song, Wenjuan; Zhao, Chenxi; Zhang, Daoyong; Mu, Shuyong; Pan, Xiangliang

    2016-01-01

    The effects of UV-B radiation (UVBR) on photosynthetic activity (Fv/Fm) of aquatic Synechocystis sp. and desert Chroococcus minutus and effects on composition and fluorescence property of extracellular polymeric substances (EPSs) from Synechocystis sp. and C. minutus were comparatively investigated. The desert cyanobacterium species C. minutus showed higher tolerance of PSII activity (Fv/Fm) to UVBR than the aquatic Synechocystis sp., and the inhibited PSII activity of C. minutus could be fully recovered while that of Synechocystis sp. could be partly recovered. UVBR had significant effect on the yield and biochemical composition of EPS of both species. Protein-like and humic acid-like substances were detected in EPS from Synechocystis sp., and protein-like and phenol-like fluorescent compounds were detected in EPS from C. minutus. Proteins in EPS of desert and aquatic species were significantly decomposed under UVBR, and the latter was more easily decomposed. The polysaccharides were much more resistant to UVBR than the proteins for both species. Polysaccharides of Synechocystis sp. was degraded slightly but those of C. minutus was little decomposed. The higher tolerance to UVBR of the desert cyanobacterium can be attributed to the higher resistance of its EPS to photodegradation induced by UVBR in comparison with the aquatic species. PMID:27597841

  19. Chitosan based hydrogels: characteristics and pharmaceutical applications

    PubMed Central

    Ahmadi, F.; Oveisi, Z.; Samani, S. Mohammadi; Amoozgar, Z.

    2015-01-01

    Hydrogel scaffolds serve as semi synthetic or synthetic extra cellular matrix to provide an amenable environment for cellular adherence and cellular remodeling in three dimensional structures mimicking that of natural cellular environment. Additionally, hydrogels have the capacity to carry small molecule drugs and/or proteins, growth factors and other necessary components for cell growth and differentiation. In the context of drug delivery, hydrogels can be utilized to localize drugs, increase drugs concentration at the site of action and consequently reduce off-targeted side effects. The current review aims to describe and classify hydrogels and their methods of production. The main highlight is chitosan-based hydrogels as biocompatible and medically relevant hydrogels for drug delivery. PMID:26430453

  20. The effect of biological cohesion on current ripple development

    NASA Astrophysics Data System (ADS)

    Malarkey, Jonathan; Baas, Jaco H.; Hope, Julie

    2014-05-01

    Results are presented from laboratory experiments examining the role of biological cohesion, associated with Extra Polymeric Substances, on the development of current ripples. The results demonstrate the importance of biological cohesion compared to the effect of physical cohesion associated with clays in an otherwise sandy bed. FURTHER INFORMATION In fluvial and marine environments sediment transport is mainly dependent on the nature of the bed surface (rippled or flat) and the nature of cohesion in the bed. Cohesion can be either physical, as a result of the presence of clays, or biological as a result of the presence of organisms. In the case of the latter, biological cohesion occurs as a result of the presence of Extra Polymeric Substances (EPS) secreted by microorganisms. While it is known that EPS can dramatically increase the threshold of motion (Grant and Gust, 1987), comparatively little is known about the effect of EPS on ripple formation and development. The experiments described here seek to fill this gap. They also allow the effect of biological cohesion to be compared with that of physical cohesion from previous experiments (Baas et al., 2013). The experiments, which were conducted in a 10m flume at Bangor University, involved a current over a bed made of fine sand, with a median diameter of 0.148mm, and various amounts of xanthan gum, a proxy for naturally occurring EPS (Vardy et al., 2007). The hydrodynamic experimental conditions were matched very closely to those of Baas et al. (2013). The ripple dimensions were recorded through the glass side wall of the tank using time lapse photography. In the physical cohesion experiments of Baas et al. (2013) for clay contents up to 12%, the clay was very quickly winnowed out of the bed, leaving essentially clay-free ripples that developed at more or less the same rate as clean sand ripples. The resulting equilibrium ripples were essentially the same length as the clean sand ripples but reduced in height. By contrast, the biological cohesion experiments resulted in a drastic slowing down in ripple development, for much smaller amounts of xanthan (< 1/8%), but resulted in equilibrium ripples with the same dimensions as abiotic sand. This difference in effect for biological and physical cohesion is thought to be related to differences in the nature of the binding. In particular, sand grains with biological cohesion are inhibited from moving independently, which is crucial to ripple development. This work has profound implications for sediment transport studies and emphasises the importance of considering biology as well as clays in sediments. ACKNOWLEDGEMENTS This work was funded by the UK Natural Environment Research Council (NERC) under the 'COHBED' project (NE/1027223/1). REFERENCES Baas, J.H., Davies, A.G. and Malarkey, A.G. (2013) Bedform development in mixed sand-mud: the contrasting role of cohesive forces in flow and bed. Geomorphology, 182, 19-32. Grant, J. and Gust, G. (1987) Prediction of coastal sediment stability from photopigment content of mats of purple sulfur bacteria. Nature, 330, 244-246. Vardy, S., Saunders, J.E., Tolhurst, T.J., Davies, P.A., and Paterson, D.M. (2007) Calibration of the high-pressure cohesive strength meter (CSM). Continental Shelf Research, 27, 1190-1199.

  1. Agricultural Polymers as Corrosion Inhibitors

    USDA-ARS?s Scientific Manuscript database

    Agricultural polymers were composed of extra-cellular polysaccharides secreted by Leuconostoc mesenteroides have been shown to inhibit corrosion on corrosion-sensitive metals. The substantially pure exopolysaccharide has a general structure consisting of alpha(1-6)-linked D-glucose backbone and appr...

  2. vEmbryo In Silico Models: Predicting Vascular Developmental Toxicity

    EPA Science Inventory

    The cardiovascular system is the first to function in the vertebrate embryo, reflecting the critical need for nutrient delivery and waste removal during organogenesis. Blood vessel development occurs by complex interacting signaling networks, including extra-cellular matrix remod...

  3. The Use of the Ex Vivo Chandler Loop Apparatus to Assess the Biocompatibility of Modified Polymeric Blood Conduits

    PubMed Central

    Slee, Joshua B.; Alferiev, Ivan S.; Levy, Robert J.; Stachelek, Stanley J.

    2014-01-01

    The foreign body reaction occurs when a synthetic surface is introduced to the body. It is characterized by adsorption of blood proteins and the subsequent attachment and activation of platelets, monocyte/macrophage adhesion, and inflammatory cell signaling events, leading to post-procedural complications. The Chandler Loop Apparatus is an experimental system that allows researchers to study the molecular and cellular interactions that occur when large volumes of blood are perfused over polymeric conduits. To that end, this apparatus has been used as an ex vivo model allowing the assessment of the anti-inflammatory properties of various polymer surface modifications. Our laboratory has shown that blood conduits, covalently modified via photoactivation chemistry with recombinant CD47, can confer biocompatibility to polymeric surfaces. Appending CD47 to polymeric surfaces could be an effective means to promote the efficacy of polymeric blood conduits. Herein is the methodology detailing the photoactivation chemistry used to append recombinant CD47 to clinically relevant polymeric blood conduits and the use of the Chandler Loop as an ex vivo experimental model to examine blood interactions with the CD47 modified and control conduits. PMID:25178087

  4. Atomic Force Microscopy (AFM) for In-Situ Biofilm Surface Characterization during Free Chlorine and Monochloramine Exposure

    EPA Science Inventory

    Drinking water distribution system biofilm are attached to pipe walls and found in sediments. These biofilms are complex and contain a variety of microorganisms embedded in a matrix with extracellular polymeric substances (EPS), providing protection from disinfection. Without pro...

  5. Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications

    NASA Astrophysics Data System (ADS)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    The most important applications of electrospun polymeric nanofibers are by far those from biomedical field. From the biological point of view, almost all the human tissues and organs consist of nanofibroas structures. The examples include the bone, dentine, cartilage, tendons and skin. All these are characterized through different fibrous structures, hierarchically organized at nanometer scale. Electrospinning represents one of the nanotechnologies that permit to obtain such structures for cell cultures, besides other technologies, such as selfassembling and phase separation technologies. The basic materials used to produce electrospun nanofibers can be natural or synthetic, having polymeric, ceramic or composite nature. These materials are selected depending of the nature and structure of the tissue meant to be regenerated, namely: for the regeneration of smooth tissues regeneration one needs to process through electrospinning polymeric basic materials, while in order to obtain the supports for the regeneration of hard tissues one must mainly use ceramic materials or composite structures that permit imbedding the bioactive substances in distinctive zones of the matrix. This work presents recent studies concerning basic materials used to obtain electrospun polymeric nanofibers, and real possibilities to produce and implement these nanofibers in medical bioengineering applications.

  6. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution.

    PubMed

    Yi, Yilwoong; Kim, Jae Hong; Kang, Hye-Won; Oh, Hun Seung; Kim, Sung Wan; Seo, Min Hyo

    2005-02-01

    To evaluate a new polymeric nanoparticulate drug delivery formulation that consists of two components: i) an amphiphilic diblock copolymer having tocopherol moiety at the end of the hydrophobic block in which the hydrophobic tocopherol moiety increases stability of hydrophobic core of the nanoparticle in aqueous medium; and ii) a biodegradable copolyester having carboxylate end group that is capable of forming ionic complex with positively charged compounds such as doxorubicin. A doxourubicin-loaded polymeric nanoparticle (Dox-PNP) was prepared by solvent evaporation method. The entrapment efficiency, size distribution, and in vitro release profile at various pH conditions were characterized. In vitro cellular uptake was investigated by confocal microscopy, flow cytometry, and MTT assay using drug-sensitive and drug-resistant cell lines. Pharmacokinetics and biodistribution were evaluated in rats and tumor-bearing mice. Doxorubicin (Dox) was efficiently loaded into the PNP (higher than 95% of entrapment efficiency), and the diameter of Dox-PNP was in the range 20-25 nm with a narrow size distribution. In Vitro study showed that Dox-PNP exhibited higher cellular uptake into both human breast cancer cell (MCF-7) and human uterine cancer cell (MES-SA) than free doxorubicin solution (Free-Dox), especially into drug-resistant cells (MCF-7/ADR and MES-SA/Dx-5). In pharmacokinetics and tissue distribution study, the bioavailability of Dox-PNP calculated from the area under the blood concentration-time curve (AUC) was 69.8 times higher than that of Free-Dox in rats, and Dox-PNP exhibited 2 times higher bioavailability in tumor tissue of tumor-bearing mice. Dox-PNP exhibited enhanced cellular uptake of the drug. In the cytotoxic activity study, this improved cellular uptake was proved to be more advantageous in drug-resistant cell. Dox-PNP exhibited much higher bioavailability in blood plasma and more drug accumulation in tumor tissue than conventional doxorubicin formulation. The results of this study suggest that the PNP system is an advantageous carrier for drug delivery.

  7. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    PubMed

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  8. Humic-like Products Formation via the Reaction of Phenol with Nitrite in Ice Phase

    NASA Astrophysics Data System (ADS)

    Min, D. W.; Choi, W.

    2017-12-01

    Understanding the chemical nature of humic substances is very important but the origin of humic substances in nature is not well known. Therefore, elucidating the mechanisms leading to the generation of humic substances in nature is of great interests. It is believed that humic substances are produced from the transformation of natural organic matters, like lignin, by biological pathways. Recently, it has been reported that monomer molecules like quinones and sugars could be polymerized with amino compounds to form humic-like substances. This humification process is considered as a possible mechanism of humic substances production in the environment. In this work, we report the first observation on the formation of humic-like substances from the reaction between phenol and nitrite under a frozen state. In aqueous solution, nitrite slowly reacts with phenol, producing phenolic compounds like nitrophenol. Under frozen state, however, phenol reacted rapidly with nitrite and produced diverse organic compounds, like hydroquinone, dimerized phenolic substances, and much bigger molecules such as humic-like substances. The humic-like substances produced in ice are likely caused by the formation of phenolic radical and nitrosonium ion. This work may provide some insights into unknown pathways for the origin of humic substances especially in frozen environments.

  9. Evaluation of intra- and extra-epithelial secretory IgA in chlamydial infections

    PubMed Central

    Armitage, Charles W; O’Meara, Connor P; Harvie, Marina C G; Timms, Peter; Wijburg, Odilia L; Beagley, Kenneth W

    2014-01-01

    Immunoglobulin A is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intra-epithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant secretory IgA (SIgA) we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra- and intra-epithelial stages of infection. We developed an in vitro model using polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model using pIgR−/− mice. Secretory IgA targeting the extra-epithelial chlamydial antigen, the major outer membrane protein, significantly reduced infection in vitro by 24% and in vivo by 44%. Conversely, pIgR-mediated delivery of IgA targeting the intra-epithelial inclusion membrane protein A bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intra-epithelial IgA targeting the secreted protease Chlamydia protease-like activity factor also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra-epithelial, but not intra-epithelial, chlamydial antigens for protection against a genital tract infection. PMID:24827556

  10. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate...

  11. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  12. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  13. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  14. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  15. Hybrid discrete-continuum modeling for transport, biofilm development and solid restructuring including electrostatic effects

    NASA Astrophysics Data System (ADS)

    Prechtel, Alexander; Ray, Nadja; Rupp, Andreas

    2017-04-01

    We want to present an approach for the mathematical, mechanistic modeling and numerical treatment of processes leading to the formation, stability, and turnover of soil micro-aggregates. This aims at deterministic aggregation models including detailed mechanistic pore-scale descriptions to account for the interplay of geochemistry and microbiology, and the link to soil functions as, e.g., the porosity. We therefore consider processes at the pore scale and the mesoscale (laboratory scale). At the pore scale transport by diffusion, advection, and drift emerging from electric forces can be taken into account, in addition to homogeneous and heterogeneous reactions of species. In the context of soil micro-aggregates the growth of biofilms or other glueing substances as EPS (extracellular polymeric substances) is important and affects the structure of the pore space in space and time. This model is upscaled mathematically in the framework of (periodic) homogenization to transfer it to the mesoscale resulting in effective coefficients/parameters there. This micro-macro model thus couples macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) with averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time and space dependent and its geometry inherits information from the transport equation's solutions. The microscale problems rely on versatile combinations of cellular automata and discontiuous Galerkin methods while on the mesoscale mixed finite elements are used. The numerical simulations allow to study the interplay between these processes.

  16. The Dual Edema-Preventing Molecular Mechanism of the Crataegus Extract WS 1442 Can Be Assigned to Distinct Phytochemical Fractions.

    PubMed

    Fuchs, Simone; Bischoff, Iris; Willer, Elisabeth A; Bräutigam, Jacqueline; Bubik, Martin F; Erdelmeier, Clemens A J; Koch, Egon; Faleschini, Maria T; De Mieri, Maria; Bauhart, Milena; Zahler, Stefan; Hensel, Andreas; Hamburger, Matthias; Potterat, Olivier; Fürst, Robert

    2017-05-01

    The hawthorn ( Crataegus spp.) extract WS 1442 is used against mild forms of chronic heart failure. This disease is associated with endothelial barrier dysfunction and edema formation. We have recently shown that WS 1442 protects against this dysfunction by a dual mechanism: it both promotes endothelial barrier integrity by activation of a barrier-enhancing pathway (cortactin activation) and inhibits endothelial hyperpermeability by blocking a barrier disruptive pathway (calcium signaling). In this study, we aimed to identify the bioactive compounds responsible for these actions by using a bioactivity-guided fractionation approach. From the four fractions generated from WS 1442 by successive elution with water, 95 % ethanol, methanol, and 70 % acetone, only the water fraction was inactive, whereas the other three triggered a reduction of endothelial hyperpermeability. Analyses of intracellular calcium levels and cortactin phosphorylation were used as readouts to estimate the bioactivity of subfractions and isolated compounds. Interestingly, only the ethanolic fraction interfered with the calcium signaling, whereas only the methanolic fraction led to an activation of cortactin. Thus, the dual mode of action of WS 1442 could be clearly assigned to two distinct fractions. Although the identification of the calcium-active substance(s) was not successful, we could exclude an involvement of phenolic compounds. Cortactin activation, however, could be clearly attributed to oligomeric procyanidins with a distinct degree of polymerization. Taken together, our study provides the first approach to identify the active constituents of WS 1442 that address different cellular pathways leading to the inhibition of endothelial barrier dysfunction. Georg Thieme Verlag KG Stuttgart · New York.

  17. Extra-embryonic tissue spreading directs early embryo morphogenesis in killifish

    PubMed Central

    Reig, Germán; Cerda, Mauricio; Sepúlveda, Néstor; Flores, Daniela; Castañeda, Victor; Tada, Masazumi; Härtel, Steffen; Concha, Miguel L.

    2017-01-01

    The spreading of mesenchymal-like cell layers is critical for embryo morphogenesis and tissue repair, yet we know little of this process in vivo. Here we take advantage of unique developmental features of the non-conventional annual killifish embryo to study the principles underlying tissue spreading in a simple cellular environment, devoid of patterning signals and major morphogenetic cell movements. Using in vivo experimentation and physical modelling we reveal that the extra-embryonic epithelial enveloping cell layer, thought mainly to provide protection to the embryo, directs cell migration and the spreading of embryonic tissue during early development. This function relies on the ability of embryonic cells to couple their autonomous random motility to non-autonomous signals arising from the expansion of the extra-embryonic epithelium, mediated by cell membrane adhesion and tension. Thus, we present a mechanism of extra-embryonic control of embryo morphogenesis that couples the mechanical properties of adjacent tissues in the early killifish embryo. PMID:28580937

  18. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits

    PubMed Central

    Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.

    2017-01-01

    Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739

  19. Cellular automata model for drug release from binary matrix and reservoir polymeric devices.

    PubMed

    Johannes Laaksonen, Timo; Mikael Laaksonen, Hannu; Tapio Hirvonen, Jouni; Murtomäki, Lasse

    2009-04-01

    Kinetics of drug release from polymeric tablets, inserts and implants is an important and widely studied area. Here we present a new and widely applicable cellular automata model for diffusion and erosion processes occurring during drug release from polymeric drug release devices. The model divides a 2D representation of the release device into an array of cells. Each cell contains information about the material, drug, polymer or solvent that the domain contains. Cells are then allowed to rearrange according to statistical rules designed to match realistic drug release. Diffusion is modeled by a random walk of mobile cells and kinetics of chemical or physical processes by probabilities of conversion from one state to another. This is according to the basis of diffusion coefficients and kinetic rate constants, which are on fundamental level just probabilities for certain occurrences. The model is applied to three kinds of devices with different release mechanisms: erodable matrices, diffusion through channels or pores and membrane controlled release. The dissolution curves obtained are compared to analytical models from literature and the validity of the model is considered. The model is shown to be compatible with all three release devices, highlighting easy adaptability of the model to virtually any release system and geometry. Further extension and applications of the model are envisioned.

  20. Coactosin accelerates cell dynamism by promoting actin polymerization.

    PubMed

    Hou, Xubin; Katahira, Tatsuya; Ohashi, Kazumasa; Mizuno, Kensaku; Sugiyama, Sayaka; Nakamura, Harukazu

    2013-07-01

    During development, cells dynamically move or extend their processes, which are achieved by actin dynamics. In the present study, we paid attention to Coactosin, an actin binding protein, and studied its role in actin dynamics. Coactosin was associated with actin and Capping protein in neural crest cells and N1E-115 neuroblastoma cells. Accumulation of Coactosin to cellular processes and its association with actin filaments prompted us to reveal the effect of Coactosin on cell migration. Coactosin overexpression induced cellular processes in cultured neural crest cells. In contrast, knock-down of Coactosin resulted in disruption of actin polymerization and of neural crest cell migration. Importantly, Coactosin was recruited to lamellipodia and filopodia in response to Rac signaling, and mutated Coactosin that cannot bind to F-actin did not react to Rac signaling, nor support neural crest cell migration. It was also shown that deprivation of Rac signaling from neural crest cells by dominant negative Rac1 (DN-Rac1) interfered with neural crest cell migration, and that co-transfection of DN-Rac1 and Coactosin restored neural crest cell migration. From these results we have concluded that Coactosin functions downstream of Rac signaling and that it is involved in neurite extension and neural crest cell migration by actively participating in actin polymerization. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Cellular uptake and intracellular trafficking of PEG-b-PLA polymeric micelles.

    PubMed

    Zhang, Zhen; Xiong, Xiaoqin; Wan, Jiangling; Xiao, Ling; Gan, Lu; Feng, Youmei; Xu, Huibi; Yang, Xiangliang

    2012-10-01

    Besides as an inert carrier for hydrophobic anticancer agents, polymeric micelles composed of di-block copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-b-PLA) function as biological response modifiers including reversal of multidrug resistance in cancer. However, the uptake mechanisms and the subsequent intracellular trafficking remain to be elucidated. In this paper, we found that the uptake of PEG-b-PLA polymeric micelles incorporating nile red (M-NR) was significantly inhibited by both dynamin inhibitor dynasore and dynamin-2 dominant negative mutant (dynamin-2 K44A). Exogenously expressed caveolin-1 colocalized with M-NR and upregulated M-NR internalization in HepG2 cells expressing low level of endogenous caveolin-1, while caveolin-1 dominant negative mutant (caveolin-1 Y14F) significantly downregulated M-NR internalization in C6 cells expressing high level of endogenous caveolin-1. Exogenously expressed clathrin light chain A (clathrin LCa) did not mainly colocalize with the internalized M-NR and had no effect on M-NR uptake. These results suggested that dynamin- and caveolin-dependent but clathrin-independent endocytosis was involved in M-NR cellular uptake. We further found that M-NR colocalized with lysosome and microtubulin after internalization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Driving mechanisms of passive and active transport across cellular membranes as the mechanisms of cell metabolism and development as well as the mechanisms of cellular distance reactions on hormonal expression and the immune response.

    PubMed

    Ponisovskiy, M R

    2011-01-01

    The article presents mechanisms of cell metabolism, cell development, cell activity, and maintenance of cellular stability. The literature is reviewed from the point of view of these concepts. The balance between anabolic and catabolic processes induces chemical potentials in the extracellular and intracellular media. The chemical potentials of these media are defined as the driving forces of both passive and active transport of substances across cellular membranes. The driving forces of substance transport across cellular membranes as in cellular metabolism and in immune responses and hormonal expressions are considered in the biochemical and biophysical models, reflecting the mechanisms for maintenance of stability of the internal medium and internal energy of an organism. The interactions of passive transport and active transport of substances across cellular walls promote cell proliferation, as well as the mechanism of cellular capacitors, promoting remote reactions across distance for hormonal expression and immune responses. The offered concept of cellular capacitors has given the possibility to explain the mechanism of remote responses of cells to new situations, resulting in the appearance of additional agents. The biophysical model develops an explanation of some cellular functions: cellular membrane action have been identified with capacitor action, based on the similarity of the structures and as well as on similarity of biophysical properties of electric data that confirm the action of the compound-specific interactions of cells within an organism, promoting hormonal expressions and immune responses to stabilize the thermodynamic system of an organism. Comparison of a cellular membrane action to a capacitor has given the possibility for the explanations of exocytosis and endocytosis mechanisms, internalization of the receptor-ligand complex, selection as a receptor reaction to a ligand by immune responses or hormonal effects, reflecting cellular distance reactions on the hormonal expressions, immune responses, and specificity of the mechanisms of immune reactions. Reviewing current research of cell activity, explanations are presented of mechanisms of apoptosis, autophagy, hormonal expression, and immune responses from the point of view of described cellular mechanisms. Thermodynamic laws are used to confirm the importance of the actions of these mechanisms for maintenance of stability of the internal medium and internal energy of an organism.

  3. Bacterial Exopolysaccharides For Corrosion Inhibition on Metal Substrates

    USDA-ARS?s Scientific Manuscript database

    Biofilms, composed of extra-cellular polymers secreted by bacteria, have been observed to both increase as well as decrease the rate of metal corrosion. Exopolysaccharides derived from Leuconostoc mesenteroides cultures have been shown to inhibit corrosion on corrosion-sensitive metals. The substa...

  4. Targeting Tumor Microenvironment with Silibinin: Promise and Potential for a Translational Cancer Chemopreventive Strategy

    PubMed Central

    Deep, Gagan; Agarwal, Rajesh

    2014-01-01

    Tumor microenvironment (TME) refers to the dynamic cellular and extra-cellular components surrounding tumor cells at each stage of the carcinogenesis. TME has now emerged as an integral and inseparable part of the carcinogenesis that plays a critical role in tumor growth, angiogenesis, epithelial to mesenchymal transition (EMT), invasion, migration and metastasis. Besides its vital role in carcinogenesis, TME is also a better drug target because of its relative genetic stability with lesser probability for the development of drug-resistance. Several drugs targeting the TME (endothelial cells, macrophages, cancer-associated fibroblasts, or extra-cellular matrix) have either been approved or are in clinical trials. Recently, non-steroidal anti-inflammatory drugs targeting inflammation were reported to also prevent several cancers. These exciting developments suggest that cancer chemopreventive strategies targeting both tumor and TME would be better and effective towards preventing, retarding or reversing the process of carcinogenesis. Here, we have reviewed the effect of a well established hepatoprotective and chemopreventive agent silibinin on cellular (endothelial, fibroblast and immune cells) and non-cellular components (cytokines, growth factors, proteinases etc.) of the TME. Silibinin targets TME constituents as well as their interaction with cancer cells, thereby inhibiting tumor growth, angiogenesis, inflammation, EMT, and metastasis. Silibinin is already in clinical trials, and based upon completed studies we suggest that its chemopreventive effectiveness should be verified through its effect on biological end points in both tumor and TME. Overall, we believe that the chemopreventive strategies targeting both tumor and TME have practical and translational utility in lowering the cancer burden. PMID:23617249

  5. EFFECT OF CONVENTIONAL AND EXPERIMENTAL GINGIVAL RETRACTION SOLUTIONS ON THE TENSILE STRENGTH AND INHIBITION OF POLYMERIZATION OF FOUR TYPES OF IMPRESSION MATERIALS

    PubMed Central

    Sábio, Sérgio; Franciscone, Paulo Afonso; Mondelli, José

    2008-01-01

    In the present study, two types of tests (tensile strength test and polymerization inhibition test) were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic), a polyether (Impregum), a condensation silicone (Xantopren) and a polyvinylsiloxane (Aquasil)] when polymerized in contact with of one conventional (Hemostop) and two experimental (Vislin and Afrin) gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin) affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength and polymerization inhibition tests suggest that Vislin can be used as substance of gingival retraction without affecting the tested properties of four impression materials. PMID:19089261

  6. Effect of conventional and experimental gingival retraction solutions on the tensile strength and inhibition of polymerization of four types of impression materials.

    PubMed

    Sábio, Sérgio; Franciscone, Paulo Afonso; Mondelli, José

    2008-01-01

    In the present study, two types of tests (tensile strength test and polymerization inhibition test) were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic), a polyether (Impregum), a condensation silicone (Xantopren) and a polyvinylsiloxane (Aquasil)] when polymerized in contact with of one conventional (Hemostop) and two experimental (Vislin and Afrin) gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin) affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength and polymerization inhibition tests suggest that Vislin can be used as substance of gingival retraction without affecting the tested properties of four impression materials.

  7. Advances in the analysis and prediction of turbulent viscoelastic flows

    NASA Astrophysics Data System (ADS)

    Gatski, T. B.; Thais, L.; Mompean, G.

    2014-08-01

    It has been well-known for over six decades that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This discovery has had many practical applications such as in pipeline fluid transport, oil well operations, vehicle design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the full utilization of direct numerical simulation of such turbulent viscoelastic flows has been achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear differential relationship between the flow strain rate field and the extra-stress induced by the additive polymer. A primary motivation for the analysis of these turbulent fluid flows is the understanding of the effect on the dynamic transfer of energy in the turbulent flow due to the presence of the extra-stress field induced by the presence of the viscoelastic polymer chain. Such analyses now utilize direct numerical simulation data of fully developed channel flow for the FENE-P (Finite Extendable Nonlinear Elastic - Peterlin) fluid model. Such multi-scale dynamics suggests an analysis of the transfer of energy between the various component motions that include the turbulent kinetic energy, and the mean polymeric and elastic potential energies. It is shown that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer.

  8. Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii).

    PubMed

    Liu, Lizhen; Qin, Boqiang; Zhang, Yunlin; Zhu, Guangwei; Gao, Guang; Huang, Qi; Yao, Xin

    2014-08-01

    Preliminary characterization of bound extracellular polymeric substances (bEPS) of cyanobacteria is crucial to obtain a better understanding of the formation mechanism of cyanobacterial bloom. However, the characterization of bEPS can be affected by extraction methods. Five sets (including the control) of bEPS from Microcystis extracted by different methods were characterized using three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy combined chemical spectrophotometry; and the characterization results of bEPS samples were further compared. The agents used for extraction were NaOH, pure water and phosphate buffered saline (PBS) containing cationic exchange resins, and hot water. Extraction methods affected the fluorescence signals and intensities in the bEPS. Five fluorescence peaks were observed in the excitation and emission matrix fluorescence spectra of bEPS samples. Two peaks (peaks T₁ and T₂) present in all extractions were identified as protein-like fluorophores, two (peaks A and C) as humic-like fluorophores, and one (peak E) as a fulvic-like substance. Among these substances, the humic-like and fulvic-like fluorescences were only seen in the bEPS extracted with hot water. Also, NaOH solution extraction could result in strong fluorescence intensities compared to the other extraction methods. It was suggested that NaOH at pH10.0 was the most appropriate method to extract bEPS from Microcystis. In addition, dialysis could affect the yields and characteristics of extracted bEPS during the determination process. These results will help us to explore the issues of cyanobacterial blooms. Copyright © 2014. Published by Elsevier B.V.

  9. Assessment of microbial products in the biosorption process of Cu(II) onto aerobic granular sludge: Extracellular polymeric substances contribution and soluble microbial products release.

    PubMed

    Huang, Linxian; Li, Meilin; Si, Guangchao; Wei, Jinglin; Ngo, Huu Hao; Guo, Wenshan; Xu, Weiying; Du, Bin; Wei, Qin; Wei, Dong

    2018-05-18

    In the present study, the responses of microbial products in the biosorption process of Cu(II) onto aerobic granular sludge were evaluated by using batch and spectroscopic approaches. Batch experimental data showed that extracellular polymeric substances (EPSs) contributed to Cu(II) removal from an aqueous solution, especially when treating low metal concentrations, whereas soluble microbial products (SMPs) were released under the metal stress during biosorption process. A three-dimensional excitation-emission matrix (3D-EEM) identified four main fluorescence peaks in the EPS, i.e., tryptophan protein-like, aromatic protein-like, humic-like and fulvic acid-like substances, and their fluorescence intensities decreased gradually in the presence of Cu(II) during the sorption process. Particularly, tryptophan protein-like substances quenched the Cu(II) binding to a much higher extent through a static quenching process with less than one class of binding sites. According to the synchronous fluorescence spectra, the whole fluorescence intensity of released SMP samples expressed an increased trend with different degrees along with contact time. Two-dimensional correlation spectroscopy (2D-COS) suggested that the fulvic-like fluorescence fraction might be more susceptible to metal exposure than other fractions. The result of molecular weight distribution demonstrated that the SMPs released from the biosorption process differed significantly according to contact time. The result obtained could provide new insights into the responses of microbial products from aerobic granular sludge with heavy metal treatment. Copyright © 2018. Published by Elsevier Inc.

  10. In vitro antimicrobial effects and mechanism of atmospheric-pressure He/O2 plasma jet on Staphylococcus aureus biofilm

    NASA Astrophysics Data System (ADS)

    Xu, Zimu; Shen, Jie; Cheng, Cheng; Hu, Shuheng; Lan, Yan; Chu, Paul K.

    2017-03-01

    The antimicrobial effects and associated mechanism of inactivation of Staphylococcus aureus (S. aureus) NCTC-8325 biofilms induced by a He/O2 atmospheric-pressure plasma jet (APPJ) are investigated in vitro. According to CFU (colony forming units) counting and the resazurin-based assay, the 10 min He/O2 (0.5%) APPJ treatment produces the optimal inactivation efficacy (>5 log10 ml-1) against the S. aureus biofilm and 5% of the bacteria enter a viable but non-culturable (VBNC) state. Meanwhile, 94% of the bacteria suffer from membrane damage according to SYTO 9/PI counterstaining. Scanning electron microscopy (SEM) reveals that plasma exposure erodes the extracellular polymeric substances (EPS) and then the cellular structure. The H2DCFDA-stained biofilms show larger concentrations of intracellular reactive oxygen species (ROS) in membrane-intact bacteria with increasing plasma dose. The admixture of oxygen in the working gas highly contributes to the deactivation efficacy of the APPJ against S. aureus and the plasma-induced endogenous ROS may work together with the discharge-generated ROS to continuously damage the bacterial membrane structure leading to deactivation of the biofilm microbes.

  11. Family Violence and Risk of Substance Use among Mexican Adolescents

    ERIC Educational Resources Information Center

    Caballero, Miguel Angel; Ramos, Luciana; Gonzalez, Catalina; Saltijeral, Maria Teresa

    2010-01-01

    Objective: Determine the relationship between psychological and physical violence, exerted by fathers and/or mothers, and inter- or extra-familiar sexual violence with risk for consuming tobacco, alcohol and drugs among adolescents. Method: A cross-sectional study was carried out with students in two secondary schools in Mexico City. A total of…

  12. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    PubMed

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  13. Effects of Two Types of Melatonin-Loaded Nanocapsules with Distinct Supramolecular Structures: Polymeric (NC) and Lipid-Core Nanocapsules (LNC) on Bovine Embryo Culture Model.

    PubMed

    Komninou, Eliza Rossi; Remião, Mariana Härter; Lucas, Caroline Gomes; Domingues, William Borges; Basso, Andrea Cristina; Jornada, Denise Soledade; Deschamps, João Carlos; Beck, Ruy Carlos Ruver; Pohlmann, Adriana Raffin; Bordignon, Vilceu; Seixas, Fabiana Kömmling; Campos, Vinicius Farias; Guterres, Silvia Stanisçuaski; Collares, Tiago

    2016-01-01

    Melatonin has been used as a supplement in culture medium to improve the efficiency of in vitro produced mammalian embryos. Through its ability to scavenge toxic oxygen derivatives and regulate cellular mRNA levels for antioxidant enzymes, this molecule has been shown to play a protective role against damage by free radicals, to which in vitro cultured embryos are exposed during early development. In vivo and in vitro studies have been performed showing that the use of nanocapsules as active substances carriers increases stability, bioavailability and biodistribution of drugs, such as melatonin, to the cells and tissues, improving their antioxidant properties. These properties can be modulated through the manipulation of formula composition, especially in relation to the supramolecular structures of the nanocapsule core and the surface area that greatly influences drug release mechanisms in biological environments. This study aimed to evaluate the effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures, polymeric (NC) and lipid-core (LNC) nanocapsules, on in vitro cultured bovine embryos. Embryonic development, apoptosis, reactive oxygen species (ROS) production, and mRNA levels of genes involved in cell apoptosis, ROS and cell pluripotency were evaluated after supplementation of culture medium with non-encapsulated melatonin (Mel), melatonin-loaded polymeric nanocapsules (Mel-NC) and melatonin-loaded lipid-core nanocapsules (Mel-LNC) at 10-6, 10-9, and 10-12 M drug concentrations. The highest hatching rate was observed in embryos treated with 10-9 M Mel-LNC. When compared to Mel and Mel-NC treatments at the same concentration (10-9 M), Mel-LNC increased embryo cell number, decreased cell apoptosis and ROS levels, down-regulated mRNA levels of BAX, CASP3, and SHC1 genes, and up-regulated mRNA levels of CAT and SOD2 genes. These findings indicate that nanoencapsulation with LNC increases the protective effects of melatonin against oxidative stress and cell apoptosis during in vitro embryo culture in bovine species.

  14. Prevalence and correlates of atypical patterns of drug use progression: findings from the South African Stress and Health Study

    PubMed Central

    Myers, B; van Heerden, MS; Grimsrud, A; Myer, L; Williams, DR; Stein, DJ

    2012-01-01

    Objective Atypical sequences of drug use progression are thought to have important implications for the development of substance dependence. The extent to which this assumption holds for South African populations is unknown. This paper attempts to address this gap by examining the prevalence and correlates of atypical patterns of drug progression among South Africans. Method Data on substance use and other mental health disorders from a nationally representative sample of 4351 South Africans were analysed. Weighted cross tabulations were used to estimate prevalence and correlates of atypical patterns of drug use progression. Results Overall, 12.2% of the sample reported atypical patterns of drug use progression. The most common violation was the use of extra-medical drugs prior to alcohol and tobacco. Gender was significantly associated with atypical patterns of drug use with the risk pattern varying by the type of drug. None of the anxiety or mood disorders were associated with atypical patterns of use. Atypical patterns of drug use were not associated with increased risk for a lifetime substance use disorder. Conclusion Atypical patterns of drug use initiation seem more prevalent in South Africa compared to other countries. The early use of extra-medical drugs is common, especially among young women. Drug availability and social environmental factors may influence patterns of drug use. The findings have important implications for prevention initiatives and future research. PMID:21509404

  15. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    PubMed

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Extracellular matrix scaffold as a tubular graft for ascending aorta aneurysm repair.

    PubMed

    Abu Saleh, Walid K; Al Jabbari, Odeaa; Grande-Allen, Jane; Ramchandani, Mahesh

    2015-08-01

    Although extracellular xenograft repair has produced encouraging results when applied to cardiac, valvular, and specific aortic defects, its employment as a tube graft to replace the ascending aorta has not been reported. We describe a patient who underwent resection and replacement of an infected ascending aortic graft with an extracellular matrix conduit. The patient did well, but 14 months later developed a pseudoaneurysm from the staple line used to construct the extracellular matrix conduit. The patient underwent a repeat sternotomy and removal of the graft. Because of the increased risk of graft failure, a homograft was felt to be more appropriate in this setting. Ultimately, we were unable to implant the homograft because it was too small for the aortic root; therefore we decided to construct a tubular graft from Cormatrix extracellular matrix (CorMatrix, Roswell, GA, USA). Fourteen months later, he presented with shortness of breath. Computed tomography scan revealed a 3.5 cm pseudoaneurysm of the ascending aorta. It appeared as if there was a disruption of the staple line in the extra cellular matrix graft. The plan was to replace it with a Dacron graft. The Cormatrix graft material was removed and sent for culture and histological analysis. A 28-mm Gel weave graft (Terumo Cardiovascular Systems, Ann Arbor, MI, USA) was implanted. The patient tolerated the procedure well with good hemodynamics. Our experience suggests that the superior strength, handling characteristics, and resistance to infection make extra cellular matrix scaffold a possible alternative conduit to cryopreserved homografts. Applicability as an aortic conduit merits further investigation to better understand behavior of extra cellular matrix in this situation. © 2015 Wiley Periodicals, Inc.

  17. Chemotaxis and Actin Oscillations

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  18. A polymer-based ratiometric intracellular glucose sensor.

    PubMed

    Zhang, Liqiang; Su, Fengyu; Buizer, Sean; Kong, Xiangxing; Lee, Fred; Day, Kevin; Tian, Yanqing; Meldrum, Deirdre R

    2014-07-04

    The glucose metabolism level reflects cell proliferative status. A polymeric glucose ratiometric sensor comprising poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMAETMA) was synthesized. Cellular internalization and glucose response of the polymer within HeLa cells were investigated.

  19. Identification of Biofilm Matrix-Associated Proteins from an Acid Mine Drainage Microbial Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yongqin; D'Haeseleer, Patrik M; Dill, Brian

    2011-01-01

    In microbial communities, extracellular polymeric substances (EPS), also called the extracellular matrix, provide the spatial organization and structural stability during biofilm development. One of the major components of EPS is protein, but it is not clear what specific functions these proteins contribute to the extracellular matrix or to microbial physiology. To investigate this in biofilms from an extremely acidic environment, we used shotgun proteomics analyses to identify proteins associated with EPS in biofilms at two developmental stages, designated DS1 and DS2. The proteome composition of the EPS was significantly different from that of the cell fraction, with more than 80%more » of the cellular proteins underrepresented or undetectable in EPS. In contrast, predicted periplasmic, outer membrane, and extracellular proteins were overrepresented by 3- to 7-fold in EPS. Also, EPS proteins were more basic by 2 pH units on average and about half the length. When categorized by predicted function, proteins involved in motility, defense, cell envelope, and unknown functions were enriched in EPS. Chaperones, such as histone-like DNA binding protein and cold shock protein, were overrepresented in EPS. Enzymes, such as protein peptidases, disulfide-isomerases, and those associated with cell wall and polysaccharide metabolism, were also detected. Two of these enzymes, identified as -N-acetylhexosaminidase and cellulase, were confirmed in the EPS fraction by enzymatic activity assays. Compared to the differences between EPS and cellular fractions, the relative differences in the EPS proteomes between DS1 and DS2 were smaller and consistent with expected physiological changes during biofilm development.« less

  20. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery.

    PubMed

    Boo, Chanhee; Wang, Yunkun; Zucker, Ines; Choo, Youngwoo; Osuji, Chinedum O; Elimelech, Menachem

    2018-05-31

    We demonstrate the fabrication of a loose, negatively charged nanofiltration (NF) membrane with tailored selectivity for the removal of perfluoroalkyl substances with reduced scaling potential. A selective polyamide layer was fabricated on top of a polyethersulfone support via interfacial polymerization of trimesoyl chloride and a mixture of piperazine and bipiperidine. Incorporating high molecular weight bipiperidine during the interfacial polymerization enables the formation of a loose, nanoporous selective layer structure. The fabricated NF membrane possessed a negative surface charge and had a pore diameter of ~1.2 nm, much larger than a widely used commercial NF membrane (i.e., NF270 with pore diameter of ~0.8 nm). We evaluated the performance of the fabricated NF membrane for the rejection of different salts (i.e., NaCl, CaCl2, and Na2SO4) and perfluorooctanoic acid (PFOA). The fabricated NF membrane exhibited a high retention of PFOA (~90%) while allowing high passage of scale-forming cations (i.e., calcium). We further performed gypsum scaling experiments to demonstrate lower scaling potential of the fabricated loose porous NF membrane compared to NF membranes having a dense selective layer under solution conditions simulating high water recovery. Our results demonstrate that properly designed NF membranes are a critical component of a high recovery NF system, which provide an efficient and sustainable solution for remediation of groundwater contaminated with perfluoroalkyl substances.

  1. Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants

    PubMed Central

    Zeng, Jie; Gao, Jun-Min; Chen, You-Peng; Yan, Peng; Dong, Yang; Shen, Yu; Guo, Jin-Song; Zeng, Ni; Zhang, Peng

    2016-01-01

    As important constituents of activated sludge flocs, extracellular polymeric substances (EPS) play significant roles in pollutants adsorption, the formation and maintenance of microbial aggregates, and the protection of microbes from external environmental stresses. In this work, EPS in activated sludge from a municipal wastewater treatment plant (M-WWTP) with anaerobic/anoxic/oxic (A2/O) process and a hyperhaline wastewater treatment plant (H-WWTP) with anaerobic/oxic (A/O) process were extracted by ultrasound method. The proteins and polysaccharides contents in EPS were determined by using a modified Lowry method and anthrone colorimetry respectively to analyze the detail differences in two types of WWTPs. Fourier transform-infrared spectroscopy and three-dimensional excitation-emission matrix fluorescence spectroscopy demonstrated proteins and polysaccharides were the dominant components of the two types of EPS, and the aromatic protein-like substances accounted for a larger proportion in EPS proteins. The results of the aggregation test indicated that EPS were good for the sludge aggregation, and the EPS in oxic sludge were more beneficial to sludge aggregation than that in anoxic sludge. Anoxic sludge EPS in H-WWTP showed a negligible effect on sludge aggregation. Comparative study on EPS of different tanks in the M-WWTP and H-WWTP was valuable for understanding the characteristics of EPS isolated from two typical wastewater treatment processes. PMID:27220287

  2. 21 CFR 178.3860 - Release agents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Release agents. 178.3860 Section 178.3860 Food and... and Production Aids § 178.3860 Release agents. Substances listed in paragraph (b) of this section may be safely used as release agents in petroleum wax complying with § 178.3710 and in polymeric resins...

  3. 21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... film over one or both sides of a base film produced from one or more of the basic olefin polymers complying with § 177.1520 of this chapter. The base polyolefin film may contain optional adjuvant substances... Limitations (i) Resins and polymers: Acrylic acid polymer and its ethyl or methyl esters Acrylamide...

  4. 21 CFR 178.3740 - Plasticizers in polymeric substances.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., hydrogenated (minimum viscosity at 99 °F, 39 Saybolt Universal seconds, as determined by ASTM methods D445-82 (“Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity)”) and D2161-82 (“Standard Method for Conversion of Kinematic Viscosity to Saybolt...

  5. Physicochemical properties and membrane biofouling of extra-cellular polysaccharide produced by a Micrococcus luteus strain.

    PubMed

    Feng, Lei; Li, Xiufen; Song, Ping; Du, Guocheng; Chen, Jian

    2014-07-01

    The physicochemical properties of the extra-cellular polysaccharide (EPS) produced by a Micrococcus luteus strain, a dominating strain isolated from membrane biofouling layer, were determined in this study. The EPS isolated from this strain was measured to have an average molecular weight of 63,540 Da and some typical polysaccharide absorption peaks in Fourier transform infrared spectrum. Monosaccharide components of the EPS contained rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose in a molar ratio of 0.2074:0.0454:0.0262:0.0446:1.7942:1.2086:0.4578. Pseudo plastic properties were also observed for the EPS through the rheological measurement. The EPS was further characterized for its behavior to cause membrane flux decline. The results showed that both flux declines for polyvinylidenefluoride (PVDF) and polypropylene membranes became more severe as EPS feed concentration increased. A higher irreversible fouling for the PVDF membrane suggested that the EPS had the larger fouling potential to this microfiltration membrane.

  6. Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites.

    PubMed

    Fang, Linchuan; Huang, Qiaoyun; Wei, Xing; Liang, Wei; Rong, Xinming; Chen, Wenli; Cai, Peng

    2010-08-01

    Equilibrium adsorption experiments, isothermal titration calorimetry and potentiometric titration techniques were employed to investigate the adsorption of Cu(II) by extracellular polymeric substances (EPS) extracted from Pseudomonas putida X4, minerals (montmorillonite and goethite) and their composites. Compared with predicted values of Cu(II) adsorption on composites, the measured values of Cu(II) on EPS-montmorillonite composite increased, however, those on EPS-goethite composite decreased. Potentiometric titration results also showed that more surface sites were observed on EPS-montmorillonite composite and less reactive sites were found on EPS-goethite composite. The adsorption of Cu(II) on EPS molecules and their composites with minerals was an endothermic reaction, while that on minerals was exothermic. The positive values of enthalpy change (Delta H) and entropy change (DeltaS) for Cu(II) adsorption on EPS and mineral-EPS composites indicated that Cu(II) mainly interacts with carboxyl and phosphoryl groups as inner-sphere complexes on EPS molecules and their composites with minerals. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    PubMed

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Extraction of Structural Extracellular Polymeric Substances from Aerobic Granular Sludge

    PubMed Central

    Felz, Simon; Al-Zuhairy, Salah; Aarstad, Olav Andreas; van Loosdrecht, Mark C.M.; Lin, Yue Mei

    2016-01-01

    To evaluate and develop methodologies for the extraction of gel-forming extracellular polymeric substances (EPS), EPS from aerobic granular sludge (AGS) was extracted using six different methods (centrifugation, sonication, ethylenediaminetetraacetic acid (EDTA), formamide with sodium hydroxide (NaOH), formaldehyde with NaOH and sodium carbonate (Na2CO3) with heat and constant mixing). AGS was collected from a pilot wastewater treatment reactor. The ionic gel-forming property of the extracted EPS of the six different extraction methods was tested with calcium ions (Ca2+). From the six extraction methods used, only the Na2CO3 extraction could solubilize the hydrogel matrix of AGS. The alginate-like extracellular polymers (ALE) recovered with this method formed ionic gel beads with Ca2+. The Ca2+-ALE beads were stable in EDTA, formamide with NaOH and formaldehyde with NaOH, indicating that ALE are one part of the structural polymers in EPS. It is recommended to use an extraction method that combines physical and chemical treatment to solubilize AGS and extract structural EPS. PMID:27768085

  9. Characterization of Extracellular Polymeric Substances Produced by Pseudomonas fragi Under Air and Modified Atmosphere Packaging.

    PubMed

    Wang, Guang-Yu; Ma, Fang; Wang, Hu-Hu; Xu, Xing-Lian; Zhou, Guang-Hong

    2017-09-01

    Extracellular polymeric substances (EPS) play an important role in bacterial biochemical properties. The characteristics of EPS from 2 strains of Pseudomonas fragi cultured in meat aerobically (control) and in modified atmosphere packaging (MAP) were studied. The amount and components of EPS, the surface properties, and the effect on biofilm formation of several spoilage organisms were evaluated. The results showed that MAP inhibited the growth of the P. fragi strains. Compared with the control, more loose and less bound EPS (containing protein and carbohydrate) were produced by P. fragi in MAP samples. MAP also caused increased cell autoaggregation and surface hydrophobicity. After the removal of the EPS, the surface property changes were strain-dependent, suggesting that membrane compositions were also changed. In addition, the EPS displayed significant antibiofilm activity on Pseudomonas fluorescens and Serratia liquefaciens. In conclusion, P. fragi strains not only modified the amount, components, and surface properties of EPS but also changed the cell membrane compositions to adapt to MAP stress. Moreover, EPS may play an important role in microbial community competitions. © 2017 Institute of Food Technologists®.

  10. Characterization of changes in floc morphology, extracellular polymeric substances and heavy metals speciation of anaerobically digested biosolid under treatment with a novel chelated-Fe2+ catalyzed Fenton process.

    PubMed

    He, Juanjuan; Yang, Peng; Zhang, Weijun; Cao, Bingdi; Xia, Hua; Luo, Xi; Wang, Dongsheng

    2017-11-01

    A novel chelated-Fe 2+ catalyzed Fenton process (CCFP) was developed to enhance dewatering performance of anaerobically digested biosolid, and changes in floc morphology, extracellular polymeric substances (EPS) and heavy metals speciation were also investigated. The results showed that addition of chelating agents caused EPS solubilization by binding multivalent cations. Like traditional Fenton, CCFP performed well in improving anaerobically digested sludge dewatering property. The highly active radicals (OH, O 2 - ) produced in classical Fenton and CCFP were responsible for sludge flocs destruction and consequently degradation of biopolymers into small molecules. Furthermore, more plentiful pores and channels were presented in cake after Fenton treatment, which was conducive to water drainage under mechanical compression. Additionally, a portion of active heavy metals in the form of oxidizable and reducible states were dissolved under CCFP. Therefore, CCFP could greatly simplify the operating procedure of Fenton conditioning and improve its process adaptability for harmless treatment of biological sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: Effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances.

    PubMed

    Remmas, Nikolaos; Melidis, Paraschos; Zerva, Ioanna; Kristoffersen, Jon Bent; Nikolaki, Sofia; Tsiamis, George; Ntougias, Spyridon

    2017-08-01

    A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH 4 + -N. Exceptionally high β-glucosidase activities (6700-10,100Ug -1 ) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced β-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: effects of pH, EDTA, Ca(II) and temperature shocks.

    PubMed

    Zhang, Daoyong; Lee, Duu-Jong; Pan, Xiangliang

    2013-01-01

    Extracellular polymeric substances (EPS) existed ubiquitously in biological systems affect the mobility and availability of heavy metals in the environments. The adsorption-desorption behaviors of Hg(II) and Sb(V) on EPS were investigated. The sorption rates follow Sb(V) > Hg(II), and the desorption rates follow reverse order. Applications of ethylene diamine tetraacetic acid (EDTA), Ca(II) and pH shocks affect desorption rates and desorbed quantities of Hg(II) from EPS-Hg complex. Temperature shock minimally affects the desorption rate of Hg(II). Conversely, the EPS-Sb complex is stable subjected to EDTA, Ca(II), temperature or pH shocks. The excitation-emission matrix (EEM) fluorescence spectroscopy and fast-Fourier (FT-IR) analysis showed that Hg(II) and Sb(V) principally interacted with polysaccharides and protein-like compounds in the EPS, respectively. The EPS-Hg complex presents a time bomb that may release high levels of Hg(II) in short time period under environmental shocks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Enhancement of sludge dewaterability with filamentous fungi Talaromyces flavus S1 by depletion of extracellular polymeric substances or mycelium entrapment.

    PubMed

    Liu, He; Shi, Jiasheng; Xu, Xiaoyu; Zhan, Xinmin; Fu, Bo; Li, Yifei

    2017-12-01

    This study was conducted to explore the mechanism of dewaterability improvement of waste activated sludge by the filamentous fungus Talaromyces flavus S1. When the fungal spores were inoculated to the sterilized sludge, the sludge dewaterability was significantly improved by 48.1% and the reasons can be attributed to sludge pellet formation and degradation of extracellular polymeric substances, in particular the slime-EPS and loosely-bound EPS (LB-EPS). With the addition of fungal mycelium into the either sterilized sludge or non-sterilized sludge, the values of CST decreased by 74.0% and 43.7%, respectively, suggesting the fungal mycelium can improve the sludge dewaterability. After conditioned by the mycelium, the sludge cake by the diaphragm filter press was thicker and showed less water content than the control sludge. The results in this study demonstrated that the Talaromyces flavus S1 can serve as an environmentally friendly biological dewatering agent and has a promising application potential in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigation on extracellular polymeric substances, sludge flocs morphology, bound water release and dewatering performance of sewage sludge under pretreatment with modified phosphogypsum.

    PubMed

    Dai, Quxiu; Ma, Liping; Ren, Nanqi; Ning, Ping; Guo, Zhiying; Xie, Longgui; Gao, Haijun

    2018-06-06

    Modified phosphogypsum (MPG) was developed to improve dewaterability of sewage sludge, and dewatering performance, properties of treated sludge, composition and morphology distribution of EPS, dynamic analysis and multiple regression model on bound water release were investigated. The results showed that addition of MPG caused extracellular polymeric substances (EPS) disintegration through charge neutralization. Destruction of EPS promoted the formation of larger sludge flocs and the release of bound water into supernatant. Simultaneously, content of organics with molecular weight between 1000 and 7000 Da in soluble EPS (SB-EPS) increased with increasing of EPS dissolved into the liquid phase. Besides, about 8.8 kg•kg -1 DS of bound water was released after pretreatment with 40%DS MPG dosage. Additionally, a multiple linear regression model for bound water release was established, showing that lower loosely bond EPS (LB-EPS) content and specific resistance of filtration (SRF) may improve dehydration performance, and larger sludge flocs may be beneficial for sludge dewatering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Biological phosphorus removal in an extended ASM2 model: Roles of extracellular polymeric substances and kinetic modeling.

    PubMed

    Yang, Shan-Shan; Pang, Ji-Wei; Guo, Wan-Qian; Yang, Xiao-Yin; Wu, Zhong-Yang; Ren, Nan-Qi; Zhao, Zhi-Qing

    2017-05-01

    This paper presents the results of an extended ASM2 model for the modeling and calibration of the role of extracellular polymeric substances (EPS) in phosphorus (P) removal in an anaerobic-aerobic process. In this extended ASM2 model, two new components, the bound EPS (X EPS ) and the soluble EPS (S EPS ), are introduced. Compared with the ASM2, 7.71, 8.53, and 9.28% decreases in polyphosphate (polyP) were observed in the extended ASM2 in three sequencing batch reactors feeding with different COD/P ratios, indicating that 7.71-9.28% of P in the liquid was adsorbed by EPS. Sensitive analysis indicated that, five parameters were the significant influential parameters and had been chosen for further model calibration by using the least square method to simulate by MATLAB. This extended ASM2 has been successfully established to simulate the output variables and provides a useful reference for the mathematic simulations of the role of EPS in biological phosphorus removal process. Copyright © 2017. Published by Elsevier Ltd.

  16. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching

    PubMed Central

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution. PMID:26947441

  17. Adsorption of cesium ion by marine actinobacterium Nocardiopsis sp. 13H and their extracellular polymeric substances (EPS) role in bioremediation.

    PubMed

    Sivaperumal, Pitchiah; Kamala, Kannan; Rajaram, Rajendran

    2018-02-01

    This paper evaluates the cesium adsorption of marine actinobacterium Nocardiposis sp. 13H strain isolated from nuclear power plant sites in India. It could remove 88.6 ± 0.72% of Cs + from test solution containing 10 mM CsCl 2 . The biosorption of Cs + with different environmental factors such as pH, temperature, and time interval is also determined. Scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) confirmed the Cs + adsorption by Nocardiopsis sp. 13H. Most of the bound cesium was found to be associated extracellular polymeric substances (EPS) suggesting its interaction with the surface active groups. The main component of the EPS was carbohydrate followed by protein and nucleic acid. Further, Fourier transform infrared (FTIR) spectroscopy suggested the carboxyl, hydroxyl, and amide groups on the strain cell surface were likely to be involved in Cs + adsorption. Results from this study show Nocardiopsis sp. 13H microorganism could be useful in exploring the biosorption of radioisotope pollution and developing efficient and eco-friendly biosorbent for environmental cleanup.

  18. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    PubMed

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Fungal colonies in open fractures of subseafloor basalt

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Bengtson, Stefan; Skogby, Henrik; Belivanova, Veneta; Marone, Federica

    2013-08-01

    The deep subseafloor crust is one of the few great frontiers of unknown biology on Earth and, still today, the notion of the deep biosphere is commonly based on the fossil record. Interpretation of palaeobiological information is thus central in the exploration of this hidden biosphere and, for each new discovery, criteria used to establish biogenicity are challenged and need careful consideration. In this paper networks of fossilized filamentous structures are for the first time described in open fractures of subseafloor basalts collected at the Emperor Seamounts, Pacific Ocean. These structures have been investigated with optical microscopy, environmental scanning electron microscope, energy dispersive spectrometer, X-ray powder diffraction as well as synchrotron-radiation X-ray tomographic microscopy, and interpreted as fossilized fungal mycelia. Morphological features such as hyphae, yeast-like growth and sclerotia were observed. The fossilized fungi are mineralized by montmorillonite, a process that probably began while the fungi were alive. It seems plausible that the fungi produced mucilaginous polysaccharides and/or extracellular polymeric substances that attracted minerals or clay particles, resulting in complete fossilization by montmorillonite. The findings are in agreement with previous observations of fossilized fungi in subseafloor basalts and establish fungi as regular inhabitants of such settings. They further show that fossilized microorganisms are not restricted to pore spaces filled by secondary mineralizations but can be found in open pore spaces as well. This challenges standard protocols for establishing biogenicity and calls for extra care in data interpretation.

  20. Plutonium Interactions with Pseudomonas sp. and its Extracellular Polymeric Substances (Sorption and Reduction of Plutonium by Bacterial Extracellular Polymeric Substances)

    DOE PAGES

    Boggs, Mark A.; Jiao, Yongqin; Dai, Zurong; ...

    2016-09-30

    Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu) contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS), Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the samemore » sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission Electron Microscopy indicated that 2-3 nm nanocrystalline Pu(IV)O 2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. ImportanceOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV), and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results along with a growing body of literature highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.« less

  1. Plutonium Interactions with Pseudomonas sp. and its Extracellular Polymeric Substances (Sorption and Reduction of Plutonium by Bacterial Extracellular Polymeric Substances)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, Mark A.; Jiao, Yongqin; Dai, Zurong

    Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu) contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS), Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the samemore » sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission Electron Microscopy indicated that 2-3 nm nanocrystalline Pu(IV)O 2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. ImportanceOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV), and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results along with a growing body of literature highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.« less

  2. 46 CFR 164.015-1 - Applicable specifications and standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet... following specification and standard, of the issue in effect on the date the plastic foam material is...) ASTM D4986-98, Standard Test Method for Horizontal Burning Characteristics of Cellular Polymeric...

  3. Side-binding proteins modulate actin filament dynamics

    PubMed Central

    Crevenna, Alvaro H; Arciniega, Marcelino; Dupont, Aurélie; Mizuno, Naoko; Kowalska, Kaja; Lange, Oliver F; Wedlich-Söldner, Roland; Lamb, Don C

    2015-01-01

    Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.04599.001 PMID:25706231

  4. Label-Free Raman Microspectral Analysis for Comparison of Cellular Uptake and Distribution between Non-Targeted and EGFR-Targeted Biodegradable Polymeric Nanoparticles

    PubMed Central

    Chernenko, Tatyana; Buyukozturk, Fulden; Miljkovic, Milos; Carrier, Rebecca; Diem, Max; Amiji, Mansoor

    2013-01-01

    Active targeted delivery of nanoparticle-encapsulated agents to tumor cells in vivo is expected to enhance therapeutic effect with significantly less non-specific toxicity. Active targeting is based on surface modification of nanoparticles with ligands that bind with extracellular targets and enhance payload delivery in the cells. In this study, we have used label-free Raman micro-spectral analysis and kinetic modeling to study cellular interactions and intracellular delivery of C6-ceramide using a non-targeted and an epidermal growth factor receptor (EGFR) targeted biodegradable polymeric nano-delivery systems, in EGFR-expressing human ovarian adenocarcinoma (SKOV3) cells. The results show that EGFR peptide-modified nanoparticles were rapidly internalized in SKOV3 cells leading to significant intracellular accumulation as compared to non-specific uptake by the non-targeted nanoparticles. Raman micro-spectral analysis enables visualization and quantification of the carrier system, drug-load, and responses of the biological systems interrogated, without exogenous staining and labeling procedures. PMID:24298430

  5. PRUNE is crucial for normal brain development and mutated in microcephaly with neurodevelopmental impairment.

    PubMed

    Zollo, Massimo; Ahmed, Mustafa; Ferrucci, Veronica; Salpietro, Vincenzo; Asadzadeh, Fatemeh; Carotenuto, Marianeve; Maroofian, Reza; Al-Amri, Ahmed; Singh, Royana; Scognamiglio, Iolanda; Mojarrad, Majid; Musella, Luca; Duilio, Angela; Di Somma, Angela; Karaca, Ender; Rajab, Anna; Al-Khayat, Aisha; Mohan Mohapatra, Tribhuvan; Eslahi, Atieh; Ashrafzadeh, Farah; Rawlins, Lettie E; Prasad, Rajniti; Gupta, Rashmi; Kumari, Preeti; Srivastava, Mona; Cozzolino, Flora; Kumar Rai, Sunil; Monti, Maria; Harlalka, Gaurav V; Simpson, Michael A; Rich, Philip; Al-Salmi, Fatema; Patton, Michael A; Chioza, Barry A; Efthymiou, Stephanie; Granata, Francesca; Di Rosa, Gabriella; Wiethoff, Sarah; Borgione, Eugenia; Scuderi, Carmela; Mankad, Kshitij; Hanna, Michael G; Pucci, Piero; Houlden, Henry; Lupski, James R; Crosby, Andrew H; Baple, Emma L

    2017-04-01

    PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as responsible. Our functional assays of disease-associated variant alleles revealed impaired microtubule polymerization, as well as cell migration and proliferation properties, of mutant PRUNE. Additionally, our studies also highlight a potential new role for PRUNE during microtubule polymerization, which is essential for the cytoskeletal rearrangements that occur during cellular division and proliferation. Together these studies define PRUNE as a molecule fundamental for normal human cortical development and define cellular and clinical consequences associated with PRUNE mutation. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  6. Synthesis, characterization, and property of biodegradable PEG-PCL-PLA terpolymers with miktoarm star and triblock architectures as drug carriers.

    PubMed

    Zhang, Yixin; Luo, Song; Liang, Yan; Zhang, Hai; Peng, Xinyu; He, Bin; Li, Sai

    2018-03-01

    A series of amphiphilic terpolymers with miktoarm star and triblock architectures of poly(ethylene glycol) (PEG), poly(ε-caprolactone) (PCL) and poly(l-lactide acid) (PLLA) or poly(DL-lactide acid) (PDLLA) terpolymers were synthesized as carriers for drug delivery. The architecture, molecular weight and crystallization behavior of the terpolymers were characterized. Anticancer drug doxorubicin was encapsulated in the micelles to investigate their drug loading properties. The miktoarm star terpolymers exhibited stronger crystallization capability, smaller size and better stability than that of triblock polymeric micelle, owing to the lower CMC values of miktoarm star polymeric micelle. Furthermore, the drug-loaded miktoarm star polymeric micelles showed the cumulative DOX release account of the micelles with PDLLA blocks was 65.3% while the release account of the corresponding micelles containing PLLA blocks was 45.2%. The IC 50 values of drug-loaded miktoarm star polymeric micelle were lower than triblock polymeric micelle. Meanwhile, Confocal laser scanning microscopy (CLSM) and Flow Cytometry results demonstrated that the miktoarm star micelles were more favorable for cellular internalization. The miktoarm star micelles with PDLLA blocks were promising carriers for anticancer drug delivery.

  7. Assembly properties of the Bacillus subtilis actin, MreB.

    PubMed

    Mayer, Joshua A; Amann, Kurt J

    2009-02-01

    The bacterial actin MreB has been implicated in a variety of cellular roles including cell shape determination, cell wall synthesis, chromosome condensation and segregation, and the establishment and maintenance of cell polarity. Toward elucidating a clearer understanding of how MreB functions inside the bacterial cell, we investigated biochemically the polymerization of MreB from Bacillus subtilis. Light scattering and sedimentation assays revealed pH-, ionic-, cationic-, and temperature-dependent behavior. B. subtilis MreB polymerizes in the presence of millimolar divalent cations in a protein concentration-dependent manner. Polymerization is favored by decreasing pH and inhibited by monovalent salts and low temperatures. Although B. subtilis MreB binds and hydrolyzes both ATP and GTP, it does not require a bound nucleotide for assembly and polymerizes indistinguishably regardless of the nucleotide species bound, with a critical concentration of approximately 900 nM. A number of the presently reported properties of B. subtilis MreB differ significantly from those of T. maritima MreB1 (Bean and Amann [2008]: Biochemistry 47: 826-835), including the nucleotide requirements and temperature and ionic effects on polymerization state. These observations collectively suggest that additional factors interact with MreB to account for its complex dynamic behavior in cells.

  8. Development of octreotide-conjugated polymeric prodrug of bufalin for targeted delivery to somatostatin receptor 2 overexpressing breast cancer in vitro and in vivo

    PubMed Central

    Liu, Tao; Jia, Tingting; Yuan, Xia; Liu, Cheng; Sun, Jian; Ni, Zhenhua; Xu, Jian; Wang, Xuhui; Yuan, Yi

    2016-01-01

    Background Development of polymeric prodrugs of small molecular anticancer drugs has become one of the most promising strategies to overcome the intrinsic shortcomings of small molecular anticancer drugs and improve their anticancer performance. Materials and methods In the current work, we fabricated a novel octreotide (Oct)-modified esterase-sensitive tumor-targeting polymeric prodrug of bufalin (BUF) and explored its anticancer performance against somatostatin receptor 2 overexpressing breast cancer. Results The obtained tumor-targeting polymeric prodrug of BUF, P(oligo[ethylene glycol] monomethyl ether methacrylate [OEGMA]-co-BUF-co-Oct), showed a nanosize dimension and controlled drug release features in the presence of esterase. It was demonstrated by in vitro experiment that P(OEGMA-co-BUF-co-Oct) showed enhanced cytotoxicity, cellular uptake, and apoptosis in comparison with those of free BUF. In vivo experiment further revealed the improved accumulation of drugs in tumor tissues and enhanced anticancer performance of P(OEGMA-co-BUF-co-Oct). Conclusion Taken together, this study indicated that polymeric prodrug of BUF holds promising potential toward the treatment of somatostatin receptor 2 overexpressing breast cancer. PMID:27284243

  9. Humic first, A new theory on the origin of life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh

    2016-04-01

    In 1953, Miller &Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions1. In recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites2. These facts show simple organic molecules on early earth could be quite enough to start development of life. But, how? Many theorists have tried to explain how life emerged from non life, but failed2. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. Obviously, creation of a cell needed a qualified production line which had to be durable and active, can gather all biochemical ingredients, protect them from degradation, have catalyzing ability, provide numerous opportunities for interaction between basic molecules, and above all, have capability to react to different sources of energy. We are sure this perfect factory was available on primitive earth and is nothing except humic substance! At the moment, HS, are doing nearly all of these duties, among the others, under your feet in agricultural soils4. What are humic substances? According to IHSS definition "Humic substances (HS) are major components of the natural organic matter (NOM) in soil and water as well as in geological organic deposits such as lake sediments, peats, brown coals, and shales5." They come from polymerization of organic molecules, but looking at them like a simple aggregation of different organic molecules, is a huge mistake6! It seems they do not come together except for making a capable structure! HS are the first organic machinery which appeared in proplanetary disk, more than four billion years ago. Derived from simple inorganic molecules, humic substances construct a firm intermediate structure which connects none life to life. In other word, life road pass over the humic bridge. This does not mean that necessarily they had extra terrestrial origin. In fact Ziechman et al7, in 1994 by finding humic material in Miller's experimental vessels proved that humic substances could be generate on early earth conditions by polymerizing simple organic molecules. Which evidences support our Ideas? 1- Suppose a wet land located in a warm area of primitive earth, covered with a layer of black humic materials, ready to action and reaction. Under this umbrella, basic molecules of life can interact freely and benefit from catalyzing and stimulating effects of HS. Amino and nucleic acid molecules may line up, grow, and develop mutually. Protein molecules can appear and do practices and before decaying a strand of nucleotides is ready to save their information and can rebuilt them for further practices. Thus, chemical evolution on a bed of humic acid can promote targeted, firmly and continuously towards a large network that be able to support a self replicating cell! We deliberately suggested, land and not the sea, as cradle of life. Because sodium, the most prevalent cation in oceans could not participate in primitive life, instead potassium played an important role. 2- There are strong evidences that show HS, really acted as the main elemental selector and even chairal selector for life on early earth. HS, show strong affinity and fast releasing tendency for macro nutrients (N, P, K).There is moderate affinity and releasing tendency for Ca, Mg, S. Also there is weak affinity and reluctance for liberating micronutrients. More interesting, HS generate insoluble compounds with nearly all toxic elements. As you see not only HS selected some and rejected other elements but also definite their proportions in the cell structure. 3- What is the reason of homochairality in living organism? As you know, none of previous theories in this field provided an easy explanation for this difficult and fundamental question. But, humic theory has a simple answer. Humic substances accepted some and rejected the other enantiomers, because their spatial structure dictate, as did so regarding elemental selection. References: 1- Miller, Stanly L." production of amino acid under possible primitive Earth conditions" Science 117:528.(may 1953) 2- Encyclopedia Britannica website "carbonaceous contrite" October 17, 2014 3- Shapiro, Robert " A simpler origin for life" Science American February 12 . 2007 4- Pettit, Robert, "organic matter, humus, humate, humic acid, fulvic acid humin: their importance in soil fertility and plant health" 5- International Humic Substances Society website, " What are humic substances" 6- Humic, Fulvic and microbial balance: organic soil conditioning, by William R. Jackson 1993, pag 165-167 7- Steinberg, Christian E.W "Ecology of humic substances in freshwater-determination from geochemistry to ecological niches" (2003)

  10. Potential Repercussions Associated with Halanaerobium Colonization of Hydraulically Fractured Shales

    NASA Astrophysics Data System (ADS)

    Booker, A. E.; Borton, M.; Daly, R. A.; Nicora, C.; Welch, S.; Dusane, D.; Johnston, M.; Sharma, S.; Mouser, P. J.; Cole, D. R.; Lipton, M. S.; Wrighton, K. C.; Wilkins, M.

    2017-12-01

    Hydraulic fracturing of black shale formations has greatly increased U.S. oil and natural gas recovery. Bacterial Halanaerobium strains become the dominant microbial community member in produced fluids from many fractured shales, regardless of their geographic location. Halanaerobium is not native to the subsurface, but is inadvertently introduced during the drilling and fracturing process. The accumulation of biomass in pipelines and reservoirs is detrimental due to possible well souring, microbially-induced corrosion, and pore clogging. Here, we used Halanaerobium strains isolated from a hydraulically fractured well in the Utica Shale, proteogenomics, isotopic and geochemical field observations, and laboratory growth experiments to identify detrimental effects associated with Halanaerobium growth. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic datasets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes that can convert thiosulfate to sulfide. Furthermore, laboratory growth curves confirmed the capability of Halanaerobium to grow across a wide range of pressures (14-7000 PSI). Shotgun proteomic measurements were used to track the higher abundance of rhodanese and anaerobic sulfite reductase enzymes present when thiosulfate was available in the growth media. This technique also identified a higher abundance of proteins associated with the production of extracellular polymeric substances when Halanaerobium was grown under increasing pressures. Halanaerobium culture based assays identified thiosulfate-dependent sulfide production, while pressure incubations revealed higher cellular attachment to quartz surfaces. Increased production of sulfide and organic acids during stationary growth phase suggests that fermentative Halanaerobium use thiosulfate to remove excess reductant, aiding in NAD+ recovery. Additionally, the increased cellular attachment to surfaces under pressure indicates Halanaerobium has the capability of forming cellular clusters that could clog the shale fracture network and limit natural gas recovery. These findings bring awareness to the detrimental effects that could arise from Halanaerobium growth in hydraulically fractured shales throughout the U.S.

  11. Grease Inhibits Stress-Corrosion Cracking In Bearing Race

    NASA Technical Reports Server (NTRS)

    Beatty, Robert F.; Mcvey, Scott E.

    1991-01-01

    Coating with suitable grease found to inhibit stress-corrosion cracking in bore of inner race of ball-bearing assembly operating in liquid oxygen. Protects bore and its corner radii from corrosion-initiating and -accelerating substances like moisture and contaminants, which enter during assembly. Operating life extended at low cost, and involves very little extra assembly time.

  12. Photocatalytic CO2 conversion by polymeric carbon nitrides.

    PubMed

    Fang, Yuanxing; Wang, Xinchen

    2018-05-10

    CO2 is a vital compond for life, and its concentration significantly affects the living environment of the Earth. Extensive effort has been devoted to balance its concentration. Among the developed approaches, photocatalytic CO2 conversion is considered as an ideal option. Previous reports suggest polymeric carbon nitride (PCN) can be effectively used as a metal-free photocatalyst to convert CO2. Herein, the recent developments of PCN and the related photocatalysts for CO2 conversion are summarized from the fundamental of using PCN, and their extended applications through molecular modification and physical/chemical coupling with other substances. The concluding remarks finally indicate the future challenges of using PCN materials for relevant solar-driven applications.

  13. Polymerization properties of the Thermotoga maritima actin MreB: roles of temperature, nucleotides, and ions.

    PubMed

    Bean, Greg J; Amann, Kurt J

    2008-01-15

    MreB is a bacterial orthologue of actin that affects cell shape, polarity, and chromosome segregation. Although a significant body of work has explored its cellular functions, we know very little about the biochemical behavior of MreB. We have cloned, overexpressed in Escherichia coli, and purified untagged MreB1 from Thermotoga maritima. We have characterized the conditions that regulate its monomer-to-polymer assembly reaction, the critical concentrations of that reaction, the manner in which MreB uses nucleotides, its stability, and the structure of the assembled polymer. MreB requires a bound purine nucleotide for polymerization and rapidly hydrolyzes it following assembly. MreB assembly contains two distinct components, one that does not require divalent cations and one that does, which may comprise the nucleation and elongation phases of assembly, respectively. MreB assembly is strongly favored by increasing temperature or protein concentration but inhibited differentially by high concentrations of monovalent salts. The polymerization rate increases and the bulk critical concentration decreases with increasing temperature, but in contrast to previous reports, MreB is capable of polymerizing across a broad range of temperatures. MreB polymers are shorter and stiffer and scatter more light than eukaryotic actin filaments. Due to rapid ATP hydrolysis and phosphate release, we suggest that most assembled MreB in cells is in the ADP-bound state. Because of only moderate differences between the ATP and ADP critical concentrations, treadmilling may occur, but we do not predict dynamic instability in cells. Because of the relatively low cellular concentration of MreB and the observed structural properties of the polymer, a single MreB assembly may exist in cells.

  14. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells.

    PubMed

    Xiong, Xiao-Bing; Mahmud, Abdullah; Uludağ, Hasan; Lavasanifar, Afsaneh

    2007-03-01

    An arginine-glycine-aspartic acid (RGD) containing model peptide was conjugated to the surface of poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as a ligand that can recognize adhesion molecules overexpressed on the surface of metastatic cancer cells, that is, integrins, and that can enhance the micellar delivery of encapsulated hydrophobic drug into a tumor cell. Toward this goal, PEO-b-PCL copolymers bearing acetal groups on the PEO end were synthesized, characterized, and assembled to polymeric micelles. The acetal group on the surface of the PEO-b-PCL micelles was converted to reactive aldehyde under acidic condition at room temperature. An RGD-containing linear peptide, GRGDS, was conjugated on the surface of the aldehyde-decorated PEO-b-PCL micelles by incubation at room temperature. A hydrophobic fluorescent probe, that is, DiI, was physically loaded in prepared polymeric micelles to imitate hydrophobic drugs loaded in micellar carrier. The cellular uptake of DiI loaded GRGDS-modified micelles by melanoma B16-F10 cells was investigated at 4 and 37 degrees C by fluorescent spectroscopy and confocal microscopy techniques and was compared to the uptake of DiI loaded valine-PEO-b-PCL micelles (as the irrelevant ligand decorated micelles) and free DiI. GRGDS conjugation to polymeric micelles significantly facilitated the cellular uptake of encapsulated hydrophobic DiI most probably by intergrin-mediated cell attachment and endocytosis. The results indicate that acetal-terminated PEO-b-PCL micelles are amenable for introducing targeting moieties on the surface of polymeric micelles and that RGD-peptide conjugated PEO-b-PCL micelles are promising ligand-targeted carriers for enhanced drug delivery to metastatic tumor cells.

  15. 21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... coating is applied as a continuous film over one or both sides of a base film produced from one or more of the basic olefin polymers complying with § 177.1520 of this chapter. The base polyolefin film may... as are provided: List of substances Limitations (i) Resins and polymers: Acrylic acid polymer and its...

  16. 21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... coating is applied as a continuous film over one or both sides of a base film produced from one or more of the basic olefin polymers complying with § 177.1520 of this chapter. The base polyolefin film may... as are provided: List of substances Limitations (i) Resins and polymers: Acrylic acid polymer and its...

  17. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil.

    PubMed

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose.

  18. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT

    PubMed Central

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M.; Manteufel, Edward J.; Goldspink, Paul H.; Levick, Scott P.

    2015-01-01

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. PMID:26071541

  19. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA) polymeric nanoparticle micelles for nanomedicine applications

    NASA Astrophysics Data System (ADS)

    Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.

    2016-10-01

    Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application development.

  20. Possible immunosuppressive effects of drug exposure and environmental and nutritional effects on infection and vaccination.

    PubMed

    Huemer, H P

    2015-01-01

    A variety of drugs which are not primarily considered to be immunosuppressive agents have been described to modulate the humoral and cellular immune response in humans or animals. Thereby they may have an influence on the effectiveness and possible side effects of vaccines. This mini review lists some of the different substance classes and also some of endogeneous, infectious, nutritional, and environmental influences with suspected capability to interfere with immunizations. Studies in most cases focused on substances with known immunosuppressive functions, but there is growing evidence for immunomodulatory effects also of commonly used drugs with wide distribution. In particular combinations of those antiproliferative and antiphlogistic side effects of different substance classes have not been studied in detail but may substantially interfere with the development of a functional humoral and cellular immune response. The drugs of importance include antipyretics, anticoagulants, tranquilizers, and substances influencing lipid metabolism but also commonly used drugs of abuse like alcohol or cannabinoids. Additional substances of environmental, nutritional, or microbiological origin may also play a role but their combinatory/synergistic effects have been disregarded so far due to the lack of systematic data and the complex study designs necessary to elucidate those complex epidemiologic questions.

  1. CELLULAR TOXICITY IN CHINESE HAMSTER OVARY CELL CULTURES. 1. ANALYSIS OF CYTOTOXICITY ENDPOINTS FOR TWENTY-NINE PRIORITY POLLUTANTS

    EPA Science Inventory

    Chinese hamster ovary cells were exposed to 29 toxic chemical substances which were representative of several classes of compounds listed by the Natural Resources Defense Council Consent Decree as priority toxic pollutants. After cell cultures were exposed to the test substance, ...

  2. 46 CFR 38.05-20 - Insulation-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... possible high temperature or source of ignition shall be either: (i) Incombustible, complying with the... Cellular Polymeric Materials,” (incorporated by reference, see § 38.01-3) and covered by a suitable steel cover. (2) Insulation in a location protected against possible ignition by enclosure in a tight steel...

  3. 46 CFR 38.05-20 - Insulation-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... possible high temperature or source of ignition shall be either: (i) Incombustible, complying with the... Cellular Polymeric Materials,” (incorporated by reference, see § 38.01-3) and covered by a suitable steel cover. (2) Insulation in a location protected against possible ignition by enclosure in a tight steel...

  4. 46 CFR 38.05-20 - Insulation-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... possible high temperature or source of ignition shall be either: (i) Incombustible, complying with the... Cellular Polymeric Materials,” (incorporated by reference, see § 38.01-3) and covered by a suitable steel cover. (2) Insulation in a location protected against possible ignition by enclosure in a tight steel...

  5. Further Insights into Metal-DOM Interaction: Consideration of Both Fluorescent and Non-Fluorescent Substances

    PubMed Central

    Xu, Huacheng; Zhong, Jicheng; Yu, Guanghui; Wu, Jun; Jiang, Helong; Yang, Liuyan

    2014-01-01

    Information on metal binding with fluorescent substances has been widely studied. By contrast, information on metal binding with non-fluorescent substances remains lacking despite the dominance of these substances in aquatic systems. In this study, the metal binding properties of both fluorescent and non-fluorescent substances were investigated by using metal titration combined with two-dimensional correlation spectroscopy (2D–COS) analysis. The organic matters in the eutrophic algae-rich lake, including natural organic matters (NOM) and algae-induced extracellular polymeric substances (EPS), both contained fluorescent and non-fluorescent substances. The peaks in the one-dimensional spectra strongly overlapped, while 2D–COS can decompose the overlapped peaks and thus enhanced the spectral resolution. Moreover, 2D FTIR COS demonstrated that the binding susceptibility of organic ligands in both NOM and algal EPS matrices followed the order: 3400>1380>1650 cm−1, indicative the significant contribution of non-fluorescent ligands in metal binding. The modified Stern-Volmer equation also revealed a substantial metal binding potential for the non-fluorescent substances (logKM: 3.57∼4.92). As for the effects of organic ligands on metal binding, EPS was characterized with higher binding ability than NOM for both fluorescent and non-fluorescent ligands. Algae-induced EPS and the non-fluorescent substances in eutrophic algae-rich lakes should not be overlooked because of their high metal binding potential. PMID:25380246

  6. Adenosine Monophosphate Forms Ordered Arrays in Multilamellar Lipid Matrices: Insights into Assembly of Nucleic Acid for Primitive Life

    PubMed Central

    Toppozini, Laura; Dies, Hannah; Deamer, David W.; Rheinstädter, Maikel C.

    2013-01-01

    A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5′-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers. PMID:23667523

  7. Adenosine monophosphate forms ordered arrays in multilamellar lipid matrices: insights into assembly of nucleic acid for primitive life.

    PubMed

    Toppozini, Laura; Dies, Hannah; Deamer, David W; Rheinstädter, Maikel C

    2013-01-01

    A fundamental question of biology is how nucleic acids first assembled and then were incorporated into the earliest forms of cellular life 4 billion years ago. The polymerization of nucleotides is a condensation reaction in which phosphodiester bonds are formed. This reaction cannot occur in aqueous solutions, but guided polymerization in an anhydrous lipid environment could promote a non-enzymatic condensation reaction in which oligomers of single stranded nucleic acids are synthesized. We used X-ray scattering to investigate 5'-adenosine monophosphate (AMP) molecules captured in a multilamellar phospholipid matrix composed of dimyristoylphosphatidylcholine. Bragg peaks corresponding to the lateral organization of the confined AMP molecules were observed. Instead of forming a random array, the AMP molecules are highly entangled, with the phosphate and ribose groups in close proximity. This structure may facilitate polymerization of the nucleotides into RNA-like polymers.

  8. Cardiovascular Computed Tomography Phantom Fabrication and Characterization through the Tailored Properties of Polymeric Composites and Cellular Foams

    NASA Astrophysics Data System (ADS)

    Hoy, Carlton F. O.

    The overall objective of this thesis was to control the fabrication technique and relevant material properties for phantom devices designated for computed tomography (CT) scanning. Fabrication techniques using polymeric composites and foams were detailed together with parametric studies outlining the fundamentals behind the changes in material properties which affect the characteristic CT number. The composites fabricated used polyvinylidene fluoride (PVDF), thermoplastic polyurethane (TPU) and polyethylene (PE) with hydroxylapatite (hA) as additive with different composites made by means of different weight percentages of additive. Polymeric foams were fabricated through a batch foaming technique with the heating time controlled to create different levels of foams. Finally, the effect of fabricated phantoms under varied scanning media was assessed to determine whether self-made phantoms can be scanned accurately under non-water or rigid environments allowing for the future development of complex shaped or fragile material types.

  9. Hsp90 binds microtubules and is involved in the reorganization of the microtubular network in angiosperms.

    PubMed

    Krtková, Jana; Zimmermann, Aleksandra; Schwarzerová, Kateřina; Nick, Peter

    2012-09-15

    Microtubules (MTs) are essential for many processes in plant cells. MT-associated proteins (MAPs) influence MT polymerization dynamics and enable them to perform their functions. The molecular chaperone Hsp90 has been shown to associate with MTs in animal and plant cells. However, the role of Hsp90-MT binding in plants has not yet been investigated. Here, we show that Hsp90 associates with cortical MTs in tobacco cells and decorates MTs in the phragmoplast. Further, we show that tobacco Hsp90_MT binds directly to polymerized MTs in vitro. The inhibition of Hsp90 by geldanamycin (GDA) severely impairs MT re-assembly after cold-induced de-polymerization. Our results indicate that the plant Hsp90 interaction with MTs plays a key role in cellular events, where MT re-organization is needed. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Analysis of extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis-UBAF process for the elimination of high-level ciprofloxacin.

    PubMed

    Zhang, Longlong; Yue, Qinyan; Yang, Kunlun; Zhao, Pin; Gao, Baoyu

    2018-02-01

    Extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis and up-flow biological aerated filter (UBAF) process for the treatment of high-level ciprofloxacin (CIP) were analyzed. The research demonstrated a great potential of Fe-C micro-electrolysis-UBAF for the elimination of high-level CIP. Above 90% of CIP removal was achieved through the combined process at 100 mg L -1 of CIP loading. In UBAF, the pollutants were mainly removed at 0-70 cm heights. Three-dimensional fluorescence spectrum (3D-EEM) was used to characterize the chemical structural of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) extracted from biofilm sample in UBAF. The results showed that the protein-like substances in LB-EPS and TB-EPS had no clear change in the study. Nevertheless, an obvious release of polysaccharides in EPSs was observed during long-term exposure to CIP, which was considered as a protective response of microbial to CIP toxic. The high-throughput sequencing results revealed that the biodiversity of bacteria community became increasingly rich with gradual ciprofloxacin biodegradation in UBAF. The ciprofloxacin-degrading microbial community was mainly dominated by Proteobacteria and Bacteroidetes. Microorganisms from genera Dechloromonas, Brevundimonas, Flavobacterium, Sphingopyxis and Bosea might take a major role in ciprofloxacin degradation. This study provides deep theoretical guidance for real CIP wastewater treatment. Copyright © 2017. Published by Elsevier Ltd.

  11. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge.

    PubMed

    Guo, Xuesong; Liu, Junxin; Xiao, Benyi

    2014-10-20

    Extracellular polymeric substances (EPS) are susceptible to contamination by intracellular substances released during the extraction of EPS owing to the damage caused to microbial cell structures. The damage to cell walls and cell membranes in nine EPS extraction processes of activated sludge was evaluated in this study. The extraction of EPS (including proteins, carbohydrates and DNA) was the highest using the NaOH extraction method and the lowest using formaldehyde extraction. All nine EPS extraction methods in this study resulted in cell wall and membrane damage. The damage to cell walls, evaluated by 2-keto-3-deoxyoctonate (KDO) and N-acetylglucosamine content changes in extracted EPS, was the most significant in the NaOH extraction process. Formaldehyde extraction showed a similar extent of damage to cell walls to those detected in the control method (centrifugation), while those in the formaldehyde-NaOH and cation exchange resin extractions were slightly higher than those detected in the control. N-acetylglucosamine was more suitable than KDO for the evaluation of cell wall damage in the EPS extraction of activated sludge. The damage to cell membranes was characterized by two fluorochromes (propidium iodide and FITC Annexin V) with flow cytometry (FCM) measurement. The highest proportion of membrane-damaged cells was detected in NaOH extraction (26.54% of total cells) while membrane-damaged cells comprised 8.19% of total cells in the control. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Responses of soluble microbial products and extracellular polymeric substances to the presence of toxic 2,6-dichlorophenol in aerobic granular sludge system.

    PubMed

    Li, Kai; Wei, Dong; Yan, Tao; Du, Bin; Wei, Qin

    2016-12-01

    The objective of this study was to evaluate the responses of soluble microbial products (SMP) and extracellular polymeric substances (EPS) to the presence of toxic 2,6-dichlorophenol (2,6-DCP) in aerobic granular sludge (AGS) system. Batch experiment showed that NH 4 + -N removal efficiency significantly decreased from 99.6% to 47.2% in the toxic 2,6-DCP of 20 mg/L. Moreover, the inhibition degrees of 2,6-DCP on (SOUR) H , [Formula: see text] and [Formula: see text] were 7.8%, 32.1% and 9.5%, respectively. The main components of SMP, including protein (PN) and polysaccharide (PS) increased from 2.3 ± 0.74 and 16.8 ± 0.12 mg/L to 66.4 ± 0.56 and 18.0 ± 0.19 mg/L in the presence of 2,6-DCP. Three-dimensional excitation-emission matrix (3D-EEM) spectroscopy identified tryptophan PN-like, humic acid-like and fulvic acid-like substances in the control SMP, and their fluorescence intensities increased after exposure to 2,6-DCP. Synchronous fluorescence spectra suggested that the fluorescence quenching between EPS and 2,6-DCP was a static quenching process. The obtained results could provide insightful information on the responses of microbial products to AGS in the presence of toxic chlorophenols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Application of enzymes, sodium tripolyphosphate and cation exchange resin for the release of extracellular polymeric substances from sewage sludge. Characterization of the extracted polysaccharides/glycoconjugates by a panel of lectins.

    PubMed

    Wawrzynczyk, J; Szewczyk, E; Norrlöw, O; Dey, E Szwajcer

    2007-06-30

    The study describes extraction of extracellular polymeric substances (EPS) from sewage sludge by applying enzymes and enzymes combined with sodium tripolyphosphate (STPP). Additionally, a systematic study of two non-enzymatic extraction agents is described. The assessment of the released products is made by colorimetrical methods and polysaccharides/glycoconjugates identification by the interaction with four immobilized lectins. Bio-sludge from Helsingborg (Sweden) and Damhusåen (Denmark) were used as two case studies for testing enzymatic extractability and thereby to make useful prediction of sludge bio-digestibility. From Helsingborg sludge the enzymes extracted about 40% more of EPS than from Damhusåen. The polysaccharides/glycoconjugates in both sludges maintained the same level, and showed substantial different interaction motifs with lectins panel. Damhusåen enzymatic extracted EPS had an enhanced amount of suspended material that was post-hydrolysed by the use of polygalacturonase and lysozyme resulting in pectin like polymers and petiptidoglycans. Petiptidoglycan is a marker from bacterial cell debris. STPP and cation exchange resin (CER) released different quantities of EPS. The CER released polysaccharides/glycoconjugates had higher molecular weight and stronger affinity towards Concanavalin A than the one released by the action of STPP. Independent of the extraction conditions, STPP released elevated amounts of polyvalent cations and humic substances in contrast to the very low amounts of released by CER.

  14. Mixtures of tense and relaxed state polymerized human hemoglobin regulate oxygen affinity and tissue construct oxygenation

    PubMed Central

    Belcher, Donald Andrew; Banerjee, Uddyalok; Baehr, Christopher Michael; Richardson, Kristopher Emil; Cabrales, Pedro; Berthiaume, François

    2017-01-01

    Pure tense (T) and relaxed (R) quaternary state polymerized human hemoglobins (PolyhHbs) were synthesized and their biophysical properties characterized, along with mixtures of T- and R-state PolyhHbs. It was observed that the oxygen affinity of PolyhHb mixtures varied linearly with T-state mole fraction. Computational analysis of PolyhHb facilitated oxygenation of a single fiber in a hepatic hollow fiber (HF) bioreactor was performed to evaluate the oxygenation potential of T- and R-state PolyhHb mixtures. PolyhHb mixtures with T-state mole fractions greater than 50% resulted in hypoxic and hyperoxic zones occupying less than 5% of the total extra capillary space (ECS). Under these conditions, the ratio of the pericentral volume to the perivenous volume in the ECS doubled as the T-state mole fraction increased from 50 to 100%. These results show the effect of varying the T/R-state PolyhHb mole fraction on oxygenation of tissue-engineered constructs and their potential to oxygenate tissues. PMID:29020036

  15. Fractionation and structural characterization of polyphenolic antioxidants from seed shells of Japanese horse chestnut (Aesculus turbinata BLUME).

    PubMed

    Ogawa, Satoshi; Kimura, Hideto; Niimi, Ai; Katsube, Takuya; Jisaka, Mitsuo; Yokota, Kazushige

    2008-12-24

    Seed shells of the Japanese horse chestnut (Aesculus turbinata BLUME) contain high levels of polyphenolic antioxidants. These compounds were extracted, fractionated, and finally separated into three fractions, F1, F2, and F3, according to their degrees of polymerization. The structures of the isolated fractions were characterized by a combination of mass spectrometric analyses. F1 contained mainly low molecular weight phenolic substances, including procyanidin trimers. The predominant fractions F2 and F3 consisted of polymeric proanthocyanidins having a series of heteropolyflavan-3-ols, (+)-catechin/(-)-epicatechin units, and polymerization degrees of 19 and 23, respectively. The polyphenol polymers had doubly linked A-type interflavan linkages in addition to single B-type bonds without gallic acid esterified to them. The isolated polyphenolic compounds exhibited potent antioxidative activities comparable to monomeric (+)-catechin and (-)-epicatechin, or more efficacious than those monomers. The results suggest the potential usefulness of polyphenol polymers from seed shells as a source for nutraceutical factors.

  16. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil

    PubMed Central

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose. PMID:24516426

  17. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles.

    PubMed

    Jain, Rohan; Jordan, Norbert; Weiss, Stephan; Foerstendorf, Harald; Heim, Karsten; Kacker, Rohit; Hübner, René; Kramer, Herman; van Hullebusch, Eric D; Farges, François; Lens, Piet N L

    2015-02-03

    The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  18. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice.

    PubMed

    Aslam, Shazia N; Strauss, Jan; Thomas, David N; Mock, Thomas; Underwood, Graham J C

    2018-05-01

    Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.

  19. Extracellular Polymeric Substance Production and Aggregated Bacteria Colonization Influence the Competition of Microbes in Biofilms.

    PubMed

    Jayathilake, Pahala G; Jana, Saikat; Rushton, Steve; Swailes, David; Bridgens, Ben; Curtis, Tom; Chen, Jinju

    2017-01-01

    The production of extracellular polymeric substance (EPS) is important for the survival of biofilms. However, EPS production is costly for bacteria and the bacterial strains that produce EPS (EPS+) grow in the same environment as non-producers (EPS-) leading to competition between these strains for nutrients and space. The outcome of this competition is likely to be dependent on factors such as initial attachment, EPS production rate, ambient nutrient levels and quorum sensing. We use an Individual-based Model (IbM) to study the competition between EPS+ and EPS- strains by varying the nature of initial colonizers which can either be in the form of single cells or multicellular aggregates. The microbes with EPS+ characteristics obtain a competitive advantage if they initially colonize the surface as smaller aggregates and are widely spread-out between the cells of EPS-, when both are deposited on the substratum. Furthermore, the results show that quorum sensing-regulated EPS production may significantly reduce the fitness of EPS producers when they initially deposit as aggregates. The results provide insights into how the distribution of bacterial aggregates during initial colonization could be a deciding factor in the competition among different strains in biofilms.

  20. Inhibitory effects of extracellular polymeric substances on ofloxacin sorption by natural biofilms.

    PubMed

    Zhang, Liwen; Dong, Deming; Hua, Xiuyi; Guo, Zhiyong

    2018-06-01

    Natural biofilms have strong affinities for organic contaminants, and their extracellular polymeric substances (EPS) have been thought to control the sorption process. However, the role of EPS in the sorption of antibiotics, an emerging concern, is poorly understood. Here, soluble (SEPS) and bound EPS (BEPS) were extracted from intact biofilms incubated at different lengths of time to obtain SEPS- and BEPS-free biofilms. Batch sorption experiments and infrared spectroscopy were used to investigate the role of EPS in the sorption of ofloxacin (OFL) by natural biofilms. The sorption capacities of OFL onto intact biofilms were lower than that those onto SEPS-free and BEPS-free biofilms. Partition and Langmuir adsorption contributed to the sorption of OFL onto these biofilms. SEPS and BEPS suppressed partitioning of OFL into biofilm organic matter. Meanwhile, the formation of hydrogen bonds could affect the Langmuir adsorption of OFL onto BEPS-free biofilms. These sorption mechanisms occurred simultaneously and enhanced the sorption capacities of biofilms after EPS removal. The information obtained in this study is beneficial for understanding the interaction mechanisms between antibiotics and natural biofilms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterization of extracellular polymeric substances of Bacillus amyloliquefaciens SQR9 induced by root exudates of cucumber.

    PubMed

    Kimani, Veronicah Njeri; Chen, Lin; Liu, Yunpeng; Raza, Waseem; Zhang, Nan; Mungai, Lewis Kamau; Shen, Qirong; Zhang, Ruifu

    2016-11-01

    Bacillus amyloliquefaciens SQR9 is a plant growth-promoting rhizobacterium (PGPRs) that forms biofilm on the roots of plants and protects them from a variety of pathogens. In this study, we reported the effect of root exudates produced by cucumber (Cucumis sativus L.) at different developmental stages on the biochemical composition of the biofilm matrix of SQR9. The results showed that the amino acids present in the root exudates of cucumber were responsible for triggering biofilm formation of SQR9. In addition, when root exudates harvested at different growth phases of cucumber were used as carbon sources for biofilm formation, the resulting biofilm matrixes differed both quantitatively and qualitatively. The biofilm matrix was mostly composed of amino groups observed by confocal laser scanning microscope (CLSM) hence the proteins formed the major component of the resulting extracellular polymeric substances (EPS). The potential use of amino acid-based dietary supplements to control biofilm formation in the plants may be a viable option to improve agricultural productivity by recruiting beneficial association with PGPRs in the manufacture of bio fertilizers or bio controls. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of thiosulfate on rapid start-up of sulfur-based reduction of high concentrated perchlorate: A study of kinetics, extracellular polymeric substances (EPS) and bacterial community structure.

    PubMed

    Guo, Jianbo; Zhang, Chao; Lian, Jing; Lu, Caicai; Chen, Zhi; Song, Yuanyuan; Guo, Yankai; Xing, Yajuan

    2017-11-01

    Perchlorate (ClO 4 - ) contamination is more and more concerned due to the hazards to humans. Based on the common primary bacterium (Helicobacteraceae) of both thiosulfate-acclimated sludge (T-Acc) and sulfur-acclimated sludge (S-Acc) for perchlorate reduction, the rapid start-up of sulfur-based perchlorate reduction reactor (SBPRR) was hypothesized by inoculating T-Acc. Furthermore, the performance of SBPRR, the SO 4 2- yield, kinetics of ClO 4 - reduction and the extracellular polymeric substances (EPS) of biofilm confirmed the hypothesis. The start-up time of R3 (reactor inoculating T-Acc) was 0.18 and 0.21 times that of R1 (control) and R2 (reactor with the influent containing thiosulfate), respectively. The SO 4 2- yield of R3 was lower than that of R2 and R1 with perchlorate removal rate 166.7mg/(Lh). The kinetic study and EPS demonstrated that inoculating T-Acc was beneficial for the development of biofilm. Consequently, the present study indicated that SBPRR can be rapidly and successfully started-up via inoculation of T-Acc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impact of sodium ion on multivalent metal ion content in extracellular polymeric substances of granular sludge from an expanded granular sludge bed.

    PubMed

    Fang, Peixiang; He, Xinlin; Li, Junfeng; Yang, Guang; Wang, Zhaoyang; Sun, Zhihua; Zhang, Xuan; Zhao, Chun

    2018-05-15

    The long-term and short-term effects of salinity on the multivalent metal ions within extracellular polymeric substance (EPS) were investigated in this study. The results indicated that the Na + content within the EPS increased significantly from 19.53% to 60.86% under high salinity, and this content in the saline system was 2.2 times higher than that of the control system at the end of the operation. The K + , Ca 2+ and Mg 2+ contents within the EPS decreased from 33.85%, 39.19% and 5.54% to 7.07%, 25.64% and 3.28%, respectively, when the salinity was increased from 0 g/L to 30 g/L. These ions were replaced by Na + through ion exchange and competing ionic binding sites under salt stress. The interaction between divalent metal ions and Na + was reversible with the adaption of anammox to salinity. Salinity exhibited a limited influence on the Fe 3+ within the EPS. Sludge granulation was inhibited under conditions of high salinity due to the replacement of multivalent metal ions by Na + .

  4. Charge characteristics of humic and fulvic acids: comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model.

    PubMed

    Bratskaya, S; Golikov, A; Lutsenko, T; Nesterova, O; Dudarchik, V

    2008-09-01

    Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.

  5. Acetylcholine Release in the Hippocampus and Striatum during Place and Response Training

    ERIC Educational Resources Information Center

    Pych, Jason C.; Chang, Qing; Colon-Rivera, Cynthia; Haag, Renee; Gold, Paul E.

    2005-01-01

    These experiments examined the release of acetylcholine in the hippocampus and striatum when rats were trained, within single sessions, on place or response versions of food-rewarded mazes. Microdialysis samples of extra-cellular fluid were collected from the hippocampus and striatum at 5-min increments before, during, and after training. These…

  6. Effect of pH on the extra cellular synthesis of gold and silver nanoparticles by Saccharomyces cerevisae.

    PubMed

    Lim, Hyun-Ah; Mishra, Amrita; Yun, Soon-Il

    2011-01-01

    In the present study, the synthesis of gold and silver nanoparticles was investigated using the culture supernatant broth of the yeast Saccharomyces cerevisae. Gold nanoparticles were formed within 24 hours of gold ion coming in contact with the culture supernatant broth. In case of silver the reduction process took 48 hours. The synthesized nanoparticles were investigated by UV-Visible spectroscopy. Distinct surface plasmon peaks were observed at 540 nm and 415 nm for gold and silver nanoparticles respectively. Bio-TEM micrographs of the synthesized nanoparticles indicated that the particles were well dispersed and near spherical in shape. The size range of the gold and silver nanoparticles was around 20-100 nm and 5-20 nm respectively. XRD patterns showed the presence of three distinct peaks corresponding to gold and silver nanoparticles respectively. A pH range of 4 to 6 and 8 to 10 favored optimum synthesis of gold and silver nanoparticles respectively. The process of reduction being extra cellular could be used in future for downstream processing in an eco friendly manner.

  7. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT.

    PubMed

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M; Manteufel, Edward J; Goldspink, Paul H; Levick, Scott P; Janicki, Joseph S

    2015-08-15

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. Copyright © 2015 the American Physiological Society.

  8. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles.

    PubMed

    Mady, Fatma M; Shaker, Mohamed A

    2017-01-01

    Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion-diffusion-evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity.

  9. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles

    PubMed Central

    Mady, Fatma M; Shaker, Mohamed A

    2017-01-01

    Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion–diffusion–evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity. PMID:29066891

  10. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy.

    PubMed

    Sackey-Aboagye, Bridget; Olsen, Abby L; Mukherjee, Sarmistha M; Ventriglia, Alexander; Yokosaki, Yasuyuki; Greenbaum, Linda E; Lee, Gi Yun; Naga, Hani; Wells, Rebecca G

    2016-01-01

    Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN.

  11. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy

    PubMed Central

    Sackey-Aboagye, Bridget; Olsen, Abby L.; Mukherjee, Sarmistha M.; Ventriglia, Alexander; Yokosaki, Yasuyuki; Greenbaum, Linda E.; Lee, Gi Yun; Naga, Hani

    2016-01-01

    Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN. PMID:27741254

  12. Production of exopolysaccharide from rhizobia with potential biotechnological and bioremediation applications.

    PubMed

    Castellane, Tereza Cristina Luque; Persona, Michelli Romanoli; Campanharo, João Carlos; de Macedo Lemos, Eliana Gertrudes

    2015-03-01

    The potential use of rhizobia under controlled fermentation conditions may result in the production of new extracellular polymeric substances (EPS) having novel and superior properties that will open up new areas of industrial applications and thus increase their demand. The production of EPS and the stability of emulsions formed with soybean oil, diesel oil and toluene using different concentrations of purified EPS derived from wild-type and mutant strains of Rhizobium tropici SEMIA 4077 was investigated. The EPS was defined as a heteropolysaccharide composed of six constituent monosaccharides that displayed higher intrinsic viscosity and pseudoplastic non-Newtonian fluid behavior in an aqueous solution. The ratio between the total EPS production and the cellular biomass was 76.70 for the 4077::Z04 mutant strain and only 8.10 for the wild-type strain. The EPS produced by the wild-type R. tropici SEMIA 4077 resulted in more stable emulsions with the tested toluene than xanthan gum, and the emulsification indexes with hydrocarbons and soybean oil were higher than 50%, indicating strong emulsion-stabilizing capacity. These results demonstrate that the EPS of R. tropici strains could be attractive for use in industrial and environmental applications, as it had higher intrinsic viscosity and good emulsification activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Silver ion-enhanced particle-specific cytotoxicity of silver nanoparticles and effect on the production of extracellular secretions of Phanerochaete chrysosporium.

    PubMed

    Huang, Zhenzhen; Xu, Piao; Chen, Guiqiu; Zeng, Guangming; Chen, Anwei; Song, Zhongxian; He, Kai; Yuan, Lei; Li, Hui; Hu, Liang

    2018-04-01

    This study investigated the influence of silver ions (Ag + ) on the cytotoxicity of silver nanoparticles (AgNPs) in Phanerochaete chrysosporium and noted the degree of extracellular secretions in response to the toxicant's stress. Oxalate production was elicited with moderate concentrations of 2,4-dichlorophenol (2,4-DCP) and AgNPs reaching a plateau at 10 mg/L and 10 μM, respectively. Increased oxalate accumulation was accompanied by higher activities of manganese peroxidase (MnP) and lignin peroxidase (LiP). However, the secretion of oxalate, MnP and LiP was significantly inhibited owing to Ag + incorporation into AgNP solution. Production of extracellular polymeric substances (EPS) significantly elevated with an increase in 2,4-DCP concentrations; however, after 24 h of exposure to 100 mg/L 2,4-DCP, an obvious decrease in EPS occurred, indicating that part of EPS could be consumed as carbon and energy sources to ameliorate biological tolerance to toxic stress. Furthermore, AgNP-induced "particle-specific" cytotoxicity was substantially enhanced with additional Ag + as evidenced by its significant negative impact on cellular growth, plasma membrane integrity, and morphological preservation compared with AgNPs at equal Ag concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Differentiated adaptive evolution, episodic relaxation of selective constraints, and pseudogenization of umami and sweet taste genes TAS1Rs in catarrhine primates.

    PubMed

    Liu, Guangjian; Walter, Lutz; Tang, Suni; Tan, Xinxin; Shi, Fanglei; Pan, Huijuan; Roos, Christian; Liu, Zhijin; Li, Ming

    2014-01-01

    Umami and sweet tastes are two important basic taste perceptions that allow animals to recognize diets with nutritious carbohydrates and proteins, respectively. Until recently, analyses of umami and sweet taste were performed on various domestic and wild animals. While most of these studies focused on the pseudogenization of taste genes, which occur mostly in carnivores and species with absolute feeding specialization, omnivores and herbivores were more or less neglected. Catarrhine primates are a group of herbivorous animals (feeding mostly on plants) with significant divergence in dietary preference, especially the specialized folivorous Colobinae. Here, we conducted the most comprehensive investigation to date of selection pressure on sweet and umami taste genes (TAS1Rs) in catarrhine primates to test whether specific adaptive evolution occurred during their diversification, in association with particular plant diets. We documented significant relaxation of selective constraints on sweet taste gene TAS1R2 in the ancestral branch of Colobinae, which might correlate with their unique ingestion and digestion of leaves. Additionally, we identified positive selection acting on Cercopithecidae lineages for the umami taste gene TAS1R1, on the Cercopithecinae and extant Colobinae and Hylobatidae lineages for TAS1R2, and on Macaca lineages for TAS1R3. Our research further identified several site mutations in Cercopithecidae, Colobinae and Pygathrix, which were detected by previous studies altering the sensitivity of receptors. The positively selected sites were located mostly on the extra-cellular region of TAS1Rs. Among these positively selected sites, two vital sites for TAS1R1 and four vital sites for TAS1R2 in extra-cellular region were identified as being responsible for the binding of certain sweet and umami taste molecules through molecular modelling and docking. Our results suggest that episodic and differentiated adaptive evolution of TAS1Rs pervasively occurred in catarrhine primates, most concentrated upon the extra-cellular region of TAS1Rs.

  15. Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues.

    PubMed

    Panzetta, Valeria; Musella, Ida; Rapa, Ida; Volante, Marco; Netti, Paolo A; Fusco, Sabato

    2017-07-15

    The mechanical cross-talk between cells and the extra-cellular matrix (ECM) regulates the properties, functions and healthiness of the tissues. When this is disturbed it changes the mechanical state of the tissue components, singularly or together, and cancer, along with other diseases, may start and progress. However, the bi-univocal mechanical interplay between cells and the ECM is still not properly understood. In this study we show how a microrheology technique gives us the opportunity to evaluate the mechanics of cells and the ECM at the same time. The mechanical phenotyping was performed on the surgically removed tissues of 10 patients affected by adenocarcinoma of the lung. A correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Our findings suggest a sort of asymmetric modification of the mechanical properties of the cells and the extra-cellular matrix in the tumor, being the more compliant cell even though it resides in a stiffer matrix. Overall, the simultaneous mechanical characterization of the tissues constituents (cells and ECM) provided new support for diagnosis and offered alternative points of analysis for cancer mechanobiology. When the integrity of the mechanical cross-talk between cells and the extra-cellular matrix is disturbed cancer, along with other diseases, may initiate and progress. Here, we show how a new technique gives the opportunity to evaluate the mechanics of cells and the ECM at the same time. It was applied on surgically removed tissues of 10 patients affected by adenocarcinoma of the lung and a correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Improved Parameter-Estimation With MRI-Constrained PET Kinetic Modeling: A Simulation Study

    NASA Astrophysics Data System (ADS)

    Erlandsson, Kjell; Liljeroth, Maria; Atkinson, David; Arridge, Simon; Ourselin, Sebastien; Hutton, Brian F.

    2016-10-01

    Kinetic analysis can be applied both to dynamic PET and dynamic contrast enhanced (DCE) MRI data. We have investigated the potential of MRI-constrained PET kinetic modeling using simulated [ 18F]2-FDG data for skeletal muscle. The volume of distribution, Ve, for the extra-vascular extra-cellular space (EES) is the link between the two models: It can be estimated by DCE-MRI, and then used to reduce the number of parameters to estimate in the PET model. We used a 3 tissue-compartment model with 5 rate constants (3TC5k), in order to distinguish between EES and the intra-cellular space (ICS). Time-activity curves were generated by simulation using the 3TC5k model for 3 different Ve values under basal and insulin stimulated conditions. Noise was added and the data were fitted with the 2TC3k model and with the 3TC5k model with and without Ve constraint. One hundred noise-realisations were generated at 4 different noise-levels. The results showed reductions in bias and variance with Ve constraint in the 3TC5k model. We calculated the parameter k3", representing the combined effect of glucose transport across the cellular membrane and phosphorylation, as an extra outcome measure. For k3", the average coefficient of variation was reduced from 52% to 9.7%, while for k3 in the standard 2TC3k model it was 3.4%. The accuracy of the parameters estimated with our new modeling approach depends on the accuracy of the assumed Ve value. In conclusion, we have shown that, by utilising information that could be obtained from DCE-MRI in the kinetic analysis of [ 18F]2-FDG-PET data, it is in principle possible to obtain better parameter estimates with a more complex model, which may provide additional information as compared to the standard model.

  17. Enzymatic biotransformation of polyphenolics increases antioxidant activity of red and white grape pomace

    USDA-ARS?s Scientific Manuscript database

    Grape pomace (GP) is a polyphenolic-rich byproduct of wine production. As most polyphenolics are either bound to cellular matrices or present as free polymeric forms, treatment with hydrolytic enzymes may act to increase GP functionalities. The aim of this study was to examine the impact of tannase ...

  18. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications.

    PubMed

    Bazban-Shotorbani, Salime; Hasani-Sadrabadi, Mohammad Mahdi; Karkhaneh, Akbar; Serpooshan, Vahid; Jacob, Karl I; Moshaverinia, Alireza; Mahmoudi, Morteza

    2017-05-10

    pH-responsive polymers contain ionic functional groups as pendants in their structure. The total number of charged groups on polymer chains determines the overall response of the system to changes in the external pH. This article reviews various pH-responsive polymers classified as polyacids (e.g., carboxylic acid based polymers, sulfonamides, anionic polysaccharides, and anionic polypeptides) and polybases (e.g., polyamines, pyridine and imidazole containing polymers, cationic polysaccharides, and cationic polypeptides). We correlate the pH variations in the body at the organ level (e.g., gastrointestinal tract and vaginal environment), tissue level (e.g., cancerous and inflamed tissues), and cellular level (e.g., sub-cellular organelles), with the intrinsic properties of pH-responsive polymers. This knowledge could help to select more effective ('smart') polymeric systems based on the biological target. Considering the pH differences in the body, various drug delivery systems can be designed by utilizing smart biopolymeric compounds with the required pH-sensitivity. We also review the pharmaceutical application of pH-responsive polymeric carriers including hydrogels, polymer-drug conjugates, micelles, dendrimers, and polymersomes. © 2016.

  19. Microfluidic approach of Sickled Cell Anemia

    NASA Astrophysics Data System (ADS)

    Abkarian, Manouk; Loiseau, Etienne; Massiera, Gladys

    2012-11-01

    Sickle Cell Anemia is a disorder of the microcirculation caused by a genetic point mutation that produces an altered hemoglobin protein called HbS. HbS self-assembles reversibly into long rope like fibers inside the red blood cells. The resulting distorded sickled red blood cells are believed to block the smallest capillaries of the tissues producing anemia. Despite the large amount of work that provided a thorough understanding of HbS polymerization in bulk as well as in intact red blood cells at rest, no consequent cellular scale approaches of the study of polymerization and its link to the capillary obstruction have been proposed in microflow, although the problem of obstruction is in essence a circulatory problem. Here, we use microfluidic channels, designed to mimic physiological conditions (flow velocity, oxygen concentration, hematocrit...) of the microcirculation to carry out a biomimetic study at the cellular scale of sickled cell vaso-occlusion. We show that flow geometry, oxygen concentration, white blood cells and free hemoglobin S are essential in the formation of original cell aggregates which could play a role in the vaso-occlusion events.

  20. The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation

    PubMed Central

    Lee, Mihwa; Sadowska, Agata; Bekere, Indra; Ho, Diwei; Gully, Benjamin S.; Lu, Yanling; Iyer, K. Swaminathan; Trewhella, Jill; Fox, Archa H.; Bond, Charles S.

    2015-01-01

    SFPQ, (a.k.a. PSF), is a human tumor suppressor protein that regulates many important functions in the cell nucleus including coordination of long non-coding RNA molecules into nuclear bodies. Here we describe the first crystal structures of Splicing Factor Proline and Glutamine Rich (SFPQ), revealing structural similarity to the related PSPC1/NONO heterodimer and a strikingly extended structure (over 265 Å long) formed by an unusual anti-parallel coiled-coil that results in an infinite linear polymer of SFPQ dimers within the crystals. Small-angle X-ray scattering and transmission electron microscopy experiments show that polymerization is reversible in solution and can be templated by DNA. We demonstrate that the ability to polymerize is essential for the cellular functions of SFPQ: disruptive mutation of the coiled-coil interaction motif results in SFPQ mislocalization, reduced formation of nuclear bodies, abrogated molecular interactions and deficient transcriptional regulation. The coiled-coil interaction motif thus provides a molecular explanation for the functional aggregation of SFPQ that directs its role in regulating many aspects of cellular nucleic acid metabolism. PMID:25765647

  1. Cytotoxicity of dental glass ionomers evaluated using dimethylthiazol diphenyltetrazolium and neutral red tests.

    PubMed

    Lönnroth, E C; Dahl, J E

    2001-02-01

    The purpose of this study was to assess the cytotoxicity of some commonly used glass ionomers. Three chemically cured glass ionomers (Fuji II, Lining cement, and Ketac Silver) and one light-cured (Fuji II LC) were tested. Extracts of mixed non-polymerized materials and polymerized specimens were prepared in accordance with ISO standard 10993-12. The polymerized specimens were cured and placed either directly in the medium (freshly cured), left for 24 h (aged), or aged plus ground before being placed in the medium. The cytotoxicity of extracts was evaluated on mouse fibroblasts (L, 929), using dimethylthiazol diphenyltetrazolium (MTT) and neutral red (NR) assays. Further, the concentrations of aluminum, arsenic and lead were analyzed in aqueous extracts from freshly cured and aged samples, and the fluoride levels analyzed in aqueous extracts from freshly cured samples. All extracts except that of non-polymerized Ketac Silver were rated as severely cytotoxic in both assays. Extracts of polymerized material were significantly more cytotoxic than extracts of non-polymerized material. All freshly cured glass ionomers released aluminum and fluoride concentrations far above what is considered cytotoxic (aluminum >0.2 ppm and fluoride >20 ppm). Extracts from freshly cured Lining Cement contained the highest concentrations of aluminum and fluoride (215 ppm and 112 ppm). Extracts from freshly cured Ketac Silver had the lowest concentrations of aluminum and fluoride but the highest of lead (100 ppm). It can be concluded that all extracts from non-cured, freshly cured, and aged glass ionomers contained cytotoxic levels of substances. Curing did not reduce the toxicity significantly.

  2. A nucleator arms race: cellular control of actin assembly.

    PubMed

    Campellone, Kenneth G; Welch, Matthew D

    2010-04-01

    For over a decade, the actin-related protein 2/3 (ARP2/3) complex, a handful of nucleation-promoting factors and formins were the only molecules known to directly nucleate actin filament formation de novo. However, the past several years have seen a surge in the discovery of mammalian proteins with roles in actin nucleation and dynamics. Newly recognized nucleation-promoting factors, such as WASP and SCAR homologue (WASH), WASP homologue associated with actin, membranes and microtubules (WHAMM), and junction-mediating regulatory protein (JMY), stimulate ARP2/3 activity at distinct cellular locations. Formin nucleators with additional biochemical and cellular activities have also been uncovered. Finally, the Spire, cordon-bleu and leiomodin nucleators have revealed new ways of overcoming the kinetic barriers to actin polymerization.

  3. The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility.

    PubMed

    Dash, Biraja C; Réthoré, Gildas; Monaghan, Michael; Fitzgerald, Kathleen; Gallagher, William; Pandit, Abhay

    2010-11-01

    Polymeric hollow spheres can be tailored as efficient carriers of various therapeutic molecules due to their tunable properties. However, the entry of these synthetic vehicles into cells, their cell viability and blood compatibility depend on their physical and chemical properties e.g. size, surface charge. Herein, we report the effect of size and surface charge on cell viability and cellular internalization behaviour and their effect on various blood components using chitosan/polyglutamic acid hollow spheres as a model system. Negatively charged chitosan/polyglutamic acid hollow spheres of various sizes 100, 300, 500 and 1000 nm were fabricated using a template based method and covalently surface modified using linear polyethylene glycol and methoxyethanol amine to create a gradient of surface charge from negative to neutrally charged spheres respectively. The results here suggest that both size and surface charge have a significant influence on the sphere's behaviour, most prominently on haemolysis, platelet activation, plasma recalcification time, cell viability and internalization over time. Additionally, cellular internalization behaviour and viability was found to vary with different cell types. These results are in agreement with those of inorganic spheres and liposomes, and can serve as guidelines for tailoring polymeric solid spheres for specific desired applications in biological and pharmaceutical fields, including the design of nanometer to submicron-sized delivery vehicles. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Activation of Actuating Hydrogels with WS2 Nanosheets for Biomimetic Cellular Structures and Steerable Prompt Deformation.

    PubMed

    Zong, Lu; Li, Xiankai; Han, Xiangsheng; Lv, Lili; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-09-20

    Macroscopic soft actuation is intrinsic to living organisms in nature, including slow deformation (e.g., contraction, bending, twisting, and curling) of plants motivated by microscopic swelling and shrinking of cells, and rapid motion of animals (e.g., deformation of jellyfish) motivated by cooperative nanoscale movement of motor proteins. These actuation behaviors, with an exceptional combination of tunable speed and programmable deformation direction, inspire us to design artificial soft actuators for broad applications in artificial muscles, nanofabrication, chemical valves, microlenses, soft robotics, etc. However, so far artificial soft actuators have been typically produced on the basis of poly(N-isopropylacrylamide) (PNiPAM), whose deformation is motived by volumetric shrinkage and swelling in analogue to plant cells, and exhibits sluggish actuation kinetics. In this study, alginate-exfoliated WS 2 nanosheets were incorporated into ice-template-polymerized PNiPAM hydrogels with the cellular microstructures which mimic plant cells, yet the prompt steerable actuation of animals. Because of the nanosheet-reinforced pore walls formed in situ in freezing polymerization and reasonable hierarchical water channels, this cellular hybrid hydrogel achieves super deformation speed (on the order of magnitude of 10° s), controllable deformation direction, and high near-infrared light responsiveness, offering an unprecedented platform of artificial muscles for various soft robotics and devices (e.g., rotator, microvalve, aquatic swimmer, and water-lifting filter).

  5. Cytosolic Extract Induces Tir Translocation and Pedestals in EPEC-Infected Red Blood Cells

    PubMed Central

    Swimm, Alyson I; Kalman, Daniel

    2008-01-01

    Enteropathogenic Escherichia coli (EPEC) are deadly contaminants in water and food, and induce protrusion of actin-filled membranous pedestals beneath themselves upon attachment to intestinal epithelia. Pedestal formation requires clustering of Tir and subsequent recruitment of cellular tyrosine kinases including Abl, Arg, and Etk as well as signaling molecules Nck, N-WASP, and Arp2/3 complex. We have developed a cytosolic extract-based cellular system that recapitulates actin pedestal formation in permeabilized red blood cells (RBC) infected with EPEC. RBC support attachment of EPEC and translocation of virulence factors, but not pedestal formation. We show here that extract induces a rapid Ca++-dependent release of Tir from the EPEC Type III secretion system, and that cytoplasmic factor(s) present in the extract facilitate translocation of Tir into the RBC plasma membrane. We show that Abl and related kinases in the extract phosphorylate Tir and that actin polymerization can be reconstituted in infected RBC following addition of cytosolic extract. Reconstitution requires the bacterial virulence factors Tir and intimin, and phosphorylation of Tir on tyrosine residue 474 results in the recruitment of Nck, N-WASP, and Arp2/3 complex beneath attached bacteria at sites of actin polymerization. Together these data describe a biochemical system for dissection of host components that mediate Type III secretion and the mechanisms by which complexes of proteins are recruited to discrete sites within the plasma membrane to initiate localized actin polymerization and morphological changes. PMID:18208322

  6. Casein Kinase II Induced Polymerization of Soluble TDP-43 into Filaments Is Inhibited by Heat Shock Proteins

    PubMed Central

    Davis, Mary; Lin, Wen-Lang; Cook, Casey; Dunmore, Judy; Tay, William; Menkosky, Kyle; Cao, Xiangkun; Petrucelli, Leonard; DeTure, Michael

    2014-01-01

    Background Trans-activation Response DNA-binding Protein-43 (TDP-43) lesions are observed in Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Lobar Degeneration with ubiquitin inclusions (FTLD-TDP) and 25–50% of Alzheimer's Disease (AD) cases. These abnormal protein inclusions are composed of either amorphous TDP-43 aggregates or highly ordered filaments. The filamentous TDP-43 accumulations typically contain clean 10–12 nm filaments though wider 18–20 nm coated filaments may be observed. The TDP-43 present within these lesions is phosphorylated, truncated and ubiquitinated, and these modifications appear to be abnormal as they are linked to both a cellular heat shock response and microglial activation. The mechanisms associated with this abnormal TDP-43 accumulation are believed to result in a loss of TDP-43 function, perhaps due to the post-translational modifications or resulting from physical sequestration of the TDP-43. The formation of TDP-43 inclusions involves cellular translocation and conversion of TDP-43 into fibrillogenic forms, but the ability of these accumulations to sequester normal TDP-43 and propagate this behavior between neurons pathologically is mostly inferred. The lack of methodology to produce soluble full length TDP-43 and recapitulate this polymerization into filaments as observed in disease has limited our understanding of these pathogenic cascades. Results The protocols described here generate soluble, full-length and untagged TDP-43 allowing for a direct assessment of the impact of various posttranslational modifications on TDP-43 function. We demonstrate that Casein Kinase II (CKII) promotes the polymerization of this soluble TDP-43 into 10 nm diameter filaments that resemble the most common TDP-43 structures observed in disease. Furthermore, these filaments are recognized as abnormal by Heat Shock Proteins (HSPs) which can inhibit TDP-43 polymerization or directly promote TDP-43 filament depolymerization. Conclusion These findings demonstrate CKII induces polymerization of soluble TDP-43 into filaments and Hsp90 promotes TDP-43 filament depolymerization. These findings provide rational for potential therapeutic intervention at these points in TDP-43 proteinopathies. PMID:24595055

  7. Expression and significance of Ki-67 in lung cancer.

    PubMed

    Folescu, Roxana; Levai, Codrina Mihaela; Grigoraş, Mirela Loredana; Arghirescu, Teodora Smaranda; Talpoş, Ioana Cristina; Gîndac, Ciprian Mihai; Zamfir, Carmen Lăcrămioara; Poroch, Vladimir; Anghel, Mirella Dorina

    2018-01-01

    Ki-67 parameter is a proliferation marker in malignant tumors. The increased proliferation activity and the decreased prognosis in lung cancer determined us to investigate different parameters connected to the tumor's aggression, such as cellularity, Ki-67 positivity rate, and proliferating cell nuclear antigen (PCNA). We evaluated the proliferative activity in 62 primary lung tumors by determining the cell's percentage of Ki-67 and immunoreactive PCNA (using MIB-1 and PCNA monoclonal antibodies), classifying Ki-67 and PCNA immunoreactivity into three score groups. The results obtained emphasized a linkage between Ki-67 score with the histological tumor subtype, tumor cellularity and degree of differentiation and with other proliferation immunohistochemistry (IHC) markers, such as p53 cellular tumor antigen. The tumor's cellularity, the Ki-67 positivity rate and PCNA, together with the clinical stage and the histological differentiation bring extra pieces of useful information in order to anticipate the evolution and the prognosis of lung cancer.

  8. Virtual Reality and Cellular Phones as a Complementary Intervention for Veterans with PTSD and Substance Use Disorders

    DTIC Science & Technology

    2011-10-01

    substance use disorders (SUDs). The novel intervention uses virtual reality as a cue exposure platform to extinguish cravings to drug-related cues...Pretreatment Posttreament Outcome Variable M(SD) M(SD) PTSD Symptoms, past month (CAPS) 82.4 (18.7) 42.9 (33.5) Nicotine (Fagerstrom) 8.00 (3.46

  9. Microbial processes at the beds of glaciers and ice sheets: a look at life below the Whillans Ice Stream

    NASA Astrophysics Data System (ADS)

    Mikucki, J.; Campen, R.; Vancleave, S.; Scherer, R. P.; Coenen, J. J.; Powell, R. D.; Tulaczyk, S. M.

    2017-12-01

    Groundwater, saturated sediments and hundreds of subglacial lakes exist below the ice sheets of Antarctica. The few Antarctic subglacial environments sampled to date all contain viable microorganisms. This is a significant finding because microbes are known to be key in mediating biogeochemical cycles. In sediments, microbial metabolic activity can also result in byproducts or direct interactions with sediment particles that influence the physical and geochemical characteristics of the matrix they inhabit. Subglacial Lake Whillans (SLW), a fresh water lake under the Whillans Ice Stream that drains into the Ross Sea at its grounding zone, was recently sampled as part of the NSF-funded Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Sediments from both SLW and its grounding zone contain microbial taxa related to iron, sulfur, nitrogen and methane oxidizers. In addition to molecular data, biogeochemical measurements and culture based experiments on Whillans sediments support the notion that the system is chemosynthetic with energy derived in part by cycling inorganic compounds. Etch pitting and mineral precipitates on fossil sponge spicules suggest that spicules may also provide microbial nutrients in these environments. Perhaps the most widespread microbial process that affects sediment structure and mineral weathering is the production of extra polymeric substances (EPS). Several phylogenetic groups detected in Whillans sediments are known to produce EPS and we have observed its production in pure cultures enriched directly from these sediments. Our data sheds light on how microbial life persists below the Antarctic Ice Sheet despite extended isolation in icy darkness, and how these microbes may be shaping their environment.

  10. Influence of extraction techniques on physical-chemical characteristics and volatile compounds of extra virgin olive oil.

    PubMed

    Volpe, Maria Grazia; De Cunzo, Fausta; Siano, Francesco; Paolucci, Marina; Barbarisi, Costantina; Cammarota, Giancarlo

    2014-01-01

    The purpose of this study was to investigate three types of extraction methods of extra virgin olive oil (EVOO) from the same cultivar (Ortice olive cultivar): traditional or pressing (T) system, decanter centrifugation (DC) system and a patented horizontal axis decanter centrifugation (HADC) system. Oil samples were subjected to chemical analyses: free acidity, peroxide value, ultraviolet light absorption K232 and K270, total polyphenols, antioxidant capacity, volatile compounds and olfactory characteristics by electronic nose. The two centrifugation systems showed better free acidity and peroxides value but total polyphenol content was particularly high in extra virgin olive oil produced by patented HADC system. Same volatile substances that positively characterize the oil aroma were found in higher amount in the two centrifugation systems, although some differences have been detected between DC and HADC system, other were found in higher amount in extra virgin olive oil produced by T system. The electronic nose analysis confirmed these results, principal component analysis (PCA) and correlation matrix showed the major differences between EVOO produced by T and HADC system. Taken together the results showed that DC and HADC systems produce EVOO with better characteristics than T system and patented HADC is the best extraction system.

  11. The Installation Restoration Program Toxicology Guide. Volume 2

    DTIC Science & Technology

    1989-07-01

    producing substance. Carcinoma A malignant epithelial tumor. CAS REG NO Numeric designation assigned by the A.~’erican Chemical Socecty’s Chemica ...violent, exothermic, and capable of causing violent rupture of sealed containers. ABBREVIATIONS AB-I1 Polymerization A chemica reaction, usually carried...a deleterious effect on the taste and/or odor of human food derred from aquatic environments cannot be discharged into inland surface waters

  12. Inhibition of Microbial Growth by Fatty Amine Catalysts from Polyurethane Foam Test Tube Plugs

    PubMed Central

    Bach, John A.; Wnuk, Richard J.; Martin, Delano G.

    1975-01-01

    When polyurethane foam test tube plugs are autoclaved, they release volatile fatty amines that inhibit the growth of some microorganisms. The chemical structures of these amines were determined by the use of a gas chromatographmass spectrometer. They are catalysts used to produce the foam. The problem of contaminating growth media with toxic substances released from polymeric materials is discussed. PMID:1096816

  13. Origins of the protein synthesis cycle

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.

  14. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  15. Relationship between peroxisome proliferator-activated receptor alpha activity and cellular concentration of 14 perfluoroalkyl substances in HepG2 cells.

    PubMed

    Rosenmai, Anna Kjerstine; Ahrens, Lutz; le Godec, Théo; Lundqvist, Johan; Oskarsson, Agneta

    2018-02-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a molecular target for perfluoroalkyl substances (PFASs). Little is known about the cellular uptake of PFASs and how it affects the PPARα activity. We investigated the relationship between PPARα activity and cellular concentration in HepG2 cells of 14 PFASs, including perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates and perfluorooctane sulfonamide (FOSA). Cellular concentrations were determined by high-performance liquid chromatography-tandem mass spectrometry and PPARα activity was determined in transiently transfected cells by reporter gene assay. Cellular uptake of the PFASs was low (0.04-4.1%) with absolute cellular concentrations in the range 4-2500 ng mg -1 protein. Cellular concentration of PFCAs increased with perfluorocarbon chain length up to perfluorododecanoate. PPARα activity of PFCAs increased with chain length up to perfluorooctanoate. The maximum induction of PPARα activity was similar for short-chain (perfluorobutanoate and perfluoropentanoate) and long-chain PFCAs (perfluorododecanoate and perfluorotetradecanoate) (approximately twofold). However, PPARα activities were induced at lower cellular concentrations for the short-chain homologs compared to the long-chain homologs. Perfluorohexanoate, perfluoroheptanoate, perfluorooctanoate, perfluorononanoate (PFNA) and perfluorodecanoate induced PPARα activities >2.5-fold compared to controls. The concentration-response relationships were positive for all the tested compounds, except perfluorooctane sulfonate PFOS and FOSA, and were compound-specific, as demonstrated by differences in the estimated slopes. The relationships were steeper for PFCAs with chain lengths up to and including PFNA than for the other studied PFASs. To our knowledge, this is the first report establishing relationships between PPARα activity and cellular concentration of a broad range of PFASs. Copyright © 2017 John Wiley & Sons, Ltd.

  16. The effects of three commonly used extraction methods on the redox properties of extracellular polymeric substances from activated sludge.

    PubMed

    Lu, Qin; Chang, Ming; Yu, Zhen; Zhou, Shungui

    2015-01-01

    Recently, the redox properties of extracellular polymeric substances (EPS) have attracted the attention of scientists due to their associated environmental significance, such as organic pollutant (e.g. nitroaromatics and substituted nitrobenzenes) degradation and heavy metal (e.g. Cr(VI) and U(VI)) detoxification. Although the separation of EPS from bacterial cells is more often the first step in studies on EPS, and studies have demonstrated that extraction procedures can influence the sorption properties of EPS, few attempts have been made to investigate how separation methods affect the redox properties of the obtained EPS. In this study, three common extraction approaches, that is, centrifugation, formaldehyde+NaOH and ethylene diamine tetra-acetic acid (EDTA), were employed to extract EPS from activated sludge, and the obtained EPS were evaluated for their redox properties using electrochemical means, including cyclic voltammetry and chronoamperometry. In addition, spectroscopic techniques were utilized to explore the structural characteristics and composition of EPS. The results indicated that EPS extracted by EDTA clearly displayed reversible oxidation-reduction peaks in cyclic voltammograms and significantly higher electron-accepting capacity compared with EPS extracted using the other two approaches. Fourier transform infrared spectra and three-dimensional excitation-emission matrix spectra suggested that the EPS extracted with EDTA presented better redox properties because of the effective and efficient extraction of the humic substances, which are important components of the EPS of activated sludge. Therefore, extraction method has an impact on the composition and redox properties of EPS and should be chosen according to research purpose and EPS source.

  17. Selected applications for current polymers in prosthetic dentistry - state of the art.

    PubMed

    Kawala, Maciej; Smardz, Joanna; Adamczyk, Lukasz; Grychowska, Natalia; Wieckiewicz, Mieszko

    2018-05-10

    Polymers are widely applied in medicine, including dentistry, i.e. in prosthodontics. The following paper is aimed at demonstrating the applications of selected modern polymers in prosthetic dentistry based on the reported literature. The study was conducted using the PubMed, SCOPUS and CINAHL databases in relation to documents published during 1999-2017. The following keywords were used: polymers with: prosthetic dentistry, impression materials, denture base materials, bite registration materials, denture soft liners, occlusal splint materials and 3D printing. Original papers and reviews which were significant from the modern clinical viewpoint and practical validity in relation to the possibility of using polymeric materials in prosthetic dentistry, were presented. Denture base materials were most commonly modified polymers. Modifications mainly concerned antimicrobial properties and reinforcement of the material structure by introducing additional fibers. Antimicrobial modifications were also common in case of relining materials. Polymeric materials have widely been used in prosthetic dentistry. Modifications of their composition allow achieving new, beneficial properties that affect quality of patients' life. Progress in science allows for a more methodologically-advanced research on the synthesis of new polymeric materials and incorporation of new substances into already known polymeric materials, that will require systematization and appropriate classification. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Biochemical indicators of nephrotoxicity in blood serum of rats treated with novel 4-thiazolidinone derivatives or their complexes with polyethylene glycol-containing nanoscale polymeric carrier

    PubMed

    Kоbyli nska, L I; Havrylyuk, D Ya; Mitina, N E; Zaichenko, A S; Lesyk, R B; Zіme nkovsky, B S; Stoika, R S

    2016-01-01

    The aim of this study was to compare the effect of new synthetic 4-thiazolidinone derivatives (potential anticancer compounds denoted as 3882, 3288 and 3833) and doxorubicin (positive control) in free form and in their complexes with synthetic polyethylene glycol-containing nanoscale polymeric carrier on the biochemical indicators of nephrotoxicity in blood serum of rats. The concentration of total protein, urea, creatinine, glucose, ions of sodium, potassium, calcium, iron and chloride was measured. It was found that after injection of the investigated compounds, the concentration of sodium cations and chloride anions in blood serum was increased compared with control (untreated animals). Doxorubicin’s injection was accompanied by a decrease in the concentration of iron cations. The concentration of total protein, urea and creatinine decreased under the influence of the studied compounds. Complexation of these аntineoplastic substances with a synthetic polymeric nanocarrier lowered the concentration of the investigated metabolites substantially compared to the effect of these compounds in free form. The normalization of concentration of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with the polymeric carrier comparing with increased concentration of these indicators at the introduction of such compounds in free form was found.

  19. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  20. Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation

    NASA Astrophysics Data System (ADS)

    Tan, Kok-Hou; Cham, Hooi-Ying; Awala, Hussein; Ling, Tau Chuan; Mukti, Rino R.; Wong, Ka-Lun; Mintova, Svetlana; Ng, Eng-Poh

    2015-06-01

    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li+, Na+, K+, Ca2+) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils.

  1. MontanideTM Gel01 ST adjuvant enhances PRRS modified live vaccine efficacy by regulating porcine humoral and cellular immune responses

    USDA-ARS?s Scientific Manuscript database

    Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease caused by the PRRS virus. The MontanideTM class of flexible polymeric adjuvants has recently been shown to enhance protective immunity against PRRSV infection in piglets when used in combination with PRRS modified live vac...

  2. Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion.

    PubMed

    Wang, Yayi; Qin, Jian; Zhou, Shuai; Lin, Ximao; Ye, Liu; Song, Chengkang; Yan, Yuan

    2015-04-15

    Industrial wastewater containing heavy metals that enters municipal wastewater treatment plants inevitably has a toxic impact on biological treatment processes. In this study, the impact of Cu(II) (0, 1.5, 2, 2.5, 3 mg/L) on the performance of denitrifying phosphorus removal (DPR) and microbial community structures was investigated. Particularly, the dynamic change in the amount and composition of extracellular polymeric substances (EPS), and the role of EPS in P removal, were assessed using three-dimensional excitation-emission matrix fluorescence spectroscopy combined with parallel factor (PARAFAC) analysis. The results showed that, after long-term adjustment, the P removal efficiency was maintained at 95 ± 2.7% at Cu(II) addition up to 2.5 mg/L, but deteriorated when the Cu(II) addition was 3 mg/L. The EPS content, including proteins and humic substances, increased with increasing Cu(II) additions at concentrations ≤2.5 mg/L. This property of EPS was beneficial for protecting phosphate-accumulating organisms (PAOs) against heavy metals, as both proteins and humic substances are strong ligands for Cu(II). Therefore, the PAOs abundance was still relatively high (67 ± 3%) when Cu(II) accumulation in sludge was up to 10 mg/g SS. PARAFAC confirmed that aromatic proteins could be transformed into soluble microbial byproduct-like material when microorganisms were subjected to Cu(II) stress, owing to their strong metal ion complexing capacity. The increase in the percentage of humic-like substances enhanced the detoxification function of the sludge EPS. EPS accounted for approximately 26-47% of P removed by adsorption when Cu(II) additions were between 0 and 2.5 mg/L. The EPS function, including binding toxic heavy metals and P storage, enhanced the operating stability of DPR systems. This study provides us with a better understanding of (1) the tolerance of DPR sludge to copper toxicity and (2) the function of sludge EPS in the presence of heavy metals in biological P removal systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Nanospheres Encapsulating Anti-Leishmanial Drugs for Their Specific Macrophage Targeting, Reduced Toxicity, and Deliberate Intracellular Release

    PubMed Central

    Shukla, Anil Kumar; Patra, Sanjukta

    2012-01-01

    Abstract The current work focuses on the study of polymeric, biodegradable nanoparticles (NPs) for the encapsulation of doxorubicin and mitomycin C (anti-leishmanial drugs), and their efficient delivery to macrophages, the parasite's home. The biodegradable polymer methoxypoly-(ethylene glycol)-b-poly (lactic acid) (MPEG-PLA) was used to prepare polymeric NPs encapsulating doxorubicin and mitomycin C. The morphology, mean diameter, and surface area of spherical NPs were determined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and BET surface area analysis. X-ray diffraction was performed to validate drug encapsulation. An in vitro release profile of the drugs suggested a fairly slow release. These polymeric NPs were efficiently capable of releasing drug inside macrophages at a slower pace than the free drug, which was monitored by epi-fluorescence microscopy. Encapsulation of doxorubicin and mitomycin C into NPs also decreases cellular toxicity in mouse macrophages (J774.1A). PMID:22925019

  4. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    PubMed

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  5. Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula.

    PubMed

    Kobayashi, Tohru; Koide, Osamu; Mori, Kozue; Shimamura, Shigeru; Matsuura, Takae; Miura, Takeshi; Takaki, Yoshihiro; Morono, Yuki; Nunoura, Takuro; Imachi, Hiroyuki; Inagaki, Fumio; Takai, Ken; Horikoshi, Koki

    2008-07-01

    "A meta-enzyme approach" is proposed as an ecological enzymatic method to explore the potential functions of microbial communities in extreme environments such as the deep marine subsurface. We evaluated a variety of extra-cellular enzyme activities of sediment slurries and isolates from a deep subseafloor sediment core. Using the new deep-sea drilling vessel "Chikyu", we obtained 365 m of core sediments that contained approximately 2% organic matter and considerable amounts of methane from offshore the Shimokita Peninsula in Japan at a water depth of 1,180 m. In the extra-sediment fraction of the slurry samples, phosphatase, esterase, and catalase activities were detected consistently throughout the core sediments down to the deepest slurry sample from 342.5 m below seafloor (mbsf). Detectable enzyme activities predicted the existence of a sizable population of viable aerobic microorganisms even in deep subseafloor habitats. The subsequent quantitative cultivation using solid media represented remarkably high numbers of aerobic, heterotrophic microbial populations (e.g., maximally 4.4x10(7) cells cm(-3) at 342.5 mbsf). Analysis of 16S rRNA gene sequences revealed that the predominant cultivated microbial components were affiliated with the genera Bacillus, Shewanella, Pseudoalteromonas, Halomonas, Pseudomonas, Paracoccus, Rhodococcus, Microbacterium, and Flexibacteracea. Many of the predominant and scarce isolates produced a variety of extra-cellular enzymes such as proteases, amylases, lipases, chitinases, phosphatases, and deoxyribonucleases. Our results indicate that microbes in the deep subseafloor environment off Shimokita are metabolically active and that the cultivable populations may have a great potential in biotechnology.

  6. Microstructural effects in drug release by solid and cellular polymeric dosage forms: A comparative study.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2017-11-01

    In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. What Is Life? What Was Life? What Will Life Be?

    NASA Astrophysics Data System (ADS)

    Deamer, D.

    Our laboratory is exploring self-assembly processes and polymerization reactions of organic compounds in natural geothermal environments and related laboratory simulations. Although the physical environment that fostered primitive cellular life is still largely unconstrained, we can be reasonably confident that liquid water was required, together with a source of organic compounds and energy to drive polymerization reactions. There must also have been a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. In earlier work we observed that macromolecules such as nucleic acids and proteins are readily encapsulated in membranous boundaries during wet-dry cycles such as those that would occur at the edges of geothermal springs or tide pools. The resulting structures are referred to as protocells, in that they exhibit certain properties of living cells and are models of the kinds of encapsulated macromolecular systems that would have led toward the first forms of cellular life. However, the assembly of protocells is markedly inhibited by conditions associated with extreme environments: High temperature, high salt concentrations, and low pH ranges. From a biophysical perspective, it follows that the most plausible planetary environment for the origin of cellular life would be an aqueous phase at moderate temperature ranges and low ionic strength, having a pH value near neutrality and divalent cations at submillimolar concentrations. This suggestion is in marked contrast to the view that life most likely began in a geothermal or marine environment, perhaps even the extreme environment of a hydrothermal vent. A more plausible site for the origin of cellular life would be fresh water pools maintained by rain falling on volcanic land masses resembling present-day Hawaii and Iceland. After the first cellular life was able to establish itself in a relatively benign environment, it would rapidly begin to adapt through Darwinian selection to more rigorous environments, including the extreme temperatures, salt concentrations and pH ranges that we now associate with the limits of life on the Earth.

  8. The ineffectiveness of coumarin treatment on thermal oedema of macrophage-free rats.

    PubMed Central

    Piller, N. B.

    1976-01-01

    The administration of silica prevents coumarin-stimulated lysis of accumulated abnormal protein. This impairs the resolution of thermal oedema which is normally increased with coumarin administration. Evidence suggests that there is a rapid differentiation and infiltration of monocytes into the tissues and that these are selectively retained. This is aided by coumarin which increases tissue permeability. Coumarin also injures the vascular endothelium of some vessels, allowing extra protein and fluid into the tissues. Death of recently differentiated macrophages and subsequent release of their lysosomal contents into the extra-cellular spaces may be responsible for the changes in serum enzyme levels. It would seem that macrophages are the only cells in which coumarin stimulates increased phagocytosis, enzyme production and proteolysis. PMID:178336

  9. Self-focusing therapeutic gene delivery with intelligent gene vector swarms: intra-swarm signalling through receptor transgene expression in targeted cells.

    PubMed

    Tolmachov, Oleg E

    2015-01-01

    Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo are then attracted to and internalized into the intended target cells via the expressed cognate strongly binding extra-cellular receptor, causing escalation of gene transfer into these cells and increasing the copy number of the therapeutic gene expression modules. Such self-focusing swarms of gene vectors can be either homogeneous, with 'scout' and 'therapeutic' members of the swarm being structurally identical, or, alternatively, heterogeneous (split), with 'scout' and 'therapeutic' members of the swarm being structurally specialized. It is hoped that the proposed self-focusing cell-targeted gene vector swarms with receptor-mediated intra-swarm signalling could be particularly effective in 'top-up' gene delivery scenarios, achieving high-level and sustained expression of therapeutic transgenes that are prone to shut-down through degradation and silencing. Crucially, in contrast to low-precision 'general location' vector guidance by diffusible chemo-attractants, ear-marking non-diffusible receptors can provide high-accuracy targeting of therapeutic vector particles to the specific cell, which has undergone a 'successful cell-specific hit' by a 'scout' vector particle. Opportunities for cell targeting could be expanded, since in the proposed model of self-focusing it could be possible to probe a broad selection of intra-cellular determinants of cell-specificity and not just to rely exclusively on extra-cellular markers of cell-specificity. By employing such self-focusing gene vectors for the improvement of cell-targeted delivery of therapeutic genes, e.g., in cancer therapy or gene addition therapy of recessive genetic diseases, it could be possible to broaden a leeway for the reduction of the vector load and, consequently, to minimize undesired vector cytotoxicity, immune reactions, and the risk of inadvertent genetic modification of germline cells in genetic treatment in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation

    PubMed Central

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Nobrega, Marcelo M.; Cesar, Carlos L.; Temperini, Marcia L. A.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2015-01-01

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045

  11. Visualization of microbiological processes underlying stress relaxation in Pseudomonas aeruginosa biofilms.

    PubMed

    Peterson, Brandon W; Busscher, Henk J; Sharma, Prashant K; van der Mei, Henny C

    2014-06-01

    Bacterial biofilms relieve themselves from external stresses through internal rearrangement, as mathematically modeled in many studies, but never microscopically visualized for their underlying microbiological processes. The aim of this study was to visualize rearrangement processes occurring in mechanically deformed biofilms using confocal-laser-scanning-microscopy after SYTO9 (green-fluorescent) and calcofluor-white (blue-fluorescent) staining to visualize bacteria and extracellular-polymeric matrix substances, respectively. We apply 20% uniaxial deformation to Pseudomonas aeruginosa biofilms and fix deformed biofilms prior to staining, after allowing different time-periods for relaxation. Two isogenic P. aeruginosa strains with different abilities to produce extracellular polymeric substances (EPS) were used. By confocal-laser-scanning-microscopy all biofilms showed intensity distributions for fluorescence from which rearrangement of EPS and bacteria in deformed biofilms were derived. For the P. aeruginosa strain producing EPS, bacteria could not find new, stable positions within 100 s after deformation, while EPS moved toward deeper layers within 20 s. Bacterial rearrangement was not seen in P. aeruginosa biofilms deficient in production of EPS. Thus, EPS is required to stimulate bacterial rearrangement in mechanically deformed biofilms within the time-scale of our experiments, and the mere presence of water is insufficient to induce bacterial movement, likely due to its looser association with the bacteria.

  12. Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum.

    PubMed

    Xiao, Rui; Yang, Xi; Li, Mi; Li, Xiang; Wei, Yanzhang; Cao, Min; Ragauskas, Arthur; Thies, Mark; Ding, Junhuan; Zheng, Yi

    2018-09-01

    This paper was the first to study extracellular polymeric substances (EPSs) of Thraustochytrium striatum on composition, structure and bioactivities. Two strains of T. striatum including original (ori) and high-biomass (mut) strains (induced by high-nitrogen stress) were compared. The EPSs from both strains mainly contained polysaccharide (41-64%, w/w, dry basis) and protein (25-40%, w/w, dry basis), which was shown by the morphology study with an AFM. The monosaccharide profile of the EPS polysaccharide was consisted of glucose, galactose, arabinose, and trace amount of xylose. Glucose and arabinose took up to 82-90% (w/w, dry basis) of the total polysaccharide. The structure and functional groups of EPSs were determined by FTIR and NMR. The NMR results revealed that the major structural linkages of the polysaccharides of both ori and mut EPSs were 1 → 6-β-glucan and 1 → 4-α-galactan branched with l-α-arabinose. The EPSs were found to have anti-tumor activities against mouse melanoma B16-F0, human prostate carcinoma DU145, human cervical carcinoma HeLa, and human lung carcinoma A549. The EPSs also showed antioxidant and anti-inflammatory activities and antibacterial activity against Pseudomonas aeruginosa. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Viscoelastic Properties of Extracellular Polymeric Substances Can Strongly Affect Their Washing Efficiency from Reverse Osmosis Membranes.

    PubMed

    Ferrando Chavez, Diana Lila; Nejidat, Ali; Herzberg, Moshe

    2016-09-06

    The role of the viscoelastic properties of biofouling layers in their removal from the membrane was studied. Model fouling layers of extracellular polymeric substances (EPS) originated from microbial biofilms of Pseudomonas aeruginosa PAO1 differentially expressing the Psl polysaccharide were used for controlled washing experiments of fouled RO membranes. In parallel, adsorption experiments and viscoelastic modeling of the EPS layers were conducted in a quartz crystal microbalance with dissipation (QCM-D). During the washing stage, as shear rate was elevated, significant differences in permeate flux recovery between the three different EPS layers were observed. According to the amount of organic carbon remained on the membrane after washing, the magnitude of Psl production provides elevated resistance of the EPS layer to shear stress. The highest flux recovery during the washing stage was observed for the EPS with no Psl. Psl was shown to elevate the layer's shear modulus and shear viscosity but had no effect on the EPS adhesion to the polyamide surface. We conclude that EPS retain on the membrane as a result of the layer viscoelastic properties. These results highlight an important relation between washing efficiency of fouling layers from membranes and their viscoelastic properties, in addition to their adhesion properties.

  14. Improved PVDF membrane performance by doping extracellular polymeric substances of activated sludge.

    PubMed

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Wang, Long-Fei; Yu, Han-Qing

    2017-04-15

    Polyvinylidene fluoride (PVDF) membrane has been widely applied in water and wastewater treatment because of its high mechanical strength, thermal stability and chemical resistance. However, the hydrophobic nature of PVDF membrane makes it readily fouled, substantially reducing water flux and overall membrane rejection ability. In this work, an in-situ blending modifier, i.e., extracellular polymeric substances (EPS) from activated sludge, was used to enhance the anti-fouling ability of PVDF membrane. Results indicate that the pure water flux of the membrane and its anti-fouling performance were substantially improved by blending 8% EPS into the membrane. By introducing EPS, the membrane hydrophilicity was increased and the cross section morphology was changed when it interacted with polyvinl pyrrolidone, resulting in the formation of large cavities below the finger-like pores. In addition, the fraction of pores with a size of 100-500 nm increased, which was also beneficial to improving membrane performance. Surface thermodynamic calculations indicate the EPS-functionalized membrane had a higher cohesion free energy, implying its good pollutant rejection and anti-fouling ability. This work provides a simple, efficient and cost-effective method to improve membrane performance and also extends the applications of EPS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation.

    PubMed

    Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A

    2015-04-20

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.

  16. Effects of extracellular polymeric substances on the bioaccumulation of mercury and its toxicity toward the cyanobacterium Microcystis aeruginosa.

    PubMed

    Chen, Ho-Wen; Huang, Winn-Jung; Wu, Ting-Hsiang; Hon, Chen-Lin

    2014-01-01

    This investigation examines how extracellular polymeric substances (EPSs) and environmental factors affect the bioaccumulation and toxicity of inorganic mercury (+2 oxidation state, Hg(II)) using a culture of Microcystis aeruginosa, which dominates eutrophic reservoir populations. The identified EPSs were classified as carbohydrates and proteins. Evaluation of the bioaccumulation of Hg(II) in cells by multiple regression analysis reveals that the concentration of EPSs in filtrate, the initial concentration of Hg(II) in medium, and the culture age significantly affected the amount of Hg(II) accumulated. Composition profiles revealed that the concentrations of soluble carbohydrates were significantly higher in Hg(II)-accumulated cells than in the control ones. Preliminary results based on scanning electron microscopic (SEM) map investigations suggest that most of the Hg(II) was accumulated in the cytoplasm (intracellular). Additionally, the effective concentrations (EC50) of Hg(II) that inhibit the growth of M. aeruginosa were 38.6 μg L(-1) in the logarithmic phase and 17.5 μg L(-1) in the stationary phase. As expected, the production of more EPSs in the logarithmic phase typically implies higher EC50 values because EPSs may be regarded as a protective barrier of cells against an external Hg(II) load, enabling them to be less influenced by Hg(II).

  17. Static adsorptive fouling of extracellular polymeric substances with different membrane materials.

    PubMed

    Su, Xinying; Tian, Yu; Zuo, Wei; Zhang, Jun; Li, Hui; Pan, Xiaoyue

    2014-03-01

    Adsorptive fouling of microbial extracellular polymeric substances (EPS) greatly influences the fouling behavior and membrane characteristics in a membrane bioreactor (MBR). In this study, adsorptive fouling of the EPS on different membrane materials was compared and adsorptive mechanism between membranes and EPS was investigated by thermodynamic analysis. The results suggested that both the absolute and relative changes of hydraulic resistances should be considered to evaluate fouling of membranes with different materials, and Sips isotherm was the most suitable model to describe the EPS carbohydrate and protein adsorptions on membranes. Thermodynamic analysis showed that both EPS carbohydrate and protein adsorptions were spontaneous (ΔrG(θ) < 0), endothermic (ΔrH(θ) > 0), and entropy driven (ΔrS(θ) > 0). Decreasing ΔrG(θ) values with temperature suggested that EPS adsorptive fouling can be limited by reducing temperature. In addition, physisorption processes and hydrogen bonding interactions between EPS and membranes might play a relatively major role in the adsorption mechanism of EPS on the membrane surface. Atomic force microscopy (AFM) and contact angle analysis confirmed that the adsorptive fouling modified the membrane surface, making the membrane surface more heterogeneous and more hydrophobic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Isolation and physico-chemical characterisation of extracellular polymeric substances produced by the marine bacterium Vibrio parahaemolyticus.

    PubMed

    Kavita, Kumari; Mishra, Avinash; Jha, Bhavanath

    2011-03-01

    A marine bacterial strain identified as Vibrio parahaemolyticus by 16S rRNA gene (HM355955) sequencing and gas chromatography (GC) coupled with MIDI was selected from a natural biofilm by its capability to produce extracellular polymeric substances (EPS). The EPS had an average molecule size of 15.278 μm and exhibited characteristic diffraction peaks at 5.985°, 9.150° and 22.823°, with d-spacings of 14.76661, 9.29989 and 3.89650 Å, respectively. The Fourier-transform infrared spectroscopy (FTIR) spectrum revealed aliphatic methyl, primary amine, halide groups, uronic acid and saccharides. Gas chromatography mass spectrometry (GCMS) confirmed the presence of arabinose, galactose, glucose and mannose. (1)HNMR (nuclear magnetic resonance) revealed functional groups characteristic of polysaccharides. The EPS were amorphous in nature (CI(xrd) 0.092), with a 67.37% emulsifying activity, thermostable up to 250°C and displayed pseudoplastic rheology. MALDI-TOF-TOF analysis revealed a series of masses, exhibiting low-mass peaks (m/z) corresponding to oligosaccharides and higher-mass peaks for polysaccharides consisting of different ratios of pentose and hexose moieties. This is the first report of a detailed characterisation of the EPS produced by V. parahaemolyticus, which could be further explored for biotechnological and industrial use.

  19. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms

    PubMed Central

    Zhang, R Y; Neu, T R; Bellenberg, S; Kuhlicke, U; Sand, W; Vera, M

    2015-01-01

    Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms. PMID:25488256

  20. Influence of Al(III) on biofilm and its extracellular polymeric substances in sequencing batch biofilm reactors.

    PubMed

    Hu, Xuewei; Yang, Lei; Lai, Xinke; Yao, Qi; Chen, Kai

    2017-10-03

    This paper presented the influence of Al(III) on biodegradability, micromorphology, composition and functional groups characteristics of the biofilm extracellular polymeric substances (EPS) during different growth phases. The sequencing batch biofilm reactors were developed to cultivate biofilms under different Al(III) dosages. The results elucidated that Al(III) affected biofilm development adversely at the beginning of biofilm growth, but promoted the biofilm mass and improved the biofilm activity with the growth of the biofilm. The micromorphological observation indicated that Al(III) led to a reduction of the filaments and promotion of the EPS secretion in growth phases of the biofilm, also Al(III) could promote microorganisms to form larger colonies for mature biofilm. Then, the analysis of EPS contents and components suggested that Al(III) could increase the protein (PN) of tightly bound EPS (TB-EPS) which alleviated the metal toxicity inhibition on the biofilm during the initial phases of biofilm growth. The biofilm could gradually adapt to the inhibition caused by Al(III) at the biofilm maturation moment. Finally, through the Fourier transform infrared spectroscopy, it was found that Al(III) was beneficial for the proliferation and secretion of TB-EPS functional groups, especially the functional groups of protein and polysaccharides.

  1. Structure determination and total synthesis of a novel antibacterial substance, AB0022A, produced by a cellular slime mold.

    PubMed

    Sawada, T; Aono, M; Asakawa, S; Ito, A; Awano, K

    2000-09-01

    A novel antibacterial substance, AB0022A, was isolated from the cellular slime mold Dictyostelium purpureum K1001. It inhibited the growth of Gram-positive bacteria, and its MICs ranged from 0.39 to 50 microg/ml. Because AB0022A was a highly substituted aromatic compound, we could not determine its structure based on only its physico-chemical and spectral data. We therefore used a dehalogenated derivative from AB0022A and deduced that its structure was 1,9-dihydroxy-3,7-dimethoxy-2-hexanoyl-4,6,8-trichlorodibenzofuran . To confirm this structure, we synthesized the compound having the deduced structure. The synthetic compound was identical to naturally occurring AB0022A.

  2. Extra-Cellular But Extra-Ordinarily Important for Cells: Apoplastic Reactive Oxygen Species Metabolism

    PubMed Central

    Podgórska, Anna; Burian, Maria; Szal, Bożena

    2017-01-01

    Reactive oxygen species (ROS), by their very nature, are highly reactive, and it is no surprise that they can cause damage to organic molecules. In cells, ROS are produced as byproducts of many metabolic reactions, but plants are prepared for this ROS output. Even though extracellular ROS generation constitutes only a minor part of a cell’s total ROS level, this fraction is of extraordinary importance. In an active apoplastic ROS burst, it is mainly the respiratory burst oxidases and peroxidases that are engaged, and defects of these enzymes can affect plant development and stress responses. It must be highlighted that there are also other less well-known enzymatic or non-enzymatic ROS sources. There is a need for ROS detoxification in the apoplast, and almost all cellular antioxidants are present in this space, but the activity of antioxidant enzymes and the concentration of low-mass antioxidants is very low. The low antioxidant efficiency in the apoplast allows ROS to accumulate easily, which is a condition for ROS signaling. Therefore, the apoplastic ROS/antioxidant homeostasis is actively engaged in the reception and reaction to many biotic and abiotic stresses. PMID:28878783

  3. Bioreducible Fluorinated Peptide Dendrimers Capable of Circumventing Various Physiological Barriers for Highly Efficient and Safe Gene Delivery.

    PubMed

    Cai, Xiaojun; Jin, Rongrong; Wang, Jiali; Yue, Dong; Jiang, Qian; Wu, Yao; Gu, Zhongwei

    2016-03-09

    Polymeric vectors have shown great promise in the development of safe and efficient gene delivery systems; however, only a few have been developed in clinical settings due to poor transport across multiple physiological barriers. To address this issue and promote clinical translocation of polymeric vectors, a new type of polymeric vector, bioreducible fluorinated peptide dendrimers (BFPDs), was designed and synthesized by reversible cross-linking of fluorinated low generation peptide dendrimers. Through masterly integration all of the features of reversible cross-linking, fluorination, and polyhedral oligomeric silsesquioxane (POSS) core-based peptide dendrimers, this novel vector exhibited lots of unique features, including (i) inactive surface to resist protein interactions; (ii) virus-mimicking surface topography to augment cellular uptake; (iii) fluorination-mediated efficient cellular uptake, endosome escape, cytoplasm trafficking, and nuclear entry, and (iv) disulfide-cleavage-mediated polyplex disassembly and DNA release that allows efficient DNA transcription. Noteworthy, all of these features are functionally important and can synergistically facilitate DNA transport from solution to the nucleus. As a consequences, BFPDs showed excellent gene transfection efficiency in several cell lines (∼95% in HEK293 cells) and superior biocompatibility compared with polyethylenimine (PEI). Meanwhile BFPDs provided excellent serum resistance in gene delivery. More importantly, BFPDs offer considerable in vivo gene transfection efficiency (in muscular tissues and in HepG2 tumor xenografts), which was approximately 77-fold higher than that of PEI in luciferase activity. These results suggest bioreducible fluorinated peptide dendrimers are a new class of highly efficient and safe gene delivery vectors and should be used in clinical settings.

  4. Indocyanine Green-Encapsulated Hybrid Polymeric Nanomicelles for Photothermal Cancer Therapy.

    PubMed

    Jian, Wei-Hong; Yu, Ting-Wei; Chen, Chien-Ju; Huang, Wen-Chia; Chiu, Hsin-Cheng; Chiang, Wen-Hsuan

    2015-06-09

    Indocyanine green (ICG), an FDA approved medical near-infrared (NIR) imaging agent, has been extensively used in cancer theranosis. However, the limited aqueous photostability, rapid body clearance, and poor cellular uptake severely restrict its practical applications. For these problems to be overcome, ICG-encapsulated hybrid polymeric nanomicelles (PNMs) were developed in this work through coassociation of the amphiphilic diblock copolymer poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and hydrophobic electrostatic complexes composed of ICG molecules and branched poly(ethylenimine) (PEI). The ICG-encapsulated hybrid PNMs featured a hydrophobic PLGA/ICG/PEI core stabilized by hydrophilic PEG shells. The encapsulation of electrostatic ICG/PEI complexes into the compact PLGA-rich core not only facilitated the ICG loading but also promoted its aqueous optical stability. The effects of the chain length of PEI in combination with ICG on the physiochemical properties of PNMs and their drug leakage were also investigated. PEI(10k) (10 kDa) could form highly robust and dense complexes with ICG, and thus prominently reduced ICG outflow from the PNMs. The results of in vitro cellular uptake and cytotoxicity studies revealed that the ICG/PEI(10k)-loaded PNMs significantly promoted cellular uptake of ICG by HeLa cells due to their near-neutral surface, and thereby augmented the NIR-triggered hyperthermia effect in destroying cancer cells. These findings strongly indicate that the ICG/PEI10k-loaded PNMs have significant potential for attaining effective cancer imaging and photothermal therapy.

  5. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity.

    PubMed

    Zhou, Qing; Hou, Yilin; Zhang, Li; Wang, Jianlin; Qiao, Youbei; Guo, Songyan; Fan, Li; Yang, Tiehong; Zhu, Lin; Wu, Hong

    2017-01-01

    Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity.

  6. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity

    PubMed Central

    Zhou, Qing; Hou, Yilin; Zhang, Li; Wang, Jianlin; Qiao, Youbei; Guo, Songyan; Fan, Li; Yang, Tiehong; Zhu, Lin; Wu, Hong

    2017-01-01

    Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity. PMID:28638469

  7. Photocytotoxicity of mTHPC (Temoporfin) Loaded Polymeric Micelles Mediated by Lipase Catalyzed Degradation

    PubMed Central

    Hofman, Jan-Willem; Carstens, Myrra G.; van Zeeland, Femke; Helwig, Conny; Flesch, Frits M.; Hennink, Wim E.

    2008-01-01

    Purpose To study the in vitro photocytotoxicity and cellular uptake of biodegradable polymeric micelles loaded with the photosensitizer mTHPC, including the effect of lipase-catalyzed micelle degradation. Methods Micelles of mPEG750-b-oligo(ɛ-caprolactone)5 (mPEG750-b-OCL5) with a hydroxyl (OH), benzoyl (Bz) or naphthoyl (Np) end group were formed and loaded with mTHPC by the film hydration method. The cellular uptake of the loaded micelles, and their photocytotoxicity on human neck squamous carcinoma cells in the absence and presence of lipase were compared with free and liposomal mTHPC (Fospeg®). Results Micelles composed of mPEG750-b-OCL5 with benzoyl and naphtoyl end groups had the highest loading capacity up to 30% (w/w), likely due to π–π interactions between the aromatic end group and the photosensitizer. MTHPC-loaded benzoylated micelles (0.5 mg/mL polymer) did not display photocytotoxicity or any mTHPC-uptake by the cells, in contrast to free and liposomal mTHPC. After dilution of the micelles below the critical aggregation concentration (CAC), or after micelle degradation by lipase, photocytotoxicity and cellular uptake of mTHPC were restored. Conclusion The high loading capacity of the micelles, the high stability of mTHPC-loaded micelles above the CAC, and the lipase-induced release of the photosensitizer makes these micelles very promising carriers for photodynamic therapy in vivo. PMID:18597164

  8. Gene Therapy in a Patient with Sickle Cell Disease.

    PubMed

    Ribeil, Jean-Antoine; Hacein-Bey-Abina, Salima; Payen, Emmanuel; Magnani, Alessandra; Semeraro, Michaela; Magrin, Elisa; Caccavelli, Laure; Neven, Benedicte; Bourget, Philippe; El Nemer, Wassim; Bartolucci, Pablo; Weber, Leslie; Puy, Hervé; Meritet, Jean-François; Grevent, David; Beuzard, Yves; Chrétien, Stany; Lefebvre, Thibaud; Ross, Robert W; Negre, Olivier; Veres, Gabor; Sandler, Laura; Soni, Sandeep; de Montalembert, Mariane; Blanche, Stéphane; Leboulch, Philippe; Cavazzana, Marina

    2017-03-02

    Sickle cell disease results from a homozygous missense mutation in the β-globin gene that causes polymerization of hemoglobin S. Gene therapy for patients with this disorder is complicated by the complex cellular abnormalities and challenges in achieving effective, persistent inhibition of polymerization of hemoglobin S. We describe our first patient treated with lentiviral vector-mediated addition of an antisickling β-globin gene into autologous hematopoietic stem cells. Adverse events were consistent with busulfan conditioning. Fifteen months after treatment, the level of therapeutic antisickling β-globin remained high (approximately 50% of β-like-globin chains) without recurrence of sickle crises and with correction of the biologic hallmarks of the disease. (Funded by Bluebird Bio and others; HGB-205 ClinicalTrials.gov number, NCT02151526 .).

  9. Assessing the relative contributions of EspA and CsgA in cellular adherence and biofilm formation of enterohemorrhagic Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    In enterohemorrhagic Escherichia coli O157:H7 (O157), the locus of enterocyte effacement (LEE) encodes a type III secretion system with an extracellular filamentous structure consisting of the polymerized translocator protein EspA. The EspA filaments provide transient interactions between bacterial ...

  10. A high throughput mutagenic analysis of yeast sumo structure and function

    PubMed Central

    Newman, Heather A.; Lu, Jian; Carson, Caryn; Boeke, Jef D.

    2017-01-01

    Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways. PMID:28166236

  11. Initial biocompatibility of plasma polymerized hexamethyldisiloxane films with different wettability

    NASA Astrophysics Data System (ADS)

    Krasteva, N. A.; Toromanov, G.; Hristova, K. T.; Radeva, E. I.; Pecheva, E. V.; Dimitrova, R. P.; Altankov, G. P.; Pramatarova, L. D.

    2010-11-01

    Understanding the relationships between material surface properties, behaviour of adsorbed proteins and cellular responses is essential to design optimal material surfaces for tissue engineering. In this study we modify thin layers of plasma polymerized hexamethyldisiloxane (PPHMDS) by ammonia treatment in order to increase surface wettability and the corresponding biological response. The physico-chemical properties of the polymer films were characterized by contact angle (CA) measurements and Fourier Transform Infrared Spectroscopy (FTIR) analysis.Human umbilical vein endothelial cells (HUVEC) were used as model system for the initial biocompatibility studies following their behavior upon preadsorption of polymer films with three adhesive proteins: fibronectin (FN), fibrinogen (FG) and vitronectin (VN). Adhesive interaction of HUVEC was evaluated after 2 hours by analyzing the overall cell morphology, and the organization of focal adhesion contacts and actin cytoskeleton. We have found similar good cellular response on FN and FG coated polymer films, with better pronounced vinculin expression on FN samples while. Conversely, on VN coated surfaces the wettability influenced significantly initial celular interaction spreading. The results obtained suggested that ammonia plasma treatment can modulate the biological activity of the adsorbed protein s on PPHMDS surfaces and thus to influence the interaction with endothelial cells.

  12. Long non-coding RNA CRYBG3 blocks cytokinesis by directly binding G-actin.

    PubMed

    Pei, Hailong; Hu, Wentao; Guo, Ziyang; Chen, Huaiyuan; Ma, Ji; Mao, Weidong; Li, Bingyan; Wang, Aiqing; Wan, Jianmei; Zhang, Jian; Nie, Jing; Zhou, Guangming; Hei, Tom K

    2018-06-22

    The dynamic interchange between monomeric globular actin (G-actin) and polymeric filamentous actin filaments (F-actin) is fundamental and essential to many cellular processes including cytokinesis and maintenance of genomic stability. Here we report that the long non-coding RNA LNC CRYBG3 directly binds G-actin to inhibit its polymerization and formation of contractile rings, resulting in M-Phase cell arrest. Knockdown of LNC CRYBG3 in tumor cells enhanced their malignant phenotypes. Nucleotide sequence 228-237 of the full-length LNC CRYBG3 and the ser14 domain of beta-actin are essential for their interaction, and mutation of either of these sites abrogated binding of LNC CRYBG3 to G-actin. Binding of LNC CRYBG3 to G-actin blocked nuclear localization of MAL, which consequently kept serum response factor (SRF) away from the promoter region of several immediate early genes, including JUNB and Arp3, which are necessary for cellular proliferation, tumor growth, adhesion, movement, and metastasis. These findings reveal a novel lncRNA-actin-MAL-SRF pathway and highlight LNC CRYBG3 as a means to block cytokinesis and treat cancer by targeting the actin cytoskeleton. Copyright ©2018, American Association for Cancer Research.

  13. Ultrathin Transparent Membranes for Cellular Barrier and Co-Culture Models

    PubMed Central

    Carter, Robert N.; Casillo, Stephanie M.; Mazzocchi, Andrea R.; DesOrmeaux, Jon-Paul S.; Roussie, James A.; Gaborski, Thomas R.

    2017-01-01

    Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100–300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives. PMID:28140345

  14. Application and future of solid foams

    NASA Astrophysics Data System (ADS)

    Bienvenu, Yves

    2014-10-01

    To conclude this series of chapters on solid foam materials, a review of industrial current applications and of mid-term market perspectives centred on manmade foams is given, making reference to natural cellular materials. Although the polymeric foam industrial development overwhelms the rest and finds applications on many market segments, more attention will be paid to the emerging market of inorganic-especially metallic-foams (and cellular materials) and their applications, present or upcoming. It is shown that the final applications of solid foams are primarily linked to transport and the present-day development of the different classes of solid foams is contrasted between functional applications and structural applications. xml:lang="fr"

  15. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment.

    PubMed

    Choi, Jae-Min; Han, Sun-Kee; Lee, Chae-Young

    2018-07-01

    This study was performed to optimize thermal hydrolysis pretreatment (THP) of sewage sludge for enhanced anaerobic digestion (AD). Using the response surface methodology (RSM), the optimal conditions were found 180 °C of reaction temperature and 76 min of reaction time. Through THP under optimal conditions, high molecular substances in sewage sludge such as soluble microbial by-products (SMPs) and extracellular polymeric substances (EPSs) were hydrolyzed into low molecular ones without the generation of refractory compounds. The microbial community analysis revealed that relative abundances of Methanomicrobia such as Methanosarcina, Methanosaeta (acetoclastic methanogens), and Methanoculleus (hydrogenotrophic methanogens) in AD with THP were higher than those in conventional AD. Copyright © 2018. Published by Elsevier Ltd.

  16. Korean Waste Management Law, Presidential Decree Number 13480, and Prime Minister Order Number 397

    DTIC Science & Technology

    1994-06-01

    radioactive waste or substances that are contaminated by radioactivity and medical waste (which is regulated by Medical Law), wastewater (which is regulated...be exceeded when the domestic waste is disposed a. In case where water polutant , pursuant to Table 1 of toe Enforcement Regulaton in the Water...combustion burner and extra burner * Normal operation of safety facilities • Normal operation of preventive facilities * Density of polutant out of

  17. Factors influencing inapplicability of cosolvency-induced model on organic acid sorption onto humic substance from methanol mixture.

    PubMed

    Kim, Minhee; Kim, Juhee; Kim, Jeong-Gyu; Hyun, Seunghun

    2015-10-01

    Applicability of cosolvency model for describing the sorption of organic acids to humic substance was investigated by analyzing dataset of sorption (K m) and solubility (S m) of selected solutes (benzoic acid, 1-naphthoic acid, 2,4-dichlorophenoxyacetic acid, and 2,4,6-trichlorophenol (2,4,6-TCP)) as a function of pH(appCME) (apparent pH of liquid phase) and f c (methanol volume fractions). For all solutes, the K m decreased with f c with the K m reduction being less than the S m-based prediction. The slope of log K m-f c plot in the three organic carboxylic acids was well correlated with their cosolvency power, whereas the data of organic phenolic acid (2,4,6-TCP) was placed above the trend, indicating the different actions of functional groups. The occurrence of Ca(2+) bridge between carboxylate and negatively charged humic surface may explain this phenomenon. Normalizing the K m to the corresponding S m (α' = K m/S m) was not in unity over the pH(app)-f c range but decreased with f c, indicating a possible structural modification of sorption domain favoring extra sorption. For a given solute, the α' of neutral species was always greater than that of anionic species, showing that extra interaction will be likely at pH(app)

  18. Diffusivity in the core of chronic multiple sclerosis lesions.

    PubMed

    Klistorner, Alexander; Wang, Chenyu; Yiannikas, Con; Parratt, John; Barton, Joshua; You, Yuyi; Graham, Stuart L; Barnett, Michael H

    2018-01-01

    Diffusion tensor imaging (DTI) has been suggested as a potential biomarker of disease progression, neurodegeneration and de/remyelination in MS. However, the pathological substrates that underpin alterations in brain diffusivity are not yet fully delineated. We propose that in highly cohesive fiber tracts: 1) a relative increase in parallel (axial) diffusivity (AD) may serve as a measure of increased extra-cellular space (ESC) within the core of chronic MS lesions and, as a result, may provide an estimate of the degree of tissue destruction, and 2) the contribution of the increased extra-cellular water to perpendicular (radial) diffusivity (RD) can be eliminated to provide a more accurate assessment of membranal (myelin) loss. The purpose of this study was to isolate the contribution of extra-cellular water and demyelination to observed DTI indices in the core of chronic MS lesions, using the OR as an anatomically cohesive tract. Pre- and post-gadolinium (Gd) enhanced T1, T2 and DTI images were acquired from 75 consecutive RRMS patients. In addition, 25 age and gender matched normal controls were imaged using an identical MRI protocol (excluding Gd). The optic radiation (OR) was identified in individual patients using probabilistic tractography. The T2 lesions were segmented and intersected with the OR. Average eigenvalues were calculated within the core of OR lesions mask. The proportion of extra-cellular space (ECS) within the lesional core was calculated based on relative increase of AD, which was then used to normalise the perpendicular eigenvalues to eliminate the effect of the expanded ECS. In addition, modelling was implemented to simulate potential effect of various factors on lesional anisotropy. Of 75 patients, 41 (55%) demonstrated sizable T2 lesion volume within the ORs. All lesional eigenvalues were significantly higher compared to NAWM and controls. There was a strong correlation between AD and RD within the core of OR lesions, which was, however, not seen in OR NAWM of MS patients or normal controls. In addition, lesional anisotropy (FA) was predominantly driven by the perpendicular diffusivity, while in NAWM and in OR of normal controls all eigenvectors contributed to variation in FA. Estimated volume of ECS component constituted significant proportion of OR lesional volume and correlated significantly with lesional T1 hypointensity. While perpendicular diffusivity dropped significantly following normalisation, it still remained higher compared with diffusivity in OR NAWM. The "residual" perpendicular diffusivity also showed a substantial reduction of inter-subject variability. Both observed and modelled diffusion data suggested anisotropic nature of water diffusion in ESC. In addition, the simulation procedure offered a possible explanation for the discrepancy in relationship between eigenvalues and anisotropy in lesional tissue and NAWM. This paper presents a potential technique for more reliably quantifying the effects of neurodegeneration (tissue loss) versus demyelination in OR MS lesions. This may provide a simple and effective way for applying single tract diffusion analysis in MS clinical trials, with particular relevance to pro-remyelinating and neuroprotective therapeutics.

  19. Liquid Crystals in Chromatography

    NASA Astrophysics Data System (ADS)

    Witkiewicz, Zygfryd

    The following sections are included: * INTRODUCTION * LIQUID CRYSTALS SUITABLE FOR GAS CHROMATOGRAPHY * Monomeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Conventional Analytical Columns * Capillary Columns * FACTORS AFFECTING THE CHROMATOGRAPHIC SEPARATIONS ON LIQUID CRYSTAL STATIONARY PHASES * Kind of Mesophase of the Liquid Crystal * Molecular Structure of the Liquid Crystals and of the Chromatographed Substances * Substrate on which the Liquid Crystal is Deposited * ANALYTICAL APPLICATIONS OF LIQUID CRYSTAL STATIONARY PHASES IN GAS CHROMATOGRAPHY * Separation of Isomers of Benzene and Naphthalene Derivatives * Separation of Alkane and Alkene Isomers * Separation of Mixtures of Benzene and Aliphatic Hydrocarbon Derivatives Containing Heteroatoms * Separation of Polynuclear Hydrocarbons * INVESTIGATION OF THE PROPERTIES OF LIQUID CRYSTALS BY GAS CHROMATOGRAPHY * APPLICATION OF LIQUID CRYSTALS IN LIQUID CHROMATOGRAPHY * Column Chromatography * Thin-Layer Chromatography * APPLICATION OF LIQUID CRYSTAL STATIONARY PHASES IN SUPERCRITICAL FLUID CHROMATOGRAPHY * FINAL REMARKS * References

  20. AsS melt under pressure: one substance, three liquids.

    PubMed

    Brazhkin, V V; Katayama, Y; Kondrin, M V; Hattori, T; Lyapin, A G; Saitoh, H

    2008-04-11

    An in situ high-temperature--high-pressure study of liquid chalcogenide AsS by x-ray diffraction, resistivity measurements, and quenching from melt is presented. The obtained data provide direct evidence for the existence in the melt under compression of two transformations: one is from a moderate-viscosity molecular liquid to a high-viscosity nonmetallic polymerized liquid at P approximately 1.6-2.2 GPa; the other is from the latter to a low-viscosity metallic liquid at P approximately 4.6-4.8 GPa. Upon rapid cooling, molecular and metallic liquids crystallize to normal and high-pressure phases, respectively, while a polymerized liquid is easily quenched to a new AsS glass. General aspects of multiple phase transitions in liquid AsS, including relations to the phase diagram of the respective crystalline, are discussed.

  1. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress.

    PubMed

    Zhao, Linting; She, Zonglian; Jin, Chunji; Yang, Shiying; Guo, Liang; Zhao, Yangguo; Gao, Mengchun

    2016-09-01

    The composition and distribution of extracellular polymeric substance (EPS) both from suspended sludge and attached biofilm were investigated in a simultaneous nitrification and denitrification (SND) system with the increase of the salinity from 1.0 to 3.0 %. Fourier-transform infrared (FTIR) spectroscopy and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy were used to examine proteins (PN), polysaccharides (PS) and humic substances (HS) present in EPS. High total nitrogen removal (above 83.9 %) via SND was obtained in the salinity range of 1.0-2.5 %. Total EPS in the sludge increased from 150.2 to 200.6 mg/gVSS with the increase of salinity from 1.0 to 3.0 %, whereas the corresponding values in the biofilm achieved the maximum of 288.6 mg/g VSS at 2.0 % salinity. Dominant composition of EPS was detected as HS in both sludge and biofilm, having the percentages of 50.6-68.6 and 41.1-69.9 % in total EPS, respectively. Both PN and PS contents in soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) of sludge and biofilm increased with the increased salinity. The FTIR spectrum and 3D-EEM fluorescence spectroscopy of S-EPS, LB-EPS and TB-EPS in the sludge and biofilm showed the changes of functional groups and conformations of the compositions in EPS with the increase of salinity. The results demonstrated that the characteristics of EPS varied from sludge to biofilm. The obtained results could provide a better understanding of the salinity effect on the EPS characteristics in a SND system.

  2. Utilization of the terrestrial cyanobacterial sheet

    NASA Astrophysics Data System (ADS)

    Katoh, Hiroshi; Tomita-Yokotani, Kaori; Furukawa, Jun; Kimura, Shunta; Yamaguchi, Yuji; Takenaka, Hiroyuki; Kohno, Nobuyuki

    2016-07-01

    The terrestrial nitrogen-fixing cyanobacterium, Nostoc commune, is living ranging from polar to desert. N. commune makes visible colonies composed extracellular polymeric substances. N. commune has expected to utilize for agriculture, food and terraforming cause of its extracellular polysaccharide, desiccation tolerance and nitrogen fixation. To exhibit the potential abilities, the N. commune sheet is made to use convenient and evaluated by plant growth and radioactive accumulation. We will discuss utilization of terrestrial cyanobacteria under closed environment.

  3. Synthesis and Characterization of Stimuli-Responsive Star-Like Polypept(o)ides: Introducing Biodegradable PeptoStars.

    PubMed

    Holm, Regina; Weber, Benjamin; Heller, Philipp; Klinker, Kristina; Westmeier, Dana; Docter, Dominic; Stauber, Roland H; Barz, Matthias

    2017-06-01

    Star-like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three-arm star-like polypept(o)ide (polysarcosine-block-polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth-like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star-like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N-carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (X n = 25, 50, 100), Poisson-like molecular weight distributions, and low dispersities (Đ = 1.06-1.15). Star-like polypept(o)ides display a hydrodynamic radius of 5 nm (μ 2 < 0.05) as determined by dynamic light scattering (DLS). While star-like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10 -3 m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson-like molecular weight distributions and low dispersities (Đ = 1.05-1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Validation protocol of analytical procedures for quantification of drugs in polymeric systems for parenteral administration: dexamethasone phosphate disodium microparticles.

    PubMed

    Martín-Sabroso, Cristina; Tavares-Fernandes, Daniel Filipe; Espada-García, Juan Ignacio; Torres-Suárez, Ana Isabel

    2013-12-15

    In this work a protocol to validate analytical procedures for the quantification of drug substances formulated in polymeric systems that comprise both drug entrapped into the polymeric matrix (assay:content test) and drug released from the systems (assay:dissolution test) is developed. This protocol is applied to the validation two isocratic HPLC analytical procedures for the analysis of dexamethasone phosphate disodium microparticles for parenteral administration. Preparation of authentic samples and artificially "spiked" and "unspiked" samples is described. Specificity (ability to quantify dexamethasone phosphate disodium in presence of constituents of the dissolution medium and other microparticle constituents), linearity, accuracy and precision are evaluated, in the range from 10 to 50 μg mL(-1) in the assay:content test procedure and from 0.25 to 10 μg mL(-1) in the assay:dissolution test procedure. The robustness of the analytical method to extract drug from microparticles is also assessed. The validation protocol developed allows us to conclude that both analytical methods are suitable for their intended purpose, but the lack of proportionality of the assay:dissolution analytical method should be taken into account. The validation protocol designed in this work could be applied to the validation of any analytical procedure for the quantification of drugs formulated in controlled release polymeric microparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents.

    PubMed

    Renkecz, Tibor; László, Krisztina; Horváth, Viola

    2012-06-01

    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    PubMed

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  7. Red light accelerates the formation of a human dermal equivalent.

    PubMed

    Oliveira, Anna Cb; Morais, Thayz Fl; Bernal, Claudia; Martins, Virginia Ca; Plepis, Ana Mg; Menezes, Priscila Fc; Perussi, Janice R

    2018-04-01

    Development of biomaterials' substitutes and/or equivalents to mimic normal tissue is a current challenge in tissue engineering. Thus, three-dimensional cell culture using type I collagen as a polymeric matrix cell support designed to promote cell proliferation and differentiation was employed to create a dermal equivalent in vitro, as well to evaluate the photobiomodulation using red light. Polymeric matrix cell support was prepared from porcine serous collagen (1.1%) hydrolyzed for 96 h. The biomaterial exhibited porosity of 95%, a median pore of 44 µm and channels with an average distance between the walls of 78 ± 14 µm. The absorption of culture medium was 95%, and the sponge showed no cytotoxicity to Vero cells, a non-tumor cell line. Additionally, it was observed that irradiation with light at 630 nm (fluency 30 J cm -2 ) leads to the cellular photobiomodulation in both monolayer and human dermal equivalent (three-dimensional cell culture system). It was also verified that the cells cultured in the presence of the polymeric matrix cell support, allows differentiation and extracellular matrix secretion. Therefore, the results showed that the collagen sponge used as polymeric matrix cell support and the photobiomodulation at 630 nm are efficient for the production of a reconstructed human dermal equivalent in vitro.

  8. Antibiotic tolerance and the alternative lifestyles of Staphylococcus aureus.

    PubMed

    Bui, Long M G; Conlon, Brian P; Kidd, Stephen P

    2017-02-28

    Staphylococcus aureus has an incredible ability to survive, either by adapting to environmental conditions or defending against exogenous stress. Although there are certainly important genetic traits, in part this ability is provided by the breadth of modes of growth S. aureus can adopt. It has been proposed that while within their host, S. aureus survives host-generated and therapeutic antimicrobial stress via alternative lifestyles: a persister sub-population, through biofilm growth on host tissue or by growing as small colony variants (SCVs). Key to an understanding of chronic and relapsing S. aureus infections is determining the molecular basis for its switch to these quasi-dormant lifestyles. In a multicellular biofilm, the metabolically quiescent bacterial community additionally produces a highly protective extracellular polymeric substance (EPS). Furthermore, there are bacteria within a biofilm community that have an altered physiology potentially equivalent to persister cells. Recent studies have directly linked the cellular ATP production by persister cells as their key feature and the basis for their tolerance of a range of antibiotics. In clinical settings, SCVs of S. aureus have been observed for many years; when cultured, these cells form non-pigmented colonies and are approximately ten times smaller than their counterparts. Various genotypic factors have been identified in attempts to characterize S. aureus SCVs and different environmental stresses have been implicated as important inducers. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration.

    PubMed

    Yu, Cong; Li, Xuening; Zhang, Nan; Wen, Donghui; Liu, Charles; Li, Qilin

    2016-04-01

    D-Tyrosine inhibits formation and triggers disassembly of bacterial biofilm and has been proposed for biofouling control applications. This study probes the impact of D-tyrosine in different biofilm formation stages in both G+ and G- bacteria, and reveals a non-monotonic correlation between D-tyrosine concentration and biofilm inhibition effect. In the attachment stage, cell adhesion was studied in a flow chamber, where D-tyrosine caused significant reduction in cell attachment. Biofilms formed by Pseudomonas aeruginosa and Bacillus subtilis were characterized by confocal laser scanning microscopy as well as quantitative analysis of cellular biomass and extracellular polymeric substances. D-Tyrosine exhibited strong inhibitive effects on both biofilms with an effective concentration as low as 5 nM; the biofilms responded to D-tyrosine concentration change in a non-monotonic, bi-modal pattern. In addition, D-tyrosine showed notable and different impact on EPS production by G+ and G- bacteria. Extracellular protein was decreased in P. aeruginosa biofilms, but increased in those of B. subtilis. Exopolysaccharides production by P. aeruginosa was increased at low concentrations and reduced at high concentrations while no impact was found in B. subtilis. These results suggest that distinct mechanisms are at play at different D-tyrosine concentrations and they may be species specific. Dosage of D-tyrosine must be carefully controlled for biofouling control applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Attachment of nanoparticulate drug-release systems on poly(ε-caprolactone) nanofibers via a graftpolymer as interlayer.

    PubMed

    de Cassan, Dominik; Sydow, Steffen; Schmidt, Nadeschda; Behrens, Peter; Roger, Yvonne; Hoffmann, Andrea; Hoheisel, Anna Lena; Glasmacher, Birgit; Hänsch, Robert; Menzel, Henning

    2018-03-01

    Electrospun poly(ε-caprolactone) (PCL) fiber mats are modified using a chitosan grafted with PCL (CS-g-PCL), to improve the biological performance and to enable further modifications. The graft copolymer is immobilized by the crystallization of the PCL grafts on the PCL fiber surface as binding mechanism. In this way, the surface of the fibers is covered with chitosan bearing cationic amino groups, which allow adsorption of oppositely charged nanoparticulate drug-delivery systems. The modification of the fiber mats and the attachment of the drug delivery systems are easy and scalable dip processes. The process is also versatile; it is possible to attach different polymeric and inorganic nanoparticulate drug-release systems of cationic or anionic nature. The modifications are verified using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). As proof of principle, the release of ciprofloxacin from silica nanoparticles attached to the modified fiber mats is shown; however, the method is also suited for other biologically active substances including growth factors. The initial cellular attachment and proliferation as well as vitality of the cells is improved by the modification with CS-g-PCL and is further influenced by the type of the drug delivery system attached. Hence, this method can be used to transfer PCL fiber mats into bioactive implants for in-situ tissue engineering applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7.

    PubMed

    Kim, Hyun Jung; Shin, Bora; Lee, Yun Suk; Park, Woojun

    2017-08-01

    Extracellular polymeric substance (EPS) is proposed to facilitate calcium ion supersaturation through its nucleation effect during the microbially induced calcium carbonate precipitation (MICP) process. However, the supersaturation effect of Ca 2+ via EPS in MICP has not been clearly demonstrated. Enhanced exopolysaccharide production of the alkali- and halotolerant MICP-capable bacteria, Bacillus sp. JH7, was achieved through glycerol addition. This was demonstrated by measuring cellular precipitation and Congo red binding. Interestingly, field emission scanning electron microscopy and energy-dispersive X-ray spectrometry analysis demonstrated that there was no MICP under glycerol-amended conditions. Although glycerol promoted exopolysaccharide capture of Ca 2+ ions, Ca 2+ embedded onto EPS did not participate in MICP formation. The pH was reduced in glycerol-added media, which led us to analyze high acetate production under our test conditions. Purified glycerol-induced exopolysaccharide showed a higher capacity of Ca 2+ capture than the control. Quantitative RT-PCR analysis showed that three genes involved in exopolysaccharide production were highly upregulated by glycerol. The amounts of three detected monosaccharides (arabinose, glucose, and mannose) were altered by glycerol. Cell hydrophobicity measurements indicated that glycerol could confer more hydrophilic characteristics to cells, which might enhance Ca 2+ binding onto EPS. Unexpectedly, our data demonstrated, for the first time, that glycerol could promote exopolysaccharide and acetate production under our test condition, which could inhibit MICP by reducing the availability of free Ca 2+ .

  12. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbo; Seminara, Agnese; Suaris, Melanie; Brenner, Michael P.; Weitz, David A.; Angelini, Thomas E.

    2014-01-01

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation.

  13. Method of forming a continuous polymeric skin on a cellular foam material

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  14. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities.

    PubMed

    Gajarsa, Jason J; Kloner, Robert A

    2011-01-01

    As more patients survive myocardial infarctions, the incidence of heart failure increases. After an infarction, the human heart undergoes a series of structural changes, which are governed by cellular and molecular mechanisms in a pathological metamorphosis termed "remodeling." This review will discuss the current developments in our understanding of these molecular and cellular events in remodeling and the various pharmacological, cellular and device therapies used to treat, and potentially retard, this condition. Specifically, this paper will examine the neurohormonal activity of the renin-angiotensin-aldosterone axis and its molecular effects on the heart. The emerging understanding of the extra-cellular matrix and the various active molecules within it, such as the matrix metalloproteinases, elicits new appreciation for their role in cardiac remodeling and as possible future therapeutic targets. Cell therapy with stem cells is another recent therapy with great potential in improving post-infarcted hearts. Lastly, the cellular and molecular effects of left ventricular assist devices on remodeling will be reviewed. Our increasing knowledge of the cellular and molecular mechanisms underlying cardiac remodeling enables us not only to better understand how our more successful therapies, like angiotensin-converting enzyme inhibitors, work, but also to explore new therapies of the future.

  15. How Urban Youth Perceive Relationships among School Environments, Social Networks, Self-Concept, and Substance Use

    PubMed Central

    Dudovitz, Rebecca N.; Perez-Aguilar, Giselle; Kim, Grace; Wong, Mitchell D.; Chung, Paul J.

    2016-01-01

    Objective Studies suggest adolescent substance use aligns with academic and behavioral self-concept (whether teens think of themselves as good or bad students and as rule followers or rule breakers) as well as peer and adult social networks. Schools are an important context in which self-concept and social networks develop, but it remains unclear how school environments might be leveraged to promote healthy development and prevent substance use. We sought to describe how youth perceive the relationships among school environments, adolescent self-concept, social networks, and substance use. Methods Semi-structured interviews with 32 low-income minority youth (ages 17-22) who participated in a prior study, explored self-concept development, school environments, social networks, and substance use decisions. Recruitment was stratified by whether, during high school, they had healthy or unhealthy self-concept profiles and had engaged in or abstained from substance use. Results Youth described feeling labeled by peers and teachers and how these labels became incorporated into their self-concept. Teachers who made students feel noticed (e.g., by learning students' names) and had high academic expectations reinforced healthy self-concepts. Academic tracking, extra-curricular activities, and school norms determined potential friendship networks, grouping students either with well-behaving or misbehaving peers. Youth described peer groups, combined with their self-concept, shaping their substance use decisions. Affirming healthy aspects of their self-concept at key risk behavior decision points helped youth avoid substance use in the face of peer pressure. Conclusions Youth narratives suggest school environments shape adolescent self-concept and adult and peer social networks, all of which impact substance use. PMID:28259338

  16. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose lectin-binding- analysis has been suggested as a suitable approach to image glycoconjugates within the polymer matrix of biofilm communities. More recently synchrotron radiation is increasingly recognized as a powerful tool for studying biological samples. Hard X-ray excitation can be used to map elemental composition whereas IR imaging allows examination of biological macromolecules. A further technique called soft X-ray scanning transmission microscopy (STXM) has the advantage of both techniques and may be employed to detect elements as well as biomolecules. Using the appropriate spectra, near edge X-ray absorption fine structure (NEXAFS) microscopy allows quantitative chemical mapping at 50 nm resolution. In this presentation the applicability of LSM and STXM will be demonstrated using several examples of different environmental biofilm systems. The techniques in combination provide a new view of complex microbial communities and their interaction with the environment. These advanced imaging techniques offer the possibility to study the spatial structure of cellular and polymeric compounds in biofilms as well as biofilm microhabitats, biofilm functionality and biofilm processes.

  17. Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2.

    PubMed

    Saranya, Kailasam; Sundaramanickam, Arumugam; Shekhar, Sudhanshu; Meena, Moorthy; Sathishkumar, Rengasamy Subramaniyan; Balasubramanian, Thangavel

    2018-06-02

    This paper examines the potential detoxification efficiency of heavy metals by phosphate solubilising bacteria (PSB) that were isolated from coral, sea grass and mangrove environment. Initially, four potential bacterial isolates were selected based on their phosphate solubilisation index from 42 strains and were used for the metal tolerance test. Among the four isolates, KSCAS2 exhibited maximum tolerance to heavy metals and the phenotype indicated the production of extra polymeric substances. In a multi-heavy metal experimental setup at two concentrations (100 and 200 mg L -l ), it has been demonstrated that the bacteria have extracellularly sequestered metal ions in amorphous deposits and this has been confirmed by scanning electron microscopy. In experiments with a 100 mg L -1 initial metal concentration, the percentages of metal removal by bacteria were 55.23% of Cd, 72.45% of Cr, 76.51% of Cu and 61.51% of Zn, respectively. In subsequent experiments, when the metal concentration was increased up to 200 mg L -l , the metal removal capacity decreased as follows: 44.62%, 63.1%, 67% and 52.80% for Cd, Cr, Cu and Zn, respectively. In addition, the biosorption of heavy metals was confirmed by the Fourier transform infrared Spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The heavy metal concentrations in a broth culture were analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The study suggests that PSB Cronobacter muytjensii KSCAS2 can efficiently remove the heavy metals and these bacteria could be used for the metal removal from the agricultural soils. Copyright © 2018. Published by Elsevier Ltd.

  18. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques.

    PubMed

    Maldonado, J; Solé, A; Puyen, Z M; Esteve, I

    2011-07-01

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-λscan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The role of extracellular DNA in uranium precipitation and biomineralisation.

    PubMed

    Hufton, Joseph; Harding, John H; Romero-González, Maria E

    2016-10-26

    Bacterial extra polymeric substances (EPS) have been associated with the extracellular precipitation of uranium. Here we report findings on the biomineralisation of uranium, with extracellular DNA (eDNA) used as a model biomolecule representative of EPS. The complexation and precipitation of eDNA with uranium were investigated as a function of pH, ionic strength and varying concentrations of reactants. The role of phosphate moieties in the biomineralisation mechanism was studied by enzymatically releasing phosphate (ePO 4 ) from eDNA compared to abiotic phosphate (aPO 4 ). The eDNA-uranium precipitates and uranium minerals obtained were characterised by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FT-IR) spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-Ray analysis (SEM-EDX), X-Ray Powder Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). ATR-FT-IR showed that at pH 5, the eDNA-uranium precipitation mechanism was predominantly mediated by interactions with phosphate moieties from eDNA. At pH 2, the uranium interactions with eDNA occur mainly through phosphate. The solubility equilibrium was dependent on pH with the formation of precipitate reduced as the pH increased. The XRD data confirmed the formation of a uranium phosphate precipitate when synthesised using ePO 4 . XPS and SEM-EDX studies showed the incorporation of carbon and nitrogen groups from the enzymatic orthophosphate hydrolysis on the obtained precipitated. These results suggested that the removal of uranium from solution occurs via two mechanisms: complexation by eDNA molecules and precipitation of a uranium phosphate mineral of the type (UO 2 HPO 4 )·xH 2 O by enzymatic orthophosphate hydrolysis. This demonstrated that eDNA from bacterial EPS is a key contributor to uranium biomineralisation.

  20. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge.

    PubMed

    Xu, Qiuxiang; Li, Xiaoming; Ding, Rongrong; Wang, Dongbo; Liu, Yiwen; Wang, Qilin; Zhao, Jianwei; Chen, Fei; Zeng, Guangming; Yang, Qi; Li, Hailong

    2017-11-01

    Cadmium (Cd) is present in significant levels in waste activated sludge, but its potential toxicities on anaerobic fermentation of sludge remain largely unknown. This work therefore aims to provide such support. Experimental results showed that the impact of Cd on short-chain fatty acids (SCFA) production from sludge anaerobic fermentation was dose-dependent. The presence of environmentally relevant level of Cd (e.g., 0.1 mg/g VSS) enhanced SCFA production by 10.6%, but 10 mg/g VSS of Cd caused 68.1% of inhibition. Mechanism exploration revealed that although all levels of Cd did not cause extra leakage of intracellular substrates, 0.1 mg/g VSS Cd increased the contents of both soluble and loosely-bound extracellular polymeric substances (EPS), thereby benefitting sludge solubilization. On the contrary, 10 mg/g VSS Cd decreased the levels of all EPS layers, which reduced the content of soluble substrates. It was also found that 0.1 mg/g VSS Cd benefited both the hydrolysis and acidogenesis but 10 mg/g VSS Cd inhibited all the hydrolysis, acidogenesis, and methanogenesis processes. Further investigations with microbial community and enzyme analysis showed that the pertinent presence of Cd enhanced the activities of protease, acetate kinase, and oxaloacetate transcarboxylase whereas 10 mg/g VSS Cd decreased the microbial diversity, the abundances of functional microbes, and the activities of key enzymes. Finally, one strategy that could effectively mitigate the adverse impact of high Cd levels on SCFA production was proposed and examined. This work provides insights into Cd-present sludge fermentation systems, and the findings obtained may guide engineers to manipulate sludge treatment systems in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Non-Cell-Adhesive Substrates for Printing of Arrayed Biomaterials

    PubMed Central

    Appel, Eric A.; Larson, Benjamin L.; Luly, Kathryn M.; Kim, Jinseong D.

    2015-01-01

    Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. We have developed an exceedingly simple strategy for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g. RGD and polylysine), hydrogels, and polymers. PMID:25430948

  2. Contributions of EspA filaments and curli fimbriae in cellular adherence and biofilm formation of enterohemorrhagic Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed incr...

  3. The 'little extra' that alleviates suffering.

    PubMed

    Arman, Maria; Rehnsfeldt, Arne

    2007-05-01

    Nursing, or caring science, is mainly concerned with developing knowledge of what constitutes ideal, good health care for patients as whole persons, and how to achieve this. The aim of this study was to find clinical empirical indications of good ethical care and to investigate the substance of ideal nursing care in praxis. A hermeneutic method was employed in this clinical study, assuming the theoretical perspective of caritative caring and ethics of the understanding of life. The data consisted of two Socratic dialogues: one with nurses and one with nursing students, and interviews with two former patients. The empirical data are first described from a phenomenological approach. Observations of caregivers offering 'the little extra' were taken to confirm that patients were 'being seen', not from the perspective of an ideal nursing model, but from that of interaction as a fellow human being. The study provides clinical evidence that, as an ontological response to suffering, 'symbolic acts' such as giving the 'little extra' may work to bridge gaps in human interaction. The fact that 'little things' have the power to preserve dignity and make patients feel they are valued offers hope. Witnessing benevolent acts also paves the way for both patients and caregivers to increase their understanding of life.

  4. Optical properties of algogenic organic matter within the growth period of Chlorella sp. and predicting their disinfection by-product formation.

    PubMed

    Hua, Lap-Cuong; Lin, Jr-Lin; Syue, Ming-Yang; Huang, Chihpin; Chen, Pei-Chung

    2018-04-15

    Algogenic organic matter (AOM) in eutrophic waters is a well-known precursor to disinfection by-product (DBP) formation in drinking water. This purpose of this study is (i) to characterize the optical properties of AOM origins, including intra- (IOM) and extra-cellular organic matter (EOM), derived from Chlorella sp. growth as precursors to two major carbonaceous DBPs (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs) and (ii) to correlate these optical properties with THM and HAA formation potential (FP) in order to predict DBP formation. The results show that both EOM and IOM had low UV 254 and UV 280 absorbance during their entire growth phase. While IOM chiefly comprised of aromatic proteins and soluble microbial products-like substances (80% of average fluorescent intensity-AFI), EOM spectra were rich in humic- and fulvic-like substances (60% AFI). However, its chemical nature likely differed from terrestrial humics. In DBPFP tests, IOM was a higher-yielding precursor of THMs and HAAs compared to EOM, regardless its growth status. Consequently, C-DBPFP of IOM was always higher than EOM during four growth phases. Results from DBP tests also showed insignificant variation of EOM-derived THMFP and HAAFP during the algal growth phase, while the algal growth status strongly influenced the yields of IOM-derived THMFP and HAAFP. From correlation analysis, our results showed no correlation between UV absorbance with THMFP and HAAFP. Conversely, the regional AFI showed a good correlation with HAAFP and C-DBPFP. Predicting models based on AFI for the formation of HAAs and C-DBPs consequently yielded great predictability for laboratory AOM-containing water samples, with a coefficient of determination R 2 =0.879, p<0.01 and R 2 =0.846, p<0.01. This study indicates a promising application of fluorescent spectra for predicting DBPs derived from algae-rich water sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Archaeal viruses--novel, diverse and enigmatic.

    PubMed

    Peng, Xu; Garrett, Roger A; She, QunXin

    2012-05-01

    Recent research has revealed a remarkable diversity of viruses in archaeal-rich environments where spindles, spheres, filaments and rods are common, together with other exceptional morphotypes never recorded previously. Moreover, their double-stranded DNA genomes carry very few genes exhibiting homology to those of bacterial and eukaryal viruses. Studies on viral life cycles are still at a preliminary stage but important insights are being gained especially from microarray analyses of viral transcripts for a few model virus-host systems. Recently, evidence has been presented for some exceptional archaeal-specific mechanisms for extra-cellular morphological development of virions and for their cellular extrusion. Here we summarise some of the recent developments in this rapidly developing and exciting research area.

  6. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    PubMed

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Emergent behavior of cells on microfabricated soft polymeric substrates

    NASA Astrophysics Data System (ADS)

    Anand, Sandeep Venkit

    In recent years, cell based bio-actuators like cardiomyocytes and skeletal muscle cells have emerged as popular choices for powering biological machines consisting of soft polymeric scaffolds at the micro and macro scales. This is owing to their unique ability to generate spontaneous, synchronous contractions either autonomously or under externally applied fields. Most of the biological machine designs reported in literature use single cells or cell clusters conjugated with biocompatible soft polymers like polydimethylsiloxane (PDMS) and hydrogels to produce some form of locomotion by converting chemical energy of the cells to mechanical energy. The mode of locomotion may vary, but the fundamental mechanism that these biological machines exploit to achieve locomotion stems from cell substrate interactions leading to large deformations of the substrates (relative to the cell size). However, the effect of such large scale, dynamic deformation of the substrates on the cellular and cluster level organization of the cells remains elusive. This dissertation tries to explore the emergent behavior of cells on different types of micro-scale deformable, soft polymeric substrates. In the first part of the dissertation, contractile dynamics of primary cardiomyocyte clusters is studied by culturing them on deformable thin polymeric films. The cell clusters beat and generate sufficient forces to deform the substrates out of plane. Over time, the clusters reorient their force dipoles along the direction of maximum compliance. This suggests that the cells are capable of sensing substrate deformations through a mechanosensitive feedback mechanism and dynamically reorganizing themselves. Results are further validated through finite element analysis. The development, characterization and quantification of a novel 1D/2D like polymeric platform for cell culture is presented in the second part. The platform consists of a 2D surface anchoring a long (few millimeters) narrow filament (1D) with a single cell scale (micro scale) cross section. We plate C2C12 cells on the platform and characterize their migration, proliferation, and differentiation patterns in contrast to 2D culture. We find that the cells land on the 2D surface, and then migrate to the filament only when the 2D surface has become nearly confluent. Individual and isolated cells randomly approaching the filament always retract away towards the 2D surface. Once on the filament, their differentiation to myotubes is expedited compared to that on 2D substrate. The myotubes generate periodic twitching forces that deform the filament producing more than 17 um displacement at the tip. Such flagellar motion can be used to develop autonomous micro scale bio-bots. Finally, the design and fabrication of a polymeric micro-pillar based force sensor capable of measuring cellular focal-adhesion forces under externally applied stretch is discussed. The force sensor consists of arrays of uniformly spaced PDMS micro-pillars of 1-2 um diameter and 2-3 um spacing on a macroscale PDMS substrate. The tips of the micro-pillars are selectively patterned with fluorescently labeled ECM proteins using micro-contact printing to promote cell adhesion while simultaneously acting as markers for strain measurements. Cells adhere and spread on top of the pillars causing them to deform. When stretched, the cells reorganize their internal structure and modulate their traction forces in response to the applied stretch. The dynamically varying cellular forces in response to the stretch are computed by measuring the cell induced displacements estimated by isolating the displacements caused by the applied stretch from the net displacements of the tips.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, F.L.

    A method is described for exerting forces on a subterranean formation for fracturing and increasing the width of a fracture wherein polymerizable materials capable of forming popcorn polymer are placed in the formation and polymerized in situ. Popcorn polymer is a hard, porous opaque material that is not soluble in ordinary solvents. The occurrence of popcorn polymer is well-known in chemical plants, such as for example a synthetic rubber plant. The forces that are exerted by the forming popcorn polymer have been known to split extra heavy steel pipe, snap a number of bolts, and force bubble traps upward throughmore » towers and, in general, exhibit forces greatly in excess of that needed to fracture and separate subterranean formations. (8 claims)« less

  9. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica.

    PubMed

    Maluf, Mirian Perez; da Silva, Carla Cristina; de Oliveira, Michelle de Paula Abreu; Tavares, Aline Gomes; Silvarolla, Maria Bernadete; Guerreiro, Oliveiro

    2009-10-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  10. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    PubMed Central

    2009-01-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence. PMID:21637458

  11. The human NAD metabolome: Functions, metabolism and compartmentalization

    PubMed Central

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229

  12. Modeling mechanical interactions in growing populations of rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Winkle, James J.; Igoshin, Oleg A.; Bennett, Matthew R.; Josić, Krešimir; Ott, William

    2017-10-01

    Advances in synthetic biology allow us to engineer bacterial collectives with pre-specified characteristics. However, the behavior of these collectives is difficult to understand, as cellular growth and division as well as extra-cellular fluid flow lead to complex, changing arrangements of cells within the population. To rationally engineer and control the behavior of cell collectives we need theoretical and computational tools to understand their emergent spatiotemporal dynamics. Here, we present an agent-based model that allows growing cells to detect and respond to mechanical interactions. Crucially, our model couples the dynamics of cell growth to the cell’s environment: Mechanical constraints can affect cellular growth rate and a cell may alter its behavior in response to these constraints. This coupling links the mechanical forces that influence cell growth and emergent behaviors in cell assemblies. We illustrate our approach by showing how mechanical interactions can impact the dynamics of bacterial collectives growing in microfluidic traps.

  13. Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein.

    PubMed

    McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung; Drabek, Andrew A; Klein, Thomas; Blacklow, Stephen C

    2016-08-02

    The endosomal sorting complex required for transport (ESCRT) is a conserved protein complex that facilitates budding and fission of membranes. It executes a key step in many cellular events, including cytokinesis and multi-vesicular body formation. The ESCRT-III protein Shrub in flies, or its homologs in yeast (Snf7) or humans (CHMP4B), is a critical polymerizing component of ESCRT-III needed to effect membrane fission. We report the structural basis for polymerization of Shrub and define a minimal region required for filament formation. The X-ray structure of the Shrub core shows that individual monomers in the lattice interact in a staggered arrangement using complementary electrostatic surfaces. Mutations that disrupt interface salt bridges interfere with Shrub polymerization and function. Despite substantial sequence divergence and differences in packing interactions, the arrangement of Shrub subunits in the polymer resembles that of Snf7 and other family homologs, suggesting that this intermolecular packing mechanism is shared among ESCRT-III proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. ERK reinforces actin polymerization to power persistent edge protrusion during motility.

    PubMed

    Mendoza, Michelle C; Vilela, Marco; Juarez, Jesus E; Blenis, John; Danuser, Gaudenz

    2015-05-19

    Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. We tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular signal-regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell surface receptors, and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility. Copyright © 2015, American Association for the Advancement of Science.

  15. ERK reinforces actin polymerization to power persistent edge protrusion during motility

    PubMed Central

    Mendoza, Michelle C.; Vilela, Marco; Juarez, Jesus E.; Blenis, John; Danuser, Gaudenz

    2016-01-01

    Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. Here, we tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell-surface receptors and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy (qFSM) and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. Arp2/3 activity generates branched actin networks that can produce pushing force. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility. PMID:25990957

  16. Releasing the brakes while hanging on: Cortactin effects on actin-driven motility.

    PubMed

    Gov, Nir S; Bernheim-Groswasser, Anne

    2012-01-01

    Actin polymerization plays a major role in many cellular processes, including cell motility, vesicle trafficking, and pathogen propulsion. The transformation of the (protrusive) polymerization forces into directed motion requires that the growing filaments are positioned next to the surface. This is achieved by localization of surface actin nucleators (WASP), which then activate Arp2/3 complex to form new actin branches. Yet, the same surface-bound WASP molecule which initiates the nucleation of new actin branches, also inherently prevents the translation of the polymerization forces into motion, essentially because the WASP molecule has to be in contact with the network during the formation of the new branch. In our recent paper we show that cortactin relaxes this internal inhibition by enhancing the release of WASP-VCA molecule from the new branching site after nucleation is initiated. We show that this enhanced release has two major effects; it increases the turnover rate of branching per WASP molecule, and it decreases the friction-like force caused by the binding of the moving surface with respect to the growing actin network.

  17. Nano-Bio Engineered Carbon Dot-Peptide Functionalized Water Dispersible Hyperbranched Polyurethane for Bone Tissue Regeneration.

    PubMed

    Gogoi, Satyabrat; Maji, Somnath; Mishra, Debasish; Devi, K Sanjana P; Maiti, Tapas Kumar; Karak, Niranjan

    2017-03-01

    The present study delves into a combined bio-nano-macromolecular approach for bone tissue engineering. This approach relies on the properties of an ideal scaffold material imbued with all the chemical premises required for fostering cellular growth and differentiation. A tannic acid based water dispersible hyperbranched polyurethane is fabricated with bio-nanohybrids of carbon dot and four different peptides (viz. SVVYGLR, PRGDSGYRGDS, IPP, and CGGKVGKACCVPTKLSPISVLYK) to impart target specific in vivo bone healing ability. This polymeric bio-nanocomposite is blended with 10 wt% of gelatin and examined as a non-invasive delivery vehicle. In vitro assessment of the developed polymeric system reveals good osteoblast adhesion, proliferation, and differentiation. Aided by this panel of peptides, the polymeric bio-nanocomposite exhibits in vivo ectopic bone formation ability. The study on in vivo mineralization and vascularization reveals the occurrence of calcification and blood vessel formation. Thus, the study demonstrates carbon dot/peptide functionalized hyperbranched polyurethane gel for bone tissue engineering application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. TiO2 -enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation.

    PubMed

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2011-06-01

    Novel polymeric powder coatings (PPC) were prepared by ultrafine powder coating technology and shown to support human mesenchymal cell attachment and growth. PPC surfaces enriched with nano-TiO(2) (nTiO(2)) showed enhanced cellular responses, and were compared to commercially pure titanium (cpTi). After cell attachment and growth, osteogenic differentiation and bone matrix formation ensures osseointegration for implantable biomaterials. Therefore, the objective of this study was to determine if mesenchymal cells grown on PPC could undergo osteogenic differentiation by inducing Runx2 and bone matrix proteins, and then initiate mineralization. Atomic force microscopy revealed intricate three-dimensional micro-topographies, and the measures of nano-roughness and porosity were similar for all PPC surfaces. Scanning electron microscopy showed that the cells attached and spread out over all of the surfaces. After 1 week in osteogenic media, RT-PCR analysis showed the induction of Runx2, the up-regulation of type I collagen, and the initial detection of alkaline phosphatase and bone sialoprotein. After 4 weeks, Alizarin Red staining showed mineral deposition. However, cell spreading and osteogenic differentiation were significantly (P < 0.05) higher on the cpTi controls than on the PPC surfaces. Furthermore, spreading and differentiation were consistently higher on the titanium-enriched PPC-2, -3 and -4 than on the titanium-free PPC-1. Therefore, despite the presence of complex micro-topographies and nano-features, titanium-enrichment enhanced the cellular response, and pure titanium still provided the best substrate. These findings confirm the cytocompatibility of these novel polymeric coatings and suggest that titanium-enrichment and nTiO(2) additives may enhance their performance.

  19. The small molecule CS1 inhibits mitosis and sister chromatid resolution in HeLa cells.

    PubMed

    Wu, Xingkang; Li, Zhenyu; Shen, Yuemao

    2018-05-01

    Mitosis, the most dramatic event in the cell cycle, involves the reorganization of virtually all cellular components. Antimitotic agents are useful for dissecting the mechanism of this reorganization. Previously, we found that the small molecule CS1 accumulates cells in G2/M phase [1], but the mechanism of its action remains unknown. Cell cycle analysis, live cell imaging and nuclear staining were used. Chromosomal morphology was detected by chromosome spreading. The effects of CS1 on microtubules were confirmed by tubulin polymerization, colchicine tubulin-binding, cellular tubulin polymerization and immunofluorescence assays and by analysis of microtubule dynamics and molecular modeling. Histone phosphoproteomics was performed using mass spectrometry. Cell signaling cascades were analyzed using immunofluorescence, immunoprecipitation, immunoblotting, siRNA knockdown and chemical inhibition of specific proteins. The small molecule CS1 was shown to be an antimitotic agent. CS1 potently inhibited microtubule polymerization via interaction with the colchicine-binding pocket of tubulin in vitro and inhibited the formation of the spindle apparatus by reducing the bulk of growing microtubules in HeLa cells, which led to activation of the spindle assembly checkpoint (SAC) and mitotic arrest of HeLa cells. Compared with colchicine, CS1 impaired the progression of sister chromatid resolution independent of cohesin dissociation, and this was reversed by the removal of CS1. Additionally, CS1 induced unique histone phosphorylation patterns distinct from those induced by colchicine. CS1 is a unique antimitotic small molecule and a powerful tool with unprecedented value over colchicine that makes it possible to specifically and conditionally perturb mitotic progression. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The Interference of Selected Cytotoxic Alkaloids with the Cytoskeleton: An Insight into Their Modes of Action.

    PubMed

    Wang, Xiaojuan; Tanaka, Mine; Krstin, Sonja; Peixoto, Herbenya Silva; Wink, Michael

    2016-07-12

    Alkaloids, the largest group among the nitrogen-containing secondary metabolites of plants, usually interact with several molecular targets. In this study, we provide evidence that six cytotoxic alkaloids (sanguinarine, chelerythrine, chelidonine, noscapine, protopine, homoharringtonine), which are known to affect neuroreceptors, protein biosynthesis and nucleic acids, also interact with the cellular cytoskeleton, such as microtubules and actin filaments, as well. Sanguinarine, chelerythrine and chelidonine depolymerized the microtubule network in living cancer cells (Hela cells and human osteosarcoma U2OS cells) and inhibited tubulin polymerization in vitro with IC50 values of 48.41 ± 3.73, 206.39 ± 4.20 and 34.51 ± 9.47 μM, respectively. However, sanguinarine and chelerythrine did not arrest the cell cycle while 2.5 μM chelidonine arrested the cell cycle in the G₂/M phase with 88.27% ± 0.99% of the cells in this phase. Noscapine and protopine apparently affected microtubule structures in living cells without affecting tubulin polymerization in vitro, which led to cell cycle arrest in the G2/M phase, promoting this cell population to 73.42% ± 8.31% and 54.35% ± 11.26% at a concentration of 80 μM and 250.9 μM, respectively. Homoharringtonine did not show any effects on microtubules and cell cycle, while the known microtubule-stabilizing agent paclitaxel was found to inhibit tubulin polymerization in the presence of MAPs in vitro with an IC50 value of 38.19 ± 3.33 μM. Concerning actin filaments, sanguinarine, chelerythrine and chelidonine exhibited a certain effect on the cellular actin filament network by reducing the mass of actin filaments. The interactions of these cytotoxic alkaloids with microtubules and actin filaments present new insights into their molecular modes of action.

  1. Effects of dietary extra-virgin olive oil on oxidative stress resulting from exhaustive exercise in rat skeletal muscle: a morphological study.

    PubMed

    Musumeci, Giuseppe; Maria Trovato, Francesca; Imbesi, Rosa; Castrogiovanni, Paola

    2014-01-01

    Physical exercise induces oxidative stress through production of reactive oxygen species and can cause damage to muscle tissue. Oxidative stress, resulting from exhaustive exercise is high and improvement of antioxidant defenses of the body may ameliorate damage caused by free radicals. Extra-virgin olive oil is widely considered to possess anti-oxidative properties. The aim of this study was to determine if extra-virgin olive oil improved the adaptive responses in conditions of oxidative stress. Twenty-four 12-week-old male Sprague-Dawley rats were divided in three groups: (1) rats fed with standard chow and not subjected to physical exercise; (2) rats fed with standard chow and subjected to exhaustive exercise; (3) rats fed with a diet rich in oleic acid, the major component of extra-virgin olive oil, and subjected to exhaustive exercise. Exhaustive exercise consisted of forced running in a five-lane 10° inclined treadmill at a speed of 30 m/min for 70-75 min. We studied some biomarkers of oxidative stress and of antioxidant defenses, histology and ultrastructure of the Quadriceps femoris muscle (Rectus femoris). We observed that, in rats of group 3, parameters indicating oxidative stress such as hydroperoxides and thiobarbituric acid-reactive substances decreased, parameters indicating antioxidant defenses of the body such as non-enzymatic antioxidant capacity and Hsp70 expression increased, and R. femoris muscle did not show histological and ultrastructural alterations. Results of this study support the view that extra-virgin olive oil can improve the adaptive response of the body in conditions of oxidative stress. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Gender differences in adverse childhood experiences, collective violence, and the risk for addictive behaviors among university students in Tunisia.

    PubMed

    El Mhamdi, Sana; Lemieux, Andrine; Bouanene, Ines; Ben Salah, Arwa; Nakajima, Motohiro; Ben Salem, Kamel; al'Absi, Mustafa

    2017-06-01

    Adverse childhood experiences (ACE) have been linked to a variety of addictive behaviors. The recent adaptation of the ACE measure by the World Health Organization (WHO) allows for the assessment of the negative role of additional adverse experiences, such as extra-familial violence. To date, the relationship between extra-familial violence and addictive behaviors has not been assessed. We report the contribution of ACEs, including the new scales for extra-familial violence, on the risk for mental health problems and addictive behaviors by gender in a sample of young adults in Tunisia. We conducted a cross sectional study in Tunisia during 2014, where we recruited 1200 young university adults who completed the validated Arabic version of the WHO ACE questionnaire in a university setting. Results indicated that intra-familial adversities were associated with increased risk for addictive behaviors, particularly in males. ACEs were also associated with increased risk for mental health problems with women showing more difficulties than men. Exposure to peer, community and collective violence was higher in males than in females and logistic regression confirms that exposure to extra-familial violence increased the risk for addictive behaviors both in male and females by two to three-fold. Mental health problems were associated with peer violence and substance abuse in males, but not in females. Results demonstrate for the first time the contribution of exposure to extra-familial violence on risk for addictive behaviors. Results highlight the need for addressing mental health and addiction in a community with high burden of adversity and violence. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  4. Electrostatic bio-manipulation for the modification of cellular functions

    NASA Astrophysics Data System (ADS)

    Washizu, Masao

    2013-03-01

    The use of electrostatic field effects, including field-induced reversible-breakdown of the membrane and dielectrophoresis (DEP), in microfabricated structures are investigated. With the use of field constriction created by a micro-orifice whose diameter is smaller than the cells, controlled magnitude of pulsed voltage can be applied across the cell membrane regardless of the cell size, shape or orientation. As a result, the breakdown occurs reproducibly and with minimal invasiveness. The breakdown is used for two purposes, electroporation by which foreign substances can be fed into cells, and electrofusion which creates genetic and/or cytoplasmic mixture among two cells. When GFP plasmid is fed into MSC cell, the gene expression started within 2 hours, and finally observed in more than 50% of cells. For cell fusion, several ten percent fusion yield is achieved for most cell types, with the colony formation in several percents. Timing-controlled feeding foreign substances or mixing cellular contents, with high-yield and low-invasiveness, is expected to bring about a new technology for both genetic and epigenetic modifications of cellular functions, in such field as regenerative medicine.

  5. Substance P accelerates wound healing in type 2 diabetic mice through endothelial progenitor cell mobilization and Yes-associated protein activation

    PubMed Central

    Um, Jihyun; Yu, Jinyeong; Park, Ki-Sook

    2017-01-01

    Wound healing is delayed in diabetes due to a number of factors, including impaired angiogenesis and poor dermal healing. The present study demonstrated that subcutaneous administration of substance P (SP) accelerates wound healing in db/db type 2 diabetic mice (db/db mice). SP injection (10 nM/kg, subcutaneously) enhanced angiogenesis, induced the mobilization of endothelial progenitor cells (EPCs) and increased the number of EPC-colony forming units (EPC-CFUs) in the bone marrow of db/db mice. Immunohistochemistry was performed to check the effects of SP on the cellular proliferation and the subcellular localization of Yes-associated protein (YAP) in the wound dermis. SP also upregulated cellular proliferation in the injured dermis of db/db mice. Compared with the control group, an increased number of cells in the wound dermis of SP-treated mice exhibited nuclear localization of YAP, which induces cellular proliferation. The results of the current study indicate that subcutaneous administration of SP may be a promising therapeutic strategy to treat diabetic wounds exhibiting impaired angiogenesis and dysfunctional dermal wound healing. PMID:28339006

  6. Components of released liquid from ultrasonic waste activated sludge disintegration.

    PubMed

    Wang, Fen; Lu, Shan; Ji, Min

    2006-05-01

    Ultrasound can be applied as a pretreatment to disintegrate sludge. In this paper, by observing the solution concentration of polysaccharide, protein, DNA, Ca and Mg before and after disintegration, the main components in the released liquid are analyzed. It has been found that the predominant component of the released liquid in this research is protein. Ultrasound can destroy the extracellular polymeric substances (EPS), which is important to the sludge flocs structure. Ca2+ and Mg2+, which play a key role in binding the EPS are released into the aqueous phase. As a result, the sludge flocs are loosened. Under the effect of the hydraulic shear force, the sludge is disintegrated. Then the hydraulic shear forces destroy the cell walls, the substances inside the cells are released into the aqueous phase.

  7. New quenching media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voroshilov, V.A.; Kamenev, V.D.; Kochurkina, Yu.I.

    This study investigates a wide range of substances to discover a high quality quenching medium. The medium must have the possibility of variation of cooling ability, fire resistance, and nontoxicity, and be available, simple, and safe. Surfactants, liquids, organosilicon compounds, and water soluble polymerics were surveyed and rejected. In aqueous solutions the cooling properties worsened during heating. Modified celluloses (polyethylenepolymine) and sulfite liquor were also studied. These were determined to be the most promising quenching media, and were tested and detailed.

  8. Evaluation of the Flavor Contribution of Products of the Maillard Reaction

    DTIC Science & Technology

    the Maillard - type reaction between the products of autoxidized polyunsaturated fatty acids and free amino groups of phospholipids and within meat...intermolecular browning-type reaction with free amino groups, polymerization, etc., are liable to occur. Changes in these labile substances are known...proteins, and between the free amino groups of phospholipids and the monosaccharides present in meat. The reaction was elucidated and its products characterized and evaluated for its contribution to meat flavor.

  9. Draft Genome Sequence of Hymenobacter sp. Strain IS2118, Isolated from a Freshwater Lake in Schirmacher Oasis, Antarctica, Reveals Diverse Genes for Adaptation to Cold Ecosystems

    PubMed Central

    Ptacek, Travis; Crowley, Michael; Swain, Ashit K.; Osborne, John D.; Bej, Asim K.; Andersen, Dale T.

    2014-01-01

    Hymenobacter sp. IS2118, isolated from a freshwater lake in Schirmacher Oasis, Antarctica, produces extracellular polymeric substance (EPS) and manifests tolerance to cold, UV radiation (UVR), and oxidative stress. We report the 5.26-Mb draft genome of strain IS2118, which will help us to understand its adaptation and survival mechanisms in Antarctic extreme ecosystems. PMID:25103756

  10. Fundamental Characteristics of AAA+ Protein Family Structure and Function.

    PubMed

    Miller, Justin M; Enemark, Eric J

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins.

  11. A novel biosorbent for dye removal: extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1.

    PubMed

    Zhang, Zhiqiang; Xia, Siqing; Wang, Xuejiang; Yang, Aming; Xu, Bin; Chen, Ling; Zhu, Zhiliang; Zhao, Jianfu; Jaffrezic-Renault, Nicole; Leonard, Didier

    2009-04-15

    This paper deals with the extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1 used as a novel biosorbent to remove dye from aqueous solution in batch systems. As a widely used and hazardous dye, basic blue 54 (BB54) was chosen as the model dye to examine the adsorption performance of the EPS. The effects of pH, initial dye concentration, contact time and temperature on the sorption of BB54 to the EPS were examined. At various initial dye concentrations (50-400 mg/L), the batch sorption equilibrium can be obtained in only 5 min. Kinetic studies suggested that the sorption followed the internal transport mechanism. According to the Langmuir model, the maximum BB54 uptake of 2.005 g/g was obtained. Chemical analysis of the EPS indicated the presence of protein (30.9%, w/w) and acid polysaccharide (63.1%, w/w). Scanning electron microscopy (SEM) images showed that the EPS with a crystal-linear structure was whole enwrapped by adsorbed dye molecules. FTIR spectrum result revealed the presence of adsorbing groups such as carboxyl, hydroxyl and amino groups in the EPS. High-molecular weight of the EPS with more binding-sites and stronger van der Waals forces together with its specific construct leads to the excellent performance of dye adsorption. The EPS shows potential board application as a biosorbent for both environmental protection and dye recovery.

  12. Copper (II) adsorption by the extracellular polymeric substance extracted from waste activated sludge after short-time aerobic digestion.

    PubMed

    Zhang, Zhiqiang; Zhou, Yun; Zhang, Jiao; Xia, Siqing

    2014-02-01

    The extracellular polymeric substance (EPS) extracted from waste activated sludge (WAS) after short-time aerobic digestion was investigated to be used as a novel biosorbent for Cu(2+) removal from water. The EPS consisted of protein (52.6 %, w/w), polysaccharide (30.7 %, w/w), and nucleic acid (16.7 %, w/w). Short-time aerobic digestion process of WAS for about 4 h promoted the productivity growth of the EPS for about 10 %. With a molecular weight of about 1.9 × 10(6) Da, the EPS showed a linear structure with long chains, and contained carboxyl, hydroxyl, and amino groups. The sorption kinetics was well fit for the pseudo-second-order model, and the maximum sorption capacity of the EPS (700.3 mg Cu(2+)/g EPS) was markedly greater than those of the reported biosorbents. Both Langmuir model and Freundlich model commendably described the sorption isotherm. The Gibbs free energy analysis of the adsorption showed that the sorption process was feasible and spontaneous. According to the complex results of multiple analytical techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, etc., the adsorption process took place via both physical and chemical sorption, but the electrostatic interaction between sorption sites with the functional groups and Cu(2+) is the major mechanism.

  13. Effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances from waste activated sludge.

    PubMed

    Zhang, Zhiqiang; Zhang, Jiao; Zhao, Jianfu; Xia, Siqing

    2015-02-01

    The effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances (EPSs) from waste activated sludge (WAS) was investigated. Bioflocculation of the EPS was found to be enhanced by 2∼6 h of WAS aerobic digestion under the conditions of natural sludge pH (about 7), high sludge concentration by gravity thickening, and dissolved oxygen of about 2 mg/L. With the same EPS extraction method, the total suspended solid content reduction of 0.20 and 0.36 g/L and the volatile suspended solid content reduction of 0.19 and 0.26 g/L were found for the WAS samples before and after aerobic digestion of 4 h. It indicates that more EPS is produced by short-time aerobic digestion of WAS. The scanning electron microscopy images of the WAS samples before and after aerobic digestion of 4 h showed that more EPS appeared on the surface of zoogloea by aerobic digestion, which reconfirmed that WAS aerobic digestion induced abundant formation of EPS. By WAS aerobic digestion, the flocculating rate of the EPS showed about 31 % growth, almost consistent with the growth of its yield (about 34 %). The EPSs obtained before and after the aerobic digestion presented nearly the same components, structures, and Fourier transform infrared spectra. These results revealed that short-time aerobic digestion of WAS enhanced the flocculation of the EPS by promoting its production.

  14. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization.

    PubMed

    Cao, Bin; Ahmed, Bulbul; Kennedy, David W; Wang, Zheming; Shi, Liang; Marshall, Matthew J; Fredrickson, Jim K; Isern, Nancy G; Majors, Paul D; Beyenal, Haluk

    2011-07-01

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) to U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells with minimal EPS, we show that (i) bEPS from Shewanella sp. HRCR-1 biofilms contribute significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; (ii) bEPS can be considered a functional extension of the cells for U(VI) immobilization and they likely play more important roles at lower initial U(VI) concentrations; and (iii) the U(VI) reduction efficiency is dependent upon the initial U(VI) concentration and decreases at lower concentrations. To quantify the relative contributions of sorption and reduction to U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(VI). We found that, when reduced, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated the reactivity of laEPS, while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, possibly facilitated U(VI) reduction.

  15. Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms: Characterization by Infrared Spectroscopy and Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Bin; Shi, Liang; Brown, Roslyn N.

    This study characterizes the composition of extracellular polymeric substances (EPS) from Shewanella sp. HRCR-1 biofilms to provide insight into potential interactions of EPS with redox-active metals and radionuclides. Both bound and loosely associated EPS were extracted from Shewanella sp. HRCR-1 biofilms prepared using a hollow-fiber membrane biofilm reactor (HfMBR). FTIR spectra revealed the presence of proteins, polysaccharides, nucleic acids, membrane lipids, and fatty acids in both bound and loosely associated EPS. Using a global proteomic approach, a total of 58 extracellular and outer membrane proteins were identified in the EPS. These included homologues of multiple S. oneidensis MR-1 proteins thatmore » potentially contribute to key physiological biofilm processes, such as biofilm-promoting protein BpfA, surface-associated serine protease, nucleotidases (CpdB and UshA), an extracellular lipase, and oligopeptidases (PtrB and a M13 family oligopeptidase lipoprotein). In addition, 20 redox proteins were found in extracted EPS. Among the detected redox proteins were the homologues of two S. oneidensis MR-1 c-type cytochromes, MtrC and OmcA, which have been implicated in extracellular electron transfer. Given their detection in the EPS of Shewanella sp. HRCR 1 biofilms, c-type cytochromes may contribute to the possible redox activity of the biofilm matrix and play important roles in extracellular electron transfer reactions.« less

  16. Corneal Biofilms: From Planktonic to Microcolony Formation in an Experimental Keratitis Infection with Pseudomonas Aeruginosa.

    PubMed

    Saraswathi, Padmanabhan; Beuerman, Roger W

    2015-10-01

    Microbial biofilms commonly comprise part of the infectious scenario, complicating the therapeutic approach. The purpose of this study was to determine in a mouse model of corneal infection if mature biofilms formed and to visualize the stages of biofilm formation. A bacterial keratitis model was established using Pseudomonas aeruginosa ATCC 9027 (1 × 10(8) CFU/ml) to infect the cornea of C57BL/6 black mouse. Eyes were examined post-infection (PI) on days 1, 2, 3, 5, and 7, and imaged by slit lamp microscopy, and light, confocal, and electron microscopy to identify the stages of biofilm formation and the time of appearance. On PI day 1, Gram staining showed rod-shaped bacteria adherent on the corneal surface. On PI days 2 and 3, bacteria were seen within webs of extracellular polymeric substance (EPS) and glycocalyx secretion, imaged by confocal microscopy. Scanning electron microscopy demonstrated microcolonies of active infectious cells bound with thick fibrous material. Transmission electron microscopy substantiated the formation of classical biofilm architecture with P. aeruginosa densely packed within the extracellular polymeric substances on PI days 5 and 7. Direct visual evidence showed that biofilms routinely developed on the biotic surface of the mouse cornea. The mouse model can be used to develop new approaches to deal therapeutically with biofilms in corneal infections. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Contribution of Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms to U(VI) Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Bin; Ahmed, B.; Kennedy, David W.

    2011-06-05

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) in U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells without EPS, we showed that i) bEPS from Shewanella sp. HRCR-1 biofilms contributed significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; ii) bEPS could be considered as a functional extension of the cells for U(VI) immobilization and they likely play more important roles at initial U(VI) concentrations; and iii) U(VI) reduction efficiency was found to be dependent uponmore » initial U(VI) concentration and the efficiency decreased at lower concentrations. To quantify relative contribution of sorption and reduction in U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(V). We found that, when in reduced form, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated reactivity of laEPS while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, might facilitate U(VI) reduction.« less

  18. Interaction of Pb(II) and biofilm associated extracellular polymeric substances of a marine bacterium Pseudomonas pseudoalcaligenes NP103

    NASA Astrophysics Data System (ADS)

    Kumari, Supriya; Mangwani, Neelam; Das, Surajit

    2017-02-01

    Three-dimensional excitation-emission matrix (3D EEM) fluorescence spectroscopy and attenuated total reflectance fourier-transformed infrared spectroscopy (ATR-FTIR) was used to evaluate the interaction of biofilm associated extracellular polymeric substances (EPS) of a marine bacterium Pseudomonas pseudoalcaligenes NP103 with lead [Pb(II)]. EEM fluorescence spectroscopic analysis revealed the presence of one protein-like fluorophore in the EPS of P. pseudoalcaligenes NP103. Stern-Volmer equation indicated the existence of only one binding site (n = 0.789) in the EPS of P. pseudoalcaligenes NP103. The interaction of Pb(II) with EPS was spontaneous at room temperature (Δ G = - 2.78 kJ/K/mol) having binding constant (Kb) of 2.59 M- 1. ATR-FTIR analysis asserted the involvement of various functional groups such as sulphydryl, phosphate and hydroxyl and amide groups of protein in Pb(II) binding. Scanning electron microscopy (SEM) and fluorescence microscopy analysis displayed reduced growth of biofilm with altered surface topology in Pb(II) supplemented medium. Energy dispersive X-ray spectroscopy (EDX) analysis revealed the entrapment of Pb in the EPS. Uronic acid, a characteristic functional group of biofilm, was observed in 1H NMR spectroscopy. The findings suggest that biofilm associated EPS are perfect organic ligands for Pb(II) complexation and may significantly augment the bioavailability of Pb(II) in the metal contaminated environment for subsequent sequestration.

  19. Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp.

    PubMed

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2013-01-01

    Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Geobacter spp., the present study grew five representative Geobacter strains on electrodes as the sole electron acceptors in the absence or presence of (semi)conductive iron oxides. It was found that iron-oxide minerals enhanced current generation by three Geobacter strains, while no effect was observed in another strain. Geobacter sulfurreducens was the only strain that generated substantial amounts of currents both in the presence and absence of the iron oxides. Microscopic, electrochemical and transcriptomic analyses of G. sulfurreducens disclosed that this strain constructed two distinct types of EET path; in the absence of iron-oxide minerals, bacterial biofilms rich in extracellular polymeric substances were constructed, while composite networks made of mineral particles and microbial cells (without polymeric substances) were developed in the presence of iron oxides. It was also found that uncharacterized c-type cytochromes were up-regulated in the presence of iron oxides that were different from those found in conductive biofilms. These results suggest the possibility that natural (semi)conductive minerals confer energetic and ecological advantages on Geobacter, facilitating their growth and survival in the natural environment.

  20. Biosorption of Cadmium by Non-Toxic Extracellular Polymeric Substances (EPS) Synthesized by Bacteria from Marine Intertidal Biofilms

    PubMed Central

    Camacho-Chab, Juan Carlos; Chan-Bacab, Manuel Jesús; Aguila-Ramírez, Ruth Noemí; Bartolo-Pérez, Pascual; Tabasco-Novelo, Carolina; Gaylarde, Christine; Ortega-Morales, Benjamín Otto

    2018-01-01

    Cadmium is a major heavy metal found in polluted aquatic environments, mainly derived from industrial production processes. We evaluated the biosorption of solubilized Cd2+ using the extracellular polymeric substances (EPS) produced by Bacillus sp. MC3B-22 and Microbacterium sp. MC3B-10 (Microbactan); these bacteria were originally isolated from intertidal biofilms off the coast of Campeche, Mexico. EPS were incubated with different concentrations of cadmium in ultrapure water. Residual Cd2+ concentrations were determined by Inductive Coupled Plasma-Optic Emission Spectrometry and the maximum sorption capacity (Qmax) was calculated according to the Langmuir model. EPS were characterized by X-ray photoelectron spectroscopy (XPS) before and after sorption. The Qmax of Cd2+ was 97 mg g−1 for Microbactan and 141 mg g−1 for MC3B-22 EPS, these adsorption levels being significantly higher than previously reported for other microbial EPS. In addition, XPS analysis revealed changes in structure of EPS after biosorption and showed that amino functional groups contributed to the binding of Cd2+, unlike other studies that show the carbohydrate fraction is responsible for this activity. This work expands the current view of bacterial species capable of synthesizing EPS with biosorbent potential for cadmium and provides evidence that different chemical moieties, other than carbohydrates, participate in this process. PMID:29439486

  1. Simultaneous pyridine biodegradation and nitrogen removal in an aerobic granular system.

    PubMed

    Liu, Xiaodong; Wu, Shijing; Zhang, Dejin; Shen, Jinyou; Han, Weiqing; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun

    2018-05-01

    Simultaneous pyridine biodegradation and nitrogen removal were successfully achieved in a sequencing batch reactor (SBR) based on aerobic granules. In a typical SBR cycle, nitritation occurred obviously after the majority of pyridine was removed, while denitrification occurred at early stage of the cycle when oxygen consumption was aggravated. The effect of several key operation parameters, i.e., air flow rate, influent NH 4 + -N concentration, influent pH and pyridine concentration, on nitritation, pyridine degradation and total nitrogen (TN) removal, was systematically investigated. The results indicated that high air flow rate had a positive effect on both pyridine degradation and nitritation but a negative impact of overhigh air flow rate. With the increase of NH 4 + dosage, both nitritation and TN removal could be severely inhibited. Slightly alkaline condition, i.e., pH7.0-8.0, was beneficial for both pyridine degradation and nitritation. High pyridine dosage often resulted in the delay of both pyridine degradation and nitritation. Besides, extracellular polymeric substances production was affected by air flow rate, NH 4 + dosage, pyridine dosage and pH. In addition, high-throughput sequencing analysis demonstrated that Bdellovibrio and Paracoccus were the dominant species in the aerobic granulation system. Coexistence of pyridine degrader, nitrification related species, denitrification related species, polymeric substances producer and self-aggregation related species was also confirmed by high-throughput sequencing. Copyright © 2017. Published by Elsevier B.V.

  2. Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixCoyMn1-x-yO2 Li-ion batteries.

    PubMed

    Wang, Jia; Tian, Bingyang; Bao, Yihui; Qian, Can; Yang, Yiran; Niu, Tianqi; Xin, Baoping

    2018-07-15

    As a fairly new concept, the recovery of valuable metals from urban mining by using bioleaching has become a hotspot. However, the function of extracellular polymeric substances (EPS) in the bioleaching of urban mining gains little attention. The current study used spent EV LIBs to represent urban mining products and systematically explored the function and role of EPS in the attachment of cells to the cathodes, formation of aggregates (cell-EPS-cathode), variation in the electrical and surface properties of the aggregates, concentration of both Fe 2+ and Fe 3+ surrounding the aggregates, electron transfer inside the aggregates and metals released from the aggregates. The results indicated that a strong adhesion of cells to the cathodes occurs mediated by EPS via both hydrophobic force as a main role and electrostatic force as a minor role. Second, the EPS not only adsorb Fe 3+ but also more strongly adsorb Fe 2+ to concentrate the Fe 2+ /Fe 3+ cycle inside the aggregates, witnessing stronger reductive attack on the high valence state of metals as a contact reductive mechanism. Third, the retention or addition of EPS elevated the electronic potential and reduced the electronic resistance to lift the corrosion electric current, thereby boosting the electron transfer and metal dissolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effects of potassium ferrate on extracellular polymeric substances (EPS) and physicochemical properties of excess activated sludge.

    PubMed

    Ye, Fenxia; Liu, Xinwen; Li, Ying

    2012-01-15

    The activated sludge process of wastewater results in the generation of a considerable amount of excess activated sludge. In many wastewater treatment plants, the bottleneck of the sludge handling system is the dewatering operation. This paper investigated the effect of potassium ferrate pretreatment on the physicochemical properties of the excess activated sludge at various dosages of potassium ferrate. The particle size, extracellular polymeric substances (EPS) content and chemical components, and sludge disintegration degree were measured to explain the observed changes of physicochemical properties. It was expected that potassium ferrate could enhance the filterability and dewaterability of the sludge. However, the results showed that potassium ferrate had a negative effect on the filterability by measuring the capillary suction time (CST), but improved the settleability and dewaterability extent by determining the water content in the dewatered cake, although the flocs size reduced slightly. Loosely bound EPS (LB-EPS) content, polysaccharides (PS) and proteins (PN) contents in LB-EPS all increased with increasing the amount of potassium ferrate. However, Tightly bound EPS (TB-EPS) content, PS and PN contents in TB-EPS did not changed significantly at first, and decreased slightly under higher dosage of potassium ferrate. EPS, especially LB-EPS played more important role in the observed changes of the settleability and filterability than the sludge particle size. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Modulation of Immune Response by Organophosphorus Pesticides: Fishes as a Potential Model in Immunotoxicology

    PubMed Central

    Díaz-Resendiz, K. J. G.; Toledo-Ibarra, G. A.; Girón-Pérez, M. I.

    2015-01-01

    Immune response is modulated by different substances that are present in the environment. Nevertheless, some of these may cause an immunotoxic effect. In this paper, the effect of organophosphorus pesticides (frequent substances spilled in aquatic ecosystems) on the immune system of fishes and in immunotoxicology is reviewed. Furthermore, some cellular and molecular mechanisms that might be involved in immunoregulation mechanisms of organophosphorus pesticides are discussed. PMID:25973431

  5. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    DOEpatents

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2016-04-19

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  6. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    DOEpatents

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2014-09-09

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  7. Preparation of porous carbons from polymeric precursors modified with acrylated kraft lignin

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.

    2016-04-01

    The presented studies concern the preparation of porous carbons from a BPA.DA-St polymer containing acrylated kraft lignin as a monomer. The porous polymeric precursor in the form of microspheres was synthesized in suspension polymerization process. Next samples of the polymer were impregnated with acetic acid or aqueous solution of acetates (potassium or ammonia), dried and carbonised in nitrogen atmosphere at 450°C. After carbonization microspherical shape of the materials was remained, that is desired feature for potential application in chromatography or SPE technique. Chemical and textural properties of the porous carbon adsorbents were characterized using infrared spectroscopy (ATR-FTIR), thermogravimetry analyses with mass spectrometry of released gases (TG-MS) and nitrogen sorption experiments. The presented studies revealed the impregnation is useful method for development of porous structure of carbonaceous materials. The highest values of porous structure parameters were obtained when acetic acid and ammonium acetate were used as impregnating substances. On the surface of the materials oxygen functional groups are present that is important for specific interactions during sorption processes. The highest contents of functionalities were observed for carbon BPA.DA-St-LA-C-AcNH4.

  8. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    PubMed

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-02-26

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  9. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    PubMed Central

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  10. Organic acids in naturally colored surface waters

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  11. A NEW APPROACH TO THE STUDY OF MUCOADHESIVENESS OF POLYMERIC MEMBRANES USING SILICONE DISCS.

    PubMed

    Nowak, Karolina Maria; Szterk, Arkadiusz; Fiedor, Piotr; Bodek, Kazimiera Henryka

    2016-01-01

    The introduction of new test methods and the modification of existing ones are crucial for obtaining reliable results, which contributes to the development of innovative materials that may have clinical applications. Today, silicone is commonly used in medicine and the diversity of its applications are continually growing. The aim of this study is to evaluate the mucoadhesiveness of polymeric membranes by a method that modifies the existing test methods through the introduction of silicone discs. The matrices were designed for clinical application in the management of diseases within the oral cavity. The use of silicone discs allows reliable and reproducible results to be obtained, which allows us to make various tensometric measurements. In this study, different types of polymeric matrices were examined, as well as their crosslinking and the presence for the active pharmaceutical ingredient were compared to the pure dosage form. The lidocaine hydrochloride (Lid(HCl)) was used as a model active substance, due to its use in dentistry and clinical safety. The results were characterized by a high repeatability (RSD < 10.6%). The advantage of silicone material due to its mechanical strength, chemical and physical resistance, allowed a new test method using a texture analyzer to be proposed.

  12. Effect of binary organic solvents together with emulsifier on particle size and in vitro behavior of paclitaxel-encapsulated polymeric lipid nanoparticles.

    PubMed

    Qin, Shuzhi; Sun, Xiangshi; Li, Feng; Yu, Kongtong; Zhou, Yulin; Liu, Na; Zhao, Chengguo; Teng, Lesheng; Li, Youxin

    2017-12-21

    Biodegradable nanoparticles with diameters between 100 nm and 500 nm are of great interest in the contexts of targeted delivery. The present work provides a review concerning the effect of binary organic solvents together with emulsifier on particle size as well as the influence of particle size on the in vitro drug release and uptake behavior. The polymeric lipid nanoparticles (PLNs) with different particle sizes were prepared by using binary solvent dispersion method. Various formulation parameters such as binary organic solvent composition and emulsifier types were evaluated on the basis of their effects on particle size and size distribution. PLNs had a strong dependency on the surface tension, intrinsic viscosity and volatilization rate of binary organic solvents and the hydrophilicity/hydrophobicity of emulsifiers. Acetone-methanol system together with pluronic F68 as emulsifier was proved to obtain the smallest particle size. Then the PLNs with different particle sizes were used to investigate how particle size at nanoscale affects interacted with tumor cells. As particle size got smaller, cellular uptake increased in tumor cells and PLNs with particle size of ~120 nm had the highest cellular uptake and fastest release rate. The paclitaxel (PTX)-loaded PLNs showed a size-dependent inhibition of tumor cell growth, which was commonly influenced by cellular uptake and PTX release. The PLNs would provide a useful means to further elucidate roles of particle size on delivery system of hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Mechanisms of water-salt metabolism disturbances in dogs subjected to six month hypokinesia

    NASA Technical Reports Server (NTRS)

    Korolkov, V. I.; Kovalenko, Y. A.; Krotov, V. P.; Ilyushko, N. A.; Kondratyeva, V. A.; Kondratyev, Y. I.

    1980-01-01

    Water-salt metabolism in dogs during prolonged restricted motor activity (hypokinesia) was investigated. It was found that hydration occurred and fluid was redistributed between the extra- and intra-cellular sectors. Also, electrolyte excretion rose, and magnetism and calcium metabolism changed significantly. It is concluded that the forces caused by muscle strain proper (which was decreased under conditions of hypokinesia) influence the state of bone metabolism.

  14. Molecular dynamics simulations on interaction between bacterial proteins: Implication on pathogenic activities.

    PubMed

    Mondal, Manas; Chakrabarti, Jaydeb; Ghosh, Mahua

    2018-03-01

    We perform molecular dynamics simulation studies on interaction between bacterial proteins: an outer-membrane protein STY3179 and a yfdX protein STY3178 of Salmonella Typhi. STY3179 has been found to be involved in bacterial adhesion and invasion. STY3178 is recently biophysically characterized. It is a soluble protein having antibiotic binding and chaperon activity capabilities. These two proteins co-occur and are from neighboring gene in Salmonella Typhi-occurrence of homologs of both STY3178 and STY3179 are identified in many Gram-negative bacteria. We show using homology modeling, docking followed by molecular dynamics simulation that they can form a stable complex. STY3178 belongs to aqueous phase, while the beta barrel portion of STY3179 remains buried in DPPC bilayer with extra-cellular loops exposed to water. To understand the molecular basis of interaction between STY3178 and STY3179, we compute the conformational thermodynamics which indicate that these two proteins interact through polar and acidic residues belonging to their interfacial region. Conformational thermodynamics results further reveal instability of certain residues in extra-cellular loops of STY3179 upon complexation with STY3178 which is an indication for binding with host cell protein laminin. © 2017 Wiley Periodicals, Inc.

  15. The In Vitro Effects of Enzymatic Digested Gliadin on the Functionality of the Autophagy Process

    PubMed Central

    Manai, Federico; Azzalin, Alberto; Gabriele, Fabio; Martinelli, Carolina; Morandi, Martina; Comincini, Sergio

    2018-01-01

    Gliadin, the alcohol-soluble protein fraction of wheat, contains the factor toxic for celiac disease (CD), and its toxicity is not reduced by digestion with gastro-pancreatic enzymes. Importantly, it is proved that an innate immunity to gliadin plays a key role in the development of CD. The immune response induces epithelial stress and reprograms intraepithelial lymphocytes into natural killer (NK)-like cells, leading to enterocyte apoptosis and an increase in epithelium permeability. In this contribution, we have reported that in Caco-2 cells the administration of enzymatically digested gliadin (PT-gliadin) reduced significantly the expression of the autophagy-related marker LC3-II. Furthermore, electron and fluorescent microscope analysis suggested a compromised functionality of the autophagosome apparatus. The rescue of the dysregulated autophagy process, along with a reduction of PT-gliadin toxicity, was obtained with a starvation induction protocol and by 3-methyladenine administration, while rapamycin, a well-known autophagy inducer, did not produce a significant improvement in the clearance of extra- and intra-cellular fluorescent PT-gliadin amount. Altogether, our results highlighted the possible contribution of the autophagy process in the degradation and in the reduction of extra-cellular release of gliadin peptides and suggest novel molecular targets to counteract gliadin-induced toxicity in CD. PMID:29473905

  16. Extracellular enzyme activity in a willow sewage treatment system.

    PubMed

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  17. Shape transitions during clathrin-induced endocytosis

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Sain, Anirban

    2016-12-01

    Endocytosis is among the most common transport mechanisms which cells employ to receive macromolecules, the so-called cargo, from its extra cellular environment. Clathrin-mediated endocytosis (CME), in particular, involves the cytoplasmic protein clathrin which induces formation and internalization of clathrin-coated membrane buds that contain extra-cellular cargo. Decades of experimental work have established that the morphology of the clathrin coat evolves with time and induces its curvature on the membrane bud; but energetics of the process remain unclear. Recent experiments by Avinoam et al. [Science 348, 1369 (2015), 10.1126/science.aaa9555] reported that the area of the clathrin coat remains fixed while its curvature increases with time and also the clathrin molecules in the coat turn over rapidly. We show that these observations challenge existing models of coated membrane bud formation. We analyze their data to bring out certain features consistent with the underlying lattice structure of the coat. We hypothesize that membrane curvature inhibits clathrin deposition and propose a kinetic model that explains the area distribution of clathrin coats. We also show that their data on shape evolution of the coated membrane bud can be approximately understood from simple geometric considerations. However, the energetics of the coat formation which controls the kinetics of the process remains a puzzle.

  18. The use of elemental sulfur as an alternative feedstock for polymeric materials

    NASA Astrophysics Data System (ADS)

    Chung, Woo Jin; Griebel, Jared J.; Kim, Eui Tae; Yoon, Hyunsik; Simmonds, Adam G.; Ji, Hyun Jun; Dirlam, Philip T.; Glass, Richard S.; Wie, Jeong Jae; Nguyen, Ngoc A.; Guralnick, Brett W.; Park, Jungjin; Somogyi, Árpád; Theato, Patrick; Mackay, Michael E.; Sung, Yung-Eun; Char, Kookheon; Pyun, Jeffrey

    2013-06-01

    An excess of elemental sulfur is generated annually from hydrodesulfurization in petroleum refining processes; however, it has a limited number of uses, of which one example is the production of sulfuric acid. Despite this excess, the development of synthetic and processing methods to convert elemental sulfur into useful chemical substances has not been investigated widely. Here we report a facile method (termed ‘inverse vulcanization’) to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers. This methodology enabled the modification of sulfur into processable copolymer forms with tunable thermomechanical properties, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography. We also demonstrate that these copolymers exhibit comparable electrochemical properties to elemental sulfur and could serve as the active material in Li-S batteries, exhibiting high specific capacity (823 mA h g-1 at 100 cycles) and enhanced capacity retention.

  19. Long-term MBR performance of polymeric membrane modified with Bismuth-BAL chelate (BisBAL).

    PubMed

    Turken, Turker; Kose-Mutlu, Borte; Okatan, Selin; Durmaz, Gamze; Guclu, Mehmet C; Guclu, Serkan; Ovez, Suleyman; Koyuncu, Ismail

    2018-02-15

    An ultrafiltration membrane prepared by polyethersulfone (PES) was modified with Bismuth-BAL chelate (BisBAL) and was used in submerged membrane bioreactor system. Moreover, a control membrane reactor was also tasked to evaluate the effect of BisBAL on the membrane performance. The flux profile, transmembrane pressure, the effect of chemical treatment, cake layer formation, anti-fouling properties against extracellular polymeric substances (EPS) and soluble microbial products (SMP) were studied. The UF modified membrane demonstrated a sustained permeability, low cleaning frequency, and longer filtration time. In terms of anti-EPS and SMP accumulation, the modified membrane showed a lower membrane resistance. It can be illustrated from scanning electron microscopy and confocal laser scanning microscope images that the modified membrane had presented better properties than bare PES membrane, as it was looser and thinner. Thus, the UF membrane proved to be more efficient in terms of permeability and lifetime.

  20. Cell surface physiology and outer cell envelope impermeability for hydrophobic substances in Burkholderia multivorans.

    PubMed

    Ruskoski, Sallie A; Champlin, Franklin R

    2017-07-01

    The purpose of the present study was to obtain a better understanding of the relationship between cell surface physiology and outer cellular envelope permeability for hydrophobic substances in mucoid and non-mucoid B. multivorans strains, as well as in two capsule-deficient derivatives of a mucoid parental strain. Cell surface hydrophobicity properties were determined using the hydrocarbon adherence method, while outer cell envelope accessibility and permeability for non-polar compounds were measured using hydrophobic antimicrobial agent susceptibility and fluorescent probe assays. Extracellular polysaccharide (EPS) production was assessed by cultivating strains of disparate origin on yeast extract agar (YEA) containing different sugars, while the resultant colonial and cellular morphological parameters were assessed macro- and microscopically, respectively.Results/Key findings. The cell surfaces of all the strains were hydrophilic, impermeable to mechanistically disparate hydrophobic antibacterial agents and inaccessible to the hydrophobic probe N-phenyl-1-napthylamine, regardless of EPS phenotype. Supplementation of basal YEA with eight different sugars enhanced macroscopic EPS expression for all but one non-mucoid strain, with mannose potentiating the greatest effect. Despite acquisition of the mucoid phenotype, non-mucoid strains remained non-capsulated and capsulation of a hyper-mucoid strain and its two non-mucoid derivative strains was unaffected, as judged by microscopic observation. These data support the conclusion that EPS expression and the consistent mucoid phenotype are not necessarily associated with the ability of the outer cell surface to associate with non-polar substances or cellular capsulation.

  1. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound

    PubMed Central

    Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong

    2017-01-01

    In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD NPs in combination with US may provide a promising drug delivery system to enhance the therapeutic effects of these chemotherapeutics at the cellular level. PMID:28406431

  2. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound.

    PubMed

    Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong

    2017-04-13

    In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD NPs in combination with US may provide a promising drug delivery system to enhance the therapeutic effects of these chemotherapeutics at the cellular level.

  3. Mechanisms of the cytopathic action of actin-ADP-ribosylating toxins.

    PubMed

    Aktories, K; Wegner, A

    1992-10-01

    Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, and Clostridium spiroforme toxin ADP-ribosylate actin monomers. Toxin-induced ADP-ribosylation disturbs the cellular equilibrium between monomeric and polymeric actin and traps monomeric actin in its unpolymerized form, thereby depolymerizing actin filaments and destroying the microfilament network. Furthermore, the toxins ADP-ribosylate gelsolin actin complexes. These modifications may contribute to the cytopathic action of the toxins.

  4. Preparation of linear hydroxy substituted polyphosphazenes. [flame retardant polyurethane foam

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1978-01-01

    The synthesis of partially hydroxy-substituted phosphazene prepolymers amenable to processing into cellular, flexible polyurethane foams was investigated. Factors determined include (1) the environment of the hydroxyl group; (2) the ease of the hexachlorocyclotriphosphazene polymerization; (3) the nature of the nonreactive substituents; and (4) the mode of introduction of the hydroxyl entity. The specific approaches taken, the rationale of the selections made, and the results are discussed.

  5. Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System

    PubMed Central

    Monnard, Pierre-Alain

    2016-01-01

    Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks. PMID:27827919

  6. MSE55, a Cdc42 effector protein, induces long cellular extensions in fibroblasts

    PubMed Central

    Burbelo, Peter D.; Snow, Dianne M.; Bahou, Wadie; Spiegel, Sarah

    1999-01-01

    Cdc42 is a member of the Rho GTPase family that regulates multiple cellular activities, including actin polymerization, kinase-signaling activation, and cell polarization. MSE55 is a nonkinase CRIB (Cdc42/Rac interactive-binding) domain-containing molecule of unknown function. Using glutathione S-transferase-capture experiments, we show that MSE55 binds to Cdc42 in a GTP-dependent manner. MSE55 binding to Cdc42 required an intact CRIB domain, because a MSE55 CRIB domain mutant no longer interacted with Cdc42. To study the function of MSE55 we transfected either wild-type MSE55 or a MSE55 CRIB mutant into mammalian cells. In Cos-7 cells, wild-type MSE55 localized at membrane ruffles and increased membrane actin polymerization, whereas expression of the MSE55 CRIB mutant showed fewer membrane ruffles. In contrast to these results, MSE55 induced the formation of long, actin-based protrusions in NIH 3T3 cells as detected by immunofluorescence and live-cell video microscopy. MSE55-induced protrusion formation was blocked by expression of dominant-negative N17Cdc42, but not by expression of dominant-negative N17Rac. These findings indicate that MSE55 is a Cdc42 effector protein that mediates actin cytoskeleton reorganization at the plasma membrane. PMID:10430899

  7. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly.

    PubMed

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S; Shaevitz, Joshua W; Gitai, Zemer

    2011-09-20

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.

  8. Fabrication of Polymeric Micelles with Aggregation-Induced Emission and Forster Resonance Energy Transfer for Anticancer Drug Delivery.

    PubMed

    Hao, Na; Sun, Changzhen; Wu, Zhengfei; Xu, Long; Gao, Wenxia; Cao, Jun; Li, Li; He, Bin

    2017-07-19

    With the aim of obtaining effective cancer therapy with simultaneous cellular imaging, dynamic drug-release monitoring, and chemotherapeutic treatment, a polymeric micelle with aggregation-induced emission (AIE) imaging and a Forster resonance energy transfer (FRET) effect was fabricated as the drug carrier. An amphiphilic conjugate of 1H-pyrrole-1-propanoicacid (MAL)-poly(ethylene glycol) (PEG)-Tripp-bearing AIE molecules were synthesized and self-assembled into micelles to load the anticancer drug doxorubicin (DOX). Spherical DOX-loaded micelles with the mean size of 106 nm were obtained with good physiological stability (CMC, 12.5 μg/mL), high drug-loading capacity (10.4%), and encapsulation efficiency (86%). The cellular uptake behavior of DOX-loaded MAL-PEG-Tripp micelles was visible for high-quality intracellular imaging due to the AIE property. The delivery of DOX from the drug-loaded micelles was dynamic monitored by the FRET effect between the DOX and MAL-PEG-Tripp. Both in vitro (IC50, 2.36 μg/mL) and in vivo anticancer activity tests revealed that the DOX-loaded MAL-PEG-Tripp micelles exhibited promising therapeutic efficacy to cancer with low systematic toxicity. In summary, this micelle provided an effective way to fabricate novel nanoplatform for intracellular imaging, drug-delivery tracing, and chemotherapy.

  9. Systemic delivery of the anticancer agent arenobufagin using polymeric nanomicelles.

    PubMed

    Yuan, Xue; Xie, Qian; Su, Keyu; Li, Zhijie; Dong, Dong; Wu, Baojian

    2017-01-01

    Arenobufagin (ABG) is a major active component of toad venom, a traditional Chinese medicine used for cancer therapy. However, poor aqueous solubility limits its pharmacological studies in vivo due to administration difficulties. In this study, we aimed to develop a polymeric nanomicelle (PN) system to enhance the solubility of ABG for effective intravenous delivery. ABG-loaded PNs (ABG-PNs) were prepared with methoxy poly (ethylene glycol)-block-poly (d,l-lactic-co-glycolic acid) (mPEG-PLGA) using the solvent-diffusion technique. The obtained ABG-PNs were 105 nm in size with a small polydispersity index of 0.08. The entrapment efficiency and drug loading were 71.9% and 4.58%, respectively. Cellular uptake of ABG-PNs was controlled by specific clathrin-mediated endocytosis. In addition, ABG-PNs showed improved drug pharmacokinetics with an increased area under the curve value (a 1.73-fold increase) and a decreased elimination clearance (37.8% decrease). The nanomicelles showed increased drug concentrations in the liver and lung. In contrast, drug concentrations in both heart and brain were decreased. Moreover, the nanomicelles enhanced the anticancer effect of the pure drug probably via increased cellular uptake of drug molecules. In conclusion, the mPEG-PLGA-based nanomicelle system is a satisfactory carrier for the systemic delivery of ABG.

  10. A conformational change within the WAVE2 complex regulates its degradation following cellular activation

    PubMed Central

    Joseph, Noah; Biber, Guy; Fried, Sophia; Reicher, Barak; Levy, Omer; Sabag, Batel; Noy, Elad; Barda-Saad, Mira

    2017-01-01

    WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation. PMID:28332566

  11. A conformational change within the WAVE2 complex regulates its degradation following cellular activation.

    PubMed

    Joseph, Noah; Biber, Guy; Fried, Sophia; Reicher, Barak; Levy, Omer; Sabag, Batel; Noy, Elad; Barda-Saad, Mira

    2017-03-23

    WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation.

  12. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    PubMed

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is subsequently solved by PEGylating the hybrid nanoparticles. With increased research and clinical applications of lipid-polymer hybrid nanoparticles in drug and vaccine delivery, this work will significantly impact the design of the hybrid nanoparticles for minimized molecule release during circulation and increased bioavailability of the target molecules. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Prevent and cure disuse bone loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.

    1994-01-01

    Anabolic agents like parathyroid hormone and postagladin E-like substances were studied in dogs and rats to determine their effectiveness in the prevention and cure of bone loss due to immobilization. It was determined that postagladin E2 administration prevented immobilization while at the same time it added extra bone in a dose responsive manner. Although bone mass returns, poor trabecular architecture remains after normal ambulation recovery from immobilization. Disuse related bone loss and poor trabecular architecture were cured by post-immobilization postagladin E2 treatment.

  14. Ion exchange membranes as novel passive sampling material for organic ions: application for the determination of freely dissolved concentrations.

    PubMed

    Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi

    2014-11-28

    Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The zinc dyshomeostasis hypothesis of Alzheimer's disease.

    PubMed

    Craddock, Travis J A; Tuszynski, Jack A; Chopra, Deepak; Casey, Noel; Goldstein, Lee E; Hameroff, Stuart R; Tanzi, Rudolph E

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline.

  16. Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.).

    PubMed

    Yaguchi, Shigenori; Hang, Tran Thi Minh; Tsukazaki, Hikaru; Hoa, Vu Quynh; Masuzaki, Shin-ichi; Wako, Tadayuki; Masamura, Noriya; Onodera, Shuichi; Shiomi, Norio; Yamauchi, Naoki; Shigyo, Masayoshi

    2009-02-01

    To develop the bunching onion (Allium fistulosum L.; genomes, FF) chromosome-specific genetic markers for identifying extra chromosomes, eight shallot (A. cepa L. Aggregatum group; genomes, AA)--A. fistulosum monosomic addition plants (AA+nF) and 62 shallot--A. fistulosum single-alien deletion plants (AAF-nF) were analyzed by 23 different chromosome-specific genetic markers of shallot. The eight monosomic addition plants consisted of one AA+2F, two AA+6F, and five AA+8F. Of the 62 single-alien deletion plants, 60 could be identified as six different single-alien deletion lines (AAF-1F, -3F, -4F, -6F, -7F, and -8F) out of the eight possible types. Several single-alien deletion lines were classified on the basis of leaf and bulb characteristics. AAF-8F had the largest number of expanded leaves of five deletion plants. AAF-7F grew most vigorously, as expressed by its long leaf blade and biggest bulb size. AAF-4F had very small bulbs. AAF-7F and AAF-8F had different bulbs from those of shallot as well as other types of single-alien deletion lines in skin and outer scale color. Regarding the sugar content of the bulb tissues, the single-alien deletion lines showed higher fructan content than shallot. Moreover, shallot could not produce fructan with degree of polymerization (DP) 12 or higher, although the single-alien deletion lines showed DP 20 or higher. The content of S-alk(en)yl-L-cysteine sulfoxide (ACSO) in the single-alien deletion lines was significantly lower than that in shallot. These results indicated that chromosomes from A. fistulosum might carry anonymous factors to increase the highly polymerized fructan production and inhibit the synthesis of ACSO in shallot bulbs. Accordingly, alien chromosomes from A. fistulosum in shallot would contribute to modify the quality of shallot bulbs.

  17. Optimization of Carbon and Nitrogen Sources for Extracellular Polymeric Substances Production by Chryseobacterium indologenes MUT.2.

    PubMed

    Khani, Mojtaba; Bahrami, Ali; Chegeni, Asma; Ghafari, Mohammad Davoud; Mansouran Zadeh, ALi

    2016-06-01

    Bacterial Extracellular Polymeric Substances (EPS) are environmental friendly and versatile polymeric materials that are used in a wide range of industries such as: food, textile, cosmetics, and pharmaceuticals. To make the production process of the EPS cost-effective, improvements in the production yield is required which could be implemented through application of processes such as optimized culture conditions, and development of the strains with higher yield ( e.g . through genetic manipulation), or using low-cost substrates. In this work, the effects of carbon and nitrogen sources were studied in order to improve the EPS production by the submerged cultivation of Chryseobacterium indologenes MUT.2. The mesophilic microorganism Chryseobacterium indologenes MUT.2, was grown and maintained in the Luria Bertani agar. The initial basal medium contained: glucose (20 g.L -1 ), yeast extracts (5 g.L -1 ), K 2 HPO 4 (6 g.L -1 ), NaH 2 PO 4 (7 g.L -1 ), NH 4 CL (0.7 g.L -1 ), and MgSO 4 (0.5 g.L -1 ). For evaluating the carbon and nitrogen sources' effect on the fermentation performance, cultures were prepared in 500 mL flasks filled with 300 mL of the medium. The single-factor experiments based on statistics was employed to evaluate and optimize the carbon and nitrogen sources for EPS production in the liquid culture medium of Chryseobacterium indologenes MUT.2. The preferred carbon-sources, sucrose and glucose, commonly gave the highest EPS production of 8.32 and 6.37 g.L -1 , respectively, and the maximum EPS production of 8.87 g.L -1 was achieved when glutamic acid (5 g.L -1 ) was employed as the nitrogen source. In this work, the culture medium for production of EPS by Chryseobacterium indologenes MUT.2 was optimized. Compared to the basal culture medium in shake-flasks and stirred tank bioreactor, the use of optimized culture medium has resulted in a 53% and 73% increase in the EPS production, respectively.

  18. [Study of rat blood serum biochemical indicators of cardiotoxic action of novel antitumor 4-thiazolidinone derivatives and doxorubicin in complexes with polyethylene glycol-containing polymeric carrier in the rat blood serum].

    PubMed

    Kobylyns'ka, L I; Havryliuk, D Ia; Riabtseva, A O; Mitina, N Ie; Zaichenko, O S; Zimenkovskyĭ, B S; Stoĭka, R S

    2014-01-01

    The aim of this study was to measure the activity of enzymes which reflect cardiotoxic action in rats of novel synthetic 4-thiazolidone derivatives--3882, 3288 and 3833 that demonstrated antineoplastic effect in vitro towards 60 lines of human tumor cells tested in the framework of the program of screening new anticancer drugs at the National Cancer Institute (USA). Such action of these compounds was compared with the effect of well known anticancer agent doxorubicin and after conjugation of all above mentioned substances with new polyethylenglycol-containing polymeric comb-like carrier that was synthesized by the authors. Among the biochemical indicators of cardiotoxic action of anticancer agents, activity of the following enzymes in rat blood serum showed to be the most informative: creatine kinase, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransterase. Tenfold injection of doxorubicin in a dose of 5.5 mg/kg of weight caused rats' death, while 3882, 3288 and 3833 preparations had not such action. Application of the doxorubicin in combination with polymeric carrier prolonged the survival time to 20 days. Thus, the injection of anticancer agents in a complex with polymeric carrier provides a significant decrease in their cardiotoxicity that was confirmed by the corresponding changes in the activity of marker enzymes: creatine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in blood serum of treated rats.

  19. A 10-year study of steady employment and non-vocational outcomes among people with serious mental illness and co-occurring substance use disorders.

    PubMed

    McHugo, Gregory J; Drake, Robert E; Xie, Haiyi; Bond, Gary R

    2012-07-01

    Employment promotes recovery for persons with serious mental illness by providing extra income and a valued social role, but the impact of employment on other psychosocial and clinical outcomes remains unclear. This study examined non-vocational outcomes in relation to steady employment over 10 years among people with serious mental illness and co-occurring substance use disorders. Researchers interviewed people with co-occurring disorders at baseline and yearly for 10 years and tracked employment in relation to five non-vocational outcomes: independent living, psychiatric symptoms, substance use disorder, healthy (non-substance-abusing) relationships, and life satisfaction. Latent class trajectory analysis identified steady workers, and mixed-effects regression models compared steady workers with non-workers. Both steady workers (n=51) and non-workers (n=79) improved substantially; for example, a majority of each group achieved independent housing and stable remission of substance use disorders. Steady workers achieved independent housing and higher quality of life during the first 5 years of follow-up, but the two groups achieved similar outcomes by 10 years. People with co-occurring disorders can improve markedly. Those with steady employment may improve faster, but those without employment may achieve similar long-term outcomes at a slower pace. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    PubMed

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  1. Enhancement of waste activated sludge (WAS) anaerobic digestion by means of pre- and intermediate treatments. Technical and economic analysis at a full-scale WWTP.

    PubMed

    Campo, Giuseppe; Cerutti, Alberto; Zanetti, Mariachiara; Scibilia, Gerardo; Lorenzi, Eugenio; Ruffino, Barbara

    2018-06-15

    Anaerobic digestion (AD) is the most commonly applied end-treatment for the excess of waste activated sludge (WAS) generated in biological wastewater treatment processes. The efficacy of different typologies of pre-treatments in liberating intra-cellular organic substances and make them more usable for AD was demonstrated in several studies. However, the production of new extracellular polymeric substances (EPSs) that occur during an AD process, due to microbial metabolism, self-protective reactions and cell lysis, partially neutralizes the benefit of pre-treatments. The efficacy of post- and inter-stage treatments is currently under consideration to overcome the problems due to this unavoidable byproduct. This work compares three scenarios in which low-temperature (<100 °C) thermal and hybrid (thermal+alkali) lysis treatments were applied to one sample of WAS and two samples of digestate with hydraulic retention times (HRTs) of 7 and 15 days. Batch mesophilic digestibility tests demonstrated that intermediate treatments were effective in making the residual organic substance of a 7-day digestate usable for a second-stage AD process. In fact, under this scenario, the methane generated in a two-stage AD process, with an in-between intermediate treatment, was 23% and 16% higher than that generated in the scenario that considers traditional pre-treatments carried out with 4% NaOH at 70 and 90 °C respectively. Conversely, in no cases (70 or 90 °C) the combination of a 15-day AD process, followed by an intermediate treatment and a second-stage AD process, made possible to obtain specific methane productions (SMPs) higher than those obtained with pre-treatments. The results of the digestibility tests were used for a tecno-economic assessment of pre- and intermediate lysis treatments in a full scale wastewater treatment plant (WWTP, 2,000,000 p.e.). It was demonstrated that the introduction of thermal or hybrid pre-treatments could increase the revenues from the electricity sale by between 13% and 25%, in comparison with the present scenario (no lysis treatments). Conversely, intermediate treatments on a 7-day digestate could provide a gain of 26% or 32%, depending on the process temperature (70 or 90 °C). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ac102 Participates in Nuclear Actin Polymerization by Modulating BV/ODV-C42 Ubiquitination during Autographa californica Multiple Nucleopolyhedrovirus Infection.

    PubMed

    Zhang, Yongli; Hu, Xue; Mu, Jingfang; Hu, Yangyang; Zhou, Yuan; Zhao, He; Wu, Chunchen; Pei, Rongjuan; Chen, Jizheng; Chen, Xinwen; Wang, Yun

    2018-06-15

    As a virus-encoded actin nucleation promoting factor (NPF), P78/83 induces actin polymerization to assist in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) propagation. According to our previous study, although P78/83 actively undergoes ubiquitin-independent proteasomal degradation, AcMNPV encodes budded virus/occlusion derived virus (BV/ODV)-C42 (C42), which allows P78/83 to function as a stable NPF by inhibiting its degradation during viral infection. However, whether there are other viral proteins involved in regulating P78/83-induced actin polymerization has yet to be determined. In this study, we found that Ac102, an essential viral gene product previously reported to play a key role in mediating the nuclear accumulation of actin during AcMNPV infection, is a novel regulator of P78/83-induced actin polymerization. By characterizing an ac102 knockout bacmid, we demonstrated that Ac102 participates in regulating nuclear actin polymerization as well as the morphogenesis and distribution of capsid structures in the nucleus. These regulatory effects are heavily dependent on an interaction between Ac102 and C42. Further investigation revealed that Ac102 binds to C42 to suppress K48-linked ubiquitination of C42, which decreases C42 proteasomal degradation and consequently allows P78/83 to function as a stable NPF to induce actin polymerization. Thus, Ac102 and C42 form a regulatory cascade to control viral NPF activity, representing a sophisticated mechanism for AcMNPV to orchestrate actin polymerization in both a ubiquitin-dependent and ubiquitin-independent manner. IMPORTANCE Actin is one of the most functionally important proteins in eukaryotic cells. Morphologically, actin can be found in two forms: a monomeric form called globular actin (G-actin) and a polymeric form called filamentous actin (F-actin). G-actin can polymerize to form F-actin, and nucleation promoting factor (NPF) is the initiator of this process. Many viral pathogens harness the host actin polymerization machinery to assist in virus propagation. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) induces actin polymerization in host cells. P78/83, a viral NPF, is responsible for this process. Previously, we identified that BV/ODV-C42 (C42) binds to P78/83 and protects it from degradation. In this report, we determined that another viral protein, Ac102, is involved in modulating C42 ubiquitination and, consequently, ensures P78/83 activity as an NPF to initiate actin polymerization. This regulatory cascade represents a novel mechanism by which a virus can harness the cellular actin cytoskeleton to assist in viral propagation. Copyright © 2018 American Society for Microbiology.

  3. Analysis of Low-Pressure Gas-Phase Pyrolytic Reactions by Mass Spectrometric Techniques,

    DTIC Science & Technology

    1989-01-01

    temperatures and pressures known only as a polymeric substance, is similarly obtained in high purity by heating the polymer to its melting point (105-110’ C...filaments for Curie- point pyrolysis’ J.Anal.Appl.Pyrolysis. 5 (1983) 1-7 (with Helge Egsgaard) 4) ’Heterogeneous catalysis in gas phase reactions studied...by Curie- point pyrolysis. Gas phase pyrolysis of methyl dithio- acetat’ J.Anal.Appl.Pyrolysis. 5 (1983) 257-259 (with Helge Egsgaard) 5) ’Continuous

  4. Draft Genome Sequence of Hymenobacter sp. Strain IS2118, Isolated from a Freshwater Lake in Schirmacher Oasis, Antarctica, Reveals Diverse Genes for Adaptation to Cold Ecosystems.

    PubMed

    Koo, Hyunmin; Ptacek, Travis; Crowley, Michael; Swain, Ashit K; Osborne, John D; Bej, Asim K; Andersen, Dale T

    2014-08-07

    Hymenobacter sp. IS2118, isolated from a freshwater lake in Schirmacher Oasis, Antarctica, produces extracellular polymeric substance (EPS) and manifests tolerance to cold, UV radiation (UVR), and oxidative stress. We report the 5.26-Mb draft genome of strain IS2118, which will help us to understand its adaptation and survival mechanisms in Antarctic extreme ecosystems. Copyright © 2014 Koo et al.

  5. Effect of alternate energy substrates on mammalian brain metabolism during ischemic events.

    PubMed

    Koppaka, S S; Puchowicz; LaManna, J C; Gatica, J E

    2008-01-01

    Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolism in blood-perfused brain tissue, which considers the astrocyte-neuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.

  6. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η*

    PubMed Central

    Su, Yan; Egli, Martin; Guengerich, F. Peter

    2016-01-01

    Ribonucleotides and 2′-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2′-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2′-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2′-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 103-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2′-deoxyguanosine with a significant propeller twist. As a result, the 2′-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion. PMID:26740629

  7. Nanostructured Diclofenac Sodium Releasing Material

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppälä, J.; Ashammakhi, N.

    2008-02-01

    Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(ɛ-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.

  8. Stabilizers influence drug–polymer interactions and physicochemical properties of disulfiram-loaded poly-lactide-co-glycolide nanoparticles

    PubMed Central

    Hoda, Muddasarul; Sufi, Shamim Akhtar; Cavuturu, Bindumadhuri; Rajagopalan, Rukkumani

    2018-01-01

    Aim: Stabilizers are known to be an integral component of polymeric nanostructures. Ideally, they manipulate physicochemical properties of nanoparticles. Based on this hypothesis, we demonstrated that disulfiram (drug) and Poly-lactide-co-glycolide (polymer) interactions and physicochemical properties of their nanoparticles formulations are significantly influenced by the choice of stabilizers. Methodology: Electron microscopy, differential scanning calorimetry, x-ray diffraction, Raman spectrum analysis, isothermal titration calorimetry and in silico docking studies were performed. Results & discussion: Polysorbate 80 imparted highest crystallinity while Triton-X 100 imparted highest rigidity, possibly influencing drug bioavailability, blood-retention time, cellular uptake and sustained drug release. All the molecular interactions were hydrophobic in nature and entropy driven. Therefore, polymeric nanoparticles may be critically manipulated to streamline the passive targeting of drug-loaded nanoparticles. PMID:29379637

  9. Disaster Relief and Emergency Medical Services (DREAMS): Texas A&M Digital EMS and the Detection and Remediation of Chemical Threat Agents

    DTIC Science & Technology

    2004-10-01

    the bacterial exopolysaccharide has been initiated. The enterobacterium Erwinia amylovora , the fire blight pathogen of rosaceous plants and pome...A&M University Erwinia amylovora bacteriophage ERA 103 plaques surrounded by halos. Task 15: Development of Integrated Microfluidic-based Sensors for...fruit, produces copious amounts of extra cellular polysaccharide (amylovoran), which acts as a host specific toxin during pathogenesis. The E. amylovora

  10. Quantitative Comparison and Analysis of Species-Specific Wound Biofilm Virulence Using an In Vivo, Rabbit-Ear Model

    DTIC Science & Technology

    2012-09-01

    College of Surgeons) Bacterial biofilms, defined as a surface-adhered, complex community of aggregated bacteria within a matrix of extra- cellular...Seth, Geringer, Galiano, Mustoe, Hong) and the Microbiology Branch, US Army Dental and Trauma Research Detach- ment, Institute of Surgical Research...biofilms use an intracellular adhesin to prevent phagocyto- sis, while P aeruginosa biofilms may diminish the neutro- phils’ oxidative potential36,37 or

  11. Effects of Silver and Other Metals on the Cytoskeleton

    NASA Technical Reports Server (NTRS)

    Conrad, Gary W.

    1997-01-01

    Directly or indirectly, trace concentrations of silver ion (Ag(+)) stabilize microtubules (Conrad, A.H., et al. Cell Motil. & Cytoskel. 27:117-132), as does taxol (Conrad, A.H., et al. J. Exp. Zool. 262:154-165), an effect with major consequences for cellular shape changes and development. Polymerization of microtubules is gravity-sensitive (Tabony and Job, Proc. Natl. Acad. Sci. USA 89:6948-6952), so trace amounts of Ag(+) may alter cellular ability to respond to gravity. If Ag electrolysis is used to purify water on NASA space vehicles, plants and animals/astronauts will be exposed continuously to Ag(+), a regimen with unknown cellular and developmental consequences. Fertilized eggs of the marine mudsnail, Ilyanassa obsoleta, are the cells in which the effects of A(+) on microtubules were discovered. They distribute visible cytoplasmic contents according to gravity and contain cytoplasmic morphogenetic determinants for heart development. The objectives are to determine if the effects of Ag(+), AU(3+), (of biosensor relevance), or Gd(3+) (inhibitor of some stretch-activated ion channels) on the cytoskeleton (in the presence and absence of mechanical loading) will affect cellular responses to gravity.

  12. Learning STEM Through Integrative Visual Representations

    NASA Astrophysics Data System (ADS)

    Virk, Satyugjit Singh

    Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with integrated animations of the key neural signal transmission subcomponents where the interrelationships between subcomponents are visually and verbally explicit, were hypothesized to perform significantly better on free response and diagram labeling questions, than students presented with isolated animations of these subcomponents. This is because the internal attentional cognitive load of chunking these concepts is greatly reduced and hence the overall cognitive load is less for the integrated visuals group than the isolated group, despite the higher external load for the integrated group of having the interrelationships between subcomponents presented explicitly. Experiment 1 demonstrated that integrating the subcomponents of the neuron significantly enhanced comprehension of the interconnections between cellular subcomponents and approached significance for enhancing comprehension of the layered molecular correlates of the cellular structures and their interconnections. Experiment 2 corrected time on task confounds from Experiment 1 and focused on the cellular subcomponents of the neuron only. Results from the free response essay subcomponent subscores did demonstrate significant differences in favor of the integrated group as well as some evidence from the diagram labeling section. Results from free response, short answer and What-If (problem solving), and diagram labeling detailed interrelationship subscores demonstrated the integrated group did indeed learn the extra material they were presented with. This data demonstrating the integrated group learned the extra material they were presented with provides some initial support for the assertion that chunking mediated the greater gains in learning for the neural subcomponent concepts over the control.

  13. Cytoprotective Effect of Hydroalcoholic Extract of Pinus eldarica Bark against H2O2-Induced Oxidative Stress in Human Endothelial Cells

    PubMed Central

    Babaee, Fatemeh; Safaeian, Leila; Zolfaghari, Behzad; Haghjoo Javanmard, Shaghayegh

    2016-01-01

    Background: Pinus eldarica is a widely growing pine in Iran consisting of biologically active constituents with antioxidant properties. This study investigates the effect of hydroalcoholic extract of P. eldarica bark against oxidative damage induced by hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVECs). Methods: The total phenolic content of P. eldarica extract was determined using Folin-Ciocalteu method. The cytotoxicity of P. eldarica extract (25-1000 µg/ml) on HUVECs was assessed using 3-(4,5- Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method. Cytoprotective effect of P. eldarica extract (25-500 µg/ml) on H2O2-induced oxidative stress was also evaluated by MTT assay. The intra- and extra-cellular hydroperoxides concentration and ferric reducing antioxidant power (FRAP) were measured in pretreated cells. Results: The total phenolic content of P. eldarica extract was estimated as 37.04±1.8% gallic acid equivalent. P. eldarica extract (25-1000 µg/ml) had no cytotoxic effect on HUVECs viability. The pretreatment of HUVECs with P. eldarica extract at the concentrations of 50-500 µg/ml significantly reduced the cytotoxicity of H2O2. P. eldarica extract decreased hydroperoxides concentration and increased FRAP value in intra-cellular fluid at the concentration range of 100-500 µg/ml and in extra-cellular fluid at the concentration range of 25-500 µg/ml. Conclusions: This study revealed the antioxidant and cytoprotective effects of P. eldarica extract against H2O2-induced oxidative stress in HUVECs. Concerning the high content of phenolic compounds in P. eldarica, more research is needed to evaluate its clinical value in endothelial dysfunction and in other oxidative conditions. PMID:26931383

  14. Nature of a Red Cell Sensitizing Substance from Streptococci1

    PubMed Central

    Jackson, Robert W.; Moskowitz, Merwin

    1966-01-01

    Jackson, Robert W. (Purdue University, Lafayette, Ind.), and Merwin Moskowitz. Nature of a red cell sensitizing substance from streptococci. J. Bacteriol. 91:2205–2209. 1966.—A method for purifying a streptococcal antigen which sensitizes red cells to agglutination by antiserum is described. The antigen, when purified by this method, is almost exclusively composed of glycerophosphate and d-alanine. The ratio of alanine to glycerophosphate varies from 1:5 to 1:3. The glycerophosphate is polymerized and is thus a teichoic acid. The polyglycerophosphate appears to be the antigenic determinant for agglutination. d-Alanine is readily removed by mild base and appears to be necessary for the attachment of the teichoic acid to red cells. Quantitative removal of alanine does not affect the ability of the polymer to absorb antibody from serum. PMID:5329284

  15. Evaluation of uridine 5'-eicosylphosphate as a stimulant of cyclic AMP-dependent cellular function.

    PubMed

    Yutani, Masahiro; Ogita, Akira; Fujita, Ken-Ichi; Usuki, Yoshinosuke; Tanaka, Toshio

    2011-03-01

    Sporulation of the yeast Saccharomyces cerevisiae is negatively regulated by cyclic AMP (cAMP). This microbial cell differentiation process was applied for the screening of a substance that can elevate the intracellular cAMP level. Among nucleoside 5'-alkylphosphates, uridine 5'-eicosylphosphate (UMPC20) selectively and predominantly inhibited ascospore formation of the yeast cells. We suppose the inhibitory effect of UMPC20 could indeed reflect the elevation of the cellular cAMP level.

  16. On the Quantification of Cellular Velocity Fields.

    PubMed

    Vig, Dhruv K; Hamby, Alex E; Wolgemuth, Charles W

    2016-04-12

    The application of flow visualization in biological systems is becoming increasingly common in studies ranging from intracellular transport to the movements of whole organisms. In cell biology, the standard method for measuring cell-scale flows and/or displacements has been particle image velocimetry (PIV); however, alternative methods exist, such as optical flow constraint. Here we review PIV and optical flow, focusing on the accuracy and efficiency of these methods in the context of cellular biophysics. Although optical flow is not as common, a relatively simple implementation of this method can outperform PIV and is easily augmented to extract additional biophysical/chemical information such as local vorticity or net polymerization rates from speckle microscopy. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Fundamental Characteristics of AAA+ Protein Family Structure and Function

    PubMed Central

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins. PMID:27703410

  18. Improving the realism of white matter numerical phantoms: a step towards a better understanding of the influence of structural disorders in diffusion MRI

    NASA Astrophysics Data System (ADS)

    Ginsburger, Kévin; Poupon, Fabrice; Beaujoin, Justine; Estournet, Delphine; Matuschke, Felix; Mangin, Jean-François; Axer, Markus; Poupon, Cyril

    2018-02-01

    White matter is composed of irregularly packed axons leading to a structural disorder in the extra-axonal space. Diffusion MRI experiments using oscillating gradient spin echo sequences have shown that the diffusivity transverse to axons in this extra-axonal space is dependent on the frequency of the employed sequence. In this study, we observe the same frequency-dependence using 3D simulations of the diffusion process in disordered media. We design a novel white matter numerical phantom generation algorithm which constructs biomimicking geometric configurations with few design parameters, and enables to control the level of disorder of the generated phantoms. The influence of various geometrical parameters present in white matter, such as global angular dispersion, tortuosity, presence of Ranvier nodes, beading, on the extra-cellular perpendicular diffusivity frequency dependence was investigated by simulating the diffusion process in numerical phantoms of increasing complexity and fitting the resulting simulated diffusion MR signal attenuation with an adequate analytical model designed for trapezoidal OGSE sequences. This work suggests that angular dispersion and especially beading have non-negligible effects on this extracellular diffusion metrics that may be measured using standard OGSE DW-MRI clinical protocols.

  19. Stimulation-induced decreases in the diffusion of extra-vascular water in the human visual cortex: a window in time and space on mechanisms of brain water transport and economy.

    PubMed

    Baslow, Morris H; Hu, Caixia; Guilfoyle, David N

    2012-07-01

    In a human magnetic resonance diffusion-weighted imaging (DWI) investigation at 3 T and high diffusion sensitivity weighting (b = 1,800 s/mm(2)), which emphasizes the contribution of water in the extra-vascular compartment and minimizes that of the vascular compartment, we observed that visual stimulation with a flashing checkerboard at 8 Hz for a period of 600 s in eight subjects resulted in significant increases in DWI signals (mean +2.70%, range +0.51 to 8.54%). The increases in DWI signals in activated areas of the visual cortex indicated that during stimulation, the apparent diffusion coefficient (ADC) of extra-vascular compartment water decreased. In response to continuous stimulation, DWI signals gradually increased from pre-stimulation controls, leveling off after 400-500 s. During recovery from stimulation, DWI signals gradually decreased, approaching control levels in 300-400 s. In this study, we show for the first time that the effects of visual stimulation on DWI signals in the human visual cortex are cumulative over an extended period of time. We propose that these relatively slow stimulation-induced changes in the ADC of water in the extra-vascular compartment are due to transient changes in the ratio of faster diffusing free water to slower diffusing bound water and reflect brain water transport processes between the vascular and extra-vascular compartments at the cellular level. The nature of these processes including possible roles of the putative glucose water import and N-acetylaspartate water export molecular water pumps in brain function are discussed.

  20. Neuropeptide K potently stimulates salivary gland secretion and potentiates substance P-induced salivation.

    PubMed Central

    Takeda, Y; Krause, J E

    1989-01-01

    Neuropeptide K (NPK) is an N-terminally extended derivative of neurokinin A (NKA) that can be a final product in the posttranslational processing of beta-preprotachykinin. A rat salivation bioassay was used to demonstrate potent effects of NPK at low doses, while effects due to NKA were much weaker at higher doses. The rank order of potency of beta-preprotachykinin-derived peptides on salivation responses was NPK greater than substance P greater than NKA much greater than beta-preprotachykinin-(72-96)-peptide. The time course of the NPK response was longer than that observed with substance P. The responses elicited by NPK were blocked by the tachykinin antagonist [D-Pro2,D-Trp7,9]substance P but not by atropine. In peptide coinfusion studies, NPK strikingly potentiated the salivation responses elicited by substance P. NPK in vitro displayed a 100 times lower potency than substance P in displacing 3H-labeled substance P binding in submandibular gland membranes, a tissue rich in SP-P type (NK-1) receptors. The possible cellular mechanisms by which NPK stimulates salivary gland secretion are discussed. We conclude that NPK and substance P may be cotransmitters derived by posttranslational processing of beta-preprotachykinin. Images PMID:2463627

  1. Nutraceutical properties of extra-virgin olive oil: a natural remedy for age-related disease?

    PubMed

    Virruso, Claudia; Accardi, Giulia; Colonna-Romano, Giuseppina; Candore, Giuseppina; Vasto, Sonya; Caruso, Calogero

    2014-04-01

    The health benefits of the Mediterranean diet can be largely ascribed to the nutraceutical properties of extra-virgin olive oil (EVOO). Mono-unsaturated fatty acids and various phenolic compounds, such as oleocanthal, oleuropein, hydroxytyrosol, and tyrosol, are the main nutraceutical substances of EVOO. These substances have been suggested to have the ability to modulate aging-associated processes. In experimental models, it has been shown that EVOO with high concentrations of polyphenols has anti-inflammatory and anti-oxidant properties. Indeed, it was observed that hydroxytyrosol and oleocanthal inhibit the cyclooxygenases (COX-1 and -2) responsible for prostaglandin production; oleuropein is a radical scavenger that blocks the oxidation of low-density lipoproteins. Due to the relevance of olive oil in the economy of Sicily, our group has been funded to assess the nutraceutical properties of different kinds of olive oil. Indeed, the aim of the study is to evaluate effects of EVOOs, with low and high polyphenols content, on immuno-inflammatory and oxidative stress responses in young and old people. A further objective of our group is to evaluate effects of EVOO, with low and high polyphenol content, on the expression of genes encoding proteins that take part in the insulin/insulin-like growth factor-1 signaling pathway involved in longevity. The results of the study will be useful for producing olive oil enriched in nutraceutical properties that may be likely helpful in the prevention of age-related diseases.

  2. Biological coating of EPDM-membranes of fine bubble diffusers.

    PubMed

    Wagner, M; von Hoessle, R

    2004-01-01

    Biological coatings on EPDM-membranes are a problem on many large wastewater treatment plants, as the oxygen supply of the micro-organisms is no longer guaranteed. Investigations prove that the pressure loss and the Shore A-hardness of the EPDM-membranes increase while on the other hand their softener content decreases accordingly. The detected coatings on the membrane surfaces and in the slits or holes of the membranes show extra-cellular organic substances (EPS), which, compared with fibrillar/filamented EPS usually found on surfaces in wastewater treatment plants, are viscous to a much greater extent. As, besides primary organic parts (carbon), the coatings on the membranes as well as in the slits or holes also consist of inorganic constituents (magnesium, silicon, and others), the authors assume that, the separating agent (and also inactive filler) talcum (magnesium silicate), used when producing the membranes, supports at least a first beginning of the coating. Superfine dust constituents and fibres, input via the compressed air, will build up inside the coating and consequently lead to a gradual clogging of the holes or slits. Besides chemical cleaning measures, the exchange of the EPDM-membranes against membranes of silicone would also be a possible measure to solve this problem. The market will decide, if, in the future, a cleaning or an exchange of the EPDM-membranes against membranes of silicone will be applied, but it has to be considered that the loss of softener is irreversible.

  3. Combining QD-FRET and microfluidics to monitor DNA nanocomplex self-assembly in real-time.

    PubMed

    Ho, Yi-Ping; Chen, Hunter H; Leong, Kam W; Wang, Tza-Huei

    2009-08-26

    Advances in genomics continue to fuel the development of therapeutics that can target pathogenesis at the cellular and molecular level. Typically functional inside the cell, nucleic acid-based therapeutics require an efficient intracellular delivery system. One widely adopted approach is to complex DNA with a gene carrier to form nanocomplexes via electrostatic self-assembly, facilitating cellular uptake of DNA while protecting it against degradation. The challenge lies in the rational design of efficient gene carriers, since premature dissociation or overly stable binding would be detrimental to the cellular uptake and therapeutic efficacy. Nanocomplexes synthesized by bulk mixing showed a diverse range of intracellular unpacking and trafficking behavior, which was attributed to the heterogeneity in size and stability of nanocomplexes. Such heterogeneity hinders the accurate assessment of the self-assembly kinetics and adds to the difficulty in correlating their physical properties to transfection efficiencies or bioactivities. We present a novel convergence of nanophotonics (i.e. QD-FRET) and microfluidics to characterize the real-time kinetics of the nanocomplex self-assembly under laminar flow. QD-FRET provides a highly sensitive indication of the onset of molecular interactions and quantitative measure throughout the synthesis process, whereas microfluidics offers a well-controlled microenvironment to spatially analyze the process with high temporal resolution (~milliseconds). For the model system of polymeric nanocomplexes, two distinct stages in the self-assembly process were captured by this analytic platform. The kinetic aspect of the self-assembly process obtained at the microscale would be particularly valuable for microreactor-based reactions which are relevant to many micro- and nano-scale applications. Further, nanocomplexes may be customized through proper design of microfludic devices, and the resulting QD-FRET polymeric DNA nanocomplexes could be readily applied for establishing structure-function relationships.

  4. On the exfoliating polymeric cellular dosage forms for immediate drug release.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2016-06-01

    The most prevalent pharmaceutical dosage forms at present-the oral immediate-release tablets and capsules-are granular solids. Though effective in releasing drug rapidly, development and manufacture of such dosage forms are fraught with difficulties inherent to particulate processing. Predictable dosage form manufacture could be achieved by liquid-based processing, but cast solid dosage forms are not suitable for immediate drug release due to their resistance to fluid percolation. To overcome this limitation, we have recently introduced cellular dosage forms that can be readily prepared from polymeric melts. It has been shown that open-cell structures comprising polyethylene glycol 8000 (PEG 8k) excipient and a drug exfoliate upon immersion in a dissolution medium. The drug is then released rapidly due to the large specific surface area of the exfoliations. In this work, we vary the molecular weight of the PEG excipient and investigate its effect on the drug release kinetics of structures with predominantly open-cell topology. We demonstrate that the exfoliation rate decreases substantially if the excipient molecular weight is increased from 12 to 100kg/mol, which causes the drug dissolution time to increase by more than a factor of ten. A model is then developed to elucidate the exfoliation behavior of cellular structures. Diverse transport processes are considered: percolation due to capillarity, diffusion of dissolution medium through the cell walls, and viscous flow of the saturated excipient. It is found that the lower exfoliation rate and the longer dissolution time of the dosage forms with higher excipient molecular weight are primarily due to the greater viscosity of the cell walls after fluid penetration. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration.

    PubMed

    Rowley, Thomas J; Bitner, Benjamin F; Ray, Jason D; Lathen, Daniel R; Smithson, Andrew T; Dallon, Blake W; Plowman, Chase J; Bikman, Benjamin T; Hansen, Jason M; Dorenkott, Melanie R; Goodrich, Katheryn M; Ye, Liyun; O'Keefe, Sean F; Neilson, Andrew P; Tessem, Jeffery S

    2017-11-01

    A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13-derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract and with oligomeric or polymeric procyanidin-rich fraction demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components are up-regulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with nuclear factor, erythroid 2 like 2 (Nrf2) nuclear localization and expression of Nrf2 target genes including nuclear respiratory factor 1 (Nrf1) and GA binding protein transcription factor alpha subunit (GABPA), essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and up-regulation of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion and ultimately improved β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Induction of Attachment-Independent Biofilm Formation and Repression of hfq Expression by Low-Fluid-Shear Culture of Staphylococcus aureus ▿

    PubMed Central

    Castro, Sarah L.; Nelman-Gonzalez, Mayra; Nickerson, Cheryl A.; Ott, C. Mark

    2011-01-01

    The opportunistic pathogen Staphylococcus aureus encounters a wide variety of fluid shear levels within the human host, and they may play a key role in dictating whether this organism adopts a commensal interaction with the host or transitions to cause disease. By using rotating-wall vessel bioreactors to create a physiologically relevant, low-fluid-shear environment, S. aureus was evaluated for cellular responses that could impact its colonization and virulence. S. aureus cells grown in a low-fluid-shear environment initiated a novel attachment-independent biofilm phenotype and were completely encased in extracellular polymeric substances. Compared to controls, low-shear-cultured cells displayed slower growth and repressed virulence characteristics, including decreased carotenoid production, increased susceptibility to oxidative stress, and reduced survival in whole blood. Transcriptional whole-genome microarray profiling suggested alterations in metabolic pathways. Further genetic expression analysis revealed downregulation of the RNA chaperone Hfq, which parallels low-fluid-shear responses of certain Gram-negative organisms. This is the first study to report an Hfq association with fluid shear in a Gram-positive organism, suggesting an evolutionarily conserved response to fluid shear among structurally diverse prokaryotes. Collectively, our results suggest S. aureus responds to a low-fluid-shear environment by initiating a biofilm/colonization phenotype with diminished virulence characteristics, which could lead to insight into key factors influencing the divergence between infection and colonization during the initial host-pathogen interaction. PMID:21803898

  7. Terahertz Spectroscopy for Chemical Detection and Burn Characterization

    NASA Astrophysics Data System (ADS)

    Arbab, Mohammad Hassan

    Terahertz (THz) frequencies represent the last frontier of the electromagnetic spectrum to be investigated by scientists. One of the main attractions of investigating this frequency range is the richness of the spectral information that can be obtained using a Terahertz Time-Domain Spectroscopy (THz-TDS) setup. Many large molecule chemicals and polymers have vibrational and rotational modes in the THz frequencies. Study of these resonance modes has revealed a wealth of new information about the intermolecular structure, and its transformation during crystallization or polymerization process. This information helps researchers develop new materials to address problems such as efficient energy conversion in polymer solar cells. Moreover, similar signature-like terahertz modes can be used for stand-off identification of substances or for nondestructive evaluation of defects in industrial applications. Finally, terahertz spectroscopy has the potential to provide a safe and non-ionizing imaging modality to study cellular and molecular events in biological and biomedical applications. The high sensitivity of terahertz waves to attenuation by both bound and free water molecules can also provides a source of signal contrast for many future biomedical imaging and diagnostic applications. In this dissertation, we aim to study and develop three such applications of terahertz spectroscopy, which form the three axes of our work: rough-surface scattering mediated stand-off detection of chemicals, characterization of burn injuries using terahertz radiation, and a new electrically tunable bandpass filter device incorporating nano-material transparent electrodes that can enable fast terahertz spectroscopy in the frequency domain.

  8. Integrated metabolomic and proteomic analysis reveals systemic responses of Rubrivivax benzoatilyticus JA2 to aniline stress.

    PubMed

    Mujahid, Md; Prasuna, M Lakshmi; Sasikala, Ch; Ramana, Ch Venkata

    2015-02-06

    Aromatic amines are widely distributed in the environment and are major environmental pollutants. Although degradation of aromatic amines is well studied in bacteria, physiological adaptations and stress response to these toxic compounds is not yet fully understood. In the present study, systemic responses of Rubrivivax benzoatilyticus JA2 to aniline stress were deciphered using metabolite and iTRAQ-labeled protein profiling. Strain JA2 tolerated high concentrations of aniline (30 mM) with trace amounts of aniline being transformed to acetanilide. GC-MS metabolite profiling revealed aniline stress phenotype wherein amino acid, carbohydrate, fatty acid, nitrogen metabolisms, and TCA (tricarboxylic acid cycle) were modulated. Strain JA2 responded to aniline by remodeling the proteome, and cellular functions, such as signaling, transcription, translation, stress tolerance, transport and carbohydrate metabolism, were highly modulated. Key adaptive responses, such as transcription/translational changes, molecular chaperones to control protein folding, and efflux pumps implicated in solvent extrusion, were induced in response to aniline stress. Proteo-metabolomics indicated extensive rewiring of metabolism to aniline. TCA cycle and amino acid catabolism were down-regulated while gluconeogenesis and pentose phosphate pathways were up-regulated, leading to the synthesis of extracellular polymeric substances. Furthermore, increased saturated fatty acid ratios in membranes due to aniline stress suggest membrane adaptation. The present study thus indicates that strain JA2 employs multilayered responses: stress response, toxic compound tolerance, energy conservation, and metabolic rearrangements to aniline.

  9. Micropatterning hydroxy-PAAm hydrogels and Sylgard 184 silicone elastomers with tunable elastic moduli.

    PubMed

    Versaevel, Marie; Grevesse, Thomas; Riaz, Maryam; Lantoine, Joséphine; Gabriele, Sylvain

    2014-01-01

    This protocol describes a simple method to deposit protein micropatterns over a wide range of culture substrate stiffness (three orders of magnitude) by using two complementary polymeric substrates. In the first part, we introduce a novel polyacrylamide hydrogel, called hydroxy-polyacrylamide (PAAm), that permits to surmount the intrinsically nonadhesive properties of polyacrylamide with minimal requirements in cost or expertize. We present a protocol for tuning easily the rigidity of "soft" hydroxy-PAAm hydrogels between ~0.5 and 50 kPa and a micropatterning method to locally deposit protein micropatterns on these hydrogels. In a second part, we describe a protocol for tuning the rigidity of "stiff" silicone elastomers between ~100 and 1000 kPa and printing efficiently proteins from the extracellular matrix. Finally, we investigate the effect of the matrix rigidity on the nucleus of primary endothelial cells by tuning the rigidity of both polymeric substrates. We envision that the complementarity of these two polymeric substrates, combined with an efficient microprinting technique, can be further developed in the future as a powerful mechanobiology platform to investigate in vitro the effect of mechanotransduction cues on cellular functions, gene expression, and stem cell differentiation. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Fabrication and biological imaging of polyhedral oligomeric silsesquioxane cross-linked fluorescent polymeric nanoparticles with aggregation-induced emission feature

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Meiying; Xu, Dazhuang; Wan, Qing; Huang, Qiang; Jiang, Ruming; Shi, Yingge; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    Aggregation-induced emission (AIE) dyes based fluorescent polymeric nanoparticles (FNPs) have been intensively explored for biomedical applications. However, many of these AIE-active FNPs are relied on the self-assembly of amphiphilic copolymers, which are not stable in diluted solution. Therefore, the introduction of cross-linkages into these micelles has demonstrated to be an efficient route to overcome this stability problem and endow ultra-low critical micelle concentrations (CMC) of these AIE-active FNPs. In this work, we reported the fabrication of cross-linked AIE-active FNPs through controllable reversible addition fragmentation chain transfer polymerization by using commercially available octavinyl-T8-silsesquioxane (8-vinyl POSS) as the cross-linkage for the first time. The resultant cross-linked amphiphilic copolymers (named as PEG-POSS-PhE) are prone to self-assemble into stable core-shell nanoparticles with well water dispersity, strong red fluorescence and low CMC (0.0069 mg mL-1) in aqueous solution. More importantly, PEG-POSS-PhE FNPs possess some other properties such as high water dispersity, uniform morphology and small size, excellent biocompatibility and cellular internalization, providing great potential of PEG-POSS-PhE FNPs for biological imaging application.

  11. Sickle cell dehydration: Pathophysiology and therapeutic applications.

    PubMed

    Brugnara, Carlo

    2018-01-01

    Cell dehydration is a distinguishing characteristic of sickle cell disease and an important contributor to disease pathophysiology. Due to the unique dependence of Hb S polymerization on cellular Hb S concentration, cell dehydration promotes polymerization and sickling. In double heterozygosis for Hb S and C (SC disease) dehydration is the determining factor in disease pathophysiology. Three major ion transport pathways are involved in sickle cell dehydration: the K-Cl cotransport (KCC), the Gardos channel (KCNN4) and Psickle, the polymerization induced membrane permeability, most likely mediated by the mechano-sensitive ion channel PIEZO1. Each of these pathways exhibit unique characteristics in regulation by oxygen tension, intracellular and extracellular environment, and functional expression in reticulocytes and mature red cells. The unique dependence of K-Cl cotransport on intracellular Mg and the abnormal reduction of erythrocyte Mg content in SS and SC cells had led to clinical studies assessing the effect of oral Mg supplementation. Inhibition of Gardos channel by clotrimazole and senicapoc has led to Phase 1,2,3 trials in patients with sickle cell disease. While none of these studies has resulted in the approval of a novel therapy for SS disease, they have highlighted the key role played by these pathways in disease pathophysiology.

  12. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    PubMed

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Evaluating filterability of different types of sludge by statistical analysis: The role of key organic compounds in extracellular polymeric substances.

    PubMed

    Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan

    2017-03-01

    An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Influences of Extracellular Polymeric Substances on the Dewaterability of Sewage Sludge during Bioleaching

    PubMed Central

    Zhang, Xueying; Zhou, Lixiang

    2014-01-01

    Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement. PMID:25050971

  15. Differential Protection from Tobramycin by Extracellular Polymeric Substances from Acinetobacter baumannii and Staphylococcus aureus Biofilms

    PubMed Central

    Davenport, Emily K.; Call, Douglas R.

    2014-01-01

    We investigated biofilms of two pathogens, Acinetobacter baumannii and Staphylococcus aureus, to characterize mechanisms by which the extracellular polymeric substance (EPS) found in biofilms can protect bacteria against tobramycin exposure. To do so, it is critical to study EPS-antibiotic interactions in a homogeneous environment without mass transfer limitations. Consequently, we developed a method to grow biofilms, harvest EPS, and then augment planktonic cultures with isolated EPS and tobramycin. We demonstrated that planktonic cultures respond differently to being treated with different types of EPS (A. baumannii versus S. aureus) in the presence of tobramycin. By harvesting EPS from the biofilms, we found that A. baumannii EPS acts as a “universal protector” by inhibiting tobramycin activity against bacterial cells regardless of species; S. aureus EPS did not show any protective ability in cell cultures. Adding Mg2+ or Ca2+ reduced the protective effect of A. baumannii EPS. Finally, when we selectively digested the proteins or DNA of the EPS, we found that the protective ability did not change, suggesting that neither has a significant role in protection. To the best of our knowledge, this is the first study that demonstrates how EPS protects pathogens against antibiotics in a homogeneous system without mass transfer limitations. Our results suggest that EPS protects biofilm communities, in part, by adsorbing antibiotics near the surface. This may limit antibiotic diffusion to the bottom of the biofilms but is not likely to be the only mechanism of protection. PMID:24913166

  16. Design of experiments for the development of poly( d, l-lactide- co-glycolide) nanoparticles loaded with Uncaria tomentosa

    NASA Astrophysics Data System (ADS)

    Ribeiro, Ana Ferreira; Ferreira, Carina Torres Garruth; dos Santos, Juliana Fernandes; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira

    2015-02-01

    Polymeric nanoparticles have been shown to be effective carriers for natural substances that possess anticancer properties. Incorporation of these natural substances into polymeric nanoparticles increases targeting of these drugs, thus reducing side effects. Uncaria tomentosa (UT) is a Peruvian Amazon plant (existing in the Brazilian Amazon rainforest) that possesses promising anti-tumor activity. This paper describes the development of poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles loaded with UT extract. The emulsion solvent evaporation method was utilized and the initial conditions were determined for the organic phase (OP) and the aqueous phase (AP). The influence of surfactant (type and concentration), PLGA concentration and AP volume on nanoparticle size, polydispersity index (PI), and entrapment efficiency (EE) was determined using a fractional factorial design (FFD). In addition, the formulation was optimized using a Box-Behnken design. After the conditions were optimized, UT nanoparticles were obtained using an OP composed of an ethyl acetate:acetone (3:2) mixture which contained the UT alkaloids and PLGA, and an AP composed of a buffered solution of Poloxamer 188 (pH 7.5). The optimized formulation produced an EE of 64.6 %, a particle size of 107.4 nm and a PI of 0.163. The preliminary experiments provided important information regarding the behavior of the nanoparticulate system and the FFD used in this study greatly facilitated the selection of the most optimal conditions for formulation development.

  17. Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: Adsorption behavior and mechanism assessment

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wang, Qilin; Li, Ang; Yang, Jixian; Ma, Fang; Pi, Shanshan; Wu, Dan

    2016-08-01

    The adsorption performance and mechanism of extracellular polymeric substances (EPS) extracted from Klebsiella sp. J1 for soluble Pb (II) were investigated. The maximum biosorption capacity of EPS for Pb (II) was found to be 99.5 mg g-1 at pH 6.0 and EPS concentration of 0.2 g/L. The data for adsorption process satisfactorily fitted to both Langmuir isotherm and pseudo-second order kinetic model. The mean free energy E and activation energy Ea were determined at 8.22- 8.98 kJ mol-1 and 42.46 kJ mol-1, respectively. The liquid-film diffusion step might be the rate-limiting step. The thermodynamic parameters (ΔGo, ΔHo and ΔSo) revealed that the adsorption process was spontaneous and exothermic under natural conditions. The interactions between EPS system and Pb (II) ions were investigated by qualitative analysis methods (i.e Zeta potential, FT-IR and EDAX). Based on the strong experimental evidence from the mass balance of the related elements participating in the sorption process, an ion exchange process was identified quantitatively as the major mechanism responsible for Pb (II) adsorption by EPS. Molar equivalents of both K+ and Mg2+ could be exchanged with Pb2+ molar equivalents in the process and the contribution rate of ion exchange to adsorption accounted for 85.72% (Δmequiv = -0.000541).

  18. Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: Adsorption behavior and mechanism assessment

    PubMed Central

    Wei, Wei; Wang, Qilin; Li, Ang; Yang, Jixian; Ma, Fang; Pi, Shanshan; Wu, Dan

    2016-01-01

    The adsorption performance and mechanism of extracellular polymeric substances (EPS) extracted from Klebsiella sp. J1 for soluble Pb (II) were investigated. The maximum biosorption capacity of EPS for Pb (II) was found to be 99.5 mg g−1 at pH 6.0 and EPS concentration of 0.2 g/L. The data for adsorption process satisfactorily fitted to both Langmuir isotherm and pseudo-second order kinetic model. The mean free energy E and activation energy Ea were determined at 8.22– 8.98 kJ mol−1 and 42.46 kJ mol−1, respectively. The liquid-film diffusion step might be the rate-limiting step. The thermodynamic parameters (ΔGo, ΔHo and ΔSo) revealed that the adsorption process was spontaneous and exothermic under natural conditions. The interactions between EPS system and Pb (II) ions were investigated by qualitative analysis methods (i.e Zeta potential, FT-IR and EDAX). Based on the strong experimental evidence from the mass balance of the related elements participating in the sorption process, an ion exchange process was identified quantitatively as the major mechanism responsible for Pb (II) adsorption by EPS. Molar equivalents of both K+ and Mg2+ could be exchanged with Pb2+ molar equivalents in the process and the contribution rate of ion exchange to adsorption accounted for 85.72% (Δmequiv = −0.000541). PMID:27514493

  19. Induction of Biofilm Formation in the Betaproteobacterium Burkholderia unamae CK43B Exposed to Exogenous Indole and Gallic Acid

    PubMed Central

    Kim, Dongyeop; Sitepu, Irnayuli R.

    2013-01-01

    Burkholderia unamae CK43B, a member of the Betaproteobacteria that was isolated from the rhizosphere of a Shorea balangeran sapling in a tropical peat swamp forest, produces neither indole nor extracellular polymeric substances associated with biofilm formation. When cultured in a modified Winogradsky's medium supplemented with up to 1.7 mM indole, B. unamae CK43B maintains its planktonic state by cell swelling and effectively degrades exogenous indole. However, in medium supplemented with 1.7 mM exogenous indole and 1.0 mM gallic acid, B. unamae CK43B produced extracellular polymeric substances and formed a biofilm. The concentration indicated above of gallic acid alone had no effect on either the growth or the differentiation of B. unamae CK43B cells above a certain concentration threshold, whereas it inhibited indole degradation by B. unamae CK43B to 3-hydroxyindoxyl. In addition, coculture of B. unamae CK43B with indole-producing Escherichia coli in nutrient-rich Luria-Bertani medium supplemented with 1.0 mM gallic acid led to the formation of mixed cell aggregates. The viability and active growth of B. unamae CK43B cells in a coculture system with Escherichia coli were evidenced by fluorescence in situ hybridization. Our data thus suggest that indole facilitates intergenus communication between indole-producing gammaproteobacteria and some indole-degrading bacteria, particularly in gallic acid-rich environments. PMID:23747701

  20. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching.

    PubMed

    Zhou, Jun; Zheng, Guanyu; Zhang, Xueying; Zhou, Lixiang

    2014-01-01

    Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement.

Top